
UCLA
UCLA Electronic Theses and Dissertations

Title
Simulation of brain-machine interfaces

Permalink
https://escholarship.org/uc/item/0cv1d1h2

Author
Liang, Ken-Fu

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cv1d1h2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Simulation of brain-machine interfaces

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Ken-Fu Liang

2022

© Copyright by

Ken-Fu Liang

2022

ABSTRACT OF THE DISSERTATION

Simulation of brain-machine interfaces

by

Ken-Fu Liang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Jonathan C. Kao, Chair

Intracortical brain-computer interfaces (BCIs) are expensive and time-consuming to design

because accurate evaluation traditionally requires real-time experiments. In a BCI system,

a user interacts with an imperfect decoder and continuously changes motor commands in re-

sponse to unexpected decoded movements. Decoder optimization using previously collected

“offline” data will therefore not capture this closed-loop response. However, this “closed-loop”

nature of BCI leads to emergent interactions between the user and decoder that are challeng-

ing to model. The gold standard for BCI evaluation is therefore real-time experiments, which

significantly limits the speed and community of BCI research. My dissertation is focused

on creating a pure software BCI simulator which is accurate and versatile in evaluating and

characterizing performance of never-before-tested decoders. In our approach, there are three

components: the decoder, neural activity, and user control policy. Our design approach uses

(1) published BCI experiments as ground truth decoder comparisons, collected with empir-

ical neural recordings and a user-in-the-loop, (2) physical BCI emulator experiments allows

us to optimize the neural encoder in isolation to reproduce published ground truth decoder

performance, and finally (3) software BCI simulator experiments to implement approximate

ii

control policies for each decoder, replacing the user-in-the-loop. We demonstrate that our

simulator is accurate and versatile, reproducing the published results of three distinct types

of BCI decoders: (1) a state-of-the-art linear decoder (FIT-KF), (2) a “two-stage” BCI de-

coder requiring closed-loop decoder adaptation (ReFIT-KF), and (3) a nonlinear recurrent

neural network decoder (FORCE). We anticipate this simulator will help democratize and

significantly accelerate BCI research.

This dissertation presents steps toward a pure software BCI simulator. In the follow-

ing, we will introduce BCI experiments, neural encoder, BCI emulator, and BCI simulator.

Much of the work presented in these chapters has been published in peer reviewed journals,

conferences, or in the process of peer review. We briefly present the main content of each

chapter and point the reader to the relevant publications below:

1. Chapter 1 gives an overview of the field of brain-computer interface, including the

importance of closed-loop experiments. We will also introduce prior BCI emulators,

simulators, and our approach.

2. Chapter 2 introduces BCI monkey experiments, including experiment setup, tasks, and

BCI decoders, which we aim to reproduce. We also shows the important metrics in

BCI experiments which we used to validate our BCI emulator and simulator.

3. Chapter 3 presents various neural encoders which were trained to reproduce neural

activity in single neuron PSTHs, and population neuron dynamics and rotations. We

will also introduce important data preprocessing and regularization method to improve

generalization of neural encoder.

4. Chapter 4 resents BCI emulator that first accurately predicts the detailed performance

of a variety of decoders, including those that require multiple stages of training, as well

as linear and nonlinear decoders.

5. Chapter 5 presents BCI simulator which reproduced decoder performance in a pure

iii

software. We will introduce a new constrained RL algorithm and compare with con-

ventional LQR and naive RL algorithm in controlling BCI systems.

The dissertation concludes with Chapter 6, providing a holistic view of this work. To-

gether, we anticipate this simulator will help democratize and significantly accelerate BCI

research.

iv

The dissertation of Ken-Fu Liang is approved.

Dejan Markovic

Tao Gao

Wentai Liu

Jonathan C. Kao, Committee Chair

University of California, Los Angeles

2022

v

To my family

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 BCI overview . 2

1.2 BCI decoder online evaluation . 3

1.3 Towards pure software BCI simulator . 4

1.3.1 Monkey BCI experiments as ground truth decoder comparisons . . . 8

1.3.2 BCI emulator . 9

1.3.3 BCI simulator . 9

1.4 Conclusion . 9

2 Intracortical brain-computer interfaces . 11

2.1 Summary . 11

2.2 Introduction . 12

2.3 Methods . 14

2.3.1 Experiment setup . 14

2.3.2 Tasks . 15

2.3.3 BCI metrics . 17

2.3.4 BCI decoder algorithms . 19

2.4 Results . 22

2.4.1 Monkey data offline analysis . 22

2.4.2 BCI decoder online performance . 27

2.5 Conclusion . 27

vii

3 Neural encoder . 29

3.1 Summary . 29

3.2 Introduction . 29

3.3 Methods . 32

3.3.1 Dataset . 32

3.3.2 Neural encoders . 32

3.3.3 Metrics . 36

3.4 Results . 38

3.4.1 RNN neural encoders better reproduce neural activity 38

3.4.2 RNN neural encoders better reproduce population neural activity . . 43

3.4.3 Kinematics decoded from RNN generated neural activity better match

decoded kinematics . 45

3.4.4 Regularize RNN input weights to receive more contribution from in-

ternal RNN dynamics . 49

3.5 Discussion . 50

3.6 Conclusion . 52

4 BCI emulator . 54

4.1 Summary . 54

4.2 Introduction . 55

4.3 Methods . 57

4.3.1 Emulator setup . 57

4.3.2 Experiment procedure . 58

4.4 Results . 58

viii

4.4.1 Emulator with PPVT neural encoder leads to incorrect conclusions. . 58

4.4.2 A BCI emulator using a RNN neural encoder reproduces published

BCI studies. 64

4.5 Discussion . 65

4.6 Conclusions . 66

5 BCI simulator . 68

5.1 Summary . 68

5.2 Introduction . 69

5.3 Methods . 71

5.3.1 Simulator setup . 71

5.3.2 AI agents . 72

5.4 Results . 76

5.4.1 Linear control policy and linear neural encoder lead to incorrect con-

clusions . 76

5.4.2 Unconstrained RL agent leads to incorrect conclusions 77

5.4.3 A software BCI simulator with a constrained RL agent reproduces

published BCI studies. 79

5.5 Discussion . 82

5.6 Conclusions . 84

6 Conclusion . 85

ix

LIST OF FIGURES

1.1 BCIs are closed-loop systems and control policy is decoder dependent. (a) BCI

decoders are imperfect, so decoded cursor movements will not fully match the

intent of the user. In response, the user will generate updated motor commands

and neural signals. (b) BCI performance relies on a decoder dependent control

policy. Hand and cursor positions were recorded while the monkey neurally con-

trolled a VKF and FIT-KF. (c) In the yellow box, we plot the decoded output

of the VKF (blue) and FIT-KF (red) from intracortical BCI experiments where

the monkey sought to acquire a target at 45◦ (example trial bolded). In the pur-

ple box, we plot the monkey’s recorded hand positions, which reflect his motor

commands to control the decoder. Hand trajectories when controlling the VKF

range all over the workspace and have longer trajectories with erratic movements

compared to FIT-KF. 4

x

1.2 Prior works without neurosurgery to estimate intracortical BCI performance and

our new framework. (a) The BCI emulator circumvents invasive neurosurgery by

generating synthetic neural signals, although it still requires human experiments

to implement an accurate control policy. Though it can in theory generalize to

new decoders, it does not because of its poor neural encoder. (b) The linear

control simulator replaces the human with a linear control policy. This makes

the simulator entirely software, but the control policy is not accurate. (c) The

simulator by Willett et al. [1] enables hyperparameter optimization of a single

decoder by modeling its dynamics (gray box), but cannot generalize to new de-

coders. (d) Our goal is the general solution, a purely software simulator that

accurately predicts the performance of any type of decoder. (a-d) Green check-

marks indicate yes, red checkmarks indicate no, and yellow checkmarks indicate

that while the answer is theoretically yes, in practice it is more nuanced and

depends on a particular model. 5

1.3 BCI simulator design approach. Our approach makes use of (a) published in-

tracortical BCI literature, (b) BCI emulation, and (c) deep RL to design and

validate the components of the BCI simulator. (a) Published BCI experiments,

using true neural data and control policy, provide three different ground truth

decoder comparisons to validate the BCI emulator and simulator. (b) The BCI

emulator uses a human to implement a true control policy, enabling us to opti-

mize the neural encoder to reproduce published BCI experiments. (c) We fix the

neural encoder from the BCI emulator and then optimize the deep RL control

policy in the simulator. 7

xi

2.1 Intracortical monkey BCI experiment. Using true neural data and control policy

to evaluate four distinct decoder algorithms. Neural signal was recorded from the

motor cortical regions then decoded into cursor shown on the screen. Monkey

adjusted his control policy due to imperfect decoded kinematics. Monkey’s hand

was free to move because they reflect the motor commands used to control the

decoder. 12

2.2 Illustration of dial-in time (DIT) and first-touch time (FTT) (a) DIT example.

(b) FTT example. Dial-in time (DIT) represents fine control. In a, trajectory 1

(blue) enters the desired target but due to poor fine control, exits and re-enters,

leading to DIT = 300 ms. Trajectory 2 (red) enters, and with fine control, is able

to acquire the target, leading to DIT = 0 ms. First-touch time (FTT) represents

ballistic control. In b, trajectory 1 (blue) enters the desired target at FTT = 600

ms. Although it exits and re-enters at 1000 ms, this does not affect the FTT.

Trajectory 2 (red) enters the desired target more quickly at FTT = 550 ms. . . 18

2.3 Delay estimation between neural activity in motor cortex and hand movements.

(a) Hand movements and (b) speed of center-out trials in a center-out-and-

back task. 8 different colors correspond to 8 target directions. (c) Correlation

coefficient on various delay, and 200 ms delay achieved highest correlation. . . . 23

2.4 Estimate the delay from motor cortex to hand movements. (a) PSTH of four

neurons. (b) Relationship between firing rate and hand speed given no delay.

(c) Relationship between firing rate and hand speed given 200 ms delay. Hand

movements were mainly initiated by neural activity in motor cortex. The neural

path from motor cortex to muscle EMG causes the delay which is always ignored

when training neural encoders and decoders. We found that M1 and PMd are

positively correlated with variability of future hand speed (delay = 200 ms) in

average across 192 neurons. As expected, comparing b and c, the relationship of

hand speed and PSTH is much linear when apply 200 ms delay. 24

xii

2.5 Hand movements and decoded movement from open-loop recorded neural activity

with three decoders The decoders are (a) FIT-KF, (b) ReFIT-KF, and (c). In

each panel, red lines represent hand trajectories, and blue lines represents decoded

trajectories. One randomly chosen trial for each direction is shown in bold lines.

NRMSE of decoded positions and velocities are shown in each panel. 25

2.6 (a) Distance-to-target plots from intracortical BCI experiments for the various

decoders. The bolded line corresponds to DIT. (b, c) Average DIT and FTT,

respectively, from BCI experiments. (d) Distribution of trial times for each de-

coder. (e) Randomly sampled trajectories for each decoder. (f) Max deviation

from the straight line path for each decoder. (g) Distance ratio (cursor path

length divided by straight path length) for each decoder. Distance ratio is the

inverse of path efficiency. Decoder performance are summarized in Table 2.2. . 26

3.1 BMI system and neural encoder. a Neural activity is recorded from electrode

arrays implanted in motor cortex. A decoder transforms neural activity into

control signals which guides a motor prosthesis. The BCI user receives visual

and potentially sensory feedback, adjusting his or her control policy in response

to observing the decoded movement. b A neural encoder takes user kinematics

and produces synthetic neural activity. A good encoder reproduces single neuron

variability, neural population dynamics, and decoded movement from real neural

activity. Here, we compare (1) the PSTHs and neural dynamics of recorded and

synthetic neural activity, and (2) decoded movements from real and synthetic

neural activity. 30

3.2 Architecture of the RNN neural encoder which takes hand kinematics to predict

firing rates of 192 neurons. RNN was trained by maximizing the log-likelihood

under the assumption of Poisson distribution. Binned spike counts were sampled

under Poisson distribution given estimated firing rates. 36

xiii

3.3 An RNN neural encoder better reproduces neural activity than a PPVT in both

training and validation datasets. (a-c) Our training dataset was recorded when

monkey performed hand-control reaches. (d-i) Validation dataset was recorded

when monkey performed reaches with FIT-KF and ReFIT-KF decoders. In each

dataset, we plot (a, d, g) example PSTHs, (b, e, h) PCA trajectories in the top 2

PCs, and (c, f, i) jPCA trajectories in the top jPC plane. In PSTHs, the vertical

bar denotes 100 spike/s, and the horizontal bar denotes 100 ms. We observed

that single electrode PSTHs exhibited multiphasic firing pattern and population

activity exhibited rotational dynamics in monkey data. A PPVT neural encoder

did not reproduce these neural properties. We also trained a naive RNN neural

encoder (“Naive encoder”), an RNN neural encoder with a 200ms delay between

hand kinematics and neural activity (“Delayed encoder”), and a delayed RNN

encoder with L2 regularization on the input weight matrix (“Delayed regularized

encoder”). Ultimately, the delayed regularized neural encoder performed the best

in reproducing neural activity when validated on BCI datasets. Quantitative

results are summarized in Table 3.1. 40

3.4 Dimensionality of recorded and synthetic PSTHs. 8 dimensions were required to

capture over 90 % of the recorded neural variance. 44

xiv

3.5 Decoding open-loop neural data and synthetic neural activity. We used neu-

ral encoders to generate synthetic neural activity while a monkey performed the

center-out-and-back task with the hand. We then compared the decoded trajec-

tories from real neural activity (blue) to synthetic activity (red). (a, c, e) We

plot multiple decoded center-out trajectories, with a random trajectory bolded

for each direction. (b, d, f) We also show average cursor speed profile with the

vertical bars denote 100 mm/s, and the horizontal bar denotes 100 ms. Decoded

kinematics from real and synthetic data are marked in blue and red, respectively.

PPVT synthetic neural activity performed especially poorly under FORCE de-

coding, exhibiting a bias in the up-left direction. In contrast, RNN neural en-

coders reproduced real neural data decodes more closely. Quantitative results are

summarized in Table 3.2. 47

3.6 Decoding closed-loop neural data and synthetic neural activity. We used neu-

ral encoders to generate synthetic neural activity while a monkey controlled the

FIT-KF and ReFIT-KF decoders. We then compared the decoded trajectories

from synthetic activity (red) to the real trajectories decoded from closed-loop

neural activity (blue). We found that incorporating a delay between kinematics

and neural activity and regularization on RNN input weights significantly im-

proved generalization in reproducing decoded closed-loop kinematics, which are

validation datasets the neural encoder was not trained on. Quantitative results

are summarized in Table 3.3. 48

3.7 Regularizing RNN input weights leads to a stronger contribution from internal

RNN dynamics than external inputs.(a) Histogram of the contribution ratio (see

Methods) in the regularized RNN neural encoder. A lower value indicates a

lower contribution from the RNN inputs and a stronger contribution from RNN

dynamics. (a) Histogram of contribution ratio in a non-regularized RNN neural

encoder. This encoder had a significantly higher mean contribution ratio. . . . 50

xv

4.1 Empirical BCIs are closed-loop systems and BCI emulator can circumvent neuro-

surgery. (a) BCI decoders are imperfect, so decoded cursor movements will not

fully match the intent of the user. In response, the user will generate updated

motor commands and neural signals. (b) The BCI emulator circumvents invasive

neurosurgery by generating synthetic neural signals with hand kinematics. . . . 55

4.2 An emulator with a PPVT neural encoder does not reproduce prior published

studies. (a) Distance-to-target plots from emulator experiments for the various

decoders. Emulator results were shifted 200 ms to remove visuomotor response

time when using the neural encoder. The bolded line corresponds to DIT. (b,

c) Average DIT and FTT, respectively. (d) Distribution of trial times for each

decoder. (e) Randomly sampled trajectories for each decoder. (f) Max devia-

tion from the straight line path for each decoder. (g) Distance ratio (cursor path

length divided by straight path length) for each decoder. A PPVT neural en-

coder does not reproduce published studies, especially for the nonlinear FORCE

decoder. FORCE was sometimes not controllable and had a strong bias toward

left shown in (e), resulting in low success rate (50%). FIT-KF, ReFIT-KF, and

VKF all had similar performances, also not consistent with prior studies. Results

are summarized in Table 4.1. 59

4.3 BCI emulator reproduces published studies. (a-d, i-k) Reproduction of the same

panels from Figure 2.6, for ease of comparison of the BCI emulator to intracortical

BCI experiments. (e-h) Same as (a-d) but for the BCI emulator. (l-n) Same

as (i-k) but for the BCI emulator. BCI and emulator results are summarized in

Table 2.2 and Table 4.2, respectively. Emulator results were shifted by 200 ms to

remove visuomotor response time when using the neural encoder. 61

xvi

4.4 The emulator reproduce trial time distributions observed in prior studies. Emu-

lator results in decoding cases were shifted 200 ms to remove visuomotor response

time. We observed similar trial time distributions across decoders in comparison

to the closed-loop BCI data. FIT-KF and ReFIT-KF had narrower distributions

while FORCE and VKF had relatively wider distributions. 62

4.5 Emulator reproduce PVKF decoder performance. (a) Distance-to-target plots

from BCI emulator experiments. The distance-to-target profiles in emulator

qualitatively resembled those in monkey experiments. (b) Randomly sampled

decoded trajectories for each direction in each experiment. The emulator repro-

duce jittery and jumpy cursor trajectories during PVKF control. Quantitative

results are summarized in Table 4.3. Emulator results were shifted by 200 ms to

remove visuomotor response time when using the neural encoder. 63

5.1 (a) The linear control simulator replaces the human with a linear control policy.

This makes the simulator entirely software, but the control policy is not accurate.

(b) The simulator by Willett et al. [1] enables hyperparameter optimization of

a single decoder by modeling its dynamics (gray box), but cannot generalize to

new decoders. (c) Our goal is the general solution, a purely software simulator

that accurately predicts the performance of any type of decoder. 69

5.2 Architecture of the deep RL policy which takes observations and generates hand

acceleration and state value. 73

5.3 A BCI simulator with an LQR agent and PPVT neural encoder. The LQR agent

does not reproduce prior studies with PPVT neural encoder. We do not show the

results of the FORCE decoder because it was uncontrollable, consistent with what

we observed in the emulator. Quantitative results are summarized in Table 5.1. 76

xvii

5.4 A BCI simulator with an unconstrained PPO agent and RNN neural encoder.

Without the smoothness and zero regularizations we incorporated in RL training,

the unconstrained PPO agent was able to generate more unphysical behavior and

find superior strategies to controlling the decoders. The first-touch times and

dial-in times are all shorter than in prior studies, and the VKF first-touch time

is not significantly worse than the other decoders. The ordering of max deviation

and distance ratio are also mismatched from intracortical BCI data. Quantitative

results are summarized in Table 5.2. 78

5.5 BCI simulator reproduces published studies. (a-d, i-k) Reproduction of the same

panels from Figure 3, for ease of comparison of the BCI simulator to intracortical

BCI experiments. (e-h) Same as (a-d) but for the BCI simulator. (l-n) Same

as (i-k) but for the BCI simulator. BCI and simulator results are summarized in

Table 2.2 and Table 5.2, respectively. 80

5.6 The simulator reproduce trial time distributions observed in prior studies. We

observed similar trial time distributions across decoders in comparison to the

closed-loop BCI data. FIT-KF and ReFIT-KF had narrower distributions while

FORCE and VKF had relatively wider distributions. 81

5.7 Simulator reproduce PVKF decoder performance. (a) Distance-to-target plots

from BCI and simulator experiments. The distance-to-target profiles in simulator

qualitatively resembled those in monkey experiments. (b) Randomly sampled de-

coded trajectories for each direction in each experiment. The simulator reproduce

jittery and jumpy cursor trajectories during PPVT control. 82

xviii

LIST OF TABLES

2.1 Task and recording settings for each of the three studies. When the number of

electrodes is 96, this corresponds to one Utah Array in primary motor cortex.

192 electrodes corresponds to two Utah Arrays, one in primary motor cortex and

the other in dorsal premotor cortex. 15

2.2 Decoder performance in BCI with monkey J. TT, FTT, and DIT are trial time,

first-touch time, and dial-in time, respectively. 27

3.1 Similarity of reproduced neural activity from various neural encoders. Three

datasets are included. The “hand” dataset comprises neural data simultaneously

recorded with hand reaches. This was the training set for training neural en-

coders. The “FIT-KF” and “ReFIT” datasets comprise neural data recorded when

the monkey controlled the FIT and ReFIT-KF in closed-loop, which we used as

validation data. All metrics compare the artificial neural activity to the Monkey’s

neural activity. PCC stands for Pearson’s correlation coefficient. NRMSE stands

for normalized root-mean-square error. Higher PCC and lower NRMSE indicate

the neural encoder better reproduced neural activity. Bolded numbers indicate

the best performance for each dataset. 40

3.2 NRMSE of cursor velocities decoded from real monkey data and from synthetic

data in the training dataset (open-loop hand control). Lower NRMSE indicates

the neural encoder better reproduced neural activity with respect to the decoders. 47

3.3 NRMSE of cursor velocities decoded from real monkey data and from synthetic

data in the validation datasets (closed-loop FIT-KF and ReFIT-KF control).

Lower NRMSE indicates the neural encoder better reproduced neural activity

with respect to the decoders. 49

xix

4.1 Decoder performance in emulator with PPVT neural encoder. Emulator results

were shifted by 200 ms to remove visuomotor response time when using the neural

encoder. TT, FTT, and DIT are trial time, first-touch time, and dial-in time,

respectively. 60

4.2 Decoder performance in emulator with the delayed regularized RNN neural en-

coder. Emulator results were shifted by 200 ms to remove visuomotor response

time when using the neural encoder. TT, FTT, and DIT are trial time, first-touch

time, and dial-in time, respectively. 62

4.3 PVKF performance in monkey, emulator, and simulator experiments. The de-

layed regularized RNN neural encoder was used in both emulator and simulator

experiments. Emulator results were shifted by 200 ms to remove visuomotor re-

sponse time when using the neural encoder. TT, FTT, and DIT are trial time,

first-touch time, and dial-in time, respectively. 63

5.1 Decoder performance in simulator using a LQR agent and PPVT neural encoder.

TT, FTT, and DIT are trial time, first-touch time, and dial-in time, respectively. 77

5.2 Decoder performance in simulator using an unconstrained PPO agent and delayed

regularized RNN neural encoder. TT, FTT, and DIT are trial time, first-touch

time, and dial-in time, respectively. 77

5.3 Decoder performance in simulator using a constrained PPO agent and the delayed

regularized RNN neural encoder. TT, FTT, and DIT are trial time, first-touch

time, and dial-in time, respectively. 79

xx

ACKNOWLEDGMENTS

I would like to thank Professor Jonathan C. Kao. Kao has been guiding me to explore

brain-computer interfaces. Kao’s support, kindness, and friendship over the last five years

have been invaluable to me especially passing through pandemic. I would like to thank

my colleagues and friends in the Neural Computation and Engineering Lab who have not

only helped me learn neuroscience and BCIs, but have made my PhD life in LA enjoyable.

I’ve also had very helpful courses including but not limited from Professors Suhas Diggavi,

Tao Gao, Wentai Liu, Ankur Mehta, and Paulo Tabuada. I’d also like to thank my thesis

committee: Professors Tao Gao, Wentai Liu, and Dejan Markovic. I’d like to thank friends

in the area who have supported me during my PhD. Finally, I’d like to thank my family:

my parents, godparents, as well as my bothers and sisters-in-law. I am so grateful for your

prayers, love and support.

xxi

VITA

2012-2013 M.S. , National Taiwan University (NTU)

2008-2012 B.S. , National Chiao Tung University (NCTU)

PUBLICATIONS

K. F. Liang, J. C. Kao, “A closed-loop emulator that accurately predicts brain-machine

interface decoder performance”, COSYNE, 2022

S. Olsen, J. Zhang, K. F. Liang, M. Lam, U. Riaz, J. C. Kao, “An artificial intelligence that

increases simulated brain–computer interface performance”, IEEE Journal of Neural Eng.,

2021

K. F. Liang, J. C. Kao, “Deep Learning Neural Encoder for Motor Cortex”, IEEE Trans.

Bio-Med. Eng., 2019

xxii

CHAPTER 1

Introduction

The goal of brain-computer interfaces is to restore lost motor function to people with motor

neurological disease and injury, including paralysis and amyotrophic lateral sclerosis (ALS).

This is achieved by recording neural signals from the brain and then decoding these neural

signals into control signals that guide a prosthetic or communication device, such as a robotic

arm or computer cursor. In this fashion, the neural prosthesis restores motor function by

bypassing the area of injury or disease, creating a new link for the brain to communicate

with the world.

Brain-computer interface requires animal or human closed-loop experiments to develop

and optimize decoders, which significantly limits the community and speed of BCI research.

To overcome this limitation, one approach is to synthesize neural activity to more rapidly

perform experiments that incorporate the closed-loop nature of BMI systems. The prior

study by Cunningham et al. [2] developed a BCI “emulator” where a human subject’s hand

movements generate synthetic neural activity to control a BCI decoder, removing invasive

neurosurgery but still including true control policy from testing subjects. An important

component in a BCI emulator is the neural encoder, which maps motor commands (recorded

hand kinematics) to synthetic neural activity. However, the neural encoder, Poisson process

velocity tuning (PPVT) model, used by the prior study fails to capture the rich heterogeneity

and dynamics of motor cortical activity [3]. Another approach, as oppose to synthesize neural

activity then decode, Willett et al. [1] designed a simulator which approximated BCI decoded

error that enabled hyperparameter tuning of a VKF. This simulator, however, does not have

1

a neural data model and requires closed-loop experiments to model a decoder’s dynamics.

Our goal is to have versatile software simulator without the need of any animal experi-

ment, we therefore follow Cunningham’s approach and further improve neural encoder with

a nonlinear neural network. We also replace user-in-the-loop in the emulator with AI agents

to achieve a software BCI simulator. Throughout this dissertation, we will investigate BCI

data from monkey experiments and present various neural encoders. Also, we will demon-

strate that, by modeling the kinematic-to-neural relationship as closely as possible, we were

able to accurately recapitulate detailed timing and kinematic performance of representative

neural decoders observed in monkey experiments.

1.1 BCI overview

BCI systems are comprised of three major components: (1) neural activity, typically recorded

from motor cortical regions of the brain; (2) a decoder, which translates the neural recordings

into control signals; and (3) a prosthesis, such as a computer cursor on a screen or a robotic

arm, controlled by the decoder. Intracortical neural signals are measured from electrodes that

reside in the outer few millimeters of motor cortical regions of the brain. These electrodes

record action potentials, also known as “spikes,” are the fundamental currency of information

in the brain. Intracortical brain-computer interfaces (BCIs) were initially demonstrated in

the late 1990 and early 2000s [4, 5, 6], entering pilot clinical trials in 2004 [7].

The performance and robustness of BCI systems depend greatly on the decoder algorithm

(or ‘decoder’), which converts neural activity from motor cortex into the kinematics of a

prosthetic device. The past two decades have seen significant advances to increase BCI

performance, incorporating ideas from control feedback [8, 9, 10], dynamical systems [11, 12],

closed-loop decoder and neural adaptation [13, 14, 15], and deep learning [16, 17].

2

1.2 BCI decoder online evaluation

The decoder algorithm, which translates recorded neural population activity into prosthe-

sis kinematics, is essential for high-performance BCI systems. Historically, decoder design

has been inspired by neuroscientific views of motor cortex as well as by linear estimation,

statistical inference, and neural network theory. BCI decoder algorithms are trained in a

supervised fashion with simultaneous observations of real arm or prosthesis kinematics [18]

and neural population activity. For example, a subject with motor neurological disease or

injury may be asked to imagine mimicking the movements of an automated computer cursor

while neural activity is recorded. A regression could then be performed to learn a mapping

from the subject’s recorded neural population activity to the kinematics of the automated

computer cursor. Then, during real-time BCI control, also called “online” or “closed-loop”

control, the computer cursor would be causally controlled by the decoder, which uses the

subject’s real-time neural population activity to predict the prosthesis kinematics.

Closed-loop BCIs pose an additional challenge that other applications in information

systems engineering do not routinely face. Consider training a supervised algorithm that

infers a variable x from an observed variable y. To do so, one must learn a mapping f(·)

so that x̂ = f(y), where x̂ is the estimate of x. A common approach is to learn f from

observations of (x, y) (“training data”) such that a desired error metric, (x, x̂), is minimized

when evaluated on data not in the training set (“testing” or “cross-validation” data). This

process is called offline evaluation, which producing insight into what algorithms are most

promising to evaluate in available closed-loop experiments. However, in BCI settings, this

approach can lead to suboptimal decoders [2, 19, 20]. One reason for this is because the

subject controlling the BCI system continuously observes the movements of the prosthesis

and can make online corrections to compensate for inaccurately decoded kinematics. Thus,

it is typically the case that BCIs running in closed-loop operate on data distributions that

differ substantially from the data distributions of the training set [21]. As a result of this,

3

Visual
feedback

Neural
signals

BCI
decoder

BCIs are closed-loop systems

Neural
signals

BCI
decoder

Feedback

Cursor
movements

User
control policy

Control policy is decoder dependent

4 cm
start

end target

8 cm

Neural
signals VKF

FIT-KF

Decoders

Hand positions
(reflects control
policy)

VKF
FIT-KF

FIT-KF VKF

x-pos
y

x-pos
y

a b c

Figure 1.1: BCIs are closed-loop systems and control policy is decoder dependent. (a) BCI
decoders are imperfect, so decoded cursor movements will not fully match the intent of the
user. In response, the user will generate updated motor commands and neural signals. (b)
BCI performance relies on a decoder dependent control policy. Hand and cursor positions
were recorded while the monkey neurally controlled a VKF and FIT-KF. (c) In the yellow
box, we plot the decoded output of the VKF (blue) and FIT-KF (red) from intracortical
BCI experiments where the monkey sought to acquire a target at 45◦ (example trial bolded).
In the purple box, we plot the monkey’s recorded hand positions, which reflect his motor
commands to control the decoder. Hand trajectories when controlling the VKF range all over
the workspace and have longer trajectories with erratic movements compared to FIT-KF.

it is difficult to evaluate the performance of a putative decoder without running closed-loop

experiments. This poses a challenge for decoder design, and we will address this with our

BCI simulator.

1.3 Towards pure software BCI simulator

Although we have observed significant advances in decoder performance, BCIs remain in

pilot clinical trials today, reflecting the relatively slow pace of BCI research where new

innovations typically require months to years of experimental validation. Moreover, due to

the unique considerations in BCI design, intracortical BCI research today can only be carried

out by a handful of labs, further limiting the speed and community of BCI research. A key

reason BCI development takes months to years is that BCIs are fundamentally “closed-loop”

systems (Figure 1.1a). The performance of a BCI relies on the user’s “control policy” used

to interact with an imperfect BCI decoder. The user must constantly changes his or her

4

Purely software:
Accurate control policy:
Accurate neural signal:

Generalization:

x

x x
x

x
No neural model

a
Prior work to estimate BCI performance

BCI emulator

Visual
feedback

BCI
decoder

hand
movement

Neural
encoder

Synthetic
neural signals

(x)t

x t

Linear control simulator
b

Feedback

BCI
decoder

Neural
encoder

Synthetic
neural
signals

x = K ft t

c

Feedback

Model of a
decoder’s dynamics

x = g(f)t t

Decoder-specific simulator
d

General BCI simulator

This work

Feedback

BCI
decoder

Synthetic
neural
signals

Deep RL
control policy

RNN encoder

Figure 1.2: Prior works without neurosurgery to estimate intracortical BCI performance and
our new framework. (a) The BCI emulator circumvents invasive neurosurgery by generating
synthetic neural signals, although it still requires human experiments to implement an accu-
rate control policy. Though it can in theory generalize to new decoders, it does not because
of its poor neural encoder. (b) The linear control simulator replaces the human with a lin-
ear control policy. This makes the simulator entirely software, but the control policy is not
accurate. (c) The simulator by Willett et al. [1] enables hyperparameter optimization of a
single decoder by modeling its dynamics (gray box), but cannot generalize to new decoders.
(d) Our goal is the general solution, a purely software simulator that accurately predicts the
performance of any type of decoder. (a-d) Green checkmarks indicate yes, red checkmarks
indicate no, and yellow checkmarks indicate that while the answer is theoretically yes, in
practice it is more nuanced and depends on a particular model.

motor commands in response to feedback of the decoded output. This constant updating

results in emergent interactions and unique control policies for each decoder, meaning decoder

performance depends on these interactions. We emphasize that these control policies are also

decoder dependent. For example, Figure 1.1b illustrates BCI experiments where monkeys

were allowed to move their hands to control a velocity Kalman Filter (VKF) [22] and a

Feedback Intention Trained Kalman Filter (FIT-KF) [9]. The monkey’s hand kinematics are

desired because they reflect the motor commands used to control the decoder. The hand

kinematics are markedly different for controlling the VKF versus the FIT-KF, with VKF

requiring longer hand trajectory and erratic movements compared to FIT-KF (Figure 1.1c,

FIT: 202 mm, VKF: 468 mm, p < 10−7, Wilcoxon rank-sum test). Correctly predicting BCI

performance therefore requires modeling how the user will uniquely interact with a particular

5

decoder in closed-loop experiments. Consistent with this, several studies document that

analysis carried out in “offline” simulations that do not incorporate closed-loop feedback can

be discordant with closed-loop experiments [2, 19, 20].

To accelerate BCI research, prior studies have attempted to emulate or simulate BCI

systems. Cunningham et al. [2] developed a BCI “emulator” where a human subject’s hand

movements generate synthetic neural activity to control a BCI decoder, removing invasive

neurosurgery but still requiring experiments with a human-in-the-loop (Figure 1.2a). We

use the term “emulator” to highlight that this system requires a physical experiment with

hardware that mimics the BCI decoding system and a human to provide a control policy.

While this approach is useful, and we later use it to validate a synthetic neural activity

model (neural encoder), its use of human experiments significantly limits its community use

and speed. To remove the human-in-the-loop and avoid experiments, Lagang and Srinivasan

[23] used the linear quadratic regulator from control theory (Figure 1.2b) to approximate

the human’s BCI control policy. Other studies have also used linear policies from control

theory in BCI design [24, 25, 26, 27, 28]. However, as shown by Willett and colleagues [29, 1],

and by further experiments in this study, linear control policies are a poor approximation

of user control policy and result in incorrect conclusions. Finally, Willett et al. [1] designed

a simulator that enabled hyperparameter tuning of a VKF (Figure 1.2c). This simulator,

however, does not have a neural data model and requires closed-loop experiments to model

a decoder’s dynamics. This simulator can therefore only optimize decoders already tested

in closed-loop intracortical experiments and does not generalize to new, never-before-tested,

decoders. It is also limited to optimize decoders of a linear form.

In contrast to prior work, our BCI simulator aims to faithfully model all aspects of BCI

control to accurately estimate the performance of any BCI decoder entirely in software. This

requires accurately modeling the unique user-decoder interactions without human or monkey

experiments. It also requires generating synthetic neural activity that provides sufficient

information for downstream neural decoders (Figure 1.2d). Our simulator solves the general

6

Published ground truth decoder comparisons Neural encoder validation Control policy optimization

True neural data
True control policy

Approximated neural data
True control policy

Approximated neural data
Approximated policy

Intracortical BCIs BCI emulator BCI simulator
a b c

True neural signals

BCI
decoder

Velocity KF
FIT-KF

ReFIT-KF

FORCE

Intention-estimation

CLDA, retraining

Nonlinear (RNN)

True control
policy

Visual
feedback

BCI
decoder

True control
policy

Published

Feedback

BCI
decoder

Deep RL
control policy

x t

Published

FIXED

Figure 1.3: BCI simulator design approach. Our approach makes use of (a) published
intracortical BCI literature, (b) BCI emulation, and (c) deep RL to design and validate the
components of the BCI simulator. (a) Published BCI experiments, using true neural data
and control policy, provide three different ground truth decoder comparisons to validate
the BCI emulator and simulator. (b) The BCI emulator uses a human to implement a
true control policy, enabling us to optimize the neural encoder to reproduce published BCI
experiments. (c) We fix the neural encoder from the BCI emulator and then optimize the
deep RL control policy in the simulator.

problem: it accurately evaluates the performance of representative decoder algorithms across

diverse innovations and distinct study settings, entirely in software. Our idea fundamentally

involves training an artificial intelligence (AI) agent that learns to control new decoders

through deep reinforcement learning (RL).

There are three components in a BCI: the decoder, neural activity, and user control pol-

icy. A general BCI simulator must accurately approximate the neural activity and control

policy to correctly predict decoder performance. Our design approach uses (1) published

BCI experiments, with true (not approximated) neural activity and true user control policy,

(2) physical BCI emulator experiments, with approximated neural activity but true control

policy, and finally (3) software BCI simulator experiments, with approximated neural activity

and approximated control policy. Published BCI experiments provide ground truth decoder

comparisons, collected with empirical neural recordings and a user-in-the-loop, that we use

to validate our BCI emulator and simulator (Figure 1.3a). The BCI emulator, which approx-

7

imates neural activity but incorporates a user-in-the-loop, allows us to optimize the neural

encoder in isolation to reproduce published ground truth decoder comparisons (Figure 1.3b).

Finally, we build the BCI simulator by fixing a neural encoder from the BCI emulator and

training deep RL agents to implement approximate control policies for each decoder, re-

placing the user-in-the-loop (Figure 1.3c). Although building the simulator requires both

intracortical BCI data and BCI emulator experiments for a one-time build of a neural en-

coder, the complete BCI simulator is implemented entirely in software and accessible to

all.

1.3.1 Monkey BCI experiments as ground truth decoder comparisons

Monkey BCI experiments require true neural data and true control policy. We chose to repli-

cate three distinct BCI studies that improved BCI decoders through different innovations.

This was to demonstrate that our simulator, which did not incorporate any decoder-specific

information, could make general and correct predictions of BCI decoder performance across

diverse innovations and distinct study settings. We chose to replicate the BCI experiments

that established the (1) FIT-KF [9], (2) ReFIT-KF [8], and (3) FORCE [16] decoders. The

FIT-KF is a linear state-of-the-art decoder whose high performance is due to the incorpo-

ration of control theory inspired dataset augmentation (also known as intention estimation)

[9]. The ReFIT-KF, which also incorporates intention estimation, is a decoder that em-

ploys two stages of BCI training, a form of closed-loop decoder adaptation (CLDA) [30, 14].

The ReFIT-KF decoder first requires the user to control a position velocity Kalman filter

(PVKF), followed by a retraining stage using the neural activity and cursor movements

during PVKF control [8]. Finally, the FORCE decoder is a nonlinear decoder that uses a

recurrent echostate network (ESN) and outperforms a linear velocity Kalman filter (VKF)

[16]. Our goal in choosing these studies was to demonstrate the simulator made correct

predictions under very different decoder innovations, namely: (1) state-of-the-art linear de-

coding with intention estimation, (2) closed-loop decoder adaptation and retraining, and (3)

8

nonlinear decoding.

1.3.2 BCI emulator

BCI emulator uses approximated neural data and true control policy. We employ BCI

emulator to validate the neural encoder, which maps motor commands (recorded hand kine-

matics) to synthetic neural activity. The BCI emulator employs closed-loop experiments

(Figure 1.2b). A user moves his or her hand, which generates synthetic activity that is

subsequently decoded. The decoded cursor movement is not perfect and user makes online

corrections to compensate for inaccurately decoded kinematics. Because the user sees the

decoded output and adjusts his or her motor commands to better control the decoder, the

BCI emulator incorporates a true (not approximated) user control policy. This enables us

to therefore evaluate a neural encoder in isolation.

1.3.3 BCI simulator

We next sought to achieve pure software BCI simulator with approximated neural data and

approximated control policy. We replace the user-in-the-loop in BCI emulation with an AI

agent which knows how to generate proper movements to interact with BCI system and

acquire targets as humans did in emulator (Figure 1.2c). We fixed the neural encoder and

focused on agent optimization. Because the BCI emulator reproduced published studies, we

reasoned that human-like control policy would lead to a purely software BCI simulator that

also reproduces published studies.

1.4 Conclusion

BCI community takes two decades to have significant advances in 2D plane decoding. New

innovations typically require months to years of experimental validation. This dissertation

9

will guide the steps toward a pure software BCI simulator and validate with prior studies.

We emphasize that our work serves as a middle ground to alleviate the need of monkey

experiments, and allow quickly evaluate and characterize neural decoders before shifting to

monkey experiments or clinic trials. We believe our work will significantly reduce the barrier

and accelerate BCI research.

10

CHAPTER 2

Intracortical brain-computer interfaces

Intracortical brain-computer interfaces (BCIs) were initially demonstrated in the late 1990

and early 2000s [4, 5, 6], entering pilot clinical trials in 2004 [7]. The past two decades have

seen significant advances to increase BCI performance, incorporating ideas from statistical

inference [31, 32, 33, 34], feedback control [8, 9, 10], dynamical systems [11, 12], closed-loop

decoder and neural adaptation [13, 14, 15], and deep learning [16, 17, 35]. These months to

years BCI experiments provide ground truth decoder comparisons, collected with empirical

neural recordings and a user-in-the-loop, that we use to validate our BCI emulator and

simulator. We chose to replicate three distinct BCI studies, FIT-KF [9], ReFIT-KF [8],

and FORCE [16], that improved BCI decoders through different innovations. This was to

demonstrate that our work, which did not incorporate any decoder-specific information, could

make general and correct predictions of BCI decoder performance across diverse innovations

and distinct study settings.

2.1 Summary

FIT-KF, ReFIT-KF, and FORCE decoders reported superior performance over the then

state-of-the-art VKF decoder, due to superior fine control to successfully hold the cursor

over the target and faster time to first touch the target. This also led to smoother kinematic

trajectories, with improved path efficiency and less deviation from the straight-line path.

In detail, FIT-KF and ReFIT-KF achieve similar trial times with ReFIT-KF having faster

first-touch time than FIT-KF, but FIT-KF having better dial-in time than ReFIT-KF. FIT-

11

Neural signals

BCI
decoder

Velocity KF
FIT-KF

ReFIT-KF

FORCE

Intention-estimation

CLDA, retraining

Nonlinear (RNN)

Figure 2.1: Intracortical monkey BCI experiment. Using true neural data and control policy
to evaluate four distinct decoder algorithms. Neural signal was recorded from the motor
cortical regions then decoded into cursor shown on the screen. Monkey adjusted his control
policy due to imperfect decoded kinematics. Monkey’s hand was free to move because they
reflect the motor commands used to control the decoder.

KF had the shortest dial-in time, followed by ReFIT-KF, FORCE, and VKF. VKF had the

longest first-touch time, ReFIT-KF had the shortest one, and FIT-KF and FORCE are in

between. VKF achieved the widest trial-time distribution.

2.2 Introduction

BCIs aim to recover lost motor function and communication. The ultimate goal is to prove

quality of life for people with paralysis. BCI systems are comprised of three major com-

ponents as shown in Figure 2.1: (1) neural activity, typically recorded from motor cortical

regions of the brain; (2) a decoder, which translates the neural recordings into control sig-

nals; and (3) a prosthesis, such as a computer cursor on a screen or a robotic arm, controlled

by the decoder. To be clinically viable, BCIs must achieve high performance at a level

12

justifying neurosurgery. The performance and robustness of BCI systems depend greatly

on the decode algorithm (or “decoder”). Recent efforts have produced novel algorithms to

increase BCI performance and robustness by incorporating ideas from statistical inference

[31, 32, 33, 34], feedback control [8, 9, 10], dynamical systems [11, 12], closed-loop decoder

and neural adaptation [13, 14, 15], and deep learning [16, 17, 35].

Validating our BCI emulator and simulator, we chose to replicate three distinct BCI

studies that improved BCI decoders through different innovations. This was to demonstrate

that our simulator, which did not incorporate any decoder-specific information, could make

general and correct predictions of BCI decoder performance across diverse innovations and

distinct study settings. We chose to replicate the BCI experiments that established the (1)

FIT-KF [9], (2) ReFIT-KF [8], and (3) FORCE [16] decoders. The FIT-KF is a linear state-

of-the-art decoder whose high performance is due to the incorporation of control theory

inspired dataset augmentation (also known as intention estimation) [9]. The ReFIT-KF,

which also incorporates intention estimation, is a decoder that employs two stages of BCI

training, a form of closed-loop decoder adaptation (CLDA) [30, 14]. The ReFIT-KF decoder

first requires the user to control a position velocity Kalman filter (PVKF), followed by a

retraining stage using the neural activity and cursor movements during PVKF control [8].

Finally, the FORCE decoder is a nonlinear decoder that uses a recurrent echostate network

(ESN) and outperforms a linear velocity Kalman filter (VKF) [16]. Our goal in choosing

these studies was to demonstrate the simulator made correct predictions under very different

decoder innovations, namely: (1) state-of-the-art linear decoding with intention estimation,

(2) closed-loop decoder adaptation and retraining, and (3) nonlinear decoding.

13

2.3 Methods

2.3.1 Experiment setup

All surgical and animal care procedures were performed in accordance with National In-

stitutes of Health guidelines and were approved by the Stanford University Institutional

Animal Care and Use Committee. Experiments were conducted with two adult male rhe-

sus macaques (Monkeys J and L). Monkey J (L) was implanted with two (one) 96 electrode

Utah arrays (Blackrock Microsystems Inc., Salt Lake City, UT) using standard neurosurgical

techniques. Monkey J’s arrays were implanted in dorsal premotor cortex (PMd) and primary

motor cortex (M1) as visually estimated from local anatomical landmarks, while Monkey L’s

array was implanted around the PMd/M1 border. Monkey J’s (L’s) arrays were implanted

75 (94) months prior to data collection for this work. The monkeys made point-to-point

reaches in a 2D plane with a virtual cursor controlled by the contralateral arm or by a BMI.

The experimental setup has been previously described (e.g., [36, 37]). The virtual cursor

and targets were presented in a three-dimensional (3D) environment (MusculoSkeletal Mod-

eling Software (MSMS), Medical Device Development Facility (MDDF), USC, Los Angeles,

CA). Hand position data were measured with an infrared reflective bead tracking system

(Polaris, Northern Digital, Ontario, Canada). Spike counts were collected by applying a

single threshold, set to −4.5× the root-mean-square of the high-pass filtered spike voltage

per electrode [38]. For BCI decoders, the number of electrodes were either 96 (M1) or 192

(M1+PMd), and spike counts were binned in either 25 or 50 ms bins depending on the

study (see Table 2.1). Behavioral control and neural decode were run on separate PCs using

Simulink/xPC platform (Mathworks, Natick, MA) with communication latencies of 3 ms.

This enabled millisecond timing precision for all computations. Neural data were initially

processed by the Cerebus recording system (Blackrock Microsystems Inc., Salt Lake City,

UT) and were available to the behavioural control system within 5 ± 1ms. Visual presenta-

tion was provided via two LCD monitors with refresh rates at 120 Hz, yielding frame updates

14

Table 2.1: Task and recording settings for each of the three studies. When the number of
electrodes is 96, this corresponds to one Utah Array in primary motor cortex. 192 electrodes
corresponds to two Utah Arrays, one in primary motor cortex and the other in dorsal pre-
motor cortex.

Decoder Radius
(cm)

Acceptance
window
(cm)

Bin
width
(ms)

electrodes

Gilja et al. [8] Hand 8 5 N/A N/A
PVKF 12 6 50 96
ReFIT-KF 8 5 50 96
VKF 8 5 50 96

Fan et al. [9] Hand 8 4 N/A N/A
PVKF 12 6 50 192
ReFIT-KF 8 4 50 192
FIT-KF 8 4 50 192
VKF 8 4 50 192

Sussillo et al. [16] Hand 8 4 N/A N/A
FORCE 8 4 25 96
VKF 8 4 50 96

of 7 ± 4 ms. Two mirrors visually fused the displays into a single 3D percept for the user,

creating a Wheatstone stereograph. All tasks were restricted to a two-dimensional plane.

2.3.2 Tasks

The three published studies we used to validate our emulator used variants of the center-

out-and-back task and the pinball task. The center-out-and-back task was used to collect

training data for PVKF, ReFIT-KF, FORCE, and VKF decoders. The pinball task was used

to collect training data for FIT-KF decoder. All studies used the center-out-and-back tasks

to quantify decoder performance. The center-out-and-back task parameters for each study

are summarized in Table 2.1.

15

2.3.2.1 Center-out-and-back task

In the center-out-and-back task, eight “radial targets” were uniformly placed on the circum-

ference of an 8-cm or 12-cm radius circle. One “center target” was placed at the center of the

circle. Each target had a square acceptance window centered around the target, with side

length 4, 5, or 6 cm depending on the study. The subject had to hold the cursor within the

target acceptance window for 500 contiguous milliseconds to successfully acquire the target.

After acquisition of the center target, one of the eight radial targets would be randomly

prompted. The target had to be acquired within 3 seconds, or the trial was counted as a

failure. After a successful acquisition of a radial target, or following the failure to acquire

any radial target, the center target was prompted.

2.3.2.2 Pinball task

In the pinball task implemented by Fan et al. [9], targets were randomly prompted in a

20-by-20 cm workspace. The target’s position was randomly sampled each trial. Each target

had a 4 cm square acceptance window. The subject had to hold the cursor within the target

acceptance window for 750 contiguous milliseconds to successfully acquire the target. The

target had to be acquired within 3 seconds, or the trial was counted as a failure. After a

successful acquisition or following the failure to acquire any target, the next random target

was prompted. There were two additional constraints on the next target location. First,

the minimum distance between each random target was 4 cm to avoid two successive trials

having overlapping acceptance windows. If the next target was within 4 cm of the previous

target, the next target position would be re-sampled until the next target was more than

4 cm away. Second, the if the next target was more than 14 cm away from the previous

target, the next target position would be re-sampled until the next target was less than

14 cm away.

16

2.3.3 BCI metrics

The straight forward way to evaluate decoder performance is using success rate and trial

time. Trial time can also be divided into fist-touch time presenting ballistic control and

dial-in time presenting fine control. The decoded trajectory is characterized with distance

ratio and maximum deviation. All metrics are detailed in the following.

2.3.3.1 Trial time

Trial time is time from when the target shows up to when the cursor last enter the target

acceptance window prior to successfully holding the target. Therefore, the holding period is

not included in trial time. a shorter trial time means the user can quickly acquire targets.

2.3.3.2 Success rate

Success rate is the ratio of successful trials divided by the total attempt trials. In the center-

out-and-back task, we only report the success rate in center-out trials. A good decoder

should result in a high success rate.

2.3.3.3 Dial-in time

Dial-in time (DIT) is the time from when the cursor first enters the target acceptance window

to when it last enters the target acceptance window prior to successfully holding the target.

If the user enters the acceptance window and successfully holds the target without ever

leaving the acceptance window, DIT is equal to zero. An illustration of the DIT is shown in

Figure 2.2a.

17

Fine control (dial-in time) Ballistic control (First-touch time)

t=600ms

t=550ms
t=1000ms

TFA = 600 ms
TFA = 550 ms

a b

Traj. 2
Traj. 1

t=500ms

t=800ms

DIT = 300 ms
DIT = 0 ms

Figure 2.2: Illustration of dial-in time (DIT) and first-touch time (FTT) (a) DIT example.
(b) FTT example. Dial-in time (DIT) represents fine control. In a, trajectory 1 (blue) enters
the desired target but due to poor fine control, exits and re-enters, leading to DIT = 300
ms. Trajectory 2 (red) enters, and with fine control, is able to acquire the target, leading to
DIT = 0 ms. First-touch time (FTT) represents ballistic control. In b, trajectory 1 (blue)
enters the desired target at FTT = 600 ms. Although it exits and re-enters at 1000 ms, this
does not affect the FTT. Trajectory 2 (red) enters the desired target more quickly at FTT
= 550 ms.

2.3.3.4 First touch time

First-touch time (FTT) is the time from trial start to when the cursor first enters the target

acceptance window. An illustration of FTT is s shown in Figure 2.2b.

2.3.3.5 Distance ratio

Distance ratio, also known as the inverse of path efficiency, is the distance traveled by the

cursor divided by the straight line distance (i.e., the shortest trajectory) from the start point

to the end point of a trial. Distance ratio quantifies path inefficiency. When the distance

ratio is large, then the path taken to acquire the target is less direct.

2.3.3.6 Maximum deviation

Maximum deviation is the maximum distance between the cursor trajectory and the straight

line from the start point to the end point of a trial. Maximum deviation therefore quantifies

how far the cursor deviates from the shortest trajectory.

18

2.3.4 BCI decoder algorithms

Three distinct BCI studies were chosen that improved BCI decoders through different inno-

vations including those that require multiple stages of training, as well as linear and nonlinear

decoders. Because each BCI decoder algorithm has been well-documented in its published

studies, we comment on these more briefly in our Methods, summarizing their innovations

and highlighting key differences between the decoders. The FIT-KF, ReFIT-KF, and VKF

are all based on a linear dynamical system model where the cursor kinematics at time t, xt,

are the state and binned spike counts at time t, yt, are the observations. yt was a 96D or

192D vector containing the binned spike counts of 96 or 192 channels at time t (depending

on the study), and xt was a 5D vector representing the cursor’s x- and y-positions, velocities,

and a bias term of 1 to model a baseline spike count. The dynamical system is:

xt = Axt−1 +wt (2.1)

yt = Cxt + qt (2.2)

where wt ∼ N (0,W) and qt ∼ N (0,Q) are Gaussian noise. The parameters of this

model, θ = {A,C,W,Q}, were inferred using supervised learning with maximum-likelihood

estimation, where datasets comprised the paired cursor kinematics and neural activity,

{xt,yt}t=1,...,T . For more details, refer to Wu et al. [31], Kim et al. [22], Gilja et al. [8], Kao

et al. [39]

To decode, we used the Kalman filter algorithm to infer the state of the dynamical system,

x̂t, given the observed spike counts yt. This enabled recursive estimation of the state, x̂t,

from a new neural observation, yt, and the previously decoded state x̂t−1. We calculate

the Kalman steady states to have two Matrices, M1 and M2, then decode neural data by

calculating:

x̂t = M1x̂t−1 +M2yt (2.3)

19

where M1 and M2 are calculated from the following.

Algorithm 1 Kalman filter recursion
Require: A,W,C,Q
Ensure: M1 and M2

Initial Σ0|0 = 0
repeat

Σt|t−1 = AΣt−1|t−1A
T +W

Σt|t = Σt|t−1 − Σt|t−1C
T (CΣt|t−1C

T +Q)−1CΣt|t−1

Kt = Σt|t−1C
T (CΣt|t−1C

T +Q)−1

until Kt converges
M1 = A− Σ∞CA
M2 = Σ∞

2.3.4.1 VKF

The Velocity Kalman filter (VKF) is a linear decoder trained from concurrent cursor kine-

matics and spiking activity. The “C” matrix considers only the contribution from velocity.

Across all studies, and in our emulator and simulator, the VKF was trained by collecting

approximately 500 trials of a center-out-and-back task where targets were on a 12-cm radius

circle with 4 cm square acceptance windows. All studies used VKF with spike counts binned

in non-overlapping 50 ms bins. Note, the VKF does not incorporate intention estimation or

CLDA.

2.3.4.2 PVKF

The position velocity Kalman filter (PVKF) is a linear decoder trained from concurrent

cursor kinematics and spiking activity. The “C” matrix considers both contribution from

position and velocity. Similar to VKF decoder, PVKF was trained by collecting approxi-

mately 500 trials of a center-out-and-back task where targets were on a 12-cm radius circle

with 4 cm square acceptance windows. All studies used PVKF with spike counts binned in

non-overlapping 50 ms bins. Note, the PVKF does not incorporate intention estimation or

20

CLDA.

2.3.4.3 FIT-KF

The Feedback Intention Trained Kalman filter (FIT-KF) is a linear decoder trained from

concurrent cursor kinematics and spiking activity. The FIT-KF is trained from approxi-

mately 500 trials of the pinball task. FIT-KF training includes intention estimation, a form

of dataset augmentation where cursor velocities in the training set are rotated to point to-

wards the target at every time step. When the cursor is in the target acceptance window,

intention estimation sets the cursor velocity to zero. These changes assume that at every

point in time, the BCI user is giving motor commands to move the cursor towards the target,

and that when in the acceptance window, the BCI user is attempting to hold the cursor still

over the target. The FIT-KF also pre-processes the data to exclude the first 250 ms of data

at the start of a trial, since this corresponds to the reaction time of the monkey. It also

excludes the dial-in time (between when the user first touched and last touched the target)

from training. The FIT-KF inference used a causal intervention in Kalman filter inference,

where the covariance of the state position estimate is set to zero, since the user sees the true

position of the cursor. Finally, the FIT-KF subtracts the contribution of position to the

neural activity through a linear mapping, the details of which are described in Gilja et al.

[8].

2.3.4.4 ReFIT-KF

The Recalibrated Feedback Intention-Trained Kalman Filter (ReFIT-KF) is a linear decoder

that involves two stages of training, a form of CLDA. Concurrent cursor kinematics and

spiking activity were used to train a Position Velocity Kalman Filter (PVKF), using the

same task as used to train the VKF. Subsequently, the PVKF was used in closed-loop

control to collect 500 trials of a center-out-and-back task where the target radius was 12 cm

21

and each target had a 6 cm square acceptance window. The ReFIT-KF was then trained

from the closed-loop 500 PVKF center-out-and-back trials. The PVKF data was augmented

to include intention estimation. The ReFIT-KF inference also used the causal intervention

and position contribution subtraction in the FIT-KF.

2.3.4.5 FORCE

The FORCE decoder is a nonlinear decoder. The FORCE decoder is a recurrent neural

network (RNN) that takes the form of an echostate network (ESN). The parameters of the

FORCE decoder were trained using FORCE learning [40]. The FORCE decoder was trained

using concurrent cursor kinematics and spiking activity using the same task used to train

the VKF. The network was trained on four passes through the data.

2.4 Results

BCI datasets were recorded when monkey performed tasks in each study. BCI datasets

include recorded neural activity, cursor kinematics, and hand kinematics. We performed of-

fline analysis on BCI datasets where monkey performed a center-out-and-back task with their

hand. We found the delay between hand speed and binned spike counts was 200 ms which

is critical when training a neural encoder. Online decoder performance were summarized as

ground truth comparisons for our work later.

2.4.1 Monkey data offline analysis

Monkey performs center-out-and-back task with their hand. We analyze the recorded neural

activity and hand kinematics. We also train decoders and evaluate decoder performance in

an offline manner.

22

2.4.1.1 A delay due to neural path from motor cortex to arm EMG

a b c

x-pos
y

Figure 2.3: Delay estimation between neural activity in motor cortex and hand movements.
(a) Hand movements and (b) speed of center-out trials in a center-out-and-back task. 8
different colors correspond to 8 target directions. (c) Correlation coefficient on various
delay, and 200 ms delay achieved highest correlation.

Hand position of center-out trials recorded in center-out-and-back task is shown in Fig-

ure 2.3a. Each color corresponds to different targets. Due to its body constraints, hand

trajectories are not the same for the same target, and not fully straight. Hand speed profile

is shown in Figure 2.3b. For each direction, the hand speed profile is a beautiful bell-shape.

When target is shown at time 0, hand movement is initiated after 200 ms which is called

“response time”. Interestingly, the neural activity in motor cortex changes dramatically after

time 0 when target is shown (Figure 2.4a). There is a delay from neural activity in mo-

tor cortex to arm EMG. We calculate correlation coefficient between hand speed and binned

spikes. We found that the 200 ms delay achieves the highest correlation shown in Figure 2.3c.

We plot the relationship between hand speed and binned spike in Figure 2.4b and c. The

linear relationship in Figure 2.4c is clear than in Figure 2.4b. This 200 ms delay between

hand speed and neural activity plays an important role when train neural encoder. We will

discuss the detail in chapter 3.

23

a

b

c

Figure 2.4: Estimate the delay from motor cortex to hand movements. (a) PSTH of four
neurons. (b) Relationship between firing rate and hand speed given no delay. (c) Rela-
tionship between firing rate and hand speed given 200 ms delay. Hand movements were
mainly initiated by neural activity in motor cortex. The neural path from motor cortex to
muscle EMG causes the delay which is always ignored when training neural encoders and
decoders. We found that M1 and PMd are positively correlated with variability of future
hand speed (delay = 200 ms) in average across 192 neurons. As expected, comparing b and
c, the relationship of hand speed and PSTH is much linear when apply 200 ms delay.

24

FIT
5.66 4.10

ReFIT
6.45 4.60

VKF
12.13 6.30

a b c

Figure 2.5: Hand movements and decoded movement from open-loop recorded neural activity
with three decoders The decoders are (a) FIT-KF, (b) ReFIT-KF, and (c). In each panel,
red lines represent hand trajectories, and blue lines represents decoded trajectories. One
randomly chosen trial for each direction is shown in bold lines. NRMSE of decoded positions
and velocities are shown in each panel.

2.4.1.2 BCI decoder offline performance

Decoder performance in offline dataset provides insight of which decoder is promising. We

evaluate three decoders: FIT-KF, ReFIT-KF, and VKF with offline dataset where monkey

performed center-out-and-back task with its hand. We evaluate normalized root mean square

error (NRMSE) of position and velocity between hand and decoded cursor. In Figure 2.5,

hand trajectory is in red and cursor trajectory is in blue. We found that FIT-KF and ReFIT

have similar performance in NRMSE and are better than VKF. FIT-KF decoded trajectory

is general shorter followed by ReFIT then VKF. FIT and ReFIT algorithms take intention

estimation into consideration by rotating the velocity vector point toward target and set

velocity to be zero when the cursor is on the acceptance window. The decoded velocity

is therefore shorter than VKF. Overall, these three decoders are decoded into reasonable

trajectories. The eventual performance needs to be evaluated in online experiments.

25

a b c d

e f g

Hand
FIT-KF
ReFIT-KF
FORCE
VKF

Hand VKFFORCEReFIT-KFFIT-KF

Intracortical BCI experiments

x-pos
y

Figure 2.6: (a) Distance-to-target plots from intracortical BCI experiments for the various
decoders. The bolded line corresponds to DIT. (b, c) Average DIT and FTT, respectively,
from BCI experiments. (d) Distribution of trial times for each decoder. (e) Randomly
sampled trajectories for each decoder. (f) Max deviation from the straight line path for
each decoder. (g) Distance ratio (cursor path length divided by straight path length) for
each decoder. Distance ratio is the inverse of path efficiency. Decoder performance are
summarized in Table 2.2.

26

Table 2.2: Decoder performance in BCI with monkey J. TT, FTT, and DIT are trial time,
first-touch time, and dial-in time, respectively.

Decoder TT
[ms]

FTT
[ms]

DIT
[ms]

distance
ratio

max
deviation

[mm]

success
rate

of
center-out

trials
hand 473.79 461.88 11.91 1.31 9.27 1.00 741
FIT-KF 668.29 563.5 104.79 1.61 17 0.99 2383
ReFIT-KF 738.42 500.78 237.64 2.04 20.21 0.99 1377
FORCE 909.42 566.18 343.23 2.34 21.48 1.00 1212
VKF 1325.17 752.51 572.65 2.54 29.28 0.81 1368

2.4.2 BCI decoder online performance

Monkey performed center-out-and-back task for several days. Decoders are retrained on the

same day recorded dataset. The results of the published studies are combined in Figure 2.6.

Each study reported superior performance over the then state-of-the-art VKF, due to supe-

rior fine control to successfully hold the cursor over the target and faster time to first touch

the target. This also led to smoother kinematic trajectories, with improved path efficiency

and less deviation from the straight-line path (Figure 2.6e-g). In detail, FIT-KF has shortest

dial-in time, showing the best fine control. ReFIT-KF has shortest first-touch time, showing

the best ballistic control. VKF shows circling trajectories while dialing in, indicating the

difficulty to stabilize.

2.5 Conclusion

We perform offline analysis on recorded dataset. We found a delay between hand speed and

neural activity is 200 ms which is critical and a key innovation in training neural encoder later

discussed in Chapter 3. In order to validate our emulator and simulator works, we choose

prior studies across diverse innovations and distinct study settings. We therefore choose the

BCI experiments that established the (1) FIT-KF [9], (2) ReFIT-KF [8], and (3) FORCE

[16] decoders. We quantitatively compare the decoder performance with trial time, first-

27

touch time, dial-in time, distance ratio, max deviation, and success rate. The FIT-KF is a

linear state-of-the-art decoder whose high performance is due to the incorporation of control

theory inspired dataset augmentation (also known as intention estimation) [9]. The ReFIT-

KF, which also incorporates intention estimation, is a decoder that employs two stages of

BCI training, a form of closed-loop decoder adaptation (CLDA) [30, 14]. The ReFIT-KF

decoder first requires the user to control a position velocity Kalman filter (PVKF), followed

by a retraining stage using the neural activity and cursor movements during PVKF control

[8]. Finally, the FORCE decoder is a nonlinear decoder that uses a recurrent echostate

network (ESN) and outperforms a linear velocity Kalman filter (VKF) [16].

We later show in Chapter 4 and Chapter 5 that our emulation and simulation qualitatively

and quantitatively match decoder performance in monkey experiments.

28

CHAPTER 3

Neural encoder

3.1 Summary

We introduce neural encoders for synthesizing motor cortical neural population activity

from kinematic behavior. We trained PPVT neural encoder and various deep-learning-based

neural encoders in a supervised fashion using data collected while a monkey performed a

reaching task. We demonstrate that RNN neural encoders are significantly better than PPVT

neural encoder in reproducing single neuron PSTH variability, neural population dynamics,

and neurally decoded movements. Importantly, RNN neural encoder incorporating neural

path delay and RNN input weight regularization more faithfully reproduces neural activity

and decoded kinematics in validation dataset. Our results indicate that RNN neural encoders

may significantly improve the fidelity of BCI simulator.

3.2 Introduction

Generating neural activity has wide implications in systems neuroscience and neural engi-

neering. Neural encoding models (neural encoders) have produced insight into computations

in early visual processing stages (e.g., [41, 42, 43, 44]). Neural encoders have been used to

argue that the motor cortex does not represent movement, but is rather a dynamical sys-

tem (e.g., [45, 46]). In engineering applications, neural encoders are proposed to augment

memory function through modeling hippocampal activity [47] and deliver realistic sensory

sensation through stimulation of sensory cortices [48, 49, 50]. Finally, motor cortical neural

29

Motor
Prosthesis

DecoderNeural
activity

Control
signals

Visual feedback

DecoderReal
spike train

Decoded
movement

Decoder Decoded
movement

Synthetic
spike train

Neural
Encoder

Hand
movement

a b

(1) (2)

Figure 3.1: BMI system and neural encoder. a Neural activity is recorded from electrode
arrays implanted in motor cortex. A decoder transforms neural activity into control sig-
nals which guides a motor prosthesis. The BCI user receives visual and potentially sensory
feedback, adjusting his or her control policy in response to observing the decoded move-
ment. b A neural encoder takes user kinematics and produces synthetic neural activity. A
good encoder reproduces single neuron variability, neural population dynamics, and decoded
movement from real neural activity. Here, we compare (1) the PSTHs and neural dynamics
of recorded and synthetic neural activity, and (2) decoded movements from real and syn-
thetic neural activity.

encoders are a critical component for simulating motor brain-computer interfaces (BCIs) [2].

We focus on building motor cortical neural encoders for intracortical motor BCI simu-

lation, with the goal of substantially accelerating clinical translation. In BCI experiment,

motor prostheses are guided by a control signal decoded from motor regions of the brain as

illustrated in Figure 3.1a. In contrast to closed-loop animal experiments and offline decod-

ing, Cunningham et al. [2] introduced a middle ground: neural activity can be simulated

to more rapidly perform experiments that incorporate the closed-loop nature of BCI sys-

tems. This online prosthetic simulator (OPS) enables faster decoder evaluation incorporat-

ing closed-loop feedback control policies without requiring intracortical recordings from the

brain. Their work showed using OPS that BMI performance should increase with smaller

bin width, an empirical result they and another study confirmed [10]. In the OPS, spike

trains were synthesized via an inhomogeneous Poisson process whose rate was described by

a speed-modulated tuning curve model [51]. We call this model the Poisson Process Ve-

locity Tuning (PPVT) model. Several studies have demonstrated that this model does not

reproduce complex heterogeneity in neuron firing rates, including changing preferred direc-

30

tions with time [52], nonlinear structure in the neural population activity [53], and neural

population dynamics (e.g.,[45, 46]).

Deep learning has achieved advances in a variety of research areas including, but not lim-

ited to, computer vision [54, 55, 56], object detection [57, 58, 59, 60], neural signal denoising

[53], early visual representations modeling [61], and sensory cortex modeling [62]. Recent

work has applied deep learning, specifically convolutional neural networks (CNNs), to model

retinal activity. Analysis of these CNNs revealed roles for feedforward inhibition, recurrent

lateral connections, and noise in explaining empirical neural responses [63, 64, 62]. Though

approximating neural activity accurately may appear challenging, the low-dimensional na-

ture of neural population activity during point-to-point reaches simplifies the problem and

enables us to build accurate neural encoders. We trained deep learning based neural encoder

in a supervised fashion using data collected while a monkey performed a reaching task, and

evaluate synthetic neural activity and decoded movements as illustrated in Figure 3.1b. We

demonstrate that our work can better reproduce single neuron PSTH variability, neural

population dynamics, and neurally decoded movements. Importantly, we evaluate general-

ization of our model with validation datasets which were recorded when monkey controlled

with BCI decoders. We found that RNN neural encoder trained with a neural path delay

and RNN input weights regularization more faithfully reproduces neural activity and de-

coded kinematics in validation dataset, indicating our RNN neural encoder closely models

the kinematic-to-neural relationship and generalizes to the datasets recorded in closed-loop

experiments. We later will demonstrate that our RNN neural encoder can reproduce online

decoder performance with BCI emulator and simulator in chapter 4 and 5

31

3.3 Methods

3.3.1 Dataset

We focused on the dataset of Monkey J from the published study [9]. Monkey J had the

same experiment setting as described in chapter 2. We used concurrent kinematics and

intracortical threshold crossings recorded when Monkey J perform center-out-and-back task

with his own hand as training dataset to train neural encoder. We also used the same day

recorded online BCI data where Monkey J used FIT-KF and ReFIT-KF to perform the task

as validation dataset for evaluating generalization performance of neural encoders.

3.3.2 Neural encoders

We focus on the neural encoder modeling neural activity in motor cortical regions by trans-

forming kinematics, xt, into binned spike counts, yt. All presented models generate a neural

firing rate. Neural encoders were trained to reproduce the empirical binned spike counts

recorded from multi-unit threshold crossing activity. We calculated binned spike counts by

treating the neural encoder firing rates as the rate of an inhomogeneous Poisson process. We

discuss a neural encoder, Poisson Process Velocity Tunning model, used in prior study [2]

and introduce variants of RNN neural encoders.

3.3.2.1 Preferred direction (PD) model

The PD model is based on a tuning curve model where each neuron’s firing rate is explained

as a function of the reach angle, with the angle eliciting the highest firing rate called the

“preferred direction” (PD) [51]. The PD model calculates firing rate based on a cosine tuning

curve. Subsequently, binned spike counts, yt, are generated by treating the PD model firing

rate as the underlying rate of an inhomogeneous Poisson distribution. The equation to

32

generate binned spike counts is:

λt = λo + (λmax − λo) cos(θt − θmax) (3.1)

with spikes generated according to the equation below.

ŷt|λt ∼ Poisson (max(0, λt)) (3.2)

where: λt is the neural firing rate, yt is the binned spike counts, θt is the reach angle, θmax

is the PD, and λo is an offset firing rate.

The neuron’s modeled firing rate, λt, ranges from 2λo − λmax (when the reach angle is

opposite to the PD) to λmax (reach angle aligned to the PD). The model parameters were

found using the technique of [51], where firing rates were averaged from 200ms to 500ms

after trial initiation. Because neural firing rates cannot be negative, we draw spike counts

with rates lower bounded by 0, i.e., with rate max(0, λt).

3.3.2.2 Poisson process velocity tuning (PPVT) model

The PPVT model incorporates a tunning curve model and reach speed. Tunning curve model

explaines each neuron’s firing rate as a function of reach angle, with the angle eliciting the

highest firing rate called the “prefreed direction” (PD). The firing rate is calculated based

on a cosine tunning curve and linearly scaled based on the speed of reach. Firing rate is

calculated as

λt = λ0 + (λmax − λ0) cos(θt − θmax) · st

with spikes generated according to equation 3.2. In this equation, st is the scaled movement

speed at time t. We scale st so that the firing rates, when decoded, produce reasonable

33

trajectories. This scaling is subject dependent, since different subjects may reach with

different vigor.

3.3.2.3 Generalized linear models (GLMs)

The GLM model is a flexible generalization of ordinary linear regression [65, 66, 67]. In its

most basic form, we calculate the rates as:

λt = k · xt + noise, (3.3)

where k is a vector of weights and xt are the kinematic inputs. Unless otherwise stated, xt is

the 2D position and velocity of the hand at time t. The GLM can be extended to incorporate

different noise distributions and a link function relating inputs to the rates. We performed

maximum likelihood estimation through iteratively reweighted least squares.

3.3.2.4 Multilayer perceptron (MLP) model

The multilayer perceptron (MLP) model is a nonlinear, fully connected feedforward neural

network. As a feedforward network, it does not model any firing rate dynamics but enables

a data-driven, nonlinear approach to predict firing rates from kinematics. The MLP is a

universal function approximator and has higher capacity than the linear neural encoders

[68]. The MLP model takes kinematics, xt, and generates firing rates, λt. We denote an

MLP layer as

ht = MLPf
N(xt) (3.4)

= f(Wxt + b), (3.5)

where f is activation function, N is the number of neurons, W ∈ RN×dim(xt), b ∈ RN , and

ht ∈ RN . We used the sigmoid activation function, i.e., f(x) = σ(x) = 1
1+exp(−x)

in all

34

hidden layers. Because firing rates are non-negative and not bounded by 1, we used an

exponential nonlinear activation function in the final layer, i.e., f(x) = exp(x). The overall

neural encoder we tested is:

λt = MLPexp
192(MLPσ

128(MLPσ
64(MLPσ

32(xt)))), (3.6)

with spikes generated according to equation 3.2. To optimize the model, we maximized the

log-likelihood of the empirical data by assuming that empirical binned spike counts, yt, were

Poisson distributed and conditionally independent given the firing rate, λt. Optimization

was performed in batches of trials. The log-likelihood function is,

L =
∑
i

∑
t

(
yit log λt − λt

)
, (3.7)

where i is iterating over trials in a batch, t is iterating over the time in trial i, and yit is

the binned spike counts at time t on trial i. We performed optimization using stochastic

gradient descent with the first order Adam optimizer [69].

3.3.2.5 RNN

Our RNN model was trained in a supervised manner with recorded hand kinematics com-

prising 2D position and velocity (inputs) and binned spike counts (outputs) in monkey

center-out-and-back task. Kinematics and binned spike counts were evaluated at 25 ms bin

width resolution. The complete RNN neural encoder (Figure 3.2) is

λt = MLPexp
192(MLPσ

192(MLPσ
192(RNNσ

192(xt)))) (3.8)

with spikes generated according to equation 3.2. The RNN was trained in Seq2Seq

fashion by maximizing the log-likelihood of the observed binned spike counts under the

assumption that follow the Poisson distribution. Instead of using concurrent hand kinematics

35

RNN neural encoder

λ y
 h

an
d

ki
ne

m
at

ic
s

Poisson

Firing rate Binned
spike count

Figure 3.2: Architecture of the RNN neural encoder which takes hand kinematics to predict
firing rates of 192 neurons. RNN was trained by maximizing the log-likelihood under the
assumption of Poisson distribution. Binned spike counts were sampled under Poisson distri-
bution given estimated firing rates.

and binned spike counts to train neural encoder, we delayed binned spike counts for 200

ms which achieved highest correlation coefficient with respect to hand speed. In addition,

regularized RNN neural encoder has regularization on input weights of RNN cell. All RNN

neural encoders were optimized with stochastic gradient descent, using the Adam optimizer,

and initialized with the Xavier uniform initialization. The final model trained with delay

binned spike counts is called delayed-regularized RNN neural encoder, and was used in both

simulator and emulator.

3.3.3 Metrics

Contribution ratio estimate the ratio of contribution from external input and internal

recurrent state. The contribution is defined as weight multiplied with variable. The ratio is

defined as

Contribution ratio =
Input contribution

Recurrent contribution
=

WinputHpv

Wrecurrents
(3.9)

where Winput and Wrecurrent are input and recurrent weight of RNN cell, respectively. Hpv

is external input, and s is internal state. A ratio close to zero means that the recurrent

36

contribution dominates the state changes. In contrast, a large ratio means that the external

input dominate the state changes.

Pearson correlation coefficient (PCC) of PSTH and neural trajectory in low di-

mension. We report the PCC between BCI and synthetic PSTHs. The data were binned

at intervals of 25 ms. For each channel, we concatenated the PSTH for each of eight tar-

get reach conditions into a vector. We then calculated the PCC between these vectors for

real and synthetic PSTHs, and average across channels. We also report the PCC between

BCI and synthetic neural trajectories from PCA. PCA is an orthogonal transformation of

the neural data that maximizes the variability of the data in low dimensional projections.

We performed PCA on PSTHs to emphasize across-condition variability. When comparing

neural trajectories, we projected both real and synthetic neural population activity into the

PCs found from real data.

Normalized root-mean-square error (NRMSE) of PSTH and neural trajectory in

low dimension. NRMSE defined as

NRMSE(y, ŷ) =
√

Mean(ŷ − y)2

std(y)
(3.10)

where y is the ground truth, ŷ is the predicted output, and “std” stands for standard de-

viation. In PSTH case, for each channel, we also concatenated the PSTH for each of eight

target reach conditions into a vector. We then calculated the NRMSE and average across

channels. In neural trajectory case, for each dimension, we also concatenated into a vector

in the same way. We then calculated the NRMSE and average across top N dimension. N

is the number of PCs that capture over 90 % of the PSTH variance.

jPCA is a rotation of the top PCs that reveals rotational structure in data. We applied

jPCA after finding top PCs. This comprised finding a skew symmetric matrix least-squares

mapping from the position of the neural trajectory to its velocity, with additional details

in Churchland et al. [45]. We report R2
skew , which is the variance explained in predicting

37

the neural trajectory velocity from its position. A higher R2
skew indicates that the system is

better described by rotational dynamics.

NRMSE of decoded velocity from the real and synthetic neural activity is used to

quantify the performance of neural encoder in reproducing neural activity.

Neural activity from monkey and neural encoder was decoded into cursor velocity. We

then calculate NRMSE and average across trials. NRMSE follows the Equation 3.10.

3.4 Results

We found that deep learning models outperformed representational tuning models, PD and

PPVT, in reproducing recorded single electrode activity, neural population activity, and

decoded kinematics. Importantly, we validated generalization of neural encoders to closed-

loop dataset which it was not trained on. We additionally found three important design

considerations. First, we reasoned that a key limitation of tuning and MLP models is that

they do not incorporate history over the inputs, i.e., kinematics. Second, incorporating a

delay between hand speed and neural activity improves reproduced PSTHs. Third, regular-

izing RNN input weights improves generalization toward closed-loop datasets. Overall, our

“delayed regularized RNN neural encoder” closely matches kinematic-to-neural relationship

and reproduces single neuron PSTHs, neural population dynamics and neural population

rotations.

3.4.1 RNN neural encoders better reproduce neural activity

38

Monkey Hand dataset Monkey FIT-KF dataset Monkey ReFIT-KF dataset

N
ai

ve
en

co
de

r
D

el
ay

ed
en

co
de

r

D
el

ay
ed

re
gu

la
riz

ed
en

co
de

r
M

on
ke

y
da

ta
PP

VT
en

co
de

r

a b c d e f g h i

PD
en

co
de

r
G

LM
en

co
de

r
M

LP
en

co
de

r

jPC1

jP
C 2

PC1

PC
2

39

Figure 3.3: An RNN neural encoder better reproduces neural activity than a PPVT in both
training and validation datasets. (a-c) Our training dataset was recorded when monkey
performed hand-control reaches. (d-i) Validation dataset was recorded when monkey per-
formed reaches with FIT-KF and ReFIT-KF decoders. In each dataset, we plot (a, d, g)
example PSTHs, (b, e, h) PCA trajectories in the top 2 PCs, and (c, f, i) jPCA trajectories
in the top jPC plane. In PSTHs, the vertical bar denotes 100 spike/s, and the horizontal
bar denotes 100 ms. We observed that single electrode PSTHs exhibited multiphasic firing
pattern and population activity exhibited rotational dynamics in monkey data. A PPVT
neural encoder did not reproduce these neural properties. We also trained a naive RNN
neural encoder (“Naive encoder”), an RNN neural encoder with a 200ms delay between hand
kinematics and neural activity (“Delayed encoder”), and a delayed RNN encoder with L2
regularization on the input weight matrix (“Delayed regularized encoder”). Ultimately, the
delayed regularized neural encoder performed the best in reproducing neural activity when
validated on BCI datasets. Quantitative results are summarized in Table 3.1.

Table 3.1: Similarity of reproduced neural activity from various neural encoders. Three

datasets are included. The “hand” dataset comprises neural data simultaneously recorded

with hand reaches. This was the training set for training neural encoders. The “FIT-

KF” and “ReFIT” datasets comprise neural data recorded when the monkey controlled the

FIT and ReFIT-KF in closed-loop, which we used as validation data. All metrics compare

the artificial neural activity to the Monkey’s neural activity. PCC stands for Pearson’s

correlation coefficient. NRMSE stands for normalized root-mean-square error. Higher PCC

and lower NRMSE indicate the neural encoder better reproduced neural activity. Bolded

numbers indicate the best performance for each dataset.

encoder dataset
PSTH PCA jPCA

PCC NRMSE PCC NRMSE R2
skew Skew ratio

Monkey J

hand 1 0 1 0 0.33 0.68

FIT 1 0 1 0 0.29 0.60

ReFIT 1 0 1 0 0.26 0.58

PD

hand 0.24 16.25 0.28 16.52 <0.01 <0.01

FIT 0.08 18.41 0.07 19.26 0.01 0.03

40

ReFIT 0.12 16.97 0.1 16.43 <0.01 <0.01

PPVT

hand 0.21 16.36 0.3 16.41 <0.01 <0.01

FIT 0.12 18.01 0.12 18.89 <0.01 <0.01

ReFIT 0.12 16.69 0.15 15.9 <0.01 <0.01

GLM

hand 0.25 16.05 0.48 13.89 0.01 0.01

FIT 0.16 17.47 0.25 17.49 0.01 0.01

ReFIT 0.16 15.68 0.25 15.56 0.03 0.03

MLP

hand 0.79 9.57 0.86 8.25 0.13 0.35

FIT 0.27 17.58 0.41 17.19 0.05 0.20

ReFIT 0.15 17.01 0.33 16.06 0.07 0.15

Naive RNN

hand 0.83 7.52 0.94 5.05 0.32 0.46

FIT 0.43 16.24 0.43 16.83 0.17 0.38

ReFIT 0.45 14.3 0.42 14.87 0.29 0.46

Delayed RNN

hand 0.84 6.75 0.99 2.17 0.32 0.56

FIT 0.55 14.62 0.61 14.8 0.28 0.57

ReFIT 0.48 14.46 0.51 14.39 0.27 0.58

Delayed regularized RNN

hand 0.83 7.28 0.98 3.01 0.35 0.55

FIT 0.65 13.32 0.62 14.17 0.37 0.59

ReFIT 0.64 11.87 0.63 11.95 0.29 0.49

We first evaluated how each neural encoder reproduced every electrode’s peri-stimulus time

histogram (PSTH). The electrode’s PSTH is the average firing rate for reaches to each of

eight center-out target conditions. This was calculated by averaging empirical firing rates

across all trials within a condition, aligned to target onset. We also calculated PSTHs for

synthetic spike trains for each encoding model. We subsequently evaluated the similarity

between recorded and synthetic neuron PSTHs by calculating the PCC. A model’s overall

Pearson’s r is the average of the Pearson’s r across all 192 electrodes for Monkey J.

41

Figure 3.3 illustrates a representative example, with the recorded PSTHs shown in panel

a, d and g. As has been previously described, the PSTHs have a condition-independent

increase in activity followed by heterogeneous activity that may be multiphasic [70]. How-

ever, consistent with prior work, the PD and PPVT encoders do not capture heterogeneity,

including multiphasic behavior, in PSTH activity [45, 46, 52]. We found that the PD model

achieved relatively static firing rates This is expected because the PD model’s firing rates

only vary with reach angle. The PPVT incorporates speed modulation, causing the PSTHs

to resemble the speed profile. We next evaluated GLM models, which incorporate position

and velocity. We found that GLM model also resemble the speed profile. PD, PPVT, and

GLM models achieved comparable performance.

We next evaluated deep-learning-based neural encoders. In contrast to representational

tuning and GLM models, we found that deep-learning-based models better reproduced em-

pirically recorded PSTHs. The MLP was capable of reproducing a condition-independent

increase and qualitative motifs in the original PSTH, including the relative ordering of con-

dition firing rates. However, it does not capture all multiphasic activity, such as the biphasic

activity of the blue PSTH. We reasoned that a key limitation of tuning, GLM, and MLP

models is that they do not incorporate history over the inputs, i.e., kinematics. We therefore

evaluated the RNN models, incorporating kineamtic history. The RNN can generate differ-

ent outputs for the same input depending on its internal hidden state, which is a function

of past inputs and the RNN’s own internal dynamics. We therefore evaluated a naive RNN

neural encoder, incorporating a state inference to represent history information. The naive

RNN encoder can also reproduce a condition-independent increase and qualitative motifs in

the original PSTH but not capture all multiphasic activity.

We further evaluated “delayed RNN encoder” which incorporates a 200 ms delay between

hand speed and neural activity found in offline data analysis in Chapter 2.4.1.1. Delayed

RNN encoder reproduced biphasic activity in training dataset, however, did not generalize to

validation dataset. As discussed in the Methods, we then apply regularization on RNN input

42

weights to force RNN neurons to reduce dependence on external inputs and receive more

contribution from internal RNN dynamics (see Chapter 3.4.4. We found this regularization

significantly improves reproduced PSTH in validation dataset, such as the PSTH in dark

blue in Figure 3.3d and Figure 3.3g.

3.4.2 RNN neural encoders better reproduce population neural activity

As RNN models better reproduce empirical firing rates, we next wondered how well RNN

models reproduce neural population activity. To quantify neural population activity, we per-

formed PCA on empirically recorded and synthetically generated PSTHs. When performing

PCA on recorded PSTHs, we found 8 dimensions were required to capture over 90% of the

recorded neural variance. Tuning models were overly simplistic, demonstrating a smaller

dimensionality. When performing PCA on synthetic neural population activity generated by

the PD or PPVT outputs, we found that only 2 PCs are required to capture nearly 100%

variance. On the other hand, we found that RNN models required 4 or 5 dimensions to

capture over 90% of the neural variance, as shown in Figure 3.4. Together, these results

demonstrate that RNN models more closely match the dimensionality of real data, reflecting

relatively greater variability in the neural population response compared to tuning and linear

models.

How similar are neural population trajectories in these low-dimensions? We compared

low-dimensional projections via PCA on the synthetic versus recorded neural population.

We projected synthetic and neural activity onto the PCs found by performing PCA on the

real data. We found that tuning models had very different projections in comparison to real

data (compare Figure 3.3b,e, and h). PPVT low-dimensional variance primarily resided on

a 2-dimensional axis, reflecting hand speed and moving direction. On the other hand, MLP

and RNN models reproduced circling neural trajectories as in real data, achieving PCCs

above 80%. Critically, RNN input weight regularization leads to better inference of RNN

dynamics that generalizes validation dataset to reproduce the neural population dynamics.

43

Figure 3.4: Dimensionality of recorded and synthetic PSTHs. 8 dimensions were required to
capture over 90 % of the recorded neural variance.

This demonstrates that RNN models better reproduced empirical neural population motifs.

Another way to measure neural population structure is to compare rotational dynamics

in the neural population via jPCA(e.g., [46, 2, 45, 71], see Methods). We applied jPCA

and found that PD- or PPVT-synthesized activity cannot be well described by rotational

dynamics, as reported previously [46, 45]. We found that the degree of rotational dynamics

in the encoding model output increased as the model was able to consider historical inputs;

the RNN models exhibited more rotational dynamics than the tuning models. We quantify

these results with the mean PCC and NRMSE of PC trajectories in the top 8 dimensions

(capturing greater than 90% of the variance) and R2
skew and skew ratio in jPCs between

synthetic and real neural activity and summarized in Table 3.1.

These results demonstrate that RNN models can better reproduce single electrode PSTHs,

and also better reproduce neural population motifs. Together, the data generated by RNN

models appears to be a more faithful representation of neural population activity in the

motor cortex.

44

3.4.3 Kinematics decoded from RNN generated neural activity better match

decoded kinematics

As our motivating application for generating motor cortical neural signals is BCI simulation,

we next assessed if RNN synthetic neural data could better match offline decoding of previ-

ously recorded neural data. We therefore decoded neural data recorded from when monkeys

performed a center-out-and-back reaching task, and compared these to kinematics decoded

from synthetic neural binned spike counts. A more effective neural encoder will produce

decodes that more closely resemble decoding real data. While RNN neural encoder more

accurately recapitulate PSTHs and population structure, as earlier described, optimal de-

coding dimensions may have little overlap with the top PCs of the activity [72]. Therefore, it

is important to assess if neural variance in these kinematic dimensions is better captured by

RNN models. We trained a FIT-KF [9], a VKF [22, 73], and a FORCE [16] decoder to decode

both recorded and synthetic neural activity. We show randomly chosen decoding trials in

Figure 3.5a,c, and e. The decoded trajectory from PD- and PPVT-synthesized neural activ-

ity was not closely matched. For example, FORCE decoder requires neural dynamics which

PPVT cannot provide, resulting in strong-biased decoded trajectory shown in Figure 3.5e.

In contrast, across all decoders, RNN neural encoders reproduced neural activity that were

sufficient to be decoded into cursor kinematics which matched to the one decoded from mon-

key data, resulting in lower NRMSE of cursor velocities. As our prior results demonstrated

that RNN models incorporating kinematic history better reproduce dynamical aspects of

motor cortical activity, this result is consistent with the observation that dynamical aspects

of motor cortical activity are important for kinematic decoding [74, 75, 53]. Hence, RNN

models well encode kinematics in a manner that is more similar to the real neural data

than PPVT encoders. Note, while RNN models achieved better training loss and better re-

produced PSTHs and population motifs, we did not apply objectives on matching decodes.

As discussed earlier, BCIs are closed-loop systems where the user interacts with the

45

x-pos
y

a b c d e f
Decode with FIT Decode with VKF Decode with FORCE

N
ai

ve
en

co
de

r
D

el
ay

ed
en

co
de

r

D
el

ay
ed

re
gu

la
riz

ed
en

co
de

r
PP

VT
en

co
de

r
PD

en
co

de
r

G
LM

en
co

de
r

M
LP

en
co

de
r

46

Figure 3.5: Decoding open-loop neural data and synthetic neural activity. We used neu-
ral encoders to generate synthetic neural activity while a monkey performed the cen-
ter-out-and-back task with the hand. We then compared the decoded trajectories from
real neural activity (blue) to synthetic activity (red). (a, c, e) We plot multiple decoded
center-out trajectories, with a random trajectory bolded for each direction. (b, d, f) We
also show average cursor speed profile with the vertical bars denote 100 mm/s, and the hor-
izontal bar denotes 100 ms. Decoded kinematics from real and synthetic data are marked
in blue and red, respectively. PPVT synthetic neural activity performed especially poorly
under FORCE decoding, exhibiting a bias in the up-left direction. In contrast, RNN neural
encoders reproduced real neural data decodes more closely. Quantitative results are summa-
rized in Table 3.2.

Table 3.2: NRMSE of cursor velocities decoded from real monkey data and from synthetic
data in the training dataset (open-loop hand control). Lower NRMSE indicates the neural
encoder better reproduced neural activity with respect to the decoders.

Decoder
Encoder PD PPVT GLM MLP Naive

RNN
Delayed
RNN

Delayed
regularized
RNN

FIT-KF 171.73 114.24 105.39 87.44 77.21 72.48 73.78
VKF 166.35 104.38 93.65 84.81 81.17 83.29 83.67
FORCE 167.5 119.72 105.49 91.24 84.42 86.37 88.69

decoded output, updating his or her motor commands in response to visual feedback of

the decoded output. Hence, the statistics of closed-loop neural population activity may

differ from those during naturalistic reaching (e.g., [20, 19, 36, 76]). We therefore evaluated

how well RNN models generalized to reproduce closed-loop data, where monkeys update

their motor commands in response to imperfect decoding. If RNN models more faithfully

reproduce prior decoded closed-loop kinematics, this is an additional evidence that they are

more appropriate for closed-loop BCI use.

Neural encoders were trained on a dataset recorded when monkey performed open-loop

center-out-and-back task with the native hand. Critically, we subsequently tested how well

these encoding models could generate neural activity during BCI control from a previously

collected closed-loop BCI dataset. We used the kinematics of the monkey’s arm to generate

synthetic neural activity, and subsequently decoded this activity post-hoc using the corre-

47

Monkey FIT-KF dataset Monkey ReFIT-KF dataset

N
ai

ve
en

co
de

r
D

el
ay

ed
en

co
de

r

D
el

ay
ed

re
gu

la
riz

ed
en

co
de

r
PP

VT
en

co
de

r
PD

en
co

de
r

G
LM

en
co

de
r

M
LP

en
co

de
r

a b c d

x-pos
y

Figure 3.6: Decoding closed-loop neural data and synthetic neural activity. We used neural
encoders to generate synthetic neural activity while a monkey controlled the FIT-KF and
ReFIT-KF decoders. We then compared the decoded trajectories from synthetic activity
(red) to the real trajectories decoded from closed-loop neural activity (blue). We found that
incorporating a delay between kinematics and neural activity and regularization on RNN
input weights significantly improved generalization in reproducing decoded closed-loop kine-
matics, which are validation datasets the neural encoder was not trained on. Quantitative
results are summarized in Table 3.3.

48

Table 3.3: NRMSE of cursor velocities decoded from real monkey data and from synthetic
data in the validation datasets (closed-loop FIT-KF and ReFIT-KF control). Lower NRMSE
indicates the neural encoder better reproduced neural activity with respect to the decoders.

Decoder
Encoder PD PPVT GLM MLP Naive

RNN
Delayed
RNN

Delayed
regularized
RNN

FIT-KF 159.56 102.55 95.86 106.14 103.92 93.69 79.09
ReFIT-KF 208.77 112.65 102.71 124.03 111.02 108.45 96.45

sponding FIT-KF and ReFIT-KF decoders used in online experiments. We then compared

the post-hoc decoded movements to the empirical movements during closed-loop experi-

ments. These results are summarized in Figure 3.6, demonstrating that even for closed-loop

control, the RNN-synthesized activity could be better decoded to produce kinematics than

PPVT-synthesized. Together, these results indicate that RNN models reproduce neural pop-

ulation activity better than PPVT when used in closed-loop settings, even though they were

only trained in open-loop settings.

3.4.4 Regularize RNN input weights to receive more contribution from internal

RNN dynamics

Prior studies have shown that motor cortex does not represent movement, bat rather a dy-

namical system [45, 46]. We therefore regularize RNN input weights to force RNN neural

encoder to rely more on intrinsic recurrent states than external inputs. We analyze how

the regularization impacted the RNN dynamics by quantifying the relative importance of

external inputs (i.e. hand kinematics) and intrinsic recurrent states. For each recurrent

neuron, we examined their contribution as the product of the weight with the activity of the

signal for both external inputs and intrinsic recurrent states (see Methods). We computed

the ratio between the norm of the local recurrent contribution and the external inputs for

each individual RNN neuron. The resulting average contribution ratio was smaller than one

indicating the recurrent contribution is larger than the contribution from external inputs in

49

a b
w/ regularization w/o regularization

Figure 3.7: Regularizing RNN input weights leads to a stronger contribution from internal
RNN dynamics than external inputs.(a) Histogram of the contribution ratio (see Methods)
in the regularized RNN neural encoder. A lower value indicates a lower contribution from the
RNN inputs and a stronger contribution from RNN dynamics. (a) Histogram of contribution
ratio in a non-regularized RNN neural encoder. This encoder had a significantly higher mean
contribution ratio.

most of neurons. In contrast, naive RNN neural encoder had a wide distribution of contri-

bution ratio and high average ratio. Thus, as expected, RNN input weight regularization

forces recurrent states to have a substantial impact in RNN dynamics.

3.5 Discussion

Prior work has demonstrated that motor cortical activity is heterogeneous, dynamic, and

more complex than previously thought [52, 77, 45, 78]. Neural encoders that do not repro-

duce neural population statistics will limit the performance of BCI simulators. To overcome

this limit, the key innovation was using a high capacity recurrent neural network, and in-

corporating a delay between hand speed and neural activity, and regularizing on RNN input

weights to closely model kinematic-to-neural relationship in the empirical data. Our results

demonstrate that these models are better than traditional models in (1) reproducing hetero-

50

geneity in single electrode PSTHs, (2) reproducing nonlinear structure and dynamic features

in the neural population, and (3) matching decoded kinematics.

We found that PPVT model significantly underestimated the variability of motor cortical

neural activity. The PPVT incorporated kinematics, causing the PSTHs to have kinematic-

resembling activity. The RNN neural encoder, by implementing a dynamical system, can

learn longer temporal dependencies. In contrast, RNN models incorporating history of inputs

and nonlinearity more closely reproduced empirical PSTHs. In addition to this, they also

reproduced neural population motifs, resembling neural trajectories in PCA and jPCA pro-

jections. We also found that decoding RNN generated neural activity more closely resembled

kinematics decoded from recorded activity, both in open-loop and closed-loop datasets.

An important limitation of our BCI simulator approach is that if a novel decoder algo-

rithm incorporates newly discovered mechanisms or aspects of neural variance not captured

by the neural encoder, then the simulator may not adequately evaluate this decoder’s per-

formance. As described previously, FORCE decoder requires neural dynamics which PPVT

cannot provide. This limits the scope of testable decoding algorithms to ones that operate

on neural variability adequately captured by the neural encoders. In addition, the input

to RNN neural encoders were 2D position and velocity. Motor cortex also encodes addi-

tional kinematic [48] and kinetic variables including acceleration [73, 79], time [70], distance

[80, 81, 82, 83, 84], joint angles [85], and forces [86, 87]. These additional kinematic parame-

ters may improve neural encoders. Future work may improve encoding models by measuring

and incorporating additional kinematic and kinetic variables as inputs.

To demonstrate that RNN models generalize for BCI simulators, we also assessed how

well these models generated neural activity during closed-loop BCI experiments. Closed-

loop BCI data has different statistics than open-loop data. In closed-loop BCI decoding, the

user’s kinematics are drastically different; where as offline data comprises primarily ballistic

reaches, closed-loop BCI decoding incorporates corrective movements, which are typically

smaller in extent and fairly precise. However, if an neural encoder generally captures how

51

kinematics can be predictive of neural population activity, we would expect this neural

encoder to more accurately reproduce closed-loop BCI decoder performance. We found

that, when generalizing to closed-loop BCI kinematics, RNN neural encoders significantly

outperformed PPVT neural encoder, indicating that they may generalize better for closed-

loop experiments. We will assess how these RNN neural encoders perform in real-time

closed-loop experiments in chapter 4 and chapter 5 These experiments would utilize the

neural encoder to generate synthetic neural activity and decode this activity in real-time.

There is a growing literature using deep learning in neuroscience. This body of work

includes using variational autoencoders to denoise intracortical spike trains [53], and model

early visual representations [88], sensory cortex [62], decision-making tasks [89, 90, 91], and

motor tasks [92, 78, 46]. Prior studies training RNNs to perform motor tasks have used

artificial units that resemble neurophysiological activity and dynamics [92, 78, 46]. However,

these studies have important differences to our RNN neural encoders. The goal of those

studies is to train RNNs that reproduce animal behavior, so that the artificial RNN can be

further analyzed for neuroscientific insight [90]. Along these lines, the inputs to these RNNs

are task inputs and the outputs are behavior (such as electromyograms or kinematics). In

contrast, our study aimed to generate neural activity as a function of kinematics. As such,

the inputs to our network are kinematics (as opposed to task inputs), and the outputs are

neural activity (as opposed to EMG or kinematics). Finally, our work is not concerned about

the activity of the hidden artificial units, as our goal is to reproduce neural activity at the

output.

3.6 Conclusion

Deep-learning-based neural encoders are able to reproduce heterogeneous neural activity

better than conventional tuning models. We showed that RNN neural encoders are signifi-

cantly better than prior PD and PPVT encoders in reproducing PSTHs, neural population

52

motifs, and matching decoded kinematics in open-loop and closed-loop datasets. Our results

indicate that RNN neural encoders may significantly improve the fidelity of BCI simulators,

which we will show in Chapter 4 and Chapter 5.

53

CHAPTER 4

BCI emulator

4.1 Summary

We build on a prior emulator in Cunningham et al. [2] that correctly optimized decoder

bin width by generating synthetic neural spike counts from hand kinematics using a tuning

model, PPVT. As shown in chapter 3, a limitation of prior study is that a tuning model is

insufficient to reproduce complexities in neural firing rates and population activity, includ-

ing multiphasic PSTHs, neural trajectories, and neural dynamics. To address this, we used

neural network based encoder to transform hand kinematics to synthetic neural activity in

our emulator. We evaluated our emulator by performing three published studies and quan-

titatively compared the emulator’s predictions to the monkey empirical results. We chose

these three studies to test: linear decoders (FIT-KF and VKF), a two-stage trained decoder

(ReFIT-KF), and a nonlinear decoder (FORCE). Our emulator correctly reproduced the

conclusions of these studies, in addition to reproducing precise details of control, including:

(1) distance-to-target profiles, closely matching the first touch time (FTT) and the dial-

in time (DIT), (2) the distribution of trial times, and (3) cursor trajectories observed in

prior monkey online experiments. These results suggest it is feasible to accurately predict

BCI performance without neurosurgery, enabling quantitative comparisons between different

types of decoding algorithms. We anticipate this system can facilitate and accelerate the

development of BCI decoders.

54

4.2 Introduction

Visual
feedback

BCI
decoder

hand
movement

Neural
encoder

Synthetic
neural signals

(x)t

Visual
feedback

Neural
signals

BCI
decoder

Neural
signals

BCI decoder

Feedback

Cursor
movements

User
control policy

b
BCI emulator

a
Empirical BCI

Figure 4.1: Empirical BCIs are closed-loop systems and BCI emulator can circumvent neuro-
surgery. (a) BCI decoders are imperfect, so decoded cursor movements will not fully match
the intent of the user. In response, the user will generate updated motor commands and
neural signals. (b) The BCI emulator circumvents invasive neurosurgery by generating syn-
thetic neural signals with hand kinematics.

Brain-computer interfaces (BCIs) aim to provide naturalistic communication and move-

ment for those with paralysis by decoding neural spikes into actions. BCIs require closed-loop

in vivo experiments to develop, design, optimize, and benchmark decoder algorithms (Fig-

ure 4.1a). Although offline evaluation provides insight into what algorithms are promising,

the discrepancy between offline and online performance may lead to incorrect conclusions

that mislead algorithm design. To accelerate BCI research, prior studies have attempted

to emulate or simulate BCI systems to accurately characterizes online decoder performance

without neurosurgery. An important component is neural encoder, which maps motor com-

mands (recorded hand kinematics) to synthetic neural activity. Cunningham et al. [2] devel-

oped a BCI “emulator” where a human subject’s hand movements generate synthetic neural

activity to control a BCI decoder, removing invasive neurosurgery but still including true

control policy from testing subjects (Figure 4.1b). We use the term “emulator” to highlight

that this system requires a physical experiment with hardware that mimics the BCI decoding

system and a human to provide a control policy.

55

The prior study by Cunningham and colleagues used a Poisson process velocity tuning

(PPVT) model of neural activity , which they found resulted in successful optimization of

decoder bin width. However, a PPVT neural encoder fails to capture the rich heterogeneity

and dynamics of motor cortical activity [3] (see chapter 3). Also, we performed BCI emulator

experiments using the PPVT neural encoder, and found it failed to reproduce published

studies, necessitating a better neural encoder. Further details of the BCI emulator are

provided in the Methods, and all experiments were approved by the UCLA IRB.

Our goal was to make a general neural encoder that would work well in all decoder

settings. We therefore hypothesized that a neural encoder that reproduces the heterogeneity,

low-dimensionality, and dynamics of motor cortical neural populations during natural reaches

would be capable of reproducing the three published decoder studies. We trained RNN

neural encoders to transform hand kinematic inputs to binned spike outputs using data

collected from two Utah arrays while a monkey performed center-out-and-back reaches with

their hand (details in chapter 3). These encoders better reproduced single neuron PSTHs,

neural population trajectories, and neural population rotational dynamics in point-to-point

reaches. RNN neural encoders also reproduced neural activity that could be accurately

decoded. Together, RNN-based neural encoders reproduced key features of motor cortical

neural population activity, providing a better approximation of neural activity than the

PPVT.

Although we have shown RNN neural encoders closely match kinematic-to-neural rela-

tionship, it is still unclear if these neural encoder can reproduce decoder performance in prior

studies. Here, we employs emulator closed-loop experiments to validate the neural encoders.

A user moves his or her hand, which generates synthetic activity that is subsequently de-

coded. Because the user sees the decoded output and adjusts his or her motor commands to

better control the decoder, the BCI emulator incorporates a true (not approximated) user

control policy. This enables us to therefore evaluate a neural encoder in isolation.

We performed the FIT-KF, ReFIT-KF, and FORCE studies in a BCI emulator us-

56

ing 4 subjects. For each study, we reproduced the task, task parameters, decoder hyper-

parameters, and decoder training as described in the published studies [9, 8, 16]. We trained

decoders as in the published studies by having subjects perform center-out reaches and

performing supervised training with concurrent kinematics and synthetic neural activity

generated by the neural encoder (see Methods). In each study, the task was a variant of the

center-out-and-back task, with targets 8 cm or 12 cm away from a center target, a 500 ms

hold time to successfully acquire each target, and 4 cm or 6 cm acceptance window sizes (see

Methods).

4.3 Methods

4.3.1 Emulator setup

We built a BCI emulator in a similar fashion to the “Online Prosthetic Simulator” introduced

by Cunningham et al. [2]. In our BCI emulator, endpoint kinematics of the user’s hand were

recorded via the Polaris Vega system (Northern Digital, Ontario, Canada). This system

tracked the position of an infrared bead to a resolution of 0.30 mm at 250 Hz, enabling precise

estimation of hand position. These data were processed by a custom real-time system build

using the LiCoRICE framework [93], which used 1 ms clock cycles, enabling simulation of

spikes-based BCIs. Our real-time system processed hand kinematics and transformed them

into spike counts via the neural encoder. The synthetic neural spike counts were decoded to

update the cursor positions shown on a screen. In response to this visual feedback, the user

made new motor commands to best control the BCI.

The three published studies we used to validate our emulator used variants of the center-

out-and-back task and the pinball task (see chapter 2. The center-out-and-back task was used

to collect training data for PVKF, ReFIT-KF, FORCE, and VKF decoders. The pinball task

was used to collect training data for FIT-KF decoder. All studies used the center-out-and-

back tasks to quantify decoder performance. The center-out-and-back task parameters for

57

each study are summarized in Table 2.1. Note, in each of our experiments, we matched the

number of electrodes used by the BCI experiments that we compare. FIT-KF, ReFIT-KF,

PVKF, and VKF were using 192 electrods, and FORCE was using 96 electrodes.

4.3.2 Experiment procedure

In experiments, we had each subject perform approximately 50 native arm reaches to gain

familiarity with the system. We then collected training data for 500 native arm reaches on

center-out-and-back and pinball tasks, respectively. This data was used to train decoders,

including the FIT-KF, FORCE, VKF and PVKF decoders. To train the ReFIT-KF, we col-

lected 500 reaches in PVKF-controlled center-out-and-back task. Testing subjects practiced

decoders in a sequence (arm, FIT, ReFIT, FORCE, then VKF) until they felt confident in

controlling decoders. Following this, we performed data collection for decoder performance.

In the evaluation session, we follow the same sequence (arm, FIT, ReFIT, FORCE, then

VKF), where we collected 60 center-out-and-back reaches for each decoder to analyze. Sub-

jects were notified they could stop the experiment when they felt fatigue. We repeated this

sequence until the subject terminated the experiment due to fatigue.

4.4 Results

4.4.1 Emulator with PPVT neural encoder leads to incorrect conclusions.

The prior study by Cunningham and colleagues used a Poisson process velocity tuning

(PPVT) model of neural activity, which they found resulted in successful optimization of

decoder bin width. Importantly, an empirical result they and another study confirmed [10].

PPVT neural encoder does not reproduce important neural properties in offline analysis. We

are still curious how decoders perform in emulator when run with PPVT neural encoder. We

intend to reproduce three representative prior studies: linear decoders (FIT-KF and VKF),

58

a b c d

f ge

Hand
FIT-KF
ReFIT-KF
FORCE
VKF

Emulator with PPVT neural encoder

Hand VKFFORCEReFIT-KFFIT-KF

x-pos
y

Figure 4.2: An emulator with a PPVT neural encoder does not reproduce prior published
studies. (a) Distance-to-target plots from emulator experiments for the various decoders.
Emulator results were shifted 200 ms to remove visuomotor response time when using the
neural encoder. The bolded line corresponds to DIT. (b, c) Average DIT and FTT, respec-
tively. (d) Distribution of trial times for each decoder. (e) Randomly sampled trajectories
for each decoder. (f) Max deviation from the straight line path for each decoder. (g) Dis-
tance ratio (cursor path length divided by straight path length) for each decoder. A PPVT
neural encoder does not reproduce published studies, especially for the nonlinear FORCE
decoder. FORCE was sometimes not controllable and had a strong bias toward left shown
in (e), resulting in low success rate (50%). FIT-KF, ReFIT-KF, and VKF all had similar
performances, also not consistent with prior studies. Results are summarized in Table 4.1.

59

Table 4.1: Decoder performance in emulator with PPVT neural encoder. Emulator results
were shifted by 200 ms to remove visuomotor response time when using the neural encoder.
TT, FTT, and DIT are trial time, first-touch time, and dial-in time, respectively.
Decoder TT [ms] FTT [ms] DIT

[ms]
distance
ratio

max de-
viation
[mm]

success
rate

of
center-

out trials
hand 488 486 2 1.17 6.15 1.00 118
FIT-KF 712.97+200 556.78+200 156.19 1.64 15.42 0.97 117
ReFIT-KF 971.90+200 701.71 +200 270.19 2.00 20.57 0.94 111
FORCE 1292.00+200 750.00+200 542.00 4.78 53.49 0.51 49
VKF 959.98+200 580.62+200 379.36 2.18 25.08 0.96 114

a two-stage trained decoder (ReFIT-KF), and a nonlinear decoder (FORCE).

First, as expected, VKF was controllable and performed well in a center-out-and-back

task which is consistent with prior study [2]. However, it does not enable us to have com-

parison across decoders. The ballistic control of ReFIT-KF is the best,resulting in the short

first-touch time in empirical result. However, this emulator leads to incorrect conclusion

that FIT-KF and VKF have better ballistic control than ReFIT-KF.

RNN neural encoders reproduced neural activity that were sufficient to be decoded into

cursor trajectory which matched to the one decoded from monkey data. In contrast, the

decoded trajectory from PPVT-synthesized neural activity was not closely matched.

Further, FORCE decoder requires neural dynamics which PPVT cannot provide, result-

ing in strong-biased decoded trajectory shown in Figure 4.2e. FORCE decoder was basically

uncontrollable and achieved low success rate. Therefore, emulator with PPVT neural en-

coder cannot be used to evaluate nonlinear decoders, and even just for linear decoders, the

conclusion is incorrect. found it failed to reproduce published studies

60

a b c d

i j k

e f g h

l m n

Hand
FIT-KF
ReFIT-KF
FORCE
VKF

Hand VKFFORCEReFIT-KFFIT-KF

Emulator

Intracortical BCI experiments

x-pos
y

Figure 4.3: BCI emulator reproduces published studies. (a-d, i-k) Reproduction of the
same panels from Figure 2.6, for ease of comparison of the BCI emulator to intracortical
BCI experiments. (e-h) Same as (a-d) but for the BCI emulator. (l-n) Same as (i-k) but
for the BCI emulator. BCI and emulator results are summarized in Table 2.2 and Table 4.2,
respectively. Emulator results were shifted by 200 ms to remove visuomotor response time
when using the neural encoder.

61

Table 4.2: Decoder performance in emulator with the delayed regularized RNN neural en-
coder. Emulator results were shifted by 200 ms to remove visuomotor response time when
using the neural encoder. TT, FTT, and DIT are trial time, first-touch time, and dial-in
time, respectively.
Decoder TT [ms] FTT [ms] DIT

[ms]
distance
ratio

max
deviation

[mm]

success
rate

of
center-

out trials
hand 496.1 491.45 4.64 1.16 6.55 1.00 602
FIT-KF 745.19 +200 592.17 +200 153.02 1.53 15.59 1.00 581
ReFIT-KF 817.75 +200 525.28 +200 292.47 1.86 17.16 0.99 584
FORCE 1132.17 +200 664.07 +200 468.10 2.24 23.87 0.93 576
VKF 1477.72 +200 713.55 +200 764.17 2.32 25.65 0.90 551

Hand VKFFORCEReFIT-KFFIT-KF

M
on

ke
y

Em
ul

at
or

Figure 4.4: The emulator reproduce trial time distributions observed in prior studies. Em-
ulator results in decoding cases were shifted 200 ms to remove visuomotor response time.
We observed similar trial time distributions across decoders in comparison to the closed-loop
BCI data. FIT-KF and ReFIT-KF had narrower distributions while FORCE and VKF had
relatively wider distributions.

62

x-pos
y

a b
Monkey Emulator Monkey Emulator

Figure 4.5: Emulator reproduce PVKF decoder performance. (a) Distance-to-target plots
from BCI emulator experiments. The distance-to-target profiles in emulator qualitatively re-
sembled those in monkey experiments. (b) Randomly sampled decoded trajectories for each
direction in each experiment. The emulator reproduce jittery and jumpy cursor trajectories
during PVKF control. Quantitative results are summarized in Table 4.3. Emulator results
were shifted by 200 ms to remove visuomotor response time when using the neural encoder.

Table 4.3: PVKF performance in monkey, emulator, and simulator experiments. The delayed
regularized RNN neural encoder was used in both emulator and simulator experiments.
Emulator results were shifted by 200 ms to remove visuomotor response time when using
the neural encoder. TT, FTT, and DIT are trial time, first-touch time, and dial-in time,
respectively.
Exp. TT [ms] FTT [ms] DIT

[ms]
distance
ratio

max de-
viation
[mm]

success
rate

of
center-

out trials
Monkey 925.87 576.32 349.55 2.72 35.77 0.99 1011.0
Emulator 925.99 +200 644.16 + 200 281.84 2.11 28.42 1.00 683.0
Simulator 993.40 566.17 427.23 3.30 37.10 0.95 248.0

63

4.4.2 A BCI emulator using a RNN neural encoder reproduces published BCI

studies.

PPVT neural encoder fails to capture the rich heterogeneity and dynamics of motor cortical

activity, resulting in incorrect conclusions in emulator experiments. RNN neural encoders

reproduced neural activity that were sufficient to be decoded into cursor trajectory which

matched to the one decoded from monkey data. The results of the published studies are

combined in Figure 4.3a-d, i-k. In brief, each study reported superior performance over the

then state-of-the-art VKF, due to superior fine control to successfully hold the cursor over the

target (Dial-In Time or DIT, Figure 4.3a,b, for further explanation of DIT, see Figure 2.2a)

and faster time to first touch the target (First Touch Time or FTT, Figure 4.3a,c, for further

explanation of FTT see Figure 2.2b). This also led to smoother kinematic trajectories, with

improved path efficiency and less deviation from the straight-line path (Figures 4.3i-k, see

Methods).

Our BCI emulator, using an RNN neural encoder, reproduced the key conclusions of

each study. Remarkably, it also produced detailed timing and trajectory results across all

studies. The summary of our decoder comparisons are in Figure 4.3e, where we reproduced

the distance-to-target plot results reported in all studies. In BCI emulator experiments, we

highlight the following: (1) we reproduced that FIT-KF, ReFIT-KF, and FORCE all achieved

superior performance to the VKF, as well as the result in Fan et al. [9] that FIT-KF and

ReFIT-KF achieve similar trial times with ReFIT-KF having faster FTT than FIT-KF, but

FIT-KF having better DIT than ReFIT-KF (Figure 4.3a,e); (2) we reproduced the ordering of

fine control DIT across studies, in particular that FIT-KF had the shortest DIT, followed by

ReFIT-KF, FORCE, and VKF (Figure 4.3b,f); (3) we reproduced the trends in FTT across

studies, where VKF had the slowest FTT, ReFIT-KF had the best FTT, and FIT-KF and

FORCE are in between. (Figure 4.3c,g); (4) we achieved similar trial time distributions over

single-trials across all decoders, with the VKF achieving the widest trial-time distribution

(Figure 4.3d,h and Figure 4.4 for one-by-one comparison); (5) we observed qualitatively

64

similar decoder trajectories (Figure 4.3i, l) and reproduced the decoder ordering of max

deviation and distance ratio (Figure 4.3j,k,m,n); and (6) we observed the intermediate PVKF

training stage of the ReFIT-KF also closely matched PVKF performance from intracortical

experiments (Figure 4.5). Together, these results show that our BCI emulator with an RNN

neural encoder reproduced the key timing and kinematic performance statistics of decoders

evaluated in intracortical experiments, including timing at the single-trial resolution.

4.5 Discussion

Our goal was to make a general neural encoder that would work well in all decoder settings.

We found that a BCI emulator, using a neural encoder that models the kinematic-to-neural

relationship closely, reproduced the detailed timing and decoder’s trajectory kinematic in

online BCI experiments. We emphasize that we did not use any decoder-specific information

in the design of the neural encoder. The neural encoder was only trained from open-loop

center-out-and-back reaches. Nevertheless, when used in BCI emulation for significantly

different studies, we observed this approximate neural data was sufficient for predicting BCI

decoder performance.

We emphasize that these studies vary significantly; for example, ReFIT-KF emulation

required an intermediate stage of decoding with a PVKF using the neural encoder, followed

by subsequent retraining, where as the FORCE and FIT-KF were nonlinear and linear de-

coders, respectively, trained directly from hand movements. We found that the intermediate

PVKF training stage of the ReFIT-KF also closely matched PVKF performance from intra-

cortical experiments. By modeling the kinematic-to-neural relationship as closely as possible,

we were able to accurately recapitulate detailed timing and kinematic performance of these

decoders in BCI emulation, in contrast to a poorer PPVT model. These results suggest that

an RNN neural encoder is sufficient to accurately predict decoder behavior for 2D cursor

control.

65

Testing subject in clinical trials can provide personal experience when control BCI de-

coders, in contrast to monkey experiments. We also found that our testing subjects can tell

the difference between decoder algorithms. For example, ReFIT-KF has unnoticeable delay

between movement intention and decoded cursor, and moves faster than FIT-KF, but not

easy to dial-in. VKF shows longer delay between movement intention and decoded cursor,

causing the trajectory to overshot easily. We also observed the correction intention both in

empirical and emulator data. Our emulator can also provide valuable personal experience

which may be helpful in designing decoder algorithm.

The hand kinematics reflect the “movement intention” in the motor cortex. Neural en-

coder transforms hand kinematics into binned spike counts. A natural response time is

around 200 ms (see Figure 4.3e, hand-control). Interestingly, in BCI-controlled cases, test-

ing subjects still initiate hand movement after 200 ms response time, however, decoded cursor

does not move right after hand movements. Instead, there is a time delay. This is consistent

with BCI results. The neural activity changes in motor cortical regions after target shows

up, indicating the movement intention initiates. However, in BCI experiments, there is still

a time delay even the decoder is controlled by the neural signal directly from the brain. We

found that only the neural encoder incorporating a delay between hand speed and neural

activity can reproduce this time delay as in empirical experiments.

4.6 Conclusions

We were able to accurately recapitulate detailed timing and kinematic performance of these

decoders in BCI emulation, in contrast to a poorer PPVT model. Incorporating the neural

delay and regularizing on RNN input weights on RNN neural encoder are necessary to repro-

duce decoder performance. We chose three significantly different studies to reproduce includ-

ing FIT-KF, ReFIT-KF, FORCE, VKF, and PVKF. Our emulator correctly reproduced the

conclusions of these studies including detailed timing and trajectory results. These results

66

suggest it is feasible to accurately predict BCI performance without neurosurgery, enabling

quantitative comparisons between different types of decoding algorithms. We anticipate this

system can facilitate and accelerate the development of BCI decoders.

67

CHAPTER 5

BCI simulator

5.1 Summary

In a BCI system, a user interacts with an imperfect decoder and continuously changes motor

commands in response to unexpected decoded movements. This “closed-loop” nature of BCI

leads to emergent interactions between the user and decoder that are challenging to model.

The gold standard for BCI evaluation is therefore real-time experiments, which significantly

limits the community and speed of BCI research. Our BCI emulator reproduced published

studies but still requiring experiments with a human-in-the-loop. We therefore replace the

user-in-the-loop in BCI emulation with an AI agent. We present a new BCI simulator

that enables researchers to accurately and quickly design BCIs entirely in software. Our

simulator replaces the BCI user with a deep reinforcement learning (RL) agent that interacts

with a simulated BCI system and learns to optimally control it. We demonstrate that our

simulator is accurate and versatile, reproducing the published results of three distinct types

of BCI decoders: (1) a state-of-the-art linear decoder (FIT-KF), (2) a “two-stage” BCI

decoder requiring closed-loop decoder adaptation (ReFIT-KF), and (3) a nonlinear decoder

(FORCE). We anticipate this simulator will help democratize and significantly accelerate

BCI research.

68

x t
Feedback

BCI
decoder

Neural
encoder

Synthetic
neural
signals

x = K ft t
Feedback

Model of a
decoder’s dynamics

x = g(f)t t

Feedback

BCI
decoder

Synthetic
neural
signals

Deep RL
control policy

RNN encoder

Prior work to simulate BCI experiments

Linear control simulator
a b

Decoder-specific simulator
c

General BCI simulator

Our work

Figure 5.1: (a) The linear control simulator replaces the human with a linear control policy.
This makes the simulator entirely software, but the control policy is not accurate. (b) The
simulator by Willett et al. [1] enables hyperparameter optimization of a single decoder by
modeling its dynamics (gray box), but cannot generalize to new decoders. (c) Our goal is
the general solution, a purely software simulator that accurately predicts the performance
of any type of decoder.

5.2 Introduction

Intracortical brain-computer interfaces (BCIs) are expensive and time-consuming to design

because accurate evaluation traditionally requires real-time experiments. To accelerate BCI

research, prior studies have attempted to emulate or simulate BCI systems. Cunningham

et al. [2] developed a BCI “emulator” where a human subject’s hand movements generate

synthetic neural activity to control a BCI decoder, removing invasive neurosurgery but still

requiring experiments with a human-in-the-loop. While this approach is useful, its use of

human experiments significantly limits its community use and speed To remove the human-

in-the-loop and avoid experiments, Lagang and Srinivasan [23] used the linear quadratic

regulator from control theory to approximate the human’s BCI control policy. Other studies

have also used linear policies from control theory in BCI design [24, 25, 26, 27, 28]. However,

as shown by Willett and colleagues [29, 1], and by further experiments in this study, linear

control policies are a poor approximation of user control policy and result in incorrect con-

clusions. Finally, Willett et al. [1] designed a simulator that enabled hyperparameter tuning

of a VKF. This simulator, however, does not have a neural data model and requires closed-

69

loop experiments to model a decoder’s dynamics. This simulator can therefore only optimize

decoders already tested in closed-loop intracortical experiments and does not generalize to

new, never-before-tested, decoders. It is also limited to optimize decoders of a linear form.

In contrast to prior work, our BCI simulator aims to faithfully model all aspects of BCI

control to accurately estimate the performance of any BCI decoder entirely in software. This

requires accurately modeling the unique user-decoder interactions without human or mon-

key experiments. It also requires generating synthetic neural activity that provides sufficient

information for downstream neural decoders. Our simulator solves the general problem: it

accurately evaluates the performance of representative decoder algorithms, both linear and

nonlinear, entirely in software. Our idea fundamentally involves training an artificial intel-

ligence (AI) agent that learns to control new decoders through deep reinforcement learning

(RL) and reproduces decoder performance.

We next sought to replace the user-in-the-loop in BCI emulation with an AI agent. The

AI agent must interact with the BCI system to acquire targets, as humans did in the BCI

emulator. We fixed the neural encoder and focused on agent optimization. Because the

BCI emulator reproduced published studies, we reasoned that successful replication of user

control policy would lead to a purely software BCI simulator that also reproduces published

studies. As the overall system is nonlinear, we found a linear control policy, such as a linear

quadratic regulator, failed to control the FORCE decoder.

Even when we relaxed the neural encoder to a PPVT, an LQR agent struggled to control

some decoders and did not reproduce prior studies. This is consistent with prior work

that showed linear control policies are inadequate for BCI control [1]. We therefore trained

nonlinear control policies (Figure 5.2). The AI agent must generate movements resulting in

similar online decoder performance as in intracortical experiments. Because the agent had

to learn to control each decoder anew, some decoders of which may have never before been

tested, we found imitation learning techniques were not sufficient because online control data

in general is not available. Further details, including hyperparameters, our use of curriculum

70

learning, the RL reward setting, and a more detailed description of the RL problem, are

described in the Methods.

5.3 Methods

5.3.1 Simulator setup

The simulator replaces the user-in-the-loop with a deep RL agent. It therefore allows us

to predict the performance of BCIs without human subjects. In this setting, the hand

kinematics (input of the neural encoder) are controlled by the deep RL agent, instead of a

human. The rest of the simulator mimics the BCI emulator. The hand position and velocities

of the agent are updated according to the following kinematic equation:

Hp
t+1

Hv
t+1

 =

1 1

0 1

Hp
t

Hv
t

+

0
1

Ha
t

where Ha
t is the hand acceleration at time t. The synthetic spike counts were synthesized

with hand kinematics and decoded by decoders into cursor position as the following:

ŷt = Encoder(Hp
t , H

v
t)

Cp
t = Decoder(ŷt)

Our goal was to therefore have the agent generate hand accelerations, Ha
t , that mimicked

how a user would control a BCI. The input to the agent which is the “observation” was

the hand’s position and velocity, cursor’s position and velocity, as well as the target. The

output of the agent was a hand acceleration that would subsequently be translated into

neural activity, ŷt, and decoded into a new cursor position, Cp
t .

71

5.3.2 AI agents

5.3.2.1 LQR

The linear quadratic regulator (LQR) algorithm is an automated way of finding a state-

feedback controller based on system dynamics and cost constraints. System dynamics are

described by a set of linear differential equations and cost constraints are described by

quadratic functions. In our tasks, the observation space was the concatenation of cursor

position, cursor velocity and target position. The action space was the hand acceleration.

The LQR assumes that the observations and inputs are related according to a linear

dynamical system:

xk+1 = Axk +Buk (5.1)

In general, when using LQR, the A and B matrices are known. However, our system

dynamics are nonlinear, probabilistic, and change based on the neural encoder and decoder.

Using naive system dynamics leads to a suboptimal feedback controller. To model system

dynamics, we therefore used an algorithm to iteratively learn system dynamics A and B

from the data collected while performing tasks. The data includes observation, xk, next

observation, xk+1, and action, uk. We approximate the relationship between hand kinematics

and cursor kinematics of BCI system with a linear dynamic system as:

Algorithm 2 Iteratively estimate system dynamics
Require: x and u collected when interacting with BCI systems.
Ensure: A∗ and B∗ linear system approximates
A∗ = argmin

A
E [∥xk+1 −Axk∥2]

B∗ = argmin
B

E [∥xk+1 −A∗xk −Buk∥2]
repeat

A∗ = argmin
A

E [∥xk+1 −Axk −B∗uk∥2]

B∗ = argmin
B

E [∥xk+1 −A∗xk −Buk∥2]
until A∗ and B∗ converge

72

In our algorithm, we assume system state can evolve through its internal dynamics, A,

without requiring external input. We therefore initialize B = 0. After inferring A∗ and B∗,

we use the LQR algorithm to infer a linear policy, ut = Kxt.

5.3.2.2 Naive PPO

Policy neural network

ob
se

rv
at

io
ns

µ

logσ

V

Gaussian
a

Figure 5.2: Architecture of the deep RL policy which takes observations and generates hand
acceleration and state value.

To train the deep RL agent, we used proximal policy optimization (PPO) with new

regularizations to constraint agent behavior as humans had. PPO uses a clipped surrogate

objective function with a goal of reducing KL divergence between successive gradient updates

[94]. To encourage exploration, the entropy of actions given state was added to the objective

function. The loss function of PPO is defined as the following:

LPPO = E
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
+ βH(πθ(·|st))

rt(θ) =
πθ(at|st)
πθold(at|st)

Ât = Σ∞
l=0(γλ)

lδVt+l

δVt = Rt + γV (st+1)− V (st),

where rt is the probability ratio, Ât is the advantage value, Rt is the reward from environ-

73

ment, V (st) is the output from the value function given st, γ and λ are hyperparameters

in generalized advantage estimation (GAE) [95]. PPO updates were performed with first-

order stochastic gradient descent (SGD) or Adam. The agent outputs were the means and

logarithmic standard deviations of Gaussian distributions modeling the hand acceleration.

During testing, the actions injected into the tasks were sampled from Gaussian distributions

on each dimension of action space.

The PPO algorithm included a policy and a value network. The policy network was

a feedforward neural network with two affine layers of 64 neurons, using tanh(·) as the

activation function, followed by a linear layer to output means and logarithmic standard

deviation of Gaussian distributions modeling the 2D hand acceleration. The value network

shared the same first two 64-neuron affine layers, followed by a linear layer to estimate the

value function V (st).

5.3.2.3 Constrained PPO

The PPO agent, naively trained, does not exhibit realistic physical behaviors, resulting

in unmatched decoder performance (Figure 5.4). For example, it could make arbitrarily

large accelerations, something humans cannot do with their arms because of biomechanical

constraints. We therefore developed two additional regularization terms to encourage the

agent to act more like a BCI user would. We first incorporated a smoothness constraint that

penalized the KL divergence on consecutive actions. Additionally, we incorporated a zeroness

constraint that penalized changes to the policy that move policy away from a Gaussian

distribution with zero mean and unit variance. This encouraged the network to conserve

energy, not moving unless it was necessary. The objective function of our constrained PPO

agent is therefore:

L = LPPO + αsmoothnessKL(πθ(.|st)∥πθ(.|st+1)) + αzeronessKL(πθ(.|st)∥N (0, 1)) (5.2)

74

The policy network, πθ, outputs mean µ and logarithmic standard deviation, log σ, of a

Gaussian distribution over the agent’s actions. We used the output of the policy network to

estimate the KL divergence penalties. Consider two Gaussian distributions, p(x) and q(x),

with means, µ1 and µ2, and standard deviations, σ1 and σ2, respectively. The KL divergence

of these two Gaussian distributions is calculated in the following way:

KL(p∥q) =

∫
p(x) log

p(x)

q(x)
dx =

∫
p(x) log p(x)dx−

∫
p(x)q(x)dx∫

p(x) log q(x)dx =

∫
p(x) log

(
1

(2πµ2)
1
2

exp
− (x−µ2)

2

2µ22

)
dx

= −1

2

(
log 2πµ2

2

)
−
∫

p(x)

[
x2 − 2xµ2 + µ22

2µ2
2

]
dx

= −1

2

(
log 2πµ2

2

)
− µ2

1 + (µ1 − µ2)
2

2µ2
2∫

p(x) log p(x)dx = −1

2
(1 + log 2πσ2)

KL(p∥q) = log
µ2

µ1

+
µ2
1 + (µ1 − µ2)

2

2µ2
2

− 1

2

where, we used Var(x) = E[x2]− E[x]2 to replace
∫
p(x)x2dx = µ2 − σ2.

5.3.2.4 Train RL agents with curriculum learning

We first trained an agent to perform the center-out-and-back task in a bypass mode which

has cursor position equal to hand position. We adjusted the zero constraint and smooth

constraint until the resulting behavior was close to Monkey J’s behavior. All other agents

learned from this pretrained control policy. Although reward shaping facilitates the learning

process, agents’ behaviors were also determined by the shaped reward. We therefore only

trained agents with a simple reward setting which is 1 if agents successfully acquired targets

and 0 others. We applied curriculum learning to facilitate the learning process by starting

75

from a larger target acceptance window, 120 mm, and progressively shrunk it down to 30 mm

if the overall target success rate was more than 90%.

5.4 Results

5.4.1 Linear control policy and linear neural encoder lead to incorrect conclu-

sions

a b c d

f ge

Hand
FIT-KF
ReFIT-KF
VKF

Hand VKFReFIT-KFFIT-KF

Simulator: LQR+PPVT

x-pos
y

Figure 5.3: A BCI simulator with an LQR agent and PPVT neural encoder. The LQR agent
does not reproduce prior studies with PPVT neural encoder. We do not show the results of
the FORCE decoder because it was uncontrollable, consistent with what we observed in the
emulator. Quantitative results are summarized in Table 5.1.

The linear quadratic regulator (LQR) algorithm is an automated way of finding a state-

feedback controller based on system dynamics and cost constraints. System dynamics are

described by a set of linear differential equations and cost constraints are described by

quadratic functions. In general, when using LQR, the system dynamics A and B matrices

are known or can be linearly approximated from a data-driven method (see Methods).

76

Table 5.1: Decoder performance in simulator using a LQR agent and PPVT neural encoder.
TT, FTT, and DIT are trial time, first-touch time, and dial-in time, respectively.
Decoder TT [ms] FTT [ms] DIT [ms] distance

ratio
max

deviation
[mm]

success
rate

of
center-

out trials
hand 411.46 411.46 0 1.3 6.74 1.00 48
FIT-KF 327.08 317.71 9.38 1.2 6.91 1.00 48
ReFIT-KF 620.83 326.04 294.79 2.5 16.62 1.00 48
VKF 248.96 197.92 51.04 1.61 11.66 1.00 48

Although LQR can control linear decoders including FIT-KF, ReFIT-KF, and VKF,

LQR agent did not reproduce prior studies. PPVT-synthesized neural signal does not re-

capitulate the complexity of real neural signal, resulting in a simple BCI system dynamics.

The simple VKF decoder results in the best decoder performance which is not consistent

with prior studies. Therefore, a better neural encoder is needed to recapitulate important

neural properties to closely simulate the BCI system dynamics. BCI system dynamics are

nonlinear, probabilistic, and change based on the neural encoder and decoder. As the over-

all system is nonlinear, a nonlinear control policy is needed to interact with nonlinear BCI

systems.

5.4.2 Unconstrained RL agent leads to incorrect conclusions

Table 5.2: Decoder performance in simulator using an unconstrained PPO agent and delayed
regularized RNN neural encoder. TT, FTT, and DIT are trial time, first-touch time, and
dial-in time, respectively.

Decoder TT
[ms]

FTT
[ms]

DIT
[ms]

distance
ratio

max
deviation

[mm]

success
rate

of
center-

out trials
hand 373.79 370.26 3.53 1.58 8.43 1.00 248.0
FIT-KF 482.26 392.94 89.31 1.77 18.05 1.00 248.0
ReFIT-KF 399.60 322.78 76.81 1.58 16.08 1.00 248.0
FORCE 532.42 393.50 138.92 1.77 17.34 0.99 248.0
VKF 686.03 435.63 250.40 2.02 21.10 1.00 248.0

77

a b c d

f ge

Hand
FIT-KF
ReFIT-KF
FORCE
VKF

Hand VKFFORCEReFIT-KFFIT-KF

Simulator: unconstrained PPO

x-pos
y

Figure 5.4: A BCI simulator with an unconstrained PPO agent and RNN neural encoder.
Without the smoothness and zero regularizations we incorporated in RL training, the un-
constrained PPO agent was able to generate more unphysical behavior and find superior
strategies to controlling the decoders. The first-touch times and dial-in times are all shorter
than in prior studies, and the VKF first-touch time is not significantly worse than the other
decoders. The ordering of max deviation and distance ratio are also mismatched from intra-
cortical BCI data. Quantitative results are summarized in Table 5.2.

78

We trained nonlinear control policies with proximal policy optimization (PPO) to interact

with nonlinear BCI systems. Because control policy is decoder dependent, the deep RL

agent was trained to learn the emergent closed-loop interactions helpful for controlling each

decoder. We performed the FIT-KF, ReFIT-KF, and FORCE studies in a BCI simulator

using trained RL agents. We found that PPO agents successfully performed tasks and the

decoder performance is shown in Figure 5.4 and summarized in Table 5.2.

The ordering of first-touch time were reproduced, indicating RNN neural encoder re-

produced critical neural activity with respect to each decoder. However, the PPO agent

intends to acquire targets in a minimum time because the objective function is to maximize

the discounted cumulative reward. The PPO agent, naively trained, could make arbitrarily

changes and large accelerations, something humans cannot do with their arms because of

biomechanical constraints. We found that the dial-in times were too short and the overall

decoder performance does not match. Therefore, to closely reproduce decoder performance

in monkey experiments, the behavior of PPO agent needs to be constrained to be similar to

natural behavior.

5.4.3 A software BCI simulator with a constrained RL agent reproduces pub-

lished BCI studies.

Table 5.3: Decoder performance in simulator using a constrained PPO agent and the delayed
regularized RNN neural encoder. TT, FTT, and DIT are trial time, first-touch time, and
dial-in time, respectively.

Decoder TT
[ms]

FTT
[ms]

DIT
[ms]

distance
ratio

max de-
viation
[mm]

success
rate

of
center-

out trials
hand 415.42 415.42 0 1.37 6.93 1.00 248
FIT-KF 577.62 522.18 55.44 1.68 19.42 1.00 248
ReFIT-KF 612.15 464.37 147.77 1.89 19.34 1.00 248
FORCE 892.36 563.81 328.56 2.31 25.24 0.96 248
VKF 1138.24 631.22 507.01 2.7 28.6 0.91 243

79

a b c d

i j k

e f g h

l m n

Hand
FIT-KF
ReFIT-KF
FORCE
VKF

Hand VKFFORCEReFIT-KFFIT-KF

Simulator

Intracortical BCI experiments

x-pos
y

Figure 5.5: BCI simulator reproduces published studies. (a-d, i-k) Reproduction of the
same panels from Figure 3, for ease of comparison of the BCI simulator to intracortical BCI
experiments. (e-h) Same as (a-d) but for the BCI simulator. (l-n) Same as (i-k) but for
the BCI simulator. BCI and simulator results are summarized in Table 2.2 and Table 5.2,
respectively.

80

We trained the deep RL agent to control each of the decoders in the published studies.

We found that the deep RL agent exhibited qualitatively similar decoder dependent control

policies to monkeys controlling intracortical BCIs and humans controlling the BCI emulator

(FIT-KF average “hand” trajectory length: 284 mm, VKF: 373 mm, p < 10−7, Wilcoxon

rank-sum test).

We performed the FIT-KF, ReFIT-KF, and FORCE studies in a BCI simulator using

trained RL agents. We found the BCI simulator reproduced all the key conclusions of these

studies, like in the emulator (Figure 5.5 and Figure 5.7 for PVKF), including detailed timing

and kinematic differences in decoder comparisons. This included correctly predicting the

trends in FTT and DIT across all decoders, as well as kinematic trends in distance ratio and

max deviation. Together, these results show the BCI simulator, using a deep RL agent, and

an RNN neural encoder, reproduced the key timing and kinematic performance statistics

of decoders, including timing at the single-trial resolution. Importantly, our BCI simulator

arrived at the same conclusions as prior intracortical studies that required months to years

of invasive experiments, but did so entirely in software simulation.

Hand VKFFORCEReFIT-KFFIT-KF

M
on

ke
y

Si
m

ul
at

or

Figure 5.6: The simulator reproduce trial time distributions observed in prior studies. We
observed similar trial time distributions across decoders in comparison to the closed-loop
BCI data. FIT-KF and ReFIT-KF had narrower distributions while FORCE and VKF had
relatively wider distributions.

81

x-pos
y

a b
Monkey Simulator Monkey Simulator

Figure 5.7: Simulator reproduce PVKF decoder performance. (a) Distance-to-target plots
from BCI and simulator experiments. The distance-to-target profiles in simulator qualita-
tively resembled those in monkey experiments. (b) Randomly sampled decoded trajectories
for each direction in each experiment. The simulator reproduce jittery and jumpy cursor
trajectories during PPVT control.

5.5 Discussion

We incorporated a deep-learning-based neural encoder and deep RL agent to build a BCI

simulator entirely in software without requiring invasive neurosurgery or user-in-the-loop

experiments. Previously, we found that a BCI emulator, using a neural encoder that models

the kinematic-to-neural relationship closely, reproduced the detailed timing and decoder’s

trajectory kinematic in online BCI experiments. Here, we further were able to replace

the user-in-the-loop with a deep RL agent trained with constraints to implement a purely

software simulator. In general, we found that high capacity neural networks, in both the

neural encoder and deep RL agent, were necessary to accurately simulate key prior studies,

and we expect that our work can predict the performance of never-before-tested decoders.

Critically, our work significantly extends prior attempts at BCI simulation and emula-

tion by not requiring additional physical experiments. Further, because our BCI simulator

is implemented entirely in software, it is straightforward to simulate experiments which

require online user-decoder interaction such as designing and optimizing decoders, includ-

ing algorithm testing, hyperparameter sweeps, task parameter sweeps, and other adjustable

82

variables, and also add-on algorithms such as decoder stabilization and AI argumentation.

Importantly, this pure software platform can used to benchmark algorithms, a current limi-

tation that has complicated algorithm comparisons in prior BCI literature. We expect that

BCI algorithms will be faster to design and optimize, as opposed to taking months of experi-

ments. We further have released the code, making this software accessible to all researchers.

We emphasize that, by reproducing three distinct studies, we found that our simulator ac-

curately estimates performance of linear and nonlinear decoders, in addition to those that

require multiple training stages, as in closed-loop decoder adaptation.

The key innovation was using neural network based RL agent to replace user-in-the-loop

in BCI emulator. Because the overall BCI system includes nonlinearities, including from

movement intention to neural activity, or even in the decoder algorithm, we found linear

feedback controllers like LQR that rely on linear system dynamics ultimately failed. In

contrast, deep RL agents trained with constrained PPO were able to implement control

strategies that reproduced published studies. Future work can further incorporate physical

constraints such as muscle skeleton model to better simulate natural movement intention.

Also, along with new technical changes in continual learning, meta learning, or off-policy

methods from RL community, we believe RL agents can be easier to train and more general.

BCI community takes two decades to have significant advances in 2D plane decoding, and

is tackling high-degree-of-freedom decoding such as BCIs those control robotic arm or fingers.

Our future work may consider how to simulate high DOF neural encoder and tasks. A key

consideration will be to train the neural encoding model, which would require simultaneous

neural recordings and high DOF kinematics or kinetics. After training a neural encoder, we

anticipate a deep RL agent will be capable of learning to control these higher-DOF decoders

to simulate BCI performance.

We believe our BCI simulator can be used to develop a generalized neural decoder with

respect to all neural encoders without having multiple subjects performing online experi-

ments repeatedly. BCI community takes two decades to have significant advances in 2D

83

plane decoding, and is tackling high-degree-of-freedom decoding such as BCIs those control

robotic arm or fingers. Our future work may consider how to simulate high DOF neural

encoder and tasks. A key consideration will be to train the neural encoding model, which

would require simultaneous neural recordings and high DOF kinematics or kinetics. After

training a neural encoder, we anticipate a deep RL agent will be capable of learning to

control these higher-DOF decoders to simulate BCI performance.

5.6 Conclusions

We were able to accurately recapitulate detailed timing and kinematic performance of these

decoders in BCI simulation. PPO agent with nonlinear function policy can control nonlinear

BCI system which Linear-quadratic regulator (LQR) agent cannot control. Incorporating

smoothness and zeroness constraints is critical to reproduce BCI decoder performance. We

replace the human-in-the-loop in BCI emulator experiments with constrained PPO agents.

Our simulator correctly reproduced the conclusions of BCI experiments. These results sug-

gest it is feasible to accurately predict BCI performance without neurosurgery, enabling

quantitative comparisons between different types of decoding algorithms. We anticipate this

system can further facilitate and accelerate the development of BCI decoders.

84

CHAPTER 6

Conclusion

Throughout this dissertation, we have demonstrated steps toward a BCI simulator and

proved the concept that synthetic neural activity and deep RL agents can be combined

to accurately simulate cursor control BCIs. Our design approach uses published BCI experi-

ments as ground truth decoder comparisons, physical BCI emulator experiments to optimize

the neural encoder in isolation, and software BCI simulator to train AI agents. We chose

to replicate three distinct BCI studies that improved BCI decoders through different in-

novations, namely: (1) a state-of-the-art linear decoder (FIT-KF), (2) a “two-stage” BCI

decoder requiring closed-loop decoder adaptation (ReFIT-KF), and (3) a nonlinear decoder

(FORCE). Both our BCI emulator and simulator can accurately recapitulate detailed timing

and kinematic performance of these decoders in monkey BCI experiments. These results

suggest that our emulator and simulator are accurate and versatile.

This dissertation shows how BCI emulator design can benefit profoundly from a synergy

between deep learning and neuroscience. Ideas from neuroscience is important for solving

specific problems encountered in designing neural encoders. Concretely, we demonstrated

in Chapter 3 that RNN neural encoder incorporating neural path delay and RNN input

weight regularization more faithfully reproduces neural activity and decoded kinematics in

validation dataset. Critically, in Chapter 4, we demonstrated that our emulator correctly

reproduced the conclusions of these studies, in addition to reproducing precise details of

control, including: (1) distance-to-target profiles, closely matching the first touch time (FTT)

and the dial-in time (DIT), (2) the distribution of trial times, and (3) cursor trajectories

85

observed in prior monkey online experiments.

However, while BCI emulator is useful, and we used it to validate a neural encoder, its

use of human experiments significantly limits its community use and speed. In Chapter 5,

we replaced the BCI user with a deep reinforcement learning (RL) agent that interacts with

a simulated BCI system and learns to optimally control it. We demonstrated that nonlinear

control policy is needed to control BCI systems which are naturally nonlinear. Further, we

demonstrated the importance of the regularizations we introduced to enforce smoothness

and low-energy actions from the agent; without these, the agent could make non-physical

arbitrary accelerations and decelerations. These results suggest it is feasible to accurately

predict BCI performance without neurosurgery and physical experiments, enabling quantita-

tive comparisons between different types of decoding algorithms. We anticipate this system

can facilitate and accelerate the development of BCI decoders.

The work in this dissertation highlights the need for nonlinear approaches for designing

BCI simulator. By combining approaches from deep learning with basic science insights from

systems neuroscience, we addressed critical hurdles to BCI simulator. We demonstrated

that by modeling the kinematic-to-neural relationship as closely as possible, we were able to

accurately recapitulate detailed timing and kinematic performance of representative decoder

algorithms. I believe that approaches that continue to use insights from deep learning and

systems neuroscience in BCI simulator will play a important role in accelerating BCI research.

Some natural applications and extensions of this work include:

• Developing neural decoders on BCI emulator and simulator is the most direct applica-

tion. We can build multiple encoder models across days to simulate the non-stationary

neural distribution. It is also possible to build encoder models from multiple subjects,

and benchmark decoders across separate encoding models. We believe our BCI sim-

ulator can be used to develop a generalized neural decoder with respect to all neural

encoders without having multiple subjects performing online experiments repeatedly.

Robust decoders should generalize well across all neural encoders.

86

• Generalizing to BCIs driven by other neural recording modalities (e.g., ECoG and

EEG), or Extending to high-degree-of-freedom decoding such as BCIs those control

robotic arm or fingers. A key consideration will be to train the neural encoding model,

which would require simultaneous neural recordings and high DOF kinematics or kinet-

ics. After training a neural encoder, we anticipate a deep RL agent will be capable of

learning to control these higher-DOF decoders to simulate BCI performance. In addi-

tion, this new BCI system can incorporate potential biomechanical models to constrain

agent’s behavior.

87

Bibliography

[1] F. R. Willett, D. R. Young, B. A. Murphy, W. D. Memberg, C. H. Blabe, C. Pandar-

inath, S. D. Stavisky, P. Rezaii, J. Saab, B. L. Walter, J. A. Sweet, J. P. Miller, J. M.

Henderson, K. V. Shenoy, J. D. Simeral, B. Jarosiewicz, L. R. Hochberg, R. F. Kirsch,

and A. Bolu Ajiboye, “Principled BCI decoder design and parameter selection using a

feedback control model,” Sci. Rep., vol. 9, no. 1, p. 8881, Jun. 2019.

[2] J. P. Cunningham, P. Nuyujukian, V. Gilja, C. A. Chestek, S. I. Ryu, and K. V. Shenoy,

“A closed-loop human simulator for investigating the role of feedback control in brain-

machine interfaces,” J. Neurophysiol., vol. 105, no. 4, pp. 1932–1949, Apr. 2011.

[3] K.-F. Liang and J. C. Kao, “Deep learning neural encoders for motor cortex,” IEEE

Trans. Biomed. Eng., vol. 67, no. 8, pp. 2145–2158, Aug. 2020.

[4] P. R. Kennedy and R. A. E. Bakay, “Restoration of neural output from a paralyzed

patient by a direct brain connection,” Neuroreport, vol. 9, no. 8, pp. 1707–1711, Jun.

1998.

[5] P. R. Kennedy, R. A. E. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, “Direct

control of a computer from the human central nervous system,” IEEE Trans. Rehabil.

Eng., vol. 8, no. 2, pp. 198–202, Jun. 2000.

[6] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical control of 3D neuro-

prosthetic devices,” Science, vol. 296, no. 5574, pp. 1829–1832, Jun. 2002.

[7] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan,

A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensemble control of

prosthetic devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171,

Jul. 2006.

88

[8] V. Gilja, P. Nuyujukian, C. A. Chestek, J. P. Cunningham, B. M. Yu, J. M. Fan,

M. M. Churchland, M. T. Kaufman, J. C. Kao, S. I. Ryu, and K. V. Shenoy, “A high-

performance neural prosthesis enabled by control algorithm design,” Nat. Neurosci.,

vol. 15, no. 12, pp. 1752–1757, Nov. 2012.

[9] J. M. Fan, P. Nuyujukian, J. C. Kao, C. A. Chestek, S. I. Ryu, and K. V. Shenoy,

“Intention estimation in brain-machine interfaces,” J. Neural Eng., vol. 11, no. 1, p.

016004, Feb. 2014.

[10] M. M. Shanechi, A. L. Orsborn, H. G. Moorman, S. Gowda, S. Dangi, and J. M.

Carmena, “Rapid control and feedback rates enhance neuroprosthetic control,” Nat.

Commun., vol. 8, p. 13825, 2017.

[11] J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and K. V.

Shenoy, “Single-trial dynamics of motor cortex and their applications to brain-machine

interfaces,” Nat. Commun., vol. 6, no. May, pp. 1–12, 2015.

[12] J. C. Kao, P. Nuyujukian, S. I. Ryu, and K. V. Shenoy, “A high-performance neural

prosthesis incorporating discrete state selection with hidden markov models,” IEEE

Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 935–945, Apr. 2017.

[13] K. Ganguly and J. M. Carmena, “Emergence of a stable cortical map for neuroprosthetic

control,” PLoS Biol., vol. 7, no. 7, p. e1000153, Jul. 2009.

[14] A. L. Orsborn, H. G. Moorman, S. A. Overduin, M. M. Shanechi, D. F. Dimitrov, and

J. M. Carmena, “Closed-Loop decoder adaptation shapes neural plasticity for skillful

neuroprosthetic control,” Neuron, vol. 82, no. 6, pp. 1380–1393, Jun. 2014.

[15] D. B. Silversmith, R. Abiri, N. F. Hardy, N. Natraj, A. Tu-Chan, E. F. Chang, and

K. Ganguly, “Plug-and-play control of a brain-computer interface through neural map

stabilization,” Nat. Biotechnol., vol. 39, no. 3, pp. 326–335, Mar. 2021.

89

[16] D. Sussillo, P. Nuyujukian, J. M. Fan, J. C. Kao, S. D. Stavisky, S. I. Ryu, and K. V.

Shenoy, “A recurrent neural network for closed-loop intracortical brain-machine interface

decoders,” J. Neural Eng., vol. 9, no. 2, p. 026027, Apr. 2012.

[17] D. Sussillo, S. D. Stavisky, J. C. Kao, S. I. Ryu, and K. V. Shenoy, “Making brain–

machine interfaces robust to future neural variability,” Nat. Commun., vol. 7, p. 13749,

Dec. 2016.

[18] P. Nuyujukian, J. M. Fan, V. Gilja, P. S. Kalanithi, C. A. Chestek, and K. V. Shenoy,

“Monkey models for brain-machine interfaces: the need for maintaining diversity,” in

Proceedings of the 33rd Annual Conference of the IEEE EMBS, vol. 2011. Boston,

Massachusetts: IEEE, Jan. 2011, pp. 1301–1305.

[19] S. M. Chase, A. B. Schwartz, and R. E. Kass, “Bias, optimal linear estimation, and the

differences between open-loop simulation and closed-loop performance of spiking-based

brain-computer interface algorithms,” Neural Netw., vol. 22, no. 9, pp. 1203–1213, 2009.

[20] S. Koyama, S. M. Chase, A. S. Whitford, M. Velliste, A. B. Schwartz, and R. E. Kass,

“Comparison of brain-computer interface decoding algorithms in open-loop and closed-

loop control,” J. Comput. Neurosci., vol. 29, no. 1-2, pp. 73–87, Aug. 2010.

[21] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F.

Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L. Nicolelis, “Learning to control

a brain-machine interface for reaching and grasping by primates,” PLoS Biol., vol. 1,

no. 2, p. E42, Nov. 2003.

[22] S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. J. Black, “Neural con-

trol of computer cursor velocity by decoding motor cortical spiking activity in humans

with tetraplegia,” J. Neural Eng., vol. 5, no. 4, pp. 455–476, Dec. 2008.

[23] M. Lagang and L. Srinivasan, “Stochastic optimal control as a theory of brain-machine

interface operation,” Neural Comput., vol. 25, no. 2, pp. 374–417, Feb. 2013.

90

[24] S. Gowda, A. L. Orsborn, S. A. Overduin, H. G. Moorman, and J. M. Carmena, “De-

signing dynamical properties of Brain–Machine interfaces to optimize Task-Specific per-

formance,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 5, pp. 911–920, Sep.

2014.

[25] M. M. Shanechi, A. L. Orsborn, and J. M. Carmena, “Robust brain-machine interface

design using optimal feedback control modeling and adaptive point process filtering,”

PLoS Comput. Biol., vol. 12, no. 4, p. e1004730, 2016.

[26] M. M. Shanechi, Z. M. Williams, G. W. Wornell, R. C. Hu, M. Powers, and E. N. Brown,

“A real-time brain-machine interface combining motor target and trajectory intent using

an optimal feedback control design,” PLoS One, vol. 8, no. 4, pp. 23–32, 2013.

[27] M. Benyamini and M. Zacksenhouse, “Optimal feedback control successfully explains

changes in neural modulations during experiments with brain-machine interfaces,” 2015.

[28] Y. Zhang and S. M. Chase, “Optimizing the usability of Brain-Computer interfaces,”

Neural Comput., vol. 30, no. 5, pp. 1323–1358, May 2018.

[29] F. R. Willett, C. Pandarinath, B. Jarosiewicz, B. A. Murphy, W. D. Memberg, C. H.

Blabe, J. Saab, B. L. Walter, J. A. Sweet, J. P. Miller, J. M. Henderson, K. V. Shenoy,

J. D. Simeral, L. R. Hochberg, R. F. Kirsch, and A. Bolu Ajiboye, “Feedback control

policies employed by people using intracortical brain–computer interfaces,” J. Neural

Eng., vol. 14, no. 1, p. 016001, Nov. 2016.

[30] S. Dangi, A. L. Orsborn, H. G. Moorman, and J. M. Carmena, “Design and analy-

sis of closed-loop decoder adaptation algorithms for brain-machine interfaces,” Neural

Comput., vol. 25, no. 7, pp. 1693–1731, Jul. 2013.

[31] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black, “Bayesian population

decoding of motor cortical activity using a kalman filter,” Neural Comput., vol. 18, no. 1,

pp. 80–118, Jan. 2006.

91

[32] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Had-

dadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by

people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, no.

7398, pp. 372–375, May 2012.

[33] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J.

Weber, A. J. C. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “High-

performance neuroprosthetic control by an individual with tetraplegia,” Lancet, vol. 381,

no. 9866, pp. 557–564, Feb. 2013.

[34] B. Wodlinger, J. E. Downey, E. C. Tyler-Kabara, A. B. Schwartz, M. L. Boninger,

and J. L. Collinger, “Ten-dimensional anthropomorphic arm control in a human brain-

machine interface: difficulties, solutions, and limitations,” J. Neural Eng., vol. 12, no. 1,

p. 016011, Feb. 2015.

[35] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy,

“High-performance brain-to-text communication via handwriting,” pp. 249–254, 2021.

[36] J. P. Cunningham, P. Nuyujukian, V. Gilja, C. A. Chestek, S. I. Ryu, and K. V. Shenoy,

“A closed-loop human simulator for investigating the role of feedback control in brain-

machine interfaces,” J. Neurophysiol., vol. 105, no. 4, pp. 1932–1949, Apr. 2011.

[37] V. Gilja, C. Pandarinath, C. H. Blabe, P. Nuyujukian, J. D. Simeral, A. A. Sarma,

B. L. Sorice, J. A. Perge, B. Jarosiewicz, L. R. Hochberg, K. V. Shenoy, and J. M.

Henderson, “Clinical translation of a high-performance neural prosthesis,” Nat. Med.,

vol. 21, no. 10, pp. 1142–1145, 2015.

[38] C. A. Chestek, V. Gilja, P. Nuyujukian, J. D. Foster, J. M. Fan, M. T. Kaufman, M. M.

Churchland, Z. Rivera-Alvidrez, J. P. Cunningham, S. I. Ryu, and K. V. Shenoy, “Long-

term stability of neural prosthetic control signals from silicon cortical arrays in rhesus

macaque motor cortex,” J. Neural Eng., vol. 8, no. 4, p. 045005, Aug. 2011.

92

[39] J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian, and K. V. Shenoy, “Information

systems opportunities in brain-machine interface decoders,” Proc. IEEE, vol. 102, no. 5,

pp. 666–682, 2014.

[40] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from chaotic

neural networks,” Neuron, vol. 63(4), pp. 544–557, 2009.

[41] T. Gollisch and M. Meister, “Eye smarter than scientists believed: neural computations

in circuits of the retina,” Neuron, vol. 65, no. 2, pp. 150–164, Jan. 2010.

[42] A. D. Huberman, M. Manu, S. M. Koch, M. W. Susman, A. B. Lutz, E. M. Ullian,

S. A. Baccus, and B. A. Barres, “Architecture and activity-mediated refinement of

axonal projections from a mosaic of genetically identified retinal ganglion cells,” Neuron,

vol. 59, no. 3, pp. 425–438, Aug. 2008.

[43] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky, and E. P.

Simoncelli, “Spatio-temporal correlations and visual signalling in a complete neuronal

population,” Nature, vol. 454, no. 7207, pp. 995–999, Aug. 2008.

[44] N. C. Rust, O. Schwartz, J. A. Movshon, and E. P. Simoncelli, “Spatiotemporal elements

of macaque v1 receptive fields,” Neuron, vol. 46, no. 6, pp. 945–956, Jun. 2005.

[45] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian,

S. I. Ryu, and K. V. Shenoy, “Neural population dynamics during reaching,” Nature,

vol. 487, no. 7405, pp. 51–56, Jul. 2012.

[46] J. A. Michaels, B. Dann, and H. Scherberger, “Neural population dynamics during

reaching are better explained by a dynamical system than representational tuning,”

PLoS Comput. Biol., vol. 12, no. 11, p. e1005175, 2016.

[47] R. E. Hampson, D. Song, B. S. Robinson, D. Fetterhoff, A. S. Dakos, B. M. Roeder,

X. She, R. T. Wicks, M. R. Witcher, D. E. Couture, A. W. Laxton, H. Munger-Clary,

93

G. Popli, M. J. Sollman, C. T. Whitlow, V. Z. Marmarelis, T. W. Berger, and S. A.

Deadwyler, “Developing a hippocampal neural prosthetic to facilitate human memory

encoding and recall,” J. Neural Eng., vol. 15, no. 3, p. 036014, Jun. 2018.

[48] S. J. Bensmaia and L. E. Miller, “Restoring sensorimotor function through intracortical

interfaces: progress and looming challenges,” Nat. Rev. Neurosci., vol. 15, no. 5, pp.

313–325, 2014.

[49] V. Gilja, C. A. Chestek, I. Diester, J. M. Henderson, and K. V. Shenoy, “Challenges

and opportunities for next-generation intracortically based neural prostheses,” IEEE

Transactions on Biomedical Engineering, vol. 58, no. 7, pp. 1891–1899, 2011.

[50] J. E. O’Doherty, M. A. Lebedev, P. J. Ifft, K. Z. Zhuang, S. Shokur, H. Bleuler, and

M. A. L. Nicolelis, “Active tactile exploration using a brain-machine-brain interface,”

Nature, vol. 479, no. 7372, pp. 228–231, Nov. 2011.

[51] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti, and J. T. Massey, “On the relations

between the direction of two-dimensional arm movements and cell discharge in primate

motor cortex,” J. Neurosci., vol. 2, no. 11, pp. 1527–1537, Nov. 1982.

[52] M. M. Churchland and K. V. Shenoy, “Temporal complexity and heterogeneity of single-

neuron activity in premotor and motor cortex,” J. Neurophysiol., vol. 97, pp. 4235–4257,

2007.

[53] C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao, E. M.

Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, J. M. Henderson, K. V. Shenoy,

L. F. Abbott, and D. Sussillo, “Inferring single-trial neural population dynamics using

sequential auto-encoders,” pp. 805–815, 2018.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep con-

volutional neural networks,” in Advances in Neural Information Processing Systems 25,

94

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,

Inc., 2012, pp. 1097–1105.

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”

in Computer Vision – ECCV 2016, ser. Lecture Notes in Computer Science. Springer,

Cham, Oct. 2016, pp. 630–645.

[57] G. Cheng, P. Zhou, and J. Han, “Learning Rotation-Invariant convolutional neural

networks for object detection in VHR optical remote sensing images,” IEEE Trans.

Geosci. Remote Sens., vol. 54, no. 12, pp. 7405–7415, Dec. 2016.

[58] J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren, “Object detection in optical remote

sensing images based on weakly supervised learning and High-Level feature learning,”

IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325–3337, Jun. 2015.

[59] D. Zhang, J. Han, C. Li, J. Wang, and X. Li, “Detection of co-salient objects by looking

deep and wide,” Int. J. Comput. Vis., vol. 120, no. 2, pp. 215–232, Nov. 2016.

[60] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background Prior-Based salient

object detection via deep reconstruction residual,” IEEE Trans. Circuits Syst. Video

Technol., vol. 25, no. 8, pp. 1309–1321, Aug. 2015.

[61] J. Lindsey, S. A. Ocko, S. Ganguli, and S. Deny, “A unified theory of early visual

representations from retina to cortex through anatomically constrained deep CNNs,”

Jan. 2019.

[62] D. L. K. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models to under-

stand sensory cortex,” Nat. Neurosci., vol. 19, no. 3, pp. 356–365, Mar. 2016.

95

[63] L. T. McIntosh, N. Maheswaranathan, A. Nayebi, S. Ganguli, and S. A. Baccus, “Deep

learning models of the retinal response to natural scenes,” Adv. Neural Inf. Process.

Syst., vol. 29, pp. 1369–1377, 2016.

[64] H. Wen, J. Shi, Y. Zhang, K.-H. Lu, J. Cao, and Z. Liu, “Neural encoding and decoding

with deep learning for dynamic natural vision,” Cereb. Cortex, vol. 28, no. 12, pp.

4136–4160, Dec. 2018.

[65] S. Gerwinn, J. H. Macke, and M. Bethge, “Bayesian inference for generalized linear

models for spiking neurons,” Front. Comput. Neurosci., vol. 4, p. 12, May 2010.

[66] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, “A point

process framework for relating neural spiking activity to spiking history, neural ensem-

ble, and extrinsic covariate effects,” J. Neurophysiol., vol. 93, no. 2, pp. 1074–1089, Feb.

2005.

[67] A. S. Benjamin, H. L. Fernandes, T. Tomlinson, P. Ramkumar, C. VerSteeg, R. H.

Chowdhury, L. E. Miller, and K. P. Kording, “Modern machine learning as a benchmark

for fitting neural responses,” Front. Comput. Neurosci., vol. 12, p. 56, Jul. 2018.

[68] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, Nov. 2016.

[69] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International

Conference on Learning Representations, 2014.

[70] M. T. Kaufman, J. S. Seely, D. Sussillo, S. I. Ryu, K. V. Shenoy, and M. M. Churchland,

“The largest response component in motor cortex reflects movement timing but not

movement type,” eNeuro, vol. 3, no. August, pp. ENEURO.0085–16.2016, 2016.

[71] G. F. Elsayed and J. P. Cunningham, “Structure in neural population recordings: an

expected byproduct of simpler phenomena?” Nat. Neurosci., vol. 20, no. 9, pp. 1310–

1318, Sep. 2017.

96

[72] N. Even-Chen, S. D. Stavisky, J. C. Kao, S. I. Ryu, and K. V. Shenoy, “Augmenting

intracortical brain-machine interface with neurally driven error detectors,” J. Neural

Eng., vol. 14, no. 6, p. 066007, Dec. 2017.

[73] W. Wu, M. J. Black, Y. Gao, E. Beinenstock, M. D. Serruya, A. Shaikhouni, and J. P.

Donoghue, “Neural decoding of cursor motion using a kalman filter,” in Advances in

Neural Info. Proc. Sys., 2003.

[74] M. Aghagolzadeh and W. Truccolo, “Inference and decoding of motor cortex low-

dimensional dynamics via latent state-space models,” IEEE Trans. Neural Syst. Rehabil.

Eng., vol. 4320, pp. 1–1, 2015.

[75] J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and K. V.

Shenoy, “Single-trial dynamics of motor cortex and their applications to brain-machine

interfaces,” Nat. Commun., vol. 6, p. 7759, Jul. 2015.

[76] J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian, and K. V. Shenoy, “Information

systems opportunities in brain machine interface decoders,” Proc. IEEE, vol. 102, no. 5,

pp. 666–682, May 2014.

[77] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, and K. V. Shenoy,

“Cortical preparatory activity: representation of movement or first cog in a dynamical

machine?” Neuron, vol. 68, no. 3, pp. 387–400, Nov. 2010.

[78] D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V. Shenoy, “A neural network

that finds a naturalistic solution for the production of muscle activity,” Nat. Neurosci.,

vol. 18, no. 7, pp. 1025–1033, 2015.

[79] L. Paninski, M. R. Fellows, N. G. Hatsopoulos, and J. P. Donoghue, “Spatiotemporal

tuning of motor cortical neurons for hand position and velocity,” J. Neurophysiol.,

vol. 91, no. 1, pp. 515–532, Jan. 2004.

97

[80] M. M. Churchland, G. Santhanam, and K. V. Shenoy, “Preparatory activity in premotor

and motor cortex reflects the speed of the upcoming reach,” J. Neurophysiol., vol. 96,

no. 6, pp. 3130–3146, Dec. 2006.

[81] Q. G. Fu, J. I. Suarez, and T. J. Ebner, “Neuronal specification of direction and distance

during reaching movements in the superior precentral premotor area and primary motor

cortex of monkeys,” J. Neurophysiol., vol. 70, no. 5, pp. 2097–2116, Nov. 1993.

[82] J. Messier and J. F. Kalaska, “Covariation of primate dorsal premotor cell activity with

direction and amplitude during a memorized-delay reaching task,” J. Neurophysiol.,

vol. 84, no. 1, pp. 152–165, Jul. 2000.

[83] D. W. Moran and A. B. Schwartz, “Motor cortical representation of speed and direction

during reaching,” J. Neurophysiol., vol. 82, no. 5, pp. 2676–2692, Nov. 1999.

[84] A. Riehle and J. Requin, “Monkey primary motor and premotor cortex: single-cell ac-

tivity related to prior information about direction and extent of an intended movement,”

J. Neurophysiol., vol. 61, no. 3, pp. 534–549, Mar. 1989.

[85] J. A. Pruszynski, I. Kurtzer, J. Y. Nashed, M. Omrani, B. Brouwer, and S. H. Scott,

“Primary motor cortex underlies multi-joint integration for fast feedback control,” Na-

ture, vol. 478, no. 7369, pp. 387–390, Sep. 2011.

[86] D. R. Humphrey, E. M. Schmidt, and W. D. Thompson, “Predicting measures of motor

performance from multiple cortical spike trains,” Science, vol. 170, no. 3959, pp. 758–

762, Nov. 1970.

[87] M. Hepp-Reymond, M. Kirkpatrick-Tanner, L. Gabernet, H. X. Qi, and B. Weber,

“Context-dependent force coding in motor and premotor cortical areas,” Exp. Brain

Res., vol. 128, no. 1-2, pp. 123–133, Sep. 1999.

98

[88] J. Lindsey, S. A. Ocko, S. Ganguli, and S. Deny, “A unified theory of early visual

representations from retina to cortex through anatomically constrained deep CNNs,”

Jan. 2019.

[89] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-dependent com-

putation by recurrent dynamics in prefrontal cortex,” Nature, vol. 503, no. 7474, pp.

78–84, Nov. 2013.

[90] H. F. Song, G. R. Yang, and X. J. Wang, “Training excitatory-inhibitory recurrent

neural networks for cognitive tasks: a simple and flexible framework,” PLoS Comput.

Biol., vol. 12, no. 2, pp. 1–30, 2016.

[91] W. Chaisangmongkon, S. K. Swaminathan, D. J. Freedman, and X. J. Wang, “Comput-

ing by robust transience: how the fronto-parietal network performs sequential, category-

based decisions,” Neuron, vol. 93, no. 6, pp. 1504–1517.e4, 2017.

[92] G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in

balanced networks supports generation of complex movements,” Neuron, vol. 82, no. 6,

pp. 1394–1406, Jun. 2014.

[93] P. Mehrotra, S. Dasgupta, S. Robertson, and P. Nuyujukian, “An open-source realtime

computational platform (short WIP paper),” ACM SIGPLAN Notices, vol. 53, no. 6,

pp. 109–112, 2018.

[94] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” Jul. 2017.

[95] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” 2015. [Online]. Available:

https://arxiv.org/abs/1506.02438

99

