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FREELY INDEPENDENT RANDOM VARIABLES WITH

NON-ATOMIC DISTRIBUTIONS

DIMITRI SHLYAKHTENKO AND PAUL SKOUFRANIS

Abstract. We examine the distributions of non-commutative polynomials of
non-atomic, freely independent random variables. In particular, we obtain
an analogue of the Strong Atiyah Conjecture for free groups thus proving
that the measure of each atom of any n × n matricial polynomial of non-
atomic, freely independent random variables is an integer multiple of n−1.
In addition, we show that the Cauchy transform of the distribution of any
matricial polynomial of freely independent semicircular variables is algebraic
and thus the polynomial has a distribution that is real-analytic except at a
finite number of points.

1. Introduction

One of the essential themes in the study of free probability [23] and its applica-
tions to random matrix theory is to determine specific properties of the spectral dis-
tribution of a fixed (matricial) polynomial in freely independent random variables.
For example, some of the earliest work in free probability theory concerns free con-
volution, which is the study of the distribution of the polynomial P (X,Y ) = X+Y
in two freely independent random variables. In particular, the recent paper [3]
of Belinschi, Mai, and Speicher uses an analytic theory for operator-valued addi-
tive free convolution and Anderson’s self-adjoint linearization trick to provide an
algorithm for determining distributions of arbitrary polynomials. Combining the
previously known results from [12], [7], [1], and [15] along with the results con-
tained in this paper, we obtain the following summary of the known properties of
distributions of matrices whose entries are polynomials in several free variables (or,
equivalently, polynomials in free variables having matricial coefficients).

Theorem 1.1. Let X1, . . . , Xn be normal, freely independent random variables
and let [pi,j ] be an ℓ× ℓ matrix whose entries are non-commuting polynomials in n
variables and their adjoints such that [pi,j(X1, . . . , Xn)] is normal. Then

(1) if there exists {dj}nj=1 ⊆ N such that the measure of each atom in the prob-

ability distribution of Xj is an integer multiple of 1
dj
, then the measure of

each atom in the probability distribution of [pi,j(X1, . . . , Xn)] is an integer
multiple of 1

dℓ
where d :=

∏n
j=1 dj.

In particular,
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(2) if the probability distribution of each Xj is non-atomic, then the measure of
each atom in the probability distribution of [pi,j(X1, . . . , Xn)] is an integer
multiple of 1

ℓ
.

If, in addition, X1, . . . , Xn are freely independent semicircular variables or freely
independent Haar unitaries and [pi,j(X1, . . . , Xn)] is self-adjoint, then

(3) the spectrum of [pi,j(X1, . . . , Xn)] is a union of at most ℓ disjoint sets each
of which is either a closed interval or a point, and

(4) the measure of each connected subset of the spectrum of [pi,j(X1, . . . , Xn)]
is a multiple of 1

ℓ
.

Furthermore, if µ is the spectral distribution of [pi,j(X1, . . . , Xn)], if K is the sup-
port of µ, and if Gµ is the Cauchy transform of µ, then

(5) Gµ is an algebraic formal power series and thus
(6) there exists a finite subset A of R such that if I is a connected component of

R \A and µ|I is the restriction of µ to I, then µ|I = 0 whenever I \K 6= ∅
and if I ⊆ K, then µ|I has probability density function Im(g)|I where g is
an analytic function defined on

W := {z ∈ C | |Im(z)| < δ} \
⋃

a∈A

{a− it | t ∈ [0,∞)}

for some δ > 0 such that g agrees with Gµ on {z ∈ C | 0 < Im(z) < δ} and
for each a ∈ A there exists an N ∈ N and an ǫ > 0 such that (z − a)Ng(z)
admits an expansion on W ∩ {z ∈ C | |z − a| < ǫ} as a convergent power

series in rN (z − a) where rN (z) is the analytic N th-root of z defined with
branch C \ {−it | t ∈ [0,∞)}.

Finally, if the support of µ is contained in [0,∞), then

(7) limǫ→0

∫ 1

ǫ
ln(t) dµ(t) > −∞.

In this theorem, by a polynomial in X1, . . . , Xn we mean a fixed element of the
∗-algebra generated by X1, . . . , Xn.

Parts (3) and (4) of Theorem 1.1 follow directly from [12, Corollary 3.2] which
computes the K-groups of C∗

red(Fn), the reduced group C∗-algebras of the free
groups. The characterization of the K0-group immediate implies that the normal-
ized trace of any projection in Mℓ(C

∗
red(Fn)) is an integer multiple of ℓ−1. Notice

that part (4) of Theorem 1.1 does not imply part (2) of Theorem 1.1 in the setting of
part (4) as atoms may occur inside a closed interval of the spectrum. Alternatively,
these results were obtained using random matrix techniques in [7].

Notice that part (2) of Theorem 1.1 applies when X1, . . . , Xn are freely indepen-
dent semicircular variables. Since freely independent semicircular variables describe
the non-commutative law of certain independent large random matrices (see [23])
we obtain the following application to random matrix theory.

For each N ∈ N let X1(N), . . . , Xn(N) be self-adjoint Gaussian random matri-
ces (or, more generally, matrices with independent, identically distributed entries
satisfying certain moment conditions; see [23] or [8] for details) and let p be an
arbitrary non-constant non-commutative polynomial in n variables which is self-
adjoint in the sense that Y (N) = p(X1(N), . . . , Xn(N)) is always a self-adjoint
matrix. Let µN be the empirical spectral measure of Y (N) (that is, µN [a, b] is the
average proportion of eigenvalues of Y (N) which lie in [a, b]).
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Corollary 1.2. With the notation as above, the measures µN converge to a non-
atomic limiting measure µ.

Indeed, by a result of Voiculescu (see [23] or [8]), it is known that µN converges
weakly to a measure µ that is the law of p(X1, . . . , Xn) where X1, . . . , Xn are freely
independent semicircular variables. Thus part (2) of Theorem 1.1 implies that µ
has no atoms provided p is non-constant.

The motivation for the proof of Theorem 1.1 part (2) stems from the knowledge
that the statement of the theorem holds by the Strong Atiyah Conjecture for the
free groups in the case when X1, . . . , Xn are freely independent Haar unitaries.
The Strong Atiyah Conjecture (motivated by the work in [2] and proved for a class
of groups that includes free groups by Linnell in [9]; also see [10] and references
therein) states that the kernel projection of an arbitrary matrix with entries taken
from the group ring CFn of a free group on n generators must have integer von Neu-
mann trace. To prove our theorem, we consider the analogue of the Strong Atiyah
Conjecture for ∗-subalgebras of a tracial von Neumann algebra. We call this notion
the Strong Atiyah Property (since it is known that the Strong Atiyah Conjecture
does not hold even for arbitrary group algebras; see [6] or [10] for example). It is
not hard to see that the Strong Atiyah Property holds for ∗-algebras generated by
a single normal element with non-atomic spectral measure. Our main result states
that the Strong Atiyah Property for ∗-algebras is stable under taking free products
(in the sense of free probability theory [23]) with the group algebra of a free group.
Our proof closely follows [16] with the main difference of being adapted for free
products of algebras and not groups. Using this result, we are able to conclude
that the Strong Atiyah Property holds for any ∗-algebra generated by X1, . . . , Xn

provided that Xj are free and each has a non-atomic distribution.
The proof that part (5) of Theorem 1.1 is true in the case X1, . . . , Xn are freely

independent Haar unitaries is contained in the proof of [15, Theorem 3.6]. In
Section 5 we will adapt the proof of [15, Theorem 3.6] to the semicircular case
(see Theorem 5.4). The main idea of the proof is to use the fact that if a certain
tracial map on formal power series in a single variable with coefficients in a tracial
∗-algebra A maps rational formal power series to algebraic formal power series,
then the Cauchy transform of a measure associated to a self-adjoint element of A is
algebraic (see Lemma 5.7). The proof that the tracial map is as desired in the case
A is generated by semicircular variables follows from demonstrating that a specific
formal power series in non-commuting variables is algebraic via a specific property
of the semicircular variables (see Lemma 5.12).

It is an interesting question whether the Cauchy transform of any polynomial in
freely independent random variable X1, . . . , Xn is algebraic provided the Cauchy
transform of each Xj is algebraic.

The question of whether the Cauchy transform of a measure is an algebraic
power series as in part (5) of Theorem 1.1 has previously been studied in particular
cases. For example [13, Example 3.8] demonstrates that the Cauchy transform of
the quarter-circular distribution is not algebraic. Furthermore [13, Corollary 9.5]
demonstrates that if µ and ν are compactly supported probability measures on R

which have algebraic Cauchy transforms and are the weak limits of the empirical
spectral measures of N × N random matrices, then the free additive convolution
µ ⊞ ν (see [19]) is algebraic. Moreover, [13, Corollary 9.6] demonstrates that if,
in addition, µ and ν have support contained in the positive real axis, then the
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free multiplicative convolution µ⊠ ν (see [20]) is algebraic. This question was also
considered in [1] for limit laws of certain random matrices. In fact a result much
like ours was hinted at in that paper. Using [1, Theorem 2.9] we see that part (6)
of Theorem 1.1 is implied by part (5) of Theorem 1.1. In particular, part (6) of
Theorem 1.1 directly provides information about the probability density function
of µ by the Stietjes inversion formula.

Finally, in Section 5, we will prove part (7) of Theorem 1.1 by following the
proof of [15, Theorem 3.6] which demonstrates that if the Cauchy transform of a
measure is algebraic, then the Novikov-Shubin invariants of the measure are non-
zero. Our interest in part (7) of Theorem 1.1 comes from the following question:
if p is an arbitrary, non-constant, self-adjoint polynomial in n free semicircular
variables, must it be the case that the free entropy (as defined in [21]) of p is finite?
Indeed elementary arguments may be used to show that if S is a semicircular
variable and p is a non-constant polynomial such that p(S) is self-adjoint, then
the spectral measure of p(S) has finite free entropy. Further evidence that this
must be true comes from a strengthened version of part (2) of Theorem 1.1 for
matrices of the form [pi,j ] where each pi,j ∈ Alg(S1, . . . , Sn) ⊗ Alg(S1, . . . , Sn),
which we prove below. In particular, it follows that the vector of non-commutative
difference quotients JP := [∂1P, . . . , ∂nP ] (see [22]) has maximal rank whenever P
is a non-constant, non-commutative polynomial in n free semicircular variables.

Given the success of [3] in providing an algorithm for determining the distri-
butions of (matricial) polynomials in semicircular variables, it would also be of
interest if an alternate proof of Theorem 1.1 could be constructed using the ideas
and techniques from [3].

2. The Atiyah Property for Tracial ∗-Algebras

In this section we will introduce the notion of the Atiyah Property for tracial
∗-algebra. In addition, several examples of tracial ∗-algebras that satisfy the Atiyah
Property, which will be of use in Section 3, will be provided.

If ℓ ∈ N and τ is a linear functional on an algebra A, then τℓ will denote the
linear functional on Mℓ(A) given by

τℓ([Ai,j ]) =
ℓ

∑

i=1

τ(Ai,i)

for all [Ai,j ] ∈ Mℓ(A). Notice that if τ is tracial (that is, τ(AB) = τ(BA) for all
A,B ∈ A), then τℓ is tracial.

Definition 2.1. Let A be a ∗-subalgebra of B(H), let τ be a vector state that is
tracial on A, and let Γ be an additive subgroup of R containing Z. We say that
(A, τ) has the Atiyah Property with group Γ if for any n,m ∈ N and A ∈ Mm,n(A)
the kernel of the induced operator LA : H⊕n → H⊕m given by LA(ξ) = Aξ satisfies
τm(ker(LA)) ∈ Γ. We say that (A, τ) has the Strong Atiyah Property if (A, τ) has
the Atiyah Property with group Z.

Of course the case that Γ = R is of no interest in the above definition. By the fact
that ker(LA) = ker(LA∗A), it suffices to consider n = m in the above definition.

In this case it is easy to see that ker(LA) = Im(LA∗) so we may replace kernels
with images in the above definition. Furthermore, if A is equipped with a C∗-norm
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and τ is faithful on the C∗-algebra generated by A, the tracial representation of
A ⊆ B(H) clearly does not matter.

It is clear that if G is a group that satisfies the Strong Atiyah Conjecture (e.g. any
free group) and τG is the canonical tracial state on L(G) (the group von Neumann
algebra), then (CG, τG) has the Strong Atiyah Property. The following provides
examples of a tracial ∗-algebras that have the Atiyah Property. In particular, the
following result implies that the tracial ∗-algebra generated by a single semicircular
variable has the Strong Atiyah Property with respect to the canonical tracial state
(see [23] or [8]).

Lemma 2.2. Let µ be a compactly supported probability measure on C. Let Γ be
the topological closure of the additive subgroup of R generated by 1 and the measures
of the atoms of µ and let (A, τ) be the tracial ∗-subalgebra of L∞(µ) ⊆ B(L2(µ))
generated by multiplication by polynomials with trace

τ(Mp) =

∫

C

p dµ.

Then (A, τ) has the Atiyah Property with group Γ.

Proof. Let δt denote the point-mass measure at t ∈ C. Then we can write

µ = ν +
∑

t

αtδt

where ν is a non-atomic, compactly supported measure on C and αt ∈ Γ for all t.
Therefore ν(C) ∈ Γ by the construction of Γ.

To see that (A, τ) has the Atiyah Property with group Γ, fix ℓ ∈ N and let [Ai,j ] ∈
Mℓ(A). Viewing each Ai,j as a polynomial, we can view [Ai,j ] as a measureable
function from C to Mℓ(C). Moreover, if P is the projection onto the image of
[Ai,j ] (which is in the von Neumann algebra generated by Mℓ(A) and thus is in
L∞(µ)⊗Mℓ(C)) and Pt ∈ Mℓ(C) is the projection onto the image of [Ai,j(t)], it is
elementary to see that P (t) = Pt µ-almost everywhere. Hence

τℓ(P ) =

∫

C

tr(P (t)) dµ(t) =

∫

C

rank([Ai,j(t)]) dµ(t).

Recall the rank of a matrix M ∈ Mℓ(C) may be obtained by computing the
maximum size of a submatrix with non-zero determinant. However, the pointwise
determinant of submatrices of [Ai,j(t)] is a polynomial in t and thus is either zero
everywhere or non-zero except at a finite number of points. Hence we obtain that
t 7→ rank([Ai,j(t)]) is an integer-valued function that is constant except at a finite
number of points which may or may not be atoms of µ. It is then easy to deduce
that τℓ(P ) is an integer-valued combination of elements of Γ and thus lies in Γ. �

Extending these integration techniques, we obtain the following result for the
product of measures on C. Notice that the tracial ∗-algebra constructed is the
tensor product of tracial ∗-algebras from Lemma 2.2.

Lemma 2.3. Let n ∈ N and let {µj}nj=1 be non-atomic, compactly supported prob-
ability measures on C. Let µ be the product measure of {µj}nj=1 and let (A, τ) be

the tracial ∗-algebra generated by multiplication by the coordinate functions {xj}nj=1

with trace

τ(Mf ) =

∫

Cn

f dµ.
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Then (A, τ) has the Strong Atiyah Property .

Proof. We claim that if p(x1, . . . , xn) is a polynomial and V is the zero set of
p(x1, . . . , xn), then µ(V ) ∈ {0, 1} and µ(V ) = 1 only occurs when p(x1, . . . , xn) is
the zero polynomial. To prove this claim, we proceed by induction on n with
the case n = 1 following from Lemma 2.2. Suppose the claim holds for n −
1. Let p(x1, . . . , xn) be any polynomial and let ν be the product measure of
{µj}

n−1
j=1 . Clearly the claim is trivial if p(x1, . . . , xn) is the zero polynomial so

suppose p(x1, . . . , xn) is not the zero polynomial. For each t ∈ C let

Vt := {(x1, . . . , xn−1) ∈ Cn | p(x1, . . . , xn−1, t) = 0}.

Therefore the zero set of p(x1, . . . , xn) is
⋃

t∈C
Vt and ν(Vt) ∈ {0, 1} for each t ∈ C

by the induction hypothesis. If ν(Vt) = 1, then p(x1, . . . , xn−1, t) must be the zero
polynomial which implies xn − t divides p(x1, . . . , xn) since we can write

p(x1, . . . , xn) =

n−1
∑

k=1

∑

ik≥0

pi1,...,in−1
(xn)x

i1
1 · · ·x

in−1

n−1

where pi1,...,in−1
are polynomials and if pi1,...,in−1

(t) 6= 0 for at least one i1, . . . , in−1,
then clearly p(x1, . . . , xn−1, t) would not be the zero polynomial. By degree ar-
guments there are at most a finite number of t ∈ C such that xn − t divides
p(x1, . . . , xn) so ν(Vt) = 0 except for a finite number of t ∈ C. Since µn contains
no atoms, by integrating using Fubini’s Theorem we easily obtain that the zero set
of p(x1, . . . , xn) has zero µ-measure as desired.

To see that (A, τ) has the Strong Atiyah Property, fix ℓ ∈ N and let [Ai,j ] ∈
Mℓ(A). Thus each Ai,j is a multivariable polynomial. If P is the projection onto
the image of [Ai,j ], then, as in the proof of Lemma 2.2, we obtain that

τℓ(P ) =

∫

Cn

rank([Ai,j(t1, . . . , tn)]) dµ(t1, . . . , tn).

Since the rank of a matrix can be determined by computing the largest non-
zero determinant of a submatrix and since the determinant of any submatrix of
[Ai,j(x1, . . . , xn)] is a polynomial in x1, . . . , xn whose zero set either has zero or full
µ-measure, the result is complete. �

Next we endeavour to extend the above result to include compactly supported
probability measures on R that have atoms. We will only focus on measures with
atoms that lie in certain subgroups of Q since the main result of Section 3 will also
only apply to these groups.

To discuss such measures, for an additive subgroup Γ of Q and a d ∈ N we define

1

d
Γ :=

{

1

d
g | g ∈ Γ

}

,

which is clearly an additive subgroup of Q that contains Z if Γ contains Z. As such,
the following result is trivial.

Lemma 2.4. Let (A, τ) be a tracial ∗-algebra that has the Atiyah Property with
group Γ and let ℓ ∈ N. Then (Mℓ(A), 1

ℓ
τℓ) has the Atiyah Property with group 1

ℓ
Γ.
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Theorem 2.5. Let n ∈ N and let {µj}nj=1 be compactly supported probability mea-

sures on C. Let µ be the product measure of {µj}
n
j=1 and let (A, τ) be the tracial

∗-algebra generated by multiplication by the coordinate functions {xj}nj=1 with trace

τ(Mf ) =

∫

Cn

f dµ.

Suppose for each j ∈ {1, . . . , n} there exists a dj ∈ N such that the atoms of µj have
measures contained in 1

dj
Z. If d :=

∏n
j=1 dj, then (A, τ) has the Atiyah Property

with group 1
d
Z.

Proof. By assumptions, for each j ∈ {1, . . . , n} we can write

µj = µ′′
j +

∑

k

αk
dj
δtk

where δt represents the point-mass probability measure at t, the sum is finite,
αk ∈ N, tk1 6= tk2 if k1 6= k2, and µ

′′
j is an non-atomic measure. Notice µ′′

j (C) ∈
1
dj
Z.

Let µ′
j := 1

µ′′(C)µ
′′
j if µ′′

j 6= 0 and let µ′
j be the Lebesgue measure on [0, 1] if

µ′′
j = 0. Therefore the tracial ∗-algebra generated by polynomials acting on L2(µj)

can represented a tracial ∗-algebra of diagonal matrices in Mdj(B(L2(µ
′
j)) (with

respect to the canonical normalized matrix trace) where the polynomial x maps to
the matrix with x appearing on the diagonal djµ

′′
j (C) times and each tk appearing

on the diagonal αk times.
Let µ′ be the product measure of {µ′

j}
n
j=1 and let (Aµ′ , τµ′) be the tracial ∗-

algebra generated by multiplication by the coordinate functions {xj}nj=1 with trace

τµ(Mf ) =
∫

Cn f dµ
′. By taking tensor products of the tracial ∗-algebras generated

by polynomials acting on L2(µj), it is easily seen using the above representations
that (A, τ) can be represented in the tracial ∗-algebra (Md(Aµ′), 1

d
(τµ′)d). Since

Lemma 2.3 implies (Aµ′ , τµ′) has the Strong Atiyah Property, Lemma 2.4 implies
(Md(Aµ′ ), 1

d
(τµ′)d) has the Atiyah Property with group 1

d
Z completing the proof.

�

3. Atiyah Property for Freely Independent Random Variables

The goal of this section is to use the Atiyah Property for tracial ∗-algebras to gain
information about the distributions of matricial polynomials of freely independent
random variables. In particular, Theorem 3.1 will enable the extensions of the
results from Section 2 to the non-commutative setting as seen in Theorem 3.4 thus
completing the proof of part (1) of Theorem 1.1. The proof of Theorem 3.1, which
is based on the proof of [16, Proposition 3] (or the updated version [17, Proposition
6.1]), will be postponed until the next section in order to focus on the applications
of Theorem 3.1.

Recall that given unital ∗-algebras Ai ⊆ B(Hi) with vector states τi that are
tracial on Ai, we can consider the ∗-subalgebra A1 ∗ A2 inside the reduced free
product C∗-algebra (B(H1), τ1)∗(B(H2), τ2) generated byA1 andA2. The canonical
vector state τ1 ∗ τ2 is then a tracial state on A1 ∗ A2 (see [23] or [8]). Similarly we
can consider the ∗-subalgebra A1⊙A2 inside the C∗-algebra B(H1⊗H2) generated
by T ⊗ IH2

and IH1
⊗ S for all T ∈ A1 and S ∈ A2. With this notation, it is easy

to state the following technical result.
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Theorem 3.1. Let n ∈ N, let Fn be the free group on n generators, let CFn be
the group ∗-algebra equipped with the C∗-norm defined by the left regular represen-
tation, and let τFn

be the canonical trace on L(Fn). Let A and B be ∗-subalgebras
of the tracial von Neumann algebras with separable preduals (M, τM) and (N, τN)
respectively. Suppose that (A⊙B, τM⊗τN) has the Atiyah Property with group 1

d
Z

for some d ∈ N. Then ((A∗CFn)⊙B, (τM ∗ τFn
)⊗τN) has the Atiyah Property with

group 1
d
Z.

Clearly Theorem 3.1 implies the following two results.

Corollary 3.2. If A and B are as in Theorem 3.1 and n,m ∈ N, then ((A∗CFn)⊙
(B ∗ CFm), (τM ∗ τFn

)⊗(τN ∗ τFm
)) has the Atiyah Property with group 1

d
Z.

Proof. This is a simple application of Theorem 3.1 twice using A = B and B =
A ∗ CFn the second time. �

Corollary 3.3. Let A be a ∗-subalgebra of a tracial von Neumann algebra with
separable predual (M, τM). Suppose (A, τM) has the Atiyah Property with group
1
d
Z for some d ∈ N. Then (A ∗ CFn, τM ∗ τFn

) has the Atiyah Property with group
1
d
Z.

Proof. Take B = C in Theorem 3.1. �

Using Theorem 3.1 along with the examples of Section 2, we obtain the following
result which provides important information about the spectral distributions of
matricial polynomials of normal, freely independent random variables.

Theorem 3.4. Let n ∈ N and let X1, . . . , Xn be normal, freely independent random
variables with probability measures µj as distribution respectively. Suppose for each
j ∈ {1, . . . , n} there exists a dj ∈ N such that the atoms of µj have measures
contained in 1

dj
Z. If A is the unital ∗-algebra generated by X1, . . . , Xn (obtained by

taking a reduced free product of tracial ∗-algebras), τ is the canonical trace on A,
and d :=

∏n
j=1 dj, then (A, τ) has the Atiyah Property with group 1

d
Z.

Furthermore, if [pi,j ] is an ℓ× ℓ matrix whose entries are non-commutative poly-
nomials in n variables and their adjoints such that [pi,j(X1, . . . , Xn)] is normal,
then the measure of any atom of the spectral distribution of [pi,j(X1, . . . , Xn)] with
respect to the normalized trace 1

ℓ
τℓ is in 1

dℓ
Z.

Proof. Let µ be the product measure of {µj}nj=1 and let (A0, τ0) be the tracial ∗-
algebra generated by multiplication by the coordinate functions {xj}nj=1 on L2(µ)

with trace τ0(Mf ) =
∫

Cn f dµ. Clearly each Xj has a representation in A0 as
multiplication by the coordinate function xj so we will view Xj ∈ A0 for all j ∈
{1, . . . , n}. Let U := λ(1) be the canonical generating unitary operator for L(Z).
Then it is easy to see that X1, UX2U

∗, . . ., UnXn(U
n)∗ are freely independent in

A0 ∗ CZ with respect to the trace τ0 ∗ τZ. However, since (A0, τ0) has the Atiyah
Property with group 1

d
Z by Theorem 2.5, (A0 ∗CZ, τ0 ∗τZ) has the Atiyah Property

with group 1
d
Z by Theorem 3.1. Hence (A, τ) has the Atiyah Property with group

1
d
Z by taking the canonical isomorphism of tracial ∗-algebras.
Next suppose that [pi,j ] is an ℓ × ℓ matrix whose entries are non-commutative

polynomials in n variables and their adjoints such that [pi,j(X1, . . . , Xn)] is normal
and the spectral distribution of [pi,j(X1, . . . , Xn)] has an atom. By translation
we may assume that this atom occurs at zero and thus corresponds to the kernel
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projection of [pi,j(X1, . . . , Xn)]. Since (A, τ) has the Atiyah Property with group
1
d
Z we obtain that the measure of the atom is in 1

dℓ
Z. �

As an application of the above result, we recall that Voiculescu developed in
[19] the notion of the additive free product of measures in which if {Xj}nj=1 are
self-adjoint, freely independent random variables with probability measures µj as
distribution respectively, then the additive free product measure µ := µ1⊞ · · ·⊞µn
is the distribution of X1 + · · ·+Xn in the reduced free product C∗-algebra. Hence
Theorem 3.4 implies the following specific case of [4, Theorem 7.4].

Corollary 3.5 (see [4, Theorem 7.4]). If n ∈ N and {µj}nj=1 are non-atomic,
compactly supported probability measures on R, then µ1 ⊞ · · ·⊞ µn has no atoms.

Proof. Since each µj contains no atoms, we can apply Theorem 3.4 to conclude
that µ := µ1⊞ · · ·⊞µn may only have atoms in Z. Since µ is a probability measure,
if µ has an atom, then µ must be a point-mass measure which would imply that
X1 + · · · + Xn = αI for some α ∈ R contradicting the fact that X1, . . ., Xn are
freely independent. �

To complete this section, we can extend Theorem 3.4 to tensor products of tracial
∗-algebras generated by self-adjoint, freely independent random variables.

Corollary 3.6. Let n,m ∈ N and let X1, . . . , Xn and Y1, . . . , Ym be collections of
normal, freely independent random variables with probability measures µj and νk as
distribution respectively. Let (A, τA) and (B, τB) be the tracial ∗-algebras generated
by the reduced free products of {X1, . . . , Xn} and {Y1, . . . , Ym} respectively. Suppose
for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} there exists a dj , d

′
k ∈ N such that the

atoms of µj and νk have measures contained in 1
dj
Z and 1

d′
k

Z respectively. If

d :=

n
∏

j=1

dj ·
m
∏

k=1

d′k,

then (A⊗ B, τA⊗τB) has the Atiyah Property with group 1
d
Z.

Proof. Let µ be the product measure of {µj}nj=1 and let ν be the product mea-

sure of {νk}mk=1. Let (A0, τA,0) be the tracial ∗-algebra generated by multiplication
by the coordinate functions {xj}

n
j=1 on L2(µ) with trace τA,0(Mf ) =

∫

Cn f dµ
and let (B0, τB,0) be the tracial ∗-algebra generated by multiplication by the co-
ordinate functions {yk}mk=1 on L2(ν) with trace τB,0(Mf ) =

∫

Cm f dν. Therefore

(A0 ⊙ B0, τA,0⊗τB,0) has the Atiyah Property with group 1
d
Z by Theorem 2.5.

The remainder of the proof follows the proof of Theorem 3.4 by an application of
Corollary 3.2. �

Notice that Corollary 3.6 has the following interesting application. For any
n,m ∈ N let P1, . . . , Pm ∈ A := Alg(S1, . . . , Sn) be polynomials in n free semicir-
cular variables S1, . . . , Sn and let ∂j be the non-commutative difference quotient
derivations (see [22]). Let JP := [∂iPj ]ij which is an n × m matrix with entries
in A⊗A. The matrix JP is the non-commutative Jacobian of P := (P1, . . . , Pm).
We define the rank of JP to be the (non-normalized) trace of its image projection
in Mn(W

∗(A⊗A)).

Corollary 3.7. With the above notation, rank(JP ) ∈ {0, 1, . . . ,min(m,n)}. In
particular, if {Pj}mj=1 are not all constant, then rank(JP ) ≥ 1.
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4. Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1, which underlies all results
of Section 3. Our proof is essentially the same as the argument of Schick in [16]
adapted for the case of algebras. This proof has themes similar to those used in
[14, Lemma 10.43], which makes use of the notion of a Fredholm module to show
that the free groups satisfy the Strong Atiyah Conjecture. The idea of applying
Fredholm modules has its roots in a proof of the Kadison Conjecture for free groups
on two generators from [5].

Proof of Theorem 3.1. Let H := L2(M, τM). Thus M has left and right actions on
H. Similarly, let K := L2(N, τN). For a right-(M⊗N)⊕ℓ invariant subspace L of
(H⊗K)⊕ℓ, we define

dim
M⊗N

(L) := tr
M⊗N

(Q) = (τM⊗τN)ℓ(Q)

where Q is the orthogonal projection onto L (which is an element of Mℓ(M⊗N)
acting on the left).

For later convenience we desire to construct a certain isomorphism of Hilbert
spaces that commonly appears in the proof that Fn satisfies the Strong Atiyah
Conjecture. We desire a bijection

ψ : {δh | h ∈ Fn \ {e}} → {δh ⊗ ei | h ∈ Fn, i ∈ {1, . . . , n}}.

(where {ei}ni=1 are the canonical orthonormal basis for Cn) as this will clearly
produce a unitary operator

Ψ : ℓ2(Fn) \ (Cδe) → ℓ2(Fn)⊗ Cn.

Let {ui}ni=1 be generators for Fn. Consider the Cayley graph of Fn with edges
{g, gui}. For each h ∈ Fn \ {e} let e(h) be the first edge of the geodesic from h to
e. Thus we may write e(h) = {ψ0(h), ψ0(h)ur(h)} for some r(h) ∈ {1, . . . , n}. Thus
if we define

ψ(δh) := δψ0(h) ⊗ er(h),

we clearly obtain a bijection.
Let λ denote the left regular representation of Fn on ℓ2(Fn). We claim that Ψ

has the property that for each T ∈ CFn the set of {δh}h∈Fn\{e} such that Ψ(λ(T )δh)
does not make sense (i.e. 〈λ(T )δh, δe〉 6= 0) or

Ψ(λ(T )δh) 6= (λ(T )⊗ ICn)Ψ(δh)

is finite. To see this notice for fixed g, h ∈ Fn the only way that λ(g)(δh) /∈
ℓ2(Fn) ⊖ (Cδe) is if gh = e and the only way that Ψ(λ(g)δh) 6= (λ(g) ⊗ ICn)Ψ(δh)
can occur is if when reducing gh a term from g cancels the second-last letter in h
(which occurs for a finite number of h for a given g). Thus the claim follows by the
linearity of Ψ.

Let {ζj}j∈Z be any orthonormal basis for K with ζ0 a trace vector. We claim we
may assume that there exists an orthonormal basis {ξj}j∈Z of H such that ξ0 is a
trace vector and

{k ∈ Z | 〈Tξj, ξk〉 6= 0}

is finite for each j ∈ Z and T ∈ A. To see this, we first may assume that A is
finitely generated by self-adjoint operators {Ak}mk=1 since we need only check the
Atiyah Property for one matrix with entries in (A∗CFn)⊙B at a time and a finite
number of elements of A will appear. If {ξ′j}j∈Z is any orthonormal basis of H
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with ξ′0 = ξ0 a trace vector, then the desired basis will be produced by applying
the Gram-Schmidt Orthogonalization Process to

{Ai1 · · ·Aimξ
′
j | j ∈ Z,m ∈ N ∪ {0}, {ik}

m
k=1 ⊆ {1, . . . , n}}

starting with ξ′0.
Recall (A ∗ CFn)⊙ B acts on ((H, ξ0) ∗ (ℓ2(Fn), δe))⊗K and

(H, ξ0) ∗ (ℓ2(Fn), δe) = Cξ0 ⊕
(

⊕

C (ξj1 ⊗ δg1 ⊗ · · · )
)

⊕
(

⊕

C (δg1 ⊗ ξj1 ⊗ · · · )
)

(where ξ0 = δe) where all the tensors in the direct sums have finite length (ending
at any point), alternate between basis elements of H and ℓ2(Fn), jk ∈ N, ik ∈
Z \ {0}, and gk ∈ Fn \ {e}. Notice that the union of the vectors used in the above
definition of (H, ξ0) ∗ (ℓ2(Fn), δe) is an orthonormal basis for (H, ξ0) ∗ (ℓ2(Fn), δe).
For convenience of notation, ξ0 ⊗ δg1 ⊗ · · · := δg1 ⊗ · · · , · · · ⊗ δgm ⊗ ξ0 := · · · ⊗ δgm ,
and · · · ⊗ ξjm ⊗ δe = · · · ⊗ ξjm .

Define the Hilbert spaces

L+ := ((H, ξ0) ∗ (ℓ2(Fn), δe))⊗ K and L− := (L+ ⊗ Cn ⊗H)⊕ (H⊗K).

Notice that (A ∗ CFn) ⊙ B has a canonical left action on L+ and thus induces
a canonical left action on L− by letting an operator T ∈ (A ∗ CFn) ⊙ B act via
(T ⊗ ICn ⊗ IH)⊕ 0. Thus we may view L+ and L− as left (A ∗CFn)⊙B-modules.
Similarly, M⊗N has a canonical right action on H⊗K and thus on L+ by

(· · · ⊗ δgm ⊗ ξjm ⊗ ζ)T = · · · ⊗ δgm ⊗ ((ξjm ⊗ ζ)T ))

for all ζ ∈ K. Hence L+ is also a right M⊗N-module. It is clear that the right
action of M⊗N and the left action of (A ∗ CFn)⊙ B on L+ commute.

We desire to construct a bijection φ between the canonical basis elements of L+

and L− which will induce a unitary operator Φ : L+ → L−. It is clear that if
Λ := Λ0 ∪ Λ′ where Λ0 = {ξj ⊗ ζj′}j,j′∈Z and

Λ′ :=

{

(ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm ⊗ ξjm)⊗ ζj′

∣

∣

∣

∣

m ≥ 1, {gk}mk=1 ∈ Fn \ {e},
j0, jm, j

′ ∈ Z, {jk}
m−1
k=1 ⊆ Z \ {0}

}

,

then Λ is an orthonormal basis of L+. Furthermore

Θ := {0⊕ (ξj ⊗ ζj′ )}j,j′∈Z ∪ {(η ⊗ ei ⊗ ξj)⊕ 0 | η ∈ Λ, j ∈ Z, i ∈ {1, . . . , n}}

is an orthonormal basis of L−. Define φ : Λ → Θ by defining φ|Λ0
via

φ(ξj ⊗ ζj′ ) = 0⊕ (ξj ⊗ ζj′)

for all j, j′ ∈ Z and by defining φ|Λ′ via the following rule: for

η = (ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm ⊗ ξjm )⊗ ζj′ ∈ Λ

define

φ(η) = (((ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm−1
⊗ ξjm−1

⊗ δψ0(g))⊗ ζj′ )⊗ er(g) ⊗ ξjm)⊕ 0

(where if ψ0(g) = e, we reduce the length of the first tensor by removing δe). Since
Ψ is a bijection on the given basis elements, it is elementary to verify that φ is a
bijection and thus induces a Hilbert space isomorphism Φ : L+ → L−.

Define a right M⊗N-module structure on L− by defining ηT := Φ((Φ−1(η))T )
for all T ∈ M⊗N and η ∈ L−. It is easy to see that

((η ⊗ ei ⊗ ξk)⊕ (ξj ⊗ ζj′ ))(T ⊗ S) = (η(IH ⊗ S)⊗ ei ⊗ ξkT )⊕ (ξjT ⊗ ζj′S)
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for all T ∈ M and S ∈ N. Hence 0 ⊕ (H⊗K) and (L+ ⊗ Cn ⊗H)⊕ 0 are a right
M⊗N-invariant subspace of L−. It is clear that the right action of M⊗N on L−

commutes with the left action of (A ∗ CFn)⊙ B on L−.
Define Ξ to be the union of {ξ0 ⊗ ζ0} with

{

(ξj0 ⊗ δg1 ⊗ · · · ⊗ ξjm−1
⊗ δgm)⊗ ζ0

∣

∣

∣

∣

m ≥ 1, {gk}mk=1 ∈ Fn \ {e},
j0 ∈ Z, {jk}

m−1
k=1 ⊆ Z \ {0}

}

.

It is clear that Ξ is a set of orthonormal vectors in L+ each of which generates a
one-M⊗N-dimensional right M⊗N-submodule of L+ that are pairwise orthogonal
and whose union is dense in L+ (as ξ0 and ζ0 are cyclic vectors for the right actions).
By the definition of Φ it is clear that Φ(Ξ) is a set of orthonormal vectors in L− each
of which generates a one-M⊗N-dimensional right M⊗N-submodule of L− that are
pairwise orthogonal and whose union is dense in L−.

We claim if T ∈ (A ∗ CFn)⊙ B, then

{ξ ∈ Ξ | 〈Tξ, ξj ⊗ ζj′〉L+
6= 0 for some j, j′ ∈ Z or Φ(T (ξ)) 6= T (Φ(ξ))}

is a finite subset (containing ξ0). By linearity it suffices to prove the claim when
T is a product of elements from A∪B ∪ {λ(h)}h∈Fn

. First we will prove the claim
when T ∈ A ∪ B. However, it clearly follows that 〈Tξ, ξj ⊗ ζj′ 〉L+

6= 0 for some
j, j′ ∈ Z or Φ(T (ξ)) 6= TΦ(ξ) only if ξ = ξ0 ⊗ ζ0.

Next we will prove the claim for T ∈ {λ(h)}h∈Fn\{e}. Fix h ∈ Fn, fix T = λ(h),
and fix

ξ = ξj0 ⊗ δg1 ⊗ · · · ξjm−1
⊗ δgm ⊗ ζ0 ∈ Ξ \ {ξ0 ⊗ ζ0}.

If m > 1 or j0 6= 0, then 〈Tξ, ξj ⊗ ζj′ 〉 = 0 for all j, j′ ∈ Z and Φ(T (ξ)) = T (Φ(ξ))
are clear. Otherwise ξ = δg1 ⊗ ζ0 and it clear that 〈Tξ, ξj ⊗ ζj′ 〉 6= 0 for some
j, j′ ∈ Z only if hg1 = e and Φ(T (ξ)) = T (Φ(ξ)) unless Ψ(Tδg1) 6= (T ⊗ ICn)Ψ(δg1).
Since the number of such g1 is finite, the claim holds in this case.

Next notice for any element ξ ∈ Ξ and any element T of A ∪ {λ(h)}h∈Fn
that

Tξ is a finite linear combination of elements of Ξ ∪ {ξj ⊗ ζ0}j∈Z by the choice of
the orthonormal basis {ξj}j∈Z. Furthermore, for any element ξ ∈ Ξ ∪ {ξj ⊗ ζ0}j∈Z

and any element T of A ∪ {λ(h)}h∈Fn
there are only a finite number of elements

η of Ξ such that 〈Tη, ξ〉L+
6= 0. Therefore if T1, . . . , Tn ∈ A ∪ {λ(h)}h∈Fn

, then
the set of all ξ ∈ Ξ such that 〈T1 · · ·Tnξ, ξj ⊗ ζj′ 〉L+

6= 0 for some j, j′ ∈ Z,
〈T2 · · ·Tnξ, ξj ⊗ ζj′ 〉L+

6= 0 for some j, j′ ∈ Z, or Φ(T1 · · ·Tnξ) 6= T1Φ(T2 · · ·Tnξ) is
finite. Thus the claim then follows by recursion and the fact that the B-operator
commute with elements of A ∗ CFn and with Φ.

The above construction show that we have two representations of (A∗CFn)⊙B
that differ by a A⊙B-finite rank operator. In order to complete the proof, we need
a way to analyze the trace of such operators. Fix ℓ ∈ N and fix

A := [Ai,j ] ∈ Mℓ((A ∗CFn)⊙ B).

The left actions of (A∗CFn)⊙B on L± allows A to act on L⊕ℓ
± . Let A± be the left

action of A on L⊕ℓ
± and let P± ∈ B(L⊕ℓ

± ) be the projection onto the image of A±.

Thus we desire to show that ((τM ∗ τFn
)⊗τN)ℓ(P+) ∈

1
d
Z. Since the right action of

M⊗N on L± commutes with the left action of (A∗CFn)⊙B, we easily obtain that
all operators under consideration commute with the diagonal right action of M⊗N

on these spaces.
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Notice that there are only finitely many elements of (A ∗ CFn)⊙ B that appear
in A. For each of these elements T , we recall that

{ξ ∈ Ξ | 〈Tξ, ξj ⊗ ζj′〉L+
6= 0 for some j, j′ ∈ Z or Φ(T (ξ)) 6= T (Φ(ξ))}

is finite. Let L+,0 be the finite M⊗N-dimensional right M⊗N-submodule of L+

spanned by the vectors that appear in the above set for at least one T ∈ (A∗CFn)⊙B
appearing in A. Thus L+,c := L+ ⊖ L+,0 is a right M⊗N-submodule of L+.

Let L−,c := Φ(L+,c), which is a right M⊗N-submodule of L−. Therefore, since
L+,0 contained all ξ ∈ Ξ where Φ(T (ξ)) 6= T (Φ(ξ)) for some T ∈ (A ∗ CFn) ⊙ B
appearing in A and since the right M⊗N-actions commutes with the left action of
T and with Φ, we clearly obtain that

A+|L+,c
= Φ−1 ◦A− ◦ Φ|L+,c

.

By progressively adding the right M⊗N-submodule of L+ generated by a single
element of Ξ we can choose an increasing sequence

L+,0 ⊂ L+,1 ⊂ L+,2 ⊂ · · · ⊂ L+

of finite M⊗N-dimensional right M⊗N-submodules of L+ such that

L+ =
⋃

j≥0

L+,j .

Let L−,j := Φ(L+,j) for all j ∈ N∪{0}. Hence each L−,j is a rightM⊗N-submodule
of L− generated by a finite number of elements of Φ(Ξ). Notice that Λ0 ⊆ L+,0 so
0⊕ (H⊗K) ⊆ L−,0. By construction, it is clear that

A±(L
⊕ℓ
± ) =

⋃

j≥0

A±(L
⊕ℓ
±,j).

For each j ∈ N ∪ {0} let P±,j be the orthogonal projections onto A±(L
⊕ℓ
±,j).

Since only finitely many elements of (A∗CFn)⊙B appear in A, by our selection
right M⊗N-modules generated by elements of Ξ we see that A+ has finite propa-

gation; that is, for every j ∈ N there exists an nj ∈ N such that A+(L
⊕ℓ
+,j) ⊆ L⊕ℓ

+,nj
.

Indeed an element of B does not modify the submodule, {λ(h)}h∈Fn
permutes the

elements of Ξ, and an element of A maps an element of Ξ to at most a finite-M⊗N-
dimensional M⊗N-module by the choice of the basis {ξj}j∈Z. Similarly, as the left
action of (A∗CFn)⊙B on L− has the same form and the right M⊗N-modules L−,j

are generated by elements of Φ(Ξ), A− also has propagation so we may assume that

A−(L
⊕ℓ
−,j) ⊆ L⊕ℓ

−,nj
by choosing nj sufficiently large.

The above allows us to view A±(L
⊕ℓ
±,j) as images of rectangular matrices with

entries in A ⊙ B acting on the left from (H ⊗ K)⊕qj to (H ⊗ K)⊕pj for some
appropriate choice of qj and pj . Indeed an element from CFn acting on an element
of Ξ or Φ(Ξ) acts as a scalar matrix since {λ(h)}h∈Fn

sends the right M⊗N-basis
vectors Ξ and Φ(Ξ) to scalar multiples of other elements of Ξ and Φ(Ξ) respectively.
Furthermore, each element T ∈ A acts by the usual left action of A on H ⊆ L+

(which corresponds to the action of A⊗IK on the right M⊗N-module generated by
ξ0⊗ζ0 ∈ Ξ) and otherwise act by sending the other elements of Ξ and every element
of Φ(Ξ) to a finite linear combination of elements of Ξ and Φ(Ξ) respectively and
thus can be viewed as scalar matrices on these right M-modules. Furthermore, it
is clear that an element of B acts via IH ⊗B on each of the one-M⊗N-dimensional
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right M⊗N-modules spanned by an element of Ξ or Φ(Ξ). Thus the claim follows.
Therefore, since A⊙ B has the Atiyah Property with group 1

d
Z, we obtain that

tr
M⊗N

(P±,j) = dimM(A±(L
⊕ℓ
±,j)) ∈

1

d
Z.

Notice that

A±(L
⊕ℓ
±,0), A±(L

⊕ℓ
±,c), and each A±((L±,j ∩ L+,c)⊕ℓ)

are all closed right M⊗N-modules (note L±,j∩L±,c = L±,j⊖L±,0). We claim that

dim
M⊗N

(

A±(L
⊕ℓ
±,0) ∩A±(L

⊕ℓ
±,c)

)

= limj→∞ dim
M⊗N

(

A±(L
⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ)

)

.

To see this, it suffices by the continuity of von Neumann dimension (see [10, proof
of Theorem 1.12]) to show that

A±(L
⊕ℓ
±,0) ∩A±(L

⊕ℓ
±,c) =

⋃

j≥0

A±(L
⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ).

To see this, notice one inclusion is trivial. For the other inclusion, recall that A±

has finite propagation so there exists an n0 ∈ N such that A±(L
⊕ℓ
±,0) ⊆ L⊕ℓ

±,n0
so

A±(L
⊕ℓ
±,0) ∩ A±(L

⊕ℓ
±,c) = A±(L

⊕ℓ
±,0) ∩ L⊕ℓ

±,n0
∩ A±(L

⊕ℓ
±,c)

= A±(L
⊕ℓ
±,0) ∩ L⊕ℓ

±,n0
∩
(

⋃

j≥1 A±((L±,j ∩ L±,c)⊕ℓ)
)

.

We claim that

L⊕ℓ
±,n0

∩





⋃

j≥1

A±((L±,j ∩ L±,c)⊕ℓ)



 = L⊕ℓ
±,n0

∩A±((L±,m ∩ L±,c)⊕ℓ)

for some sufficiently large m ∈ N. Specifically, to choose m, we notice, by the
same arguments that Φ almost commutes with the left actions, that there exists
an m ∈ N such that if η ∈ L±,m+k ⊖ L±,m for any k ≥ 1, then every entry of A
applied to η is orthogonal to L±,n0

(that is, there are a finite number of elements
η of Ξ for which there is an entry T in A such that Tη has non-zero inner product
with an element of L±,n0

∩Ξ). To see the above equality for this m ∈ N, we notice
that one inclusion is trivial. For the other inclusion, fix

ξ ∈ L⊕ℓ
±,n0

∩





⋃

j≥1

A±((L±,j ∩ L±,c)⊕ℓ)



 .

Thus there exists ηj ∈ (L±,c ∩ L±,j)
⊕ℓ such that ξ = limj→∞ A±ηj . Therefore, if

P is the projection of L⊕ℓ
±,c onto (L±,m ∩ L±,c)

⊕ℓ, then

Aηj = A(Pηj) + ωj

where ωj ∈ (L⊕ℓ
±,n0

)⊥. Therefore, since

lim
j→∞

A±ηj = ξ ∈ L⊕ℓ
±,n0

,
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we obtain that limj→∞ ωj = 0 and ξ = limj→∞ A(Pζj) where Pζj ∈ (L±,m ∩
L±,c)

⊕ℓ as desired. Hence the claim is complete. Thus

A±(L
⊕ℓ
±,0) ∩A±(L

⊕ℓ
±,c) = A±(L

⊕ℓ
±,0) ∩ L⊕ℓ

±,n0
∩ A±((L±,m ∩ L±,c)⊕ℓ)

= A±(L
⊕ℓ
±,0) ∩ A±((L±,m ∩ L±,c)⊕ℓ)

⊆
⋃

j≥0 A±(L
⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ)

which completes the claim.

Let P±,c to be the orthogonal projections onto A±(L
⊕ℓ
±,c) and for each j ∈ N∪{0}

let P±,j,c be the orthogonal projection onto A±(L±,j ∩ L±,c)⊕ℓ. Notice that P±,c

and each P±,j,c need not be in the von Neumann algebra generated by Mℓ((A ∗
CFn)⊙B) but do commute with the right M⊗N-action on their respective spaces.
Since

A+|L+,c
= Φ−1 ◦A− ◦ Φ|L+,c

,

we obtain that P+,j,c = Φ−1◦P−,j,c◦Φ for all j ∈ N∪{0} and P+,c = Φ−1◦P−,c◦Φ.
Hence

〈P+,cη, η〉L⊕ℓ
+

= 〈P−,cΦ(η),Φ(η)〉L⊕ℓ
−

and 〈P+,j,cη, η〉L⊕ℓ
+

= 〈P−,j,cΦ(η),Φ(η)〉L⊕ℓ
−

for all j ∈ N ∪ {0} and η ∈ L⊕ℓ
+ .

Let Q± := P± − P±,c and for each j ∈ N ∪ {0} define Q±,j := P±,j − P±,j,c.
Clearly these are projections onto the complements of smaller projections in larger
projections. We claim that

tr
M⊗N

(Q±) = lim
j→∞

tr
M⊗N

(Q±,j).

To begin, let A0 denote the restriction of A± to L⊕ℓ
±,0. We claim for each fixed j ∈ N

that

0 −→ ker(Q±,jA0) −→ L⊕ℓ
±,0

Q±,jA0

−→ Im(Q±,j) −→ 0

is a weakly exact sequence (that is, the images are dense in the kernels). To see this,

it suffices to check weak exactness at Im(Q±,j). It is clear that Q±,j(A±(L
⊕ℓ
±,j)) is

dense in Im(Q±,j). However

A±(L
⊕ℓ
±,j) = A±(L

⊕ℓ
±,0) +A±((L±,j ∩ L±,c)

⊕ℓ)

and it is clear that Q±,j(A((L±,j ∩ L±,c)
⊕ℓ)) = 0. Thus Q±,j(A±(L

⊕ℓ
±,0)) =

Q±,j(A±(L
⊕ℓ
±,j)) is dense in Im(Q±,j). Since each term in the weak exact sequence

is a right M⊗N-module and weak exact sequence preserve M⊗N-dimension (see
[10, proof of Theorem 1.12]), we obtain that

dim
M⊗N

(L⊕ℓ
±,0) = dim

M⊗N
(Im(Q±,j)) + dim

M⊗N
(ker(Q±,jA0))

(which are all finite as dim
M⊗N

(L⊕ℓ
±,0) is finite by construction). Furthermore, it is

clear that

ker(Q±,jA0) = {η ∈ L⊕ℓ
±,0 | Q±,jA0η = 0}.

Hence the sequence

0 −→ ker(A0) −→ ker(Q±,jA0)
A0−→ A±(L

⊕ℓ
±,0) ∩ ker(Q±,j) −→ 0

is weakly exact. This implies the sequence

0 −→ ker(A0) −→ ker(Q±,jA0)
A0−→ A±(L

⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ) −→ 0
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is a weakly exact sequence since it is elementary to verify that

A±(L
⊕ℓ
±,0) ∩ ker(Q±,j) = A±(L

⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ).

Hence we obtain that

dim
M⊗N

(ker(Q±,jA0))

= dim
M⊗N

(ker(A0)) + dim
M⊗N

(

A±(L
⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ)

)

.

By combining the two above dimension equations we obtain that

dim
M⊗N

(Im(Q±,j)) = dim
M⊗N

(L⊕ℓ
±,0)− dim

M⊗N
(ker(A0))

−dim
M⊗N

(

A±(L
⊕ℓ
±,0) ∩ A±((L±,j ∩ L±,c)⊕ℓ)

)

for each j ∈ N. Similarly, by repeating the same arguments we obtain that

dim
M⊗N

(Im(Q±)) = dim
M⊗N

(L⊕ℓ
±,0)− dim

M⊗N
(ker(A0))

−dim
M⊗N

(

A±(L
⊕ℓ
±,0) ∩ A±((L±,c)⊕ℓ)

)

.

Therefore, as all the terms in the above dimension equations are finite (in fact

bounded by dim
M⊗N

(L⊕ℓ
±,0)),

tr
M⊗N

(Q±) = dim
M⊗N

(Im(Q±))
= limj→∞ dim

M⊗N
(Im(Q±,j)) = limj→∞ tr

M⊗N
(Q±,j).

We will now use Ξ and Φ(Ξ) to compute traces. For each η ∈ Ξ and i ∈ {1, . . . , ℓ}
let

ηi = (0, 0, . . . , 0, η, 0, . . . , 0) ∈ L⊕ℓ
+

where η is in the ith spot and similarly let

φ(ηi) = (0, . . . , 0, φ(η), 0, . . . , 0) ∈ L⊕ℓ
− .

Since Ξ and Φ(Ξ) are orthonormal M⊗N-bases for L+ and L− respectively, we
easily obtain that

tr
M⊗N

(Q+) =
∑

η∈Ξ

ℓ
∑

i=1

〈Q+ηi, ηi〉L⊕ℓ
+

and

tr
M⊗N

(Q−) =
∑

η∈Ξ

ℓ
∑

i=1

〈Q−φ(ηi), φ(ηi)〉L⊕ℓ
−
.

Furthermore, we notice if η = ξ0 ⊗ ζ0 ∈ Ξ, then

ℓ
∑

i=1

〈P+ηi, ηi〉L⊕ℓ
+

= ((τM ∗ τFn
)⊗τN)ℓ(P+)

whereas
ℓ

∑

i=1

〈P−φ(ηi), φ(ηi)〉L⊕ℓ
−

=

ℓ
∑

i=1

0 = 0

by the definition of A− and P−. Finally, we claim that

ℓ
∑

i=1

〈P+ηi, ηi〉L⊕ℓ
+

− 〈P−φ(ηi), φ(ηi)〉L⊕ℓ
−

= 0
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for all η ∈ Ξ \ {ξ0 ⊗ ζ0}. To see this, suppose

η = (ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm)⊗ ζ0 ∈ Ξ \ {ξ0 ⊗ ζ0}.

Then, by considering the above expression of φ(η) and the right action of L(Fn)
on (H, ξ0) ∗ (ℓ2(Fn), δe), there exists a unitary operator Uη ∈ L(Fn) such that Uη
commutes with the left actions of M, L(Fn), and N on L+ ⊗ Cn ⊗ H such that
Uηφ(η) = η⊗ei0⊗ξ0 for some i0 ∈ {1, . . . , n}. Since every element T ∈ (A∗CFn)⊙B
acts on L− via (T ⊗ ICn ⊗ IH)⊕ 0H⊗K, P− is (P+ ⊗ ICn ⊗ IH)⊕ 0(H⊗K)⊕ℓ so
∑ℓ
i=1〈P−φ(ηi), φ(ηi)〉L⊕ℓ

−
=

∑ℓ
i=1〈P−U

∗
η (η ⊗ ei0 ⊗ ξ0), U

∗
η (η ⊗ ei0 ⊗ ξ0)〉L⊕ℓ

−

=
∑ℓ

i=1〈P−(η ⊗ ei0 ⊗ ξ0), η ⊗ ei0 ⊗ ξ0〉L⊕ℓ
−

=
∑ℓ

i=1〈P+ηi, ηi〉L⊕ℓ
+

as claimed. Hence

∑

η∈Ξ

ℓ
∑

i=1

(

〈P+ηi, ηi〉L⊕ℓ
+

− 〈P−φ(ηi), φ(ηi)〉L⊕ℓ
−

)

= (τ ∗ τFn
)ℓ(P+).

Thus the proof will be complete if the left-hand side of the above equation is in 1
d
Z.

To begin we notice for all η ∈ Ξ and i ∈ {1, . . . , ℓ} that

〈P+ηi, ηi〉L⊕ℓ
+

− 〈P−φ(ηi), φ(ηi)〉L⊕ℓ
−

= 〈P+,cηi, ηi〉L⊕ℓ
+

− 〈P−,cφ(ηi), φ(ηi)〉L⊕ℓ
−

+〈Q+ηi, ηi〉L⊕ℓ
+

− 〈Q−φ(ηi), φ(ηi)〉L⊕ℓ
−

= 0+ 〈Q+ηi, ηi〉L⊕ℓ
+

− 〈Q−φ(ηi), φ(ηi)〉L⊕ℓ
−
.

Similarly, we obtain for all η ∈ Ξ, i ∈ {1, . . . , ℓ}, and j ∈ N that

〈P+,jηi, ηi〉L⊕ℓ
+

− 〈P−,jφ(ηi), φ(ηi)〉L⊕ℓ
−

= 〈P+,c,jηi, ηi〉L⊕ℓ
+

− 〈P−,c,jφ(ηi), φ(ηi)〉L⊕ℓ
−

+〈Q+,jηi, ηi〉L⊕ℓ
+

− 〈Q−,jφ(ηi), φ(ηi)〉L⊕ℓ
−

= 0 + 〈Q+,jηi, ηi〉L⊕ℓ
+

− 〈Q−,jφ(ηi), φ(ηi)〉L⊕ℓ
−

Since tr
M⊗N

(P±,j) = dim
M⊗N

(A±(L
⊕ℓ
±,j)) ∈

1
d
Z for all j ∈ N, and since Q±,j have

finite M⊗N-rank (bounded by dim
M⊗N

(L⊕ℓ
+,0)), the following computation is valid:

tr
M⊗N

(Q+,j)− tr
M⊗N

(Q−,j)

=
∑

η∈Ξ

∑ℓ
i=1〈Q+,jηi, ηi〉L⊕ℓ

+

− 〈Q−,jφ(ηi), φ(ηi)〉L⊕ℓ
−

=
∑

η∈Ξ

∑ℓ
i=1〈P+,jηi, ηi〉L⊕ℓ

+

− 〈P−,jφ(ηi), φ(ηi)〉L⊕ℓ
−

= tr
M⊗N

(P+,j)− tr
M⊗N

(P−,j) ∈
1
d
Z.

Therefore, since Q+ and Q− have finite M⊗N-rank (specifically bounded above by

dim
M⊗N

(L⊕ℓ
+,0)), we obtain that

tr
M⊗N

(Q+)− tr
M⊗N

(Q−) = lim
j→∞

tr
M⊗N

(Q+,j)− tr
M⊗N

(Q−,j) ∈
1

d
Z.

Hence

((τM ∗ τFn
)⊗τN)ℓ(P+) =

∑

η∈Ξ

∑ℓ
i=1

(

〈P+ηi, ηi〉L⊕ℓ
+

− 〈P−φ(ηi), φ(ηi)〉L⊕ℓ
−

)

=
∑

η∈Ξ

∑ℓ
i=1

(

〈Q+ηi, ηi〉L⊕ℓ
+

− 〈Q−φ(ηi), φ(ηi)〉L⊕ℓ
−

)

= tr
M⊗N

(Q+)− tr
M⊗N

(Q−) ∈
1
d
Z
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which completes the proof. �

5. Algebraic Cauchy Transforms of Polynomials in Semicircular

Variables

In this section we will demonstrate that the Cauchy transform of any self-adjoint
matricial polynomial of semicircular variables is algebraic (see Theorem 5.4). Know-
ing that the Cauchy transform of a measure is algebraic provides information about
the spectral distribution of operators as seen in Theorem 1.1. To begin, we recall
the notion of a formal power series in commuting variables.

Definition 5.1. Let n ∈ N and let X = {z1, . . . , zn}. For a ring R, a formal power
series in commuting variables X with coefficients in R is a map P : (N∪{0})n → R
which we will write as

P =
n
∑

j=0

∑

kj≥0

P (k1, . . . , kn)z
k1
1 · · · zknn .

A formal power series P is called a polynomial if P (k1, . . . , kn) = 0 except for a finite
number of n-tuples (k1, . . . , kn). The set of all formal power series with coefficients
in R will be denoted R[[X ]] and the set of all polynomials with coefficients in R
will be denoted R[X ].

The set of formal power series over a ring R can be given a ring structure. Indeed,
if addition on R[[X ]] is defined coordinate-wise and the product of P,Q ∈ R[[X ]] is
defined via the rule

(P +Q)(k1, . . . , kn) =

n
∑

j=0

kj
∑

ℓj=0

P (ℓ1, . . . , ℓn)Q(k1 − ℓ1, . . . , kn − ℓn),

it is elementary to verify that R[[X ]] is a ring. Clearly R[X ] is a subring of R[[X ]]
which enables us to construct the quotient field of R[X ]. The quotient field of R[X ]
will be denoted R(X).

With the above definitions, we have the following definition essential to this
section.

Definition 5.2. Let n ∈ N, let X = {z1, . . . , zn}, and let R be an integral domain.
A formal power P ∈ R[[X ]] is said to be algebraic if there exists an m ∈ N and
{qj}mj=0 ⊆ R(X) not all zero such that

m
∑

j=0

qjP
j = 0.

Equivalently, by clearing denominators, we can require {qj}
m
j=0 ⊆ R[X ]. The set of

all algebraic elements of R[[X ]] is denoted Ralg[[X ]].

Our main interest lies in demonstrating that certain formal power series relating
to measures are algebraic. Thus we recall the following definition.

Definition 5.3. Let µ be a compactly supported probability measure on R. The
Cauchy transform of µ, denoted Gµ, is the function defined on {z ∈ C | Im(z) > 0}
by

Gµ(z) =

∫

R

1

z − t
dµ(t).
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Notice for large enough z it is clear that Gµ has a Laurent expansion that
defines a formal power series in C[[{ 1

z
}]]. Thus it makes sense to ask whether Gµ

is algebraic.
In order to state the main result of this section, we will need some additional

notation. Let M be a finite von Neumann algebra with a faithful normal tracial
state τ . Let A ∈ M be a fixed self-adjoint operator. Since A is a self-adjoint
element in a von Neumann algebra, for each t ∈ R let EA(t) ∈ M be the spectral
projection of A onto (−∞, t]. The spectral density function of A, denoted FA, is
the function on [−‖A‖ , ‖A‖] defined by FA(t) = τ(EA(t)). Clearly FA is a right
continuous function that is bounded above by 1. In turn, FA defines the spectral
measure of A, denoted µA, by the equation

µA((t1, t2]) = FA(t2)− FA(t1).

Notice that µA is a Borel probability measure supported on [−‖A‖ , ‖A‖]. Recall
the spectral measure has the unique property that if f is a continuous function on
the spectrum of A, then

τ(f(A)) =

∫ ‖A‖

0

f(t) dµA(t).

With the above notation, we have the following important result which provides
information about spectral distributions as indicated in Section 1.

Theorem 5.4. Let n, ℓ ∈ N, let S1, . . . , Sn be freely independent semicircular vari-
ables, let A be the ∗-algebra generated by S1, . . . , Sn, and let A ∈ Mℓ(A) be a
fixed self-adjoint operator. The Cauchy transform of the spectral measure of A is
algebraic.

In order to prove Theorem 5.4 we will mimic the proof of [15, Theorem 3.6]
which proves said result when S1, . . . , Sn are replaced with freely independent Haar
unitaries. In order to mimic the proof in [15], we recall another type of formal power
series in commuting variables.

Definition 5.5. Let S be a ring and let R be a subring of S. It is said that R is
rationally closed in S if for every matrix with entries in R which is invertible when
viewed as a matrix with entries in S, the entries of the inverse lies in R.

The rational closure of R in S, denoted R(R ⊆ S), is the smallest subring of S
containing R that is rationally closed.

For an arbitrary ring R and finite set X , the rational closure R(R[X ] ⊆ R[[X ]])
is called the ring of rational power series over R and is denoted Rrat[[X ]].

It turns out that the key to showing the Cauchy transform GµA
is algebraic for

all positive matrices A with entries in a tracial ∗-algebra is intrinsically related to
the following map.

Definition 5.6. Let M be a finite von Neumann algebra with faithful, normal,
tracial state τ . The tracial map on formal power series in one variable is the map
TrM : M[[{z}]] → C[[{z}]] defined by

TrM





∑

n≥0

Tnz
n



 =
∑

n≥0

τ(Tn)z
n.
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In particular, the beginning of the proof of [15, Theorem 3.6] demonstrates the
following.

Lemma 5.7. Let M be a finite von Neumann algebra with faithful, normal, tracial
state τ and let A be a subalgebra of M. If

TrM(Arat[[{z}]]) ⊆ Calg[[{z}]],

then the Cauchy transform GµA
is algebraic for every positive matrix A ∈ Mℓ(A)

and any ℓ ∈ N.

Proof. As in the proof of [15, Theorem 3.6], for an arbitrary ℓ ∈ N and positive
matrix A ∈ Mℓ(A), the entries of z(IMℓ(A) − Az)−1 (which can be viewed as
an element of Mℓ(A)[[{z}]] by expanding the result when ‖A‖ |z| < 1) lie in the
rational closure Arat[[{z}]]. By assumption, the formal power series

q(z) := TrMℓ(M)

(

z(IMn(A) −Az)−1
)

=

ℓ
∑

j=1

TrM((z(IMℓ(A) −Az)−1)jj)

is an element of Calg[[{z}]]. Thus q(z−1) is an element of Calg[[{
1
z
}]]. If τMℓ(M) is

the canonical trace on Mℓ(M), it is well-known that

GµA
(z) = τMℓ(M)((zIMn(A) −A)−1) = q(z−1)

in the domain {z ∈ C | Im(z) > 0, |z| > ‖A‖}. Hence GµA
∈ Calg[[{

1
z
}]] as

desired. �

Thus the proof of Theorem 5.4 will be complete provided the assumptions of
Lemma 5.7 can be verified. Following [15], it is necessary to examine formal power
series in non-commuting variables.

Definition 5.8. Let X be a finite set (which will be called an alphabet) and let
W (X) denote the set of all words with letters in X . The empty word will be
denoted by e. For a ring R, a formal power series with non-commuting variables X
with coefficients in R is a map P :W (X) → R which we will write as

P =
∑

w∈W (X)

P (w)w.

A formal power series P is called a polynomial P (w) = 0 except for a finite number
of words w ∈ W (X). The set of all formal power series with coefficients in R will
be denoted R〈〈X〉〉 and the set of all polynomials with coefficients in R will be
denoted R〈X〉.

The set of formal power series over a ring R can be given a ring structure. Indeed,
if addition on R〈〈X〉〉 is defined coordinate-wise, and multiplication is defined via
the rule




∑

w∈W (X)

P (w)w



 ·





∑

w∈W (X)

Q(w)w



 =
∑

w∈W (X)





∑

u,v∈W (X),uv=w

P (u)Q(v)



w

(notice that for each w ∈ W (X) there are a finite number of pairs u, v ∈ W (X)
such that w = uv), it is elementary to verify that R〈〈X〉〉 is a ring. Thus it makes
sense to consider the rational closure of R〈X〉 inside R〈〈X〉〉 which will be denoted
Rrat〈〈X〉〉.
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As with formal power series in commuting variables, there is a notion of an
algebraic formal power series in non-commuting variables. The definition of such
a formal power series is more technical than in the commutative case and is based
on the following definition.

Definition 5.9 (Schützenberger). Let X := {x1, . . . , xn} be an alphabet and let
Z := {z1, . . . , zm} be an alphabet disjoint from X . A proper algebraic system over
a ring R is a set of equations zi = pi(x1, . . . , xn, z1, . . . , zm) for i ∈ {1, . . . ,m} where
each pi is an element of R〈X ∪ Z〉 that has no constant term nor term of the form
αzj where α ∈ R and j ∈ {1, . . . , n}.

A solution to a proper algebraic system is an m-tuple (P1, . . . , Pm) ∈ R〈〈X〉〉m

such that Pj(e) = 0 and pj(x1, . . . , xn, P1, . . . , Pm) = Pj for all j ∈ {1, . . . ,m}.

Definition 5.10. A formal power series P ∈ R〈〈X〉〉 is said to be algebraic if
P − P (e)e is a component of the solution of a proper algebraic system. The set all
algebraic formal power series in R〈〈X〉〉 will be denoted by Ralg〈〈X〉〉.

In order to prove the assumptions of Lemma 5.7 hold in the context of Theorem
5.4, the proof of [15, Theorem 2.19(ii)] will be mimicked. To do so, it is necessary
to show that a certain formal power series in non-commuting variables is algebraic.
The following formula involving traces of words of semicircular variables plays a
crucial role.

Lemma 5.11 (See [22, Section 3]). Let n ∈ N, let S1, . . . , Sn be freely independent
semicircular variables (with second moments 1), let A be the ∗-algebra generated
by S1, . . . , Sn, let τ be the canonical trace on A, and let X := {x1, . . . , xn} be an
alphabet. For each j ∈ {1, . . . , n} and w ∈W (X),

τ(Sjw(S1, . . . , Sn)) =
∑

u,v∈W (X),w=uxjv

τ(u(S1, . . . , Sn))τ(v(S1, . . . , Sn))

where, for a word w0 ∈ W (X), w0(S1, . . . , Sn) is the element of A obtained by
substituting Si for xi.

Lemma 5.12. With the notation as in Lemma 5.11, the formal power series
Psemi ∈ C〈〈X〉〉 defined by

Psemi :=
∑

w∈W (X)

τ(w(S1, . . . , Sn))w

is algebraic.

Proof. By Lemma 5.11 we easily obtain that

Psemi − e
=

∑n
j=1

∑

w∈W (X) τ(Sjw(S1, . . . , Sn))xjw

=
∑n

j=1

∑

w,u,v∈W (X),w=uxjv
τ(u(S1, . . . , Sn))τ(v(S1, . . . , Sn))xjuxjv

=
∑n

j=1

∑

u,v∈W (X) τ(u(S1, . . . , Sn))τ(v(S1 , . . . , Sn))xjuxjv

=
∑n

j=1 xjPsemixjPsemi.

Hence it is elementary to verify that Psemi − e is a solution to the proper algebraic
system

z =

n
∑

j=1

xjzxjz + x2jz + xjzxj + x2j .

Thus Psemi is algebraic by definition. �
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Using Lemma 5.12 it is easy to verify the proof of [15, Theorem 2.19(ii)] general-
izes enough to complete the proof of Theorem 5.4. We will only sketch the changes
to the proof of [15, Theorem 2.19(ii)] as it nearly follows verbatim.

Proof of Theorem 5.4. LetM be the von Neumann algebra generated by S1, . . . , Sn.
By Lemma 5.7 it suffices to show that the tracial map on formal power series
TrM : M[[{z}]] → C[[{z}]] has the property that

TrM(Arat[[{z}]]) ⊆ Calg[[{z}]].

Let S := {x1, . . . , xn} be an alphabet. As in the proof of [15, Theorem 2.19(ii)],
there is a canonical way to view

(C〈S〉)rat[[{z}]] ⊆ (C(z))rat〈〈S〉〉.

Consider the injective homomorphisms π : W (S) → A uniquely defined by
π(xj) = Sj for all j ∈ {1, . . . , n}. Clearly π extends to a homomorphism π :
C〈S〉 → A and thus also extends to a homomorphism π : (C〈S〉)[[{z}]] → A[[{z}]]
by applying π coordinate-wise.

Let P ∈ Arat[[{z}]] be arbitrary. Using algebraic properties, the proof of [15,
Theorem 2.19(ii)] implies that

P ∈ π ((C〈S〉)rat[[{z}]]) .

Choose P ∈ (C〈S〉)rat[[{z}]] ⊆ (C(z))rat[[S]] such that π(P ) = P . Recall that

Psemi :=
∑

w∈W (S)

τ(w(S1, . . . , Sn))w ∈ Calg〈〈S〉〉 ⊆ (C(z))alg〈〈S〉〉

by Lemma 5.12. Hence the Haadamard Product

P ⊙ Psemi :=
∑

w∈W (S)

P (w)Psemi(w)w =
∑

w∈W (S)

τ(w(S1, . . . , Sn))P (w)w

is an element of (C(z))alg〈〈S〉〉 by a theorem of Schützenberger from [18].

Since P ⊙ Psemi ∈ (C(z))alg〈〈S〉〉, if we substitute 1 ∈ C for every element of S
we obtain a well-defined power series in C[[{z}]]. Indeed if

P =
∑

m≥0

pm(S1, . . . , Sn)z
m

for some non-commutative polynomials pm in n variables, then

P =
∑

m≥0

(pm(x1, . . . , xn) + qm(x1, . . . , xn))z
m

for some non-commutative polynomials qm in n variables such that qm(S1, . . . , Sn) =
0. Hence

P ⊙ Psemi =
∑

w∈W (S)

τ(w(S1, . . . , Sn))





∑

m≥0

(coef(pm, w) + coef(qm, w))z
m



w
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where coef(p, w) is the element of C that is the coefficient of w in p. Therefore, by
replacing each w with the scalar 1, we obtain

∑

w∈W (S) τ(w(S1, . . . , Sn))
(

∑

m≥0(coef(pm, w) + coef(qm, w))z
m
)

=
∑

m≥0 τ
(

∑

w∈W (S)(coef(pm, w) + coef(qm, w))w(S1, . . . , Sn)
)

zm

=
∑

m≥0 τ (pm(S1, . . . , Sn) + qm(S1, . . . , Sn)) z
m

=
∑

m≥0 τ(pm(S1, . . . , Sn))z
m = TrM(P )

as desired. Thus the proof of [15, Theorem 2.19(ii)] implies that TrM(P ) is an
element of Calg[[{z}]] as desired. �

With the proof of Theorem 5.4 complete, we turn our attention to further infor-
mation that Sauer’s results from [15] imply. The main purpose of [15] was to show
the rationality and positivity of the Novikov-Shubin invariant for matrices with
entries in the group algebra of a virtually free group. In particular, the Novikov-
Shubin invariants are well-defined for any finite, tracial von Neumann algebra.

Definition 5.13. Let M be a finite von Neumann algebra with faithful, normal,
tracial state τ . For a positive operator A ∈ M with spectral distribution FA, the
Novikov-Shubin invariant α(A) ∈ [0,∞] ∪ {∞+} of A is defined as

α(A) :=

{

lim inft→0+
ln(FA(t)−FA(0))

ln(t) if FA(t) > FA(0) for all t > 0

∞+ otherwise
.

For a positive operator A in a finite von Neumann algebra M, it is easy to see
that α(A) = ∞+ implies that zero is isolated in the spectrum of A. Furthermore,
if α(A) = λ ∈ [0,∞), then FA(t)− FA(0) behaves like t

λ as t tends to zero.
The Novikov-Shubin invariants are of interest in the context of Theorem 5.4 due

to the following result which is directly implied by the proof of [15, Theorem 3.6].

Lemma 5.14 (See [15, Theorem 3.6] for a proof). Let M be a finite von Neumann
algebra with faithful, normal, tracial state τ . Let A ∈ M be a positive operator and
let µA is the spectral measure of A. If the Cauchy transform GµA

is algebraic, then
the Novikov-Shubin invariant α(A) is a non-zero rational number or ∞+.

The Novikov-Shubin invariants are of interest in terms of determining the decay
of the spectral density function at zero due to the following result.

Lemma 5.15 (See [10, Theorem 3.14(4)]). Let M be a finite von Neumann algebra
with faithful, normal, tracial state τ . If A ∈ M is a positive operator and FA is the
spectral density function of A, then

lim
ǫ→0

∫ ‖A‖

ǫ

1

t
(FA(t)− FA(0)) dt <∞

provided α(A) 6= 0.

Proof. If α(A) = ∞+, then FA(t) − FA(0) is a right continuous function bounded
that is zero on a neighbourhood of zero. Hence the result follows. If α(A) ∈ (0,∞],
then it is trivial to verify from Definition 5.13 that there exists a δ > 0 and an
λ ∈ (0, α(A)) such that F (t)− F (0) ≤ tλ for all 0 ≤ t ≤ δ. Hence

0 ≤

∫ δ

0

1

t
(FA(t)− FA(0)) dt ≤

∫ δ

0

tλ−1 dt <∞.

Thus the result follows as FA(t)−FA(0) is a right continuous function bounded. �
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Furthermore, the following result provides information on how to extract infor-
mation from the conclusion of Lemma 5.15 to obtain information about integrating
logarithms against the spectral measure.

Lemma 5.16 (See [10, Lemma 3.15(1)]). Let M be a finite von Neumann algebra
with faithful, normal, tracial state τ . If A ∈ M is a positive operator, FA is the
spectral density function of A, and µA is the spectral measure of A, then

lim
ǫ→0

∫ ‖A‖

ǫ

1

t
(FA(t)− FA(0)) dt <∞

if and only if

lim
ǫ→0

∫ ‖A‖

ǫ

ln(t) dµA(t) > −∞.

Combining the above results, we obtain the following.

Theorem 5.17. Let n, ℓ ∈ N, let X1, . . . , Xn be freely independent semicircular
variables or freely independent Haar unitaries, and let A be the ∗-algebra generated
by X1, . . . , Xn. Then

lim
ǫ→0

∫ ‖A‖

ǫ

ln(t) dµA(t) > −∞

for all positive A ∈ Mm(A) \ {0}. Furthermore, if µA does not have an atom at
zero (e.g. when ℓ = 1 by Theorem 3.4), then

∫ ‖A‖

0

ln(t) dµA(t) > −∞.
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