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ABSTRACT OF THE DISSERTATION

Decoupling for the parabola and connections to efficient congruencing

by

Zane Kun Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Terence Chi-Shen Tao, Chair

This thesis presents effective quantitative bounds for l2 decoupling for the parabola. We first

make effective the argument of Bourgain and Demeter in [BD17] for the case of the parabola.

This allows us to improve upon the bound of Oεpδ
´εq on the decoupling constant. Next, we

give a new proof of l2 decoupling for the parabola inspired from efficient congruencing. We

also mention how efficient congruencing relates to decoupling for the cubic moment curve.

This chapter contains the first known translation of an efficient congruencing argument into

decoupling language. Finally, we discuss equivalences and monotonicity of various parabola

decoupling constants and a “small ball” l2 decoupling problem.
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CHAPTER 1

Introduction

1.1 What is decoupling?

Consider a region Ω Ă Rd and a partition tθu of Ω. Let fθ be defined on the Fourier side by

pfθ “ pf1θ. Then

f “
ÿ

θ

fθ.

Furthermore since the tθu are a partition of Ω, Plancherel’s theorem gives that

}f}2 “ p
ÿ

θ

}fθ}
2
2q

1{2

and hence to study }f}2, it suffices to study }fθ}2 for each θ. In this sense f has “decoupled”

into the individual fθ pieces.

We now ask instead of taking an L2 norm, what happens in the case when we use instead

an Lp norm. That is, let DppΩ “
Ť

θq be the best constant such that

}f}p ď DppΩ “
ď

θqp
ÿ

θ

}fθ}
2
pq1{2 (1.1)

for all f with Fourier transform supported in Ω. What is the best estimate we can have for

DppΩ “
Ť

θq? From the triangle inequality and Cauchy-Schwarz, DppΩ “
Ť

θq ď p#θq1{2,

however we seek the optimal bound of DppΩ “
Ť

θq. In (1.1), we defined an l2Lp decoupling

for Ω “
Ť

θ, however we could have as well defined an lqLp decoupling here where the l2

sum is replaced by an lq one. For brevity, we will often just use the phrase “l2 decoupling”

rather than “l2Lp decoupling.”

Decoupling-type inequalities were first studied by Wolff in [Wol00] who proved a sharp

lpLp decoupling theorem for the cone in 2 ` 1 dimensions for p ą 74 and applied it to
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derive new local smoothing estimates. Wolff’s work was further extended and generalized in

[LW02, LP06, GS09, GS10]. Bourgain in [Bou13] was able to use induction on scales from

[BG11] and multilinear restriction from [BCT06] to partially resolve l2Lp decoupling for

smooth compact hypersurfaces in Rn in the range 2 ď p ď 2n
n´1

. Following the proof of l2Lp

decoupling for smooth compact hypersurfaces in Rn by Bourgain and Demeter in [BD15]

for the full range 2 ď p ď
2pn`1q

n´1
, decoupling inequalities for various curves and surfaces

have found many applications to PDE ([Lee16, DGG17, DGL17, BBG18, BHS18, DGL18,

FSW18, DZ19]), geometric measure theory ([DGO18, GIO18]), and analytic number theory

([BD16, BDG16, Bou17a, Bou17b, BDG17, Guo17, Hea17, BW18, GZ18a, GZ18b]). This

list is by no means exhaustive, for a more complete list see [Pie19].

1.1.1 Decoupling for the paraboloid and moment curve

We now restriction attention to l2 decoupling for the paraboloid [BD15] and moment curve

[BDG16]. In the case of decoupling for the paraboloid, let

Ω “ tps, |s|2 ` tq : s P r0, 1sn´1, |t| ď δ2u

and we partition Ω into θ of the form

tps, |s|2 ` tq : s P Q, |t| ď δ2u

for frequency cube Q Ă r0, 1sn´1 of length δ. Then in [BD15], it was shown that DppΩ “

Ť

θq Àε δ
´ε for all 2 ď p ď

2pn`1q

n´1
. Note that having a δ2 neighborhood is natural here since

at this scale, the θ look like a δ ˆ δ ˆ ¨ ¨ ¨ ˆ δ ˆ δ2 rectangular boxes.

For decoupling for the moment curve t ÞÑ pt, t2, t3, . . . , tnq, let Ω be the δn-neighborhood of

tpt, t2, . . . , tnq : t P r0, 1su and the tθu be the δn-neighborhood of tpt, t2, . . . , tnq : t P Ju where

J runs through a partition of r0, 1s into intervals of length δ. Then in [BDG16], it was shown

that DppΩ “
Ť

θq Àε δ
´ε for all 2 ď p ď npn` 1q. Similarly as the previous paragraph, a δn

neighborhood is natural here since at this scale, the θ look like a δˆδ2ˆδ3 ¨ ¨ ¨ˆδn rectangular

box. Applying this decoupling theorem to a particular f , then showed Vinogradov’s mean

value theorem.
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We note that the ranges of 2 ď p ď
2pn`1q

n´1
and 2 ď p ď npn ` 1q in decoupling for

the paraboloid and moment curve, respectively, are sharp up to δ´ε-losses. That is, to have

DppΩ “
Ť

θq Àε δ
´ε in the cases mentioned above, we need 2 ď p ď

2pn`1q

n´1
for the paraboloid

and 2 ď p ď npn ` 1q for the moment curve. To see the necessity of the upper bounds of

p ď
2pn`1q

n´1
and p ď npn` 1q, we can consider the example where pfθpξq is a Schwartz function

version of 1
|θ|

1θpξq. Finally to see the necessity of the lower bound p ě 2 in both cases, we

can consider the example where pfθpξq is a Schwartz function version of 1
|θ|

1θpξqe2πicθ¨ξ where

tcθu are a collection of very far spaced points in Rn.

1.1.2 The extension operator formulation

Instead of using the Fourier localized version of decoupling, we will instead use the extension

operator formulation of decoupling. Both versions of decoupling are equivalent (see Sections

2.3 and 4.1 and Remark 5.2 of [BD15]) however the latter formulation makes it easier to see

how decoupling estimates imply exponential sum estimates.

We define the extension operator formulation of decoupling for the paraboloid and mo-

ment curve. We note that we will use various different formulations in each of the chapters

later, so the following two definitions are just for the reader to get a flavor of what definitions

are ahead.

Let PδpQq be the partition of Q Ă Rn into cubes of length δ. For a cube B Ă Rn centered

at cB of side length R, let

wBpxq :“ p1 `
|x ´ cB|

R
q´100n.

For the paraboloid, given an cube Q Ă r0, 1sn´1, let

pEQgqpxq “

ż

Q

gpξqepξ ¨ x ` |ξ|2xnq dξ

where epzq :“ e2πiz and x “ px1, . . . , xn´1q. Let Dparab
p pδq be the best constant such that

}Er0,1sn´1g}LppBq ď Dparab
p pδqp

ÿ

QPPδpr0,1sn´1q

}EQg}2LppwBqq
1{2 (1.2)

for all functions g : r0, 1sn´1 Ñ C and cubes B Ă Rn of side length δ´2. Then [BD15] showed

that Dparab
p pδq Àε δ

´ε for 2 ď p ď
2pn`1q

n´1
.
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Now we define the extension operator formulation of decoupling for the moment curve.

For J Ă r0, 1s, let

pEJgqpxq “

ż

J

gpξqepξx1 ` ξ2x2 ` ¨ ¨ ¨ ` ξnxnq dξ.

Let Dmoment
p pδq be the best constant such that

}Er0,1sg}LppBq ď Dmoment
p pδqp

ÿ

JPPδpr0,1sq

}EJg}2LppwBqq
1{2 (1.3)

for all functions g : r0, 1s Ñ C and cubes B Ă Rn of side length δ´n. Then [BDG16] showed

that Dmoment
p pδq Àε δ

´ε for 2 ď p ď npn ` 1q.

In all sections except Sections 3.7 and 4.4, we will be considering decoupling for the

parabola. Note that the parabola is the moment curve in R2.

1.2 Vinogradov’s mean value theorem

For integers s, k ě 1, let Js,kpNq be the number of 2s tuples px1, . . . , xs, y1, . . . , ysq P r1, N s2s

such that

x1 ` x2 ` ¨ ¨ ¨ ` xs “ y1 ` y2 ` ¨ ¨ ¨ ` ys

x21 ` x22 ` ¨ ¨ ¨ ` x2s “ y21 ` y22 ` ¨ ¨ ¨ ` y2s
...

xk1 ` xk2 ` ¨ ¨ ¨ ` xks “ yk1 ` yk2 ` ¨ ¨ ¨ ` yks .

Since 1n“0 “
ş1

0
epnαq dα, we have

Js,kpNq “

ż

r0,1sk
|

N
ÿ

n“1

epα1n ` α2n
2 ` ¨ ¨ ¨ ` αkn

kq|2s dα. (1.4)

If we set xi “ yi for i “ 1, 2, . . . , s, then Js,kpNq ě N s. If we view the xj and yj as

uniformly distributed in r1, N s, the ith power equation heuristically has a 1{N i chance of

being true and so this gives another N2s{
śk

i“1N
´i “ N2s´kpk`1q{2 many solutions. This

heuristic can be made rigorous as follows. Observe that for 1 ď i ď k, since

|xi1 ` xi2 ` ¨ ¨ ¨ ` xis ´ yi1 ´ yi2 ´ ¨ ¨ ¨ ´ yis| ď 2sN i.
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Then

N2s À
ÿ

|h1|ď2sX

...
|hk|ď2sXk

ż

r0,1sk
|

N
ÿ

n“1

epα1n ` α2n
2 ` ¨ ¨ ¨ ` αkn

kq|2sep´α1h1 ´ α2h2 ´ ¨ ¨ ¨ ´ αkhkq dα.

Applying the triangle inequality then shows that Js,kpNq Ás,k N2s´
kpk`1q

2 . Thus we have

obtained as a lower bound that

Js,kpNq Ás,k N
s ` N2s´

kpk`1q

2 .

In 1935, Vinogradov [Vin35] was motivated by applications to Waring’s problem and the

Riemann zeta function to study the mean value (1.4). The main conjecture in Vinogradov’s

mean value methods was that the lower bound on Js,kpNq is essentially an upper bound.

That is,

Js,kpNq Às,k,ε N
εpN s ` N2s´

kpk`1q

2 q (1.5)

or equivalently

ż

r0,1sk
|

N
ÿ

n“1

epα1n ` α2n
2 ` ¨ ¨ ¨ ` αkn

kq|2s dα Às,k,ε N
εpN s ` N2s´

kpk`1q

2 q. (1.6)

From Hölder’s inequality it suffices to just consider the critical case when 2s “ kpk ` 1q in

which case (1.6) reduces to showing

ż

r0,1sk
|

N
ÿ

n“1

epα1n ` α2n
2 ` ¨ ¨ ¨ ` αkn

kq|kpk`1q dα Àk,ε N
kpk`1q

2
`ε.

A change of variables and using periodicity shows that this is equivalent to showing that

ż

r0,Nksk
|

N
ÿ

n“1

epα1
n

N
` α2p

n

N
q2 ` ¨ ¨ ¨ ` αkp

n

N
qkq|kpk`1q Àk,ε N

k2`
kpk`1q

2
`ε.

But this follows from l2 decoupling for the moment curve (1.3) with the choice: gpξq “

řN
j“1 1ξ“j{N , p “ kpk ` 1q, and δ “ 1{N .

The critical case when k “ 2 is classical. Wooley developed over a series of papers [Woo12,

Woo13, Woo15, Woo17] the theory of efficient congruencing for Vinogradov’s mean value

5



theorem eventually proving in [Woo17] that (1.5) is true for all 1 ď s ď 1
2
kpk`1q´ 1

3
k`opkq.

Additionally in 2014 he was able to prove the critical k “ 3 case ([Woo16], with a simplified

approach by Heath-Brown in [Hea15]). In 2015, Bourgain-Demeter-Guth [BDG16] proved

the sharp l2 decoupling of the moment curve which then resolved Vinogradov’s mean value

conjecture for all k ě 2. In 2017, Wooley [Woo19] then modified his efficient congruencing

approach to also work for all k ě 2. We refer the reader to [Pie19] for a more detailed

summary of the history, background, and motivation of both efficient congruencing and

decoupling methods.

Determining the dependence on ε for the implied constant in Jkpk`1q{2,kpNq Àε N
kpk`1q{2`ε

is essential to applications of Vinogradov’s mean value theorem to number theoretic results

such as the growth of the zeta function in the critical strip, the zero free region, and zero

density estimates [For02, Hea17]. See also [Hea17] and the MathOverflow question [Lew15]

for applications of an effective Bourgain-Demeter-Guth result. One key point is that it is

important to work out the dependence on the dimension n. The proof of decoupling for

the moment curve in n dimensions relies on decoupling for the moment curve in pn ´ 1q

dimensions. We then need to first study decoupling for ξ ÞÑ pξ, ξ2q, in other words (2.4) with

n “ 2. This motivates why we study decoupling for the parabola in detail in this thesis.

Similarities between the efficient congruencing [Woo19] and decoupling [BDG16] methods

such as the reliance on translation-dilation invariance for efficient congruencing and parabolic

rescaling for decoupling have been observed (see Section 8.5 of [Pie19]). However, no precise

dictionary between the two methods has been written down. Chapter 3 is the first to write

down an efficient congruencing argument in decoupling language and makes precise how

these two methods compare in the special case of a parabola. There is ongoing work joint

with Shaoming Guo and Po-Lam Yung dealing with interpreting more complicated efficient

congruencing arguments such as those found in [Hea15] and [Woo19].
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1.3 Summary of the results

We now summarize all results in this thesis. We will let Dppδq be as in (1.2) with n “ 2

(that is the decoupling constant for the parabola). Chapter 2 deals with obtaining explicit

estimates in the decoupling constant for the parabola. By following the argument of [BD17],

in Theorem 2.1.1, we show that

Dppδq À

$

’

&

’

%

exppOpplog 1
δ
q1´cpqq if 2 ď p ă 6

exppOp
log 1

δ

log log 1
δ

log log log 1
δ
qq if p “ 6

where cp is a small constant increasing to 1 as p increases to 6. We make all implied

constants explicit and we carefully deal with various smoothed versions of 1B that show up

in the argument.

Chapter 3 was inspired from reading [Pie19, Section 4.3] and is the first concrete in-

terpretation of an efficient congruencing proof into a decoupling language. The proof of

l2 decoupling for the parabola is boiled down the four basic steps: parabolic rescaling, bi-

linearization, ball inflation, and Hölder. Using our explicit estimates from Chapter 2, the

argument we give in this chapter obtains that

D6pδq À exppOp
log 1

δ

log log 1
δ

qq.

This reproves

}
ÿ

|n|ďN

ane
2πipnx`n2tq}L6

x,tpT2q À exppOp
logN

log logN
qqp

ÿ

|n|ďN

|an|2q1{2 (1.7)

without using any number theory. Bourgain showed (1.7) in Proposition 2.36 of [Bou93]

using the divisor bound. It is unknown whether the exppOp
logN

log logN
qq can be improved. We

also give three proofs of D6pδq Àε δ
´ε, one that looks like an efficient congruencing proof

(Section 3.2), a proof using language more familiar to decoupling (Sections 3.3 and 3.4) that

includes a simplified ball inflation lemma, and finally a proof that looks more similar to that

done by Bourgain-Demeter in [BD15, BD17] (Section 3.5). Finally, in Section 3.7, we outline

work in progress with Shaoming Guo and Po-Lam Yung dealing with interpreting efficient

congruencing as in [Hea15] into the decoupling language.
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In our final chapter, we tie up some loose ends about the equivalence of various parabola

decoupling constants (Section 4.1). Various equivalences of parabola decoupling constants

were first dealt with in Section 2.3 to deal with issues arising from parabolic rescaling (Section

2.4). However all the decoupling constants in Section 2.3 were spatially localized (that is,

have a LppBq or LppwBq) while in Section 4.1, we introduce some decoupling constants that

are not spatially localized. This section complements the remark made in [BD15, Remark

5.2]. In Section 4.2, we give an immediate application of this equivalence and show that all

eight parabola decoupling constants we define throughout this thesis (listed on Page 143)

are equivalent and almost monotonic. Next we then given an elementary direct proof of l2L4

decoupling for the parabola in Section 4.3. Finally in Section 4.4, we discuss a “small ball”

l2 decoupling problem whose solution was first communicated to the author by Hong Wang.
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CHAPTER 2

Effective l2 decoupling for the parabola

2.1 Introduction

In [BD15] and later with a more streamlined proof [BD17], Bourgain and Demeter prove

that the decoupling constant associated to the paraboloid tpξ1, ξ2, . . . , ξn´1, ξ
2
1 ` ¨ ¨ ¨ ` ξ2n´1q :

ξi P r0, 1su is On,εpδ
´εq for 2 ď p ď

2pn`1q

n´1
. In [BDG16], Bourgain, Demeter, and Guth prove

that the decoupling constant associated to the moment curve tpξ, ξ2, . . . , ξnq : ξ P r0, 1su is

On,εpδ
´εq for 2 ď p ď npn ` 1q which resolved Vinogradov’s mean value conjecture. Both

the moment curve and the paraboloid are the same when n “ 2. It is this case we study and

make effective.

For each interval J Ă r0, 1s and g : r0, 1s Ñ C, let

pEJgqpxq :“

ż

J

gpξqepξx1 ` ξ2x2q dξ

where here epzq “ e2πiz. Note that Er0,1sg is the extension operator for the parabola tpξ, ξ2q :

ξ P r0, 1su. For an integer E ě 1 and a square B “ BpcB, Rq Ă R2 centered at cB “ pcB1, cB2q

of side length R, let

wB,Epxq :“ p1 `
|x ´ cB|

R
q´E.

If I is an interval in r0, 1s and δ P p0, 1q, let PδpIq be the partition of I into |I|{δ many

intervals of length δ. Note that when writing PδpIq, we assume |I|{δ P N. For δ P N´2,

2 ď p ă 8, and E ě 1, let Dp,Epδq be the smallest constant such that

}Er0,1sg}LppBq ď Dp,Epδqp
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppwB,Eqq
1{2 (2.1)

for all (axis-parallel) squares B Ă R2 of side length δ´1 and all functions g : r0, 1s Ñ C.

Since 1B ď 2EwB,E, the trivial bound for Dp,Epδq is 2E{pδ´1{4 which follows from the triangle
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inequality and Cauchy-Schwarz. We will call Dp,Epδq a (local) decoupling constant associated

to the parabola tpξ, ξ2q : ξ P r0, 1su. Note that Dp,Epδq is essentially the same size as

Dec2pδ, p, Eq in [BD17] (a consequence of Proposition 2.2.11).

By making effective the arguments in [BD17], we have the following improvement over

Dp,Epδq Àε δ
´ε.

Theorem 2.1.1. Let E ě 100 and 0 ă δ ă 2´64E15E
with δ P N´2.

piq If 2 ď p ď 4, then

Dp,Epδq ď exppE6Eplog
1

δ
q2{3q.

piiq If 4 ă p ă 6, then

Dp,Epδq ď exppE6Eplog
1

δ
q
2
3

` 1
3
log2p

p´2
2

qq.

piiiq If p “ 6, then

D6,Epδq ď exppE6E log 1
δ

log log 1
δ

log log log
1

δ
q.

Using the trivial bound for δ ą 2´64E15E
, one can obtain an upper bound on Dp,Epδq that

is valid for all δ P N´2.

In the proof of decoupling for the paraboloid or the moment curve in n dimensions, one

crucial input is a decoupling in pn´1q dimensions. This is most easily seen by the reliance on

a Bourgain-Guth iteration to show the equivalence between linear and multilinear decoupling

constants. In the case of the moment curve, this also makes an additional appearance in a

step called lower dimensional decoupling (Lemma 8.2 of [BDG16]) since various sections of

the moment curve look lower dimensional at certain scales. Thus ultimately we are reduced

to first studying explicit decoupling in n “ 2 dimensions. Because of this reduction of

dimension argument, the arguments of [BD17, BDG16] should give an upper bound on the

decoupling constant that is worse than those stated in Theorem 2.1.1.

While the argument in this chapter is similar to [BD17], we highlight some key features.

One major feature is that we carefully work with the various weight functions that show

up in the argument and obtain estimates with explicit constants. Section 2.2 develops all
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the estimates needed about the weight function wB,E. The most crucial observation is that

wBp0,Rq,E ˚ wBp0,R1q,E ÀE R12wBp0,Rq,E for 0 ă R1 ď R (Lemma 2.2.1). The calculations

in Section 2.2 can be easily generalized to n dimensions. A careful study of the weight

wB,E reveals that the decoupling constant with weight wB,E does not behave too well under

parabolic rescaling, see Lemma 2.2.18, Remark 2.2.19, and the proof of Proposition 2.4.1.

Essentially this is because wB,E weights all directions evenly and so it is well-adapted for

squares and circles but not rectangles and ellipses. To accommodate this, we introduce a

second weight

rwB,Epxq :“ wB,Epxqp1 `
|x2 ´ cB2|

R
q´E (2.2)

and let rDp,Epδq be defined similarly as in (2.1) but with wB,E replaced with rwB,E. We will

then need that Dp,Epδq „E
rDp,Epδq which is the topic of Section 2.3. Once we have this,

we then recover almost multiplicativity of Dp,Epδq in Section 2.4 and other applications of

parabolic rescaling. This also introduces some slight changes compared to [BD17], namely

our multilinear decoupling constant in Section 2.5 is defined with weight rwB,E rather than

wB,E and in our iteration, Ap uses weight rwB,E rather than wB,E. The ball inflation inequality

of [BD17] is made effective in Section 2.6. We have chosen to keep track of the dependence

on E since estimates for the decoupling constant in higher dimensions for a specific E may

depend on an estimate for the decoupling constant at a lower dimension with a different E

(see for example, Theorems 5.1 and 8.4 of [BD17]).

Another key feature is that we do not ignore integrality constraints about partitioning

intervals into an integer number of smaller intervals. Tracing all the integrality constraints

on the parameters in the argument, the iteration in Sections 2.7 and 2.8 gives a good upper

bound for the linear decoupling constant along a lacunary sequence of scales (Section 2.9).

Using almost multiplicativity of the linear decoupling constant (Proposition 2.4.1) and the

trivial bound, we can upgrade this to be a good upper bound on all scales. This is done in

Section 2.10. Finally optimizing in Section 2.11 completes the proof of Theorem 2.1.1.
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2.2 Weight functions and consequences

2.2.1 The weights wB and rwB

As defined in Section 2.1, we recall that

wBpxq :“ p1 `
|x ´ cB|

R
q´E

and

rwBpxq :“ wBpxqp1 `
|x2 ´ cB2|

R
q´E.

If w is a weight function for B, let

}f}Lp
#pwq :“ p

1

|B|

ż

R2

|fpxq|pwpxq dxq1{p.

We will make use of the following two inequalities that are immediate applications of Hölder’s

inequality: If 1{p “ 1{q ` 1{r, then

}fg}LppwB,Eq ď }f}LqpwB,Eq}g}LrpwB,Eq

and if q ą p,

}f}Lp
#pwB,Eq ď }f}Lq

#pwB,Eq. (2.3)

The above two inequalities also hold with wB,E replaced with rwB,E. When B is a square

centered at the origin, wB and rwB obey the following two important self-convolution esti-

mates.

Lemma 2.2.1. Let E ě 10. For 0 ă R1 ď R,

wBp0,Rq,E ˚ wBp0,R1q,E ď 4ER12wBp0,Rq,E. (2.4)

We also have

R2wBp0,Rq,E ď 3E1Bp0,Rq ˚ wBp0,Rq,E. (2.5)

The same inequalities with the same constants hold true when wBp0,Rq,E is replaced with

rwBp0,Rq,E.
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Proof. We first prove (2.4). We would like to give an upper bound for the expression

1

R12

ż

R2

p1 `
|x ´ y|

R
q´Ep1 `

|y|

R1
q´Ep1 `

|x|

R
qE dy

depending only on E. A change of variables in y and rescaling x shows that it suffices to

give an upper bound for

ż

R2

p1 ` |x ´
R1

R
y|q´Ep1 ` |y|q´Ep1 ` |x|qE dy (2.6)

depending only on E. If |x| ď 1, then (2.6) is

ď 2E

ż

R2

p1 ` |y|q´E dy ď 2E.

If |x| ą 1, then we split (2.6) into

p

ż

|x´R1

R
y|ď

|x|

2

`

ż

|x´R1

R
y|ą

|x|

2

qp1 ` |x ´
R1

R
y|q´Ep1 ` |y|q´Ep1 ` |x|qE dy. (2.7)

In the case of the first integral in (2.7), pR1{Rq|y| ě |x| ´ |x ´ pR1{Rqy| ě |x|{2 and hence

ż

|x´R1

R
y|ď

|x|

2

p1 ` |x ´
R1

R
y|q´Ep1 ` |y|q´Ep1 ` |x|qE dy

ď p
p1 ` |x|qE

p1 ` pR{R1q|x|{2qE

ż

R2

p1 ` |x ´
R1

R
y|q´E dy ď p4R1{RqEpR{R1q2 ď 4E.

In the case of the second integral in (2.7),

ż

|x´R1

R
y|ą

|x|

2

p1 ` |x ´
R1

R
y|q´Ep1 ` |y|q´Ep1 ` |x|qE dy

ď p
1 ` |x|

1 ` |x|{2
qE

ż

R2

p1 ` |y|q´E dy ď 2E.

This then proves (2.4).

To prove (2.5) it suffices to give a lower bound for

1

R2

ż

Bp0,Rq

p1 `
|x ´ y|

R
q´Ep1 `

|x|

R
qE dy

which depends only on E. As before, rescaling x and a change of variables in y gives that it

suffices to give a lower bound independent of x for

ż

Bp0,1q

p
1 ` |x|

1 ` |x ´ y|
qE dy ě p

1 ` |x|

2 ` |x|
qE ě 2´E.
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Thus we have shown that 1
R2 p1Bp0,Rq ˚ wBp0,Rq,Eq ě 2´EwBp0,Rq,E which shows (2.5).

We now prove the analogues for rwBp0,Rq,E. We first prove the analogue of (2.4). We

would like to give an upper bound for the expression

1

R12

ż

R2

p1 `
|x ´ y|

R
q´Ep1 `

|x2 ´ y2|

R
q´Ep1 `

|y|

R1
q´E

ˆ p1 `
|y2|

R1
q´Ep1 `

|x|

R
qEp1 `

|x2|

R
qE dy.

A change of variables in y and rescaling x shows it suffices to bound

ż

R2

p1 ` |x ´
R1

R
y|q´Ep1`|y|q´Ep1 ` |x|qE

ˆ p1 ` |x2 ´
R1

R
y2|q´Ep1 ` |y2|q´Ep1 ` |x2|q

E dy.

(2.8)

By the triangle inequality,

p1 ` |x2 ´
R1

R
y2|q´Ep1 ` |y2|q´Ep1 ` |x2|q

E ď

ˆ

1 ` pR1{Rq|y2|

1 ` |y2|

˙E

ď 1.

The upper bound for (2.8) then reduces to finding an upper bound for (2.6).

To prove the analogue of (2.5) for rwBp0,Rq,E, it suffices to give a lower bound for

1

R2

ż

Bp0,Rq

p1 `
|x ´ y|

R
q´Ep1 `

|x2 ´ y2|

R
q´Ep1 `

|x|

R
qEp1 `

|x2|

R
qE dy

which depends only on E. Once again, a change of variables in y and a rescaling in x show

that it suffices to give a lower bound for

ż

Bp0,1q

p1 ` |x ´ y|q´Ep1 ` |x|qEp1 ` |x2 ´ y2|q´Ep1 ` |x2|q
E dy. (2.9)

Since y P Bp0, 1q, the triangle inequality gives

1 ` |x2|

1 ` |x2 ´ y2|
ě

1 ` |x2|

3{2 ` |x2|
ě

2

3
.

Therefore (2.9) is bounded below by

p2{3qE
ż

Bp0,1q

p
1 ` |x|

1 ` |x ´ y|
qE dy ě p2{3qEp

1 ` |x|

2 ` |x|
qE ě 3´E.

This then proves the analogue of (2.5) for rwBp0,Rq,E. This completes the proof of Lemma

2.2.1.
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Remark 2.2.2. As a corollary of Lemma 2.2.1 and the observation that 1B ÀE wB,E, we have

wBp0,Rq,E ˚ wBp0,Rq,E „E R
2wBp0,Rq,E. This is also true for rwBp0,Rq,E.

Remark 2.2.3. Let I “ r´R{2, R{2s and I 1 “ r´R1{2, R1{2s with 0 ă R1 ď R. For x P R, let

wI,Epxq :“ p1 `
|x|

R
q´E and similarly define wI 1,E. The same proof as (2.4) gives that

wI,E ˚ wI 1,E ď 4ER1wI,E.

This estimate will be used extensively in the proof of Lemma 2.3.17.

Lemma 2.2.1 has an immediate corollary which serves as the continuous analogue of

the localization lemma given in Lemma 4.1 of [BD17]. This will allow us to upgrade from

unweighted to weighted estimates, see later in Proposition 2.2.11. The inequality below is

from the proof of Theorem 5.1 in [BD17].

Corollary 2.2.4. For 1 ď p ă 8 and E ě 10,

}f}
p
LppwBp0,Rq,Eq

ď 3E

ż

R2

}f}
p
Lp
#pBpy,Rqq

wBp0,Rq,Epyq dy.

This corollary is also true with wBp0,Rq,E replaced with rwBp0,Rq,E.

Proof. Lemma 2.2.1 implies that

ż

R2

}f}
p
Lp
#pBpy,Rqq

wBp0,Rq,Epyq dy “

ż

R2

|fpxq|pp
1

R2
1Bp0,Rq ˚ wBp0,Rq,Eqpxq dx

ě 3´E}f}
p
LppwBp0,Rq,Eq

which completes the proof of Corollary 2.2.4.

We close this section by proving two lemmas about the interaction between rwB and

rotations which will be used in the proof of Theorem 2.6.1.

Lemma 2.2.5. Let cJ P rδ{2, 1 ´ δ{2s,

RJ “
1

a

1 ` 4c2J

¨

˝

1 ´2|cJ |

2|cJ | 1

˛

‚,
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and θJ be such that cos θJ “ 1{
a

1 ` 4c2J and sin θJ “ 2|cJ |{
a

1 ` 4c2J . Suppose |a| ď 2δ´1,

then

rwBpRJ pa,0qT ,δ´1qpsq ď 16E
rwBp0,δ´1qpsq.

Proof. We want to give an upper bound for

p
δ´1 ` |s|

δ´1 ` |s ´ pcos θJ , sin θJqa|
qEp

δ´1 ` |s2|

δ´1 ` |s2 ´ psin θJqa|
qE (2.10)

that only depends on E. We first consider the first expression in (2.10). If |s| ă 3δ´1, then

δ´1 ` |s|

δ´1 ` |s ´ pcos θJ , sin θJqa|
ď 4.

If |s| ě 3δ´1, then

δ´1 ` |s|

δ´1 ` |s ´ pcos θJ , sin θJqa|
“ p

δ´1

|s|
` 1qp

δ´1

|s|
`

|s ´ pcos θJ , sin θJqa|

|s|
q´1. (2.11)

Since |s| ě 3δ´1 and |a| ď 2δ´1,

|s ´ pcos θJ , sin θJqa|

|s|
ě 1 ´

|a|

|s|
ě

1

3
.

Therefore (2.11) is ď 4 and so the first expression in (2.10) is ď 4E. We next consider the

second expression in (2.10). The proof is almost exactly the same. If |s2| ď 3δ´1,

δ´1 ` |s2|

δ´1 ` |s2 ´ psin θJqa|
ď 4.

For |s2| ą 3δ´1,

δ´1 ` |s2|

δ´1 ` |s2 ´ psin θJqa|
“ p

δ´1

|s2|
` 1qp

δ´1

|s2|
`

|s2 ´ psin θJqa|

|s2|
q´1. (2.12)

Since |s2| ą 3δ´1 and |a| ď 2δ´1,

|s2 ´ psin θJqa|

|s2|
ě 1 ´

|a|

|s2|
ě

1

3
.

Therefore (2.12) is ď 4 and so the second expression in (2.10) is ď 4E. This completes the

proof of Lemma 2.2.5.
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Lemma 2.2.6. Let RJ be as in Lemma 2.2.5. Then

p1 `
|pR´1

J xq1|

δ´1
q´2Ep1 `

|pR´1
J xq2|

δ´1
q´2E ď rwBp0,δ´1q,E. (2.13)

Proof. Since p1 ` δ|x|q ď p1 ` δ|x1|qp1 ` δ|x2|q, the left hand side of (2.13) is

ď p1 `
|R´1

J x|

δ´1
q´2E “ p1 `

|x|

δ´1
q´2E ď rwBp0,δ´1q,E

where the equality is because RJ is a rotation. This completes the proof of Lemma 2.2.6.

2.2.2 Explicit Schwartz functions

In addition to our polynomial decaying weights wB and rwB, we will also need to construct

an explicit Schwartz function weight. More specifically, in Corollary 2.2.9, we construct a

nonnegative η in R2 such that 1Bp0,1qpxq ď ηpxq and suppppηq Ă Bp0, 1q. Such an η will

be used in the proof of reverse Hölder (Lemma 2.2.20), l2L2 decoupling (Lemma 2.2.21),

and will also allow us to reset the “E parameter” when we prove the equivalence of local

decoupling constants in Section 2.3 (in particular, Lemma 2.3.8 and Proposition 2.3.11).

We also construct an explicit smoothed indicator function which is equal to 1 on r´1, 1s

and vanishes outside r´3, 3s. This will be used in the proof of ball inflation (Theorem 2.6.1)

and the equivalence of local decoupling constants (Lemma 2.3.10).

Existence of such Schwartz functions is easy to justify, however our goal is to obtain

explicit bounds and so not only will we need to construct such functions but also need to

construct them in such a way as to make it easy to compute with. Both Schwartz functions

rely on the following lemma which is a small modification of Theorem 1.3.5 of [Hor90].

Lemma 2.2.7. Let a0 ě a1 ě ¨ ¨ ¨ be a positive sequence such that a :“
ř

iě0 ai ă 8. For

i ě 0, let

Hipxq :“
1

ai
1r´ai{2,ai{2spxq

and let

ukpxq :“ pH0 ˚ ¨ ¨ ¨ ˚ Hkqpxq.
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Then for k ě 2, uk P Ck´1
c pRq is supported in r´a{2, a{2s and converges (uniformly) to a

function u P C8
c pRq as k Ñ 8 which is also supported in r´a{2, a{2s. Furthermore,

|upjqpxq| ď
2j

a0a1 ¨ ¨ ¨ aj

for j ě 0 and

pupξq “

8
ź

i“0

sincpaiξq

where sincpxq “ psinπxq{pπxq.

Proof. The proof is the same as that in Theorem 1.3.5 of [Hor90] except in this case we have

u
pjq

k “ r

j´1
ź

i“0

1

ai
pτ´ai{2 ´ τai{2qspHj ˚ ¨ ¨ ¨ ˚ Hkq

for j ď k ´ 1 where pτafqpxq “ fpx ´ aq and the product is a composition of operators.

For the claim about pu, note that xHipξq “ sincpaiξq which implies pukpξq “
śk

i“0 sincpaiξq.

Since uk Ñ u uniformly as k Ñ 8 and since uk and u are both supported on r´a{2, a{2s,

puk Ñ pu uniformly as k Ñ 8. This completes the proof of Lemma 2.2.7.

We use Lemma 2.2.7 to construct a function ψ on R such that ψ ě 1r´1{2,1{2s and

suppp pψq Ă r´1{2, 1{2s.

Lemma 2.2.8. For x P R, let

ψpxq :“ 4psincp
x

6
q

8
ź

i“1

sincp
x

6i2
qq2.

Then ψ ě 1r´1{2,1{2s, suppp pψq Ă r´1{2, 1{2s, and for all x P R and E ě 100,

|ψpxq| ď
E6E

p1 ` |x|q2E
.

Proof. Let u be as in Lemma 2.2.7 with a0 “ 1 and ai “ 1{i2. Then

pupxq “ sincpxq

8
ź

i“1

sincpx{i2q

and u is supported in r´3{2, 3{2s.
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Observe that ψpxq “ F pxq2 with F pxq “ 2pupx{6q. Since F is even, for x P r´1{2, 1{2s,

F pxq ě F p1{2q ě 1. As ψ ě 0 for all x P R, ψ ě 1r´1{2,1{2s. From the support of u, the

Fourier transform of F is supported in r´1{4, 1{4s. Since pψ “ pF ˚ pF , pψ is supported in

r´1{2, 1{2s.

By the construction of u,

|upjqpxq| ď 2j
j

ź

k“0

a´1
k “ 2j

j
ź

k“1

k2 ď 2jj2j.

The support of u and integration by parts gives that for any j ě 0 and x ‰ 0,

|pupxq| ď
1

p2π|x|qj
}upjq}L1pRq ď

3j2j

πj|x|j
.

Applying the above bound to j “ E shows that for x ‰ 0, |pupxq| ď E2E|x|´E. Then for

|x| ě 1,

|ψpxq| “ 4|pupx{6q|2 ď E5E|x|´2E

Thus if |x| ě 1, p1 ` |x|q2E|ψpxq| ď E6E. If |x| ď 1, then explicit computation gives that

p1 ` |x|q2E|ψpxq| ď 4E`1. This completes the proof of Lemma 2.2.8.

Since Bp0, 1q “ r´1{2, 1{2s2 and p1 ` |x|qp1 ` |x2|q ď p1 ` |x1|qp1 ` |x2|q
2, we immediately

have the following corollary.

Corollary 2.2.9. Let ψ be as in Lemma 2.2.8. For x P R2, let

ηpxq “ ψpx1qψpx2q.

Then η ě 1Bp0,1q, suppppηq Ă Bp0, 1q, and for all x P R2 and E ě 100,

|ηpxq| ď
E12E

p1 ` |x1|q2Ep1 ` |x2|q2E
.

For B “ BpcB, Rq, define

ηBpxq :“ ηp
x ´ cB
R

q.

Then for all x P R2 and arbitrary E ě 100,

ηBpxq ď E12E
rwB,Epxq ď E12EwB,Epxq.
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We now construct our smoothed indicator function and estimate the size of the Fourier

transform of its moments.

Lemma 2.2.10. Let u be as in Lemma 2.2.7 with a0 :“ 1{3 and ai :“ 1{p3i2q. Then

Ψpxq :“ pu ˚ 1r´2,2sqpxq

is a C8
c pRq function which is equal to 1 on r´1, 1s and vanishes outside r´3, 3s. For k ě 0,

x P R, and E ě 100 we have

|

ż

R
tkΨptqe2πitx dt| ď

6kE5E

p1 ` |x|q2E
. (2.14)

Proof. From Lemma 2.2.7, u is supported in r´1, 1s. Since u ě 0, }u}L1 “ pup0q “ 1. Then

Ψpxq “

ż

rx´2,x`2sXr´1,1s

upsq ds “

$

’

&

’

%

1 if x P r´1, 1s

0 if x R r´3, 3s.

To prove (2.14), we first prove that for k ě 0,

|B2EpxkΨpxqq| ď 62E`kE4E (2.15)

where BE “ dE{dxE. From Lemma 2.2.7, for j ě 0, |upjqpxq| ď 3p2jq
śj

i“1 3i2 “ 3p6jqpj!q2.

Thus for j ě 0,

|Ψpjqpxq| “ |pupjq ˚ 1r´2,2sqpxq| ď 12p6jqpj!q2.

First suppose 2E ď k. Then since Ψ is supported on r´3, 3s,

|B2EpxkΨpxqq| “ |

2E
ÿ

j“0

ˆ

2E

j

˙

BjpxkqΨp2E´jqpxq|

ď

2E
ÿ

j“0

ˆ

2E

j

˙

k!

pk ´ jq!
3k´j12p62E´jqp2E ´ jq!2

ď 12p62E3kqp2E!q2
2E
ÿ

j“0

ˆ

k

j

˙

ď 12p62E`kqp2E!q2.

Next suppose k ă 2E. Then similarly,

|B2EpxkΨpxqq| ď

k
ÿ

j“0

ˆ

2E

j

˙

k!

pk ´ jq!
3k´j12p62E´jqp2E ´ jq!2 ď 12p62E`kqp2E!q2.
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Since E ě 100, 12p2E!q2 ď E4E, and so when combined with the above implies

|B2EpxkΨpxqq| ď 62E`kE4E

which proves (2.15).

We now prove (2.14). Integration by parts and (2.15) give that for x ‰ 0,

|

ż

R
tkΨptqe2πitx dt| ď

6

p2π|x|q2E
}B2EptkΨptqq}L8 ď

6kE4E

|x|2E
.

Thus for |x| ě 1,

p1 ` |x|q2E|

ż

R
tkΨptqe2πitx dt| ď 22E6kE4E ď 6kE5E.

Observe that
ż

R
|tkΨptq| dt ď 3k}Ψ}L1 “ 4p3kq

where the last equality we have used that u ě 0 and }u}L1 “ 1. Then for |x| ă 1,

p1 ` |x|q2E|

ż

R
tkΨptqe2πitx dt| ď 4E`13k.

This completes the proof of Lemma 2.2.10.

2.2.3 Immediate applications

Corollary 2.2.4 allows us to upgrade from estimates in LppBq and LppηBq to estimates in

LppwBq and Lpp rwBq. We have the following proposition which contains all three different

scenarios we will need to upgrade from an unweighted estimate to a weighted estimate.

Proposition 2.2.11. Let I Ă r0, 1s and P be a disjoint partition of I.

paq Suppose for some 2 ď p ă 8, we have

}EIg}LppBq ď Cp
ÿ

JPP
}EJg}2LppwB,Eqq

1{2

for all g : r0, 1s Ñ C and all squares B of side length R. Then for each E ě 10, we have

}EIg}LppwB,Eq ď 12E{pCp
ÿ

JPP
}EJg}2LppwB,Eqq

1{2 (2.16)

for all g : r0, 1s Ñ C and all squares B of side length R.
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pbq Suppose we have

}EIg}L2pBq ď Cp
ÿ

JPP
}EJg}2L2pη2Bqq

1{2

for all g : r0, 1s Ñ C and all squares B of side length R. Then for each E ě 100, we

have

}EIg}L2pwB,Eq ď 12E{2E12ECp
ÿ

JPP
}EJg}2L2pwB,Eqq

1{2 (2.17)

for all g : r0, 1s Ñ C and all squares B of side length R.

pcq Suppose for some 1 ď p ă q ă 8, we have

}EIg}Lq
#pBq ď C}EIg}Lp

#pηpBq

for all g : r0, 1s Ñ C and all squares B of side length R. Then for each E ě 100, we

have

}EIg}Lq
#pwB,Eq ď 12E{qE12EC}EIg}Lp

#pwB,Ep{qq (2.18)

for all g : r0, 1s Ñ C and all squares B of side length R.

The same results are also true with wB,E replaced with rwB,E.

Proof. We first prove paq. Since for a P R2, pEJgqpx`aq “ pEJhqpxq where hpξq “ gpξqepa1ξ`

a2ξ
2q, a change of variables shows that it suffices to prove (2.16) in the case whenB is centered

at the origin. Corollary 2.2.4 implies that

}EIg}
p
LppwB,Eq

ď 3E

ż

R2

}EIg}
p
Lp
#pBpy,Rqq

wB,Epyq dy

ď 3ER´2Cp

ż

R2

p
ÿ

JPP
}EJg}2LppwBpy,Rq,Eqq

p{2wB,Epyq dy

“ 3ER´2Cp}}EJg}LppwBpy,Rq,Eq}
p

Lp
ypwB,Eql2J

.

Since p ě 2, we can interchange the Lp
ypwB,Eq and l2J norms and the above is

ď 3ER´2Cp}}EJg}LppwBpy,Rq,Eq}
p

l2JL
p
ypwB,Eq

“ 3ER´2Cp

ˆ

ÿ

JPP
p

ż

R2

}EJg}
p
LppwBpy,Rq,Eq

wB,Epyq dyq2{p

˙p{2

. (2.19)
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Since B is assumed to be centered at the origin,

ż

R2

}EJg}
p
LppwBpy,Rq,Eq

wB,Epyq dy “ }EJg}
p
LppwB,E˚wB,Eq

ď 4ER2}EJg}
p
LppwB,Eq

where the inequality is an application of Lemma 2.2.1. Inserting this into (2.19) gives that

}EIg}
p
LppwB,Eq

ď 12ECpp
ÿ

JPP
}EJg}2LppwB,Eqq

p{2.

Taking 1{p powers of both sides completes the proof of (2.16).

We next prove pbq. Once again it suffices to prove (2.17) in the case when B is centered

at the origin. Corollary 2.2.4 implies that

}EIg}2L2pwBq ď 3E

ż

R2

}EIg}2L2
#pBpy,RqqwBpyq dy

“ 3ER´2C2
ÿ

JPP

ż

R2

}EJg}2L2pη2
Bpy,Rq

qwBpyq dy

“ 3ER´2C2
ÿ

JPP
}EJg}2L2pη2B˚wBq (2.20)

By Corollary 2.2.9 and Lemma 2.2.1,

η2B ˚ wB ď E24EwB,2E ˚ wB,E ď E24E4ER2wB,E

and hence (2.20) is

ď E24E12EC2
ÿ

J 1PP1{RpJq

}EJ 1g}2L2pwBq.

Taking 1{2 powers of both sides completes the proof of (2.17).

We finally prove pcq. Again it suffices to prove (2.18) in the case when B is centered at

the origin. Corollary 2.2.4 implies that

}EIg}
q
LqpwB,Eq

ď 3E

ż

R2

}EIg}
q
Lq
#pBpy,Rqq

wB,Epyq dy

ď 3ECqR´2q{p

ż

R2

}EIg}
q
Lppηp

Bpy,Rq
q
wB,Epyq dy

“ 3ECqR´2q{p}|EIgpsq|ηBpy,Rqpsq}
q
Lq
ypwB,EqLp

s
.
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Since q ą p, we can interchange the norms and the above is

ď 3ECqR´2q{p}|EIg|ηBpy,Rq}
q
Lp
sL

q
ypwB,Eq

“ 3ECqR´2q{pp

ż

R2

|EIgpsq|ppηqB ˚ wB,Eqpsqp{q dsqq{p
(2.21)

Corollary 2.2.9 and Lemma 2.2.1 give that

ηqB ˚ wB,E ď E12EqpwB,Eq ˚ wB,Eq ď E12Eq4ER2wB,E.

Inserting this into (2.21) shows that

}EIg}
q
LqpwB,Eq

ď 12EE12EqCqR2´2q{p}EIg}
q
LppwB,Ep{qq

Changing Lq and Lp into Lq
# and Lp

#, respectively, removes the factor of R2´2q{p. Taking 1{q

powers of both sides then completes the proof of (2.18).

Since the same estimates hold for rwB,E in Lemma 2.2.1, Corollary 2.2.4, and Corollary

2.2.9, the above proof also shows that the proposition also holds with every instance of wB,E

replaced with rwB,E. This completes the proof of Proposition 2.2.11.

Remark 2.2.12. Note that a change of variables as in the beginning of the proof of Proposition

2.2.11 shows that knowing

}EIg}LppBp0,Rqq ď Cp
ÿ

JPP
}EJg}2LppwBp0,Rq,Eqq

1{2 (2.22)

for all g : r0, 1s Ñ C implies that

}EIg}LppBq ď Cp
ÿ

JPP
}EJg}2LppwB,Eqq

1{2

for all g : r0, 1s Ñ C and all squares B of side length R. Therefore often to check the

hypotheses of Proposition 2.2.11 we will just prove (2.22) instead.

Remark 2.2.13. Corollary 2.2.4 is not the only way to convert unweighted estimates to

weighted estimates. Another approach is to prove an unweighted estimate where B is re-

placed by 2nB for all n ě 0 and then use that wB,E „
ř

ně0 2´nE12nB to conclude the

weighted estimate.
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Proposition 2.2.14. Let B be a square of side length R and let B be a disjoint partition of

B into squares ∆ with side length R1 ă R. Then for E ě 10,

ÿ

∆PB
w∆,E ď 48EwB,E. (2.23)

This inequality remains true with w∆,E and wB,E replaced with rw∆,E and rwB,E.

Proof. It suffices to prove the case when B is centered at the origin. Since B is a disjoint

partition of B,

ÿ

∆PB
1∆ ď 1B.

Therefore
ÿ

∆PB
1∆ ˚ wBp0,R1q,E ď 1B ˚ wBp0,R1q,E.

Lemma 2.2.1 gives that

3´ER12
ÿ

∆PB
w∆,E ď

ÿ

∆PB
1∆ ˚ wBp0,R1q,E

and

1B ˚ wBp0,R1q,E ď 8ER12wB,E

where here we have also used 1B ď 2EwB,E. Rearranging then proves (2.23). Since 1B ď

4E
rwB,E, the same proof then proves (2.23) with w∆,E and wB,E replaced with rw∆,E and rwB,E,

respectively. This completes the proof of Proposition 2.2.14.

Remark 2.2.15. The only property we really need in Proposition 2.2.14 is that
ř

∆PB 1∆ ď

C1B for some absolute constant C. In particular, the same proof will work with finitely

overlapping covers and when R{R1 R N.

We illustrate two lemmas regarding how the weights wB and rwB and shear matrices

interact. Both lemmas are similar to Proposition 2.2.14 except now there is an additional

shear matrix. Lemma 2.2.16 is used in the proof of Lemma 2.3.10. This lemma is a warmup

to the proof of Lemma 2.2.18. Lemma 2.2.18 is the key lemma for the application of parabolic

rescaling in Propositions 2.4.1 and 2.5.2 and is why we have two separate weights wB and

rwB.
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Lemma 2.2.16. Let E ě 10 and S “ p 1 a
0 1 q where |a| ď 2. Then

wBp0,Rq,EpSxq ď 90EwBp0,Rq,Epxq.

Proof. Since our weights are centered at the origin, rescaling x, it suffices to prove the case

when R “ 1. Since |a| ď 2, S´1Bp0, 1q Ă Bp0, 3q and so 1Bp0,1qpSxq ď 1Bp0,3qpxq for all

x P R2. Therefore

1Bp0,1qpxq ď 1Bp0,3qpS
´1xq

for all x P R2. Convolving both sides by wBp0,1q,E and applying Lemma 2.2.1 gives that

3´EwBp0,1q,E ď p1Bp0,3q ˝ S´1q ˚ wBp0,1q,E.

Thus it remains to prove that

p1Bp0,3q ˝ S´1q ˚ wBp0,1q,E ď 30EwBp0,1q,E ˝ S´1.

This is the same as showing that

ż

R2

1Bp0,3qpS
´1yqp1 ` |x ´ y|q´E dy ď 30Ep1 ` |S´1x|q´E. (2.24)

If x P 25SpBp0, 1qq, then |S´1x| ď 24
?

2 and so

ż

R2

1Bp0,3qpS
´1yqp1 ` |x ´ y|q´E dy ď 1 ď 24Ep1 ` |S´1x|q´E

which proves (2.24) in this case. Next let x P 2n`1SpBp0, 1qqz2nSpBp0, 1qq for some n ě 5.

Then

p1 ` |S´1x|q´E ě p1 `
?

2 ¨ 2nq´E ě p2 ¨ 2nq´E.

Thus in this case, to prove (2.24) it suffices to show that

ż

R2

1Bp0,3qpS
´1yqp1 ` |x ´ y|q´E dy ď 15E2´nE. (2.25)

We have
ż

R2

1Bp0,3qpS
´1yqp1 ` |x ´ y|q´E dy “

ż

SpBp0,3qq

1

p1 ` |x ´ y|qE
dy

“

ż

x´SpBp0,3qq

1

p1 ` |y|qE
dy.

(2.26)
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For y P x ´ SpBp0, 3qq, write y “ Sa ´ Sb where a P Bp0, 2n`1qzBp0, 2nq and b P Bp0, 3q.

Since }S´1} ď 2}S´1}max ď 4,

|y| “ |Spa ´ bq| ě }S´1}´1|a ´ b| ě
1

4
p2n´1 ´

3

2

?
2q ě

1

10
2n.

Therefore the right hand side of (2.26) is bounded above by 9p10Eq2´nE which proves (2.25)

and hence (2.24). This completes the proof of Lemma 2.2.16.

Remark 2.2.17. The same proof also shows that wBp0,Rq,EpStxq ď 90EwBp0,Rq,E since the only

two properties of S we used were S´1Bp0, 1q Ă Bp0, 3q and }S´1} ď 4. These properties are

satisfied if we replace S with St.

Lemma 2.2.18. For 0 ă δ ď σ ă 1 with σ´1{2 P N, let

T “

¨

˝

σ1{2 2aσ1{2

0 σ

˛

‚

with 0 ď a ď 1 ´ σ1{2 and B “ Bp0, δ´1q. Then T pBq is contained in a 3σ1{2δ´1 ˆ σδ´1

rectangle centered at the origin. Let B denote the partition of this rectangle into 3σ´1{2 many

squares with side length σδ´1. Then for E ě 100,

ÿ

∆PB
rw∆,E ď 720EwB,E ˝ T´1. (2.27)

Proof. The proof is similar to what we did in Proposition 2.2.14 and Lemma 2.2.16. Since B

is axis-parallel and centered at the origin, T pBq is a parallelogram centered at the origin with

a base parallel to the x-axis and height σδ´1. The corners of B are given by p˘δ´1{2,˘δ´1{2q

and hence the corners of T pBq are given by

p
1

2
σ1{2p1 ` 2aqδ´1,

1

2
σδ´1q

p
1

2
σ1{2p1 ´ 2aqδ´1,´

1

2
σδ´1q

p´
1

2
σ1{2p1 ` 2aqδ´1,´

1

2
σδ´1q

p´
1

2
σ1{2p1 ´ 2aqδ´1,

1

2
σδ´1q.

Then T pBq is contained in a 3σ1{2δ´1 ˆ σδ´1 rectangle centered at the origin.

Note that T pBq Ă
Ť

∆PB ∆ Ă 10T pBq (we actually have
Ť

∆PB ∆ Ă p3 ` 2aqT pBq, but

this is not needed) and so

ÿ

∆PB
1Bpc∆,σδ´1q ď 1Bp0,10δ´1q ˝ T´1.
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Convolution with rwBp0,σδ´1q,E gives that

pσδ´1q2
ÿ

∆PB
rw∆,E ď 3Ep1Bp0,10δ´1q ˝ T´1q ˚ rwBp0,σδ´1q,E.

Thus it suffices to show that

pσδ´1q´2p1Bp0,10δ´1q ˝ T´1q ˚ rwBp0,σδ´1q,E ď 240EwBp0,δ´1q,E ˝ T´1.

That is,

pσδ´1q´2

ż

R2

1Bp0,10δ´1qpT
´1yqp1 `

|x ´ y|

σδ´1
q´Ep1 `

|x2 ´ y2|

σδ´1
q´E dy

ď 240Ep1 `
|T´1x|

δ´1
q´E.

Rescaling x and y (by setting X “ x{pσδ´1q and Y “ y{pσδ´1q) shows it suffices to prove

that

ż

R2

1Bp0,10qpS
´1yqp1 ` |x ´ y|q´Ep1 ` |x2 ´ y2|q

´E dy ď 240Ep1 ` |S´1x|q´E (2.28)

for all x P R2 where S “ σ´1T “ p σ´1{2 2aσ´1{2

0 1
q. Suppose x P 26SpBq. Then |S´1x| ď 32

?
2

and so

ż

R2

1Bp0,10qpS
´1yqp1 ` |x ´ y|q´Ep1 ` |x2 ´ y2|q

´E dy ď 1 ď 50Ep1 ` |S´1x|q´E.

It then remains to prove (2.28) for x P 2n`1SpBqz2nSpBq for all n ě 6.

Fix an n ě 6. For x P 2n`1SpBqz2nSpBq, |S´1x| ď 2n`1{2 and so p2n`1q´E ď p1 `

|S´1x|q´E. Therefore to prove (2.28) it is enough to prove

ż

10SpBp0,1qq

1

|x ´ y|Ep1 ` |x2 ´ y2|qE
dy ď 120E2´nE

for all x P 2n`1SpBqz2nSpBq. A change of variables shows that we need to prove

ż

x´10SpBp0,1qq

1

|y|Ep1 ` |y2|qE
dy ď 120E2´nE (2.29)

for all x P 2n`1SpBp0, 1qqz2nSpBp0, 1qq.
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Fix an x P 2n`1SpBp0, 1qqz2nSpBp0, 1qq. First suppose |x2| ě 22n{E. If y P x ´

10SpBp0, 1qq, then y “ Sa ´ Sb for some a P Bp0, 2n`1qzBp0, 2nq and b P Bp0, 10q. Since

}S´1} ď 2}S´1}max ď 4, we first have

|y| “ |Spa ´ bq| ě }S´1}´1|a ´ b| ě
1

4
|a ´ b| ě

1

4
p2n´1 ´ 5

?
2q ě

1

20
2n.

Next, y2 “ x2 ´ pSbq2 “ x2 ´ b2 and b2 P r´5, 5s and so

1 ` |x2|

1 ` |y2|
“

1 ` |x2|

1 ` |x2 ´ b2|
ď 1 ` |b2| ď 6.

Therefore

ż

x´10SpBp0,1qq

1

|y|Ep1 ` |y2|qE
dy ď p

6

1 ` |x2|
qE

ż

|y|ě2n{20

1

|y|E
dy ď 120E 22n

p1 ` |x2|qE
2´nE

and since |x2| ě 22n{E, we have proven (2.29) in this case.

Next, suppose |x2| ă 22n{E. In this case, we claim that y P x ´ 10SpBp0, 1qq satisfies

|y| Á 2nσ´1{2 and so we can bound the integral trivially. By assumption, |pS´1xq2| “ |x2| ă

22n{E. Since S´1x P 2n`1Bp0, 1qz2nBp0, 1q, |S´1x| ě 2n´1. Thus

|pS´1xq1| ě 2n´1 ´ 22n{E.

Since pS´1xq1 “ σ1{2x1 ´ 2ax2, it follows that

|x1| ě σ´1{2p2n´1 ´ 3 ¨ 22n{Eq.

As in the previous paragraph, write y “ x ´ Sb for some b P Bp0, 10q. Then

|y| ě |y1| “ |x1| ´ σ´1{2|b1 ` 2ab2| ě σ´1{2p2n´1 ´ 3 ¨ 22n{E ´ 15q ě
1

5
σ´1{22n

where the last inequality we have used that n ě 6 and E ě 100. Thus in the case when

|x2| ă 22n{E,

ż

x´10SpBp0,1qq

1

|y|Ep1 ` |y2|qE
dy ď p100σ´1{2q5EσE{22´nE ď 6E2´nE

which proves (2.29) in this case. This completes the proof of Lemma 2.2.18.
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Remark 2.2.19. The rw∆,E on the left hand side of (2.27) was needed to make sure the E

on both sides stays the same which is needed when we iterate later (for example in Lemma

2.5.2). If the rw∆,E is replaced with w∆,E, then by the same method as the proof above, one

can obtain
ř

∆PB w∆,E ÀE wB,E´2 ˝ T´1. In this case, some loss in E must occur since we

can consider the analogue of (2.28) and (2.29) and let a “ 0 and x “ p0, 2n´1q.

2.2.4 Bernstein’s inequality

Another immediate application of Proposition 2.2.11 is Bernstein’s inequality (also called

reverse Hölder in [BD17]). This should be compared with (2.3) at the beginning of Section

2.2. Our proof of Lemma 2.2.20 is the same as that of Corollary 4.3 of [BD17] except we

make effective all the implicit constants.

Lemma 2.2.20. Let 1 ď p ă q ď 8, E ě 100, J Ă r0, 1s with ℓpJq “ 1{R and B Ă R2 a

square with side length R ě 1. If q ă 8, then

}EJg}Lq
#p rwB,Eq ď E23E}EJg}Lp

#p rwB,Ep{qq. (2.30)

If q “ 8, then

sup
xPB

|pEJgqpxq| ď E23E}EJg}Lp
#p rwB,Eq. (2.31)

Proof. Let η be as in Corollary 2.2.9. Since ηB ě 1B,

}EJg}LqpBq ď }ηBEJg}LqpR2q.

Let θpxq “ Ψp2x1qΨp2x2q where Ψ is defined as in Lemma 2.2.10. Then θ “ 1 on Bp0, 1q

and vanishes outside Bp0, 3q. Since xηB is supported on Bp0, 1{Rq, the Fourier transform of

ηBEJg is supported in some square S with side length 10{R. Then we have the following

self-replicating formula

ηBEJg “ pηBEJgq ˚ qθS.

Young’s inequality then gives

}ηBEJg}LqpR2q ď }ηBEJg}LppR2q} qθS}LrpR2q “ } qθS}LrpR2q}EJg}LppηpBq
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where 1{q “ 1{p ` 1{r ´ 1 (since q ą p, we have r ą 1 and qθS P Lr). Since qθpξq “

p1{4qqΨpξ1{2qqΨpξ2{2q, }qθ}LrpR2q “ 41{r´1}qΨ}2LrpRq, applying Lemma 2.2.10 gives that

} qθS}LrpR2q “ p10{Rq2´2{r}qθ}LrpR2q “ 251{r1

R´2{r1

}qΨ}2LrpRq ď 251{r1

R´2{r1

E10E.

Therefore

}EJg}LqpBq ď 251{r1

E10ER´2{r1

}EJg}LppηpBq (2.32)

for all squares B Ă R2 with side length R. If q ă 8, applying Proposition 2.2.11 and then

using that q ą p ě 1 and E ě 100 proves (2.30).

If q “ 8, then (2.32) and Corollary 2.2.9 implies that

sup
xPB

|pEJgqpxq| ď 251{pE22ER´2{p}EJg}Lpp rwB,Eq.

Since E ě 100, (2.31) then follows. This completes the proof of Lemma 2.2.20.

2.2.5 l2L2 decoupling

We now prove l2L2 decoupling which will follow from almost orthogonality. This proof is

the same as that of Proposition 6.1 of [BD17] except we once again make explicit all implicit

constants.

Lemma 2.2.21. Let J Ă r0, 1s be an interval of length ě 1{R such that |J |R P N. Then for

E ě 100 and each square B Ă R2 with side length R,

}EJg}2L2p rwB,Eq ď E13E
ÿ

J 1PP1{RpJq

}EJ 1g}2L2p rwB,Eq.

Proof. Let η be as in Corollary 2.2.9. Since η2B ě 1B,

}EJg}2L2pBq ď }EJg}2L2pη2Bq “ }ηBEJg}2L2pR2q “ }
ÿ

J 1PP1{RpJq

ηBEJ 1g}2L2pR2q.

Note that the Fourier transform of ηBEJ 1g is supported in the 1{R-neighborhood of the piece

of parabola above J 1. Therefore ηBEJ 1g and ηBEJ2g have disjoint Fourier support if J 1 and
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J2 are separated by ě 2 intervals. Applying this and Plancherel gives

}
ÿ

J 1PP1{RpJq

ηBEJ 1g}2L2pR2q

ď
ÿ

J 1
1PP1{RpJq

ÿ

J 1
2PP1{RpJq

dpcJ1
1
,cJ1

2
qď2{R

}ηBEJ 1
1
g}L2}ηBEJ 1

2
g}L2

ď p
ÿ

J 1
1PP1{RpJq

}ηBEJ 1
1
g}2L2q1{2p

ÿ

J 1
1PP1{RpJq

p
ÿ

J 1
2PP1{RpJq

dpcJ1
1
,cJ1

2
qď2{R

}ηBEJ 1
2
g}L2q2q1{2

ď
?

5p
ÿ

J 1
1PP1{RpJq

}ηBEJ 1
1
g}2L2q1{2p

ÿ

J 1
1PP1{RpJq

ÿ

J 1
2PP1{RpJq

dpcJ1
1
,cJ1

2
qď2{R

}ηBEJ 1
2
g}2L2q1{2

ď 5
ÿ

J 1PP1{RpJq

}EJ 1g}2L2pη2Bq.

Thus we have shown that

}EJg}L2pBq ď
?

5p
ÿ

J 1PP1{RpJq

}EJ 1g}2L2pη2Bqq
1{2

for all squares B Ă R2 with side length R. Applying Proposition 2.2.11 then completes the

proof of Lemma 2.2.21.

Remark 2.2.22. To modify the weights wB and rwB, the main properties the weights need to

satisfy are Lemma 2.2.1 and Lemma 2.2.18. The other lemmas such as Lemmas 2.2.5, 2.2.6,

and 2.2.16 are also desired, but these should be easy to satisfy.

2.3 Equivalence of local decoupling constants

Recall that rDp,Epδq is defined similarly as Dp,Epδq except instead of wB,E we use rwB,E. The

main goal of this section is to prove that

Dp,Epδq „E
rDp,Epδq (2.33)

for 2 ď p ď 6, E ě 100, and δ P N´2. This is proven in Proposition 2.3.11. This equivalence

is a consequence of a larger equivalence of a collection of local decoupling constants. This
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section is similar to Remark 5.2 of [BD15] and may be of independent interest since it shows

that an array of slightly different local decoupling constants are essentially the same size.

The restriction p ď 6 is very mild and can be removed with a bit more care (at the cost of

introducing an implied constant that depends on p). However since 2 ď p ď 6 is precisely

the range we need, we restrict to this range. The appearance of the weight rwB in parabolic

rescaling (arising from Lemma 2.2.18) means that (2.33) will play an essential part of the

argument (for example in Proposition 2.4.1, Lemma 2.5.2, and Lemma 2.8.11).

Let fR denote the Fourier restriction of f to R. For each J “ rnJδ
1{2, pnJ ` 1qδ1{2s P

Pδ1{2pr0, 1sq, let

θJ :“ tps, LJpsq ` tq : nJδ
1{2 ď s ď pnJ ` 1qδ1{2,´5δ ď t ď 5δu

where

LJpsq :“ p2nJ ` 1qδ1{2s ´ nJpnJ ` 1qδ

and 0 ď nJ ď δ´1{2 ´ 1. Here θJ is a parallelogram that has height 10δ and has base parallel

to the straight line connecting pnJδ
1{2, n2

Jδq and ppnJ ` 1qδ1{2, pnJ ` 1q2δq. We note that for

ξ P θJ ,

|ξ2 ´ LJpξ1q| ď 5δ (2.34)

and

|LJpξ1q ´ ξ21 | ď δ{4. (2.35)

Boundedness of the Hilbert transform implies that Fourier restriction to θJ is a bounded

operator from Lp Ñ Lp with operator norm bounded independent of J , we make this explicit

with the following lemma.

Lemma 2.3.1. For each J P Pδ1{2pr0, 1sq and 2 ď p ă 8, }fθJ }p ď Cp}f}p with Cp :“

p1
2

` 1
2

cotp π
2p

qq4.

Proof. Fix J P Pδ1{2pr0, 1sq. Let R denote the operator defined by xRf “ pf1θJ . Let S denote

the operator defined by xSf “ pf1r0,8q. Each θJ is the intersection of four half planes in R2.
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Since multiplier norms are unchanged after rotation and translation,

}R}pÑp ď }S}4pÑp. (2.36)

Note that here we have also used that the operator norm of Fourier restriction to a half

plane is bounded above by }S}pÑp which follows from Fubini’s Theorem. If H denotes the

Hilbert transform, observe that pfpξq ` iyHfpξq “ 2 pfpξq1r0,8qpξq almost everywhere. Since

2 ď p ă 8, }H}pÑp ď cotp π
2p

q. Therefore

}S}pÑp ď
1

2
`

1

2
cotp

π

2p
q.

Inserting this into (2.36) then completes the proof of Lemma 2.3.1.

Remark 2.3.2. One can think of θJ as a polygonal approximation of the set tps, s2 ` tq :

s P J, |t| ď δu. The reason why we use θJ instead is because Fourier restriction to the

aforementioned set is not bounded in Lp for p ‰ 2.

To prove (2.33), we introduce two more local decoupling constants and show that all four

decoupling constants are equivalent.

Definition 2.3.3. Let δ P N´2, 2 ď p ă 8 and E ě 1. Let η be as in Corollary 2.2.9. Let

Dppδq be the smallest constant such that

}Er0,1sg}LppBq ď Dppδqp
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppηBqq
1{2

for all g : r0, 1s Ñ C and all squares B with side length δ´1. Let pDp,Epδq be the smallest

constant such that

}f}LppBq ď pDp,Epδqp
ÿ

JPP
δ1{2 pr0,1sq

}fθJ }2LppwB,Eqq
1{2

for all f Fourier supported in Θ “
Ť

JPP
δ1{2 pr0,1sq θJ and all squares B with side length δ´1.

From our definitions of wB, rwB, and ηB, observe that

1B ď 2EwB,E, 1B ď 4E
rwB,E, 1B ď ηB.
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Furthermore, note that by the triangle inequality followed by Cauchy-Schwarz, all four local

decoupling constants we have defined are ÀE,p δ
´1{4. Taking a specific g : r0, 1s Ñ C or a

specific f with Fourier support in Θ and using Proposition 2.2.11 shows that Dp,Epδq, rDp,Epδq,

and pDp,Epδq are ÁE,p 1. We make this precise with pDp,E which is the only decoupling constant

we need an explicit lower bound.

Remark 2.3.4. Another consequence of the equivalence of the four local decoupling constants

is that Dppδq ÁE,p 1 but this is not immediate from the definition.

Lemma 2.3.5. For p ě 2 and E ě 10, pDp,Epδq ě 12´E{p.

Proof. Let pD1
p,Epδq be the smallest constant such that

}f}LppwB,Eq ď pD1
p,Epδqp

ÿ

JPP
δ1{2 pr0,1sq

}fθJ }2LppwB,Eqq
1{2

for all f Fourier supported in Θ and all squares B with side length δ´1. Proposition 2.2.11

implies that pD1
p,Epδq ď 12E{p

pDp,Epδq. From the definition,

pD1
p,Epδq “ sup

f,B

}f}LppwB,Eq

p
ř

JPP
δ1{2 pr0,1sq }fθJ }2LppwB,Eq

q1{2
(2.37)

where the sup is taken over the f and B as mentioned at the beginning of this proof. Taking

an f with Fourier support on θr0,δ1{2s shows that pD1
p,Epδq ě 1. Here note that we needed

the numerator of the right hand side of (2.37) to be LppwB,Eq rather than LppBq. Therefore

pDp,Epδq ě 12´E{p which completes the proof of Lemma 2.3.5.

Remark 2.3.6. The decoupling constants Dp,Epδq and rDp,Epδq are useful because wB ˚wB „E

R2wB and similarly for rwB. This allows us to use Proposition 2.2.11 to upgrade from un-

weighted to weighted estimates which is an important part of the argument. The same

cannot be said with the Schwartz weight decoupling constant Dppδq since we do not nec-

essarily have ηB ˚ ηB „ R2ηB. This useful convolution property of the wB and rwB makes

Dp,Epδq and rDp,Epδq ideal for iterative parts of the argument.

On the other hand, the decoupling constants Dppδq and pDp,Epδq are more useful for

Fourier type arguments since the Fourier transform of wB and rwB are of sinc type and so
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do not work well with Fourier arguments. One corollary of the results proven in this section

is that all four local decoupling constants are essentially equivalent so we can easily swap

between them.

To prove (2.33) we will prove the chain of inequalities

Dp,Epδq ď rDp,Epδq ÀE Dppδq ÀE
pDp,Gpδq ÀE Dp,Epδq (2.38)

for 2 ď p ď 6 and some G ă E we will make explicit in our proof.

The first two inequalities follow from that ηB ÀE wB À rwB. The third inequality follows

from boundedness of the Hilbert transform (Lemma 2.3.1) and the last inequality will follow

from adapting the proof of Theorem 5.1 in [BD17] to our case and is the most technical.

Lemma 2.3.7. For E ě 100 and 2 ď p ă 8,

Dp,Epδq ď rDp,Epδq ď E12E{pDppδq.

Proof. The first inequality follows from the observation that rwB ď wB. The second inequality

follows from Corollary 2.2.9, in particular, ηB ď E12E
rwB,E. This completes the proof of

Lemma 2.3.7.

As mentioned above, the third inequality in (2.38) comes from boundedness of the Hilbert

transform. In particular, we need the following lemma. Because Dp does not depend on E,

this lemma allows us to “reset” the E parameter in Dp,E. This is useful because going up in

the E parameter of Dp,E is easy but going down is much harder.

Lemma 2.3.8. For δ P N´2, E ě 1, and 2 ď p ă 8, we have

Dppδq ď p3Cp ` 5 ¨ 12E{pq pDp,Epδq

where Cp is as defined in Lemma 2.3.1.

Proof. We first assume that δ P N´2 and δ ď 1{36. Fix arbitrary g : r0, 1s Ñ C and square

B with side length δ´1. We can write

g “ g1r0,δ1{2qYp1´δ1{2,1s ` g1rδ1{2,1´δ1{2s :“ g1 ` g2.
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Then

}Er0,1sg}LppBq ď }Er0,1sg1}LppBq ` }Er0,1sg2}LppBq.

Using the support of g1, the triangle inequality, 1B ď ηB, and Lemma 2.3.5, we have

}Er0,1sg1}LppBq ď }Er0,δ1{2sg}LppBq ` }Er1´δ1{2,1sg}LppBq

ď 2 ¨ 12E{p
pDp,Epδqp

ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppηBqq
1{2. (2.39)

Since g2 is supported in rδ1{2, 1´δ1{2s, the Fourier transform of ηBEr0,1sg2 “ ηBErδ1{2,1´δ1{2sg

is supported in a δ-neighborhood of this interval which is contained in Θ. Therefore

}ηBEr0,1sg2}LppBq ď pDp,Epδqp
ÿ

JPP
δ1{2 pr0,1sq

}pηBEr0,1sg2qθJ }2LppwB,Eqq
1{2. (2.40)

Note that since g2 “ g1rδ1{2,1´δ1{2s,

pηBEr0,1sg2qθJ “ pηBErδ1{2,1´δ1{2sgqθJ

“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pηBEJrgqθJ if J “ r0, δ1{2s

pηBEJg ` ηBEJrgqθJ if J “ rδ1{2, 2δ1{2s

pηBEJℓg ` ηBEJg ` ηBEJrgqθJ if J P Pδ1{2pr2δ1{2, 1 ´ 2δ1{2sq

pηBEJℓg ` ηBEJgqθJ if J “ r1 ´ 2δ1{2, 1 ´ δ1{2s

pηBEJℓgqθJ if J “ r1 ´ δ1{2, 1s.

where Jℓ and Jr denote the intervals to the left and right of J . Lemma 2.3.1 gives that for

J P Pδ1{2pr2δ1{2, 1 ´ 2δ1{2sq,

}pηBEr0,1sg2qθJ }LppwB,Eq ď
ÿ

J 1PtJℓ,J,Jru

}pηBEJ 1gqθJ }p ď Cp

ÿ

J 1PtJℓ,J,Jru

}EJ 1g}LppηBq.

Similarly we have

}pηBEr0,1sg2qθ
r0,δ1{2s

}LppwB,Eq ď Cp}Erδ1{2,2δ1{2sg}LppηBq

}pηBEr0,1sg2qθ
r1´δ1{2,1s

}LppwB,Eq ď Cp}Er1´2δ1{2,1´δ1{2sg}LppηBq

}pηBEr0,1sg2qθ
rδ1{2,2δ1{2s

}LppwB,Eq ď Cpp}Erδ1{2,2δ1{2sg}LppηBq ` }Er2δ1{2,3δ1{2sg}LppηBqq
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and

}pηBEr0,1sg2qθ
r1´2δ1{2,1´δ1{2s

}LppwB,Eq

ď Cpp}Er1´3δ1{2,1´2δ1{2sg}LppηBq ` }Er1´2δ1{2,1´δ1{2sg}LppηBqq

where here we have used that δ ď 1{36. Applying Cauchy-Schwarz and using the above four

inequalities gives that

ÿ

JPP
δ1{2 pr0,1sq

}pηBEr0,1sg2qθJ }2LppwB,Eq ď 9C2
p

ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppηBq

Combining this with (2.40) and 1B ď ηB gives

}Er0,1sg2}LppBq ď 3Cp
pDp,Epδqp

ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppηBqq
1{2. (2.41)

Combining (2.39) and (2.41) proves that

Dppδq ď p3Cp ` 2 ¨ 12E{pq pDp,Epδq (2.42)

for all δ P N´2 and δ ď 1{36.

For δ “ 1, 1{4, 1{9, 1{16, and 1{25, we resort to the trivial bound. Proceeding as in the

proof of (2.39) shows that for each such δ “ 1{i2, i “ 1, 2, . . . , 5, we have

Dppδq ď 5 ¨ 12E{p
pDp,Epδq.

Combining this with (2.42) then completes the proof of Lemma 2.3.8.

Remark 2.3.9. The reason why we split g up into g1 and g2 in proof above is because ηBEr0,1sg

is Fourier supported in a set that is slightly bigger than Θ.

The last inequality in (2.38) is the most technical of the four inequalities. The proof is

similar to that of Theorem 5.1 in [BD17] however our proof is more complicated since our

definition of pDp,Epδq uses Fourier restriction to the parallelogram θJ (to take advantage of

Lp boundedness) rather than Fourier restriction to a δ-tube of a piece of parabola. We also

want explicit constants and so we will need to spend some time to extract explicit constants

from taking a large number of derivatives. We state our lemma below but due to the length

of its proof, we defer the proof to the end of this section.
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To simplify some constants, we also restrict to the range when 2 ď p ď 6 since this is the

range we care about. The restriction that p ď 6 is only used once in the proof of Lemma

2.3.10 (in particular at the end of the proof of Lemma 2.3.16) and is a very mild assumption

which can be removed with a bit more care.

Lemma 2.3.10. For E ě 10 and 2 ď p ď 6,

pDp,Epδq ď E60EDp,2E`7pδq.

Since wB,E2 ď wB,E1 for E1 ď E2, Dp,E1pδq ď Dp,E2pδq and so we can increase the E

parameter at no cost. Combining Lemmas 2.3.7-2.3.10 proves the following result which

shows (2.38) and hence (2.33).

Proposition 2.3.11. For δ P N´2, E ě 100, and 2 ď p ď 6, we have

Dp,Epδq ď rDp,Epδq ď E6EDppδq ď E7E
pDp,Gpδq ď E70EDp,Epδq

where G “ tpE ´ 7q{2u.

Proof. Fix arbitrary integer E ě 100. Using Lemma 2.3.7 and that 2 ď p ď 6, we have

Dp,Epδq ď rDp,Epδq ď E6EDppδq.

Now we use Lemma 2.3.8 to reset our E. Since E ě 100, G ą 10. From Lemmas 2.3.8 and

2.3.10,

E6EDppδq ď E7E
pDp,Gpδq ď E7EG60GDp,2G`7pδq

where in the first inequality we have used that Cp ď 32 for 2 ď p ď 6. Increasing 2G ` 7 to

E bounds the above by E70EDp,Epδq. This completes the proof of Proposition 2.3.11.

2.3.1 Proof of Lemma 2.3.10

This proof is similar to the proof of Theorem 5.1 in [BD17]. Our goal is to show that if f is

Fourier supported on Θ “
Ť

JPP
δ1{2 pr0,1sq θJ , then

}f}LppBq ÀE Dp,2E`7pδqp
ÿ

JPP
δ1{2 pr0,1sq

}fθJ }2LppwB,Eqq
1{2
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for all squares B with side length δ´1 and some implied constant that will be made explicit

in our proof. It suffices to show that this is true in the case when B is centered at the origin.

Since f is Fourier supported on Θ, for x P B,

fpxq “
ÿ

JPP
δ1{2 pr0,1sq

ż

θJ

pfpξqepξ ¨ xq dξ

“
ÿ

JPP
δ1{2 pr0,1sq

ż

Jˆr´5δ,5δs

pfps, LJpsq ` tqepsx1 ` s2x2qeppLJpsq ´ s2qx2qeptx2q ds dt.

Note that here both t and LJpsq ´ s2 are of size Opδq and x2 is of size Opδ´1q, so the

contribution from eppLJpsq ´ s2qx2q and eptx2q should be negligible. We make this rigorous.

Since

eptx2q “
ÿ

jě0

p2πqj

j!
p
2ix2
δ´1

qjp
δ´1t

2
qj

and

eppLJpsq ´ s2qx2q “
ÿ

kě0

p2πqk

k!
p
2ix2
δ´1

qkp
δ´1pLJpsq ´ s2q

2
qk,

it follows that for x P B,

|fpxq| ď
ÿ

j,kě0

p2πqkp2πqj

k!j!
|

ÿ

JPP
δ1{2 pr0,1sq

pEJgj,kqpxq|

where gj,k : r0, 1s Ñ C is defined pointwise almost everywhere piecewise on each J P

Pδ1{2pr0, 1sq by

gj,kpsq “ p
δ´1pLJpsq ´ s2q

2
qk

ż 5δ

´5δ

pfps, LJpsq ` tqp
δ´1t

2
qj dt

for s P J . Let F :“ 2E ` 7. We then have

}f}LppBq ď Dp,F pδq
ÿ

j,kě0

p2πqkp2πqj

k!j!
p

ÿ

JPP
δ1{2 pr0,1sq

}EJgj,k}2LppwB,F qq
1{2. (2.43)

It then remains to prove that

}EJgj,k}LppwB,F q ÀE exppOpjq ` Opkqq}fθJ }LppwB,Eq (2.44)

for some implied constants that will be made explicit in our proof. We first claim it suffices

to only prove (2.44) when J “ r0, δ1{2s.
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Lemma 2.3.12. Suppose we knew that

}Er0,δ1{2sp
δ´1pδ1{2s ´ s2q

2
qk

ż 5δ

´5δ

pfps, δ1{2s ` tqp
δ´1t

2
qj dt}LppwB,F q

ď C}fθ
r0,δ1{2s

}LppwB,Eq

(2.45)

for some constant C. Then

}ErnJδ1{2,pnJ`1qδ1{2sp
δ´1pLJpsq ´ s2q

2
qk

ż 5δ

´5δ

pfps, LJpsq ` tqp
δ´1t

2
qj dt}LppwB,F q

ď 90pE`F q{pC}fθ
rnJδ1{2,pnJ`1qδ1{2s

}LppwB,Eq.

(2.46)

Remark 2.3.13. Here s is a dummy variable, so EJgpsq means the extension operator applied

to the function gpsq creating the function pEJgqpxq.

Proof. This proof is essentially a change of variables. The idea is to translate θrnJ ,pnJ`1qδ1{2s

to the origin and apply a shear matrix to turn it into θr0,δ1{2s. Then apply (2.45) and finally

undo the shear transformation. The weights wB are preserved from (2.45) because of Lemma

2.2.16.

We have
ˆ

ErnJδ1{2,pnJ`1qδ1{2sp
δ´1pLJpsq ´ s2q

2
qk

ż 5δ

´5δ

pfps, LJpsq ` tqp
δ´1t

2
qj dt

˙

pxq

“

ż

rnJδ1{2,pnJ`1qδ1{2s

p
δ´1pLJpsq ´ s2q

2
qk

ż 5δ

´5δ

pfps, LJpsq ` tqp
δ´1t

2
qj dt epsx1 ` s2x2q ds.

The change of variables u “ s ´ nJδ
1{2 and the observation that

LJpu ` nJδ
1{2q ´ pu ` nJδ

1{2q2 “ δ1{2u ´ u2

gives that the above is equal in absolute value to
ż

r0,δ1{2s

p
δ´1pδ1{2u ´ u2q

2
qk

ż 5δ

´5δ

pfpu ` nJδ
1{2,LJpu ` nJδ

1{2q ` tq

ˆ p
δ´1t

2
qjepupx1 ` 2nJδ

1{2x2q ` u2x2q du.

Since |2nJδ
1{2| ď 2, after a change of variables and an application of Lemma 2.2.16, the right

hand side of (2.46) is bounded above by

90F {p}Er0,δ1{2sp
δ´1pδ1{2s ´ s2q

2
qkˆ

ż 5δ

´5δ

pfps ` nJδ
1{2, LJps ` nJδ

1{2q ` tqp
δ´1t

2
qj dt}LppwB,F q

(2.47)
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Observe that

LJps ` nJδ
1{2q “ n2

Jδ ` p2nJ ` 1qδ1{2s.

Let

gJpxq :“ fpxqe´2πix¨pnJδ
1{2,n2

Jδq.

Then

pfps ` nJδ
1{2, LJps ` nJδ

1{2q ` tq “ pgJps, p2nJ ` 1qδ1{2s ` tq.

This implies that

Er0,δ1{2sp
δ´1pδ1{2s ´ s2q

2
qk

ż 5δ

´5δ

pfps ` nJδ
1{2, LJps ` nJδ

1{2q ` tqp
δ´1t

2
qj dt

“

ż δ1{2

0

ż 5δ

´5δ

p
δ´1pδ1{2s ´ s2q

2
qk pgJps, p2nJ ` 1qδ1{2s ` tqp

δ´1t

2
qjepsx1 ` s2x2q dt ds

which is equal to

ż

θJ´pnJδ1{2,n2
Jδq

p
δ´1pδ1{2ξ1 ´ ξ21q

2
qk pgJpξqp

δ´1pξ2 ´ p2nJ ` 1qδ1{2ξ1q

2
qjepξ1x1 ` ξ21x2q dξ.

(2.48)

Let

TJ “

¨

˝

1 0

´2nJδ
1{2 1

˛

‚.

Notice that TJ sends θJ ´ pnJδ
1{2, n2

Jδq to θr0,δ1{2s. Letting µ “ TJξ gives that (2.48) is equal

to

ż

θ
r0,δ1{2s

p
δ´1pδ1{2µ1 ´ µ2

1q

2
qk pgJpT´1

J µqp
δ´1pµ2 ´ δ1{2µ1q

2
qjepµ1x1 ` µ2

1x2q dµ

“

ż

θ
r0,δ1{2s

p
δ´1pδ1{2µ1 ´ µ2

1q

2
qk {gJ ˝ T t

Jpµqp
δ´1pµ2 ´ δ1{2µ1q

2
qjepµ1x1 ` µ2

1x2q dµ

“

ż δ1{2

0

ż 5δ

´5δ

p
δ´1pδ1{2s ´ s2q

2
qk {gJ ˝ T t

Jps, δ1{2s ` tqp
δ´1t

2
qj dt epsx1 ` s2x2q ds.

Inserting the above into (2.47) and applying (2.45) shows that the left hand side of (2.46) is

bounded by

90F {pC}pgJ ˝ T t
Jqθ

r0,δ1{2s
}LppwB,Eq. (2.49)
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By Lemma 2.2.16 and the definitions of TJ and gJ , we have

}pgJ˝T t
Jqθ

r0,δ1{2s
}
p
LppwB,Eq

“

ż

R2

ˇ

ˇ

ˇ

ˇ

ż

R2

pgJpT´1
J ξq1θ

r0,δ1{2s
pξqe2πix¨ξ dξ

ˇ

ˇ

ˇ

ˇ

p

wB,Epxq dx

“

ż

R2

ˇ

ˇ

ˇ

ˇ

ż

R2

pgJpµq1θ
r0,δ1{2s

pTJµqe2πix¨µ dµ

ˇ

ˇ

ˇ

ˇ

p

wB,EpT´t
J xq dx

“

ż

R2

ˇ

ˇ

ˇ

ˇ

ż

R2

pfpµ ` pnJδ
1{2, n2

Jδqq1θJ pµ ` pnJδ
1{2, n2

Jδqqe2πix¨µ dµ

ˇ

ˇ

ˇ

ˇ

p

wB,EpT´t
J xq dx

ď 90E}fθJ }
p
LppwB,Eq

.

Inserting this into (2.49) completes the proof of Lemma 2.3.12.

We now prove (2.44) when J “ r0, δ1{2s, in other words we will prove (2.45). Corollary

2.2.4 implies that it is enough to show that
ż

R2

}Er0,δ1{2sgj,k}
p
Lp
#pBpy,δ´1qq

wB,F pyq dy ÀE exppppOpjq ` Opkqqq}fθ
r0,δ1{2s

}
p
LppwB,Eq

. (2.50)

We have

pEr0,δ1{2sqgj,kpxq

“

ż

θ
r0,δ1{2s

pfpξqp
δ´1pδ1{2ξ1 ´ ξ21q

2
qkp

δ´1pξ2 ´ δ1{2ξ1q

2
qjeppξ21 ´ ξ2qx2qepξ ¨ xq dξ.

For x P Bpy, δ´1q, since

eppξ21 ´ ξ2qx2q “ eppξ21 ´ ξ2qy2qeppξ21 ´ ξ2qpx2 ´ y2qq,

a Taylor expansion of eppξ21 ´ ξ2qpx2 ´ y2qq gives that for x P Bpy, δ´1q,

|pEr0,δ1{2sgj,kqpxq| ď
ÿ

ℓě0

p2πqℓ

ℓ!

ˇ

ˇ

ˇ

ˇ

ż

θ
r0,δ1{2s

pfpξqCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ

ˇ

ˇ

ˇ

ˇ

(2.51)

where

Cj,k,ℓpξq :“ p
δ´1pδ1{2ξ1 ´ ξ21q

2
qkp

δ´1pξ2 ´ δ1{2ξ1q

2
qjp
δ´1pξ21 ´ ξ2q

2
qℓ.

Let Ψ be as in Lemma 2.2.10 and so Ψ P C8
c pRq, Ψ “ 1 on r´1, 1s and vanishes outside

r´3, 3s. For positive integer k and λ ą 0, let

Mk,λpxq :“ xkΨpx{λq.
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Because the integral on the right hand side of (2.51) is restricted to θr0,δ1{2s, we can insert

some Schwartz cutoffs into Cj,k,ℓ. From (2.34) and (2.35), for ξ P θr0,δ1{2s,

δ´1

2
|δ1{2ξ1 ´ ξ21 | ď

1

8
,

δ´1

2
|ξ2 ´ δ1{2ξ1| ď

5

2
,

δ´1

2
|ξ21 ´ ξ2| ď

21

8
.

Furthermore, for ξ P θr0,δ1{2s, |ξ1| ď δ1{2 and |ξ2| ď 6δ. Let

F pξq :“ Ψpδ´1{2ξ1qΨp
δ´1ξ2

6
q,

M1pξ1q :“ Mk,1{8p
δ´1pδ1{2ξ1 ´ ξ21q

2
q,

M2pξq :“ Mj,5{2p
δ´1pξ2 ´ δ1{2ξ1q

2
q,

M3pξq :“ Mℓ,21{8p
δ´1pξ21 ´ ξ2q

2
q,

(2.52)

and

rCj,k,ℓpξq :“ F pξqM1pξ1qM2pξqM3pξq.

Thus we can replace the Cj,k,ℓ on the right hand side of (2.51) with rCj,k,ℓ. It then remains

to prove that
ż

R2

›

›

›

›

ż

θ
r0,δ1{2s

pfpξq rCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ

›

›

›

›

p

Lp
#pBpy,δ´1qq

wB,F pyq dy

ÀE exppppOpjq ` Opkq ` Opℓqqq}fθ
r0,δ1{2s

}
p
LppwB,Eq

.

(2.53)

For each fixed j, k, ℓ, y, let

mpξq :“ epξ21y2q rCj,k,ℓpξq “ epξ21y2qM1pξ1qM2pξqM3pξqF pξq. (2.54)

Fix arbitrary y P R2. Therefore
ż

θ
r0,δ1{2s

pfpξq rCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ

“

ż

R2

{fθ
r0,δ1{2s

pξqmpξqepξ1x1 ` ξ2px2 ´ y2qq dξ

“ pfθ
r0,δ1{2s

˚ qmqpx1, x2 ´ y2q.

This implies
›

›

›

›

ż

θ
r0,δ1{2s

pfpξq rCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ

›

›

›

›

p

Lp
#pBpy,δ´1qq

“ δ2
ż

R2

|fθ
r0,δ1{2s

˚ qm|ppxq1Bpx1 ´ y1, x2q dx.
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Hölder’s inequality implies that

|fθ
r0,δ1{2s

˚ qm|p ď p|fθ
r0,δ1{2s

|p ˚ | qm|q} qm}
p´1
L1 .

Note that the L1 norm on the right hand side depends on y since qm depends on y. To show

(2.53), it is enough to show that for all z P R2,

δ2
ż

R2

ż

R2

| qm|px ´ zq1Bpx1 ´ y1, x2q} qm}
p´1
L1 wB,F pyq dx dy

ÀE exppppOpjq ` Opkq ` OpℓqqqwB,Epzq.

(2.55)

We claim that for integers a, b ě 0,

}Ba
ξ1

Bb
ξ2
m}L8 ď Cpa, bqpδ´1{2 ` δ1{2|y2|q

aδ´b (2.56)

where

Cpa, bq “ 12540a3b15j3k16ℓa7ab2bpa ` bq!4pa ` 1q5pb ` 1q3.

The proof of (2.56) is deferred to the end of this section. The calculation is straightforward

but rather tedious. With (2.56), integration by parts gives the following lemma.

Lemma 2.3.14. For a, b ě 0, we have

| qmpxq| ď 2a2b216Cpa, bqpδ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp1 `

|x2|

δ´1
q´bq.

Proof. Note that for |x| ď 1, 1 ď 2{p1 ` |x|q and for |x| ě 1, 1{|x| ď 2{p1 ` |x|q. There are

four regions to consider.

First consider the case when |x1| ą δ´1{2 ` δ1{2|y2| and |x2| ą δ´1. Since m is supported

in a 6δ1{2 ˆ 36δ rectangle centered at the origin, integration by parts gives that

ˇ

ˇ

ˇ

ˇ

ż

R2

mpξqe2πipx1ξ1`x2ξ2q dξ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R2

mpξq
1

p2πix1qap2πix2qb
Ba
ξ1

Bb
ξ2
e2πipx1ξ1`x2ξ2q dξ

ˇ

ˇ

ˇ

ˇ

ď
216

p2π|x1|qap2π|x2|qb
Cpa, bqpδ´1{2 ` δ1{2|y2|q

aδ´bδ3{2

ď
216Cpa, bq

p2πqap2πqb
pδ1{2p

|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp

|x2|

δ´1
q´bq

ď
216Cpa, bq

πaπb
pδ1{2p1 `

|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp1 `

|x2|

δ´1
q´bq.
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Next consider the case when |x1| ď δ´1{2 ` δ1{2|y2| and |x2| ď δ´1. Then we just use the

trivial bound in this case. We have

ˇ

ˇ

ˇ

ˇ

ż

R2

mpξqe2πipx1ξ1`x2ξ2q dξ

ˇ

ˇ

ˇ

ˇ

ď 216Cp0, 0qδ3{2

ď 2a2b216Cp0, 0qpδ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp1 `

|x2|

δ´1
q´bq.

For the case when |x1| ď δ´1{2 ` δ1{2|y2| and |x2| ą δ´1 we integrate by parts in ξ2 but

use trivial bounds in ξ1. Thus

ˇ

ˇ

ˇ

ˇ

ż

R2

mpξqe2πipx1ξ1`x2ξ2q dξ

ˇ

ˇ

ˇ

ˇ

ď
216

p2π|x2|qb
Cp0, bqδ´bδ3{2

ď
2a216Cp0, bq

πb
pδ1{2p1 `

|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp1 `

|x2|

δ´1
q´bq.

Similarly, when |x1| ą δ´1{2 ` δ1{2|y2| and |x2| ď δ´1 we obtain

ˇ

ˇ

ˇ

ˇ

ż

R2

mpξqe2πipx1ξ1`x2ξ2q dξ

ˇ

ˇ

ˇ

ˇ

ď
2b216Cpa, 0q

πa
pδ1{2p1 `

|x1|

δ´1{2 ` δ1{2|y2|
q´aqpδp1 `

|x2|

δ´1
q´bq.

Combining the estimates in the above four cases completes the proof of Lemma 2.3.14.

In particular, taking a, b “ E ě 10 in Lemma 2.3.14 gives the following corollary.

Corollary 2.3.15. For E ě 10, let

ϕ1px1q :“ δ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´E, ϕ2px2q :“ δp1 `

|x2|

δ´1
q´E.

Then

| qmpxq| ď 15j3k16ℓE30Eϕ1px1qϕ2px2q.

We now prove (2.55). The following lemma is the only place where p ď 6 is used.

Lemma 2.3.16. For 2 ď p ď 6,

} qm}
p´1
L1 ď 15jpp´1q3kpp´1q16ℓpp´1qE30Epp´1qp1 ` δ|y2|q

5.
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Proof. From Corollary 2.3.15,

} qm}L1 ď 15j3k16ℓE30E

ż

R
ϕ1px1q dx1

ż

R
ϕ2px2q dx2.

A change of variables gives that

ż

R
ϕ1px1q dx1 “ δ1{2pδ´1{2 ` δ1{2|y2|q

ż

R
p1 ` |x1|q

´E dx1 ď 1 ` δ|y2|

and

ż

R
ϕ2px2q dx2 “

ż

R
p1 ` |x2|q´E dx2 ď 1.

Therefore

} qm}L1 ď 15j3k16ℓE30Ep1 ` δ|y2|q.

Raising both sides to the pp ´ 1q-power and then using that p ď 6 completes the proof of

the lemma.

A change of variables gives

δ2
ż

R2

| qm|px ´ zq1Bpx1 ´ y1, x2q dx “ p| qm| ˚ δ21Bqpy1 ´ z1,´z2q

and so combining this with Lemma 2.3.16 shows that the left hand side of (2.55) is bounded

above by

15jpp´1q3kpp´1q16ℓpp´1qE30Epp´1q

ż

R2

p| qm| ˚ δ21Bqpy1 ´ z1,´z2qp1 ` δ|y2|q
5wB,F pyq dy. (2.57)

Corollary 2.3.15 gives that

p| qm| ˚ δ21Bqpxq ď 15j3k16ℓE30Epϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpx1qpϕ2 ˚ δ1r´δ´1{2,δ´1{2sqpx2q.

Since 1r´δ´1{2,δ´1{2s ď 2Ewr´δ´1{2,δ´1{2s,E, Remark 2.2.3 shows

pϕ2 ˚ δ1r´δ´1{2,δ´1{2sqpx2q ď 8Eδp1 ` |x2|{δ
´1q´E.

Therefore

p| qm| ˚ δ21Bqpy1 ´ z1,´z2q ď 15j16ℓE30E8Eδp1 `
|z2|

δ´1
q´Epϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1q.
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Thus (2.57) is bounded above by

15jp3kp16ℓpE30Ep8Eˆ

δp1 `
|z2|

δ´1
q´E

ż

R2

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy.

(2.58)

The following lemma will complete the proof of (2.55).

Lemma 2.3.17. Let E ě 10 and F “ 2E ` 7, then

ż

R2

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy ď 9 ¨ 128Eδ´1p1 `

|z1|

δ´1
q´E. (2.59)

Proof. We break the left hand side of (2.59) into the sum of integrals over the regions (recall

that δ P N´2)

I :“ ty : |y2| ď δ´1u

II :“
ď

1ďkăδ´1{2

ty : kδ´1 ă |y2| ď pk ` 1qδ´1u

III :“
ď

kě0

ty : 2kδ´3{2 ă |y2| ď 2k`1δ´3{2u.

We also note that for a ě 1,

p1 `
|x|

a
q´E ď aEp1 ` |x|q´E. (2.60)

We first consider the integral over region I. When |y2| ď δ´1,

ϕ1px1q “ δ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´E ď δ1{2p1 `

|x1|

2δ´1{2
q´E ď 2Eδ1{2p1 `

|x1|

δ´1{2
q´E.

Therefore by Remark 2.2.3,

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1q ď 16Eδp1 `
|y1 ´ z1|

δ´1
q´E

and so

ż

I

pϕ1˚δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy

ď 16Eδ

ż

R2

p1 `
|y1 ´ z1|

δ´1
q´Ep1 `

|y2|

δ´1
q5p1 `

|y1|

δ´1
q´Ep1 `

|y2|

δ´1
q´E´7 dy.
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Applying Remark 2.2.3 in the y1 variable bounds this by

64Ep1 `
|z1|

δ´1
q´E

ż

R
p1 `

|y2|

δ´1
q´E´2 dy2 ď 64Eδ´1p1 `

|z1|

δ´1
q´E. (2.61)

We next consider the integral over region II. For each 1 ď k ă δ´1{2 and y such that

kδ´1 ă |y2| ď pk ` 1qδ´1, we have

ϕ1px1q “ δ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´E ď δ1{2p1 `

|x1|

3kδ´1{2
q´E ď 3Eδ1{2p1 `

|x1|

kδ´1{2
q´E.

Therefore by Remark 2.2.3,

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1q ď 24Ekδp1 `
|y1 ´ z1|

δ´1
q´E

and so

ż

II

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy

“
ÿ

1ďkăδ´1{2

ż

kδ´1ă|y2|ďpk`1qδ´1

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy

ď 96E
ÿ

1ďkăδ´1{2

kp1 `
|z1|

δ´1
q´E

ż

kδ´1ă|y2|ďpk`1qδ´1

p1 `
|y2|

δ´1
q´E´2 dy2

ď 96E
ÿ

1ďkăδ´1{2

kp1 `
|z1|

δ´1
q´E2δ´1k´E´2 ď 4 ¨ 96Eδ´1p1 `

|z1|

δ´1
q´E (2.62)

where in the last inequality we have used that E ě 10.

Finally we consider the integral over region III. For each k ě 0 and y such that 2kδ´3{2 ă

|y2| ď 2k`1δ´3{2, we have

ϕ1px1q “ δ1{2p1 `
|x1|

δ´1{2 ` δ1{2|y2|
q´E ď δ1{2p1 `

|x1|

4 ¨ 2kδ´1
q´E ď 4Eδ1{2p1 `

|x1|

2kδ´1
q´E.

Therefore by Remark 2.2.3,

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1q ď 32Eδ1{2p1 `
|y1 ´ z1|

2kδ´1
q´E
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and so

ż

III

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy

“
ÿ

kě0

ż

2kδ´3{2ă|y2|ď2k`1δ´3{2

pϕ1 ˚ δ1r´δ´1{2,δ´1{2sqpy1 ´ z1qp1 `
|y2|

δ´1
q5wB,F pyq dy

ď 32Eδ1{2ˆ

ÿ

kě0

ż

R
p1 `

|y1 ´ z1|

2kδ´1
q´Ep1 `

|y1|

δ´1
q´E dy1

ż

2kδ´3{2ă|y2|ď2k`1δ´3{2

p1 `
|y2|

δ´1
q´E´2 dy2

ď 128E
ÿ

kě0

δ´1{2p1 `
|z1|

2kδ´1
q´E2k`1δ´3{2p2kδ´1{2q´E´2

“ 128E
ÿ

kě0

δ´2`pE`2q{22k`1´kpE`2qp1 `
|z1|

2kδ´1
q´E ď 4 ¨ 128Eδp1 `

|z1|

δ´1
q´E

where in the third inequality we have used (2.60). Summing this with (2.61) and (2.62)

shows that the left hand side of (2.59) is bounded above by 9 ¨ 128Eδp1 ` |z1|{δ
´1q´E which

completes the proof of Lemma 2.3.17.

Thus Lemma 2.3.17 shows that (2.58) is bounded above by

9 ¨ 15jp3kp16ℓpE30Ep210Ep1 `
|z1|

δ´1
q´Ep1 `

|z2|

δ´1
q´E ď 15jp3kp16ℓpE40EpwB,Epzq. (2.63)

We now trace back all the implied constants to finish the proof of Lemma 2.3.10. From

(2.63), the implied constants in (2.55) and (2.53) are both 15jp3kp16ℓpE40Ep. By (2.51) and

(2.53), the left hand side of (2.50) is

›

›

›

›

}Er0,δ1{2sgj,k}Lp
#pBpy,δ´1qq

›

›

›

›

p

Lp
ypwB,F q

ď

›

›

›

›

ÿ

ℓě0

p2πqℓ

ℓ!
}

ż

θ
r0,δ1{2s

pfpξq rCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ}Lp
#pBpy,δ´1qq

›

›

›

›

p

Lp
ypwB,F q

ď

ˆ

ÿ

ℓě0

p2πqℓ

ℓ!

›

›

›

›

}

ż

θ
r0,δ1{2s

pfpξq rCj,k,ℓpξqeppξ21 ´ ξ2qy2qepξ ¨ xq dξ}Lp
#pBpy,δ´1qq

›

›

›

›

Lp
ypwB,F q

˙p

ď 15jp3kpe32πpE40Ep}fθ
r0,δ1{2s

}
p
LppwB,Eq

which gives the implied constant in (2.50). Using this, Lemma 2.3.12, and Lemma 2.2.4, we
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have

}EJgj,k}LppwB,F q ď }fθJ }LppwB,Eq ˆ

$

’

&

’

%

3E{p15j3kE40Ee32π if J “ r0, δ1{2s

90pE`F q{p3E{p15j3kE40Ee32π if J ‰ r0, δ1{2s

ď 15j3kE54E}fθJ }LppwB,Eq

where in the last inequality we have used that E ě 10, 2 ď p ď 6, and F “ 2E`7. Inserting

this estimate into (2.43) gives that

}f}LppBq ď Dec1pδ, p, F qE54Ee32πp
ÿ

JPP
δ1{2 pr0,1sq

}fθJ }2LppwB,Eqq
1{2.

Since E ě 10, e36π ď 1050 ď E5E and this completes the proof of Lemma 2.3.10.

2.3.2 Proof of (2.56)

Let F,M1,M2,M3, and m be as in (2.52) and (2.54). We will prove (2.56).

Lemma 2.3.18. Let λ ą 0 and let

Mk,λpxq :“ xkΨpx{λq

where Ψ is as defined in Lemma 2.2.10. Then for integer a ě 0,

}BaMk,λ}L8 ď 12 ¨ 6a3kp1 ` λqkpa!q2. (2.64)

If λ ě 1, this bound can be replaced with 12p6a`kλkqpa!q2.

Proof. This proof is essentially the same as that of the beginning of the proof of Lemma

2.2.10. From the proof of Lemma 2.2.10, we have that |Ψpjqpxq| ď 12p6jqpj!q2 for all j ě 0.

Since Ψ is supported in r´3, 3s, Ψpx{λq is supported in r´3λ, 3λs.

If a “ 0, then }Mk,λ}L8 ď 12p3λqk which proves (2.64) in this case. Now consider when
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a ě 1. First suppose that a ď k, then

|BapMk,λpxqq| “ |

a
ÿ

j“0

ˆ

a

j

˙

BjpxkqΨpa´jqpxq|

ď

a
ÿ

j“0

ˆ

a

j

˙

k!

pk ´ jq!
p3λqk´j12p6a´jqpa ´ jq!2

ď 12p6a3kqpa!q2
a

ÿ

j“0

ˆ

k

j

˙

λk´j ď 12 ¨ 6a3kp1 ` λqkpa!q2.

Next suppose that k ă a, then

|BapMk,λpxqq| ď

k
ÿ

j“0

ˆ

a

j

˙

k!

pk ´ jq!
p3λqk´j12p6a´jqpa ´ jq!2 ď 12 ¨ 6a3kp1 ` λqkpa!q2.

This completes the proof of Lemma 2.3.18.

Our goal is to obtain an estimate on }Ba
ξ1

Bb
ξ2
m}L8 depending only on a, b, δ and y2 and

where m is as defined in (2.54) and (2.52). Since we want exact constants, we will need

to differentiate exactly each of the five functions that make up mpξq. Note that since Ψ is

supported in r´3, 3s, m is supported in a 6δ1{2 ˆ 36δ rectangle centered at the origin. In

particular, for all ξ P supppmq,

´3δ1{2 ď ξ1 ď 3δ1{2. (2.65)

The bounds in Lemmas 2.3.20 and 2.3.21 are valid when we take no derivatives (either a “ 0

or b “ 0) provided we use the convention that 00 “ 1.

To compute Ba
ξ1

Bb
ξ2
m, we will need to take arbitrarily many derivatives of a composition

of functions. We will use the Faa di Bruno formula. We briefly recall all needed formulas

(see [Joh02] for a reference, note that Johnson defined Bm,0 “ 0 for m ą 0 since the sum

conditions would be vacuous). For m, k ě 1, define the Bell polynomials

Bm,kpx1, x2, . . . , xm´k`1q “
1

k!

ÿ

j1`¨¨¨`jk“m
jiě1

ˆ

m

j1, . . . , jk

˙

xj1 ¨ ¨ ¨ xjk .

Let

Ympx1, . . . , xmq :“
m
ÿ

k“1

Bm,kpx1, . . . , xm´k`1q. (2.66)
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The Faa di Bruno formula states that

dm

dtm
gpfptqq “

m
ÿ

k“1

gpkqpfptqqBm,kpf 1ptq, f 2ptq, . . . , f pm´k`1qptqq.

Finally we will abuse notation slightly by writing Ympx, y, 0, . . . , 0q as Ympx, yq.

Lemma 2.3.19. Let m ě 1 and x, y ‰ 0 such that |x| ď C|y|1{2 with C ě 1. Then

|Ympx, yq| ď Cmmm|y|m{2.

Proof. From [Joh02, p. 220], Ympx, yq is equal to the determinant of the m ˆ m matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x pm ´ 1qy 0 ¨ ¨ ¨ 0 0

´1 x pm ´ 2qy ¨ ¨ ¨ 0 0

0 ´1 x ¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ x y

0 0 0 ¨ ¨ ¨ ´1 x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Cofactor expansion gives that Ympx, yq obeys the recurrence Ym “ xYm´1`pm´1qyYm´2p1, 1q

with Y1 “ x, Y2 “ x2 ` y. Therefore Ymp1, 1q obeys the recurrence Ymp1, 1q “ Ym´1p1, 1q `

pm ´ 1qYm´2 and so Ymp1, 1q ď m! ď mm. Each

Ympx, yq “ xm `

tm{2u
ÿ

j“1

cjx
m´2jyj “ ym{2p

xm

ym{2
`

tm{2u
ÿ

j“1

cj
xm´2j

ym{2´j
q (2.67)

and Ymp1, 1q “ 1 `
ř

j cj ď mm. Thus Ympx, 0q “ xm and

|Ympx, yq| ď |y|m{2pCm `

tm{2u
ÿ

j“1

cjC
m´2jq ď Cmmm|y|m{2.

This completes the proof of Lemma 2.3.19.

Lemma 2.3.20. For a ě 0 and ξ P supppmq,

}Ba
ξ1
e2πiy2ξ

2
1}L8 ď p12πqaaa ˆ

$

’

&

’

%

δ´a{2 if |y2| ď δ´1

δa{2|y2|
a if |y2| ą δ´1.

In particular,

}Ba
ξ1
e2πiy2ξ

2
1}L8 ď p12πqaaapδ´1{2 ` δ1{2|y2|q

a.
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Proof. If a “ 0, then L8 norm is equal to 1 and the above formula still holds true. Now

suppose a ě 1. From Faa di Bruno’s formula,

Ba
ξ1
e2πiy2ξ

2
1 “

a
ÿ

k“1

p2πiqke2πiy2ξ
2
1Ba,kp2ξ1y2, 2y2, 0, . . . , 0q

and so,

}Ba
ξ1
e2πiy2ξ

2
1}L8 ď p2πqaYap2|ξ1||y2|, 2|y2|q. (2.68)

Suppose |y2| ď δ´1, then δ1{2|y2| ď |y2|1{2 and so from (2.65),

2|ξ1||y2| ď 6|y2|
1{2.

Therefore Lemma 2.3.19 gives that

Yap2|ξ1||y2|, 2|y2|q ď 6aaa|y2|
a{2 ď 6aaaδ´a{2.

Inserting this into (2.68) then finishes this case.

If |y2| ą δ´1, then from (2.67),

Yap2|ξ1||y2|, 2|y2|q ď Yap6δ1{2|y2|, 2|y2|q “ 6aδa{2|y2|
ap1 `

ta{2u
ÿ

j“1

18´jcjpδ|y2|q
´jq.

Since δ|y2| ą 1 and 1 `
ř

j cj ď aa, the above is bounded by 6aaaδa{2|y2|a which completes

the proof of Lemma 2.3.20.

Lemma 2.3.21. For integers a, b ě 0 and ξ P supppmq,

}Ba
ξ1
M1}L8 ď 12p21aa3a3kqδ´a{2 (2.69)

}Ba
ξ1

Bb
ξ2
M2}L8 ď 12p6a3b15jqpa ` bq!2δ´b´a{2 (2.70)

}Ba
ξ1

Bb
ξ2
M3}L8 ď 12p18a3b16ℓqaapa ` bq!2δ´b´a{2 (2.71)

}Ba
ξ1

Bb
ξ2
F }L8 ď 1226apa!q2pb!q2δ´b´a{2. (2.72)

Proof. We first prove (2.69). If a “ 0, then from Lemma 2.3.18,

}M1}L8 “ }Mk,1{8}L8 ď 12 ¨ 3k
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which proves (2.69) in this case. Next suppose a ě 1. We compute that

Ba
ξ1
M1 “

a
ÿ

s“1

M
psq

k,1{8p
δ´1pδ1{2ξ1 ´ ξ21q

2
qBa,sp

1

2
δ´1{2 ´ δ´1ξ1,´δ

´1, 0, . . . , 0q

and so applying Lemma 2.3.18 and (2.66) gives that

}Ba
ξ1
M1}L8 ď 12p3k6aqpa!q2Yapδ´1{2|

1

2
´ δ´1{2ξ1|, δ

´1q. (2.73)

Since

δ´1{2|
1

2
´ δ´1{2ξ1| ď

7

2
pδ´1q1{2,

Lemma 2.3.19 implies that

Yapδ´1{2|
1

2
´ δ´1{2ξ1|, δ

´1q ď p7{2qaaaδ´a{2.

Inserting this into (2.73) completes the proof of (2.69).

We now prove (2.70). We compute

Ba
ξ1

Bb
ξ2
M2 “ p

δ´1

2
qbBa

ξ1
M

pbq

j,5{2p
δ´1pξ2 ´ δ1{2ξ1q

2
q

“ p
δ´1

2
qbp´

δ´1{2

2
qaM

pa`bq

j,5{2 p
δ´1pξ2 ´ δ1{2ξ1q

2
q.

Applying Lemma 2.3.18 gives

}Ba
ξ1

Bb
ξ2
M2}L8 ď 12p6a3b15jqpa ` bq!2δ´b´a{2

which proves (2.70).

Next we prove (2.71). If a “ 0, then

Bb
ξ2
M3 “ p´

δ´1

2
qbM

pbq

ℓ,21{8p
δ´1pξ21 ´ ξ2q

2
q

and so

}Bb
ξ2
M3}L8 ď 12p3b16ℓqpb!q2δ´b

which proves (2.71) in this case. Now suppose a ě 1. Faa di Bruno’s formula gives that

Ba
ξ1

Bb
ξ2
M3 “ p´

δ´1

2
qb

a
ÿ

s“1

M
ps`bq

ℓ,21{8p
δ´1pξ21 ´ ξ2q

2
qBa,spδ

´1ξ1, δ
´1, 0, . . . , 0q.
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Applying Lemma 2.3.18 and (2.66) gives that

}Ba
ξ1

Bb
ξ2
M3}L8 ď 12p6a3b16ℓqpa ` bq!2δ´bYapδ´1|ξ1|, δ

´1q (2.74)

Since δ´1|ξ1| ď 3pδ´1q1{2, it follows that

Yapδ´1|ξ1|, δ
´1q ď 3aaaδ´a{2.

Inserting this into (2.74) completes the proof of (2.71).

Finally we prove (2.72). We compute

Ba
ξ1

Bb
ξ2
F “ δ´a{2p

δ´1

6
qbΨpaqpδ´1{2ξ1qΨpbqp

δ´1ξ2
6

q.

Lemma 2.2.10 then implies that

}Ba
ξ1

Bb
ξ2
F }L8 ď 1226apa!q2pb!q2δ´b´a{2

which proves (2.72). This completes the proof of Lemma 2.3.21.

We are now ready to prove (2.56).

Lemma 2.3.22. For a, b ě 0,

}Ba
ξ1

Bb
ξ2
m}L8 ď 12540a3b15j3k16ℓa7ab2bpa ` bq!4pa ` 1q5pb ` 1q3pδ´1{2 ` δ1{2|y2|qaδ´b.

Proof. We compute

Ba
ξ1

Bb
ξ2
m “

ÿ

s1`s2`s3“b
t1`t2`t3`t4`t5“a

si,tiě0

ˆ

b!

s1!s2!s3!

˙ˆ

a!

t1!t2!t3!t4!t5!

˙

ˆ

pBt1
ξ1
epξ21y2qqpBt2

ξ1
M1qpBt3

ξ1
Bs1
ξ2
M2qpBt4

ξ1
Bs2
ξ2
M3qpBt5

ξ1
Bs3
ξ2
F q.

Applying crude bounds and Lemmas 2.3.20 and 2.3.21 gives that

}Ba
ξ1

Bb
ξ2
m}L8 ď 12540a3b15j3k16ℓa!b!δ´b´a{2p1 ` δ|y2|qaˆ

ÿ

s1`s2`s3“b
t1`t2`t3`t4`t5“a

si,tiě0

tt11 t
3t2
2 tt44 pt3 ` s1q!

2pt4 ` s2q!
2t5!s3!

ď 12540a3b15j3k16ℓa7ab2bpa ` bq!4pa ` 1q5pb ` 1q3δ´b´a{2p1 ` δ|y2|q
a
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where in the first inequality we have used that

pδ´1{2 ` δ1{2|y2|q
t1 “ δ´t1{2p1 ` δ|y2|q

t1 ď δ´t1{2p1 ` δ|y2|q
a

and we have removed a t5! and s3! using the multinomial coefficient. This completes the

proof of Lemma 2.3.22 and the proof of (2.56).

2.4 Parabolic rescaling: an application

As an application of Lemma 2.2.18 and Proposition 2.3.11, we will prove that the decoupling

constant is essentially multiplicative. This will play an important role in Section 2.10 when

we upgrade knowledge about decoupling at a lacunary sequence of scales to knowledge about

decoupling on all possible scales in N´2. The restriction that p ď 6 is once again an artifact

that only arises from our application of Proposition 2.3.11.

Proposition 2.4.1. Let E ě 100 and 2 ď p ď 6. For 0 ă δ ă σ ă 1 with δ, σ, δ{σ P N´2,

we have

Dp,Epδq ď E100EDp,EpσqDp,Epδ{σq.

Proof. Fix an arbitrary E ě 100 and 2 ď p ď 6. We need to show that for all g : r0, 1s Ñ C

and all squares B of side length δ´1, we have

}Er0,1sg}LppBq ď E100EDp,EpσqDp,Epδ{σqp
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppwB,Eqq
1{2.

It suffices to assume that B is centered at the origin.

Since δ{σ P N´2, we can partition B into a collection of squares tΣu of side length σ´1.

Then

}Er0,1sg}LppΣq ď Dp,Epσqp
ÿ

JPP
σ1{2 pr0,1sq

}EJg}2LppwΣ,Eqq
1{2.

Raising both sides to the pth power and summing over all Σ, then using Minkowski’s in-

equality (since p ě 2), and finally applying Proposition 2.2.14 gives that

}Er0,1sg}LppBq ď 48E{pDp,Epσqp
ÿ

JPP
σ1{2 pr0,1sq

}EJg}2LppwB,Eqq
1{2. (2.75)
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For each J “ ra, a ` σ1{2s, we will first show that

}EJg}LppBq ÀE Dp,Epδ{σqp
ÿ

J 1PP
δ1{2 pJq

}EJ 1g}2LppwB,Eqq
1{2. (2.76)

Afterwards we will apply Proposition 2.2.11 to (2.76) and then insert the result into (2.75)

to finish.

Let T be as in Lemma 2.2.18, Lpξq “ pξ ´ aq{σ1{2, gL “ g ˝ L´1. Then a change of

variables gives that

}EJg}LppBq “ σ
1
2

´ 3
2p }Er0,1sgL}LppT pBqq.

Let B be as in Lemma 2.2.18. Thus we cover T pBq by a collection of squares B “ t∆u of side

length σ{δ, use decoupling constant rDp,E at scale δ{σ and undo change of variables. This

gives

σ
p
2

´ 3
2 }Er0,1sgL}

p
LppT pBqq

ď σ
p
2

´ 3
2

ÿ

∆PB
}Er0,1sgL}

p
Lpp∆q

ď rDp,Epδ{σqpσ
p
2

´ 3
2

ÿ

∆PB
p

ÿ

J2PP
pδ{σq1{2 pr0,1sq

}EJ2gL}2Lpp rw∆,Eqq
p{2

ď rDp,Epδ{σqpp
ÿ

J 1PP
δ1{2 pJq

}EJ 1g}2Lpp
ř

∆ rw∆,E˝T qq
p{2

ď rDp,Epδ{σqp720Ep
ÿ

J 1PP
δ1{2 pJq

}EJ 1g}2LppwB,Eqq
p{2

where the third inequality we have used Minkowski’s inequality and p ě 2 and the last

inequality we have used Lemma 2.2.18. Combining this with Proposition 2.3.11 gives that

}EJg}LppBq ď E70E720E{pDp,Epδ{σqp
ÿ

J 1PP
δ1{2 pJq

}EJ2g}2LppwB,Eqq
1{2.

Applying Proposition 2.2.11 gives that

}EJg}LppwB,Eq ď E80EDp,Epδ{σqp
ÿ

J 1PP
δ1{2 pJq

}EJ2g}2LppwB,Eqq
1{2.

Inserting this into (2.75) then completes the proof of Proposition 2.4.1.

Remark 2.4.2. Combining Propositions 2.3.11 and 2.4.1, we see that all four decoupling

constants Dp,E, rDp,E, Dp, and pDp,E obey a similar multiplicative property.
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2.5 Bilinear equivalence

We now define the bilinear decoupling constant and show that it is essentially the same size

as the linear decoupling constant. In [BD17], Bourgain and Demeter use a Bourgain-Guth

type argument to do this. However in two dimensions, there is a simpler proof using Hölder’s

inequality and parabolic rescaling by Tao in [Tao15]. It is this version we follow.

For each m P N, E ě 100, let

ν :“ 2´16¨2mE10E

.

For δ P p0, 1q such that νδ´1{2 P N, let Dp,Epδ,mq be the best constant such that

} geom |EIig|}LppBq ď Dp,Epδ,mq geomp
ÿ

JPP
δ1{2 pIiq

}EJg}2Lpp rwB,Eqq
1{2

for all pairs of intervals I1, I2 P Pνpr0, 1sq which are at least ν-separated, functions g : r0, 1s Ñ

C, and squares B of side length δ´1. Note that the right hand side uses the weight function

rwB,E rather than wB,E.

We first give the trivial bound for the bilinear decoupling constant which is a useful

bound at large scales.

Lemma 2.5.1. Let m,E, ν be defined as above. If νδ´1{2 P N, then Dp,Epδ,mq ď 4Eν1{2δ´1{4.

Proof. Hölder’s inequality gives that

} geom |EIig|}LppBq ď geom }EIig}LppBq.

The triangle inequality, Cauchy-Schwarz, and that 1B ď 4E
rwB,E gives

}EIig}LppBq “ }
ÿ

JPP
δ1{2 pIiq

EJg}LppBq ď 4Eν1{2δ´1{4p
ÿ

JPP
δ1{2 pIiq

}EJg}2Lpp rwB,Eqq
1{2

which completes the proof of Lemma 2.5.1.

Lemma 2.5.2. Let E ě 100 and 2 ď p ď 6. If δ1{2 P 2´N and δ1{2ν´1 P 2´N, then

Dp,Epδq ď E100EpDp,Ep
δ

ν2
q `

1

ν
Dp,Epδ,mqq.

59



Proof. This proof is essentially an application of parabolic rescaling. The restriction 2 ď

p ď 6 comes only from the application of Proposition 2.3.11. Fix an arbitrary square B

of side length δ´1 and function g : r0, 1s Ñ C. It suffices to assume B is centered at the

origin. Partition r0, 1s into 1{ν many intervals I1, . . . , I1{ν of length ν (here we have used

that ν P 2´N). Then

}Er0,1sg}LppBq “ }
ÿ

1ďiď1{ν

EIig}LppBq ď }
ÿ

1ďi,jď1{ν

|EIig||EIjg|}
1{2

Lp{2pBq

ď

ˆ

}
ÿ

1ďi,jď1{ν
|i´j|ď1

|EIig||EIjg|}Lp{2pBq ` }
ÿ

1ďi,jď1{ν
|i´j|ą1

|EIig||EIjg|}Lp{2pBq

˙1{2

ď
?

2

ˆ

}
ÿ

1ďi,jď1{ν
|i´j|ď1

|EIig||EIjg|}
1{2

Lp{2pBq
` }

ÿ

1ďi,jď1{ν
|i´j|ą1

|EIig||EIjg|}
1{2

Lp{2pBq

˙

.

We first consider the off-diagonal terms. This will be controlled by the bilinear decoupling

constant. Hölder’s inequality gives that

p
ÿ

1ďi,jď1{ν
|i´j|ą1

|EIig||EIjg|qp{2 ď ν´pp´2q
ÿ

1ďi,jď1{ν
|i´j|ą1

p|EIig||EIjg|qp{2

and hence
ż

B

p
ÿ

1ďi,jď1{ν
|i´j|ą1

|EIig||EIjg|qp{2 dx ď ν´pp´2q
ÿ

1ďi,jď1{ν
|i´j|ą1

ż

B

p|EIig||EIjg|qp{2 dx.

By bilinear decoupling, the above is bounded above by

ν´pp´2qDp,Epδ,mqp
ÿ

1ďi,jď1{ν
|i´j|ą1

p
ÿ

JPP
δ1{2 pIiq

}EJg}2Lpp rwB,Eqq
p{4p

ÿ

JPP
δ1{2 pIjq

}EJg}2Lpp rwB,Eqq
p{4.

Note that here we have used that ν{δ1{2 P 2N. Since δ1{2 is dyadic and Ii and Ij are dyadic

intervals, this is bounded above by

ν´pDp,Epδ,mqpp
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2Lpp rwB,Eqq
p{2.

Now we consider the diagonal contribution. The triangle inequality followed by Cauchy-

Schwarz gives that

}
ÿ

1ďi,jď1{ν
|i´j|ď1

|EIig||EIjg|}Lp{2pBq ď
ÿ

1ďi,jď1{ν
|i´j|ď1

}EIig}LppBq}EIjg}LppBq (2.77)
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Let I “ a ` r0, νs be an interval of length ν. Let Lpξq “ pξ ´ aq{ν, gL :“ g ˝ L´1,

and T “ p ν 2aν
0 ν2 q. A change of variables then gives that |pEIgqpxq| “ ν|pEr0,1sgLqpTxq| and

therefore

}EIg}LppBq “ ν1´3{p}Er0,1sgL}LppT pBqq. (2.78)

Note that T pBq is a parallelogram contained in a 3νδ´1 ˆ ν2δ´1 rectangle. Covering T pBq

by squares B “ t∆u of side length ν2δ´1 gives that

ν1´3{p}Er0,1sgL}LppT pBqq ď ν1´3{pp
ÿ

∆PB
}Er0,1sgL}

p
Lpp∆q

q1{p. (2.79)

Applying the definition of the decoupling constant (and using that νδ´1{2 P 2N), gives that

for each square ∆,

}Er0,1sgL}
p
Lpp∆q

ď rDp,Epδ{ν2qpp
ÿ

JPP
δ1{2{ν

pr0,1sq

}EJgL}2Lpp rw∆,Eqq
p{2.

Inserting this into (2.79) bounds the left hand side of (2.79) by

rDp,Epδ{ν2qp
ÿ

∆PB
p

ÿ

JPP
δ1{2{ν

pr0,1sq

pν1´3{p}EJgL}Lpp rw∆,Eqq
2qp{2q1{p.

Applying the same change of variables as in (2.78) followed by Minkowski’s inequality (using

that p ě 2) gives that the above is bounded by

rDp,Epδ{ν2qp
ÿ

JPP
δ1{2 pIq

}EJg}2Lpp
ř

∆PB rw∆,E˝T qq
1{2

ď 720E{p
rDp,Epδ{ν2qp

ÿ

JPP
δ1{2 pIq

}EJg}2LppwB,Eqq
1{2.

By Proposition 2.3.11, rDp,Epδq ď E70EDp,Epδq and so the above gives that

}EIg}LppBq ď E75EDp,Epδ{ν2qp
ÿ

JPP
δ1{2 pIq

}EJg}2LppwB,Eqq
1{2

for each interval I of length ν.

Using this for each interval that shows up on the right hand side of (2.77) gives an upper

bound of

E150EDp,Epδ{ν2q2
ÿ

1ďi,jď1{ν
|i´j|ď1

p
ÿ

JPP
δ1{2 pIiq

}EJg}2LppwB,Eqq
1{2p

ÿ

J 1PP
δ1{2 pIjq

}EJ 1g}2LppwB,Eqq
1{2.
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Using that 2ab ď a2 ` b2, the above is bounded by

E150EDp,Epδ{ν2q2 ¨
1

2

ÿ

1ďi,jď1{ν
|i´j|ď1

ˆ

ÿ

JPP
δ1{2 pIiq

}EJg}2LppwB,Eq `
ÿ

J 1PP
δ1{2 pIjq

}EJ 1g}2LppwB,Eq

˙

ď 2 ¨ E150EDp,Epδ{ν2q2
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2LppwB,Eq.

Therefore if δ1{2 P 2´N and δ1{2ν´1 P 2´N, we have

Dp,Epδq ď 2 ¨ E75EDp,Ep
δ

ν2
q `

?
2

ν
Dp,Epδ,mq

which completes the proof of Lemma 2.5.2.

Proposition 2.5.3. Let E ě 100 and 2 ď p ď 6. Fix an arbitrary integer m ě 1. Let

δ1{2 P 2´N and K be the largest positive integer such that δ1{2ν´K P 2´N. Then

Dp,Epδq ď δ100E logν Eν´1 maxp1, max
i“0,1,...,K´1

Dp,Epδν´2i,mqq.

Proof. Note that δ1{2 P 2´N and δ1{2ν´K P 2´N imply that for i “ 0, 1, . . . , K, δ1{2ν´i P 2´N.

In particular for each i “ 1, 2, . . . , K, both δ1{2ν´i`1 and δ1{2ν´i are in 2´N and hence

Dp,Epδν´2i`2q ď E100EpDp,Epδν´2iq `
1

ν
Dp,Epδν´2i`2,mqq.

Combining these K inequalities then gives that

Dp,Epδq ď E100EKpDp,Epδν´2Kq ` 2ν´1 max
i“0,1,...,K´1

Dp,Epδν´2i,mqq. (2.80)

To control Dppδν´2Kq, we use the definition of K. In particular, since δ1{2 P 2´N, δ1{2ν´pK`1q

is dyadic but ě 1. Therefore δ1{2ν´K´1 ě 1 and so δ1{2ν´K ě ν. The trivial bound then

gives that

Dp,Epδν´2Kq ď 2E{ppδν´2Kq´1{4 ď 2Eν´1{2.

Since δ1{2ν´K ď 1, K ď logν´1 δ´1{2 and hence

E100EK ď δ50E logν E.

Inserting the above two centered equations into (2.80) then completes the proof of Proposi-

tion 2.5.3.
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2.6 Ball inflation

We first discuss some basic geometry. Let P :“ tpξ, ξ2q : ξ P r0, 1su and π : P Ñ r0, 1s be the

projection map which sends pξ, ξ2q ÞÑ ξ. Since I1, I2 are d-separated, for any P P I1, Q P I2,

we have |P ´ Q| ě d. Observe that

npπ´1pP qq “
p´2P, 1q

?
1 ` 4P 2

and similarly for Q (where here npπ´1pP qq refers to the normal vector to the parabola at

the point π´1pP q). Let θ be the angle between npπ´1pP qq and npπ´1pQqq. Then since

|P ´ Q| ě d,

sin θ “
2|P ´ Q|

a

p1 ` 4P 2qp1 ` 4Q2q
ě

2

5
d.

In the terminology of [BD17], I1 and I2 are 2d{5-transverse.

We will now prove the following effective ball inflation inequality.

Theorem 2.6.1. Let p ě 4, 0 ă δ ă 1{10, E ě 100, and 0 ă d ă 1{2. Let I1, I2 Ă r0, 1s be

two d-separated intervals of length ě δ such that |Ii|{δ P N. Let B be an arbitrary square in

R2 with side length δ´2 and let B be the unique partition of B into squares ∆ of side length

δ´1. Then for all g : r0, 1s Ñ C, we have

1

|B|

ÿ

∆PB
geomp

ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rw∆,Eq

qp{2

ď E50Epd´1plog
1

δ
qp{2 geomp

ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rwB,Eq

qp{2.
(2.81)

Furthermore, for p “ 4, the estimate is true without the logarithm.

This inequality allows us to keep the frequency scale the same while increasing (inflating)

the spatial scale and is a key step in the iteration. We will first prove a version of Theorem

2.6.1 where we additionally assume that all the }EJg} are of comparable size (for each Ii).

Then we remove this assumption by dyadic pigeonholing to obtain (2.81).

Lemma 2.6.2. Let p ą 4 and everything else be as defined in Theorem 2.6.1. Furthermore,

let F1 be a collection of intervals in PδpI1q such that for each pair of intervals J, J 1 P F1, we
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have

1

2
ă

}EJg}
L
p{2
# p rwB,Eq

}EJ 1g}
L
p{2
# p rwB,Eq

ď 2. (2.82)

Similarly define F2. Then for all g : r0, 1s Ñ C we have

1

|B|

ÿ

∆PB
geomp

ÿ

JPFi

}EJg}2
L
p{2
# p rw∆,Eq

qp{2 ď E30Epd´1 geomp
ÿ

JPFi

}EJg}2
L
p{2
# p rwB,Eq

qp{2. (2.83)

Proof. For each J P PδpIiq centered at cJ , cover B by a set TJ of mutually parallel nonover-

lapping boxes PJ with dimension δ´1 ˆ δ´2 with longer side pointing in the direction of the

normal vector to P at π´1pcJq. Note that any δ´1 ˆδ´2 box outside 4B cannot cover B itself.

Thus we may assume that all the boxes in TJ are contained in 4B. Finally, let PJpxq denote

the box in TJ containing x and let 2PJ be the 2δ´1 ˆ 2δ´2 box having the same center and

orientation as PJ .

Since p ą 4, Hölder’s inequality yields that

p
ÿ

JPFi

}EJg}2
L
p{2
# p rw∆,Eq

qp{2 ď p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rw∆,Eq

q2|Fi|
p{2´2.

Thus the left hand side of (2.83) is bounded above by

p

2
ź

i“1

|Fi|
p{4´1q

1

|B|

ÿ

∆PB

2
ź

i“1

p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rw∆,Eq

q. (2.84)

For x P 4B, define

HJpxq :“

$

’

’

&

’

’

%

supyP2PJ pxq }EJg}
p{2

L
p{2
# p rwBpy,δ´1q,Eq

if x P
Ť

PJPTJ PJ

0 if x P 4Bz
Ť

PJPTJ PJ .

(2.85)

For each x P ∆, observe that ∆ Ă 2PJpxq. Therefore for each x P ∆, c∆ P 2PJpxq and hence

}EJg}
p{2

L
p{2
# p rw∆,Eq

ď HJpxq (2.86)
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for all x P ∆. Thus

1

|B|

ÿ

∆PB

2
ź

i“1

p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rw∆,Eq

q

“
ÿ

J1PF1
J2PF2

1

|B|

ÿ

∆PB
}EJ1g}

p{2

L
p{2
# p rw∆,Eq

}EJ2g}
p{2

L
p{2
# p rw∆,Eq

1

|∆|

ż

∆

dx

ď
ÿ

J1PF1
J2PF2

1

|B|

ż

B

HJ1pxqHJ2pxq dx (2.87)

where the last inequality we have used (2.86). By how HJ is defined, HJ is constant on each

PJ P TJ . That is, for each x P
Ť

PJPTJ PJ ,

HJpxq “
ÿ

PJPTJ

cPJ
1PJ

pxq

for some constants cPJ
ě 0. Then

1

|B|

ż

B

HJ1pxqHJ2pxq dx “
1

|B|

ÿ

PJ1
PTJ1

PJ2
PTJ2

cPJ1
cPJ2

|pPJ1 X PJ2q X B|

ď
1

|B|

ÿ

PJ1
PTJ1

PJ2
PTJ2

cPJ1
cPJ2

|PJ1 X PJ2 |

where the last inequality is because cPJ
ě 0 for all PJ . Since |PJ | “ δ´3 we also have

1

|B|

ż

4B

HJpxq dx “
1

|B|

ż

Ť

PJPTJ
PJ

ÿ

PJPTJ

cPJ
1PJ

pxq dx “ δ
ÿ

PJPTJ

cPJ
.

Recall that J1 P F1 Ă PδpI1q and J2 P F2 Ă PδpI2q. Since I1 and I2 are d-separated, so

are J1 and J2. Let =J1,J2 be the angle between the directions of J1 and J2. By geometry

discussion at the beginning of this section, sinp=J1,J2q ě 2d{5. Therefore

|PJ1 X PJ2 | ď
δ´2

sinp=J1,J2q
ď

δ´2

2d{5
.

Applying this gives

1

|B|

ÿ

PJ1
PTJ1

PJ2
PTJ2

cPJ1
cPJ2

|PJ1 X PJ2 |

ď
3δ´2d´1

|B|

2
ź

i“1

p
δ´1

|B|

ż

4B

HJipxq dxq “
3d´1

|B|2

2
ź

i“1

ż

4B

HJipxq dx.
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Therefore (2.87) is bounded above by

3d´1
2

ź

i“1

p
ÿ

JPFi

1

|B|

ż

4B

HJpxq dxq “ 768d´1
2

ź

i“1

p
ÿ

JPFi

1

|4B|

ż

4B

HJpxq dxq. (2.88)

We now apply Lemma 2.6.3, proven later, to (2.88). This gives that an upper bound of

E20Epd´1
2

ź

i“1

p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rwB,Eq

q

where here we have also used that E ě 100 and p ě 2. Thus (2.84) is bounded above by

E20Epd´1p

2
ź

i“1

|Fi|
p{4´1q

2
ź

i“1

p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rwB,Eq

q. (2.89)

To obtain the right hand side of (2.83) we now use that intervals in Fi satisfy (2.82). We

have

p

2
ź

i“1

|Fi|
p{4´1q

2
ź

i“1

p
ÿ

JPFi

}EJg}
p{2

L
p{2
# p rwB,Eq

q ď

2
ź

i“1

|Fi|
p{4´1

2
ź

i“1

p|Fi| max
J 1PFi

}EJ 1g}
p{2

L
p{2
# p rwB,Eq

q

“

ˆ 2
ź

i“1

p|Fi| max
J 1PFi

}EJ 1g}2
L
p{2
# p rwB,Eq

q1{2

˙p{2

ď

ˆ 2
ź

i“1

p
ÿ

JPFi

4}EJg}2
L
p{2
# p rwB,Eq

q1{2

˙p{2

“ 2p geomp
ÿ

JPFi

}EJg}2
L
p{2
# p rwB,Eq

qp{2

where the second inequality is due to (2.82). Inserting this into (2.89) then completes the

proof of Lemma 2.6.2.

Lemma 2.6.3. Let HJ be as defined in (2.85). Then

1

|4B|

ż

4B

HJpxq dx ď E8Ep}EJg}
p{2

L
p{2
# p rwB,Eq

.

Proof. This is the inequality proven in (29) of [BD17] without explicit constants. We follow

their proof, this time paying attention to the implied constants.

Fix arbitrary J Ă r0, 1s of length δ and center cJ . For x P
Ť

PJPTJ PJ “ suppHJ Ă 4B,

fix arbitrary y P 2PJpxq. Note that 2PJpxq points is a rectangle of dimension 2δ´1 ˆ 2δ´2

with the longer side pointing in the direction of p´2cJ , 1q.
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Let RJ and θJ be as in Lemma 2.2.5. Since cJ P rδ{2, 1 ´ δ{2s, both cos θJ and sin θJ

are nonzero. Note that RJ is the rotation matrix such that R´1
J applied to 2PJpxq gives an

axis parallel rectangle of dimension 2δ´1 ˆ 2δ´2 with the longer side pointing in the vertical

direction. Since y P 2PJpxq, we can write

R´1
J y “ R´1

J x ` y

where |y1| ď 2δ´1 and |y2| ď 2δ´2. We then have

}EJg}
p{2

Lp{2p rwBpy,δ´1q,Eq
“

ż

R2

|pEJgqpsq|p{2
rwBpx`RJy,δ´1q,Epsq ds

Writing y “ py1, 0qT ` p0, y2q
T and a change of variables gives that the above is equal to

ż

R2

|pEJgqps ` x ` RJp0, y2qT q|p{2
rwBpRJ py1,0qT ,δ´1q,Epsq ds. (2.90)

Inserting Lemma 2.2.5 into (2.90) gives that

}EJg}
p{2

Lp{2p rwBpy,δ´1q,Eq
ď 16E

ż

R2

|pEJgqps ` x ` RJp0, y2q
T q|p{2

rwBp0,δ´1q,Epsq ds. (2.91)

Observe that

|pEJgqps ` x ` RJp0, y2q
T q| “ |

ż

R2

yEJgpλqepλ ¨ ps ` xqqepλ ¨ RJp0, y2qT q dλ|.

Since RJ is a rotation matrix, a change of variables gives that the above is equal to

|

ż

R2

yEJgpRJλqepλ ¨ R´1
J ps ` xqqepλ ¨ p0, y2qT q dλ| (2.92)

Writing

epλ ¨ p0, y2q
T q “ eppλ2 ´ c2Jqy2qepc

2
Jy2q “ epc2Jy2q

8
ÿ

k“0

p2πiqkyk2
k!

pλ2 ´ c2Jqk

and using that |y2| ď 2δ´2 shows that (2.92) is

ď

8
ÿ

k“0

p4πqk

k!
|

ż

R2

yEJgpRJλqepλ ¨ R´1
J ps ` xqqp

λ2 ´ c2J
δ2

qk dλ|

Applying the change of variables η “ λ ´ π´1pcJq gives that the above is

ď

8
ÿ

k“0

30k

k!
|

ż

R2

yEJgpRJpη ` π´1pcJqqqepη ¨ R´1
J ps ` xqqp

η2
2δ2

qk dη|. (2.93)
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Note that yEJgpRJpη`π´1pcJqqq is supported in a 4δˆ4δ2 box centered at the origin pointing

in the horizontal direction. Thus we may insert the cutoff Ψ from Lemma 2.2.10 in (2.93).

Then (2.93) becomes

8
ÿ

k“0

30k

k!
|

ż

R2

yEJgpRJpη ` π´1pcJqqqepη ¨ R´1
J ps ` xqqp

η2
2δ

qkΨp
η1
2δ

qΨp
η2
2δ

q dη|.

Note that we are a bit wasteful since Ψpη1{p2δqqΨpη2{p2δqq is equal to 1 on r´2δ, 2δs2 rather

than r´2δ, 2δs ˆ r´2δ2, 2δ2s, but this will turn out to not matter.

Let Φkptq :“ tkΨptq and let

pMkfqpxq “

ż

R2

pfpRJpη ` π´1pcJqqqepη ¨ xqΨp
η1
2δ

qΦkp
η2
2δ

q dη.

Thus we have shown that

|pEJgqps ` x ` RJp0, y2qT q| ď

8
ÿ

k“0

30k

k!
|pMkEJgqpR´1

J ps ` xqq|

and combining this with (2.91) gives that for x P
Ť

PJPTJ PJ and y P 2PJpxq,

}EJg}
p{2

L
p{2
# p rwBpy,δ´1q,Eq

ď 16Eδ2
ż

R2

p

8
ÿ

k“0

30k

k!
|pMkEJgqpR´1

J ps ` xqq|qp{2
rwBp0,δ´1q,Epsq ds.

Thus

1

|4B|

ż

4B

HJpxq dx

ď 16E´1δ6
ż

4B

ż

R2

p

8
ÿ

k“0

30k

k!
|pMkEJgqpR´1

J ps ` xqq|qp{2
rwBp0,δ´1q,Epsq ds dx

“ 16E´1δ6
ż

R2

p

8
ÿ

k“0

30k

k!
|pMkEJgqpuq|qp{2p

ż

4B

rwBpx,δ´1q,EpRJuq dxq du. (2.94)

As 14B ď 4E
rw4B,E ď 64E

rwB,E and since B is centered at the origin,

ż

4B

rwBpx,δ´1q,EpRJuq dx “ p14B ˚ rwBp0,δ´1q,EqpRJuq

ď 64Ep rwB,E ˚ rwBp0,δ´1q,EqpRJuq ď 256Eδ´2
rwB,EpRJuq.

Thus it follows that (2.94) is bounded by

212Eδ4p
8
ÿ

k“0

30k

k!
}MkEJg ˝ R´1

J }Lp{2p rwB,Eqq
p{2. (2.95)
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Inserting an extra epRJπ
´1pcJq ¨ sq and applying a change of variables gives

|pMkEJgqpR´1
J sq| “ |

ż

R2

yEJgpRJpη ` π´1pcJqqqepRJη ¨ sqΨp
η1
2δ

qΦkp
η2
2δ

q dη|

“ |

ż

R2

yEJgpγqepγ ¨ sq xmkpγq dγ|

where

xmkpγq “ Ψp
γ1 cos θJ ` γ2 sin θJ ´ cJ

2δ
qΦkp

γ2 cos θJ ´ γ1 sin θJ ´ c2J
2δ

q.

Then |MkEJg ˝ R´1
J | “ |EJg ˚ mk| ď |EJg| ˚ |mk| and Hölder’s inequality implies

p|EJg| ˚ |mk|qp{2 ď p|EJg|p{2 ˚ |mk|q}mk}
p{2´1

L1 .

Therefore

}MkEJg ˝ R´1
J }Lp{2p rwB,Eq ď }mk}

1´2{p

L1pR2q
}EJg}Lp{2p rwB,E˚|mk|p´¨qq (2.96)

where here |mk|p´¨q is the function |mk|p´xq. Since Φ and Ψ are both Schwartz functions,

our goal will be to use the rapid decay to show that |mk| ÀE rwB,E. A change of variables

gives

|mkpxq| “ |

ż

R2

xmkpγqe2πix¨γ dγ|

“ 4δ2|

ż

R
Ψpw1qe

2πipR´1
J xq1p2δw1q dw1

ż

R
Φkpw2qe

2πipR´1
J xq2p2δw2q dw2|.

Since Ψ “ Φ0, by Lemma 2.2.10,

|

ż

R
Ψpw1qe

2πipR´1
J xq1p2δw1q dw1| ď

E5E

p1 ` 2δ|pR´1
J xq1|q

2E

and

|

ż

R
Φkpw2qe

2πipR´1
J xq2p2δw2q dw2| ď

6kE5E

p1 ` 2δ|pR´1
J xq2|q

2E
.

Therefore

|mkpxq| ď 4δ26kE10Ep1 `
|pR´1

J xq1|

δ´1
q´2Ep1 `

|pR´1
J xq2|

δ´1
q´2E. (2.97)
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Thus we have

}mk}
1´2{p

L1pR2q
ď p6kE11Eq1´2{p. (2.98)

Applying Lemma 2.2.6 to (2.97) shows

|mkpxq| ď 4p6kE10Eqδ2 rwBp0,δ´1q,Epxq.

Note that this inequality does not change if we replace x with ´x on the left hand side since

the right hand side is radial. Lemma 2.2.1 then implies that

rwB,E ˚ |mk|p´¨q ď 6kE11E
rwB,E

and hence

}EJg}Lp{2p rwB,E˚|mk|p´¨qq ď p6kE11Eq2{p}EJg}Lp{2p rwB,Eq.

Combining this with (2.95), (2.96), and (2.98) shows that

1

|4B|

ż

4B

HJpxq dx ď 212EE11Ep{2δ4p

8
ÿ

k“0

180k

k!
}EJg}Lp{2p rwB,Eqq

p{2 ď E8Ep}EJg}
p{2

L
p{2
# p rwB,Eq

where in the last inequality we have used that E ě 100 and p ě 2. This completes the proof

of Lemma 2.6.3.

Proof of Theorem 2.6.1. If p “ 4, the proof of Lemma 2.6.2 (in particular (2.89)) implies

that we can just take Fi “ PδpIiq and discard the requirement in (2.82) since the only reason

we dyadically decomposed and restricted to p ą 4 was to match the L
p{2
# with the ℓ2 sum

over
ř

JPFi
in (2.83).

From now on we assume p ą 4. For i “ 1, 2, let

Mi :“ max
JPPδpIiq

}EJg}
L
p{2
# p rwB,Eq

.

For each i “ 1, 2, let Fi,0 denote the set of intervals J 1 P PδpIiq such that

}EJ 1g}
L
p{2
# p rwB,Eq

ď δ3Mi
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and partition the remaining intervals in PδpIiq into rlog2pδ
´3qs many classes Fi,k (with k “

1, 2, . . . , rlog2pδ
´3qs) such that

2k´1δ3Mi ă }EJ 1g}
L
p{2
# p rwB,Eq

ď 2kδ3Mi

for all J 1 P Fi,k. Note that Fi,k satisfies the hypothesis (2.82) given in Lemma 2.6.2. For

1 ď k, l ď rlog2pδ
´3qs, let

F∆pk, lq :“ p
ÿ

JPF1,k

}EJg}2
L
p{2
# p rw∆,Eq

qp{4p
ÿ

JPF2,l

}EJg}2
L
p{2
# p rw∆,Eq

qp{4.

Note that F∆pa, bq “ F∆pb, aq.

The left hand side of (2.81) is equal to

1

|B|

ÿ

∆PB
p

ÿ

0ďk,lďrlog2pδ´3qs

ÿ

JPF1,k

J 1PF2,l

}EJg}2
L
p{2
# p rw∆,Eq

}EJ 1g}2
L
p{2
# p rw∆,Eq

qp{4

ď prlog2pδ
´3qs ` 1q

p
2

´2 1

|B|

ÿ

∆PB

ÿ

0ďk,lďrlog2pδ´3qs

F∆pk, lq. (2.99)

We then have

1

|B|

ÿ

∆PB

rlog2pδ´3qs
ÿ

k,l“0

F∆pk, lq

“
1

|B|

ÿ

∆PB
F∆p0, 0q ` 2

rlog2pδ´3qs
ÿ

k“1

1

|B|

ÿ

∆PB
F∆p0, kq `

rlog2pδ´3qs
ÿ

k,l“1

1

|B|

ÿ

∆PB
F∆pk, lq.

(2.100)

We first consider the third sum on the right hand side of (2.100). In this case, both

families of intervals satisfy (2.82) in Lemma 2.6.2. Thus applying Lemma 2.6.2 gives that

rlog2pδ´3qs
ÿ

k,l“1

1

|B|

ÿ

∆PB
F∆pk, lq ď rlog2pδ

´3qs2E30Epd´1 geomp
ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rwB,Eq

qp{2. (2.101)

The first two sums on the right hand side of (2.100) are taken care of by trivial estimates.

We consider the first sum. From Proposition 2.2.14, rw∆,E ď 48E
rwB,E (we can obtain a better

constant using Lemma 2.2.1 and 1∆ ď 1B but this is not needed). Therefore for J 1 P Fi,0,

max
∆PB

}EJ 1g}
L
p{2
# p rw∆,Eq

ď δ´4{p482E{p}EJ 1g}
L
p{2
# p rwB,Eq

ď δ3´4{p482E{pMi. (2.102)
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Since |Fi,0| ď |PδpIiq| ď δ´1,

1

|B|

ÿ

∆PB
F∆p0, 0q ď p|F1,0||F2,0|δ12´16{p488E{pM2

1M
2
2 qp{4

ď δ5p{2´4482E geompM2
i qp{2.

(2.103)

Since p ą 4, 5p{2 ´ 4 ą 6 and so the union bound implies that (2.103) is bounded by

482E geomp
ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rwB,Eq

qp{2. (2.104)

Finally we consider the second sum on the right hand side of (2.100). From the same

proof as (2.102), for J 1 P F2,k with k ‰ 0 we have

max
∆PB

}EJ 1g}
L
p{2
# p rw∆,Eq

ď δ´4{p482E{pM2.

Therefore by the same reasoning as in the previous paragraph we have

1

|B|

ÿ

∆PB
F∆p0, kq ď p|F1,0||F2,k|pδ3´4{p482E{pM1q

2pδ´4{p482E{pM2q
2qp{4

ď δp´4482E geompM2
i qp{2.

Since p ą 4, we can discard the power of δ and hence

2

rlog2pδ´3qs
ÿ

k“1

1

|B|

ÿ

∆PB
F∆p0, kq ď 2rlog2pδ

´3qs482E geomp
ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rwB,Eq

qp{2.

Combining this with (2.100), (2.101), and (2.104) shows that (2.99) (and hence the left hand

side of (2.81)) is bounded above by

p¨ ¨ ¨ q geomp
ÿ

JPPδpIiq

}EJg}2
L
p{2
# p rwB,Eq

qp{2

where p¨ ¨ ¨ q is equal to

prlog2pδ
´3qs ` 1q

p
2

´2

ˆ

rlog2pδ
´3qs2E30Epd´1 ` 2rlog2pδ

´3qs2482E ` 482E

˙

.

Since δ ă 1{10 and E ě 100, this is bounded above by E50Epd´1plog 1
δ
qp{2 which completes

the proof of Theorem 2.6.1.
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2.7 The iteration: preliminaries

We now setup the iteration scheme as in [BD17] except this time we pay attention to various

integrality constraints from previous sections. Let g : r0, 1s Ñ C, t ě 1, q ď r, and I1, I2 two

intervals in r0, 1s. Let Br be a square in R2 with side length δ´r. Define

Gtpq, rq :“ geomp
ÿ

JPPδq pIiq

}EJg}2Lt
#p rwBr,Eqq

1{2

and

Appq, rq “ p Avg
BqPPδ´q pBrq

G2pq, qq
pq1{p :“

ˆ

1

|Pδ´qpBrq|

ÿ

BqPPδ´q pBrq

G2pq, qq
p

˙1{p

.

Strictly speaking we should be writing Gtpq, B
rq instead of Gtpq, rq since this expression is

different for different Br, however all that matters is keeping track of what our frequency

and spatial scales are so for simplicity we will write r instead of Br.

Remark 2.7.1. Note that for Gtpq, rq and Appq, rq to be defined, we need |Ii|δ
´q P N and

δ´r`q P N.

For a square Bq, note that Appq, qq “ G2pq, qq for all p. In Appq, rq, increasing q represents

smaller frequency scales and increasing r represents larger spatial scales.

We note that Gt and Ap here are essentially the same as Dp and Ap, respectively in

[BD17]. The only difference is that here we use the weight rwB instead of wB. This is

because our bilinear decoupling constant is defined with weight rwB rather than wB.

Observe that Gt and Ap obey the following two basic properties. First the t parameter

in Gt obeys Hölder’s inequality.

Lemma 2.7.2 (Hölder’s inequality for Gt). For each square Br Ă R2, if p1 ´αq{p1 `α{p2 “

1{t, then

Gtpq, rq ď Gp1pq, rq1´αGp2pq, rqα.

Proof. The factor 1{|Br| in the definition of Gt balances out by how α is defined and hence

we may replace Lt
#, Lp1

# , and Lp2
# with Lt, Lp1 , and Lp2 , respectively. Next, it suffices to
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prove that

ÿ

JPPδq pIiq

}EJg}2Ltp rwBr q ď

ˆ

ÿ

JPPδq pIiq

}EJg}2Lp1 p rwBr q

˙1´αˆ

ÿ

JPPδq pIiq

}EJg}2Lp2 p rwBr q

˙α

.

Applying Hölder’s inequality gives that

}EJg}2l2JLt ď

›

›

›

›

}EJg}1´α
Lp1 }EJg}αLp2

›

›

›

›

2

l2J

“

›

›

›

›

}EJg}
2p1´αq

Lp1 }EJg}2αLp2

›

›

›

›

l1J

ď }EJg}
2p1´αq

l2JL
p1

}EJg}2αl2JL
p2

where here by Lp we mean Lpp rwBrq. This completes the proof Lemma 2.7.2.

Second, the averaging in the r parameter in Ap allows us to increase it.

Lemma 2.7.3. Fix arbitrary positive integers r ď s ď t and suppose δ is such that |Ii|δ
´r P

N, δ´s`r P N, and δ´t`s P N. Then for each square Bt Ă R2,

Avg
BsPPδ´s pBtq

Appr, sqp “ Appr, tqp.

Proof. Fix arbitrary square Bt Ă R2. Expanding the left hand side, we have

Avg
BsPPδ´s pBtq

Appr, sqp “ Avg
BsPPδ´s pBtq

Avg
BrPPδ´r pBsq

G2pr, rq
p “ Avg

BrPPδ´r pBtq

G2pr, rqp “ Appr, tqp.

This completes the proof of Lemma 2.7.3.

Finally, we end this section with an outline of our strategy. As in Section 2.5, let m ě 1,

E ě 100, 2 ď p ď 6, and ν :“ 2´16¨2mE10E
. Let I1, I2 be two arbitrary intervals in Pνpr0, 1sq

which are at least ν-separated.

Lemma 2.7.4. Suppose δ was such that δ´1{2m P 2N and νδ´1{2m P N. Then for each square

B1 of side length δ´1, we have

} geom |EIig|}Lp
#pB1q ď E100Eν1{2δ´1{2m`1

App
1

2m
, 1q.
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Proof. Note that since δ´1{2m P 2N, δ´1`1{2m P N since m ě 1. This proof is just an

application of Hölder, Minkowski, and Bernstein inequalities. We have

} geom |EIig|}
p
Lp
#pB1q

“
1

|B1|

ż

B1

geom |EIig|p “
1

|B1|

ż

B1

geom |
ÿ

JPP
δ1{2m pIiq

EJg|p

ď pν1{2δ´1{2m`1

qp
1

|B1|

ż

B1

geomp
ÿ

JPP
δ1{2m pIiq

|EJg|2qp{2

“ pν1{2δ´1{2m`1

qp Avg
B1{2mPP

δ´1{2m pB1q

} geomp
ÿ

JPP
δ1{2m pIiq

|EJg|2q1{2}
p

Lp
#pB1{2m q

.

Note that

} geomp
ÿ

JPP
δ1{2m pIiq

|EJg|2q1{2}
p

LppB1{2m q
ď geom }p

ÿ

JPP
δ1{2m pIiq

|EJg|2q1{2}
p

LppB1{2m q
.

Since p ě 2,

}p
ÿ

JPP
δ1{2m pIiq

|EJg|2q1{2}
p

LppB1{2m q
ď p

ÿ

JPP
δ1{2m pIiq

}EJg}2LppB1{2m q
qp{2.

Combining the above three centered equations gives that

} geom|EIig|}Lp
#pB1q

ď ν1{2δ´1{2m`1

p Avg
B1{2mPP

δ´1{2m pB1q

geomp
ÿ

JPP
δ1{2m pIiq

}EJg}2Lp
#pB1{2m q

qp{2q1{p.

Bernstein’s inequality (Lemma 2.2.20) and that p ď 6, E ě 100 gives that

}EJg}Lp
#pB1{2m q ď 4pE{2ppE{2q23pE{2}EJg}L2

#p rw
B1{2m,E

q ď E100E}EJg}L2
#p rw

B1{2m,E
q.

Inserting this above gives that

} geom |EIig|}Lp
#pB1q ď E100Eν1{2δ´1{2m`1

App
1

2m
, 1q

which completes the proof of Lemma 2.7.4.

Our target will be to prove an estimate of the form

App2´m, 1q Àδ,ν,E,m Gpp
1

2
, 1q (2.105)
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because then combining this with Lemma 2.7.4 gives an upper bound on the bilinear decou-

pling constant. Proposition 2.5.3 then allows us to control the linear decoupling constant.

To prove (2.105), we will use ball inflation, l2L2 decoupling to prove an estimate of the form

App2´ℓ, 2´ℓ`1q Àν,E App2´ℓ`1, 2´ℓ`1q for each ℓ “ 2, 3, . . . ,m. Then Lemma 2.7.3 allows us

to patch all the estimates together.

The iteration is easier in the 2 ď p ď 4 regime and so we will first do that case, then

we will move on to the case when 4 ă p ă 6. Finally, to control the decoupling constant at

p “ 6, we will apply Bernstein’s inequality and use the decoupling constant at p1 for some p1

suitably close to 6.

2.8 Control of the bilinear decoupling constant

We now iterate to control the bilinear decoupling constant. We have two separate but similar

cases. Our goal is to prove the following result.

Proposition 2.8.1. Fix integers m ě 3 and E ě 100. Let ν :“ 2´16¨2m¨E10E
and suppose δ

is such that δ´1{2m P 2N and νδ´1{2m P N.

paq If 2 ď p ď 4, then

Dp,Epδ,mq ď ν1{2pE300Eν´1{4qmδ´ 1
2m`1 .

pbq If 4 ă p ă 6, let a “
p´4
p´2

, then

Dp,Epδ,mq ď ν1{2pE300Eν´1{4plog
1

δ
q1{2qmδ´ 1

2m`1Dp,Epδq1´p1´aqm´1

.

2.8.1 Case 2 ď p ď 4

Lemma 2.8.2. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then for

each square B2{2ℓ Ă R2, we have

A4p
1

2ℓ
,

2

2ℓ
q ď E100Eν´1{4A4p

2

2ℓ
,

2

2ℓ
q.
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Proof. Fix an arbitrary square B2{2ℓ of side length δ´2{2ℓ . Note that our restrictions on δ

and ν also imply that νδ´2{2ℓ P N. We have

A4p
1

2ℓ
,

2

2ℓ
q4 “ Avg

B1{2ℓPP
δ´1{2ℓ

pB2{2ℓ q

G2p
1

2ℓ
,

1

2ℓ
q4 ď E200Eν´1G2p

1

2ℓ
,

2

2ℓ
q4 (2.106)

where the inequality is by an application of Theorem 2.6.1. By l2L2 decoupling (Lemma

2.2.21), for each interval J P P
δ1{2ℓ pIiq, we have

}EJg}2L2
#p rw

B2{2ℓ ,E
q ď E13E

ÿ

J 1PP
δ2{2ℓ

pJq

}EJ 1g}2L2
#p rw

B2{2ℓ ,E
q.

Therefore

ÿ

JPP
δ1{2ℓ

pIiq

}EJg}2L2
#p rw

B2{2ℓ ,E
q ď E13E

ÿ

JPP
δ1{2ℓ

pIiq

ÿ

J 1PP
δ2{2ℓ

pJq

}EJ 1g}2L2
#p rw

B2{2ℓ ,E
q.

Since Ii, J and J 1 are all dyadic intervals, the above is equal to

E13E
ÿ

J 1PP
δ2{2ℓ

pIiq

}EJ 1g}2L2
#p rw

B2{2ℓ ,E
q.

Therefore

G2p
1

2ℓ
,

2

2ℓ
q ď E13E{2G2p

2

2ℓ
,

2

2ℓ
q “ E13E{2A4p

2

2ℓ
,

2

2ℓ
q.

Combining this with (2.106) completes the proof of Lemma 2.8.2.

Hölder’s inequality allows us to change from A4 to Ap for 2 ď p ď 4 at no cost.

Corollary 2.8.3. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then for

each square B2{2ℓ Ă R2, we have

App
1

2ℓ
,

2

2ℓ
q ď E100Eν´1{4App

2

2ℓ
,

2

2ℓ
q.

Proof. Applying Hölder’s inequality to the definition of Ap shows that for 2 ď p ď 4,

Appq, rq ď A4pq, rq. Lemma 2.8.2 and that

A4p
2

2ℓ
,

2

2ℓ
q “ G2p

2

2ℓ
,

2

2ℓ
q “ App

2

2ℓ
,

2

2ℓ
q

then completes the proof of Corollary 2.8.3.
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Now for each square B1 with side length δ´1, we partition into squares of side length

δ´2{2ℓ and sum the previous corollary over all such squares. This yields the following result.

Lemma 2.8.4. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then for

each square B1 Ă R2, we have

App
1

2ℓ
, 1q ď E100Eν´1{4App

1

2ℓ´1
, 1q.

Proof. Fix an arbitrary square B1 of side length δ´1. Since δ´1{2ℓ P 2N, we can dyadically

partition B1 into squares of side length δ´1{2ℓ . Lemma 2.7.3 and Corollary 2.8.3 then give

that

App
1

2ℓ
, 1qp “ Avg

B2{2ℓPP
δ´2{2ℓ

pB1q

App
1

2ℓ
,

2

2ℓ
qp

ď E100Epν´p{4 Avg
B2{2ℓPP

δ´2{2ℓ
pB1q

App
2

2ℓ
,

2

2ℓ
qp “ E100Epν´p{4App

2

2ℓ
, 1qp.

This completes the proof of Lemma 2.8.4.

Now we combine the m ´ 1 inequalities together to obtain the following result.

Lemma 2.8.5. Suppose δ´1{2m P 2N and νδ´1{2m P N, then for each square B1 Ă R2, we

have

App
1

2m
, 1q ď pE100Eν´1{4qm´1App

1

2
, 1q.

Proof. Since δ´1{2m P 2N, δ´1{2ℓ P 2N for ℓ “ 1, 2, . . . ,m. Since δ´1{2m P 2N and νδ´1{2m P N,

it follows that νδ´1{2m´1
P N. Since δ´1{2m´1

P 2N, we have that νδ´1{2m´2
P N. Continuing

this shows that νδ´1{2ℓ P N for ℓ “ 1, 2, . . . ,m. Iterating Lemma 2.8.4 a total of m´ 1 times

then completes the proof of Lemma 2.8.4.

We now finally relate App1{2, 1q to Gpp1{2, 1q which will prove (2.105) in the case when

2 ď p ď 4.

Lemma 2.8.6. If δ´1{2, νδ´1{2 P N, then

App
1

2
, 1q ď 48E{pGpp

1

2
, 1q.
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Proof. Hölder’s inequality (2.3) implies that

G2p
1

2
,
1

2
q ď geomp

ÿ

JPP
δ1{2 pIiq

}EJg}2Lp
#p rw

B1{2,E
qq

1{2.

Since } geom fi}p ď geom }fi}p and so

App
1

2
, 1q ď

1

|Pδ´1{2pB1q|1{p
geomp

ÿ

B1{2PP
δ´1{2 pB1q

p
ÿ

JPP
δ1{2 pIiq

}EJg}2Lp
#p rw

B1{2,E
qq

p{2q1{p.

Changing the Lp
# to Lp, interchanging the l2 and lp norms, and then applying Proposition

2.2.14 shows that this is ď 48E{pGpp1{2, 1q which completes the proof of Lemma 2.8.6.

Combining Lemmas 2.8.4 and 2.8.6 then proves (2.105) in the case when 2 ď p ď 4.

Lemma 2.8.7. Suppose δ´1{2m P 2N and νδ´1{2m P N, then for each square B1 Ă R2, we

have

App
1

2m
, 1q ď pE200Eν´1{4qm´1Gpp

1

2
, 1q.

Combining Lemma 2.8.7 with Lemma 2.7.4 and applying the definition of the bilinear

decoupling constant gives Proposition 2.8.1 in the case when 2 ď p ď 4.

2.8.2 Case 4 ă p ă 6

We now implement the iteration in the case when 4 ă p ă 6. This case is similar to the case

when 2 ď p ď 4. For 4 ă p ă 6, a “
p´4
p´2

satisfies

1

p{2
“
a

p
`

1 ´ a

2
.

Note that 2p1 ´ aq decreases monotonically to 1 as p increase to 6. The analogue of Lemma

2.8.2 and Corollary 2.8.3 is as follows.

Lemma 2.8.8. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then for

each square B2{2ℓ Ă R2, we have

App
1

2ℓ
,

2

2ℓ
q ď E60Eν´1{4plog

1

δ
q1{2App

2

2ℓ
,

2

2ℓ
q1´aGpp

1

2ℓ
,

2

2ℓ
qa.
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Proof. The proof is similar to that of Lemma 2.8.2. Since p ě 4, in the definition of Ap,

we can increase the L2
#p rw

B1{2ℓ ,E
q to L

p{2
# p rw

B1{2ℓ ,E
q using Hölder’s inequality. Combining this

with Theorem 2.6.1 gives that

App
1

2ℓ
,

2

2ℓ
q ď E50Eν´1{4plog

1

δ
q1{2Gp{2p

1

2ℓ
,

2

2ℓ
q.

Hölder’s inequality for Gt (Lemma 2.7.2) then shows that

Gp{2p
1

2ℓ
,

2

2ℓ
q ď Gpp

1

2ℓ
,

2

2ℓ
qaG2p

1

2ℓ
,

2

2ℓ
q1´a.

Proceeding as at the end of the proof of Lemma 2.8.2 gives that

G2p
1

2ℓ
,

2

2ℓ
q ď E13E{2App

2

2ℓ
,

2

2ℓ
q

Putting the above three centered equations together then completes the proof of Lemma

2.8.8.

The analogue of Lemma 2.8.4 is as follows. The strategy of proof is essentially the same

as that in Lemma 2.8.4 except this time we also need to deal with the Gpp2´ℓ, 2´ℓ`1qa term

from Lemma 2.8.8.

Lemma 2.8.9. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then for

each square B1 Ă R2, we have

App
1

2ℓ
, 1q ď E100Eν´1{4plog

1

δ
q1{2App

1

2ℓ´1
, 1q1´aGpp

1

2ℓ
, 1qa.

Proof. Fix an arbitrary square B1 of side length δ´1. Since δ´1{2ℓ P 2N, we can dyadi-

cally partition B1 into squares of side length δ´1{2ℓ . Lemmas 2.7.3 and 2.8.8 and Hölder’s

inequality gives that

App
1

2ℓ
, 1qp “ Avg

B2{2ℓPP
δ´2{2ℓ

pB1q

App
1

2ℓ
,

2

2ℓ
qp

ď E60Epν´
p
4 plog

1

δ
qp{2

ˆ

Avg
B2{2ℓPP

δ´2{2ℓ
pB1q

App
2

2ℓ
,

2

2ℓ
qp

˙1´aˆ

Avg
B2{2ℓPP

δ´2{2ℓ
pB1q

Gpp
1

2ℓ
,

2

2ℓ
qp

˙a

.
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Lemma 2.7.3 gives that the first parenthetical term is equal to App 2
2ℓ
, 1qpp1´aq. Thus the

lemma is complete if we can show that

Avg
B2{2ℓPP

δ´2{2ℓ
pB1q

Gpp
1

2ℓ
,

2

2ℓ
qp ď E40EpGpp

1

2ℓ
, 1qp. (2.107)

Expanding definitions and interchanging geometric mean and the sum over B2{2ℓ gives that

Avg
B2{2ℓPP

δ´2{2ℓ
pB1q

Gpp
1

2ℓ
,

2

2ℓ
qp

ď
1

|B1|
geomp

ÿ

B2{2ℓPP
δ´2{2ℓ

pB1q

p
ÿ

JPP
δ1{2ℓ

pIiq

}EJg}2Lpp rw
B2{2ℓ ,E

qq
p{2q.

Since p ě 2, we can switch the l2 and lp norms inside the geometric mean. Finally, apply

Proposition 2.2.14 then proves that the above is ď 48EGpp 1
2ℓ
, 1qp which proves (2.107). This

completes the proof of Lemma 2.8.9.

Combining the above m ´ 1 inequalities in Lemma 2.8.9 gives the following result.

Lemma 2.8.10. Suppose δ´1{2m P 2N and νδ´1{2m P N, then for each square B1 Ă R2, we

have

App
1

2m
, 1q ď pE100Eν´1{4plog

1

δ
q1{2qm´1App

1

2
, 1qp1´aqm´1

m
ź

ℓ“2

Gpp
1

2ℓ
, 1qap1´aqm´ℓ

.

Proof. The proof is the same as that of Lemma 2.8.5.

To control App1
2
, 1q, we use Lemma 2.8.6. However, now we also need to control Gpp 1

2ℓ
, 1q

which we achieve by the following trivial bound.

Lemma 2.8.11. Fix an integer 2 ď ℓ ď m. Suppose δ´1{2ℓ P 2N and νδ´1{2ℓ P N. Then

Gpp
1

2ℓ
, 1q ď E100EDp,EpδqGpp

1

2
, 1q.

Proof. For each J P P
δ1{2ℓ pIiq, we have

}EJg}LppB1q “ }Er0,1spg1Jq}LppB1q

ď rDp,Epδqp
ÿ

J 1PP
δ1{2 pr0,1sq

}EJ 1pg1Jq}2Lpp rwB1,Eqq
1{2

“ rDp,Epδqp
ÿ

J 1PP
δ1{2 pJq

}EJ 1g}2Lpp rwB1,Eqq
1{2
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where the last equality is because both δ1{2ℓ and δ1{2 are dyadic. Applying Propositions

2.2.11 and 2.3.11 then shows that

}EJg}Lpp rwB1,Eq ď 12E{pE70EDp,Epδqp
ÿ

J 1PP
δ1{2 pJq

}EJ 1g}2Lpp rwB1,Eqq
1{2.

Combining this with the definition of Gpp1{2ℓ, 1q then completes the proof of Lemma 2.8.11.

Combining Lemmas 2.8.6, 2.8.10, and 2.8.11 gives the following result.

Lemma 2.8.12. Suppose δ´1{2m P 2N and νδ´1{2m P N, then for each square B1 Ă R2, we

have

App
1

2m
, 1q ď pE100Eν´1{4plog

1

δ
q1{2qmDp,Epδq1´p1´aqm´1

Gpp
1

2
, 1q

This with Lemma 2.7.4 then proves Proposition 2.8.1 when 4 ă p ă 6. Note that in this

case we obtain a small improvement over the trivial bound of Dp,Epδ,mq Àp,E Dp,Epδq which

is the key to obtaining control of the linear decoupling constant when 4 ă p ă 6.

2.9 Decoupling at lacunary scales

Using Propositions 2.5.3 and 2.8.1 we bound the linear decoupling constant at a sequence of

lacunary scales. The lacunary scales are because of the integrality conditions in Proposition

2.8.1. Our goal will be to prove the following result.

Proposition 2.9.1. Let E ě 100, m ě 3, ν :“ 2´16¨2mE10E
, and δ P tν2

mnu8
n“1.

paq If 2 ď p ď 4, then

Dp,Epδq ď 2m2

E400Emν´2mδ´ 1
2m .

pbq If 4 ă p ă 6, then

Dp,Epδq ď p2m2

E400Emν´2mq
1

r2{pp´2qsm´1 δ
´ 1

2r4{pp´2qsm´1 .
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pcq If p “ 6, then for p1 P p4, 6q, we have

D6,Epδq ď E50Ep2m2

E400Emν´2mq
1

p2{pp1´2qqm´1 δ
´ 1

2r4{pp1´2qsm´1 ´2p 1
p1 ´ 1

6
q
.

The proof of Proposition 2.9.1 actually shows that Dp,Epδq ď E400Emν´2mδ´1{2m for

2 ď p ď 4, but the extra 2m2
is harmless and will allow us to treat all three cases in

essentially the same manner. Note that in Propositions 2.8.1 and 2.9.1, the bound when

2 ď p ď 4 is same as the bound for 4 ă p ă 6 except with p “ 4 (and so a “ 0) and no

plog 1
δ
q1{2. When we prove Proposition 2.9.1, we will only consider the more complicated case

when 4 ă p ă 6 and p “ 6.

2.9.1 Case 4 ă p ă 6

We first prove the following lemma.

Lemma 2.9.2. Let ν “ 2´16¨2m¨E10E
, δ1{2 P 2´N, and a “

p´4
p´2

. Let K be the largest integer

such that δ1{2ν´K P 2´N. Suppose pδν´2iq´1{2m P 2N for all i “ 0, 1, . . . , K ´ 1. Then

Dp,Epδq ď 2m2

E400Emν´2mδ´ 1
2m max

i“0,1,...,K´2m´1´1
Dp,Epδν´2iq1´p1´aqm´1

.

Proof. Observe that

νpδν´2iq´1{2m “ pδν´2pi`2m´1qq´1{2m

and so for i “ 0, 1, . . . , K ´ 2m´1 ´ 1, we have that νpδν´2iq´1{2m P N.

For i “ 0, 1, . . . , K ´ 2m´1 ´ 1, we may apply Proposition 2.8.1 which gives that for such

i,

Dp,Epδν´2i,mq ď pE300Eν´1{4plog
1

δ
q1{2qmδ´ 1

2m`1Dp,Epδν´2iq1´p1´aqm´1

.

For i “ K ´ 2m´1, . . . , K ´ 1, the trivial bound (Lemma 2.5.1) gives that

Dp,Epδν´2i,mq ď 4Eν1{2pδν´2iq´1{4 ď 4Epδ´1{2νKq1{2ν´ 1
2

p2m´1´1q. (2.108)

By how K is defined, δ1{2ν´K´1 R 2´N. Since δ1{2 and ν are dyadic numbers, we must then

have δ1{2ν´K´1 P 2Z and hence δ1{2ν´K´1 ě 1 which implies that δ´1{2νK ď ν´1. Inserting
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this into (2.108) gives that for such i,

Dp,Epδν´2i,mq ď 4Eν´2m{4.

Therefore Proposition 2.5.3 gives that

Dp,Epδq

ď δ100E logν Eν´1 maxp1, 4Eν´2m{4, max
i“0,1,...,K´2m´1´1

Dp,Epδν´2i,mqq

ď δ100E logν Eν´1 max

ˆ

4Eν´2m{4,

pE300Eν´1{4plog
1

δ
q1{2qmδ´ 1

2m`1 max
i“0,1,...,K´2m´1´1

Dp,Epδν´2iq1´p1´aqm´1

˙

ď E300Emν´2mplog
1

δ
qm{2δ´ 1

2m`1 `100E logν E max
i“0,1,...,K´2m´1´1

Dp,Epδν´2iq1´p1´aqm´1

where in the last inequality we have used that Dp,Epδq ě 12´E{p for all δ which follows from

the same proof as Lemma 2.3.5. Observe that log 1
δ

ď 1
ae
δ´a for a ą 0, and hence

plog
1

δ
qm{2 ď 2m2

E4Emδ´ 5

2m¨E8E .

Furthermore, from our definition of ν, δ100E logν E ď δ´ 10

2mE8E . Inserting this into the above

completes the proof of Lemma 2.9.2.

Because of the generality of the statement of the previous lemma, we can upgrade the

above result so that the same maximum appears on both left and right hand sides.

Lemma 2.9.3. Suppose ν, δ, K, and a are as in Lemma 2.9.2. The left hand side of the

inequality in Lemma 2.9.2 can be replaced with maxi“0,1,...,K´2m´1´1Dp,Epδν´2iq.

Proof. Fix a j “ 0, 1, . . . , K ´ 2m´1 ´ 1. Let Kpjq :“ K ´ j. Since K is the largest integer

such that δ1{2ν´K P 2´N, it follows that Kpjq is the largest integer such that

pδν´2jq1{2ν´Kpjq “ δ1{2ν´pKpjq`jq P 2´N.

We similarly also have pδν´2pi`jqq´1{2m P 2N for i “ 0, 1, . . . , Kpjq ´ 1. Therefore Lemma

2.9.2 gives that

Dp,Epδν´2jq ď 2m2

E400Emν´2mδ´ 1
2m max

ℓ“0,1,...,K´2m´1´1´j
Dp,Epδν´2pj`ℓqq1´p1´aqm´1

ď 2m2

E400Emν´2mδ´ 1
2m max

ℓ“0,1,...,K´2m´1´1
Dp,Epδν´2ℓq1´p1´aqm´1

.
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Since j on the left hand side of the above inequality is arbitrary and the right hand side is

independent of j, the above inequality is still true if we take the maximum over all j on the

left hand side. This completes the proof of Lemma 2.9.3.

This gives the following corollary.

Corollary 2.9.4. Suppose ν, δ, K, and a are as in Lemma 2.9.2. Then

max
ℓ“0,1,...,K´2m´1´1

Dp,Epδν´2ℓq ď p2m2

E400Emν´2mδ´ 1
2m q

1
p1´aqm´1

Taking ℓ “ 0 in Corollary 2.9.4 and observing that the choice of δ P tν2
mnu8

n“1 satisfies

the hypothesis of Lemma 2.9.2 completes the proof of Proposition 2.9.1 when 4 ă p ă 6.

Indeed, with this choice of δ, K “ 2m´1n ´ 1 and so observe that

pδν´2iq´1{2m “ pν´1qn´2i{2m

and for i “ 0, 1, . . . , K ´ 1, we have n ´ 2i{2m ě 0.

2.9.2 Case p “ 6

At p “ 6 the argument no longer gives a better than trivial estimate since here 2p1 ´ aq “ 1.

The advantage we have however is that we know a good bound on Dp1,Epδq for all p1 arbitrary

close to 6. This combined with reverse Hölder and Hölder is enough to give a better than

trivial bound at p “ 6.

Let 4 ă p1 ă 6 to be chosen later. The proof of Lemma 2.2.20 along with Corollary 2.2.9

and Proposition 2.2.11 imply that

}Er0,1sg}L6pBq ď 25p1{p1´1{6qE22E}Er0,1sg}Lp1
pwB,Eq

ď E23EDp1,Epδqp
ÿ

JPP
δ1{2 pr0,1sq

}EJg}2
Lp1

pwB,Eq
q1{2.

Hölder’s inequality to increase Lp1

to L6 then implies that

D6,Epδq ď E50Epδ´2q1{p1´1{6Dp1,Epδq.
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Combining this with Proposition 2.9.1 for 4 ă p1 ă 6 shows that under the hypothesis of

Proposition 2.9.1 and arbitrary 4 ă p1 ă 6, we have

D6,Epδq ď E50Ep2m2

E400Emν´2mq
1

p2{pp1´2qqm´1 δ
´ 1

2r4{pp1´2qsm´1 ´2p 1
p1 ´ 1

6
q
.

Thus if we choose p1 so that 1{p1 ´ 1{6 is sufficiently small and then choose m sufficiently

large, we once again can do better than the trivial bound of OE,ppδ´1{4q. This completes the

proof of Proposition 2.9.1 when p “ 6.

2.10 Decoupling at all scales

While Proposition 2.9.1 is for a lacunary sequence of scales, recall that the decoupling con-

stant defined in (2.1) is for δ P N´2. To upgrade Proposition 2.9.1 to all scales δ P N´2 we

use lacunarity and Proposition 2.4.1.

Lemma 2.10.1. Suppose δ P rδ1, δ2s X N´2 and δ2{δ1 “ c. Then

Dp,Epδq ď E100E2E{pc1{4Dp,Epδ2q.

Proof. Using Proposition 2.4.1 and the trivial bound on decoupling we have

Dp,Epδq ď E100EDp,Epδ2qDp,Ep
δ

δ2
q

ď E100E2E{pp
δ2
δ

q1{4Dp,Epδ2q ď E100E2E{pc1{4Dp,Epδ2q

which completes the proof of Lemma 2.10.1.

Combining this lemma with Proposition 2.9.1 gives the following result.

Proposition 2.10.2. Let E ě 100, m ě 3, and suppose δ P N´2.

paq If 2 ď p ď 4, then

Dp,Epδq ď 24mE15E

δ´ 1
2m .

pbq If 4 ă p ă 6, then

Dp,Epδq ď p24mE15E

δ´ 1
2m q

1
r2{pp´2qsm´1 .
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pcq If p “ 6, then for p1 P p4, 6q we have

Dp,Epδq ď p24mE15E

δ´ 1
2m q

1
r2{pp1´2qsm´1 δ

´2p 1
p1 ´ 1

6
q
.

Proof. Recall that ν “ 2´16¨2mE10E
. The proof of all three parts is essentially the same, so

we only concentrate on the 2 ď p ď 4 case. If δ P rν2
m
, 1s XN´2, the trivial bound gives that

Dp,Epδq ď 2E{pν´2m{4 “ 2E{p`4¨4mE10E

. (2.109)

From Lemma 2.10.1, if δ P rν2
mpn`1q, ν2

mns X N´2 for some n ě 1, then

Dp,Epδq ď E100E2E{pν´2m{4Dp,Epν2
mnq.

Inserting the bound from Proposition 2.9.1 gives that the above is bounded by

E100E2E{pν´2m{42m2

E400Emν´2mδ´ 1
2m ď 2m2

E500Emν´ 5
4
2mδ´ 1

2m .

Using that E ě 100 and the definition of ν, we have

2m2

E500Emν´ 5
4
2m ď 2100¨4m¨E10E

ď 24mE15E

.

This then shows

Dp,Epδq ď 24mE15E

δ´ 1
2m

for all δ P rν2
mpn`1q, ν2

mns, n ě 1. Combining with (2.109) completes the proof of Proposition

2.10.2 when 2 ď p ď 4. When 4 ă p ă 6, 1
2{pp´2q

ą 1 and so we can repeat the same proof as

above in the remaining two cases of the proposition. This completes the proof of Proposition

2.10.2.

2.11 Proof of Theorem 2.1.1

Since Proposition 2.10.2 is true for all m ě 3 and δ P N´2, we now optimize the bound on

Dp,Epδq in m. This will give the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. We combine the cases of 2 ď p ď 4 and 4 ă p ă 6. Fix arbitrary

δ P N´2 and E ě 100. Let m be the largest integer such that

2´m ď E5Eplog2 δ
´1q´1{3 ă 2´m`1. (2.110)
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Since δ ă 2´64E15E
, m ě 3. Then

24mE15E

δ´ 1
2m ď expp5plog 2q1{3E5Eplog

1

δ
q2{3q ď expp5 ¨ E5Eplog

1

δ
q2{3q (2.111)

which finishes the case of Theorem 2.1.1 when 2 ď p ď 4. For 4 ă p ă 6, observe that

p
2

p ´ 2
q´pm´1q “ expp´pm ´ 1q log

2

p ´ 2
q ď 2plog

1

δ
q

´ 1
3
log2p 2

p´2
q. (2.112)

Combining (2.111) and (2.112) then proves Theorem 2.1.1 in the case when 4 ă p ă 6.

For the case when p “ 6, choose m as in (2.110). Then for 4 ă p1 ă 6,

D6,Epδq ď expp10 ¨ E5Eplog
1

δ
q
2
3

´ 1
3
log2p 2

p1´2
q
qδ

´2p 1
p1 ´ 1

6
q

ď exppE6Eplog
1

δ
qrplog

1

δ
q

´ 1
3
log2p 4

p1´2
q

` p
1

p1
´

1

6
qsq. (2.113)

It thus remains to optimize

plog
1

δ
q

´ 1
3
log2p 4

p1´2
q

` p
1

p1
´

1

6
q

for 4 ă p1 ă 6.

Let λ :“ 1
p1 ´ 1

6
and suppose we choose p1 sufficiently close to 6 such that λ ă 1{4. Then

4
p1´2

“ 1`6λ
1´3λ

and

log
4

p1 ´ 2
ě 8λ.

Thus

plog
1

δ
q

´ 1
3
log2

4
p1´2 ` p

1

p1
´

1

6
q ď plog

1

δ
q´3λ ` λ.

Setting

λ “
logp3 log log 1

δ
q

3 log log 1
δ

gives that

plog
1

δ
q´3λ ` λ “

1 ` log 3 ` log log log 1
δ

3 log log 1
δ

ď
log log log 1

δ

log log 1
δ

(2.114)

where we have used that 1 ` log 3 ď log log log 1
δ

for our range of δ. Note that for our range

of δ, λ ă 1{4 since this is equivalent to 3 log log 1
δ

ă plog 1
δ
q3{4 which is certainly satisfied if

δ´1 ą 108. Inserting (2.114) into (2.113) then completes the proof of Theorem 2.1.1.
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CHAPTER 3

An l2 decoupling interpretation of efficient

congruencing in 2D

3.1 Introduction

Since we will once again be studying l2 decoupling for the parabola, we adopt essentially

the same notation as in Chapter 2 with a few small differences (namely δ in Chapter 2 is δ2

in this chapter and we just set E “ 100). For an interval J Ă r0, 1s and g : r0, 1s Ñ C, we

define

pEJgqpxq :“

ż

J

gpξqepξx1 ` ξ2x2q dξ

where epaq :“ e2πia. For an interval I, let PℓpIq be the partition of I into intervals of length

ℓ. By writing PℓpIq, we are assuming that |I|{ℓ P N. We will also similarly define PℓpBq for

squares B in R2. Next if B “ Bpc, Rq is a square in R2 centered at c of side length R, let

wBpxq :“ p1 `
|x ´ c|

R
q´100.

We will always assume that our squares have sides parallel to the x and y-axis. We observe

that 1B ď 2100wB. For a function w, we define

}f}Lppwq :“ p

ż

R2

|fpxq|pwpxq dxq1{p.

For δ P N´1, let Dpδq be the best constant such that

}Er0,1sg}L6pBq ď Dpδqp
ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2 (3.1)
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for all g : r0, 1s Ñ C and all squares B in R2 of side length δ´2. Let Dppδq be the decoupling

constant where the L6 in (3.1) is replaced with Lp. Since 1B À wB, the triangle inequality

combined with Cauchy-Schwarz shows that Dppδq Àp δ
´1{2. The l2 decoupling theorem for

the paraboloid proven by Bourgain and Demeter in [BD15] implies that for the parabola we

have Dppδq Àε δ
´ε for 2 ď p ď 6 and this range of p is sharp.

This chapter attempts to probe the connections between efficient congruencing and l2

decoupling in the simplest case of the parabola. Our proof of l2 decoupling for the parabola

is inspired by the exposition of efficient congruencing in Pierce’s Bourbaki seminar exposition

[Pie19]. This proof will give the following result.

Theorem 3.1.1. For δ P N´1 such that 0 ă δ ă e´200200, we have

Dpδq ď expp30
log 1

δ

log log 1
δ

q.

This improves upon a previous result of Theorem 2.1.1 in Chapter 2. In the context

of discrete Fourier restriction, Theorem 3.1.1 implies that for all N sufficiently large and

arbitrary sequence tanu Ă l2, we have

}
ÿ

|n|ďN

ane
2πipnx`n2tq}L6pT2q À exppOp

logN

log logN
qqp

ÿ

|n|ďN

|an|2q1{2

which rederives (up to constants) the upper bound obtained by Bourgain in [Bou93, Propo-

sition 2.36] but without resorting to using a divisor bound. It is an open problem whether

the exppOp
logN

log logN
qq can be improved.

3.1.1 More notation

Once again we will let η be a Schwartz function such that η ě 1Bp0,1q and suppppηq Ă Bp0, 1q.

For B “ Bpc, Rq we also define ηBpxq :“ ηpx´c
R

q. Since we care about explicit constants in

Section 3.2, we will use the explicit η constructed in Corollary 2.2.9. In particular, for this η,

ηB ď 102400wB. For the remaining sections in this chapter, we will ignore this constant. We

refer the reader to [BD17, Section 4] and Chapter 2, Section 2.2 for some useful properties

of the weight wB and ηB.
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Finally we define

}f}Lp
#pBq :“ p

1

|B|

ż

B

|fpxq|p dxq1{p

and given a collection C of squares, we let

Avg
∆PC

fp∆q :“
1

|C|

ÿ

∆PC
fp∆q.

3.1.2 Outline of proof of Theorem 3.1.1

Our argument is inspired by the discussion of efficient congruencing in [Pie19, Section 4]

which in turn is based off Heath-Brown’s simplification [Hea15] of Wooley’s proof of the

cubic case of Vinogradov’s mean value theorem [Woo16].

Our first step, much like the first step in both 2D efficient congruencing and decoupling,

is to bilinearize the problem. Throughout we will assume δ´1 P N and ν P N´1 X p0, 1{100q.

Fix arbitrary integers a, b ě 1. Suppose δ and ν were such that νaδ´1, νbδ´1 P N. This

implies that δ ď minpνa, νbq and the requirement that νmaxpa,bqδ´1 P N is equivalent to having

νaδ´1, νbδ´1 P N. For this δ and ν, let Ma,bpδ, νq be the best constant such that
ż

B

|EIg|2|EI 1g|4 ď Ma,bpδ, νq6p
ÿ

JPPδpIq

}EJg}2L6pwBqqp
ÿ

J 1PPδpI 1q

}EJ 1g}2L6pwBqq
2 (3.2)

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all intervals I P Pνapr0, 1sq, I 1 P

Pνbpr0, 1sq with dpI, I 1q ě 3ν. We will say that such I and I 1 are 3ν-separated. Applying

Hölder followed by the triangle inequality and Cauchy-Schwarz shows that Ma,bpδ, νq is finite.

This is not the only bilinear decoupling constant we can use (see (3.27) and (3.31) in Sections

3.4 and 3.5, respectively), but in this outline we will use (3.2) because it is closest to the one

used in [Pie19] and the one we will use in Section 3.2.

Our proof of Theorem 3.1.1 is broken into the following four lemmas. We state them

below ignoring explicit constants for now.

Lemma 3.1.2 (Parabolic rescaling). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1. Let I

be an arbitrary interval in r0, 1s of length σ. Then

}EIg}L6pBq À Dp
δ

σ
qp

ÿ

JPPδpIq

}EJg}2L6pwBqq
1{2
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for every g : r0, 1s Ñ C and every square B of side length δ´2.

Lemma 3.1.3 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M1,1pδ, νq.

Lemma 3.1.4. Let a and b be integers such that 1 ď a ď 2b. Suppose δ and ν were such

that ν2bδ´1 P N. Then

Ma,bpδ, νq À ν´1{6M2b,bpδ, νq.

Lemma 3.1.5. Suppose b is an integer and δ and ν were such that ν2bδ´1 P N. Then

M2b,bpδ, νq À Mb,2bpδ, νq1{2Dp
δ

νb
q1{2.

Applying Lemma 3.1.4, we can move from M1,1 to M2,1 and then Lemma 3.1.5 allows

us to move from M2,1 to M1,2 at the cost of a square root of Dpδ{νq. Applying Lemma

3.1.4 again moves us to M2,4. Repeating this we can eventually reach M2N´1,2N paying some

Op1q power of ν´1 and the value of the linear decoupling constants at various scales. This

combined with Lemma 3.1.3 and the choice of ν “ δ1{2N leads to the following result.

Lemma 3.1.6. Let N P N and suppose δ was such that δ´1{2N P N and 0 ă δ ă 100´2N .

Then

Dpδq À Dpδ1´ 1

2N q ` δ´ 4

3¨2N Dpδ1{2q
1

3¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1 .

This then gives a recursion which shows that Dpδq Àε δ
´ε (see Section 3.2.3 for more

details).

The proof of Lemma 3.1.2 is essentially a change of variables and applying the definition

of the linear decoupling constant (some technical issues arise because of the weight wB, see

Chapter 2, Section 2.4). The idea is that a cap on the paraboloid can be stretched to the

whole paraboloid without changing any geometric properties. The bilinear reduction Lemma

3.1.3 follows from Hölder’s inequality. The argument we use is from Tao’s exposition on the

Bourgain-Demeter-Guth proof of Vinogradov’s mean value theorem [Tao15]. In general

dimension, the multilinear reduction follows from a Bourgain-Guth argument (see [BG11]
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and [BD17, Section 8]). We note that if a and b are so large that νa, νb « δ then Ma,b « Op1q

and so the goal of the iteration is to efficiently move from small a and b to very large a and

b.

Lemma 3.1.4 is the most technical of the four lemmas and is where we use a Fefferman-

Cordoba argument in Section 3.2. It turns out we can still close the iteration with Lemma

3.1.4 replaced by Ma,b À Mb,b for 1 ď a ă b and Mb,b À ν´1{6M2b,b. Both these estimates

come from the same proof of Lemma 3.1.4 and is how we approach the iteration in Sections 3

and 4 (see Lemmas 3.3.3 and 3.3.5 and their rigorous counterparts Lemmas 3.4.7 and 3.4.8).

The proof of these lemmas is a consequence of l2L2 decoupling and bilinear Kakeya.

As a and b get larger and larger the estimate in Lemma 3.1.4 generally gets better

and better than the trivial bound of Ma,b À ν´p2b´aq{6M2b,b. The ν´1{6 comes from the

ν-transversality of I1 and I2 in the definition of Ma,b. In particular, should be viewed as

pν´p2´1qq1{6 where the 1{6 comes from that we are working in L6 and the ν´p2´1q comes from

ν´pd´1q with d “ 2 which is the power of ν arising from multilinear Kakeya. Finally, Lemma

3.1.5 is an application of Hölder and parabolic rescaling.

3.1.3 Comparison with 2D efficient congruencing as in [Pie19, Section 4]

The main object of iteration in [Pie19, Section 4] is the following bilinear object

I1pX; a, bq

“ max
ξ‰η pmod pq

ż

p0,1sk
|

ÿ

1ďxďX
x”ξ pmod paq

epα1x ` α2x
2q|2|

ÿ

1ďyďX
y”η pmod paq

epα1y ` α2y
2q|4 dα.

Lemma 3.1.2-3.1.5 correspond directly to Lemmas 4.2-4.5 of [Pie19, Section 4]. The obser-

vation that Lemmas 4.2 and 4.3 of [Pie19] correspond to parabolic rescaling and bilinear

reduction, respectively was already observed by Pierce in [Pie19, Section 8].

We can think of p as ν´1, JpXq{X3 as Dpδq, and pa`2bI1pX; a, bq{X3 as Ma,bpδ, νq6. In

the definition of I1, the maxξ‰η pmod pq condition can be thought of as corresponding to the

transversality condition that I1 and I2 are ν-transverse (or since we are in 2D, ν-separated)

intervals of length ν. The integral over p0, 1s2 corresponds to an integral over B. Finally the
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expression

|
ÿ

1ďxďX
x”ξ pmod paq

epα1x ` α2x
2q|,

can be thought of as corresponding to |EIg| for I an interval of length νa and so the whole

of I1pX; a, bq can be thought of as
ş

B
|EI1g|2|EI2g|4 where ℓpI1q “ νa and ℓpI2q “ νb with I1

and I2 are Opνq-separated. This will be our interpretation in Section 3.2.

Interpreting the proof of Lemma 3.1.4 using the uncertainty principle, we reinterpret

I1pX; a, bq as (ignoring weight functions)

Avg
∆PP

ν´ maxpa,bq pBq

}EIg}2L2
#p∆q}EI 1g}4L4

#p∆q (3.3)

where I and I 1 are length νa and νb, respectively and are ν-separated. The uncertainty

principle says that (3.3) is essentially equal to 1
|B|

ş

B
|EIg|2|EI 1g|4.

Finally in Section 3.5 we replace (3.3) with

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb

pIq

}EJg}2L2
#p∆qqp

ÿ

J 1PP
νb

pI 1q

}EJ 1g}2L2
#p∆qq

2

where I and I 1 are length ν and ν-separated. Note that when b “ 1 this then is exactly

equal to 1
|B|

ş

B
|EIg|2|EI 1g|4. The interpretation given above is now similar to the Ap object

studied by Bourgain-Demeter in [BD17].

3.1.4 Comparison with 2D l2 decoupling as in [BD17]

Let M
p2,4q

a,b pδ, νq be the bilinear constant defined in (3.2). Let M
p3,3q

1,1 pδ, νq be the bilinear

constant defined as in (3.2) with a “ b “ 1 except instead we use the true geometric mean.

This latter bilinear decoupling constant is the one used by Bourgain and Demeter in [BD17].

The largest difference between our proof and the Bourgain-Demeter proof is how we

iterate. Both proofs obtain that

Dpδq À Dp
δ

ν
q ` ν´1M

ps,6´sq

1,1 pδ, νq (3.4)

where s “ 3 corresponds to the Bourgain-Demeter proof while s “ 2 corresponds to our

proof. However we proceed to analyze the iteration slightly differently. Bourgain-Demeter
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applies (3.4) to Dpδ{νq and Dpδ{ν2q to obtain

Dpδq À Dp
δ

ν2
q ` ν´1pM

p3,3q

1,1 p
δ

ν
, νq ` M

p3,3q

1,1 pδ, νqq

À Dp
δ

ν3
q ` ν´1pM

p3,3q

1,1 p
δ

ν2
, νq ` M

p3,3q

1,1 p
δ

ν
, νq ` M

p3,3q

1,1 pδ, νqq

and we continue to iterate until δ{ν2
n

is of size 1. It now remains to analyze M
p3,3q

1,1 pδ, νq for

various scales δ which is done by the Ap expressions that are used in [BD17]. For our proof,

in two steps (of applying Lemmas 3.1.4 and 3.1.5) we obtain

Dpδq À Dp
δ

ν
q ` ν´7{6M

p2,4q

1,2 pδ, νq1{2Dp
δ

ν
q1{2

À Dp
δ

ν
q ` ν´5{4M

p2,4q

2,4 pδ, νq1{4Dp
δ

ν2
q1{4Dp

δ

ν
q1{2

and we continue to iterate δ{ν2
n

is of size 1. Note that while the iteration here is able to

tackle the endpoint L6 estimate directly and as written [BD17] could not do so, the iteration

in [BD17] can be slightly modified so it can handle the endpoint estimate directly (thanks

to Pavel Zorin-Kranich for pointing this out).

3.1.5 Comparison of the iteration in Section 3.2 and 3.4

The way we iterate in Section 3.2 will be slightly different than how we iterate in Section

3.4. In Section 3.2, we first apply the trivial bound M1,1 À ν´1{6M1,2. Then Lemmas 3.1.4

and 3.1.5 imply that for integer b ě 2,

Mb{2,bpδ, νq À ν´1{6Mb,2bpδ, νq1{2Dp
δ

νb
q1{2.

Thus from this we can access M2N´1,2N for arbitrary large N but lose only ν´Op1q. In contrast,

for Section 3.4, we use that Ma,b À Mb,b for 1 ď a ă b (from l2L2 decoupling) and Mb,b À

ν´1{6M2b,b (from bilinear Kakeya). Combining these two inequalities with Lemma 3.1.5 gives

that for integer b ě 1,

Mb,bpδ, νq À ν´1{6M2b,2bpδ, νq1{2Dp
δ

νb
q1{2.

Now we can access the constant M2N ,2N for arbitrary large N but lose only ν´Op1q. Both

iterations give similar quantitative estimates.
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3.1.6 Overview of chapter

Theorem 3.1.1 will be proved in Section 3.2 via a Fefferman-Cordoba argument. This ar-

gument does not generalize to proving that Dppδq Àε δ
´ε except for p “ 4, 6. However in

Section 3.3, by the uncertainty principle we reinterpret a key lemma from Section 2 (Lemma

3.2.8) which allows us to generalize the argument in Section 3.2 so that it can work for all

2 ď p ď 6. We make this completely rigorous in Section 3.4 by defining a slightly different

(but morally equivalent) bilinear decoupling constant. This will make use of l2L2 decoupling,

Bernstein’s inequality, and bilinear Kakeya. A basic version of the ball inflation inequality

similar to that used in [BD17, Theorem 9.2] and [BDG16, Theorem 6.6] makes an appear-

ance. Finally in Section 3.5, we reinterpret the argument made in Section 3.4 and write an

argument that is more like that given in [BD17]. We create a 1-parameter family of bilinear

constants which in some sense “interpolate” between the Bourgain-Demeter argument and

our argument here.

The three arguments in Sections 3.2-3.5 are similar but will use slightly different bilinear

decoupling constants. We will only mention explicit constants in Section 3.2. In Sections

3.4 and 3.5, for simplicity, we will only prove that Dpδq Àε δ
´ε. The estimates in those

sections can be made explicit by using explicit constants obtained from Chapter 2. Because

the structure of the iteration in Sections 3.4 and 3.5 is the same as that in Section 3.2, we

obtain essentially the same quantitative bounds as in Theorem 3.1.1 when making explicit

the bounds in Sections 3.4 and 3.5.

In Section 3.6 we modify the argument in the previous sections to illustrate how to tackle

l2Lp decoupling for the parabola for 2 ă p ă 6, taking p “ 4 as an example. Finally in

Section 3.7, we address ongoing work with Shaoming Guo and Po-Lam Yung about effi-

cient congruencing in [Hea15] and sketch how we give a new (bilinear) proof of sharp l4L12

decoupling for the moment curve t ÞÑ pt, t2, t3q.
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3.2 Proof of Theorem 3.1.1

We recall the definition of the bilinear decoupling constant Ma,b as in (3.2). The arguments

in this section will rely strongly on that the exponents in the definition of Ma,b are 2 and 4,

though we will only essentially use this in Lemma 3.2.8.

Given two expressions x1 and x2, let

geom2,4 xi :“ x
2{6
1 x

4{6
2 .

Hölder gives } geom2,4 xi}p ď geom2,4 }xi}p.

3.2.1 Parabolic rescaling and consequences

The linear decoupling constant Dpδq obeys the following important property.

Lemma 3.2.1 (Parabolic rescaling). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1. Let I

be an arbitrary interval in r0, 1s of length σ. Then

}EIg}L6pBq ď 1020000Dp
δ

σ
qp

ÿ

JPPδpIq

}EJg}2L6pwBqq
1{2

for every g : r0, 1s Ñ C and every square B of side length δ´2.

Proof. See [BD17, Proposition 7.1] for the proof without explicit constants and Section 2.4

with E “ 100 for a proof with explicit constants (and a clarification of parabolic rescaling

with weight wB).

As an immediate application of parabolic rescaling we have almost multiplicativity of the

decoupling constant.

Lemma 3.2.2 (Almost multiplicativity). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1,

then

Dpδq ď 1020000DpσqDpδ{σq.

Proof. See Proposition 2.4.1 with E “ 100.
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The trivial bound of Opνpa`2bq{6δ´1{2q for Ma,bpδ, νq is too weak for applications. We

instead give another trivial bound that follows from parabolic rescaling.

Lemma 3.2.3. If δ and ν were such that νaδ´1, νbδ´1 P N, then

Ma,bpδ, νq ď 1020000Dp
δ

νa
q1{3Dp

δ

νb
q2{3.

Proof. Fix arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are 3ν-separated. Hölder’s

inequality gives that

} geom2,4 |EIig|}6L6pBq ď }EI1g}2L6pBq}EI2g}4L6pBq.

Parabolic rescaling bounds this by

10120000Dp
δ

νa
q2Dp

δ

νb
q4p

ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2.

Taking sixth roots then completes the proof of Lemma 3.2.3.

Hölder and parabolic rescaling allows us to interchange the a and b in Ma,b.

Lemma 3.2.4. Suppose b ě 1 and δ and ν were such that ν2bδ´1 P N. Then

M2b,bpδ, νq ď 1010000Mb,2bpδ, νq1{2Dpδ{νbq1{2.

Proof. Fix arbitrary I1 and I2 intervals of length ν2b and νb, respectively which are ν-

separated. Hölder’s inequality then gives

}|EI1g|1{3|EI2g|2{3}6L6pBq ď p

ż

B

|EI1g|4|EI2g|2q1{2p

ż

B

|EI2g|6q1{2.

Applying the definition of Mb,2b and parabolic rescaling bounds the above by

p1020000q3Mb,2bpδ, νq3Dp
δ

νb
q3p

ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2

which completes the proof of Lemma 3.2.4.

Lemma 3.2.5 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq ď 1030000pDp
δ

ν
q ` ν´1M1,1pδ, νqq.
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Proof. Let tIiu
ν´1

i“1 “ Pνpr0, 1sq. We have

}Er0,1sg}L6pBq “ }
ÿ

1ďiďν´1

EIig}L6pBq ď }
ÿ

1ďi,jďν´1

|EIig||EIjg|}
1{2

L3pBq

ď
?

2

ˆ

}
ÿ

1ďi,jďν´1

|i´j|ď3

|EIig||EIjg|}
1{2

L3pBq
` }

ÿ

1ďi,jďν´1

|i´j|ą3

|EIig||EIjg|}
1{2

L3pBq

˙

. (3.5)

We first consider the diagonal terms. The triangle inequality followed by Cauchy-Schwarz

gives that

}
ÿ

1ďi,jďν´1

|i´j|ď3

|EIig||EIjg|}L3pBq ď
ÿ

1ďi,jďν´1

|i´j|ď3

}EIig}L6pBq}EIjg}L6pBq.

Parabolic rescaling bounds this by

1040000Dp
δ

ν
q2

ÿ

1ďi,jďν´1

|i´j|ď3

p
ÿ

JPPδpIiq

}EJg}2L6pwBqq
1{2p

ÿ

JPPδpIjq

}EJg}2L6pwBqq
1{2

ď
1040000

2
Dp

δ

ν
q2

ÿ

1ďi,jďν´1

|i´j|ď3

ˆ

ÿ

JPPδpIiq

}EJg}2L6pwBq `
ÿ

JPPδpIjq

}EJg}2L6pwBq

˙

ď 1040010Dp
δ

ν
q2

ÿ

JPPδpr0,1sq

}EJg}2L6pwBq.

Therefore the first term in (3.5) is bounded above by

1030000Dp
δ

ν
qp

ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2. (3.6)

Next we consider the off-diagonal terms. We have

}
ÿ

1ďi,jďν´1

|i´j|ą3

|EIig||EIjg|}
1{2

L3pBq
ď ν´1 max

1ďi,jďν´1

|i´j|ą3

}|EIig||EIjg|}
1{2

L3pBq

Hölder’s inequality gives that

}|EIig||EIjg|}
1{2

L3pBq
ď }|EIig|1{3|EIjg|2{3}

1{2

L6pBq
}|EIig|2{3|EIjg|1{3}

1{2

L6pBq
(3.7)

and therefore from (3.2) (and using that νδ´1 P N), the second term in (3.5) is bounded by

?
2ν´1M1,1pδ, νqp

ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2.

Combining this with (3.6) and applying the definition of Dpδq then completes the proof of

Lemma 3.2.5.
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3.2.2 A Fefferman-Cordoba argument

In the proof of Lemma 3.2.8 we need a version of Ma,b with both sides being L6pwBq. The

following lemma shows that these two constants are equivalent.

Lemma 3.2.6. Suppose δ and ν were such that νaδ´1, νbδ´1 P N. Let M 1
a,bpδ, νq be the best

constant such that

ż

|EIg|2|EI 1g|4wB ď M 1
a,bpδ, νq6p

ÿ

JPPδpIq

}EJg}2L6pwBqqp
ÿ

J 1PPδpI 1q

}EJ 1g}2L6pwBqq
2

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all 3ν-separated intervals I P

Pνapr0, 1sq and I 1 P Pνbpr0, 1sq. Then

M 1
a,bpδ, νq ď 12100{6Ma,bpδ, νq.

Remark 3.2.7. Since 1B À wB, Ma,bpδ, νq À M 1
a,bpδ, νq and hence Lemma 3.2.6 implies Ma,b „

M 1
a,b.

Proof. Fix arbitrary 3ν-separated intervals I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. It suffices to

assume that B is centered at the origin.

Corollary 2.2.4 gives

} geom2,4 |EIig|}6L6pwBq ď 3100

ż

R2

} geom2,4 |EIig|}6L6
#pBpy,δ´2qqwBpyq dy.

Applying the definition of Ma,b gives that the above is

ď 3100δ4Ma,bpδ, νq6
ż

R2

geom2,4p
ÿ

JPPδpIiq

}EJg}2L6pwBpy,δ´2q
qq

3wBpyq dy

ď 3100δ4Ma,bpδ, νq6 geom2,4

ż

R2

p
ÿ

JPPδpIiq

}EJg}2L6pwBpy,δ´2q
qq

1
2

¨6wBpyq dy

ď 3100δ4Ma,bpδ, νq6 geom2,4p
ÿ

JPPδpIiq

p

ż

R2

}EJg}6L6pwBpy,δ´2q
qwBpyq dyq1{3q3

where the second inequality is by Hölder and the third inequality is by Minkowski. Since B

is centered at the origin, wB ˚ wB ď 4100δ´4wB (Lemma 2.2.1) and hence

δ4
ż

R2

}EJg}6L6pwBpy,δ´2q
qwBpyq dy ď 4100}EJg}6L6pwBq.
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This then immediately implies that M 1
a,bpδ, νq ď 12100{6Ma,bpδ, νq which completes the proof

of Lemma 3.2.6.

We have the following key technical lemma of this paper. We encourage the reader to

compare the argument with that of [Pie19, Lemma 4.4]. This lemma is a large improvement

over the trivial bound of Ma,b À ν´p2b´aq{6M2b,b especially at very small scales (large a, b).

Lemma 3.2.8. Let a and b be integers such that 1 ď a ď 2b. Suppose δ and ν was such that

ν2bδ´1 P N. Then

Ma,bpδ, νq ď 101000ν´1{6M2b,bpδ, νq.

Proof. It suffices to assume that B is centered at the origin with side length δ´2. The

integrality conditions on δ and ν imply that δ ď ν2b and νaδ´1, νbδ´1 P N. Fix arbitrary

intervals I1 “ rα, α`νas P Pνapr0, 1sq and I2 “ rβ, β`νbs P Pνbpr0, 1sq which are 3ν-separated.

Let gβpxq :“ gpx ` βq, Tβ “ p 1 2β
0 1 q, and d :“ α ´ β. Shifting I2 to r0, νbs gives that

ż

B

|pEI1gqpxq|2|pEI2gqpxq|4 dx “

ż

B

|pErd,d`νasgβqpTβxq|2|pEr0,νbsgβqpTβxq|4 dx

“

ż

TβpBq

|pErd,d`νasgβqpxq|2|pEr0,νbsgβqpxq|4 dx. (3.8)

Note that d can be negative, however since g : r0, 1s Ñ C and d “ α ´ β, Erd,d`νasgβ is

defined. Since |β| ď 1, TβpBq Ă 100B. Combining this with 1100B ď η100B gives that (3.8) is

ď

ż

R2

|pErd,d`νasgβqpxq|2|pEr0,νbsgβqpxq|4η100Bpxq dx

“
ÿ

J1,J2PP
ν2b

prd,d`νasq

ż

R2

pEJ1gβqpxqpEJ2gβqpxq|pEr0,νbsgβqpxq|4η100Bpxq dx. (3.9)

We claim that if dpJ1, J2q ą 10ν2b´1, the integral in (3.9) is equal to 0.

Suppose J1, J2 P Pν2bprd, d ` νasq such that dpJ1, J2q ą 10ν2b´1. Expanding the integral

in (3.9) for this pair of J1, J2 gives that it is equal to

ż

R2

ˆ
ż

J1ˆr0,νbs2ˆJ2ˆr0,νbs2

3
ź

i“1

gβpξiqgβpξi`3qep¨ ¨ ¨ q

6
ź

i“1

dξi

˙

η100Bpxq dx (3.10)

where the expression inside the ep¨ ¨ ¨ q is

ppξ1 ´ ξ4qx1 ` pξ21 ´ ξ24qx2q ` ppξ2 ` ξ3 ´ ξ5 ´ ξ6qx1 ` pξ22 ` ξ23 ´ ξ25 ´ ξ26qx2q.
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Interchanging the integrals in ξ and x shows that the integral in x is equal to the Fourier

inverse of η100B evaluated at

p

3
ÿ

i“1

pξi ´ ξi`3q,
3

ÿ

i“1

pξ2i ´ ξ2i`3qq.

Since the Fourier inverse of η100B is supported in Bp0, δ2{100q, (3.10) is equal to 0 unless

|

3
ÿ

i“1

pξi ´ ξi`3q| ď δ2{200

|

3
ÿ

i“1

pξ2i ´ ξ2i`3q| ď δ2{200. (3.11)

Since δ ď ν2b and ξi P r0, νbs for i “ 2, 3, 5, 6, (3.11) implies

|ξ1 ´ ξ4||ξ1 ` ξ4| “ |ξ21 ´ ξ24 | ď 5ν2b. (3.12)

Since I1, I2 are 3ν-separated, |d| ě 3ν. Recall that ξ1 P J1, ξ4 P J2 and J1, J2 are subsets of

rd, d ` νas. Write ξ1 “ d ` r and ξ4 “ d ` s with r, s P r0, νas. Then

|ξ1 ` ξ4| “ |2d ` pr ` sq| ě 6ν ´ |r ` s| ě 6ν ´ 2νa ě 4ν. (3.13)

Since dpJ1, J2q ą 10ν2b´1, |ξ1 ´ ξ4| ą 10ν2b´1. Therefore the left hand side of (3.12) is

ą 40ν2b, a contradiction. Thus the integral in (3.9) is equal to 0 when dpJ1, J2q ą 10ν2b´1.

The above analysis implies that (3.9) is

ď
ÿ

J1,J2PP
ν2b

prd,d`νasq

dpJ1,J2qď10ν2b´1

ż

R2

|pEJ1gβqpxq||pEJ2gβqpxq||pEr0,νbsgβqpxq|4η100Bpxq dx.

Undoing the change of variables as in (3.8) gives that the above is equal to

ÿ

J1,J2PP
ν2b

pI1q

dpJ1,J2qď10ν2b´1

ż

R2

|pEJ1gqpxq||pEJ2gqpxq||pEI2gqpxq|4η100BpTβxq dx. (3.14)

Observe that

η100BpTβxq ď 102400w100BpTβxq ď 102600w100Bpxq ď 102800wBpxq
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where the second inequality is an application of Lemma 2.2.16 and the last inequality is

because wBpxq´1w100Bpxq ď 10200. An application of Cauchy-Schwarz shows that (3.14) is

ď 102800
ÿ

J1,J2PP
ν2b

pI1q

dpJ1,J2qď10ν2b´1

p

ż

R2

|EJ1g|2|EI2g|4wBq1{2p

ż

R2

|EJ2g|2|EI2g|4wBq1{2.

Note that for each J1 P Pν2bpI1q, there are ď 10000ν´1 intervals J2 P Pν2bpI1q such that

dpJ1, J2q ď 10ν2b´1. Thus two applications of Cauchy-Schwarz bounds the above by

102802ν´1{2p
ÿ

J1PP
ν2b

pI1q

ż

R2

|EJ1g|2|EI2g|4wBq1{2ˆ

p
ÿ

J1PP
ν2b

pI1q

ÿ

J2PP
ν2b

pI2q

dpJ1,J2qď10ν2b´1

ż

R2

|EJ1g|2|EI2g|4wBq1{2.

Since there are ď 10000ν´1 relevant J2 for each J1, the above is

ď 103000ν´1
ÿ

JPP
ν2b

pI1q

ż

R2

|EJg|2|EI2g|4wB

ď 10300012100M2b,bpδ, νq6p
ÿ

JPPδpI1q

}EJg}2L6pwBqqp
ÿ

J 1PPδpI2q

}EJ 1g}2L6pwBqq
2

where the last inequality is an application of Lemma 3.2.6. This completes the proof of

Lemma 3.2.8.

Iterating Lemmas 3.2.4 and 3.2.8 repeatedly gives the following estimate.

Lemma 3.2.9. Let N P N and suppose δ and ν were such that ν2
N
δ´1 P N. Then

M1,1pδ, νq ď 1060000ν´1{3Dp
δ

ν2N´1 q
1

3¨2N Dp
δ

ν2N
q

2

3¨2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2j`1

.

Proof. Lemmas 3.2.4 and 3.2.8 imply that if 1 ď a ď 2b and δ and ν were such that

ν2bδ´1 P N, then

Ma,bpδ, νq ď 1020000ν´1{6Mb,2bpδ, νq1{2Dp
δ

νb
q1{2. (3.15)

Since ν2
N
δ´1 P N, νiδ´1 P N for i “ 0, 1, 2, . . . , 2N . Applying (3.15) repeatedly gives

M1,1pδ, νq ď 1040000ν´1{3M2N´1,2N pδ, νq
1

2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2j`1

.

Bounding M2N´1,2N using Lemma 3.2.3 then completes the proof of Lemma 3.2.9.
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Remark 3.2.10. A similar analysis as in (3.11)-(3.13) shows that if 1 ď a ă b and δ and

ν were such that νbδ´1 P N, then Ma,bpδ, νq À Mb,bpδ, νq. Though we do not iterate this

way in this section, it is enough to close the iteration with Ma,b À Mb,b for 1 ď a ă b, and

Mb,b À ν´1{6M2b,b, and Lemma 3.2.4. This gives Mb,b À ν´1{6M
1{2
2b,2bDpδ{νbq1{2 which is much

better than the trivial bound. We interpret the iteration and in particular Lemma 3.2.8 this

way in Sections 3.3-3.5.

3.2.3 The Oεpδ
´εq bound

Combining Lemma 3.2.9 with Lemma 3.2.5 gives the following.

Corollary 3.2.11. Let N P N and suppose δ and ν were such that ν2
N
δ´1 P N. Then

Dpδq ď 10105
ˆ

Dp
δ

ν
q ` ν´4{3Dp

δ

ν2N´1 q
1

3¨2N Dp
δ

ν2N
q

2

3¨2N

N´1
ź

j“0

Dp
δ

ν2j
q1{2j`1

˙

Choosing ν “ δ1{2N in Corollary 3.2.11 and requiring that ν “ δ1{2N P N´1 X p0, 1{100q

gives the following result.

Corollary 3.2.12. Let N P N and suppose δ was such that δ´1{2N P N and δ ă 100´2N .

Then

Dpδq ď 10105
ˆ

Dpδ1´ 1

2N q ` δ´ 4

3¨2N Dpδ1{2q
1

3¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1

˙

.

Corollary 3.2.12 allows us to conclude that Dpδq Àε δ
´ε. To see this, the trivial bounds

for Dpδq are 1 À Dpδq À δ´1{2 for all δ P N´1. Let λ be the smallest real number such that

Dpδq Àε δ
´λ´ε for all δ P N´1. From the trivial bounds, λ P r0, 1{2s. We claim that λ “ 0.

Suppose λ ą 0.

Choose N to be an integer such that

5

6
`
N

2
´

4

3λ
ě 1. (3.16)

Then by Corollary 3.2.12, for δ´1{2N P N with δ ă 100´2N ,

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´ 4

3¨2N
´ λ

6¨2N
´

řN´1
j“0 p1´ 1

2N´j q λ

2j`1 ´ε

Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´p 5
6

`N
2

´ 4
3λ

q 1

2N
q´ε

Àε δ
´λp1´ 1

2N
q´ε
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where in the last inequality we have used (3.16). Applying almost multiplicativity of the

linear decoupling constant (similar to Section 2.10 or the proof of Lemma 3.2.14 later) then

shows that for all δ P N´1,

Dpδq ÀN,ε δ
´λp1´ 1

2N
q´ε.

This then contradicts minimality of λ. Therefore λ “ 0 and thus we have shown that

Dpδq Àε δ
´ε for all δ P N´1.

3.2.4 An explicit bound

Having shown that Dpδq Àε δ
´ε, we now make this dependence on ε explicit. Fix arbitrary

0 ă ε ă 1{100. Then Dpδq ď Cεδ
´ε for all δ P N´1.

Lemma 3.2.13. Fix arbitrary 0 ă ε ă 1{100 and suppose Dpδq ď Cεδ
´ε for all δ P N´1.

Let integer N ě 1 be such that
5

6
`
N

2
´

4

3ε
ą 0.

Then for δ such that δ´1{2N P N and δ ă 100´2N , we have

Dpδq ď 2 ¨ 10105C
1´ ε

2N
ε δ´ε.

Proof. Inserting Dpδq ď Cεδ
´ε into Corollary 3.2.12 gives that for all integers N ě 1 and δ

such that δ´1{2N P N, δ ă 100´2N , we have

Dpδq ď 10105pCεδ
ε

2N ` C
1´ 2

3¨2N
ε δ

ε

2N
p 5
6

`N
2

´ 4
3ε

q
qδ´ε.

Thus by our choice of N ,

Dpδq ď 10105pCεδ
ε

2N ` C
1´ 2

3¨2N
ε qδ´ε. (3.17)

There are two possibilities. If δ ă C´1
ε , then since 0 ă ε ă 1{100, (3.17) becomes

Dpδq ď 10105pC
1´ ε

2N
ε ` C

1´ 2

3¨2N
ε qδ´ε ď 2 ¨ 10105C

1´ ε

2N
ε δ´ε. (3.18)

On the other hand if δ ě C´1
ε , the trivial bound gives

Dpδq ď 2100{6δ´1{2 ď 2100{6C1{2
ε

105



which is bounded above by the right hand side of (3.18). This completes the proof of Lemma

3.2.13.

Note that Lemma 3.2.13 is only true for δ satisfying δ´1{2N P N and δ ă 100´2N . We now

use almost multiplicativity to upgrade the result of Lemma 3.2.13 to all δ P N´1.

Lemma 3.2.14. Fix arbitrary 0 ă ε ă 1{100 and suppose Dpδq ď Cεδ
´ε for all δ P N´1.

Then

Dpδq ď 1010624¨81{ε

C
1´ ε

81{ε
ε δ´ε

for all δ P N´1.

Proof. Choose

N :“ r
8

3ε
´

5

3
s (3.19)

and δ P t2´2Nnu8
n“7 “ tδnu8

n“7. Then for these δ, δ´1{2N P N and δ ă 100´2N . If δ P

pδ7, 1s X N´1, then

Dpδq ď 2100{6δ´1{2 ď 2100{622N´1¨7.

If δ P pδn`1, δns for some n ě 7, then almost multiplicativity and Lemma 3.2.13 gives that

Dpδq ď 1020000DpδnqDp
δ

δn
q

ď 1020000p2 ¨ 10105C
1´ ε

2N
ε δ´ε

n qp2100{6p
δn
δ

q1{2q

ď 1010622N´1

C
1´ ε

2N
ε δ´ε

where N is as in (3.19) and the second inequality we have used the trivial bound for Dpδ{δnq.

Combining both cases above then shows that if N is chosen as in (3.19), then

Dpδq ď 1010627¨2N´1

C
1´ ε

2N
ε δ´ε

for all δ P N´1. Since we are no longer constrained by having N P N, we can increase N to

be 3{ε and so we have that

Dpδq ď 1010624¨81{ε

C
1´ ε

81{ε
ε δ´ε

for all δ P N´1. This completes the proof of Lemma 3.2.14.
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Lemma 3.2.15. For all 0 ă ε ă 1{100 and all δ P N´1, we have

Dpδq ď 22001{ε

δ´ε.

Proof. Let P pC, λq be the statement that Dpδq ď Cδ´λ for all δ P N´1. Lemma 3.2.14

implies that for ε P p0, 1{100q,

P pCε, εq ùñ P p1010624¨81{ε

C
1´ ε

81{ε
ε , εq.

Iterating this M times gives that

P pCε, εq ùñ P pr1010624¨81{ε

s
řM´1

j“0 p1´ ε

81{ε qj

C
p1´ ε

81{ε qM

ε , εq.

Letting M Ñ 8 thus gives that for all 0 ă ε ă 1{100,

Dpδq ď p1010624¨81{ε

q8
1{ε{εδ´ε ď 21001{ε{εδ´ε ď 22001{ε

δ´ε

for all δ P N´1. This completes the proof of Lemma 3.2.15.

Optimizing in ε then gives the proof of our main result.

Proof of Theorem 3.1.1. Note that if η “ logA´ log logA, then η exppηq “ Ap1 ´
log logA
logA

q ď

A. Choose ε such that A “ plog2 200qplog 1
δ
q, η “ 1

ε
log 200, and η “ logA ´ log logA. Then

2001{ε log 2 ď ε log
1

δ

and hence

22001{ε

δ´ε ď expp2ε log
1

δ
q. (3.20)

Since η “ logA´ log logA, we need to ensure that our choice of ε is such that 0 ă ε ă 1{100.

Thus we need

ε “
log 200

logpplog2 200qplog 1
δ
qq ´ log logpplog2 200qplog 1

δ
qq

ă
1

100
.
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Note that for all x ą 0, log log x ă plog xq1{2 and hence for all 0 ă δ ă e
´ 4

log2 200 ,

logpplog2 200qplog
1

δ
qq ´ log logpplog2 200qplog

1

δ
qq

ě logpplog2 200qplog
1

δ
qq ´ rlogpplog2 200qplog

1

δ
qqs1{2

ě
1

2
logpplog2 200qplog

1

δ
qq ě

1

2
log log

1

δ
. (3.21)

Thus we need 0 ă δ ă e
´ 4

log2 200 to also be such that

2 log 200

log log 1
δ

ă
1

100

and hence δ ă e´200200 . Therefore using (3.20) and (3.21), we have that for δ P p0, e´200200q X

N´1,

Dpδq ď expp30
log 1

δ

log log 1
δ

q.

This completes the proof of Theorem 3.1.1.

3.3 An uncertainty principle interpretation of Lemma 3.2.8

The main point was of Lemma 3.2.8 was to show that if 1 ď a ď 2b, δ and ν such that

ν2bδ´1 P N, then

ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b

pI1q

ż

B

|EJg|2|EI2g|4 (3.22)

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. From Lemma 3.2.9,

we only need (3.22) to be true for 1 ď a ď b. Our goal of this section is to prove (heuristically

under the uncertainty principle) the following two statements:

(I) For 1 ď a ă b, Ma,bpδ, νq À Mb,bpδ, νq; in other words

ż

B

|EI1g|2|EI2g|4 À
ÿ

JPP
νb

pI1q

ż

B

|EJg|2|EI2g|4 (3.23)

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν.
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(II) Mb,bpδ, νq À ν´1{6M2b,bpδ, νq; in other words

ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b

pI1q

ż

B

|EJg|2|EI2g|4 (3.24)

for arbitrary I1, I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν.

Replacing 4 with p´ 2 then allows us to generalize to 2 ď p ă 6 (in Section 3.6 we illustrate

this in the case of p “ 4). Note that all results in this section are only heuristically true. In

this section we will pretend all weight functions are just indicator functions and will make

these heuristics rigorous in the next section.

The particular instance of the uncertainty principle we will use is the following. Let I be

an interval of length 1{R with center c. Fix an arbitrary RˆR2 rectangle T oriented in the

direction p´2c, 1q. Heuristically for x P T , pEIgqpxq behaves like aT,Ie
2πiωT,I ¨x1T pxq. Here the

amplitude aT depends on g, T , and I and the phase ωT depends on T and I. In particular,

|pEIgqpxq| is essentially constant on every RˆR2 rectangle oriented in the direction p´2c, 1q.

This also implies that if ∆ is a square of side length R, then |pEIgqpxq| is essentially constant

on ∆ (with constant depending on ∆) and }EIg}Lp
#p∆q is essentially constant with the same

constant independent of p.

We introduce two standard tools from [BD17, BDG16].

Lemma 3.3.1 (Bernstein’s inequality). Let I be an interval of length 1{R and ∆ a square

of side length R. If 1 ď p ď q ă 8, then

}EIg}Lq
#p∆q À }EIg}Lp

#p∆q.

We also have

}EIg}L8p∆q À }EIg}Lp
#p∆q.

Proof. See [BD17, Corollary 4.3] or Lemma 2.2.20 for a rigorous proof.

The reverse inequality in the above lemma is just an application of Hölder.
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Lemma 3.3.2 (l2L2 decoupling). Let I be an interval of length ě 1{R such that R|I| P N

and ∆ a square of side length R. Then

}EIg}L2p∆q À p
ÿ

JPP1{RpIq

}EJg}2L2p∆qq
1{2.

Proof. See [BD17, Proposition 6.1] or Lemma 2.2.21 for a rigorous proof.

The first inequality (3.23) is an immediate application of the uncertainty principle and

l2L2 decoupling.

Lemma 3.3.3. Suppose 1 ď a ă b and δ and ν were such that νbδ´1 P N. Then
ż

B

|EI1g|2|EI2g|4 À
ÿ

JPP
νb

pI1q

ż

B

|EJg|2|EI2g|4

for arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. In other words,

Ma,bpδ, νq À Mb,bpδ, νq.

Proof. It suffices to show that for each ∆1 P Pν´bpBq, we have

ż

∆1

|EI1g|2|EI2g|4 À
ÿ

JPP
νb

pI1q

ż

∆1

|EJg|2|EI2g|4.

Since I2 is an interval of length νb, |EI2g| is essentially constant on ∆1. Therefore the above

reduces to showing

ż

∆1

|EI1g|2 À
ÿ

JPP
νb

pI1q

ż

∆1

|EJg|2

which since a ă b and I1 is of length νa is just an application of l2L2 decoupling. This

completes the proof of Lemma 3.3.3.

Inequality (3.24) is a consequence of the following ball inflation lemma which is reminis-

cent of the ball inflation in the Bourgain-Demeter-Guth proof of Vinogradov’s mean value

theorem. The main point of this lemma is to increase the spatial scale so we can apply l2L2

decoupling while keep the frequency scales constant.
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Lemma 3.3.4 (Ball inflation). Let b ě 1 be a positive integer. Suppose I1 and I2 are

ν-separated intervals of length νb. Then for any square ∆1 of side length ν´2b, we have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#p∆q}EI2g}4L4

#p∆q À ν´1}EI1g}2L2
#p∆1q}EI2g}4L4

#p∆1q.

Proof. The uncertainty principle implies that |EI1g| and |EI2g| are essentially constant on ∆.

Therefore we essentially have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#p∆q}EI2g}4L4

#p∆q „
1

|Pν´bp∆1q|

ÿ

∆PP
ν´b p∆1q

1

|∆|

ż

∆

|EI1g|2|EI2g|4

“
1

|∆1|

ż

∆1

|EI1g|2|EI2g|4.

On ∆1, note that |EI1g| „
ř

T1
|cT1 |1T1 and similarly for I2 where tTiu are the ν´b ˆ ν´2b

rectangles covering ∆1 and pointing in the normal direction of the cap on the parabola living

above Ii. Since I1 and I2 are ν-separated, for any two tubes T1, T2 corresponding to I1, I2,

we have |T1 X T2| À ν´1´2b. Therefore

1

|∆1|

ż

∆1

|EI1g|2|EI2g|4 „ ν´1ν
´2b

|∆1|

ÿ

T1,T2

|cT1 |2|cT2 |4.

Since

}EI1g}2L2
#p∆1q}EI2g}4L4

#p∆1q „
ν´6b

|∆1|2

ÿ

T1,T2

|cT1 |2|cT2 |4

and |∆1| “ ν´4b, this completes the proof of Lemma 3.3.4.

We now prove inequality (3.24).

Lemma 3.3.5. Suppose δ and ν were such that ν2bδ´1 P N. Then
ż

B

|EI1g|2|EI2g|4 À ν´1
ÿ

JPP
ν2b

pI1q

ż

B

|EJg|2|EI2g|4

for arbitrary I1 P Pνbpr0, 1sq and I2 P Pνbpr0, 1sq such that dpI1, I2q Á ν. In other words,

Mb,bpδ, νq À ν´1{6M2b,bpδ, νq.
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Proof. This is an application of ball inflation, l2L2 decoupling, Bernstein, and the uncertainty

principle. Since ν2bδ´1 P N, νbδ´1 P N and δ ď ν2b. Fix arbitrary I1, I2 P Pνbpr0, 1sq. We

have

1

|B|

ż

B

|EI1g|2|EI2g|4 “
1

|B|

ÿ

∆PP
ν´b pBq

ż

∆

|EI1g|2|EI2g|4

ď
1

|B|

ÿ

∆PP
ν´b pBq

p

ż

∆

|EI1g|2q}EI2g}4L8p∆q

À
1

|Pν´bpBq|

ÿ

∆PP
ν´b pBq

p
1

|∆|

ż

∆

|EI1g|2q}EI2g}4L4
#p∆q

“ Avg
∆PP

ν´b pBq

}EI1g}2L2
#p∆q}EI2g}4L4

#p∆q (3.25)

where the second inequality is because of Bernstein. From ball inflation we know that for

each ∆1 P Pν´2bpBq,

Avg
∆PP

ν´2b p∆1q

}EI1g}2L2
#p∆q}EI2g}4L4

#p∆q À ν´1}EI1g}2L2
#p∆1q}EI2g}4L4

#p∆1q.

Averaging the above over all ∆1 P Pν´2bpBq shows that (3.25) is

À ν´1 Avg
∆1PP

ν´2b pBq

}EI1g}2L2
#p∆1q}EI2g}4L4

#p∆1q.

Since I1 is of length νb, l2L2 decoupling gives that the above is

À ν´1
ÿ

JPP
ν2b

pI1q

Avg
∆1PP

ν´2b pBq

}EJg}2L2
#p∆1q}EI2g}4L4

#p∆1q

“ ν´1 1

|B|

ÿ

JPP
ν2b

pI1q

ÿ

∆1PP
ν´2b pBq

}EI2g}4L4p∆1q}EJg}2L2
#p∆1q

“ ν´1 1

|B|

ÿ

JPP
ν2b

pI1q

ÿ

∆1PP
ν´2b pBq

p

ż

∆1

|EI2g|4q}EJg}2L2
#p∆1q.

Since |EJg| is essentially constant on ∆1, the uncertainty principle gives that essentially we

have

p

ż

∆1

|EI2g|4q}EJg}2L2
#p∆1q „

ż

∆1

|EJg|2|EI2g|4.

Combining the above two centered equations then completes the proof of Lemma 3.3.5.
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Remark 3.3.6. The proof of Lemma 3.3.5 is reminiscent of our proof of Lemma 3.2.8. The

}EI2g}L8p∆q can be thought as using the trivial bound for ξi, i “ 2, 3, 5, 6 to obtain (3.12).

Then we apply some data about separation, much like in ball inflation here to get large

amounts of cancelation.

3.4 An alternate proof of Dpδq Àε δ
´ε

The ball inflation lemma and our proof of Lemma 3.3.5 inspire us to define a new bilinear

decoupling constant that can make our uncertainty principle heuristics from the previous

section rigorous.

The left hand side of the definition of Dpδq is unweighted, however recall that Proposition

2.2.11 implies that

}Er0,1sg}L6pwBq À Dpδqp
ÿ

JPPδpr0,1sq

}EJg}2L6pwBqq
1{2. (3.26)

for all g : r0, 1s Ñ C and squares B of side length δ´2.

We will assume that δ´1 P N and ν P N´1Xp0, 1{100q. Let Ma,bpδ, νq be the best constant

such that

Avg
∆PP

ν´ maxpa,bq pBq

}EIg}2L2
#pw∆q}EI 1g}4L4

#pw∆q

ď Ma,bpδ, νq6p
ÿ

JPPδpIq

}EJg}2L6
#pwBqqp

ÿ

JPPδpI 1q

}EJ 1g}2L6
#pwBqq

2
(3.27)

for all squares B of side length δ´2, g : r0, 1s Ñ C and all intervals I P Pνapr0, 1sq, I 1 P

Pνbpr0, 1sq with dpI, I 1q ě ν.

Suppose a ą b (the proof when a ď b is similar). The uncertainty principle implies that

Avg
∆PPν´a pBq

}EI1g}2L2
#p∆q}EI2g}4L4

#p∆q „
1

|Pν´apBq|

ÿ

∆PPν´a pBq

p
1

|∆|

ż

∆

|EI2g|4q}EI1g}2L2
#p∆q

„
1

|B|

ż

B

|EI1g|2|EI2g|4

where the last „ is because |EI1g| is essentially constant on ∆. Therefore our bilinear constant

Ma,b is essentially the same as the bilinear constant Ma,b we defined in (3.2).
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3.4.1 Some basic properties

Lemma 3.4.1 (Bernstein). Let I be an interval of length 1{R and ∆ a square of side length

R. Then

}EIg}L8p∆q À }EIg}Lp
#pw∆q.

Proof. See [BD17, Corollary 4.3] for a proof without explicit constants or Lemma 2.2.20 for

a version with explicit constants.

Lemma 3.4.2 (l2L2 decoupling). Let I be an interval of length ě 1{R such that R|I| P N

and ∆ a square of side length R. Then

}EIg}L2pw∆q À p
ÿ

JPP1{RpIq

}EJg}2L2pw∆qq
1{2.

Proof. See [BD17, Proposition 6.1] for a proof without explicit constants or Lemma 2.2.21

for a version with explicit constants.

We now run through the substitutes of Lemmas 3.2.3-3.2.5.

Lemma 3.4.3. Suppose δ and ν were such that νaδ´1, νbδ´1 P N. Then

Ma,bpδ, νq À Dp
δ

νa
q1{3Dp

δ

νb
q2{3.

Proof. Let I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. Hölder’s inequality gives that

Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q

ď Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}2L6
#pw∆q}EI2g}4L6

#pw∆q

ď p Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}6L6
#pw∆qq

1{3p Avg
∆PP

ν´ maxpa,bq pBq

}EI2g}6L6
#pw∆qq

2{3

À }EI1g}2L6
#pwBq}EI2g}4L6

#pwBq

where the last inequality we have used that
ř

∆w∆ Àn wB (see Proposition 2.2.14). Finally

applying (3.26) with parabolic rescaling then completes the proof of Lemma 3.4.3.
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Lemma 3.4.4. Suppose νaδ´1, νbδ´1 P N. Then

Ma,bpδ, νq À Mb,apδ, νq1{2Dp
δ

νb
q1{2.

Proof. Let I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq. We have

Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q

ď Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}2L2
#pw∆q}EI2g}L2

#pw∆q}EI2g}3L6
#pw∆q

ď p Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}4L2
#pw∆q}EI2g}2L2

#pw∆qq
1{2p Avg

∆PP
ν´ maxpa,bq pBq

}EI2g}6L6
#pw∆qq

1{2

À p Avg
∆PP

ν´ maxpa,bq pBq

}EI1g}4L4
#pw∆q}EI2g}2L2

#pw∆qq
1{2}EI2g}3L6

#pwBq

where the first and second inequalities are because of Hölder and the third inequality is an

application of Hölder and the estimate
ř

∆w∆ À wB. Applying parabolic rescaling and the

definition of Mb,a then completes the proof of Lemma 3.4.4.

Lemma 3.4.5 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq Àn Dp
δ

ν
q ` ν´1M1,1pδ, νq.

Proof. The proof is essentially the same as that of Lemma 3.2.5 except when analyzing (3.7)

in the off-diagonal terms we use

}|EIig|1{3|EIjg|2{3}6L6
#pBq “ Avg

∆PPν´1 pBq

1

|∆|

ż

∆

|EIig|2|EIjg|4

ď Avg
∆PPν´1 pBq

}EIig}2L2
#p∆q}EIjg}4L8p∆q

À Avg
∆PPν´1 pBq

}EIig}2L2
#pw∆q}EIjg}4L4

#pw∆q

where the second inequality we have used Bernstein.

3.4.2 Ball inflation

We now prove rigorously the ball inflation lemma we mentioned in the previous section.
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Lemma 3.4.6 (Ball inflation). Let b ě 1 be a positive integer. Suppose I1 and I2 are

ν-separated intervals of length νb. Then for any square ∆1 of side length ν´2b, we have

Avg
∆PP

ν´b p∆1q

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q À ν´1}EI1g}2L2
#pw∆1 q}EI2g}4L4

#pw∆1 q. (3.28)

Proof. Without loss of generality we may assume that ∆1 is centered at the origin. Fix

intervals I1 and I2 intervals of length νb which are ν-separated with centers c1 and c2,

respectively.

Cover ∆1 by a set T1 of mutually parallel nonoverlapping rectangles T1 of dimensions

ν´b ˆ ν´2b with longer side pointing in the direction of p´2c1, 1q (the normal direction of the

piece of parabola above I1). Note that any ν´b ˆ ν´2b rectangle outside 4∆1 cannot cover ∆1

itself. Thus we may assume that all rectangles in T1 are contained in 4∆1. Finally let T1pxq

be the rectangle in T1 containing x. Similarly define T2 except this time we use I2.

For x P 4∆1, define

F1pxq :“

$

’

&

’

%

supyP2T1pxq }EI1g}L2
#pw

Bpy,ν´bq
q if x P

Ť

T1PT1 T1

0 if x P 4∆1z
Ť

T1PT1 T1

and

F2pxq :“

$

’

&

’

%

supyP2T2pxq }EI2g}L4
#pw

Bpy,ν´bq
q if x P

Ť

T2PT2 T2

0 if x P 4∆1z
Ť

T2PT2 T2.

Given a ∆ P Pν´bp∆1q, if x P ∆, then ∆ Ă 2Tipxq. This implies that the center of ∆,

c∆ P 2Tipxq for x P ∆ and hence for all x P ∆,

}EI1g}L2
#pw∆q ď F1pxq

and

}EI2g}L4
#pw∆q ď F2pxq.

Therefore

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q ď
1

|∆|

ż

∆

F1pxq2F2pxq4 dx. (3.29)
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By how Fi is defined, Fi is constant on each Ti P Ti. That is, for each x P
Ť

TiPTi Ti,

Fipxq “
ÿ

TiPTi

cTi
1Ti

pxq

for some constants cTi
ě 0.

Thus using (3.29) and that the Ti are disjoint, the left hand side of (3.28) is bounded

above by

1

|∆1|

ż

∆1

F1pxq2F2pxq4 dx “
1

|∆1|

ÿ

T1,T2

c2T1
c4T2

|T1 X T2| À ν´1ν
´2b

|∆1|

ÿ

T1,T2

c2T1
c4T2

(3.30)

where the last inequality we have used that since I1 and I2 are ν-separated, sine of the angle

between T1 and T2 is Á ν and hence |T1 X T2| À ν´1´2b. Note that

}F1}2L2
#p4∆1q “

ν´3b

|4∆1|

ÿ

T1

c2T1

and

}F2}
4
L4
#p4∆1q “

ν´3b

|4∆1|

ÿ

T2

c4T2
.

Therefore (3.30) is

À ν´1}F1}2L2
#p4∆1q}F2}

4
L4
#p4∆1q.

Thus we are done if we can prove that

}F1}
2
L2
#p4∆1q À }EI1g}2L2

#pw∆1 q

and

}F2}
4
L4
#p4∆1q À }EI2g}4L4

#pw∆1 q

but this was exactly what was shown in [BD17, Eq. (29)] (and Lemma 2.6.3 for the same

inequality but with explicit constants).

Our choice of bilinear constant (3.27) makes the rigorous proofs of Lemmas 3.3.3 and

3.3.5 immediate consequences of ball inflation and l2L2 decoupling.
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Lemma 3.4.7. Suppose 1 ď a ă b and δ and ν were such that νbδ´1 P N. Then

Ma,bpδ, νq À Mb,bpδ, νq.

Proof. For arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are ν-separated, it suffices to

show that

Avg
∆PP

ν´b pBq

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q À
ÿ

JPP
νb

pI1q

Avg
∆PP

ν´b pBq

}EJg}2L2
#pw∆q}EI2g}4L4

#pw∆q.

But this is immediate from l2L2 decoupling which completes the proof of Lemma 3.4.7.

Lemma 3.4.8. Let b ě 1 and suppose δ and ν were such that ν2bδ´1 P N. Then

Mb,bpδ, νq À ν´1{6M2b,bpδ, νq.

Proof. For arbitrary I1 P Pνapr0, 1sq and I2 P Pνbpr0, 1sq which are ν-separated, it suffices to

prove that

Avg
∆PP

ν´b pBq

}EI1g}2L2
#pw∆q}EI2g}4L4

#pw∆q À ν´1
ÿ

JPP
ν2b

pI1q

Avg
∆1PP

ν´2b pBq

}EJg}2L2
#pw∆1 q}EI2g}4L4

#pw∆1 q.

But this is immediate from ball inflation followed by l2L2 decoupling which completes the

proof of Lemma 3.4.8.

Combining Lemmas 3.4.4, 3.4.7, and 3.4.8 gives the following corollary.

Corollary 3.4.9. Suppose δ and ν were such that ν2bδ´1 P N. Then

Mb,bpδ, νq À ν´1{6M2b,2bpδ, νq1{2Dp
δ

νb
q1{2.

This corollary should be compared to the trivial estimate obtained from Lemma 3.4.3

which implies Mb,bpδ, νq À Dpδ{νbq.

3.4.3 The Oεpδ
´εq bound

We now prove that Dpδq Àε δ
´ε. The structure of the argument is essentially the same as

that in Section 3.2.3. Repeatedly iterating Corollary 3.4.9 gives the following result.
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Lemma 3.4.10. Let N be an integer chosen sufficiently large later and let δ be such that

δ´1{2N P N and 0 ă δ ă 100´2N . Then

Dpδq À Dpδ1´ 1

2N q ` δ´ 4

3¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1 .

Proof. Iterating Corollary 3.4.9 N times gives that if δ and ν were such that ν2
N
δ´1 P N,

then

M1,1pδ, νq À ν´1{3M2N ,2N pδ, νq1{2N .
N´1
ź

j“0

Dp
δ

ν2j
q

1

2j`1

Applying the trivial bound for the bilinear constant bounds gives that the above is

À ν´1{3Dp
δ

ν2N
q1{2N

N´1
ź

j“0

Dp
δ

ν2j
q

1

2j`1

Choosing ν “ δ1{2N shows that if δ´1{2N P N and 0 ă δ ă 100´2N , then

M1,1pδ, δ
1{2N q À δ´ 1

3¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1 .

By the bilinear reduction, if δ was such that δ´1{2N P N and 0 ă δ ă 100´2N , then

Dpδq À Dpδ1´ 1

2N q ` δ´ 4

3¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1 .

This completes the proof of Lemma 3.4.10.

Trivial bounds for Dpδq show that 1 À Dpδq À δ´1{2 for all δ P N´1. Let λ be the smallest

real number such that Dpδq Àε δ
´λ´ε for all δ P N´1. From the trivial bounds λ P r0, 1{2s.

We claim λ “ 0. Suppose λ ą 0.

Let N be a sufficiently large integer ě 8
3λ

. This implies

1 `
N

2
´

4

3λ
ě 1.

Lemma 3.4.10 then implies that for δ such that δ´1{2N P N and 0 ă δ ă 100´2N , we have

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´ 1

2N
p1`N

2
´ 4

3λ
qq´ε

Àε δ
´λp1´ 1

2N
q´ε

where the last inequality we have applied our choice of N . By almost multiplicity we then

have the same estimate for all δ P N´1 (with a potentially larger constant depending on N).

But this then contradicts minimality of λ. Therefore λ “ 0.
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3.5 Unifying the two styles of proof

We now attempt to unify the Bourgain-Demeter style of decoupling and the style of decou-

pling mentioned in the previous section. In view of Corollary 3.4.9, instead of having two

integer parameters a and b we just have one integer parameter.

Let b be an integer ě 1 and choose s P r2, 3s any real number. Suppose δ P N´1 and

ν P N´1 X p0, 1{100q were such that νbδ´1 P N. Let M
psq

b pδ, νq be the best constant such that

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb

pIq

}EJg}2L2
#pw∆qq

s
2 p

ÿ

J 1PP
νb

pI 1q

}EJ 1g}2L2
#pw∆qq

6´s
2

ď M
psq

b pδ, νq6p
ÿ

JPPδpIq

}EJg}2L2
#pwBqq

s
2 p

ÿ

J 1PPδpI 1q

}EJ 1g}2L2
#pwBqq

6´s
2

(3.31)

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all intervals I, I 1 P Pνpr0, 1sq which

are ν-separated. Note that left hand side of the definition of M
p3q

b pδ, νq is the same as

A6pq, Br, qq6 defined in [BD17] and from the uncertainty principle, M
p2q

1 pδ, νq is morally the

same as M1,1pδ, νq defined in (3.2) and M1,1pδ, νq defined in (3.27). The l2 piece in the

definition of M
psq

b pδ, νq is so that we can make the most out of applying l2L2 decoupling.

We will use M
psq

b as our bilinear constant in this section to show that Dpδq Àε δ
´ε. The

bilinear constant M
psq

b obeys much the same lemmas as in the previous sections.

Lemma 3.5.1 (cf. Lemmas 3.2.3 and 3.4.3). If δ and ν were such that νbδ´1 P N, then

M
psq

b pδ, νq À Dp
δ

νb
q.

Proof. Fix arbitrary I1, I2 P Pνpr0, 1sq which are ν-separated. Moving up from L2
# to L6

#

followed by Hölder in the average over ∆ bounds the left hand side of (3.31)

p Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆qq

6
2 qsp Avg

∆PP
ν´b pBq

p
ÿ

J 1PP
νb

pI2q

}EJg}2L6
#pw∆qq

6
2 q6´s.

Using Minkowski to switch the l2 and l6 sum followed by
ř

∆w∆ À wB shows that this is

À p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pwBqq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2L6
#pwBqq

6´s
2 .

Parabolic rescaling then completes the proof of Lemma 3.5.1.
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Lemma 3.5.2 (Bilinear reduction, cf. Lemmas 3.2.5 and 3.4.5). Suppose δ and ν were such

that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M

psq

1 pδ, νq.

Proof. Note that the left hand side of the definition of M
psq

1 pδ, νq is

Avg
∆PPν´1 pBq

}EI1g}sL2
#pw∆q}EI2g}6´s

L2
#pw∆q

.

Proceeding as in the proof of Lemmas 3.2.5 and 3.4.5, for Ii, Ij P Pνpr0, 1sq which are ν-

separated, we have

}|EIig||EIjg|}
1{2

L3
#pBq

ď }|EIig|
s
6 |EIjg|1´ s

6 }
1{2

L6
#pBq

}|EIig|1´ s
6 |EIjg|

s
6 }

1{2

L6
#pBq

. (3.32)

We have

}|EIig|
s
6 |EIjg|1´ s

6 }6L6
#pBq “ Avg

∆PPν´1 pBq

1

|∆|

ż

∆

|EIig|s|EIjg|6´s

ď Avg
∆PPν´1 pBq

}EIig}sLs
#p∆q}EIjg}6´s

L8p∆q

À Avg
∆PPν´1 pBq

}EIig}sL2
#pw∆q}EIjg}6´s

L2
#pw∆q

where the last inequality we have used Bernstein. Inserting this into (3.32) and applying the

definition of M
psq

1 pδ, νq then completes the proof of Lemma 3.5.2.

Lemma 3.5.3 (Ball inflation, cf. Lemma 3.4.6). Let b ě 1 be a positive integer. Suppose I1

and I2 are ν-separated intervals of length ν. Then for any square ∆1 of side length ν´2b and

any ε ą 0, we have

Avg
∆PP

ν´b p∆1q

p
ÿ

JPP
νb

pI1q

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2
L6´s
# pw∆q

q
6´s
2

Àε ν
´1´bεp

ÿ

JPP
νb

pI1q

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2
L6´s
# pw∆1 q

q
6´s
2

Proof. The s “ 2 case be proven directly using Lemma 3.4.6 without any loss in ν´bε. The

proof for s P p2, 3s proceeds as in the proof of ball inflation in [BD17, Section 9.2] (see also

Section 2.6 for more details and explicit constants).
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From dyadic pigeonholing, since we can lose a ν´bε, it suffices to restrict the sum over J

and J 1 to families F1 and F2 such that for all J P F1, }EJg}Ls
#pw∆1 q are comparable up to a

factor of 2 and similarly for all J 1 P F2. Hölder gives

Avg
∆PP

ν´b p∆1q

p
ÿ

JPF1

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PF2

}EJ 1g}2
L6´s
# pw∆q

q
6´s
2

ď p#F1q
s
2

´1p#F2q
6´s
2

´1 Avg
∆PP

ν´b p∆1q

p
ÿ

JPF1

}EJg}sLs
#pw∆qqp

ÿ

J 1PF2

}EJ 1g}6´s

L6´s
# pw∆q

q.

The proof of Lemma 3.4.6 shows that this is

À ν´1p#F1q
s
2

´1p#F2q
6´s
2

´1p
ÿ

JPF1

}EJg}sLs
#pw∆1 qqp

ÿ

J 1PF2

}EJ 1g}6´s

L6´s
# pw∆1 q

q.

Since for J P F1 the values of }EJg}Ls
#pw∆1 q are comparable and similarly for J 1 P F2, the

above is

À ν´1p
ÿ

JPF1

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PF2

}EJ 1g}2
L6´s
# pw∆1 q

q
6´s
2 .

This completes the proof of Lemma 3.5.3.

Lemma 3.5.4 (cf. Corollary 3.4.9). Suppose δ and ν were such that ν2bδ´1 P N. Then for

every ε ą 0,

M
psq

b pδ, νq Àε ν
´ 1

6
p1`bεqM

psq

2b pδ, νq1{2Dp
δ

νb
q1{2.

Proof. Let θ and φ be such that θ
2

` 1´θ
6

“ 1
s

and φ
2

`
1´φ
6

“ 1
6´s

. Then Hölder gives

}f}Ls ď }f}θL2}f}1´θ
L6 and }f}L6´s ď }f}

φ
L2}f}

1´φ
L6 .

Fix arbitrary I1, I2 P Pνpr0, 1sq which are ν-separated. We have

Avg
∆PP

ν´b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L2
#pw∆qq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2L2
#pw∆qq

6´s
2

ď Avg
∆1PP

ν´2b pBq

Avg
∆PP

ν´b p∆1q

p
ÿ

JPP
νb

pI1q

}EJg}2Ls
#pw∆qq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2
L6´s
# pw∆q

q
6´s
2

Àε ν
´1´bε Avg

∆1PP
ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2Ls
#pw∆1 qq

s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2
L6´s
# pw∆1 q

q
6´s
2

where the first inequality is from Hölder and the second inequality is from ball inflation. We

now use how θ and φ are defined to return to a piece which we control by l2L2 decoupling
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and a piece which we can control by parabolic rescaling. Hölder (as in the definition of θ

and φ) gives that the average above is bounded by

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2θL2
#pw∆1 q}EJg}

2p1´θq

L6
#pw∆1 q

q
s
2 ˆ

p
ÿ

J 1PP
νb

pI2q

}EJ 1g}
2φ

L2
#pw∆1 q

}EJ 1g}
2p1´φq

L6
#pw∆1 q

q
6´s
2 .

Hölder in the sum over J and J 1 shows that this is

ď Avg
∆1PP

ν´2b pBq

ˆ

p
ÿ

JPP
νb

pI1q

}EJg}2L2
#pw∆1 qq

θp
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆1 qq

1´θ

˙
s
2

ˆ

ˆ

p
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L2
#pw∆1 qq

φp
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L6
#pw∆1 qq

1´φ

˙
6´s
2

.

Since θs “ 3 ´ s
2

and φp6 ´ sq “ s
2
, rearranging the above gives

Avg
∆1PP

ν´2b pBq

ˆ

p
ÿ

JPP
νb

pI1q

}EJg}2L2
#pw∆1 qq

1
2

p3´ s
2

qp
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L2
#pw∆1 qq

1
2

¨ s
2

˙

ˆ

ˆ

p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆1 qq

1
2

¨3p s
2

´1qp
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L6
#pw∆1 qq

1
2

¨3p2´ s
2

q

˙

.

Cauchy-Schwarz in the average over ∆1 then bounds the above by

ˆ

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L2
#pw∆1 qq

6´s
2 p

ÿ

J 1PP
νb

pI2q

}EJ 1g}2L2
#pw∆1 qq

s
2

˙
1
2

ˆ

ˆ

Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆1 qq

3ps´2q

2 p
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L6
#pw∆1 qq

3p4´sq

2

˙
1
2

.

(3.33)

After l2L2 decoupling, the first term in (3.33) is

À M
psq

2b pδ, νq3p
ÿ

JPPδpI1q

}EJg}2L2
#pwBqq

1
2

¨ 6´s
2 p

ÿ

J 1PPδpI2q

}EJ 1g}2L2
#pwBqq

1
2

¨ s
2 . (3.34)

Hölder in the average over ∆1 bounds the second term in (3.33) by

p Avg
∆1PP

ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆1 qq

6
2 q

s´2
4 p Avg

∆1PP
ν´2b pBq

p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pw∆1 qq

6
2 q

4´s
4 .

Applying Minkowski to interchange the l2 and l6 norms shows that this is

À p
ÿ

JPP
νb

pI1q

}EJg}2L6
#pwBqq

3ps´2q

4 p
ÿ

J 1PP
νb

pI2q

}EJ 1g}2L6
#pwBqq

3p4´sq

4 .
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Parabolic rescaling bounds this by

Dp
δ

νb
q3p

ÿ

JPPδpI1q

}EJg}2L6
#pwBqq

1
2

¨
3ps´2q

2 p
ÿ

J 1PPδpI2q

}EJ 1g}2L6
#pwBqq

1
2

¨
3p4´sq

2 . (3.35)

Combining (3.34) and (3.35) then completes the proof of Lemma 3.5.4.

With Lemma 3.5.4, the same proof as Lemma 3.4.10 gives the following.

Lemma 3.5.5 (cf. Corollary 3.2.12 and Lemma 3.4.10). Let N be an integer chosen sufficient

large later and let δ be such that δ´1{2N P N and 0 ă δ ă 100´2N . Then

Dpδq Àε Dpδ1´ 1

2N q ` δ´ 4

3¨2N
´ Nε

6¨2N

N´1
ź

j“0

Dpδ1´ 1

2N´j q
1

2j`1 .

Proof. This follows from the proof of Lemma 3.4.10 and the observation that

M
psq

1 pδ, νq Àε ν
´ 1

3
´ 1

6
NεM

psq

2N
pδ, νq

1

2N

N´1
ź

j“0

Dp
δ

ν2j
q

1

2j`1 .

along with Lemmas 3.5.1 and 3.5.2.

To finish, we proceed as at the end of the previous section. Let λ P r0, 1{2s be the smallest

real such that Dpδq Àε δ
´λ´ε. Suppose λ ą 0. Choose N such that

1 `
N

2
´

4

3λ
ě 1.

Then for δ such that δ´1{2N P N and 0 ă δ ă 100´2N , Lemma 3.5.5 gives

Dpδq Àε δ
´λp1´ 1

2N
q´ε

` δ´λp1´ 1

2N
p1`N

2
´ 4

3λ
qq´εp1´ 1

2N
q` Nε

2¨2N
´ Nε

6¨2N Àε δ
´λp1´ 1

2N
q´ε.

Almost multiplicativity gives that Dpδq ÀN,ε δ
´λp1´ 1

2N
q´ε for all δ P N´1, contradicting the

minimality of λ.

3.6 An efficient congruencing style proof of l2L4 decoupling for the

parabola

3.6.1 Setup and some standard lemmas

Having compared the iteration from Bourgain-Demeter with an efficient congruencing style

decoupling proof at L6, we compare the two arguments for some 2 ă p ă 6. We using
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techniques from the previous sections to prove an explicit upper bound for the l2L4 decoupling

constant for the parabola. We will make use of the uncertainty principle at times, however

the rigorous argument can easily be made in a similar manner as how we transitioned from

Section 3.3 to Section 3.4.

Aside from the notation for the linear and bilinear decoupling constants, we adopt all

notation from the previous sections. For simplicity, in this section we write Dpδq to be the

l2L4 decoupling constant for the parabola. That is, for δ P N´1, let Dpδq be the best constant

such that

}Er0,1sg}L4pBq ď Dpδqp
ÿ

JPPδpr0,1sq

}EJg}2L4pwBqq
1{2

for all g : r0, 1s Ñ C and all squares B of side length δ´2.

Let geom be the standard geometric mean. We will assume that δ´1 P N and ν P

N´1 X p0, 1{10000q. Fix arbitrary integer a ě 1, Suppose δ and ν was such that νaδ´1 P N.

For this δ and ν, let Mapδ, νq be the best constant such that

} geom |EIig|}L4pBq ď Mapδ, νq geomp
ÿ

JPPδpIiq

}EJg}2L4pwBqq
1{2

for all squares B of side length δ´2, g : r0, 1s Ñ C, and all intervals I1, I2 P Pνapr0, 1sq with

dpI1, I2q ě 3ν.

In Chapter 2 we showed that Dpδq À exppOpplog 1
δ
q2{3qq. In this section we will show

that the methods from the previous section give

Dpδq À exppOpplog
1

δ
q3{4qq (3.36)

which is qualitatively the same as the bound we obtained in Chapter 2.

Remark 3.6.1. Since 4 “ 2 ` 2, it turns out that we only need to have one frequency

scale in Mapδ, νq. One could also define an alternative bilinear decoupling constant with

two frequency scales Ma,bpδ, νq analogously as in (3.2). In this case, the key properties

are Ma,bpδ, νq “ Mb,apδ, νq and Ma,bpδ, νq À ν´1{4Mb,2bpδ, νq. In both definitions we obtain

essentially the same iteration and that Dpδq À exppOpplog 1
δ
q3{4qq.
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We have the following standard lemmas which we will state without proof.

Lemma 3.6.2 (Parabolic rescaling). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1. Let I

be an arbitrary interval in r0, 1s of length σ. Then

}EIg}L4pBq À Dp
δ

σ
qp

ÿ

JPPδpIq

}EJg}2L4pwBqq
1{2

for every g : r0, 1s Ñ C and every square B of side length δ´2.

Lemma 3.6.3 (Almost multiplicativity). Let 0 ă δ ă σ ă 1 be such that σ, δ, δ{σ P N´1,

then

Dpδq À DpσqDpδ{σq.

Lemma 3.6.4 (Bilinear reduction). Suppose δ and ν were such that νδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1M1pδ, νq.

Lemma 3.6.5. If δ and ν are such that νaδ´1 P N, then

Mapδ, νq À Dp
δ

νa
q.

3.6.2 The key technical lemma

Much like how Lemma 3.2.8 was the key step in the previous section, the following key

technical lemma drives our iteration.

Lemma 3.6.6. Let a and b be integers such that 1 ď a ă b. Suppose δ and ν are such that

νbδ´1 P N. Then

Mapδ, νq À Mbpδ, νq.

Proof. It suffices to assume that B is centered at the origin with side length δ´2. Note that

the integrality conditions imply that δ ď νb and since ν´1 P N, νaδ´1, νbδ´1 P N.

Fix arbitrary intervals I1 “ rα, α ` νas and I2 “ rβ, β ` νas both in Pνapr0, 1sq and are

3ν-separated. Observe that

} geom |EIig|}4L4pBq “

ż

B

|EI1g|2|EI2g|2.
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Let gβpxq :“ gpx ` βq, Tβ “ p 1 2β
0 1 q, and d :“ α ´ β. Then shifting I2 to r0, νas gives that

ż

B

|EI1g|2|EI2g|2 “

ż

B

|pErd,d`νasgβqpTβxq|2|Er0,νasgβqpTβxq|2 dx

“

ż

TβpBq

|pErd,d`νasgβqpxq|2|pEr0,νasgβqpxq|2 dx. (3.37)

Note that d can be negative, however since g : r0, 1s Ñ C and d “ α ´ β, Erd,d`νasgβ is

defined. Since |β| ď 1{2, TβpBq Ă 10B. Combining this with 110B ď η10B gives that the

above is

ď

ż

R2

|pErd,d`νasgβqpxq|2|pEr0,νasgβqpxq|2η10Bpxq dx

“
ÿ

J1,J2PP
νb

prd,d`νasq

K1,K2PP
νb

pr0,νasq

ż

R2

EJ1gβEJ2gβEK1gβEK2gβη10B dx. (3.38)

We will show that the integral above is zero unless dpJ1, J2q ď νb and dpK1, K2q ď νb. If

we can show this, then we can add these two conditions into the sum in (3.38) and hence

Cauchy-Schwarz bounds (3.38) by

ÿ

JPP
νb

prd,d`νasq

KPP
νb

pr0,νasq

ż

R2

|EJgβ|2|EKgβ|2η10B dx.

Undoing the change of variables as in (3.37) gives that the above is equal to

ÿ

JPP
νb

pI1q

KPP
νb

pI2q

ż

R2

|EJg|2|EKg|2η10BpTβxq dx.

The definition of Mb and the observation that η10BpTβxq À wBpxq gives that the above is

bounded above by (here we will need a version of Mb with the left hand side with weight

wB, but such a constant is equivalent to Mb)

Mbpδ, νq4
ÿ

JPP
νb

pI1q

KPP
νb

pI2q

p
ÿ

J 1PPδpJq

}EJ 1g}2L4pwBqqp
ÿ

K1PPδpKq

}EK1g}2L4pwBqq

ď Mbpδ, νq4p
ÿ

JPPδpI1q

}EJg}2L4pwBqqp
ÿ

KPPδpI2q

}EKg}2L4pwBqq.

This then proves Lemma 3.6.6 provided we can add in the conditions dpJ1, J2q ď νb and

dpK1, K2q ď νb into (3.38).
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Fix J1, J2 P Pνbprd, d ` νasq and K1, K2 P Pνbpr0, νasq. Suppose dpJ1, J2q ą νb. We claim

that

ż

R2

EJ1gβEJ2gβEK1gβEK2gβη10B dx “ 0 (3.39)

in this case. The case when dpK1, K2q ą νb is similar. The left hand side is equal to

ż

J1ˆJ2ˆK1ˆK2

gβpξ1qgβpξ2qgβpξ3qgβpξ4q

ż

R2

ep¨ ¨ ¨ qη10Bpxq dx dξ

where the expression in the ep¨ ¨ ¨ q is

ppξ1 ´ ξ2 ´ ξ3 ` ξ4qx1 ` pξ21 ´ ξ22 ´ ξ23 ` ξ24qx2q.

Therefore by the Fourier support of η10B, (3.39) is equal to 0 unless

|ξ1 ´ ξ2 ´ ξ3 ` ξ4| ď
δ2

10

|ξ21 ´ ξ22 ´ ξ23 ` ξ24 | ď
δ2

10
.

Since dpJ1, J2q ą νb, |ξ1 ´ ξ2| ą νb and since I1 and I2 are 3ν-separated, |ξ2 ´ ξ4| ą 3ν. Note

that |ξi| ď 1 and

ξ21 ´ ξ22 ´ ξ23 ` ξ24 “ pξ1 ´ ξ2 ` ξ3 ´ ξ4qpξ2 ´ ξ4q ` pξ1 ´ ξ2 ´ ξ3 ` ξ4qpξ1 ` ξ3q.

Therefore

|ξ1 ´ ξ2 ` ξ3 ´ ξ4| ď
1

10
δ2ν´1 ď

1

10
ν2b´1.

We claim that the above inequalities are inconsistent. Since we are not given the relative

positions of the ξi, we have the following two cases.

piq ξ1 ą ξ2 and ξ4 ą ξ3 OR ξ2 ą ξ1 and ξ3 ą ξ4: We have

δ2

10
ě |ξ1 ´ ξ2 ´ ξ3 ` ξ4| “ |ξ1 ´ ξ2| ` |ξ4 ´ ξ3| ě |ξ1 ´ ξ2| ą νb.

Since δ ď νb, we then have νb ď ν2b{10, a contradiction.
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piiq ξ1 ą ξ2 and ξ3 ą ξ4 OR ξ2 ą ξ1 and ξ4 ą ξ3: We have

1

10
ν2b´1 ě |ξ1 ´ ξ2 ` ξ3 ´ ξ4| “ |ξ1 ´ ξ2| ` |ξ3 ´ ξ4| ě |ξ1 ´ ξ2| ą νb,

a contradiction since b ą 1 and ν is sufficiently small.

Therefore in all cases (3.39) is equal to 0 when dpJ1, J2q ą νb. This completes the proof of

Lemma 3.6.6.

The following alternate to Lemma 3.6.6 can also be used and is reminiscent of the proofs

of Lemmas 3.3.4 and 3.3.5.

Lemma 3.6.7. Let a be a positive integer. Suppose δ and ν are such that ν2aδ´1 P N. Then

Mapδ, νq À ν´1{4M2apδ, νq.

Proof. We will make use of the uncertainty principle in this proof, but this can be made

rigorous through the same methods we used to make Section 3.3 rigorous.

It suffices to prove that

ż

B

|EIg|2|EI 1g|2 À ν´1
ÿ

JPPν2a pIq

J 1PPν2a pI 1q

ż

B

|EJg|2|EJ 1g|2 (3.40)

for I, I 1 P Pνapr0, 1sq with dpI, I 1q Á ν.

Fix I, I 1 P Pνapr0, 1sq with dpI, I 1q Á ν. To show (3.40), it suffices to show that

1

|∆|

ż

∆

|EIg|2|EI 1g|2 À ν´1
ÿ

JPPν2a pIq

J 1PPν2a pI 1q

1

|∆|

ż

∆

|EJg|2|EJ 1g|2 (3.41)

for each ∆ P Pν´2apBq.

Since the uncertainty principle implies that |EJg| and |EJ 1g| are essentially constant on

∆, combining this with l2L2 decoupling shows (3.41) reduces to showing that

1

|∆|

ż

∆

|EIg|2|EI 1g|2 À ν´1p
1

|∆|

ż

∆

|EIg|2qp
1

|∆|

ż

∆

|EI 1g|2q. (3.42)
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Now as in the proof of Lemma 3.3.4, the uncertainty principle says that on ∆, |EIg| „

ř

T |cT |1T and |EI 1g| „
ř

T 1 |cT 1 |1T 1 where tT u and tT 1u are ν´a ˆ ν´2a rectangles covering

∆1 and pointing in the normal direction of the cap on the parabola living above I and I 1,

respectively.

Thus we would have (3.42) if we could show that for each pair of tubes T, T 1 associated

to I, I 1, we have

p
1

|∆|

ż

∆

1T1T 1q À ν´1p
1

|∆|

ż

∆

1T qp
1

|∆|

ż

∆

1T 1q (3.43)

for some absolute constant C. But since dpI, I 1q Á ν, the left hand side is equal to ν´1pν2aq

while the right hand side is ν´1pνaq2 which proves (3.43) and hence proves (3.40) which

completes the proof of Lemma 3.6.7.

3.6.3 The iteration and endgame

First applying Lemma 3.6.4 followed by Lemma 3.6.6 and then Lemma 3.6.5 then gives the

following lemma.

Lemma 3.6.8. Let m ą 10. Suppose δ and ν were such that νmδ´1 P N. Then

Dpδq À Dp
δ

ν
q ` ν´1Dp

δ

νm
q.

Choosing ν “ δ1{m (and recalling that we also require ν P N´1 X p0, 1{100q) gives the

following result.

Lemma 3.6.9. Let m ą 10. Suppose δ was such that δ´1{m P N and δ ă 100´m. Then

Dpδq À Dpδ1´1{mq ` δ´1{m

where the implied constant is independent of m.

We now give a proof that Dpδq Àε δ
´ε for all ε ą 0.

Proposition 3.6.10. For all δ P N´1, Dpδq Àε δ
´ε.
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Proof. The trivial bounds for Dpδq are 1 À Dpδq À δ´1{2 for all δ P N´1. Let λ be the

smallest real number such that Dpδq Àε δ
´λ´ε for all δ P N´1. From the trivial bounds,

λ P r0, 1{2s. We claim that λ “ 0. Suppose λ ą 0.

Since λ ď 1{2, choose m to be an integer such that

1

mλ
ă 1 ´

1

m

Then by Lemma 3.6.9, for δ´1{m P N with δ ă 100´m,

Dpδq Àε δ
´λp1´ 1

m
q´ε ` δ´λp 1

mλ
q Àε δ

´λp1´ 1
m

q´ε.

Applying almost multiplicativity then shows that for all δ P N´1,

Dpδq Àm,ε δ
´λp1´ 1

m
q´ε,

contradicting minimality of λ. Therefore λ “ 0. This completes the proof of Proposition

3.6.10.

Having shown that Dpδq Àε δ
´ε, we now make this bound explicit. Fix arbitrary 0 ă

ε ă 1{100. Then Dpδq ď Cεδ
´ε for all δ P N´1.

Lemma 3.6.11. Fix arbitrary 0 ă ε ă 1{100. Let m ą 10 be such that

1

mε
ă 1 ´

1

m

and δ such that δ´1{m P N and δ ă 100´m. Then

Dpδq À C1´ε{m
ε δ´ε

where the implied is absolute.

Proof. Increasing Cε, we may assume that Cε ą 1. Inserting Dpδq ď Cεδ
´ε into Lemma

3.6.9 gives that for all integers m ą 1 and δ such that δ´1{m P N and δ ă 100´m, we have

Dpδq À pCεδ
ε
m ` δ´ 1

m
`εqδ´ε. (3.44)
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If additionally δ ă C´1
ε , then (3.44) becomes

Dpδq À C
1´ ε

m
ε δ´ε. (3.45)

On the other hand if δ ą C´1
ε , we can just apply the trivial bound Dpδq À δ´1{2 À C

1{2
ε

which is bounded above by the right hand side of (3.45). This completes the proof of Lemma

3.6.11.

Using almost multiplicativity to get rid of the integrality conditions, we have the following

lemma.

Lemma 3.6.12. Fix arbitrary 0 ă ε ă 1{100. For all δ P N´1,

Dpδq À exppOp
1

ε
qqC1´ε2{2

ε δ´ε.

Thus if P pC, λq is the statement that Dpδq ď Cδ´λ for all δ P N´1, Lemma 3.6.12 implies

that

P pCε, εq ùñ P pC exppOp
1

ε
qqC1´ε2{2

ε , εq

for an absolute constant C. Iterating this repeatedly then gives the following result.

Lemma 3.6.13. Fix arbitrary 0 ă ε ă 1{100. For all δ P N´1,

Dpδq ď exppOp
1

ε3
qqδ´ε.

Optimizing in ε then proves (3.36).

3.7 A decoupling interpretation of efficient congruencing for the

cubic moment curve

Having interpreted efficient congruencing for the quadratic Vinogradov conjecture in terms

of l2 decoupling, one immediate question is whether other works of efficient congruencing

such as [Hea15] or [Woo19] can give a new and different proof of decoupling for the moment

curve.
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We sketch an argument that is ongoing work with Shaoming Guo and Po-Lam Yung in

this direction. We reinterpret the iteration given in [Hea15] into decoupling language. To

rigorously use the uncertainty principle, we use a slightly different formulation than what

is below, however, the formulation below makes the connection to [Hea15] clearer. We are

able to give a new proof of l4L12 decoupling for the moment curve t ÞÑ pt, t2, t3q that is

different from that given by Bourgain-Demeter-Guth in [BDG16] (who actually prove an

l2L12 decoupling theorem). In particular, we use a bilinear argument while [BDG16] uses a

trilinear argument.

For the purposes of number theory, any lpL12 decoupling theorem is sufficient. However

our argument is only able to prove an lpL12 decoupling theorem for the cubic moment curve

for p ě 4.

Let

pEIgqpxq :“

ż

I

gpξqepξx1 ` ξ2x2 ` ξ3x3q dξ.

We let Dpδq be the best constant such that

}Er0,1sg}L12pBq ď Dpδqp
ÿ

JPPδpr0,1sq

}EJg}4L12pBqq
1{4

for all functions g : r0, 1s Ñ C and all squares B of side length δ´3. We prove that

Dpδq Àε δ
´1{4´ε

which is the sharp l4L12 decoupling theorem for the moment curve t ÞÑ pt, t2, t3q.

Suppose ν P 2´2N X p0, 1{1000q. We define two bilinear decoupling constants M1,a,bpδ, νq

and M2,a,bpδ, νq. Suppose a and b are integers and δ and ν are such that νaδ´1, νbδ´1 P N.

Let M1,a,bpδ, νq be the best constant such that
ż

B

|EIg|2|EI 1g|10 ď M1,a,bpδ, νq12p
ÿ

JPPδpIq

}EJg}4L12pBqq
1{2p

ÿ

J 1PPδpI 1q

}EJ 1g}4L12pBqq
5{2

for all functions g : r0, 1s Ñ C, cubes B Ă R3 of side length δ´3 and all pairs of intervals

I P Pνapr0, 1sq, I 1 P Pνbpr0, 1sq with dpI, I 1q Á ν. Similarly, let M2,a,bpδ, νq be the best

constant such that
ż

B

|EIg|4|EI 1g|8 ď M2,a,bpδ, νq12p
ÿ

JPPδpIq

}EJg}4L12pBqqp
ÿ

J 1PPδpI 1q

}EJ 1g}4L12pBqq
2
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for all functions g : r0, 1s Ñ C, cubes B Ă R3 of side length δ´3 and all pairs of intervals

I P Pνapr0, 1sq, I 1 P Pνbpr0, 1sq with dpI, I 1q Á ν. In addition to parabolic rescaling, our l4L12

decoupling theorem is a consequence of the following five additional lemmas.

Lemma 3.7.1 (Bilinearization). If δ and ν were such that νδ´1 P N, then

Dpδq À ν´1{4Dp
δ

ν
q ` ν´1M2,1,1pδ, νq.

Lemma 3.7.2. If a and b are positive integers and δ and ν were such that νaδ´1, νbδ´1 P N,

then

M2,a,bpδ, νq À M2,b,apδ, νq1{3M1,a,bpδ, νq2{3.

Lemma 3.7.3. If a and b are positive integers and δ and ν were such that νaδ´1, νbδ´1 P N,

then

M1,a,bpδ, νq À M2,b,apδ, νq1{4Dp
δ

νb
q3{4.

Lemma 3.7.4. Let a and b be integers such that 1 ď a ď 3b. Suppose δ and ν were such

that ν3bδ´1 P N. Then

M1,a,bpδ, νq Àa,b ν
´ 1

24
p3b´aq´C0M1,3b,bpδ, νq

for some large absolute constant C0.

Lemma 3.7.5. Let a and b be integers such that 1 ď a ď b. Suppose δ and ν were such that

ν2b´aδ´1 P N. Then for every ε ą 0,

M2,a,bpδ, νq Àa,b,ε ν
´ 1

6
p1`εqpb´aqM2,2b´a,bpδ, νq

for some large absolute constant C0.

The proof of Lemma 3.7.1 is similar to that of Lemma 3.2.5. The proof of Lemmas 3.7.2

and 3.7.3 essentially follow from the observations that

ż

f 4g8 ď p

ż

f 8g4q1{3p

ż

f 2g10q2{3
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and

ż

f 2g10 ď p

ż

f 8g4q1{4p

ż

g12q3{4.

The proof of Lemma 3.7.4 relies on l2L2 decoupling and two ball inflation lemmas similar

to that in Lemma 3.3.4. Bourgain-Demeter-Guth’s proof of l2L12 decoupling for the cubic

moment curve will make use of l2L6 decoupling of the parabola as a lower dimensional input.

It turns out that Lemma 3.7.5 will make use of the following lower dimensional decoupling

theorem.

Lemma 3.7.6. Let pE2D
I gqpxq :“

ş

I
gpξqepξx1 ` ξ2x2q dξ. Then for every ε ą 0,

}E2D
r0,1sg}L4pBq Àε δ

´1{4´εp
ÿ

JPPδpr0,1sq

}E2D
J g}4L4pwBqq

1{4

for all functions g : r0, 1s Ñ C and squares B Ă R2 of side length δ´1.

The loss of δ´1{4 in Lemma 3.7.6 is sharp (up to δ´ε losses) which can be seen by taking

g “ 1r0,1s. Furthermore, the use of Lemma 3.7.6 is precisely why we were only able to prove

an l4L12 decoupling theorem rather than an l2L12 decoupling theorem.
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CHAPTER 4

More properties of the parabola decoupling constant

In this chapter, we collection some short stories about the parabola decoupling constant.

First we prove some more equivalences of the parabola decoupling constant and show that

these parabola decoupling constants are all monotonic. Among these parabola decoupling

constants is the global decoupling constant that is used in [BD15]. Next, after having given

iterative proofs of l2L4 decoupling for the parabola in Chapter 2 and Section 3.6, we give

an elementary proof which shows that in the case of l2L4 decoupling for the parabola, the

associated decoupling constant is Op1q. Finally in Section 4.4, we address a “small ball”

l2 decoupling theorem for the paraboloid that the author first learned from Hong Wang in

January 2018.

4.1 Equivalence of some more parabola decoupling constants

In Section 2.3 (in particular (2.38)), we showed many spatially localized decoupling constants

were all equivalent. Now we define a few more decoupling constants and show that they are

equivalent. The decoupling constants we introduce are all of the type that involve an f

with Fourier support in a δ2 neighborhood of the parabola above r0, 1s. We then relate

this to pDp,Epδq from Definition 2.3.3 thus proving that a slew of local and global decoupling

constants are equivalent. Here by local we mean spatially localized while by global we mean

nonspatially localized. This section and Section 2.3 combined provide similar results that

were stated (though not explicitly proven) in Remark 5.2 of [BD15].

As we stated in Remark 2.3.6, equivalence of various parabola decoupling constants is

an extremely useful result. Because of the shear matrix, parabolic rescaling is easier using
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the global formulation rather than the local formulation. Thus by also showing that certain

global decoupling constants are equivalent to some local decoupling constants we can apply

parabolic rescaling using the global decoupling formulation and then pass this result to

the local decoupling formulation. Also the result of this section shows that various local

decoupling constants involving a function Fourier supported in some Opδ2q neighborhood

of the parabola are equivalent to each other regardless of decay E in the weight wB,E or

thickness C of the Cδ2 neighborhood of the parabola. The results in this section can be

generalized to an arbitrary h P C2 satisfying: hp0q “ h1p0q “ 0, 0 ă h1ptq ď 1 for t P p0, 1s,

and 1{2 ď h2ptq ď 2 for t P r0, 1s but we do not pursue that here.

4.1.1 Basic tools and definitions

We first define two local and global decoupling constants. We show that these decoupling

constants are equivalent by linearly approximating the regions where f has Fourier support

and using that Fourier restriction to polygons are bounded in Lp.

For a square B centered at c with side length R, let wB,Epxq :“ p1 `
|x´c|

R
q´E. Let η be a

Schwartz function such that η ě 1Bp0,1q and suppppηq Ă Bp0, 1q. For a square B centered at

c of side length R, we let ηBpxq :“ ηpx´c
R

q.

If J P Pδpr0, 1sq and n P N, let

θJ,n :“ tps, s2 ` tq : s P J, |t| ď
n

2
δ2u (4.1)

and Θn :“
Ť

JPPδpr0,1{2sq θJ,n. We now define the following two decoupling constants.

Definition 4.1.1. Let DL
p,n,Epδq be the best constant such that

}f}LppBq ď DL
p,n,Epδqp

ÿ

JPPδpr0,1sq

}fθJ,n}2LppwB,Eqq
1{2

for all f with Fourier support in Θn and squares B of side length δ´2.

Let DG
p,npδq be the best constant such that

}f}p ď DG
p,npδqp

ÿ

JPPδpr0,1sq

}fθJ,n}2pq1{2

for all f with Fourier support in Θn.
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We reintroduce the parallelograms from the discussion above Lemma 2.3.1 though this

time instead of a 10δ neighborhood we use an nδ2 neighborhood (we also have switched

notation slightly so that δ1{2 and δ in Chapter 2 have become δ and δ2, but this does not

change any of our results). If J “ rnJδ, pnJ ` 1qδs P Pδpr0, 1sq, let LJ be the line connecting

the point pnJδ, n
2
Jδ

2q and ppnJ ` 1qδ, pnJ ` 1q2δ2q. Explicitly we have

LJpxq :“ δp2nJ ` 1qpx ´ nJδq ` n2
Jδ

2.

For J P Pδpr0, 1sq and n P N, let

θ1
J,n :“ tps, LJpsq ` tq : s P J, |t| ď

n

2
δ2u.

Pictorially, θ1
J,n is a parallelogram with sides parallel to LJ of height nδ2. Finally, we let

Θ1
n :“

Ť

JPPδpr0,1sq θ
1
J,n.

We now define two more decoupling constants we will consider which are the parallelo-

gram versions of Definition 4.1.1.

Definition 4.1.2. Let Dpar,L
p,n,Epδq be the best constant such that

}f}LppBq ď Dpar,L
p,n,Epδqp

ÿ

JPPδpr0,1sq

}fθ1
J,n

}2LppwB,Eqq
1{2

for all f with Fourier support in Θ1
n and squares B of side length δ´2.

Let Dpar,G
p,n pδq be the best constant such that

}f}p ď Dpar,G
p,n pδqp

ÿ

JPPδpr0,1sq

}fθ1
J,n

}2pq1{2

for all f with Fourier support in Θ1
n.

In Lemmas 4.1.5-4.1.6 we show that no matter how we modify the n and E parameter,

the local and global decoupling constants defined in Definition 4.1.2 are equivalent. The

proof will make use that θ1
J,n is a parallelogram, in particular, we will often make use that

Fourier restriction to a parallelogram is bounded as an operator on Lp. We also have the

following reverse triangle inequality which will prove to be useful.
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Lemma 4.1.3 (Reverse triangle inequality). Let θ and θ1 be two parallelograms with disjoint

interior. Then for 1 ă p ă 8,

}fθ}p ` }fθ1}p „p }fθYθ1}p.

Proof. Since θ and θ1 are disjoint, fθYθ1 “ fθ ` fθ1 and hence }fθYθ1}p ď }fθ}p ` }fθ1}p from

the triangle inequality. We observe that fθ “ pfθYθ1qθ and fθ1 “ pfθYθ1qθ1 and so since Fourier

restriction to a parallelogram is bounded in Lp for 1 ă p ă 8,

}fθ}p ` }fθ1}p “ }pfθYθ1qθ}p ` }pfθYθ1qθ1}p À }fθYθ1}p.

This completes the proof of Lemma 4.1.3.

4.1.2 Equivalence of parallelogram decoupling constants

We first show that we have many equivalences for the parallelogram decoupling constants.

The restriction to 2 ď p ď 6 is not important and is just there to get rid of the dependence

on p.

Lemma 4.1.4 (Global equivalence for n ‰ m). For 2 ď p ď 6 and n ‰ m,

Dpar,G
p,n pδq „n,m Dpar,G

p,m pδq.

Proof. It suffices to show the case when n “ 1. Since m ą 1, Θ1
1 Ă Θ1

m and hence if f is

Fourier supported in Θ1
1phq, we then have

}f}p ď Dpar,G
p,m pδqp

ÿ

JPPδpr0,1sq

}fθ1
J,m

}2pq1{2.

However since f is Fourier supported in Θ1
1, fθ1

J,m
“ fθ1

J,1
and hence Dpar,G

p,1 pδq ď Dpar,G
p,m pδq.

The reverse inequality will make use of Lemma 4.1.3. The idea is to partition Θ1
m into

m translates of Θ1
1, apply Dpar,G

p,1 pδq to each of these translates, and then sum them together

using Lemma 4.1.3 (losing a constant depending on m).

Let f be Fourier supported in Θ1
m. For each J P Pδpr0, 1sq, we can write

θ1
J,m “

m
ď

i“1

θ1
J,1 ` p0, ciq
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for some ci and the union is a disjoint union (except at the boundary). Explicitly if m is

odd, then we can take tciu “ tkδ2

2
: k even, |k| ď m ´ 1u and if m is even, then we can take

tciu “ tkδ2

2
: k odd, |k| ď m ´ 1u.

Next Lemma 4.1.3 implies that

}fθ1
J,m

}p „m

m
ÿ

i“1

}fθ1
J,1`p0,ciq}p

where here we have removed the dependence on p because 2 ď p ď 6. Therefore

m
ÿ

i“1

}fθ1
J,1`p0,ciq}

2
p À p

m
ÿ

i“1

}fθ1
J,1`p0,ciq}pq2 Àm }fθ1

J,m
}2p. (4.2)

With this, we write f “
řm

i“1 fΘ1
1`p0,ciq and estimate

}f}p Àm p

m
ÿ

i“1

}fΘ1
1`p0,ciq}

2
pq1{2 À Dpar,G

p,1 pδqp

m
ÿ

i“1

ÿ

JPPδpr0,1sq

}fθ1
J,1`p0,ciq}

2
pq1{2.

Interchanging sums and then applying (4.2) then shows Dpar,G
p,m pδq Àm Dpar,G

p,1 pδq. This com-

pletes the proof of Lemma 4.1.4.

Lemma 4.1.5 (Local-global equivalence for the same n). For 2 ď p ď 6,

Dpar,L
p,n,Epδq „n,E D

par,G
p,n pδq.

Proof. We first show that Dpar,G
p,n pδq Àn,E Dpar,L

p,n,Epδq. Let B be a partition of R2 into squares

of side length δ´2. Since
ř

BPB 1B “ 1, convolving both sides with wBp0,δ´2q,E and using

convolution properties of wB,E (Lemma 2.2.1) shows that
ř

BPB wB,E ÀE 1.

Let f be Fourier supported in Θ1
n. Then

}f}pp “
ÿ

BPB
}f}

p
LppBq

ď Dpar,L
p,n,Epδqp

ÿ

BPB
p

ÿ

JPPδpr0,1sq

}fθ1
J,n

}2LppwB,Eqq
p{2,

Using Minkowski (and that p ě 2) to interchange the l2J and lpB bounds this by

p
ÿ

JPPδpr0,1sq

}fθ1
J,n

}2Lpp
ř

BPB wB,Eqq
p{2.

Finally using that
ř

BPB wB,E ÀE 1 then shows that Dpar,G
p,n pδq ÀE Dpar,L

p,n,Epδq where here we

have used that p ď 6 to remove the dependence on p.
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From Lemma 4.1.4, to show the reverse inequality, it suffices to show

Dpar,L
p,n,Epδ, hq Àn,E D

par,G
p,10n pδ, hq.

Let f be Fourier supported in Θ1
n. We have

}f}2LppBq ÀE }fθ1
r0,δs,n

}2LppwB,Eq ` }ηBfθ1
rδ,1´δs,n

}2p ` }fθ1
r1´δ,1s,n

}2LppwB,Eq.

Since n{2 ` 1 ď 10n, the Fourier transform of ηBfθ1
rδ,1´δs,n

is supported in Θ1
10n. Observe that

for J P Pδpr0, 1sq,

pηBfθ1
rδ,1´δs,n

qθ1
J,10n

“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pηBfθ1
Jr,n

qθ1
J,10n

if J “ r0, δs

pηBfθ1
J,n

qθ1
J,10n

` pηBfθ1
Jr,n

qθ1
J,10n

if J “ rδ, 2δs

ř

IPtJℓ,J,JrupηBfθ1
I,n

qθ1
J,10n

if J P Pδpr2δ, 1 ´ 2δsq

pηBfθ1
Jℓ,n

qθ1
J,10n

` pηBfθ1
J,n

qθ1
J,10n

if J “ r1 ´ 2δ, 1 ´ δs

pηBfθ1
Jℓ,n

qθ1
J,10n

if J “ r1 ´ δ, 1s

(4.3)

where Jℓ and Jr are the intervals to the left and right of J , respectively. Applying the

definition of Dpar,G
p,10n pδq gives

}ηBfθ1
rδ,1´δs,n

}2p ď Dpar,G
p,10n pδq2

ÿ

JPPδpr0,1sq

}pηBfθ1
rδ,1´δs,n

qθ1
J,10n

}2p.

Using (4.3) and the observations that θ1
J,10nphq is a parallelogram and Fourier restriction to

a parallelogram is bounded in Lp, the above is

À Dpar,G
p,10n pδq2

ÿ

JPPδpr0,1sq

}fθ1
J,n

}2LppηBq

where we have removed the dependence on p because p ď 6. Since ηB ÀE wB,E, it then

follows that Dpar,L
p,n,Epδq ÀE D

par,G
p,10n pδq. This completes the proof of Lemma 4.1.5.

Corollary 4.1.6 (Local equivalence for n ‰ m, fixed E). For 2 ď p ď 6 and n ‰ m,

Dpar,L
p,n,Epδq „n,m,E D

par,L
p,m,Epδq.

Proof. From Lemma 4.1.5, Dpar,L
p,n,Epδq „n,E Dpar,G

p,n pδq. From Lemma 4.1.4, Dpar,G
p,n pδq „n,m

Dpar,G
p,m pδq. Applying Lemma 4.1.5 again then completes the proof of Corollary 4.1.6.
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Corollary 4.1.7 (Local equivalence for n ‰ m, E1 ‰ E2). For 2 ď p ď 6, n ‰ m, E1 ‰ E2,

Dpar,L
p,n,E1

pδq „n,m,E1,E2 D
par,L
p,m,E2

pδq.

Proof. Corollary 4.1.6 and Lemma 4.1.5 gives that

Dpar,L
p,n,E1

pδq „n,m,E1 D
par,L
p,m,E1

pδq „m,E1 D
par,G
p,m pδq „m,E2 D

par,L
p,m,E2

pδq

which completes the proof of Corollary 4.1.7.

4.1.3 Equivalence of decoupling constants

We have the following lemma which will help us relate the parallelogram decoupling constants

from Definition 4.1.2 to the decoupling constants we have defined in Definition 4.1.1.

Lemma 4.1.8. For n ě 2, we have

θ1
J,1 Ă θJ,n Ă θ1

J,2n.

Proof. For s P J , recall from (2.35) that

|s2 ´ LJpsq| ď δ2{4.

Since n ě 2, for s P J ,

LJpsq `
δ2

2
ď s2 `

nδ2

2
ď LJpsq ` nδ2

which completes the proof of Lemma 4.1.8.

Like the parallelogram decoupling constant equivalence, we have the following three

equivalences. The purpose of introducing the parallelogram decoupling constants was be-

cause Fourier restriction to θJ,n is not a bounded operator on Lp, however, Fourier restriction

to θ1
J,n is a bounded operator on Lp.

Lemma 4.1.9 (Local-global equivalence for the same n). For 2 ď p ď 6 and n ě 2,

DL
p,n,Epδq „n,E D

G
p,npδq.
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Proof. Since n ě 2, Lemma 4.1.8 implies Θ1
1 Ă Θn Ă Θ1

2n and hence

Dpar,L
p,1,E pδq ď DL

p,n,Epδq ď Dpar,L
p,2n,Epδq Àn,E D

par,L
p,1,E pδq (4.4)

where the last inequality we have used Corollary 4.1.6. Using similar reasoning and Lemma

4.1.4 gives

Dpar,G
p,1 pδq ď DG

p,npδq ď Dpar,G
p,2n pδq Àn,E D

par,G
p,1 pδq. (4.5)

Finally combining these two estimates and Lemma 4.1.5 imply DL
p,n,Epδq „n,E D

G
p,npδq which

completes the proof of Lemma 4.1.9.

Corollary 4.1.10 (Global equivalence for n ‰ m). For 2 ď p ď 6 and n ‰ m with n,m ě 2,

DG
p,npδq „n,m DG

p,mpδq.

Proof. It suffices to show that for each n ě 2, DG
p,npδq „n D

par,G
p,1 pδq. But this exactly was

shown in (4.5).

Corollary 4.1.11 (Local equivalence for n ‰ m, fixed E). For 2 ď p ď 6 and n ‰ m with

n,m ě 2,

DL
p,n,Epδq „n,m,E D

L
p,m,Epδq.

Proof. For each n ě 2, it is enough to show that DL
p,n,Epδq „n D

par,L
p,1,E pδq but this is what was

shown in (4.4).

Corollary 4.1.12 (Local equivalence for n ‰ m, E1 ‰ E2). For 2 ď p ď 6 and n ‰ m with

n,m ě 2,

DL
p,n,E1

pδq „n,m,E1,E2 D
L
p,m,E2

pδq.

Proof. From Corollary 4.1.11, it is enough to show that DL
p,m,E1

pδq „m,E1,E2 D
L
p,m,E2

pδq. But

this follows immediately from Lemma 4.1.9.

Note that pDp,Epδq defined in Definition 2.3.3 is the same as Dpar,L
p,10,Epδq in this section.

Therefore we have shown that for 2 ď p ď 6, all the following constants are equivalent (up

to constants that depend on all parameters of the constants involved except for p and δ):
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(a) Extension operator based, spatially localized:

‚ Dp,Epδq, defined in (2.1), used in [BD17]

‚ rDp,Epδq, defined in (2.2)

‚ Dppδq, defined in Definition 2.3.3

(b) Fourier based, spatially localized:

‚ pDp,Epδq, defined in Definition 2.3.3, equal to Dpar,L
p,10,Epδq

‚ DL
p,n,Epδq, defined in Definition 4.1.1

‚ Dpar,L
p,n,Epδq, defined in Definition 4.1.2

(c) Fourier based, global:

‚ DG
p,npδq, defined in Definition 4.1.1, used in [BD15]

‚ Dpar,G
p,n pδq, defined in Definition 4.1.2

That is, take any number of the eight above decoupling constants, for example, Dp,E1pδq,

Dpar,G
p,n pδq, Dppδq, and DL

p,m,E2
pδq (also assume n,m ě 2). Then our results show that for

2 ď p ď 6,

Dp,E1pδq „n,E1 D
par,G
p,n pδq „n Dppδq „m,E2 D

L
p,m,E2

pδq.

4.2 Monotonicity of the parabola decoupling constant

One immediate application of the results in Section 4.1, is that we can show that the de-

coupling constant, however defined in the list above is essentially a decreasing function of δ.

The way we show Corollary 4.2.2 is not the most efficient way to show this for a particular

decoupling constant. If one is willing to work with weight functions wB,E, rwB,E, ηB directly

one can show the applicable monotonicity result using a calculation that is similar to the

proof of parabolic rescaling (Section 2.4). However, having done the heavy lifting in Section

4.1 in showing many decoupling constants are equivalent we present a nice application of our

work. This application of the equivalence of decoupling constants shows the power of such an
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equivalence since often certain calculations are easier with some decoupling constants while

others are much more tedious.

The main proposition we claim is the following:

Proposition 4.2.1. For N P N and 2 ď p ď 6, we have

DG
p,2p

1

N
q ď DG

p,2p
1

N ` 1
q

where DG
p,npδq is as in Definition 4.1.1.

Proof. This proof is a change of variables. To emphasize the interval and the scale δ, instead

of using the notation θJ,2 from (4.1), we will let T pδ, Iq be the piece of δ2-tube living above

I Ă r0, 1s. That is

T pδ, Iq :“ tps, s2 ` tq : s P I, |t| ď δ2up“ θI,2q.

Suppose f is Fourier supported in a 1{N2-tube of the parabola living above r0, 1s. We

have

fpxq “

ż

T p 1
N
,r0,1sq

pfpξqepx ¨ ξq dξ

“ p
N ` 1

N
q3

ż

T p 1
N`1

,r0, N
N`1

sq

pfp
N ` 1

N
η1,

pN ` 1q2

N2
η2qepx1

N ` 1

N
η1 ` x2

pN ` 1q2

N2
η2q dη

Therefore

}f}p “ p
N ` 1

N
q3´3{p}gN}p (4.6)

with

gNpxq :“

ż

R2

pfp
N ` 1

N
η1,

pN ` 1q2

N2
η2q1T p 1

N`1
,r0, N

N`1
sqpηqepη ¨ xq dη.

Note that gN is Fourier supported in a 1{pN ` 1q2-tube of the parabola living above r0, 1s.

Then

p
N ` 1

N
q3´3{p}gN}p ď p

N ` 1

N
q3´3{pDG

p,2p
1

N ` 1
qp

ÿ

0ďiďN
τPT p 1

N`1
,r i

N`1
, i`1
N`1

sq

}pgNqτ}2pq1{2. (4.7)
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For i ă N ,

zpgNqτ pηq “ pfp
N ` 1

N
η1,

pN ` 1q2

N2
η2q1τ pηq

and when i “ N , pgNqτ “ 0. Undoing the change of variables used to obtain (4.6) gives that

(4.7) is equal to

DG
p,2p

1

N ` 1
qp

ÿ

0ďjďN´1
τPT p 1

N
,r i

N
, i`1

N
sq

}fτ}2pq1{2.

Applying the definition of DG
p,2p1{Nq then completes the proof of Proposition 4.2.1.

The following corollary follows from combining the above proposition and the results in

Section 4.1.

Corollary 4.2.2. For N P N and 2 ď p ď 6, the following eight inequalities are true:

Dp,Ep
1

N
q ÀE Dp,Ep

1

N ` 1
q

rDp,Ep
1

N
q ÀE Dp,Ep

1

N ` 1
q

pDp,Ep
1

N
q ÀE

pDp,Ep
1

N ` 1
q

Dpar,L
p,n,Ep

1

N
q Àn,E D

par,L
p,n,Ep

1

N ` 1
q

DL
p,n,Ep

1

N
q Àn,E D

L
p,n,Ep

1

N ` 1
q

Dpp
1

N
q À Dpp

1

N ` 1
q

Dpar,G
p,n p

1

N
q Àn,E D

par,G
p,n p

1

N ` 1
q

DG
p,np

1

N
q Àn D

G
p,np

1

N ` 1
q.

We can obtain a similar result when applying this idea to the observation that DG
p,2pδq

is almost multiplicative, that is, for δ1, δ2 P N´1, DG
p,2pδ1δ2q ď DG

p,2pδ1qD
G
p,2pδ2q, however we

omit the proof here.
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4.3 An elementary proof of l2L4 decoupling for the parabola

Having seen two iterative proofs of l2L4 decoupling for the parabola, we now give a direct

proof. This is the only nontrivial parabola decoupling theorem that can be proven directly

(as far as the author knows). The proof is similar in spirit to the short proof of discrete

Fourier restriction in L4 for pn, n2q that Bourgain gives in Proposition 2.1 of [Bou93].

For an interval I Ă r0, 1s, let

pEIgqpxq “

ż

I

gpξqepξx1 ` ξ2x2q dξ

where epxq “ e2πix. We will prove that not only can we decouple r0, 1s into intervals of length

δ at some Op1q cost, but also we can decouple r0, 1s into an arbitrary collection of intervals

at an Op1q cost. Let I “ tIiu
N
i“1 be an arbitrary partition of r0, 1s into N intervals. Let

R “ pmin
IPI

|I|q´2

and if B is a square of side length R centered at cB, let

wBpxq “ p1 `
|x ´ cB|

R
q´100.

Let η be a Schwartz function such that suppppηq Ă Bp0, 1q and 1Bp0,1q ď η. For a square

B “ BpcB, Rq, let ηBpxq “ ηpx´cB
R

q.

Proposition 4.3.1. For all g : r0, 1s Ñ C and all squares B of side length R,

}Er0,1sg}L4pBq À p
ÿ

IPI
}EIg}2L4pwBqq

1{2 (4.8)

where the implied constant is an absolute constant independent of the partition I.

Remark 4.3.2. It is an open problem whether an analogous statement is true with L4 replaced

with Lp for some other p ă 6 even if we accept an p#Iqε loss.

Proof. Since g : r0, 1s Ñ C is arbitrary, we may assume that B is centered at the origin. We

have

}Er0,1sg}4L4pBq “ }Er0,1sg ¨ Er0,1sg}2L2pBq.
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Then

}Er0,1sg}4L4pBq À }
ÿ

1ďi,jďN
|i´j|ď1

EIigEIjg}2L2pBq ` }
ÿ

1ďi,jďN
|i´j|ą1

EIigEIjg}2L2pBq. (4.9)

We analyze the first expression in (4.6). We have

}
ÿ

1ďi,jďN
|i´j|ď1

EIigEIjg}2L2pBq ď p
ÿ

1ďi,jďN
|i´j|ď1

}EIig}L4pBq}EIjg}L4pBqq
2 À p

ÿ

IPI
}EIg}2L4pwBqq

2

(4.10)

where the last inequality is by Cauchy-Schwarz. We now analyze the second term in (4.9).

Since 1B ď 110B ď η10B, it suffices to analyze

}
ÿ

1ďi,jďN
|i´j|ą1

EIigEIjg}2L2pη10Bq

“
ÿ

1ďi,i1,j,j1ďN
|i´j|ą1,|i1´j1|ą1

ż

IiˆIjˆIi1 ˆIj1

gpξ1qgpξ2qgpξ3qgpξ4q

ż

R2

ep¨ ¨ ¨ qη10Bpxq dx dξ
(4.11)

where the expression in ep¨ ¨ ¨ q is

pξ1 ´ ξ2 ´ ξ3 ` ξ4qx1 ` pξ21 ´ ξ22 ´ ξ23 ` ξ24qx2.

We claim the integral in ξ above is equal to 0 if |i´ i1| ą 1 or |j ´ j1| ą 1 and so we can add

the conditions that |i ´ i1| ď 1 and |j ´ j1| ď 1 to the sum in (4.11).

We only show that case when |i´ i1| ą 1, the case when |j´ j1| ą 1 is similar. Since η10B

has Fourier support on Bp0, 1{p10Rqq, for the integral in (4.11) to not be 0, it is necessary

that

|ξ1 ´ ξ2 ´ ξ3 ` ξ4| ď
1

10R

|ξ21 ´ ξ22 ´ ξ23 ` ξ24 | ď
1

10R

(4.12)

for all ξ1 P Ii, ξ2 P Ij, ξ3 P Ii1 , and ξ4 P Ij1 and therefore we can insert this condition into

the integral in the ξ-variables. Since |i ´ j| ą 1, |i1 ´ j1| ą 1, and |i ´ i1| ą 1, we have

|ξ1 ´ ξ2| ą R´1{2, |ξ3 ´ ξ4| ą R´1{2, and |ξ1 ´ ξ3| ą R´1{2, respectively. We claim that these

inequalities are incompatible with (4.12).
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Lemma 4.3.3. Suppose 0 ď ξ1, ξ2, ξ3, ξ4 ď 1. The system

|ξ1 ´ ξ2 ´ ξ3 ` ξ4| ď
1

10R
(4.13)

|ξ21 ´ ξ22 ´ ξ23 ` ξ24 | ď
1

10R
(4.14)

|ξ3 ´ ξ4| ą
1

R1{2
(4.15)

|ξ1 ´ ξ3| ą
1

R1{2
(4.16)

has no solution.

Proof. Suppose there was a solution to the above system of inequalities. Note that

ξ21 ´ ξ22 ´ ξ23 ` ξ24 “ pξ1 ´ ξ2 ´ ξ3 ` ξ4qpξ1 ` ξ2q ` pξ3 ´ ξ4qpξ1 ` ξ2 ´ ξ3 ´ ξ4q

and so combining this with (4.13), (4.14), (4.15), the triangle inequality, and that ξi P r0, 1s

gives

1

R1{2
|ξ1 ` ξ2 ´ ξ3 ´ ξ4| ď

1

10R
` 2|ξ1 ´ ξ2 ´ ξ3 ` ξ4| ď

3

10R
.

Therefore

|ξ1 ` ξ2 ´ ξ3 ´ ξ4| ď
3

10R1{2
. (4.17)

Since we are not given the relative positions of the ξi, we have the following four cases.

piq ξ3 ą ξ1 and ξ2 ą ξ4: Using (4.13), positivity of ξ3 ´ ξ1 and ξ2 ´ ξ4, and (4.16) gives

1

10R
ě |ξ3 ´ ξ1 ` ξ4 ´ ξ2| “ |ξ3 ´ ξ1| ` |ξ4 ´ ξ2| ě |ξ3 ´ ξ1| ą

1

R1{2

which is impossible.

piiq ξ1 ą ξ3 and ξ4 ą ξ2: Using (4.13), positivity of ξ1 ´ ξ3 and ξ4 ´ ξ2, and (4.16) gives

1

10R
ě |ξ1 ´ ξ2 ´ ξ3 ` ξ4| “ |ξ1 ´ ξ3| ` |ξ4 ´ ξ2| ě |ξ1 ´ ξ3| ą

1

R1{2

which is impossible.
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piiiq ξ3 ą ξ1 and ξ4 ą ξ2: Using (4.17), positivity of ξ3 ´ ξ1 and ξ4 ´ ξ2, and (4.16) gives

3

10R1{2
ě |ξ3 ´ ξ1 ` ξ4 ´ ξ2| “ |ξ3 ´ ξ1| ` |ξ4 ´ ξ2| ě |ξ3 ´ ξ1| ą

1

R1{2

which is impossible.

pivq ξ1 ą ξ3 and ξ2 ą ξ4: Using (4.17), positivity of ξ1 ´ ξ3 and ξ2 ´ ξ4, and (4.16) gives

3

10R1{2
ě |ξ1 ´ ξ3 ` ξ2 ´ ξ4| “ |ξ1 ´ ξ3| ` |ξ2 ´ ξ4| ě |ξ1 ´ ξ3| ą

1

R1{2

which is impossible.

Thus we have shown the inequalities (4.13)-(4.16) to be incompatible. This completes the

proof of Lemma 4.3.3.

Therefore Lemma 4.3.3 implies (4.11) is

ď
ÿ

1ďi,i1,j,j1ďN
|i´j|ą1,|i1´j1|ą1
|i´i1|ď1,|j´j1|ď1

ż

R2

|EIigEIjgEIi1gEIj1g|η10B dx

À
ÿ

1ďi,jďN

ż

R2

|EIig|2|EIjg|2wB dx ď p
ÿ

IPI
}EIg}2L4pwBqq

2

(4.18)

where the second inequality is by Cauchy-Schwarz and that η10B À w10B À wB and the last

inequality is by Hölder’s inequality. Combining (4.9), (4.10), and (4.18) then proves (4.8).

This completes the proof of Proposition 4.3.1.

4.4 Small ball l2 decoupling for the paraboloid

Decoupling for the paraboloid as stated in 1.2 has an LppBq where B is a cube in Rn of side

length δ´2. This is a natural scale since we are decoupling into frequency cubes in r0, 1sn´1

of side length δ and hence the wavepackets that arise are of size δ´1 ˆ ¨ ¨ ¨ ˆ δ´1 ˆ δ´2.

One can ask perhaps what happens in l2 decoupling for the paraboloid when we consider

B to be a ball of radius δ´r with 1 ď r ă 2. The following result was communicated to the

author by Hong Wang in January 2018. This a purely expository chapter and the author
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claims no originality in the argument below. All errors are my own misunderstanding of her

argument.

For Q Ă r0, 1sn´1 and g : r0, 1sn´1 Ñ C, define the extension operator

pEQgqpxq :“

ż

Q

gpξqepξ1x1 ` ¨ ¨ ¨ ξn´1xn´1 ` |ξ|2xnq dξ “

ż

Q

gpξqepξ ¨ x ` |ξ|2xnq dξ.

Also define Eg :“ Er0,1sn´1g. We will ignore any weight functions or integrality issues that

may arise in this analysis and freely make use of the uncertainty principle. Given a cube Q,

let PδpQq be the partition of Q into cubes of side length δ.

Fix 1 ď r ă 2 and 2 ď p ď
2pn`1q

n´1
, let Dppδ, rq be the best constant such that

}Eg}LppBrq ď Dppδ, rqp
ÿ

QPPδpr0,1sn´1q

}EQg}2LppBrqq
1{2 (4.19)

for all g : r0, 1sn´1 Ñ C and all cubes Br Ă Rn of side length δ´r. Note that the standard

Bourgain-Demeter decoupling for the paraboloid [BD15] gives that 1 À Dppδ, 2q Àε δ
´ε. We

claim the following result.

Proposition 4.4.1. For 1 ď r ă 2 and 2 ď p ď
2pn`1q

n´1
,

δ´p1´ r
2

qp 1
2

´ 1
p

qpn´1q
À Dppδ, rq Àε δ

´p1´ r
2

qp 1
2

´ 1
p

qpn´1q´ε.

In particular, Proposition 4.4.1 implies that at spatial scales smaller than δ´2, to decouple

we must lose some negative power of δ. For the lower bound, we exhibit a specific g (in

particular g “ 1r0,δr{2sn´1) and compute both sides of (4.19). For the upper bound, we reduce

the problem using the uncertainty principle to be a problem about the Fourier transform.

4.4.1 The lower bound

Without loss of generality we may assume that Br “ r0, δ´rsn. Let g :“ 1r0,δr{2sn´1 (if Br is

a different cube in Rn of side length δ´r, then we can multiply g by an appropriate phase).

We then have

pE1r0,δr{2sn´1qpxq “

ż

r0,δr{2sn´1

epξ ¨ x ` |ξ|2xnq dξ

“ δpn´1qr{2

ż

r0,1sn´1

epη ¨ δr{2x ` δr|η|2xnq dη.
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Another change of variables then gives

}E1r0,δr{2sn´1}LppBrq “ δ
r
2

pn´1´n`1
p

q
}E1r0,1sn´1}Lppr0,δ´r{2sn´1ˆr0,1sq. (4.20)

Since |E1r0,1sn´1 | is essentially constant on 1 ˆ 1 ˆ ¨ ¨ ¨ ˆ 1 boxes, for x P r0, δ´r{2sn´1 ˆ r0, 1s

we can replace |pE1r0,1sn´1qpxq| by |pE1r0,1sn´1qpx, 0q| and hence (4.20) is essentially the same

as

δ
r
2

pn´1´n`1
p

q
}q1r0,1sn´1}Lppr0,δ´r{2sn´1q “ δ

r
2

pn´1´n`1
p

q
}q1r0,1s}

n´1
Lppr0,δ´r{2sq

.

The same computations give that the right hand side of (4.19) is

p
ÿ

QPPδpr0,1sn´1q

}EQ1r0,δr{2sn´1}2LppBrqq
1{2 “ p

ÿ

QPPδpr0,δr{2sn´1q

}E1Q}2LppBrqq
1{2

“ δ
r
2

pn´1´n`1
p

q
p

ÿ

QPP
δ1´r{2 pr0,1sn´1q

}E1Q}2Lppr0,δ´r{2sn´1ˆr0,1sq
q1{2.

Note that here we have implicitly used that r ă 2 since this implies δ1´r{2 ă 1. From the

uncertainty principle, this is once again essentially

δ
r
2

pn´1´n`1
p

q
p

ÿ

QPP
δ1´r{2 pr0,1sn´1q

}q1Q}2Lppr0,δ´r{2sn´1q
q1{2

“ δ
r
2

pn´1´n`1
p

qδ´p1´ r
2

qn´1
2 }q1r0,δ1´r{2sn´1}Lppr0,δ´r{2sn´1q

“ δ
r
2

pn´1´n`1
p

q´p1´ r
2

qn´1
2 }q1r0,δ1´r{2s}

n´1
Lppr0,δ´r{2sq

“ δ
r
2

pn´1´n`1
p

q´p1´ r
2

qn´1
2

`p1´ r
2

qp1´ 1
p

qpn´1q
}q1r0,1s}

n´1
Lppr0,δ1´rsq

.

Therefore

sup
g,Br

}Eg}LppBrq

p
ř

QPPδpr0,1sn´1q }EQg}2LppBrq
q1{2

ě δ´p1´ r
2

qp 1
2

´ 1
p

qpn´1q
p
}q1r0,1s}Lppr0,δ´r{2sq

}q1r0,1s}Lppr0,δ1´rsq

qn´1.

Since r{2 ą r ´ 1, the ratio of Lp norms is ě 1 which then proves the lower bound of

Proposition 4.4.1.

4.4.2 The upper bound

As in the lower bound we will apply a (slightly different) change of variables and the uncer-

tainty principle to transform the problem into a problem about the Fourier transform. We
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want to show that

}Eg}LppBrq Àε δ
´p1´ r

2
qp 1

2
´ 1

p
qpn´1q´ε

p
ÿ

QPPδpr0,1sn´1q

}EQg}2LppBrqq
1{2

for all g : r0, 1sn´1 Ñ C and all cubes Br Ă Rn of side length δ´2. Since 2 ď p ď
2pn`1q

n´1
,

decoupling for the paraboloid gives that

}Eg}LppBrq Àε δ
´εp

ÿ

Q1PP
δr{2 pr0,1sn´1q

}EQ1g}2LppBrqq
1{2.

Therefore it remains to show that for each Q1 P Pδr{2pr0, 1sn´1q,

}EQ1g}LppBrq À δ´p1´ r
2

qp 1
2

´ 1
p

qpn´1q
p

ÿ

QPPδpQ1q

}EQg}2LppBrqq
1{2. (4.21)

Without loss of generality (in particular ignoring issues with weights), we may assume that

Q1 “ r0, δr{2sn´1. Let gδpxq :“ gpδxq. A change of variables gives that

pEr0,δr{2sn´1gqpxq “

ż

r0,δr{2sn´1

gpξqepξ ¨ x ` |ξ|2xnq dξ

“ δn´1

ż

r0,δ´1`r{2sn´1

gδpηqepη ¨ δx ` |η|2δ2xnq dη

and hence

}Er0,δr{2sn´1g}LppBrq “ δpn´1q´n`1
p }Er0,δ´1`r{2sn´1gδ}Lppr0,δ´r`1sn´1ˆr0,δ´r`2sq. (4.22)

From the uncertainty principle, |pEr0,δ´1`r{2sn´1gδqpxq| is essentially constant on δ1´r{2 ˆ ¨ ¨ ¨ ˆ

δ1´r{2 ˆ δ2´r boxes. Therefore for x P r0, δ´r`1sn´1 ˆ r0, δ´r`2s, |pEr0,δ´1`r{2sn´1gδqpxq| is

essentially equal to |pEr0,δ´1`r{2sn´1gδqpx, 0q| and hence (4.22) becomes essentially equal to

δ
2´r
p ˆ δpn´1q´n`1

p }

ż

r0,δ´1`r{2sn´1

gδpηqepη ¨ yq dη}Lp
ypr0,δ´r`1sn´1q.

The same reasoning then shows that

p
ÿ

QPPδpr0,δr{2sn´1q

}EQg}2LppBrqq
1{2

« δ
2´r
p ˆ δpn´1q´n`1

p p
ÿ

QPP1pr0,δ´1`r{2sn´1q

}

ż

Q

gδpηqepη ¨ yq dη}2Lp
ypr0,δ´r`1sn´1qq

1{2.

Therefore since r ´ 1 ě 0, (4.21) then follows from the following lemma and parallel decou-

pling. The argument below basically is from Lecture 2 of Larry Guth’s lectures notes on

decoupling [Gut18].
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Lemma 4.4.2. Suppose pf is supported on r0, N sd. Then

}f}Lppr0,1sdq À Ndp 1
2

´ 1
p

q
p

ÿ

QPP1pr0,Nsdq

}fQ}2Lppr0,1sdqq
1{2

where here xfQ “ pf1Q.

To prove Lemma 4.4.2, we first recall Bernstein’s inequality (and we ignore weight func-

tions).

Lemma 4.4.3. Suppose pf is supported on a cube of side length 1. Then for any cube B of

side length 1, }f}L8pBq À }f}L1pBq.

Proof of Lemma 4.4.2. Since f “
ř

QPP1pr0,Nsdq fQ, almost orthogonality and ignoring weights

gives that essentially

}f}2L2pr0,1sdq À
ÿ

QPP1pr0,Nsdq

}fQ}2L2pr0,1sdq.

Observe that

ż

r0,1sd
|f |p ď }f}

p´2
L8pr0,1sdq

ż

r0,1sd
|f |2 À p

ÿ

QPP1pr0,Nsdq

}fQ}L8pr0,1sdqq
p´2

ÿ

QPP1pr0,Nsdq

}fQ}2L2pr0,1sdq.

Hölder and Bernstein then bound the above by

Nd pp´2q

2 p
ÿ

QPP1pr0,Nsdq

}fQ}2L8pr0,1sdqq
p´2
2 p

ÿ

QPP1pr0,Nsdq

}fQ}2L2pr0,1sdqq

À Nd pp´2q

2 p
ÿ

QPP1pr0,Nsdq

}fQ}2Lppr0,1sdqq
p{2.

Taking 1{p powers then completes the proof of Lemma 4.4.2.
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