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Abstract

Accurate predictions of T-cell epitopes would be useful for designing vaccines, immunother-

apies for cancer and autoimmune diseases, and improved protein therapies. The humoral

immune response involves uptake of antigens by antigen presenting cells (APCs), APC pro-

cessing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR)

recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII bind-

ing, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method,

ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given

MHCII and TCR sequences. The method integrates information about three stages of the

immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition.

First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S,

B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it

will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes.

Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind

to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes

and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predic-

tions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal struc-

tures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known

epitopes and TCR sequences but without crystal structures. ITCell successfully identified

the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To

validate the method using a clinically relevant application, we utilized five factor VIII-specific

TCR sequences from hemophilia A subjects who developed an immune response to factor

VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the
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six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs.

Our integrative approach is more accurate than current single-stage epitope prediction algo-

rithms applied to the same benchmarks. It is freely available as a web server (http://salilab.

org/itcell).

Introduction

Adaptive immunity involves cellular and humoral responses [1]. Cellular immunity is primar-

ily mediated by cytotoxic CD8+ T cells which recognize peptide antigens presented by Major

Histocompatibility Complex class I molecules (MHCI) while humoral immunity requires

CD4+ T helper cells responding to peptide-MHC class II complexes (pMHCII) to support anti-

body production by B cells. The humoral immune response pathway proceeds through multi-

ple stages (Fig 1) [2]. First, an antigenic protein is endocytosed by antigen presenting cells

(APCs). For the MHCII pathway, the protein can then be cleaved in the endosome by acid-

dependent proteases into peptides of ~10–30+ residues. The invariant chain of the MHCII

receptor blocks the peptide binding site in the nascent MHCII protein in the endoplasmic

reticulum (ER) and facilitates the export of MHCII receptors without peptide ligands from the

ER to a vesicle. Next, the vesicle fuses with the endosome that contains the whole antigen or its

peptides. The invariant MHCII chain is then cleaved, leaving only a non-covalently bound

small fragment (CLIP) that continues to block the MHCII peptide binding site. CLIP is subse-

quently removed by human leukocyte antigen DM (HLA-DM, with an MHCII-like structure),

allowing for subsequent interactions with antigenic peptides in the vesicle. Additional cutting

and trimming of peptides can take place after the formation of a stable peptide-MHCII

(pMHCII) complex [3]. Next, stable pMHCII complexes are presented on the APC surface. If

the pMHCII complex is recognized by a T-cell receptor (TCR) on a CD4+ T cell, the cell

becomes activated, producing helper cytokines that support B-cell activation, differentiation to

plasma cells, and finally antibody generation.

Here, we focus on predicting T-cell epitopes within an input antigen sequence, restricted to

a given human MHCII (Human Leukocyte Antigen, HLA) and to specific TCR sequences.

Knowledge of immunodominant epitopes is helpful in designing vaccines [4], improving can-

cer immunotherapy [5], studies of autoimmune diseases [6, 7], and engineering of protein

replacement therapies [8]. Unfortunately, most current in vitro and in vivo experimental meth-

ods for predicting immunogenicity in pre-clinical settings are resource intensive and relatively

slow [5, 9, 10]. Therefore, an accurate, rapid, and inexpensive computational approach for

assessment of protein immunogenicity would be valuable.

Current computational methods that are informative about T-cell epitopes predict mainly

peptide-MHCII affinity [11]. They can be divided into machine learning [12] and ab initio
approaches [13]. Machine learning methods train predictors by relying on a large number of

experimentally measured binding affinities for multiple MHCII alleles [14, 15], such as those

available in the Immune Epitope Database (IEDB) [16]. State-of-the-art predictors have an

average area under the receiver-operating characteristic (ROC) curve (AUC) of ~0.8, as shown

by independent validation [14, 15]. The drawback of machine learning methods is that suffi-

cient experimental datasets are not always available for an MHCII allele of interest, resulting in

lower accuracy [12]. In addition, because the length of an MHCII-binding peptide can vary

from approximately 10 to 30+ residues, mistakes can be made in registering the 9-mer peptide

subsequence in the core of an MHCII binding groove [17, 18]. It is also hard to account for

T-cell epitope prediction
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“flanking” peptide residues on either side of the core 9-mer, which can modulate binding affin-

ity, and only the NetMHCII method currently takes this into account [14]. In contrast, current

ab initio methods rely on the MHCII structure for predicting the affinity of peptide binding

[13]. These methods do not require experimentally derived peptide binding datasets and can

be applied to any MHCII allele. However, their accuracy (AUC from 0.62 to 0.68) tends to be

lower than that of the machine learning methods [13].

While there are methods that consider preprocessing of class I peptides [19, 20], the current

computational approaches for class II consider only a single step (ie, peptide-MHCII binding)

in the multiple steps of the adaptive immune response. However, many peptides that are capa-

ble of binding to a given MHCII will not actually be presented on the MHCII of an APC (eg,

because the peptide is not excised from the antigen during cleavage). Moreover, many pep-

tide-MHCII complexes that are presented will not be recognized by a TCR (eg, self-peptides

Fig 1. Overview of the 3 steps of antigen processing that are modeled using the current approach.

https://doi.org/10.1371/journal.pone.0206654.g001
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that are constitutively presented on APCs). There are six MHC class II genes in humans

(HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, and HLA-DRB1) of which

all but DRA are polymorphic. While peptide presentation by MHCII is essential for immuno-

genicity, it is clearly not sufficient, as immunogenicity also requires engagement of antigen-

specific TCRs from the diverse T cell repertoire (estimated to contain over 1,000,000 unique

sequences [21] with a potential diversity on the order of 1015 [22]) generated during T cell

development. Therefore, ignoring pMHC-TCR interactions leads to overprediction of poten-

tial immunogenicity. Including predicted protease cleavage sites in the antigen sequence and

assessing the feasibility of ternary complex formation between pMHCII and the corresponding

TCR, in addition to evaluating the compatibility between the peptide and MHCII, could signif-

icantly improve the accuracy of T-cell epitope prediction. Here, we propose such a combined

approach for predicting epitopes, given the antigen, MHCII, and TCR sequences.

First, we designed an antigen cleavage predictor. The minimal cell-free antigen cleavage

system requires cathepsins B, H, and S as well as HLA-DM and MHCII [23]. Therefore, we

experimentally determined specificity profiles of cathepsins B, H, and S, using a global mass

spectrometry-based approach [24]. These specificity profiles enabled us to design an accurate

antigen cleavage site predictor. Second, we designed a structure-based predictor for peptide-

MHCII recognition. Using structural modeling and affinity data for a large number of pep-

tide-MHCII pairs in IEDB, we trained an atomic distance-dependent statistical potential [25]

that was optimized for assessing the stability of peptide-MHCII complexes. Finally, we

designed a structure-based predictor for pMHCII-TCR recognition, enabled by next genera-

tion sequencing platforms that can sequence a large number of short DNA sequences covering

the diverse complementarity determining regions (CDRs) of the TCRs [26–28]. Our approach

is modular, for example cleavage sites prediction to filter the list of peptides is optional. The

cleavage sites predictor may be more useful for predicting epitopes in pathogen-derived anti-

gens, which are more sensitive to digestion by cathepsins, compared to auto-antigens [29].

Finally, our method can also be used when only partial information, such as TCR β-variable

regions only, is available, even though the antigen specificity of the complete TCR depends on

both α and β chains.

We begin by presenting the integrative structure-based approach (Fig 1). We benchmark

the method using 20 known structures of pMHCII-TCR complexes as well as four

pMHCII-TCR complexes with defined HLA and TCR sequences only. Finally, we apply the

method to predict a validated HLA-DR1-restricted T-cell epitope in blood coagulation factor

VIII (FVIII). FVIII-specific T-cell clones were obtained from two hemophilia A subjects who

developed a neutralizing antibody response to therapeutic FVIII infusions. The TCR β-variable

regions of these clones were sequenced and the resulting sequences incorporated into the vari-

able regions of the TCR models used in our prediction algorithm.

Results

Method

The input is an antigen sequence of interest, an MHCII allele sequence, and a TCR β or α+β
variable region sequence. The output is a list of potential epitopes (ie, peptide sequences in the

antigen that are predicted to form a complex with the given MHCII and TCR) as well as struc-

tural models of the pMHCII and pMHCII-TCR complexes. The method proceeds in three

steps (Fig 1) (Materials and Methods). First, we predict cleavage sites in the antigen sequence

based on cathepsins S, B, and H cleavage profiles. These sites can be used to filter the set of all

possible 12-mer peptides for the next step. Second, we build a structural model of the peptide-

MHCII complex and assess it with an optimized statistical potential. Third, we assess whether

T-cell epitope prediction
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or not any of the top-scoring peptide-MHCII complexes are likely to bind to a given T-cell

receptor (TCR), based on the score of the best structural model of the ternary peptide-

MHCII-TCR complex and the locations of the predicted cleavage sites.

Substrate specificity profiles for cathepsins B, H, and S

In this step we predict the cleavage sites in the antigen sequence. In a cell-free (in vitro) antigen

processing system, cathepsins B, H, and S were found to be sufficient for cleavage of model

protein antigens [12, 23]. Cathepsin S is the major endoprotease involved in class II antigen

processing outside the thymus. Carboxypeptidase (cathepsin B) and aminopeptidase (cathep-

sin H) activities are important for trimming longer fragments bound to MHCII molecules;

they are constitutively expressed in all professional APCs. Therefore, we obtained peptide

cleavage datasets [24], constructed specificity matrices for the three cathepsins, and designed a

cleavage predictor (Fig 2). Cathepsin S has a preference for hydrophobic residues in the P2

position and for positively charged residues in the P1 position, consistent with the profiling of

the P1-P4 positions using a combinatorial library [30]. The remaining positions have broad

specificity, consistent with the major role of this enzyme in antigen processing. The profiles of

cathepsins B and H clearly identify them as a predominant di-carboxypeptidase and a mono-

aminopeptidase, respectively. Pathogen-derived epitopes have different processing pathways

and are quite sensitive to digestion by cathepsins, compared to auto-antigens that are more

resistant to digestion [12]. As a result, it is recommended to use the cleavage predictor as an

initial step when analyzing pathogen-derived antigens, while it may be prudent to generate

predictions for auto-antigens both with and without the cathepsin-cleavage prediction filter.

Testing on input antigen sequences with known ternary complex structures

To test the accuracy of the method, we used a benchmark dataset of 20 human pMHCII-TCR

complexes with crystal structures available in the Protein Data Bank (PDB [31]; Table 1). For

each complex, we identified and utilized the sequence of the parent protein of the peptide epi-

tope. The benchmark dataset contains antigen sequences from eight proteins (hemagglutinin

HA1, triosephosphate isomerase, myelin binding protein (MBP), engA, phosphomannomu-

tase, UL15, and two gliadin proteins). The 20 complexes have some redundancy, since some

involved the same MHCII allele, TCR, or peptide epitope sequence. However, the dataset

includes 14 non-redundant pMHCII complexes.

For additional benchmarking to test the accuracy of pMHCII complex predictions only, we

included an additional 18 pMHCII complexes from the PDB without a known cognate TCR.

This combined benchmarking set consists of 32 pMHCII complexes (14 non-redundant

pMHCII-TCR complexes + 18 pMHCII complexes).

Accuracy of predicting antigen cleavage sites. We applied the cleavage prediction proto-

col to the sequences of the eight protein antigens in our benchmark set and to the MHCII

invariant chain, which is also cleaved by cathepsins in the endosome (S1 Table). The method

predicted 165 cleavage sites in these nine sequences. In the absence of knowing the true cleav-

age sites for these nine proteins, we can only check whether or not the predicted cleavage sites

lie outside the actual epitopes, as they should. Only 5 of the predicted cleavage sites (three in

MBP and two in EngA) lie within the known epitopes. The three MBP epitopes are in fact

cleaved in healthy individuals, who thus avoid an immune response, in agreement with the

prediction. In contrast, they are not cleaved in patients with multiple sclerosis for whom the

epitopes were defined. In these patients, MBP, a short disordered protein, binds to the recycled

MHCII molecules without undergoing endosomal cleavage [32]. In summary, as expected, the

protease cleavage prediction significantly reduced the number of peptide candidates for

T-cell epitope prediction
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Fig 2. A and B) Cleavage profiles for cathepsins H, S, and B. A) iceLogo representations of substrate specificity. Residues above the line are favored at a given

position; residues below the line are disfavored. Statistically significant residues (p< 0.05) are colored according to their physicochemical properties. B) Heat map

representations of residue preference clustered and colored by Z-score at each position. Favored residues have Z> 0 and disfavored residues have Z< 0. Cleavage

profiles are provided from P1-P4’ for cathepsin H, P4-P4’ for cathepsin S, and P4-P2’ for cathepsin B based on their predominant experimentally-determined cleavage

preferences. C) Percentage of 12-mer peptides in the benchmark proteins remaining, following filtering by the cleavage sites predictor.

https://doi.org/10.1371/journal.pone.0206654.g002
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subsequent testing (by 30% for the benchmark proteins, Fig 2C, S1 Table), while eliminating

few of the true epitopes.

Additional benchmarking was performed using sequences of 1,000 MHC binding peptides

from 280 proteins in the systeMHC dataset [33], which comprise the immunopeptidome of

these proteins as determined by mass spectrometry of peptides eluted from antigen-presenting

cells. This Hidden Markov Model (HMM)-based cleavage predictor reduced the number of

candidate peptide epitopes for MHCII presentation by ~30%, with only ~3% of these 1,000

true MHCII binders predicted to be cleaved.

Accuracy of predicting pMHCII complexes. Fourteen unique peptide-MHCII pairs

from the 20 pMHCII-TCR structures in our benchmark were used for validating prediction of

peptide side-chain orientations and peptide registration in the MHCII binding cleft. Input

peptide-MHCII templates were taken from the MHCII allele dataset (S2 Table) and contained

a peptide different from the one that appears in the benchmark pMHCII-TCR complex. Con-

sideration of each peptide was limited to its core 12 amino acid residues, although in principle

shorter or longer peptides can be considered by the method. This 12-mer core starts two posi-

tions before the traditional 9-mer core peptide register. All possible 12-mer peptides in the

antigen sequences were modeled into the complex, followed by an assessment of the resulting

3D model. The rank of the actual epitope peptide was determined and compared to that com-

puted by the NetMHCIIpan-3.1 predictor [15] (Tables 1 and S3). In three cases, the correct epi-

tope was the top scoring peptide predicted using the SOAP score. In eight additional cases, the

correct epitope was among the top 20 scoring peptides. For MBP, the correct peptide-MHCII

Table 1. Benchmark of epitope predictions based on crystal structures. The epitope core residues within the peptides are bolded.

PDB Protein Confirmed epitope

peptide

Antigen

length

MHCII type TCR ITCell

Rank

Rank

MHC

Rank

TCR

Rank NetMHCII

pan(core)

Combined

rank

1j8h HEMAGGLUTININ HA1 PKYVKQNTLKLAT 317 DRB1�0401 HA1.7 1 4 3 1 1

1fyt HEMAGGLUTININ HA1 PKYVKQNTLKLAT 317 DRB1�0101 HA1.7 1 7 1 12 1

4e41 TRIOSEPHOSPHATE

ISOMERASE

GELIGILNAAKVPAD 249 DRB1�0101 G4 3 1 72 2 1

2iam TRIOSEPHOSPHATE

ISOMERASE

GELIGILNAAKVPAD 249 DRB1�0101 E8 1 1 16 2 1

2ian TRIOSEPHOSPHATE

ISOMERASE

GELIGTLNAAKVPAD 249 DRB1�0101 E8 1 1 9 2 1

1ymm MYELIN BASIC PROTEIN ENPVVHFFKNIVTP 169 DRB1�1501 OB.1A12 13 5 61 1 1

2wbj ENGA DFARVHFISALHGSG 304 DRB1�1501 OB.1A12 254 155 288 1 3

3pl6 MYELIN BASIC PROTEIN NPVVHFFKNIVTPR 169 DQA1�0102-DQB1�0502 Hy.1B11 1 2 4 1 1

4grl PHOSPHOMANNOMUTASE RLLMLFAKDVVSRN 463 DQA1�0102-DQB1�0502 Hy.1B11 20 12 74 6 7

4may UL15 QLVHFVRDFAQL 735 DQA1�0102-DQB1�0502 Hy.1B11 3 3 24 10 1

3o6f MYELIN BASIC PROTEIN FSWGAEGQRPGFGSGG 169 DRB1�0401 MS2-

3C8

93 152 20 99 113

1zgl MYELIN BASIC PROTEIN VHFFKNIVTPRTPP 169 DRB5�0101 3A6 18 6 52 1 1

4ozf GLIADIN APQPELPYPQPGS 291 DQA1�0501-DQB1�0201 JR5.1 20 33 27 218 185

4ozg GLIADIN APQPELPYPQPGS 291 DQA1�0501-DQB1�0201 D2 1 33 2 218 144

4ozh GLIADIN APQPELPYPQPGS 291 DQA1�0501-DQB1�0201 S16 11 33 15 218 175

4ozi GLIADIN QPFPQPELPYP 291 DQA1�0501-DQB1�0201 S2 12 8 45 244 83

4gg6 GLIADIN2 SGEGSFQPSQENP 307 DQA1�0301-DQB1�0302 SP3.4 1 1 81 53 1

4z7u GLIADIN2 PSGEGSFQPSQENPQ 307 DQA1�0301-DQB1�0302 S13 1 1 11 53 1

4z7v GLIADIN2 SGEGSFQPSQENP 307 DQA1�0301-DQB1�0302 L3-12 1 1 22 53 1

4z7w GLIADIN2 PSGEGSFQPSQENPQ 307 DQA1�0301-DQB1�0302 T316 1 1 17 53 1

Number of cases out of total with the correct epitope ranked #1 10/20 3/14 1/20 5/14 13/20

Number of cases out of total with the correct epitope among top20 18/20 11/14 10/20 10/14 15/20

https://doi.org/10.1371/journal.pone.0206654.t001

T-cell epitope prediction
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complex (PDB 3o6f) was ranked in the 152nd position, and thus was not identified correctly. A

possible rationalization is provided by the low affinity of this epitope for HLA-DR4 and its

“loose” accommodation in the MHCII binding cavity [34]. In the remaining two cases, we find

the correct peptide was ranked in the top 30 solutions, but with an incorrect register of the

peptide core in the MHCII cavity compared to the reference X-ray structure. Similar results

were obtained with NetMHCIIpan-3.0 (Table 1). In summary, ranking of the pMHCII models

was insufficient to accurately predict epitopes, although it is clearly an essential step for the

overall modeling and scoring including other aspects of the system (below).

We performed further independent benchmarking of peptide-MHCII recognition using

PDB structures of pMHCII complexes that do not include the TCR. This enabled us to increase

the number of non-redundant test cases from 14 to 32 (S3 Table). Here, all possible 12-mer

peptides in the antigen sequences were used without filtering of predicted cleaved sequences.

On average there were 440 12-mer peptides tested for each known MHCII binding peptide (S3

Table). In this benchmarking set the correct pMHCII binding register was the top-ranked pre-

diction for 5 (16%) and 4 (13%) of the 32 benchmark cases evaluated by our statistical potential

(SOAP) and by NetMHCIIpan, respectively (Fig 3, S3 Table). Because these two scoring

approaches are based on different information, we tested whether the combined score could

improve prediction accuracy. Indeed, using a combined score (sum of normalized scores), we

were able to improve prediction accuracy, resulting in the correct pMHCII register receiving

the top score for 9 (28%) of the 32 cases.

Finally, additional benchmarking to predict peptide-MHCII binding was performed using

29,700 MHCII binding peptides with measured affinities from the IEDB dataset. For each pep-

tide, we identified and utilized the sequence of the parent protein. Our goal was to identify the

MHCII binding peptide among all possible 12-mers in the parent protein sequence. Because

there are no structures for these pMHCII complexes, their core registers in the MHCII cavities

could not be validated. Again, all peptides were used without filtering of predicted cleaved

sequences. The correct peptide binding register (overlap of at least 12 peptide residues) was

found in the 10 top-scoring peptides for 14% and 22% of the 29,700 benchmark cases using

the SOAP statistical potential and NetMHCIIpan, respectively (Part A of S1 Fig). The com-

bined score improved the accuracy to 24%. We further checked the performance for peptides

with high, intermediate, and low experimentally measured binding affinity. For high affinity

peptides, NetMHCIIpan had the best performance: 34% of the cases included the correct

MHCII binding peptide among 10 top–scoring peptides (Part B of S1 Fig). The combined

score improved the accuracy to 36%. For peptides with intermediate affinity, SOAP and

NetMHCIIpan had the same accuracy of 15%, while the combined score increased the accu-

racy to 20% (Part C of S1 Fig). For low affinity peptides, the accuracy was 12% and 6% for

SOAP and NetMHCIIpan, respectively (Part D of S1 Fig). The results show that SOAP, which

is a structure-based statistical potential, has the same accuracy over the entire affinity range,

while NetMHCIIpan is more accurate for high affinity binders. Moreover, the combined score

improves the accuracy for high and medium affinity binders.

Accuracy of predicting TCR recognition. We now evaluate whether testing of all possible

12-mer peptides for predicted binding to a known MHCII and a known TCR can identify the

correct epitope based on the score of the pMHCII-TCR interface. Similar to the assessment of

pMHCII complexes, the correct pMHCII-TCR complex was ranked among the 10 top-scoring

models in five (25%) of the 20 benchmark cases (Table 1). For five additional cases, it was

among the 20 top-scoring models. Therefore, the scoring of a ternary complex is informative

for epitope prediction. Importantly, there was little if any correlation between the accuracy of

pMHCII and pMHCII-TCR scoring. As a result, the separate scoring of binary and ternary
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complexes is complementary and thus increases the accuracy of the integrative approach

(below).

Accuracy of the entire integrative approach. Our integrative approach ranks potential

epitopes based on the pMHCII and pMHCII-TCR scores as benchmarked above (Materials

and Methods). In 10 of 20 cases benchmarked against crystal structures of pMHCII-TCR com-

plexes, the correct epitope was ranked as the best by the ITcell scoring function (Table 1). In

eight additional cases, the correct peptide was among the 20 top-scoring peptides. The only

clearly inaccurate predictions correspond to the MBP (PDB 3o6f) and ENGA epitopes (PDB

2wbj), which have outlying pMHCII scores as discussed above. Combining the ITcell score

with the NetMHCIIpan score resulted in 13 out of 20 correct top scoring predictions. How-

ever, the combined score for gliadin epitopes was worse, since NetMHCIIpan does not rank

these epitopes even among 100 top scoring ones. In summary, the benchmark demonstrates

the synergistic contributions of the individual scores, resulting in accurate or nearly accurate

Fig 3. Success rate for SOAP_PEP, NetMHCIIpan3.1 and the two scoring functions combined.

https://doi.org/10.1371/journal.pone.0206654.g003
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prediction of epitopes for all but two cases in the benchmark. Moreover, combining ITcell

with NetMHCIIpan further improves the accuracy.

Testing on sequences without known ternary complex structures

Next, we test the method in a more realistic setting, where the sequences of the antigen,

MHCII, and TCR β-chain are known [35], but the corresponding ternary complex crystal

structure is not available. In each of these cases, a confirmed MHCII-restricted epitope has

been identified by non-crystallographic methods, e.g. MHCII tetramers. Thus, only an assess-

ment of the accuracy of the epitope prediction is performed in this benchmark; an epitope is

considered correctly predicted if it overlaps by at least 5 residues with the correct epitope. This

second benchmark contains 4 combinations of antigen, MHC, and TCR sequences from mice

(Table 2). Because mouse protease cleavage specificities may differ from those of humans, we

did not use the APC cleavage predictor in this benchmark. Despite this handicap, the correct

epitopes were among the top 11 best scoring peptides in all cases.

Application to FVIII

To validate the method by applying it to a clinically relevant human immune response, poten-

tial HLA-DRB1�01:01 (abbreviated DR1)-restricted epitopes in blood coagulation FVIII were

predicted, using five known FVIII-specific TCRβ sequences as input to the algorithm. TCRβ
sequences were determined using cDNA from FVIII-specific T-cell clones that were isolated

from two hemophilia A subjects who developed an immune response to FVIII infused to treat

their bleeding disorder [36]. Epitope mapping using peptide-loaded HLA-DR1 tetramers had

identified a 20-mer peptide recognized by these clones as the FVIII peptide spanning residues

2194–2213 (SYFTNMFATWSPSKARLHLQ). The 9-residue HLA-DR1-binding register was

subsequently identified experimentally using truncated and sequence-modified peptides [37].

The 20-mer peptide and its 10-residue binding register (FTNMFATWSP) were revealed to

modelers only after the modeling predictions were shared with experimentalists.

The method was applied in this case without using the cleavage predictor. Based on the

benchmark results (Table 1), we expected the actual epitope to be among the 100 top scoring

peptides out of 2340 possible overlapping 12-mers. Several 12-mers fully or partially overlap-

ping with the correct 20-mer peptide were among these 100 top scoring peptides. Complexes

of the five TCR sequences, the HLA-DR1 receptor, and the core 12-mer (SYFTNMFATWSP)

ranked 14, 19, 79, 72, and 52, respectively (Fig 4A–4C). This 12-mer was predicted as the most

likely epitope for two reasons. First, it was the only consensus 12-mer from the 20-mer peptide

since it ranked among the 100 top scoring peptides for all five TCR sequences. Second, it was

the only 12-mer fully overlapping with the 20-mer peptide (Fig 4A). Additional 12-mers from

the 20-mer peptide were among the 100 best scoring peptides, but they overlapped less (only

5–6 residues) and did not result from considering each of the five TCR sequences. Overall,

Table 2. Benchmark of murine T-cell epitope predictions based on comparative models.

Protein Confirmed epitope peptide Antigen length MHCII type TCR CDR3 sequence TCR V TCR J ITcell Rank Rank MHC Rank TCR

Hsp60 VLGGGCALLRCIPALDSLTPANED 572 g7 (NOD) CASSLGGNQDTQYF V12 J2.5 11 72 28

MBP ASQKRPSQR 250 U (B10.PL/J) CASSGTDQDTQYF V16 J2.5 2 14 7

MBP ASQKRPSQR 250 U (B10.PL/J) CASGDAGGSYEQYF V8.2 J2.7 7 33 19

hMDM2 LLGDLFGV 490 HLA-A�0201 CASGDWGYEQYF V8.2 J2.7 2 1 89

https://doi.org/10.1371/journal.pone.0206654.t002
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only six peptides were among the top 100 best scoring for all five TCR sequences; all of them

had a Trp residue at position 10 (Fig 4D).

Therefore, using five patient-derived TCR sequences reduced the number of possible

12-residue epitope cores from 2340 to only six FVIII peptides, including the correct epitope

core. If we consider consensus peptides only among four of five TCR sequences, we add 12

additional peptides to the prediction list. For comparison, NetMHCIIpan 3.0, which does not

rely on TCR sequences, ranks the correct epitope as a weak binder at position 182 only (there

is only one NetMHCIIpan prediction per antigen because its predictions do not depend on the

TCR sequence).

Discussion

Epitope prediction is a challenging problem in protein engineering, vaccine design, cancer

immunotherapy, and autoimmune disease studies. Even though the immune response path-

way involves several steps, most current computational approaches focus on MHCII presenta-

tion only. Here, we present an integrative structure-based approach that incorporates

Fig 4. Prediction of FVIII epitopes. A) Consensus based determination of the epitope and its register in the MHCII cavity. CDR3 sequences of the five TCRs and their

ranking with respect to different peptide registers in the epitope sequence. Only ranks in the top 100 scores are shown. Peptide FVIII-2194-2205 ranked in the top 100

scoring peptides predicted to bind both HLA-DR1 and each of the 5 indicated TCR-beta variable CDR3 sequences. The predicted consensus core of the epitope for the

five TCRs is indicated by an arrow. B) Structural models for the five pMHCII-TCR complexes with the SYFTNMFATWSP 12-mer peptide. The identical MHCII

(HLA-DR1) structures within each modeled complex were superimposed, allowing visualization of the different peptide and TCR structural variations. C) The TCR

models contact the pMHCII by placing their CDR3 loops in the cavity between FVIII residues Phe2200 and Trp2203. D) The six highest scoring peptides with respect to

all five TCRs all have a Trp residue at position 10.

https://doi.org/10.1371/journal.pone.0206654.g004
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additional information by explicitly modeling three steps in the adaptive immune response

pathway: antigen cleavage by proteases, MHCII presentation, and TCR recognition. Our

approach is ab initio as it does not rely on training using known data. The cleavage predictor

was built using cleavage sites determined using a random peptide library [24], the peptide-

MHC statistical potential was developed using protein-peptide complexes [38], and the

pMHCII-TCR statistical potential was developed using a protein-protein docking benchmark

[25]. We show that the integrative approach is more accurate compared to considering

MHCII presentation only (Table 1, Fig 3). For example, the consideration of cleavage prior to

MHCII binding can reduce the number of potential peptide candidates by ~30% (Fig 2C, S2

Table).

As for every optimization problem, the accuracy of the method can be limited by the accu-

racy of sampling and/or scoring. Here, the sampling exhaustively enumerates all possible epi-

topes in the input sequence(s) and models the structure of the pMHCII-TCR complex. In

turn, the scoring function assesses the possible epitopes using the modeled structures. There-

fore, the accuracy of the scoring function and the thoroughness of sampling pMHCII-TCR

complex structures determine the accuracy of the entire approach.

We addressed the sampling problem by relying on available structures of pMHCII and

pMHCII-TCR complexes as structural templates, thereby significantly improving accuracy

compared to current ab initio prediction of protein-protein complex structures. While the

pMHCII complexes do not show significant structural variability (Fig 5A, Cα RMSD <1Å),

the pMHCII-TCR complexes show more variability around the canonical orientation (Fig 6A,

Cα RMSD < 24Å). To model this variability, we enriched the available structures with addi-

tional pMHCII-TCR template structures obtained by protein-protein docking (Fig 5B), result-

ing in a more uniform distribution of RMSD values (Fig 6C and 6D, Cα RMSD < 30.0Å, S4

Table). To account for TCR loop variability we generated 10 TCR models.

Our template-based structure modeling approach is not foolproof. For example, recently

published structures of an MHCII protein in complex with an insulin peptide and two TCRs

revealed a 180˚ rotation of the TCR compared to the canonical orientation [39]. While cur-

rently our approach cannot predict this orientation, we could add such novel structures to our

template list to include the rotated TCR orientation if it turns out to be common. To maximize

scoring accuracy, we used distance and orientation-dependent potentials for peptide-MHC

complexes and a distance-dependent potential for pMHC-TCR interfaces. In particular, the

soap_pMHCII potential was trained for the current problem based on peptides with known

binding affinity (Materials and Methods). Statistical potentials have been shown to be useful in

a range of protein structure prediction problems [40].

The accuracy of our approach could be further improved in several ways. First, to increase

the accuracy of cleavage sites prediction, the current predictor that relies only on experimental

cleavage profiles could be upgraded to also consider structural information [41, 42]. Moreover,

greater coverage of the substrate profiles of the enzymes could be obtained with libraries

designed to provide greater representation of amino acid space. Second, pMHCII-TCR recog-

nition accuracy could be improved by modeling the TCR loops in the context of the ternary

complex, for example by MODELLER [43]. Finally, adding score normalization with respect

to peptide length could allow us to predict not only the peptide core, but also the length and

conformation of the peptide flanking regions.

Immune responses to protein replacement therapy are a major limitation of protein drugs.

Identification and “de-immunization” by removing immunodominant epitopes can prevent

immune response and allow wider application of replacement therapy for many conditions,

including hemophilia A and B [44], von Willebrand disease (VWD), factor VII deficiency, and

Pompe disease [45].
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Fig 5. A) Structural alignment of pMHCII complexes from the benchmark set. Alpha and beta chains are green and cyan, respectively. The peptide is shown in red with

its core region in the box. B) Structural alignment of TCRs from the benchmark set. TCR alpha and beta chains are shown in yellow and blue, respectively. The variable

TCR CDR3 loops are shown in the box. To address TCR loop variability, 10 models are used for each TCR sequence.

https://doi.org/10.1371/journal.pone.0206654.g005
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A potential use of our method in the development of biotherapeutics was illustrated by its

application to FVIII. Specifically, we predicted a FVIII epitope recognized by five TCRs whose

TCR β CDR3 sequences were obtained by multiplex PCR [46] (Adaptive Biotechnologies, Inc.,

Seattle, WA) of cDNA from FVIII-specific T-cell clones that were isolated from hemophilia A

Fig 6. A) Orientations of TCRs with respect to MHCII in the 20 benchmark complexes. B) Orientations of TCRs with respect to MHCII in the 500 template structures

generated by docking. C) Distribution of RMSD values between the 20 benchmark pMHCII-TCR structures. D) Distribution of RMSD values between the 500 template

structures. Addition of docking generated templates resulted in better coverage of orientation space as indicated by the smoother RMSD distribution on the right.

https://doi.org/10.1371/journal.pone.0206654.g006
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patients who developed an immune response against FVIII replacement therapy [47] (Fig 4).

We successfully identified the epitope peptide core among the top 100 choices, among the

2340 possible 12-mer peptides. Consensus scoring for these five TCRs further narrowed the

search to six candidate peptides. Moreover, our method has predicted the core of the epitope

and its orientation with respect to MHCII and TCR. This strategy could be applied to de-

immunizing approaches to identify and eliminate epitopes through strategic amino acid

substitutions.

While our method can be applied to any MHC allele without reliance on training datasets

like allele-specific machine-learning methods (Introduction), it requires knowledge of the

TCR sequences. The gain is the additional information provided by ITCell that associates a

TCR with its cognate pMHC. This information could also be used in the context of designing

T cells with specific high-affinity TCRs to target known antigens for T cell therapy of cancer or

autoimmunity. The method could also aid in identifying the epitopes for lists of TCR

sequences that are correlated with a specific condition (such as TCRs of tumor infiltrating T

cells, or TCRs found in patients with an autoimmune disease). These TCRs may be identified

by high-throughput TCR sequencing [26–28] and determination of the corresponding MHC

alleles of the blood donors is straightforward. Moreover, the ITCell method can also be applied

to the MHCI pathway (Table 2), combined with existing methods for prediction of proteaso-

mal cleavage and substrate specificity of the transporter associated with antigen processing

(TAP). In addition to pMHCI-TCR and pMHCII-TCR, our approach may also be applicable

to other immune recognition complexes, such as the pMHCI-KIR3D complexes [48].

Materials and methods

The T-cell epitope prediction problem is defined as follows. Given the sequences of an antigen,

MHCII allele(s), and antigen-specific TCR(s) that result in the immune response, predict the

peptide(s) in the antigen sequence that are both cleaved in the endosome and form a complex

with a given MHCII and TCR. The method proceeds in three steps, corresponding to model-

ing of antigen cleavage, MHCII presentation, and TCR recognition. First, the antigen cleavage

sites are identified based on the cleavage profiles of cathepsins S, B, and H. Second, we build a

structural model of the peptide-MHCII complex and assess it with a statistical potential. Third,

we assess whether or not any of the top-scoring peptide-MHCII complexes can bind to a given

T-cell receptor (TCR), based on a score of the best structural model of the ternary peptide-

MHCII-TCR complex and the locations of predicted cleavage sites.

1. Antigen cleavage

Peptide specificity matrices. Peptide specificity datasets for cathepsins S, B, and H were

obtained using Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) [24, 49]. We

note that in the MSP-MS peptide library, norleucine is used in place of methionine. Recombi-

nant human cathepsin H (catalog #: 7516-CY-010), cathepsin S (catalog #: 1183-CY-010), and

cathepsin B (catalog #: 953-CY-010) were purchased from R&D Systems and activated accord-

ing to the supplier’s instructions. Cathepsin H was activated using bacterial thermolysin (cata-

log # 3097-ZN-020), which was inhibited with 2 mM phosphoramidon (catalog # EI006) prior

to cathepsin H profiling. MSP-MS assays were carried out as described previously [24]. Briefly,

0.2 μg/mL cathepsin, a matched no-enzyme control, and a phosphoramidon-inhibited ther-

molysin control (cathepsin H only) were assayed against a diverse library of 228 tetradecapep-

tides pooled at 500 nM in D-PBS (pH 6.5) containing 1 mM TCEP. After 15, 60, and 240 min,

30 μL of assay mixture was removed, quenched with 7.5 μL 20% formic acid, and flash-frozen

in liquid N2. Prior to mass spectrometry acquisition, peptide samples were desalted using
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Millipore C18 ZipTips and rehydrated in 0.2% formic acid. LC-MS/MS data were acquired

using a Thermo Scientific LTQ-Orbitrap-XL or LTQ-FT-ICR mass spectrometer that were

equipped with a Thermo Scientific EASY-Spray Ion Source, EASY-Spray PepMap C18 Column

(3 μM, 100 Å), and Waters nanoACQUITY UPLC System. The LC was operated at a 600 nL/

min flow rate during sample loading for 14 min and then at a 300 nL/min flow rate for peptide

separation over 65 min using a linear gradient from 2% to 50% (vol/vol) acetonitrile in 0.1%

formic acid. For MS/MS analysis using the LTQ-Orbitrap-XL, survey scans were recorded

over a mass range of 325–1500 m/z. Peptide fragmentation was performed using collision-

induced dissociation (CID) on the six most intense precursor ions, with a minimum of 1,000

counts, using an isolation width of 2.0 Th, and a minimum normalized collision energy of 25.

Instrument parameters for the LTQ-FT-ICR were used as described previously [24]. Mass

spectrometry peak lists were generated using MSConvert from the ProteoWizard Toolkit [50],

and data were searched against the 228-member peptide library using Protein Prospector soft-

ware (v.5.12.4) [51]. All cleavages were allowed in the search by designating no enzyme speci-

ficity. The following variable modifications were used: amino acid oxidation (proline,

tryptophan, and tyrosine) and N-terminal pyroglutamate conversion from glutamine. Protein

Prospector score thresholds were selected with a minimum protein score of 15 and a mini-

mum peptide score of 10. Maximum expectation values of 0.01 and 0.05 were used for protein

and peptide matches, respectively. For cathepsins B and S, octapeptides corresponding to

P4-P4’ were used as the positive dataset. Octapeptides corresponding to all possible cleavages

in the MSP-MS library (n = 2,964) were used as the negative data set. For cathepsin H, selected

cleavages were restricted to primary mono-aminopeptidase cleavage products (P1-P4’), due to

background thermolysin cleavages, and corresponding pentapeptides were used as the nega-

tive dataset (n = 228). iceLogo representations and Z-scores were calculated using iceLogo soft-

ware (v.1.2) [52]. All cleavages identified are available in S1 File. All raw spectrum (.RAW) files

are available at the ProteoSAFe resource (ftp://MSV000079617@massive.ucsd.edu; username:

MSV000079617; password: MHCII).

Prediction of cleavage sites. The cleavage site predictor was built for each cathepsin indi-

vidually. First, the MSP-MS results were summarized in a matrix that contained amino acid

residue counts from the cleaved peptides for each of the eight positions (P4 to P4’). This matrix

was then used to compute a Hidden Markov Model (HMM) for cleavage prediction [53]: The

residue counts were converted to probabilities, normalized by the natural occurrence of amino

acid residues; and the score, cleavage_score, is the sum of the log of normalized probabilities.

All octapeptides in the antigen sequence are considered for proteolytic cleavage at the P1-P1’

position. For a confident cleavage prediction, we require cleavage_score> 3.0, corresponding

to at least three times higher likelihood of cleavage than by chance. We first consider cleavage

by endopeptidases cathepsins B and S, followed by the aminopeptidase cathepsin H for addi-

tional trimming at the N-terminus; we do not use the cathepsin H profile for endoprotease

cleavage, because our specificity matrix was constructed using only aminopeptidase cleavage

sites.

2. MHCII presentation

Given the antigen peptides predicted in the previous step, we build a comparative model of the

pMHCII complex for each possible 12-mer peptide. We can rely on comparative modeling

due to low Cα RMSD (<1Å) between pMHCII complexes in the PDB (Fig 5A).

Human pMHCII template structure dataset. Structures of common human MHCII

alleles along with their peptides were extracted from the PDB or modeled using other MHCII

structures as templates (S2 Table). Because the sequence identity for all MHCII alleles to
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existing templates in the PDB is high (87–100%), only non-identical side chains were re-

packed on a fixed backbone using SCWRL4 [54]. Additional alleles can be easily modeled and

added to the dataset using the same protocol.

pMHCII presentation. Modeling of the pMHCII complex optimizes side chain orienta-

tions [54] on a fixed backbone, which is obtained from the template in the human pMHCII

template structure dataset. The peptide-MHCII interface in the pMHCII model is scored with

an atomic orientation-dependent statistical potential, either soap_peptide or soap_pMHCII,
resulting in the pMHC_score for each peptide. These potentials were computed using a previ-

ously described procedure [25], as follows: soap_peptide was trained using the FlexPepDock

dataset of protein-peptide structures and decoys [38]; soap_peptide was used for modeling

pMHCII complexes of known peptide affinity [55]; soap_pMHCII was trained using the result-

ing models.

3. TCR recognition

Generation of FVIII-specific T cells and TCRBV sequencing. Two hemophilia A sub-

jects provided written informed consent for use of their samples in accordance with the Princi-

ples of Helsinki, under protocols approved by the University of Washington and Seattle

Children’s Hospital IRBs. Clones were isolated by single-cell sorting of CD4+ T cells stained

with phycoerythrin (PE)-labeled HLA-DR1/FVIII2194-2213 MHCII tetramers (Benaroya

Research Institute Tetramer Core, Seattle, WA). Clones were expanded and their specificity to

HLA-DR1 complexed with FVIII-2194-2213 was confirmed by tetramer staining, prolifera-

tion, and cytokine production assays [36]. CDNA libraries were constructed and the TCRβ
CDR3 regions expressed by the clones were sequenced by Adaptive Biotechnologies (Seattle,

WA) as described [47, 56].

TCR template structure dataset. Human TCR structures were extracted from the PDB to

serve as templates for comparative modeling (S5 Table). For each target, 10 models were con-

structed based on the top 10 templates as ranked by Blast [57], using MODELLER v9.8 proto-

col for multiple templates [43]. To account for the variability of the CDR3 TCR loops (Fig 5B),

10 models were computed. In cases were the TCRα chain sequence was not available, models

for TCRβ chain only were constructed and used.

pMHCII-TCR template structure dataset. The complex between pMHCII and TCR

tends to adopt a canonical orientation [58], but variations are possible. We aligned the 20 com-

plexes in our benchmark dataset based on the MHCII structure and calculated the Cα RMSD

between TCRs (Fig 6, S4 Table). While most of the structures had RMSD values within 5Å of

each other, RMS deviations of up to 24 Å could also be seen (Fig 6C). Therefore, we relied on

protein-protein docking algorithm to generate template structures for reliable coverage of pos-

sible orientations. We separated the pMHCII and TCR structures from five pMHCII-TCR

complexes in the benchmark dataset (PDB codes: 1j8h, 2ian, 2wbj, 4may, and 4gg6) and re-

docked them using PatchDock [59, 60]. Finally, for each of these 5 complexes we selected the

100 docking models with the lowest RMSD to the crystal structure to serve as templates. The

resulting 500 template structures provide good coverage of possible orientations with an aver-

age RMSD of 1.75Å (standard deviation 0.7) between the closest template and the crystal struc-

ture for the 20 benchmark cases (S4 Table).

TCR recognition. For each pMHCII model from the previous step, we built a compara-

tive model of the ternary pMHCII-TCR complex, based on each individual ternary complex

among the 500 complex templates in the pMHCII-TCR template dataset. The pMHCII and

TCR structures were aligned on the template using structural alignment [61]. Similarly to the

pMHC_score, the interface between TCR and pMHCII was then scored with the soap-PP
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atomic distance-dependent statistical potential derived for protein-protein docking [25],

resulting in a TCR_pMHC_score. We then selected the best scoring pMHCII-TCR model

among the 5,000 computed models (ten TCR models times 500 pMHC-TCR templates).

The final peptide ranking was based on first removing the peptides with a cleavage_score
>3, followed by ranking the surviving peptides by the sum of pMHC_score and

TCR_pMHC_score (ie, the final score). These final scores were converted into normalized Z-

scores using the mean and standard deviation of the final scores for all antigen sequence

12-mer peptides.

Integration of NetMHCIIpan score. The predicted affinity was converted to a normal-

ized Z-score similarly to pMHC_score and TCR_pMHC_score. The normalized score was

added to other scores.
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