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ABSTRACT OF THE DISSERTATION
Decoupling for the parabola and connections to efficient congruencing
by

Zane Kun Li
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019
Professor Terence Chi-Shen Tao, Chair

This thesis presents effective quantitative bounds for [? decoupling for the parabola. We first
make effective the argument of Bourgain and Demeter in [BD17] for the case of the parabola.
This allows us to improve upon the bound of O.(67¢) on the decoupling constant. Next, we
give a new proof of [? decoupling for the parabola inspired from efficient congruencing. We
also mention how efficient congruencing relates to decoupling for the cubic moment curve.
This chapter contains the first known translation of an efficient congruencing argument into
decoupling language. Finally, we discuss equivalences and monotonicity of various parabola

decoupling constants and a “small ball” [? decoupling problem.
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CHAPTER 1

Introduction

1.1 What is decoupling?

Consider a region Q2 = R? and a partition {#} of Q. Let f, be defined on the Fourier side by
]?9 = flg. Then

f=>1
0

Furthermore since the {8} are a partition of €2, Plancherel’s theorem gives that
£z = 3 1fal3)"
0
and hence to study || f||2, it suffices to study | fo||2 for each 6. In this sense f has “decoupled”

into the individual fy pieces.

We now ask instead of taking an L? norm, what happens in the case when we use instead

an LP norm. That is, let D,(©2 = [J0) be the best constant such that

171, < Dy = | JO Isal2) (L1)

for all f with Fourier transform supported in 2. What is the best estimate we can have for
D,(Q = [J#)? From the triangle inequality and Cauchy-Schwarz, D,(Q = [J6) < (#60)"2,
however we seek the optimal bound of D,(2 = J#). In (1.1), we defined an [*L? decoupling
for Q@ = [J6, however we could have as well defined an [7LP decoupling here where the /2
«2

sum is replaced by an [ one. For brevity, we will often just use the phrase decoupling”

rather than “/2LP decoupling.”

Decoupling-type inequalities were first studied by Wolff in [Wol00] who proved a sharp

[PLP decoupling theorem for the cone in 2 + 1 dimensions for p > 74 and applied it to
1



derive new local smoothing estimates. Wolft’s work was further extended and generalized in
[LW02, LP06, GS09, GS10]. Bourgain in [Boul3] was able to use induction on scales from
[BG11] and multilinear restriction from [BCT06] to partially resolve [*LP decoupling for
smooth compact hypersurfaces in R" in the range 2 < p < % Following the proof of [2LP

decoupling for smooth compact hypersurfaces in R” by Bourgain and Demeter in [BD15]

2(n+1)
n—1

have found many applications to PDE ([Leel6, DGG17, DGL17, BBG18, BHS18, DGL1S,

for the full range 2 < p < , decoupling inequalities for various curves and surfaces

FSW18, DZ19]), geometric measure theory ([DGO18, GIO18]), and analytic number theory
([BD16, BDG16, Boul7a, Boul7b, BDG17, Guol7, Heal7, BW18, GZ18a, GZ18b]). This

list is by no means exhaustive, for a more complete list see [Piel9].

1.1.1 Decoupling for the paraboloid and moment curve

We now restriction attention to I decoupling for the paraboloid [BD15] and moment curve

[BDG16]. In the case of decoupling for the paraboloid, let
Q= {(s, |5+ 1) s € 0,1, |1] < 6%)
and we partition €2 into 6 of the form
{(s]s]" +1) : s€ Q, Jt] < 0}

for frequency cube @ < [0,1]"! of length §. Then in [BD15], it was shown that D,(Q =
o) <cdcforall2<p< % Note that having a §% neighborhood is natural here since

at this scale, the 0 look like a 6 x § x --- x § x 62 rectangular boxes.

For decoupling for the moment curve t — (¢, t3,... "), let 2 be the §"-neighborhood of
{(t,¢2,...,t") : t € [0,1]} and the {0} be the 6™-neighborhood of {(¢,¢?,...,t") : ¢t € J} where
J runs through a partition of [0, 1] into intervals of length §. Then in [BDG16], it was shown
that D,(Q = J0) < 67° for all 2 < p < n(n+1). Similarly as the previous paragraph, a 6"
neighborhood is natural here since at this scale, the 6 look like a § x §2 x §2 - - - x §" rectangular
box. Applying this decoupling theorem to a particular f, then showed Vinogradov’s mean

value theorem.



2(n+1)

We note that the ranges of 2 < p < =—

and 2 < p < n(n + 1) in decoupling for
the paraboloid and moment curve, respectively, are sharp up to 6 ¢-losses. That is, to have
D,(© = |J0) <: 67° in the cases mentioned above, we need 2 < p < 2(”“ for the paraboloid
and 2 < p < n(n + 1) for the moment curve. To see the necessity of the upper bounds of

2("“ and p < n(n+ 1), we can consider the example where fg(f ) is a Schwartz function

p <
version of 1 19(€). Finally to see the necessity of the lower bound p > 2 in both cases, we
can consider the example where fo(€) is a Schwartz function version of TIEASS )e2micot where

{cg} are a collection of very far spaced points in R”.

1.1.2 The extension operator formulation

Instead of using the Fourier localized version of decoupling, we will instead use the extension
operator formulation of decoupling. Both versions of decoupling are equivalent (see Sections
2.3 and 4.1 and Remark 5.2 of [BD15]) however the latter formulation makes it easier to see

how decoupling estimates imply exponential sum estimates.

We define the extension operator formulation of decoupling for the paraboloid and mo-
ment curve. We note that we will use various different formulations in each of the chapters
later, so the following two definitions are just for the reader to get a flavor of what definitions

are ahead.

Let Ps(@) be the partition of ) = R™ into cubes of length §. For a cube B < R” centered
at cp of side length R, let

(1+ |z ;ZCB|)—100n.

For the paraboloid, given an cube Q < [0, 1]"7!, let

(Eog)(x) = ng@)e(g e[ de

wp(zr) =

where e(z) := ™ and z = (21,...,%,-1). Let D?*(§) be the best constant such that
[€on-19lry) < DET@)C Y 1€@9lTrwwn) (1.2)
QePs([0,1]"1)

for all functions g : [0,1]""* — C and cubes B < R" of side length 6=2. Then [BD15] showed

that DP*(§) <. 07 for 2 < p < %



Now we define the extension operator formulation of decoupling for the moment curve.

For J < [0,1], let

(E59)(x) = j 9(E)e(Ear + Eay b+ Eay)dE.

J

Let D}**"™(4) be the best constant such that
|09l sy < Dy ™ (B)( Y5 1€s91Toqum) " (1.3)
JePs([0,1])
for all functions ¢ : [0,1] — C and cubes B < R" of side length 6~". Then [BDG16] showed

that Do (0) <. 0-° for 2<p <n(n+1).

In all sections except Sections 3.7 and 4.4, we will be considering decoupling for the

parabola. Note that the parabola is the moment curve in R?.

1.2 Vinogradov’s mean value theorem

For integers s, k > 1, let J, () be the number of 2s tuples (x4, ..., T, y1,...,ys) € [1, N]*

such that

T1+To+ - FTs=Yy1 +Y2+ -+ Ys

R R e T R o T

A A VAR SR VAN S A

Since 1,9 = Sé e(na) do, we have

N
Jsk(N) = J \ e(an + agn?® + - + apn®)[* da. (1.4)
[0,1]*

)

n=1

If we set z; = y; for i = 1,2,...,s, then J,,(N) = N°. If we view the z; and y; as
uniformly distributed in [1, N], the ith power equation heuristically has a 1/N* chance of
being true and so this gives another N2/, N~# = N2-*+1/2 many solutions. This
heuristic can be made rigorous as follows. Observe that for 1 <7 < k, since

|2y xh by =y — Y — e — g < 25N
4



Then

" Z F | Z e(arn + agn® + -+ + apn®)[Pe(—arhy — ashy — - - — ayhy,) dov.

|hy| <25 X"

_ k(k+1)
2

Applying the triangle inequality then shows that J,x(N) 2. N Thus we have

obtained as a lower bound that

LIRS
Jor(N) Zop N° 4+ N*~557
In 1935, Vinogradov [Vin35] was motivated by applications to Waring’s problem and the
Riemann zeta function to study the mean value (1.4). The main conjecture in Vinogradov’s
mean value methods was that the lower bound on Jx(/N) is essentially an upper bound.

That is,

k(k+1)

Js,k(N) wsksNE(NS+N25 ) (15)

or equivalently

k(k+1)
2

N
J ] Z e(aqgn + agn? + -+ + Ozknk)lzs da <spe N°(N® + N2— ). (1.6)

From Holder’s inequality it suffices to just consider the critical case when 2s = k(k + 1) in

which case (1.6) reduces to showing

N
k(k+1)
J | D5 elonn+ agn® 4+ agn®) 4 da g NTE
[0,1]% p=1
A change of variables and using periodicity shows that this is equivalent to showing that

N
J Z —I— Q9 ;)2 N ak(%)k)‘k(kﬂ) i Nk%@%'
[0,N*]F T

But this follows from [? decoupling for the moment curve (1.3) with the choice: g(¢) =
S Ly, p=k(k+1), and 6 = 1/N.
The critical case when k = 2 is classical. Wooley developed over a series of papers [Woo12,

Wool3, Wool5, Wool7] the theory of efficient congruencing for Vinogradov’s mean value
5



theorem eventually proving in [Wool7] that (1.5) is true for all 1 < s < 3k(k+1) — 3k +o(k).
Additionally in 2014 he was able to prove the critical k = 3 case ([Woo16], with a simplified
approach by Heath-Brown in [Heal5]). In 2015, Bourgain-Demeter-Guth [BDG16] proved
the sharp ? decoupling of the moment curve which then resolved Vinogradov’s mean value
conjecture for all k£ > 2. In 2017, Wooley [Woo19] then modified his efficient congruencing
approach to also work for all £ > 2. We refer the reader to [Piel9] for a more detailed
summary of the history, background, and motivation of both efficient congruencing and
decoupling methods.

Determining the dependence on ¢ for the implied constant in Jy(1)/2,5(N) <. NFEFD/2+e

is essential to applications of Vinogradov’s mean value theorem to number theoretic results
such as the growth of the zeta function in the critical strip, the zero free region, and zero
density estimates [For02, Heal7]|. See also [Heal7]| and the MathOverflow question [Lew15]
for applications of an effective Bourgain-Demeter-Guth result. One key point is that it is
important to work out the dependence on the dimension n. The proof of decoupling for
the moment curve in n dimensions relies on decoupling for the moment curve in (n — 1)
dimensions. We then need to first study decoupling for £ — (&, £?), in other words (2.4) with

n = 2. This motivates why we study decoupling for the parabola in detail in this thesis.

Similarities between the efficient congruencing [Woo19] and decoupling [BDG16] methods
such as the reliance on translation-dilation invariance for efficient congruencing and parabolic
rescaling for decoupling have been observed (see Section 8.5 of [Piel9]). However, no precise
dictionary between the two methods has been written down. Chapter 3 is the first to write
down an efficient congruencing argument in decoupling language and makes precise how
these two methods compare in the special case of a parabola. There is ongoing work joint
with Shaoming Guo and Po-Lam Yung dealing with interpreting more complicated efficient

congruencing arguments such as those found in [Heal5] and [Woo19].



1.3 Summary of the results

We now summarize all results in this thesis. We will let D,(d) be as in (1.2) with n = 2
(that is the decoupling constant for the parabola). Chapter 2 deals with obtaining explicit
estimates in the decoupling constant for the parabola. By following the argument of [BD17],
in Theorem 2.1.1, we show that

D.(5) < exp(O((logl)l_cp)) if2<p<6

exp(O( og 10g log log 5)) ifp==6
where ¢, is a small constant increasing to 1 as p increases to 6. We make all implied
constants explicit and we carefully deal with various smoothed versions of 15 that show up

in the argument.

Chapter 3 was inspired from reading [Piel9, Section 4.3] and is the first concrete in-
terpretation of an efficient congruencing proof into a decoupling language. The proof of
12 decoupling for the parabola is boiled down the four basic steps: parabolic rescaling, bi-
linearization, ball inflation, and Holder. Using our explicit estimates from Chapter 2, the
argument we give in this chapter obtains that

1
Dud) < explO 212 )

This reproves

2mi(nx n2t lOgN 12
| Y] ane®™ I o) < exp(O(——r loglogN (DD lan)Y (1.7)
In|<N In|<N

without using any number theory. Bourgain showed (1.7) in Proposition 2.36 of [Bou93]

log N

using the divisor bound. It is unknown whether the exp(O(i 7 5

)) can be improved. We
also give three proofs of Dg(d) <. ¢, one that looks like an efficient congruencing proof
(Section 3.2), a proof using language more familiar to decoupling (Sections 3.3 and 3.4) that
includes a simplified ball inflation lemma, and finally a proof that looks more similar to that
done by Bourgain-Demeter in [BD15, BD17] (Section 3.5). Finally, in Section 3.7, we outline

work in progress with Shaoming Guo and Po-Lam Yung dealing with interpreting efficient

congruencing as in [Heal5] into the decoupling language.
7



In our final chapter, we tie up some loose ends about the equivalence of various parabola
decoupling constants (Section 4.1). Various equivalences of parabola decoupling constants
were first dealt with in Section 2.3 to deal with issues arising from parabolic rescaling (Section
2.4). However all the decoupling constants in Section 2.3 were spatially localized (that is,
have a LP(B) or LP(wg)) while in Section 4.1, we introduce some decoupling constants that
are not spatially localized. This section complements the remark made in [BD15, Remark
5.2]. In Section 4.2, we give an immediate application of this equivalence and show that all
eight parabola decoupling constants we define throughout this thesis (listed on Page 143)
are equivalent and almost monotonic. Next we then given an elementary direct proof of (2 L*
decoupling for the parabola in Section 4.3. Finally in Section 4.4, we discuss a “small ball”

I? decoupling problem whose solution was first communicated to the author by Hong Wang.



CHAPTER 2

Effective [? decoupling for the parabola

2.1 Introduction

In [BD15] and later with a more streamlined proof [BD17], Bourgain and Demeter prove
that the decoupling constant associated to the paraboloid {(&;, &, ..., &1, &+ -+ &%) :
& €[0,1]}is Ope(67°) for 2 <p < % In [BDG16], Bourgain, Demeter, and Guth prove
that the decoupling constant associated to the moment curve {(£,&2,...,€") : £ € [0,1]} is
One(67°) for 2 < p < n(n + 1) which resolved Vinogradov’s mean value conjecture. Both

the moment curve and the paraboloid are the same when n = 2. It is this case we study and

make effective.

For each interval J < [0,1] and ¢ : [0,1] — C, let
(€10)(a) = | o(€)etean + &) de

where here e(z) = ¢*™*. Note that £jo,17¢ is the extension operator for the parabola {(, £?) :
¢ €[0,1]}. For an integer E > 1 and a square B = B(cp, R) = R? centered at cg = (cp1, cp2)

of side length R, let

|z — cp]
R

If I is an interval in [0,1] and § € (0,1), let Ps(I) be the partition of I into |/|/d many

U)B’E(SL') = (1 + )7E.

intervals of length §. Note that when writing Ps(I), we assume |I|/§ € N. For § € N72
2<p<ow,and E > 1, let D, () be the smallest constant such that
[€09lrm) < Dpe@®)( D7 1€191 70w )" (2.1)
JePs1/2([0,1])
for all (axis-parallel) squares B < R? of side length 6! and all functions g : [0,1] — C.

Since 1p < 2Pwp g, the trivial bound for D, 5(6) is 25/P6=Y/4 which follows from the triangle
9



inequality and Cauchy-Schwarz. We will call D,, (9) a (local) decoupling constant associated
to the parabola {(£,£?) : € € [0,1]}. Note that D, g(d) is essentially the same size as
Decy (6, p, E) in [BD17] (a consequence of Proposition 2.2.11).

By making effective the arguments in [BD17], we have the following improvement over

Dp7E(5) <e O F.

Theorem 2.1.1. Let E > 100 and 0 < & < 2-%4E"" with § e N~2.

(i) If2 <p <4, then

D, (9) < eXp(E6E(log %)2/3).

(17) If 4 < p <6, then

p—2

1
D, g(0) < eXp(EGE(log 5)§+% 10%2(7))_

(1ii) If p =6, then
log 1
—6; log log log 5)

Ds p(6) < exp(E®F
’ log log 5

Using the trivial bound for 6 > 2-64E"" e can obtain an upper bound on D, (d) that

is valid for all § € N2,

In the proof of decoupling for the paraboloid or the moment curve in n dimensions, one
crucial input is a decoupling in (n—1) dimensions. This is most easily seen by the reliance on
a Bourgain-Guth iteration to show the equivalence between linear and multilinear decoupling
constants. In the case of the moment curve, this also makes an additional appearance in a
step called lower dimensional decoupling (Lemma 8.2 of [BDG16]) since various sections of
the moment curve look lower dimensional at certain scales. Thus ultimately we are reduced
to first studying explicit decoupling in n = 2 dimensions. Because of this reduction of
dimension argument, the arguments of [BD17, BDG16] should give an upper bound on the

decoupling constant that is worse than those stated in Theorem 2.1.1.

While the argument in this chapter is similar to [BD17], we highlight some key features.
One major feature is that we carefully work with the various weight functions that show

up in the argument and obtain estimates with explicit constants. Section 2.2 develops all

10



the estimates needed about the weight function wp . The most crucial observation is that
WEo,R)E * Wpo.r).E <B R*Wpor.E for 0 < R < R (Lemma 2.2.1). The calculations
in Section 2.2 can be easily generalized to n dimensions. A careful study of the weight
wp, g reveals that the decoupling constant with weight wp g does not behave too well under
parabolic rescaling, see Lemma 2.2.18, Remark 2.2.19, and the proof of Proposition 2.4.1.
Essentially this is because wp g weights all directions evenly and so it is well-adapted for
squares and circles but not rectangles and ellipses. To accommodate this, we introduce a
second weight

To — C _
|72 — cpa| I BQ’) E (2.2)

Wpp(r) = wpp(r)(l+

and let lw)n £(9) be defined similarly as in (2.1) but with wp g replaced with @Wg g. We will
then need that D, p(8) ~g D, 5(d) which is the topic of Section 2.3. Once we have this,
we then recover almost multiplicativity of D, g(d) in Section 2.4 and other applications of
parabolic rescaling. This also introduces some slight changes compared to [BD17], namely
our multilinear decoupling constant in Section 2.5 is defined with weight wp g rather than
wp g and in our iteration, A, uses weight Wp g rather than wp g. The ball inflation inequality
of [BD17] is made effective in Section 2.6. We have chosen to keep track of the dependence
on F since estimates for the decoupling constant in higher dimensions for a specific £ may
depend on an estimate for the decoupling constant at a lower dimension with a different F

(see for example, Theorems 5.1 and 8.4 of [BD17]).

Another key feature is that we do not ignore integrality constraints about partitioning
intervals into an integer number of smaller intervals. Tracing all the integrality constraints
on the parameters in the argument, the iteration in Sections 2.7 and 2.8 gives a good upper
bound for the linear decoupling constant along a lacunary sequence of scales (Section 2.9).
Using almost multiplicativity of the linear decoupling constant (Proposition 2.4.1) and the
trivial bound, we can upgrade this to be a good upper bound on all scales. This is done in

Section 2.10. Finally optimizing in Section 2.11 completes the proof of Theorem 2.1.1.
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2.2 Weight functions and consequences

2.2.1 The weights wp and wg

As defined in Section 2.1, we recall that

and

If w is a weight function for B, let

1 » v
|fL;(w):::(TE§[J;2|f(I)’IUCB)dlﬂl/.

We will make use of the following two inequalities that are immediate applications of Holder’s

inequality: If 1/p = 1/q + 1/r, then

19l 2rwp 2y < [ f 95 2191 £ wp )

and if ¢ > p,

17122 o) < 1|2 m) (2.3)

The above two inequalities also hold with wp g replaced with wp r. When B is a square
centered at the origin, wg and wg obey the following two important self-convolution esti-

martes.

Lemma 2.2.1. Let £ > 10. For 0 < R' < R,

wp(o,R),E * Wa0o,R).E < 47 R*wp(0.R)E. (2.4)

We also have

RQIUB(O,R),E < 3E13(0,R) * WRB(0,R),E - (2.5)

The same wnequalities with the same constants hold true when wpo r),r s replaced with

~

WRB(0,R),E -
12



Proof. We first prove (2.4). We would like to give an upper bound for the expression

1 [z —yl\ & yl\-5 KN
— | a+ 22 Uheg
oz | o s e B,

depending only on E. A change of variables in y and rescaling x shows that it suffices to

give an upper bound for
R 5 —E E
L+ = Zy)™" A+ )™ (1 + |z)” dy (2.6)
R2
depending only on E. If |z| < 1, then (2.6) is
< QEJ (14 |y)~E dy < 2F
R2
If |z| > 1, then we split (2.6) into
R/
o] L e A ) s Py (2D
o= Fol<5 = Fy> 1

In the case of the first integral in (2.7), (R'/R)|y| = |z| — |x — (R'/R)y| = |z|/2 and hence

R _
j = EyEa ) E @+ fa)®
oyl E

(1 +[z])"
(1 + (R/R)|x]/2)"

In the case of the second integral in (2.7),

< [ e b Fay < ar/pE(R/RY <08

R 5 s B
jm Byl 1+ o - EyD (L + Jy))~7 (1 + [z)

1+ |z
1+ |z|/2

<( )EJ (1+Jy) ™" dy < 2.
R2
This then proves (2.4).

To prove (2.5) it suffices to give a lower bound for

L —y\ ME
7 L ) O

which depends only on E. As before, rescaling x and a change of variables in y gives that it

suffices to give a lower bound independent of x for

1+ |z 1+ |z N
J (— 1 ypgy > 2 1The S oo
B 1+ v —yl 2+ |z

13



Thus we have shown that %(13(073) xwpo,r),F) = 2 Fwp(o r),r which shows (2.5).

We now prove the analogues for Wg r),z. We first prove the analogue of (2.4). We

would like to give an upper bound for the expression

1 |x—y| -E |952_?J2| -E |y\ —E
— 1+ —= 1+ == 1+ =
R’2R2(+R)(+R)(+R’)
|y2] _E || E |2 E
1+ == 1+ —=—)"(1+—=
><(+R,) (+R)(+R)d

A change of variables in y and rescaling = shows it suffices to bound

[ +le = T Pty 5+ fa)*
Re (2.8)

R _
x (14 |22 = o) P+ Jya) 75 (1 + [2])" dy.
By the triangle inequality,

/

(1t s — o) B (14 yal) (1 + o) < (

L+ (R/R)lal\" _ |
R o

1+ [ys
The upper bound for (2.8) then reduces to finding an upper bound for (2.6).
To prove the analogue of (2.5) for Wp( k) e, it suffices to give a lower bound for

1 z—yl\ & T2 — 4|\ _p E 2|\ g
1+ — 1+ — 1+—=)"(1+ d

which depends only on F. Once again, a change of variables in y and a rescaling in z show

that it suffices to give a lower bound for

JB(O 1)(1 + e —y[)TE+ [2)) P+ e — yol) (1 + [a2]) P dy. (2.9)

Since y € B(0, 1), the triangle inequality gives

1+|ZE2| 1+|I2| 2
= = —.
1+|$2—y2| 3/2+|!L‘2| 3

Therefore (2.9) is bounded below by

B el g, o gL+ |z
) | ) > )

B> 3k
2+|x|)

This then proves the analogue of (2.5) for wWp(,r),rz. This completes the proof of Lemma

2.2.1. U
14



Remark 2.2.2. As a corollary of Lemma 2.2.1 and the observation that 1z <p wp g, we have

2 . . ~
WRB(0,R),E * WB(0,R),E ~E IT“Wp(o,Rr),p- This is also true for Wg( r) z-

Remark 2.2.3. Let I = [-R/2,R/2] and I' = [-R'/2, R'/2] with 0 < R’ < R. For x € R, let

wrp(r) = (1+ ‘xl) and similarly define wyp . The same proof as (2.4) gives that
wr g *wp g < 4°Rw; p.

This estimate will be used extensively in the proof of Lemma 2.3.17.

Lemma 2.2.1 has an immediate corollary which serves as the continuous analogue of
the localization lemma given in Lemma 4.1 of [BD17]. This will allow us to upgrade from
unweighted to weighted estimates, see later in Proposition 2.2.11. The inequality below is

from the proof of Theorem 5.1 in [BD17].

Corollary 2.2.4. For 1 < p < and E > 10,

w0 =3 | 151y 00,200

This corollary is also true with wg r),r replaced with Wpo r) £

Proof. Lemma 2.2.1 implies that

1
| 1712 o ) = f @ (510 * wn0,5)(@) do

311 i

which completes the proof of Corollary 2.2.4. O

We close this section by proving two lemmas about the interaction between wp and

rotations which will be used in the proof of Theorem 2.6.1.
Lemma 2.2.5. Let ¢y € [§/2,1—0/2],

1 1 —2’(:]’

Ry = —F/— ;
V1+4ch \ 9l¢| 1

15



and 0 be such that cos0; = 1/4/1 + 4c% and sinf; = 2|cy|/4/1 + 4¢4. Suppose |a] < 2071,
then

~

WB(R,(a,0)T,6-1) (S) < 16Eﬁ3(075—1) (S)

Proof. We want to give an upper bound for

o+ s 5 61+ |sg] 5
01+ s — (cosBy,sinfy)al” "0~ + [sy — (sinfy)al

( (2.10)

that only depends on E. We first consider the first expression in (2.10). If |s| < 36!, then

o+ s
< 4.
01+ |s — (cosfy,sinby)al
If |s| = 367, then
5+ |s] 6! 61 |s—(cosfy,sinb;)al
= () (— ’ -1 2.11
01+ |s — (cosO;y,sin6;)al ( |s| + 1 s * |s] ) (2.11)
Since |s| = 3071 and |a| < 2671,
|s — (cosOy,sinf;)al 51— la| . 1
5] |s| 3

Therefore (2.11) is < 4 and so the first expression in (2.10) is < 4. We next consider the

second expression in (2.10). The proof is almost exactly the same. If |sy| < 367,

5_1 + ‘82|

: < 4.
01+ |sg — (sinfy)al

For |sy| > 3071,

07+ |so 6t 61 sy — (sinfy)al,
: (1) - 2.12
071+ |sy — (sinfy)al (|32| )(|32| Ex ) (2.12)
Since [sy| > 307! and |a| < 2671,
|89 — (sinfy)al - al - 1
|52 52| ~ 3

Therefore (2.12) is < 4 and so the second expression in (2.10) is < 4¥. This completes the

proof of Lemma 2.2.5. O]
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Lemma 2.2.6. Let R; be as in Lemma 2.2.5. Then

[(Ry ')
51

R '),

(14 )72E(1 + ( =

e
&
A

< Wp(o,5-1),B- (2.13)
Proof. Since (1 + d|z|) < (1 + 0|z1])(1 + d|xz|), the left hand side of (2.13) is

_ T\ — ~

)7 = (14 %) P < Wp(0,6-1),E

where the equality is because R; is a rotation. This completes the proof of Lemma 2.2.6. [

2.2.2 Explicit Schwartz functions

In addition to our polynomial decaying weights wg and wg, we will also need to construct
an explicit Schwartz function weight. More specifically, in Corollary 2.2.9, we construct a
nonnegative 1 in R? such that 1p1)(z) < n(z) and supp() < B(0,1). Such an n will
be used in the proof of reverse Holder (Lemma 2.2.20), I?L? decoupling (Lemma 2.2.21),
and will also allow us to reset the “E parameter” when we prove the equivalence of local

decoupling constants in Section 2.3 (in particular, Lemma 2.3.8 and Proposition 2.3.11).

We also construct an explicit smoothed indicator function which is equal to 1 on [—1, 1]
and vanishes outside [—3, 3]. This will be used in the proof of ball inflation (Theorem 2.6.1)

and the equivalence of local decoupling constants (Lemma 2.3.10).

Existence of such Schwartz functions is easy to justify, however our goal is to obtain
explicit bounds and so not only will we need to construct such functions but also need to
construct them in such a way as to make it easy to compute with. Both Schwartz functions

rely on the following lemma which is a small modification of Theorem 1.3.5 of [Hor90].

Lemma 2.2.7. Let ag = ay > --- be a positive sequence such that a := Y, a; < 0. For
1= 0, let

Hilz) = 21 ajna (@
and let

ug(x) := (Ho * -+ = Hy)(z).

17



Then for k = 2, up € C*1(R) is supported in [—a/2,a/2] and converges (uniformly) to a

function ue CP(R) as k — oo which is also supported in [—a/2,a/2]. Furthermore,

J
]u(j) (z)] < 2
apay - -+ CL]
for 7 =0 and
0
a(¢) = | [ sinc(asg)
i=0

where sinc(z) = (sinmx)/(7x).

Proof. The proof is the same as that in Theorem 1.3.5 of [Hor90] except in this case we have

7j—1
; 1
w) = ([ (e = 7)) (Hy = oo Hy)
i=0 "
for j < k — 1 where (7,f)(x) = f(z — a) and the product is a composition of operators.
For the claim about u, note that f-\ll(§) = sinc(a,&) which implies 17 (€) = [ ], sinc(a€).
Since ur — w uniformly as k — oo and since uy and u are both supported on [—a/2,a/2],

1y — u uniformly as k — co. This completes the proof of Lemma 2.2.7. [

We use Lemma 2.2.7 to construct a function ¥ on R such that ¢ > 1j_1/21/9 and

A~

supp(¢) < [-1/2,1/2].
Lemma 2.2.8. For x € R, let
o0
x

Y(z) = 4(sinc(g) Hsinc(@))?

Then ¢ = 1{_1/2,1/2), supp(¢) < [=1/2,1/2], and for all x € R and E = 100,

E6E
[(r)] < A+ a)2E

Proof. Let u be as in Lemma 2.2.7 with ap = 1 and a; = 1/i%>. Then
oe}
i(x) = sinc(x) | [sine(x/i?)
i=1

and u is supported in [—3/2,3/2].

18



Observe that ¢(x) = F(x)? with F(z) = 2u(x/6). Since F is even, for x € [—1/2,1/2],
F(zr) = F(1/2) 2 1. As+¢ > 0for all z € R, ¢ > 1[_1/21/5. From the support of u, the

A

Fourier transform of F' is supported in [—1/4,1/4]. Since 12 = F+F , 12 is supported in

By the construction of u,
WD (2)| <2 | o' =2 [ [ ¥ <2757,
k=0 k=1

The support of u and integration by parts gives that for any j > 0 and x # 0,

b
(27|’

35%

x|l

HUU)HLl(R) <

ju(z)| <

Applying the above bound to j = E shows that for x # 0, |u(z)| < E*#|z|~F. Then for

x| =1,
()] = 4lti(z/6)]* < E>*F|x|7*

Thus if |z| = 1, (1 + |z])*#|¢(z)] < E°F. If |z| < 1, then explicit computation gives that
(1 + |z|)?F)ap(z)| < 4F+L. This completes the proof of Lemma 2.2.8. O

Since B(0,1) = [-1/2,1/2]* and (14 |z|)(1+|za]) < (1+]z1])(1 + |z2])?, we immediately

have the following corollary.

Corollary 2.2.9. Let ¢ be as in Lemma 2.2.8. For x € R?, let

n(x) = Y(x1)Y(za).

Then n = 1p(o1), supp(n) < B(0,1), and for all x € R? and E > 100,

E12E
n(z)| < 25 25
(14 [ [)22(1 + Ja2])
For B = B(cp, R), define
T —c
wp(a) = (%)

Then for all x € R? and arbitrary E = 100,

~

’I]B(ZL') < EuEvaE(x) < EmE’LUBJ_«j(l').



We now construct our smoothed indicator function and estimate the size of the Fourier

transform of its moments.

Lemma 2.2.10. Let u be as in Lemma 2.2.7 with ag := 1/3 and a; := 1/(3i%). Then

U(z) := (u=*l_g9)(x)

is a CP(R) function which is equal to 1 on [—1,1] and vanishes outside [—3,3]. For k =0,
reR, and E = 100 we have

6kE5E

(L JalPe .

| J tRW (1) e dt| <
R
Proof. From Lemma 2.2.7, u is supported in [—1,1]. Since u = 0, |[u];1 = @(0) = 1. Then

1 ifrel[-1,1]
U(zr) = J u(s)ds =
[x—2,z+2]n[-1,1]

To prove (2.14), we first prove that for k > 0,

0 ifz¢[-3,3]

|02 (2MW(2))| < 62ETF A (2.15)

where 0¥ = d¥ /dz®. From Lemma 2.2.7, for j = 0, [u¥)(z)| < 3(2/) []2_, 3i* = 3(67)(j!)%.
Thus for 57 = 0,

(WO ()] = [(ul « 1) ()| < 12(67)(5!)°.
First suppose 2F < k. Then since ¥ is supported on [—3, 3],

EEtu)] =13 () )

2F
! : :
<) <2.E> B 312(62 ) (2B — )

=N ) (k=)

< 12(62F3%)(2R1)? § (f) < 12(62E+F)(2E1)2

j=0

Next suppose k& < 2F. Then similarly,

102 (2" W ()] < Z <2jE> G ﬁ!j)IBkj12(62Ej)(2E — P < 12(62EF) (2E1)2.
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Since E > 100, 12(2E!")? < E*E, and so when combined with the above implies
|§2E(:Ek\11(x))| < 62E+kE4E

which proves (2.15).

We now prove (2.14). Integration by parts and (2.15) give that for = # 0,

6 6kE4E
— |0 E(t* (¢ o L ——0.

| f R ()™ dt| <
R
Thus for |z] > 1,

(14 |])2E] J FU()e2H | < 2P EE < 6REPE.
R

Observe that
| 1t wldr < 3w - a6
R

where the last equality we have used that « > 0 and |u|: = 1. Then for |z| < 1,
(1+ \:cy)QE]f R ()2 dt| < 45 F13E.
R

This completes the proof of Lemma 2.2.10. O

2.2.3 Immediate applications

Corollary 2.2.4 allows us to upgrade from estimates in LP(B) and LP(ng) to estimates in
LP(wp) and LP(wpg). We have the following proposition which contains all three different

scenarios we will need to upgrade from an unweighted estimate to a weighted estimate.

Proposition 2.2.11. Let I < [0,1] and P be a disjoint partition of I.

(a) Suppose for some 2 < p < 0, we have

1€29]03) < OO 1Es9 (s )
JeP

for all g : [0,1] — C and all squares B of side length R. Then for each E = 10, we have

1€19) Lo s 2y < 127PCOY S 1E5907000p.0) (2.16)
JeP

for all g : [0,1] — C and all squares B of side length R.
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(b) Suppose we have

1€rg] 2y < C()] 1€591722,)) "

JeP

for all g : [0,1] — C and all squares B of side length R. Then for each E >

have

1€19] 2 (wp ) < 122 EEC(Y ) 1€59]72 00 )"
JeP
for all g : [0,1] — C and all squares B of side length R.

(¢) Suppose for some 1 < p < q < 0, we have

1€19] e, 8y < ClErgl1r, )

for all g : [0,1] — C and all squares B of side length R. Then for each E >

have
H‘S'IQHL‘Z#(w&E) < 12E/qE12EC||519HL;(wB,Ep/q)

for all g : [0,1] — C and all squares B of side length R.
The same results are also true with wp g replaced with Wp g.

Proof. We first prove (a). Since for a € R?, (£;9)(z+a) = (E;h)(x) where h()

100, we

(2.17)

100, we

(2.18)

= g(§)e(amé+

a2£?), a change of variables shows that it suffices to prove (2.16) in the case when B is centered

at the origin. Corollary 2.2.4 implies that
1900 <37 | 182013 0,y 0(0)

<SR | (3 160013t ) 0m(0)
JeP

E p—2
= 3" RCEs9) o ws iy 2 iz
Since p > 2, we can interchange the L?(wp ) and I3 norms and the above is

< 3ER_20pHHng”LP (wB(y,R), E)H12LP(

|

JeP R?

wB,E)

p/2
=310 (S 1008 o))

22
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Since B is assumed to be centered at the origin,

| V000 0800 = V3T ) < AP0

where the inequality is an application of Lemma 2.2.1. Inserting this into (2.19) gives that

1€1917 0 0 ) < 127CP (X 1E€090 0 )P
JeP

Taking 1/p powers of both sides completes the proof of (2.16).

We next prove (b). Once again it suffices to prove (2.17) in the case when B is centered

at the origin. Corollary 2.2.4 implies that

€191, <3Ef L ——cyy

= 3FR72C? ZJ H5J9HL2(,7 20 ) B(y) dy

JeP

=3PR7?C? Z HngHiQ(nQB*wB) (220)
JeP

By Corollary 2.2.9 and Lemma 2.2.1,
ﬁ%*wB < FE 4Ew3 2E*wBE E24E4ER2’IU B,E
and hence (2.20) is

< EPP12°C% YT €093
J'ePy/r(J)

Taking 1/2 powers of both sides completes the proof of (2.17).

We finally prove (c). Again it suffices to prove (2.18) in the case when B is centered at

the origin. Corollary 2.2.4 implies that

18 < 3 | V€101 000
<3EOqR_2Q/pf 1€:90 700 ywB.E(y) dy
R2 B(y,R)

= 3ECIRT2P||E1g(5) [Ny (5)]

HLg(wB,E)L.ZS’.
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Since ¢ > p, we can interchange the norms and the above is

< 3EC‘1R_2!]/pH ‘519‘773(%}{) ”%ng(wB,E)

(2.21)
_ 3P0 Rl f 1E19() P (1 » i) ()71 )
RQ

Corollary 2.2.9 and Lemma 2.2.1 give that
an * WB E < E12Eq(wB7Eq * wB7E) < ElZEq4ER2’u)B,E.
Inserting this into (2.21) shows that

1Erg]l < 12Fp1FICaR?—2ap| £ g |4

Li(wp,g) LP(wp, gp/q)

Changing L? and L? into L} and L%, respectively, removes the factor of R*~24/?. Taking 1/q

powers of both sides then completes the proof of (2.18).

Since the same estimates hold for Wp p in Lemma 2.2.1, Corollary 2.2.4, and Corollary
2.2.9, the above proof also shows that the proposition also holds with every instance of wg g

replaced with @Wp . This completes the proof of Proposition 2.2.11. Il

Remark 2.2.12. Note that a change of variables as in the beginning of the proof of Proposition
2.2.11 shows that knowing
1€19] o 0.m) < COY 19N Tt ) (2.22)

JeP

for all g : [0,1] — C implies that
1€19] o3y < CO S 1Es9NEnum )™

JeP

for all g : [0,1] — C and all squares B of side length R. Therefore often to check the

hypotheses of Proposition 2.2.11 we will just prove (2.22) instead.

Remark 2.2.13. Corollary 2.2.4 is not the only way to convert unweighted estimates to
weighted estimates. Another approach is to prove an unweighted estimate where B is re-
placed by 2"B for all n > 0 and then use that wpp ~ ano 27"E1,n 5 to conclude the
weighted estimate.
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Proposition 2.2.14. Let B be a square of side length R and let B be a disjoint partition of
B into squares A with side length R < R. Then for E > 10,

> wap < 48%wp . (2.23)
AeB

This inequality remains true with wa g and wp g replaced with Wa g and Wg .

Proof. 1t suffices to prove the case when B is centered at the origin. Since B is a disjoint
partition of B,

2 1 <1p.

AeB

Therefore

Z Ia *wpo,rY,E < 1B * WB(O,R),E-
AeB

Lemma 2.2.1 gives that

_Epn
37°R Z WAE < Z LA * wpo,r),E
AeB AeB

and

E pr2
1p *wpo,r),e < 8 R wpE

where here we have also used 15 < 2EwB,E. Rearranging then proves (2.23). Since 1 <
4E W p, the same proof then proves (2.23) with wa g and wp g replaced with @Wa g and Wp g,

respectively. This completes the proof of Proposition 2.2.14. O]

Remark 2.2.15. The only property we really need in Proposition 2.2.14 is that }}, z1a <
C1p for some absolute constant C. In particular, the same proof will work with finitely

overlapping covers and when R/R’ ¢ N.

We illustrate two lemmas regarding how the weights wg and wp and shear matrices
interact. Both lemmas are similar to Proposition 2.2.14 except now there is an additional
shear matrix. Lemma 2.2.16 is used in the proof of Lemma 2.3.10. This lemma is a warmup
to the proof of Lemma 2.2.18. Lemma 2.2.18 is the key lemma for the application of parabolic
rescaling in Propositions 2.4.1 and 2.5.2 and is why we have two separate weights wg and

~

wg.
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Lemma 2.2.16. Let £ > 10 and S = (}¢) where |a| < 2. Then
wB(O,R),E(‘Sx) < QOEU)B(O’R)’E<$).

Proof. Since our weights are centered at the origin, rescaling x, it suffices to prove the case
when R = 1. Since |a| < 2, S7'B(0,1) < B(0,3) and so 1p1)(Sz) < 1ps)(x) for all
x € R%. Therefore

Lpon(x) < 1pos) (S7'x)

for all z € R%2. Convolving both sides by wg(0,1),z and applying Lemma 2.2.1 gives that
37EU}B(0,1),E < (1o © ST« Wp(0,1),E-
Thus it remains to prove that
(13(0,3) o S_l) *WpR(0,1),B S 30Ew3(0,1),E oS
This is the same as showing that
| 1oty (S 10D+ o = ) ® dy <3051+ 1)) P, (2.24)
If z € 2°S(B(0,1)), then |S~'2| < 2*v/2 and so
JRQ 1ps)(S7'y) L+ |z —y)) Pdy <1 <241+ |S7'a))~"

which proves (2.24) in this case. Next let z € 2"*1S(B(0,1))\2"S(B(0,1)) for some n > 5.
Then

1+ ) F=1+v2-29)F=(2.27)7 "
Thus in this case, to prove (2.24) it suffices to show that
f Lpa(S7y) (L + |z —y) ™" dy < 157277, (2.25)
RQ

We have

1
15005 (S ) (1 + |z — y) P dy :J T+le—gnE
J]Rz B(0,3) S(B(0,3)) (1 + [z —y[)" (2.26)

J e
= _— y'
w—s(B03) (1+[y))¥
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For y € x — S(B(0,3)), write y = Sa — Sb where a € B(0,2"™)\B(0,2") and b € B(0, 3).
Since [S™! < 2|97 max < 4,

1 3 1
- 2n71 — 29 _2n
4( 2\/7) 10

Therefore the right hand side of (2.26) is bounded above by 9(107)27"F which proves (2.25)

lyl =1S(a=0)| = || |a—b] >

and hence (2.24). This completes the proof of Lemma 2.2.16. O

Remark 2.2.17. The same proof also shows that wpg(q,r), e(Str) < 90Ew3(07R),E since the only
two properties of S we used were S~'B(0,1) < B(0,3) and |S™!| < 4. These properties are
satisfied if we replace S with S*.

Lemma 2.2.18. For 0 < <o <1 with o™/?2 e N, let

1/2

o 2a01/2

T:
0 o

with 0 < a < 1— 02 and B = B(0,67"). Then T(B) is contained in a 30267 x g6~
rectangle centered at the origin. Let B denote the partition of this rectangle into 30~Y? many
squares with side length o6~'. Then for E = 100,
Z WA p < 720" wBEOT (2.27)
AeB
Proof. The proof is similar to what we did in Proposition 2.2.14 and Lemma 2.2.16. Since B
is axis-parallel and centered at the origin, T'(B) is a parallelogram centered at the origin with
a base parallel to the x-axis and height 0d~!. The corners of B are given by (£6~!/2, £§71/2)

and hence the corners of T'(B) are given by

1 1/2 IR 1 1/2 o by
- i - 1 _Z

(2a (1+ 2a)o ,20—5 ) ( 50 (14 2a)o—, 206 )
1 /271 _ -1 _1 -1 _1 1/2(1 _ -1 1 -1
(20 (1 —2a)d ", 205 ) ( 57 (1 —2a)d ", 205 ).

Then T'(B) is contained in a 362571 x o0~! rectangle centered at the origin.

Note that T'(B) < Jacg A < 107(B) (we actually have |z A < (3 4 2a)T(B), but

this is not needed) and so

Z 15(caws-1) < 1p0s-n 0 T
AeB
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Convolution with wWp( ss-1),r gives that

Z Wap < 3%(1poios-1y 0 T7) * Wpo,os-1).8
AeB

Thus it suffices to show that

(00 )2 (1p,105-1) © T ™) * Wp0,0s-1),5 < 240%wps-1)5 0 T

That is,
5—1—2f 1 (T ) (1 ‘$—3/| ~E(q ‘x2—yzy -E g
(U ) g2 B(0,108 1)( y)( + 05,1 ) ( + 0'(571 ) Y
< 24071+ — x|)

Rescaling x and y (by setting X = z/(06!) and Y = y/(06~!)) shows it suffices to prove
that

f 13(0,10)(5'_13/)(1 + |z — y\)_E(l + |xe — ya])” Edy < 24OE(1 +[S™ x\) (2.28)
RQ

for all x € R? where S = ¢~ 'T = (o 2ao 2. Suppose z € 26S(B). Then [S~'z| < 32v/2
0

and so

f Ls010) (ST ) (1 + o = y[) 77 (1 + |22 — o)™ dy < 1 <507 (1 +[S7"a|)™"
R2

It then remains to prove (2.28) for z € 2"*1S(B)\2"S(B) for all n > 6.
Fix an n > 6. For z € 2""1S(B)\2"S(B), |S~'z| < 22 and so (2"*)~F < (1 +
|S~1x|)~F. Therefore to prove (2.28) it is enough to prove

1
Jms o) 17 = ylF(1 + 12 — ya|)#

for all z € 2""1S(B)\2"S(B). A change of variables shows that we need to prove

dy < 120527"F

1
dy < 120727"F (2.29)
L 10s(B(0,1)) 1YL+ [y2])?

for all z € 2"*15(B(0,1))\2"S(B(0,1)).
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Fix an z € 2"*1S(B(0,1))\2"S(B(0,1)). First suppose |zy| = 22F. If y € z —
105(B(0,1)), then y = Sa — Sb for some a € B(0,2""')\B(0,2") and b € B(0,10). Since

|S7 < 257 | max < 4, we first have

1y 1 n— Lo
yl =1S(@ =) =[5~ a =0l > gla—b] > (2" = 5v2) > 52"

|

Next, ya = g — (Sb)y = 29 — by and by € [—5, 5] and so

1 + ’SL’Q’ 1 + ‘IQ‘
- <1+ |by| <6.
1+ [ya| 1+ |zo — by b2
Therefore
1 6 1 22n
dy < ( )EJ —dy <120 ———927"F
L—lOS(B(O,l)) ly|F(L + [yal)# L+ [mo] " Jiyiman /00 [Y]F (1 + [za|)®

and since |z5| = 22"F we have proven (2.29) in this case.

Next, suppose || < 22%E. In this case, we claim that y € z — 10S(B(0, 1)) satisfies
ly| = 27012 and so we can bound the integral trivially. By assumption, |(S™'z)s| = |zo| <

227/F Since S~'a € 2" B(0,1)\2"B(0, 1), |S~'z| = 2"'. Thus
((S71z),| = 2n ! — 22,
Since (S7'z), = 0'/22; — 2ax,, it follows that
21| = o V2(2n 7 — 3. 22/E),
As in the previous paragraph, write y = x — Sb for some b € B(0,10). Then
Wyl = | = |21 — Y2 [by + 2abs| > 02271 — 3. 920F _ 15) > %0—1/2271

where the last inequality we have used that n > 6 and E > 100. Thus in the case when

|ZL‘2| < 22n/E’
1
dy < (1000~ Y2)5E5E29™mE < gPoE
L—lOS(B(O,l)) [y|E(L + [ya])®
which proves (2.29) in this case. This completes the proof of Lemma 2.2.18. O
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Remark 2.2.19. The Wa g on the left hand side of (2.27) was needed to make sure the
on both sides stays the same which is needed when we iterate later (for example in Lemma
2.5.2). If the Wa g is replaced with wa g, then by the same method as the proof above, one
can obtain ZMB WA E SE WB,E—2 O T-!. In this case, some loss in £ must occur since we

can consider the analogue of (2.28) and (2.29) and let @ = 0 and x = (0,2"!).

2.2.4 Bernstein’s inequality

Another immediate application of Proposition 2.2.11 is Bernstein’s inequality (also called
reverse Holder in [BD17]). This should be compared with (2.3) at the beginning of Section
2.2. Our proof of Lemma 2.2.20 is the same as that of Corollary 4.3 of [BD17] except we

make effective all the implicit constants.

Lemma 2.2.20. Let 1 < p < g <o, E > 100, J < [0,1] with {(J) = 1/R and B < R? a

square with side length R > 1. If ¢ < oo, then

1€590 15,55, 2) < EZPNE19N 12, (855 ) (2.30)
If ¢ = o0, then

sup [(E19)(2)] < E23E||5J9HL;(@B,E)- (2.31)

TE

Proof. Let n be as in Corollary 2.2.9. Since ng > 1p,

€19 La) < |nBE1g|Lar2)-

Let 0(x) = U(2x1)¥(224) where W is defined as in Lemma 2.2.10. Then 6 = 1 on B(0,1)
and vanishes outside B(0,3). Since 7 is supported on B(0,1/R), the Fourier transform of
np€sg is supported in some square S with side length 10/R. Then we have the following
self-replicating formula

n3E1g9 = (NEsg) * bs.

Young’s inequality then gives

InBE19| Lare) < [1BE1g] Lr@2) |05 rr2) = HQS”LT(RQ)HSJQHLP(n%)
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where 1/qg = 1/p + 1/r — 1 (since ¢ > p, we have r > 1 and 0s € L™). Since (&) =
(1/4)B(&/2) 8 (&/2), 0] Lrge) = 41| F[2, 5, applying Lemma 2.2.10 gives that

195wty = (10/ R 0] ey = 257 R [, gy < 257 R B,
Therefore
1€5g]zam) < 25V BOPRTE5g o) (2.32)
for all squares B < R? with side length R. If ¢ < o0, applying Proposition 2.2.11 and then

using that ¢ > p > 1 and £ > 100 proves (2.30).

If ¢ = oo, then (2.32) and Corollary 2.2.9 implies that

sup (E19)(x)] < 25"PE2ER™P(E 9] o 1)-
xTE

Since F > 100, (2.31) then follows. This completes the proof of Lemma 2.2.20. O

2.2.5 [?L? decoupling

We now prove [2L? decoupling which will follow from almost orthogonality. This proof is
the same as that of Proposition 6.1 of [BD17] except we once again make explicit all implicit

constants.

Lemma 2.2.21. Let J < [0, 1] be an interval of length = 1/R such that |J|R € N. Then for
E > 100 and each square B < R? with side length R,

1€591 320055 ) < B >0 1€09] 72005 -
J’ePl/R(J)

Proof. Let n be as in Corollary 2.2.9. Since n% > 13,

1€s91720m) < 1€s907202) = InBEsgliaey = | Y, nBEraliagee)-
J’ePl/R(J)

Note that the Fourier transform of ng€,/¢g is supported in the 1/R-neighborhood of the piece

of parabola above J'. Therefore ng€; g and ng€ g have disjoint Fourier support if J' and
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J" are separated by > 2 intervals. Applying this and Plancherel gives

[ Z NBErg| 722

J'ePy r(J)

< ) > InsEnglelnsEnglLe

JiePyr(J) J3ePyr(J)
d(c‘]i ,CJé)QQ/R

< D Ams€rglz)?C D > InsEngl))?

JiePl/R(J) J{EPl/R(J) JéEPl/R(J)
d(c‘]i 7C‘]é )<2/R

<VB( DL IneEqalia) P ), Y lnsEnglia)'?

Ji€PyR(J) JiePyr(J) JyePyr(J)
d(c”’i ,CJé)SQ/R

<5 N IEnslay

J'ePy ()
Thus we have shown that
1€s902m) < VB )] 1€ 722"
J’ePl/R(J)

for all squares B < R? with side length R. Applying Proposition 2.2.11 then completes the
proof of Lemma 2.2.21. O

Remark 2.2.22. To modify the weights wg and wWg, the main properties the weights need to
satisfy are Lemma 2.2.1 and Lemma 2.2.18. The other lemmas such as Lemmas 2.2.5, 2.2.6,

and 2.2.16 are also desired, but these should be easy to satisfy.

2.3 Equivalence of local decoupling constants

Recall that D, 5(6) is defined similarly as D, p(0) except instead of wp g we use @p g. The

main goal of this section is to prove that

D,5(6) ~& Dy i (0) (2.33)
for 2 < p <6, E > 100, and § € N~2. This is proven in Proposition 2.3.11. This equivalence

is a consequence of a larger equivalence of a collection of local decoupling constants. This
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section is similar to Remark 5.2 of [BD15] and may be of independent interest since it shows
that an array of slightly different local decoupling constants are essentially the same size.
The restriction p < 6 is very mild and can be removed with a bit more care (at the cost of
introducing an implied constant that depends on p). However since 2 < p < 6 is precisely
the range we need, we restrict to this range. The appearance of the weight wg in parabolic
rescaling (arising from Lemma 2.2.18) means that (2.33) will play an essential part of the

argument (for example in Proposition 2.4.1, Lemma 2.5.2, and Lemma 2.8.11).

Let fr denote the Fourier restriction of f to R. For each J = [n;0Y2 (ny + 1)§Y/?] €
P51/2([0, 1]), let

05 :={(s,Ls(s) +1):n;0"* <s < (ny+1)§"% —55 <t <56}

where

Ly(s) := (2ny +1)6"%s —ny(ny + 1)6

and 0 < ny < 62— 1. Here 0 is a parallelogram that has height 105 and has base parallel
to the straight line connecting (n;6%/2,n%9) and ((ns + 1)6%/2, (ns + 1)26). We note that for
§eby,

€2 — L (&1)] < 56 (2.34)
and
1Ly (&) — & < 6/4. (2.35)

Boundedness of the Hilbert transform implies that Fourier restriction to #; is a bounded
operator from LP — LP with operator norm bounded independent of J, we make this explicit

with the following lemma.

Lemma 2.3.1. For each J € Psp([0,1]) and 2 < p < oo, |fo,l, < Colfl, with C, :=

(5 + 5 cot(g:))"

Proof. Fix J € Ps12([0,1]). Let R denote the operator defined by é}‘ = fng. Let S denote

the operator defined by 5} = fl[oyoo). Each 6 is the intersection of four half planes in R2.
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Since multiplier norms are unchanged after rotation and translation,

| Rlp—p < (1S (2.36)

p—p°

Note that here we have also used that the operator norm of Fourier restriction to a half
plane is bounded above by |[S|,-, which follows from Fubini’s Theorem. If H denotes the
Hilbert transform, observe that f(f) + Zﬁ?(f) — 2f| (£)1[0,0)(§) almost everywhere. Since

2<p <o, [H|pp < cot(g;). Therefore

1
+ —cot(l).

S — < -

Inserting this into (2.36) then completes the proof of Lemma 2.3.1. [

Remark 2.3.2. One can think of 6, as a polygonal approximation of the set {(s,s* +t) :
s € J,|t| < d§}. The reason why we use 6; instead is because Fourier restriction to the

aforementioned set is not bounded in L? for p # 2.

To prove (2.33), we introduce two more local decoupling constants and show that all four

decoupling constants are equivalent.

Definition 2.3.3. Let 6 e N2, 2 < p <o and E = 1. Letn be as in Corollary 2.2.9. Let
D,(6) be the smallest constant such that

1€09lzrm < Do) Do 1€19130 )"
JePg12([0,1])

for all g : [0,1] — C and all squares B with side length 6~'. Let ﬁp,E((S) be the smallest

constant such that

1oy < Dop@) > 1ol Frtwpm)

JePg12([0,1])

for all f Fourier supported in © = ,p L ([0.1]) 07 and all squares B with side length 6~ 1.

)

From our definitions of wg, Wg, and npg, observe that

E E ~
1 <2 wp,E, 1p < 4 WB. E, 1p < nB-
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Furthermore, note that by the triangle inequality followed by Cauchy-Schwarz, all four local
decoupling constants we have defined are <p, 0~4. Taking a specific g : [0,1] — C or a
specific f with Fourier support in © and using Proposition 2.2.11 shows that D, g(6), lw)p, £(9),
and ﬁp, g(9) are 2, 1. We make this precise with ZA?p, g which is the only decoupling constant

we need an explicit lower bound.
Remark 2.3.4. Another consequence of the equivalence of the four local decoupling constants

is that D,(0) 2 g, 1 but this is not immediate from the definition.

Lemma 2.3.5. Forp > 2 and E > 10, lA?p,E(é) > 1278,

Proof. Let 13; £(9) be the smallest constant such that

|flertwsey < Dpp@C 20 ol tnuwse)™”

JeP 1/2([0 1)

for all f Fourier supported in © and all squares B with side length §=1. Proposition 2.2.11
implies that ﬁ;E((S) < 12E/”1A)p7E((5). From the definition,

A | flr s )
D' ,(8) = 5. (2.37)
»E (Z]EP 5172 ([0,1]) HfGJ”Lp (wB.E) )1/2

where the sup is taken over the f and B as mentioned at the beginning of this proof. Taking
an f with Fourier support on 6 5/2) shows that f)j’o £(0) = 1. Here note that we needed
the numerator of the right hand side of (2.37) to be L?(wp g) rather than LP(B). Therefore
lA)pE((S) > 127P/? which completes the proof of Lemma 2.3.5. O

Remark 2.3.6. The decoupling constants D,, g(d) and lw?pyE((S) are useful because wg*wp ~g
R?wp and similarly for @wg. This allows us to use Proposition 2.2.11 to upgrade from un-
weighted to weighted estimates which is an important part of the argument. The same
cannot be said with the Schwartz weight decoupling constant D,(§) since we do not nec-
essarily have ng * ng ~ R?np. This useful convolution property of the wp and @y makes

D, g(0) and Bzx £(0) ideal for iterative parts of the argument.

On the other hand, the decoupling constants D, () and D, p(8) are more useful for

Fourier type arguments since the Fourier transform of wp and wg are of sinc type and so
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do not work well with Fourier arguments. One corollary of the results proven in this section
is that all four local decoupling constants are essentially equivalent so we can easily swap

between them.

To prove (2.33) we will prove the chain of inequalities

D,5(8) < Dy p(8) <k Dp(6) <& Dpa(6) <p Dyr(d) (2.38)

for 2 < p < 6 and some G < E we will make explicit in our proof.

The first two inequalities follow from that ng <p wp < wg. The third inequality follows
from boundedness of the Hilbert transform (Lemma 2.3.1) and the last inequality will follow

from adapting the proof of Theorem 5.1 in [BD17] to our case and is the most technical.

Lemma 2.3.7. For £ > 100 and 2 < p < o0,

D, 5(0) < D, p(8) < E*F/PD,(5).

Proof. The first inequality follows from the observation that wp < wp. The second inequality
follows from Corollary 2.2.9, in particular, np < E'Pdp . This completes the proof of

Lemma 2.3.7. O

As mentioned above, the third inequality in (2.38) comes from boundedness of the Hilbert
transform. In particular, we need the following lemma. Because Ep does not depend on F,
this lemma allows us to “reset” the E parameter in D), g. This is useful because going up in

the E parameter of D,  is easy but going down is much harder.

Lemma 2.3.8. For6e N2, E>1, and 2 < p < 0, we have
D,(8) < (3C, + 51257 Dy, ()
where C, is as defined in Lemma 2.5.1.

Proof. We first assume that § € N™2 and § < 1/36. Fix arbitrary g : [0,1] — C and square
B with side length §~'. We can write

9 = 9l sv2yoa-s121] T 9lisiz 1-512) 1= g1 + ga.
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Then
1E0,119llze ) < [E10,11911l2r () + [ €10,1192]| L7 (B)-

Using the support of g;, the triangle inequality, 15 < 1, and Lemma 2.3.5, we have

1E0.1191 e (B) < €0 51219 e () + [ Ep—s12.119 | Lo (B)

<2-12%7D,p(0)( >, 1Es9lieem) " (2.39)
JePs1/2([0,1])

Since g, is supported in [§'/2, 1—¢"/?], the Fourier transform of np&j 1192 = neEs1/2.1_51/219

is supported in a d-neighborhood of this interval which is contained in ©. Therefore

Ins€pagl oy < Dpp@)( D0 |m8E0.1192)0, 700 ) "> (2.40)
JeP15([0.1])

Note that since go = glisi21_51/2,

(nBE0.1192)0, = (MBE[51/2,1-51/219)8,

(155,900, it J = [0,52]

(BEs9 + 1BE1,.9)0, if J = [5'/2,26"7]

= (BEs,9 + BEsg +nBEs9)s, if J € Pup([20Y2,1 —25Y2])

(nBE1,9 + 1BE19)e, if J=[1-20"21- 62

| (1BE1.9)6, if J=[1-6Y21].

where J;, and J,. denote the intervals to the left and right of J. Lemma 2.3.1 gives that for
J € Py ([20Y2,1 — 26Y2)),

|ms€p192)0, | rweey < DO, 1mBEr@a,ln <Cp Y 1€rglLrimm-
Je{Jg,J,Jr} J'e{Je,J,Jr}

Similarly we have

’\(7735[0,1]92)0[0751/2] HLF(wB,E) < Cp"€[51/2,251/2]gHLP(UB)
[ (B0 192)0,_1s2 |Erws r) < Coll€pi-asir2,1-51219] o)

[(15E10.1192)0 1172 5170, Lo (s ) < ColllE5112 251219 | o) + [E25172 351219 Lo (1))
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and

H (nt[Ovl]92)9[1,251/2’1751/2] HLp(wB,E)
< Cp(”5[1—351/2,1—251/2]9HLP(nB) + “5[1—261/2,1—61/2]9HLP(”]B))

where here we have used that 6 < 1/36. Applying Cauchy-Schwarz and using the above four
inequalities gives that
Z |(n5E0.1192)0, |25 0 ) < 9C; Z 1€59170 ()
JeP 5 ([0,1]) JEeP 5 ([0,1])
Combining this with (2.40) and 15 < np gives
|€0.192008) < 3CoDpu(O)( Y, €191 T0gm) " (2.41)
JEP61/2([071])

Combining (2.39) and (2.41) proves that
D,(0) < (3C, +2- 128D, 5(6) (2.42)

for all 6 e N™2 and § < 1/36.

For 6 = 1,1/4,1/9,1/16, and 1/25, we resort to the trivial bound. Proceeding as in the
proof of (2.39) shows that for each such § = 1/i*, i = 1,2,...,5, we have

D,(6) <5-12°7D, 1(5).
Combining this with (2.42) then completes the proof of Lemma 2.3.8. [

Remark 2.3.9. The reason why we split g up into g; and g in proof above is because 70,119

is Fourier supported in a set that is slightly bigger than ©.

The last inequality in (2.38) is the most technical of the four inequalities. The proof is
similar to that of Theorem 5.1 in [BD17] however our proof is more complicated since our
definition of ZA)R £(9) uses Fourier restriction to the parallelogram 6; (to take advantage of
LP boundedness) rather than Fourier restriction to a d-tube of a piece of parabola. We also
want explicit constants and so we will need to spend some time to extract explicit constants
from taking a large number of derivatives. We state our lemma below but due to the length

of its proof, we defer the proof to the end of this section.
38



To simplify some constants, we also restrict to the range when 2 < p < 6 since this is the
range we care about. The restriction that p < 6 is only used once in the proof of Lemma
2.3.10 (in particular at the end of the proof of Lemma 2.3.16) and is a very mild assumption

which can be removed with a bit more care.
Lemma 2.3.10. For £ > 10 and 2 < p < 6,
Dy £(6) < E®F Dy 547 (0),
Since wp g, < wpp for By < Ey, Dy g (6) < D,g,(0) and so we can increase the E

parameter at no cost. Combining Lemmas 2.3.7-2.3.10 proves the following result which

shows (2.38) and hence (2.33).
Proposition 2.3.11. For § e N=2, £ > 100, and 2 < p < 6, we have
Dp,E(é) < ﬁp,E(é) < EGEﬁp(é) < E7Eﬁp,G(5) < E7OEDp,E(5)

where G = |(E —17)/2].

Proof. Fix arbitrary integer £ > 100. Using Lemma 2.3.7 and that 2 < p < 6, we have
D, 5(6) < D, 5(5) < E*D,(9).

Now we use Lemma 2.3.8 to reset our E. Since £ > 100, G > 10. From Lemmas 2.3.8 and

2.3.10,
E*D,(0) < E™"D, ¢(8) < EPG™ D, 5647(6)

where in the first inequality we have used that C), < 32 for 2 < p < 6. Increasing 2G + 7 to
E bounds the above by E™£D,, (). This completes the proof of Proposition 2.3.11. [

2.3.1 Proof of Lemma 2.3.10

This proof is similar to the proof of Theorem 5.1 in [BD17]. Our goal is to show that if f is
Fourier supported on © = UJePél/z([O,l]) 07, then
1fle5) SE Dp2ear@)C D5 o)l Fown )"
J€P51/2([071])
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for all squares B with side length 6! and some implied constant that will be made explicit

in our proof. It suffices to show that this is true in the case when B is centered at the origin.

Since f is Fourier supported on O, for x € B,

~

flay=" ) F(&)e(€ - x)de

JePy12([0,1]) V97

— Z f f(s, Lj(s) +t)e(swy + s%xo)e((Ly(s) — s*)xo)e(tas) ds dt.
D Jx[—50,56]

J€P51/2 ([0,1

Note that here both t and L;(s) — s* are of size O(§) and x5 is of size O(671), so the
contribution from e((L;(s) — s*)zs) and e(tzy) should be negligible. We make this rigorous.

Since

e(tas) = ; (2;)] (Q(Siic12)j(5_2 by
and
)k 2ixy -1 s) — 2
6((LJ(S) N 82)372) _ Z (2k') (261 )k((s (LJ<2> ))k,

k=0

it follows that for x € B,
(27m)*(2m)’
f@)] < )] k:'—j" D (Ergin) (@)
JeP12([0,1])
where g¢;; : [0,1] — C is defined pointwise almost everywhere piecewise on each J €
Pyua([0, 1) by

gj,k(s) _ (51(LJ(23) - S2))k . f(S,LJ(S) + t)((sTlt)J dt

for se J. Let F:=2F + 7. We then have

(27)*(2m)’
| Fleocs) < Dpr(6) ), T( O LT T e (2.43)
k=0 JeP,12([0,1])
It then remains to prove that
1€1950 ) wp.r) SE xP(O()) + O)) | fo, | (wp.x) (2.44)

for some implied constants that will be made explicit in our proof. We first claim it suffices

to only prove (2.44) when J = [0, 6'/2].
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Lemma 2.3.12. Suppose we knew that

S (5125 — g2 56 51t
Oy [ Fod2s + 1LY dthinion
56 (2.45)

< CHfo[O’(;l/Q] HLP(wB,E)

1€10,51/21(

for some constant C. Then

o~ (LJ( ) — g2 o1t .
"gnjél/2 nJ+1)51/2]< 92 J S LJ(S) + t)(T)J dtHLP(wB,F)

(2.46)
< 90EHIRC| f,

[y 842 (n +1)51/2] HLP(U)B,E)'

Remark 2.3.13. Here s is a dummy variable, so £;¢(s) means the extension operator applied

to the function g(s) creating the function (£,¢)(z).

Proof. This proof is essentially a change of variables. The idea is to translate 0, (., 11)51/2]
to the origin and apply a shear matrix to turn it into 0 s12;. Then apply (2. 45) and finally
undo the shear transformation. The weights wp are preserved from (2.45) because of Lemma

2.2.16.

We have
0L, (s) — &2 5 o1t .
(g[nJél/z,(nJ+1)61/2]( ( J( ) ))k o f(S, LJ(S) + t)(7>j dt) (.T)
-1 w2 56 1
— f (5 (L(s) = s ))"C f(s,Ls(s) + t)(5 t)J dt e(sxy + 82.1'2) ds.
[ny61/2,(ny+1)61/2] 2 55 2

The change of variables u = s — ns6"/? and the observation that
Ly(u+ny6Y?) — (u+ ny6'%)?* = 6%

gives that the above is equal in absolute value to

5 (51/2 _ 56
J X ( — D [ Flu+ns8V2 Ly + g6 + 1)
[0,61/2] 56

o't

5 Ye(u(zy + 2n,6Y%,) + u’ay) du.

x (
Since |2n;0"/2| < 2, after a change of variables and an application of Lemma 2.2.16, the right

hand side of (2.46) is bounded above by
15124 _ o2
oo 25 s ))k><
. . (2.47)
f(s +n50"% Li(s +ny6"%) +1)(— 5 )J dt|| r(wp )

90771 Ejg 51721

—58
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Observe that
Ly(s +ny6Y%) = n%6 + (2ny + 1)6%2s.

Let
gs(x) = f(x)efzﬂz'(nvrém,nga)'

Then
f(s + nJ51/2, Ly(s+ nJ(Sl/Q) +1t) = gs(s,(2n; + 1)(51/23 +1).

This implies that

51 51/2 — ot
5[0751/2]( 58 f (s + nJ51/2, Ly(s+ nJ51/2) + t)(T)] dt
560

§1/2 156 1/2 1
J J 5 6 )) 75(s, (2ny +1)51/25+t)(62t) e(sw1 + 8%x5) dt ds

which is equal to

571 51/2 2 ~ 671 51/2
L (ny81/2 26)( - §1)>kgj(§)( &Gt ] 61)) e(&my + Ewy) dE.

2 2
(2.48)
Let
1 0
T, =
—271](51/2 1

Notice that T sends 6 — (n;6"%,n30) to O s121. Letting pn = T;€ gives that (2.48) is equal

to

0 (e = 8" m)

5 ) e(par + pizs) du

—1/51/2,, _ 2
L (5 (5 K1 /Ll)>kgf\(

5 (T3 p)(
[0,61/2]

—1/51/2,, 2y 1/2
=f (O )y oy e )y

Inserting the above into (2.47) and applying (2.45) shows that the left hand side of (2.46) is
bounded by

e(my + pis) dp
O10,51/2)
§1/2

gy 0 Th(s,6"%s + t)(T)J dt e(szy + sxy) ds.

2
Jv5§ 51 51/2 ) S, 51t

9077 C(g 0 TD)oy, 1110, 7w ) (2.49)
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By Lemma 2.2.16 and the definitions of T; and g, we have

H(gJOTJ) [0 51/2) HLP (wB,E)

p
:f f QA T f [051/2]@)627”%56% wB7E(ZE) dx
R2 ,
p
B LQ J g\ [051/2](TJM)€27”$.M d,u wB,E(TJ_tZL‘) dx
p
= | Tt 008 380 0, G 30 ] (T )

< 907 fo, 1% )

Inserting this into (2.49) completes the proof of Lemma 2.3.12. O

We now prove (2.44) when J = [0,6'2], in other words we will prove (2.45). Corollary

2.2.4 implies that it is enough to show that

fR V0193415, 5 51 08, (0) Ay S xDEOG) + O oy gy (250

We have

(Elo.612)) 95,1 (2)

N —1(81/2¢ g2 (g, — §1/2 .
[ Ao =ty Tt Sy(gt - et ) de.

010,51/2)

For x € B(y,d '), since

e((& — &)x2) = e((&] — &L)y)e((&6] — &) (z2 — 12)),

a Taylor expansion of e((£ — &) (wa — y2)) gives that for z € B(y,d71),

(QW)Z 7 2
(Ensmg)@l < D TH | FOCAQe(E ~@mele - 0)de] 251
=0 ) [0,61/2]
where
5—1 51/2 2 5—1 _(51/2 ) 5—1 2
Oj7k7€(§) = ( ( 261 51))]4:( (52 5 £1>)j( (612 62)>€'

Let ¥ be as in Lemma 2.2.10 and so ¥ € C*(R), ¥ = 1 on [—1, 1] and vanishes outside

[—3,3]. For positive integer k and A > 0, let

Mk)\(l‘) = l’k\If($/)\)
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Because the integral on the right hand side of (2.51) is restricted to 0 512, we can insert

some Schwartz cutoffs into Cj . From (2.34) and (2.35), for £ € g 5172,

ot 1 ot 5 6! 21

O isv2e ez Qe 52e < 02 e <t
Furthermore, for & € Oy 5127, |&1] < 672 and [&| < 66. Let
RS

F(&) == W(6"2¢)W( 5 )s
67 (8Y%¢, — &)

Ml(&) = Mk,l/s( 9 )7
571@ - 51/2€ ) (2.52)
My(€) = Mj,s/Q( 2 5 - ),
—1(¢2 _
M3(&) = Me,m/s(%);

and
@',k,e(f) = F(&) M (&) My (&) Ms(§).

Thus we can replace the C;, on the right hand side of (2.51) with 637]67(. It then remains

to prove that

JRQ L f(é)éjvk,ﬂ(f)e((ﬁf —&)y2)e(€ - x) dE

[0,81/2]
For each fixed j, k, ¢, y, let

p
wg,r(y) dy
LBy (2.53)

< exp(p(0(7) + O) + O fa o i )

m(€) = e(&7y2)Cna(§) = e(Elya) My (&) Ma(€) M3 (€) F(€). (2.54)

Fix arbitrary y € R?. Therefore

L FOCe©)e((€ — E)ma)e(€ - x) de

[0,61/2]

~ | o (Om©cinn + atan = )

— (f9[0,51/2] «m) (1, T2 — Ya2).

This implies

p

L FOC 1 e©)e((€ — E)m)e(€ - x) de

[0,61/2] L;(B(yﬁ*l))
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Holder’s inequality implies that

~ ~ ~ -1
‘fe[o,alﬂ] . m‘p < (|f9[o,51/2] ’p i ’mDHmHil )

Note that the L' norm on the right hand side depends on y since m depends on y. To show
(2.53), it is enough to show that for all z € R?,

5 fR2 JR il = ) (e — g, L () dedy .
<p exp(p(O()) + O(k) + O(0)))wp.p(2).

We claim that for integers a,b > 0,
|08, 08, m e < Cla,b)(0772 + 6 2|ya)?0~° (2.56)
where
C(a,b) = 12°403°1573%16a™b* (a + b)!*(a + 1)°(b + 1)*.
The proof of (2.56) is deferred to the end of this section. The calculation is straightforward
but rather tedious. With (2.56), integration by parts gives the following lemma.
Lemma 2.3.14. For a,b > 0, we have

|21] |2 |-

5—1/2+51/2|y2|)_a)(5<1 F) )-

m(z)| < 272°216C (a, b)(6Y%(1 +

Proof. Note that for |z| < 1, 1 <2/(1 + |z|) and for |x| = 1, 1/|z| < 2/(1 + |z|). There are

four regions to consider.

First consider the case when |x1| > §~Y/2 + 6/2|y,| and |x5| > 1. Since m is supported

in a 66/2 x 360 rectangle centered at the origin, integration by parts gives that

1
(2mix, )e(2mizy)
216 A
s (27T’x1’)a<271-|x2|)b0< D) (072 4 62 ya]) 606
216C(a,b) 1/ EX AN
= (2m)a(2m)P i (6—1/2+51/2|y2|) )O(=)"")
_ 216C(a,

e

m(§)

f m(§)627ri(:c1£1+:v2§2) df’ _ J
R2 R

aﬁ ab 2mi(x1€1+x2€2) df
1

|$1| )—a
512 1 5172|y, |

\

)((51/2(1 +

b
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Next consider the case when |x1| < 672 + 6'/2|y,| and |z5| < 6. Then we just use the

trivial bound in this case. We have

f m(&)ermmérma) gel < 216C(0, 0)6%/2
R2

|1 |72

anb 1/2 —a 21\-b
< 292°216C(0,0)(07=(1 + 51 +51/2|y2|) )(O(1 + 5_1) ).

For the case when |z1| < 072 + 6Y2|yy| and |z > 6 we integrate by parts in & but

use trivial bounds in &;. Thus

. 216
2mi(z1&1+w2b2) g <——C(0,b 5-bg3/2
J];Vm(é)e 5‘ (27|zo]) (0.%)
29216C(0,D) , 5 |21 a 2]\,
< ——MmM —~ 1
< - (0721 + 5_1/2+51/2|y2|) )(O(1 + 5_1) ).

Similarly, when |z1] > 6=Y2 + §Y/2|y| and |z, < 6~! we obtain

20216C(a,0) 5 EN _ |22
e 51 a 12210y
T (5 ( + 5,1/2 + 51/2’3/2’) )(5( + 671) )

J m(£)€27"i(z1€1+$2§2) dé‘ <
R2

Combining the estimates in the above four cases completes the proof of Lemma 2.3.14. [J

In particular, taking a,b = E > 10 in Lemma 2.3.14 gives the following corollary.

Corollary 2.3.15. For E > 10, let

1] |2

. s1/2 -E e 2I\—-F
¢1($’1) =0 (1 + 5—1/2 + 51/2‘y2‘) ) ¢2(ZL’2) T 5(1 + 6,1)

Then

im(z)| < 15j3k16eE30E¢1(xl)%(xz)-

We now prove (2.55). The following lemma is the only place where p < 6 is used.

Lemma 2.3.16. For 2 < p <6,

i < 15/ D301 6801 Ep30EE=1) (1 4 §|y,|)°.
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Proof. From Corollary 2.3.15,
I < 157316° E°°F JR ¢1(z1) dy JR@(%) dzs.
A change of variables gives that
J]R@(xl) dry = 82 (7Y% + 62 |y,)) J]R(l + o)) Fdry <1+ dlys|
and
J Pa(12) drg = f (1+ |xo]) Fdry < 1.
R R
Therefore
77 1 < 1573816 E3°F (1 + 6]y)).

Raising both sides to the (p — 1)-power and then using that p < 6 completes the proof of

the lemma. O

A change of variables gives
5 [ 1il(o ~ 2)aer — grvzs) do = (0]« 5%15) o1 — 21,22
R2

and so combining this with Lemma 2.3.16 shows that the left hand side of (2.55) is bounded

above by

15j(p1)3k(p1)16€(p1)E30E(p1)f (Im] = 6*15) (y1 — 21, —22) (1 + Olya|)*wp,r(y) dy. (2.57)
R2

Corollary 2.3.15 gives that
(177 = 6°15)(2) < 157316 B2 (61 * O11_5-1)0,5-1/7) (1) (D2 * O1[—5-1/2,5-1/27) (22).
Since 1j_s-1/25-1/29] < 2Ew[_571/27571/2],E, Remark 2.2.3 shows
(62 % 01 _5-1/2,5-1/21) (w2) < 8PG(1 + o] /67 1) 7F.
Therefore

-~ i 22|\ —
(Im] = 6°15) (y1 — 21, —22) < 15716 E*P876(1 + LT21|) Br # 01151 /0,512 (11 — 21)
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Thus (2.57) is bounded above by

1573FP1 6P E30EPQE o

|z2|

_ Y
50+ [ (el spam)on — =)0+ 20wty dy
R
The following lemma will complete the proof of (2.55).

Lemma 2.3.17. Let £ > 10 and F' = 2E + 7, then

V4
[ 1o dtssmson = 200+ st dy < 9 1855 0 Z)F, (259)

Proof. We break the left hand side of (2.59) into the sum of integrals over the regions (recall
that § e N72)

Ii={y: |yl <o}
= ) {y:kd " <|pl<(k+1)5"}
1<k<é—1/2
1= J{y - 2507 < [yo| < 216772
k=0
We also note that for a > 1,

(1+ m)‘E <af(1+ |z))7F. (2.60)

a

We first consider the integral over region I. When || < 677,

|21
§—1/2

|74
2(5—1/2

|1]
512 4+ (51/2\y2\

1(x1) = 6'2(1 + )E < 521 + )F < 2F12(1

)—E
Therefore by Remark 2.2.3,

—Z
(1% OLp—g-1/2,5-1/2)) (31 — 21) < 16%6(1 + —|y15_1 d ) E

and so

[t s s = 0+ s e a
I

Y1 — 21| y 1IN N
<16E5f (1+| 15_1 1|) E(1+15%1|)5(1+L%1|) E(1+15%1|) BT qy.
RQ
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Applying Remark 2.2.3 in the y; variable bounds this by

E 1N yal\ g Es— 21\ -p

We next consider the integral over region II. For each 1 < k < 62 and y such that

k6™ < Jya| < (k4 1)07!, we have

1/2 |21] -E 1/2 ST Es1/2 ESTIN®
dr(en) = 0+ s E B e N v
Therefore by Remark 2.2.3,
51 < 24Pks(1 4 WAl
(1 = [—6*1/2,6*1/2])(91 —21) < (1+ T)
and so
Y
J (f1 % 01{—s-1/2,5-1/2)) (y1 — 21)(1 + LTQJ)E)U)B,F(?J) dy
I
= f (f1 # 01 |_s5-1/2,5-1/2)) (g1 — 21)(1 + @)%B,F(?J) dy
L a1/ RO <yl < (k1) 0
|21\ - v2| -
1<k<6—1/2 ko=t <[yz|<(k+1)6~!
<96” > k(l+ %)‘EQ(S‘%‘E‘Z <4-967571(1 + %)—E (2.62)
1<k<6—1/2

where in the last inequality we have used that £ > 10.

Finally we consider the integral over region III. For each k > 0 and ¥ such that 2¥6=%/? <

2| < 2FF167%2 we have

|901|

4. 2k5—1

|$1|
512 4 51/2|y2|

)7E <41351/2(14_ |24 )—E.

¢1(z1) = 6"2(1 + kg1

>7E < 51/2(1 +
Therefore by Remark 2.2.3,

Y1 — 21|\ —
(¢1 % 0L [—5-1/25-12)) (Y1 — 21) < 32E51/2(1 + | 21k511\) E
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and so

[ @ srsmpsmon =200+ B e dy
111
Y
- Z Jk& /2 <[gg <2153 (1 * 51[_571/2,571/2])@1 —2)(1+ ‘521‘) wp.r(y)dy
k=0 2<|ya|<2kH+15-53/2

< 328512«

|y1 — 21 il _p f Y2l \ _E_o
) 1+ Z-Eg 1+ 22 d
k>of 2kg1 EZanl ( 5_1) o 2k6=3/2<|ys|<2k+16 3/2( 5_1> o

< 128EZ5—1/2(1 + ‘Zl‘ )—E2k+15—3/2(2k5—1/2)—E—2

kS—1
k=0 20
_ 128E Z 5—2+(E+2)/22k+1—k(E+2)(1 + QL’Zlyl)—E < 4 - 128E5(1 + L:Z_11|)—E
k=0

where in the third inequality we have used (2.60). Summing this with (2.61) and (2.62)
shows that the left hand side of (2.59) is bounded above by 9 - 128%§(1 + |21|/671)~F which
completes the proof of Lemma 2.3.17. O

Thus Lemma 2.3.17 shows that (2.58) is bounded above by

- |21 |22\ — j
9 - 15773k 16% gPOEPQI0E (1 4 5_1) B+ F) B <15P316% B0 Py p(2).  (2.63)
We now trace back all the implied constants to finish the proof of Lemma 2.3.10. From

(2.63), the implied constants in (2.55) and (2.53) are both 157316 E49EP. By (2.51) and
(2.53), the left hand side of (2.50) is

p
' ||5 0,61/2195,k HLP (B(y,0-1))
LY (wp,F)
27T 5 p
H ikt (&)e((& — &)ya)e(§ - o) dg”L%(B(y,&—l))
€>0 10 51/2] Ly(wp,F)
27T ~ ) P
< Z T H FOC;xe©)e((& — &)ya)e(€ - 7) dE| 1y (5o
=0 O10,61/2] LY(wp,F)

< 15773 pe327TpE40 p”fe[oﬁl/g] HLP(IUB’E)

which gives the implied constant in (2.50). Using this, Lemma 2.3.12, and Lemma 2.2.4, we

20



have

3B/P1503k pA0E 32 if J =[0,6?]
”ngLkHLP(wB,F) < HfGJHLP(wB,E) x
90F+I)/p3E/P15I3k BAOE ST if ] £ [0, 612

< 15738 B fo |l 1o

wB,E)

where in the last inequality we have used that £ > 10, 2 < p < 6, and F' = 2E + 7. Inserting

this estimate into (2.43) gives that

| Floos) < Ded (6,p, F)E* 2™ (> | fo, [Frtupn) >
JePg12([0,1])

Since E > 10, 3™ < 10°° < E5F and this completes the proof of Lemma 2.3.10.
2.3.2 Proof of (2.56)
Let F, My, My, M3, and m be as in (2.52) and (2.54). We will prove (2.56).
Lemma 2.3.18. Let A > 0 and let

M\ (2) = 2"V (2/N)
where VU is as defined in Lemma 2.2.10. Then for integer a = 0,

10" My x| e < 12-673%(1 + N)*(a!)?. (2.64)

If X = 1, this bound can be replaced with 12(6*7*\F)(al)?.

Proof. This proof is essentially the same as that of the beginning of the proof of Lemma
2.2.10. From the proof of Lemma 2.2.10, we have that |¥V)(z)| < 12(67)(5!)? for all j > 0.
Since W is supported in [—3,3], ¥(z/A) is supported in [—3X, 3\].

If a = 0, then || M ]z < 12(3\)* which proves (2.64) in this case. Now consider when

o1



> 1. First suppose that a < k, then

1 (Mia(a))] = | (jyﬁuhwwﬂwx>

j=

* /a k! iorpa—j 9
<Z()% N2 o - )

2(6°3%)(a!)* ( ) < 12-6%3F(1 4+ A)*(al)?.

j=0

Next suppose that k& < a, then

0% (M ()] < Z (j) G ﬁ!j)!m)“m(mj)(a — P < 1269351 + \)¥(a!)?.

This completes the proof of Lemma 2.3.18. O

Our goal is to obtain an estimate on Hé’gl angHLoo depending only on a, b, § and ys and
where m is as defined in (2.54) and (2.52). Since we want exact constants, we will need
to differentiate exactly each of the five functions that make up m(&). Note that since ¥ is
supported in [—3,3], m is supported in a 652 x 368 rectangle centered at the origin. In

particular, for all £ € supp(m),
382 < & < 3012 (2.65)

The bounds in Lemmas 2.3.20 and 2.3.21 are valid when we take no derivatives (either a = 0

or b = 0) provided we use the convention that 0° = 1.

To compute é’gl é’gm, we will need to take arbitrarily many derivatives of a composition
of functions. We will use the Faa di Bruno formula. We briefly recall all needed formulas
(see [Joh02] for a reference, note that Johnson defined B,,o = 0 for m > 0 since the sum

conditions would be vacuous). For m, k > 1, define the Bell polynomials

1 m
Bm7k<$1,l‘2,...,$m—k+1) = E Z (jl jk>l‘j1 C X,

Jittig=m
7i=1

Let

Yo (1, .. Tm) == ) Buk(T1, o Tg1)- (2.66)
k=1
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The Faa di Bruno formula states that
dm

I () = 29U O) B ('), £/ (1), - [ THD(1)).
k=1

Finally we will abuse notation slightly by writing Y,,(z,,0,...,0) as Y,,(z,y).
Lemma 2.3.19. Let m > 1 and v,y # 0 such that |x| < C|y|"? with C = 1. Then

Yo (2, y)| < C™m™ |y,

Proof. From [Joh02, p. 220], Y;,,(x,y) is equal to the determinant of the m x m matrix

x (m—1)y 0 -0 0
-1 x (m—2)y 0 0
0 -1 T 0 O
0 0 0 Ty
0 0 0 e =1

Cofactor expansion gives that Y,,,(x, y) obeys the recurrence Y;,, = 2Y;,,_1+(m—1)yY,, o(1,1)
with Y7 = z, Y3 = 2% + y. Therefore Y;,(1,1) obeys the recurrence Y,,(1,1) = Y, 1(1,1) +

(m —1)Y;,—2 and so Y,,(1,1) < m! <m™. Each

|m/2) - L |m/2] 22
Ym(l', y) ="+ Z ijﬂmi%y] - ym/Q(ym/Q + Z ij) (267)
j=1 j=1

and Vy,,(1,1) = 1+ 3}, ¢; <m™. Thus Y, (z,0) = 2™ and

lm/2]
Yinlz, )l < lyI™2(C™ + )] O™ %) < Cmmy| ™2,
j=1

This completes the proof of Lemma 2.3.19. O

Lemma 2.3.20. For a >0 and £ € supp(m),

| ) <67
||ag1627r1y25%”[/00 < (127‘(‘)aaa X
0 |yal  if lya| > 071,
In particular,
“6211627riy25%“L00 < (127T)aaa(5_1/2 —+ 51/2|y2|)a.
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Proof. If a = 0, then L* norm is equal to 1 and the above formula still holds true. Now

suppose a = 1. From Faa di Bruno’s formula,

821 €2my2€% = Z (27Ti)k€2my2£% Ba,k<2€1y2> 2y27 07 SRR O)
k=1

and so,
0g €25 1o < (27)*Ya(21a (s, 2lya])-
Suppose |y2| < 71, then 6Y2|ys| < |y2|"/? and so from (2.65),
2[&1 2] < 6‘92‘1/2-
Therefore Lemma 2.3.19 gives that
Yo (21€1||ya], 2lya]) < 6%a%|ya|¥? < 6%a6~Y2,

Inserting this into (2.68) then finishes this case.
If |yo| > 671, then from (2.67),

la/2]

Ya(2[€l[ya, 2la]) < Ya(66"2|yal, 20yal) = 696" |ya|*(1 + Y 1877¢;(8]yal) ™).

=1

(2.68)

Since 6|yz| > 1 and 1+ 3. ¢; < a?, the above is bounded by 67a5%2|y,|* which completes

the proof of Lemma 2.3.20.

Lemma 2.3.21. For integers a,b > 0 and £ € supp(m),
HaglMlHLoo < 12(21“a3a3k)5—a/2
02,68 My e < 12(6°37157) (a + b)126/
102,08, M| e < 12(18°3°16")a (a + )15~
08,08, F L < 12%6°(al)*(B!)?6">.

Proof. We first prove (2.69). If a = 0, then from Lemma 2.3.18,

M| L = ||Mk,1/8HLoo <12-3F
54
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which proves (2.69) in this case. Next suppose a > 1. We compute that

1/2 2 1
0¢ My = ZMS) G £1))BM(—5—1/2—5—151,—5—1,0,...

ksl 5 (3
and so applying Lemma 2.3.18 and (2.66) gives that
0g, M| 1o < 12(3°6%)(a))*Y, (5—1/2| 5 60,

Since

1/2 “1/2g | < L 1/2
5L 5 < T,
Lemma 2.3.19 implies that
(5—1/2|2 5—1/25 ‘ 5= ) (7/2)aaa5—a/2.

Inserting this into (2.73) completes the proof of (2.69).

We now prove (2.70). We compute

o 0 a2 gty O (& —0'%6)
851522M2 :( 9 )ba§1M3(5/2( 9 )
51 5 1/ . 6 (51/25
- Dy (e,

Applying Lemma 2.3.18 gives
|08, 0%, Mol 1= < 12(6°3"157)(a + b)125 /2

which proves (2.70).
Next we prove (2.71). If a = 0, then
6_

S—1(e2 —
M = (-, (%))

and so

H@é’z MSHLOO < 12(3”164) (b!)25—b

(2.73)

which proves (2.71) in this case. Now suppose a > 1. Faa di Bruno’s formula gives that

08 0%, My = 2 ME) —@))Ba,s(a—lgl,a-l,o, o

421/8
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Applying Lemma 2.3.18 and (2.66) gives that
108,00, My e < 12(6°3°16%) (0 + b) 26,6161 ] 67) (2.74)
Since 671&| < 3(671)Y/2, it follows that
Y, (07Y&],67Y) < 3%a%62.

Inserting this into (2.74) completes the proof of (2.71).

Finally we prove (2.72). We compute

5—1

5—1
621 8§2F = 5—0/2(?)11\1](@) ((5_1/251)\11(17) (_52

6)'

Lemma 2.2.10 then implies that
08,08, Fl = < 12%6° (al)*(01)?6 " /2
which proves (2.72). This completes the proof of Lemma 2.3.21. O

We are now ready to prove (2.56).

Lemma 2.3.22. Fora,b > 0,
|0g 08, m| 1= < 12°40°3°15/3%16 ™6™ (a + b)!*(a + 1)° (b + 1)* (6% + 6"*[ya])*6 "

Proof. We compute

bl al
o0 8b m = X
&1Y¢2 Z (31!52!33!) (tlth!t3!t4!t5!)

s1+s2+s3=b
t1+to+t3+tat+ts=a

83,ti =0

(O, e(€1y2)) (0 M) (0 03 M) (0, 02 M) (0, 03 F).

1

Applying crude bounds and Lemmas 2.3.20 and 2.3.21 gives that

0% % m e < 12°40°3°1573%16°albld = 2(1 + 8|ys|)* x
&1V62

> 32 (tg + 1)1 (ty + 59)1 215! 55!
S1+s2+s3=>b

t1+to+itz+tat+is=a
t;=0

Sisti=

< 12°40%3°1573%16%a™0% (a + b)!*(a + 1)°(b 4+ 1)35 7 2(1 + 6|ya|)*
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where in the first inequality we have used that
(6712 4+ 0" 2lys) = 6721 + dlyal)™ < 67 2(1 + 8lyal)*

and we have removed a t5! and s3! using the multinomial coefficient. This completes the

proof of Lemma 2.3.22 and the proof of (2.56). O

2.4 Parabolic rescaling: an application

As an application of Lemma 2.2.18 and Proposition 2.3.11, we will prove that the decoupling
constant is essentially multiplicative. This will play an important role in Section 2.10 when
we upgrade knowledge about decoupling at a lacunary sequence of scales to knowledge about
decoupling on all possible scales in N=2. The restriction that p < 6 is once again an artifact

that only arises from our application of Proposition 2.3.11.

Proposition 2.4.1. Let £ > 100 and 2 < p < 6. For 0 <6 <o < 1 with §,0,0/0 € N72,

we have

D, 5(0) < EYED, p(0)D, p(6/0).

Proof. Fix an arbitrary E > 100 and 2 < p < 6. We need to show that for all g : [0,1] — C
and all squares B of side length 67!, we have

|€019irm) < B Dpp(0) Dypp(8/0) (Y, 1€s9] Togum) ™
JePs1/2([0,1])

It suffices to assume that B is centered at the origin.
Since §/0 € N™2 we can partition B into a collection of squares {3} of side length o~ .
Then

[€0mdlrs) < Dps(@) 35 1€59 o )"
JEP _12([0,1])

Raising both sides to the pth power and summing over all >, then using Minkowski’s in-
equality (since p > 2), and finally applying Proposition 2.2.14 gives that
[€0m9llrmy < 48" Dypp()( D1 1€19 70 (p ) (2.75)
JePal/g([O,l])
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For each J = [a,a + 0/%], we will first show that
1€s9l1r8) S Dpp(8/0)( Y, 1€r9Eownn)™ (2.76)
J'€P15(J)
Afterwards we will apply Proposition 2.2.11 to (2.76) and then insert the result into (2.75)
to finish.

Let T be as in Lemma 2.2.18, L(¢) = (¢ —a)/o'/?, g, = go L™!. Then a change of

variables gives that

1.3

1€19] ey = o2~ 2 [Engrlrris)).
Let B be as in Lemma 2.2.18. Thus we cover T'(B) by a collection of squares B = {A} of side
length ¢/d, use decoupling constant lw)p7 g at scale §/o and undo change of variables. This
gives

p_3 p_3
G2 2”5[0,1]9LHZ£p(T(B)) S0z 2 2 Hg[O,l]gLHip(A)
AeB

= p_3
< Dpp(8/oyos™2 3 ()] [€m gLl 2o an )"

AeB JeP;, 15([0,1])

< Dpp(/o)( D0 1€r9linis, taper)”
J’€P61/2(J)

< Dyp(6/0)7205( D1 1€r9Enp )"

J'EP, 12 (J)
where the third inequality we have used Minkowski’s inequality and p > 2 and the last
inequality we have used Lemma 2.2.18. Combining this with Proposition 2.3.11 gives that

1€s9lrm) < EPT2077 Dy 5(6/0) (Y 1€ G Tnun )
J’€P61/2(J)
Applying Proposition 2.2.11 gives that
1€ 9w ) < BV Dyp(8/0)( Y €9l i)™
JIEP61/2(J)

Inserting this into (2.75) then completes the proof of Proposition 2.4.1. Il

Remark 2.4.2. Combining Propositions 2.3.11 and 2.4.1, we see that all four decoupling

constants D), g, 5:07 B, D,, and lA)p7 g obey a similar multiplicative property.
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2.5 Bilinear equivalence

We now define the bilinear decoupling constant and show that it is essentially the same size
as the linear decoupling constant. In [BD17], Bourgain and Demeter use a Bourgain-Guth
type argument to do this. However in two dimensions, there is a simpler proof using Holder’s
inequality and parabolic rescaling by Tao in [Taol5]. It is this version we follow.

For each m € N, E > 100, let

_16.9m p10E
y = 27 10FETE

For § € (0,1) such that v§~%2 € N, let D, g(d,m) be the best constant such that

| geom [E1,g]|oz) < Dyp(d,m)geom( Y7 1€s9l7ngay )"

JEP;1/2(15)

for all pairs of intervals Iy, I € P,([0, 1]) which are at least v-separated, functions ¢ : [0, 1] —
C, and squares B of side length §~*. Note that the right hand side uses the weight function

Wp g rather than wp g.

We first give the trivial bound for the bilinear decoupling constant which is a useful

bound at large scales.

Lemma 2.5.1. Let m, E, v be defined as above. Ifv6~'? € N, then D, (5, m) < 4Ev1/2571/4,
Proof. Holder’s inequality gives that
| geom |1, [ 1o (m) < geom |Er,g] Lo (B).-

The triangle inequality, Cauchy-Schwarz, and that 1p < 4¥@p g gives

€9y =1 D5 Esglmm < 4% 267V Y 159 Enan o)
JePg s (1;) JeP15(15)
which completes the proof of Lemma 2.5.1. O

Lemma 2.5.2. Let £ > 100 and 2 < p < 6. If§2 € 27N and 6'?v=" € 27N, then

o 1
Dy(6) < B (D) + 1 Dys(8, ).
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Proof. This proof is essentially an application of parabolic rescaling. The restriction 2 <
p < 6 comes only from the application of Proposition 2.3.11. Fix an arbitrary square B
of side length 6! and function g : [0,1] — C. Tt suffices to assume B is centered at the
origin. Partition [0, 1] into 1/v many intervals I, ..., i of length v (here we have used

that v € 27). Then

1/2
Eonglre =1 Y m<l Y /
1<i<l/v 1<ij<l/v
1/2
<( Y. 1€nallEnglliem + 1 D, |5u9\|51j9|||m/2<3>)
1<i,j<1/v 1<i,j<1/v
li—jl<1 li—jl>1
1/2
<x/§( > lengllEngll e + 1 D) |5fi9|51j9|”L/p/2<B>)‘
1<i,j<l/v 1<i,j<1/v
li—jl<1 li—jl>1

We first consider the off-diagonal terms. This will be controlled by the bilinear decoupling

constant. Holder’s inequality gives that

(> [EngllEng)?? <v ™ 30 (I€9llEL9)"”

1<i,j<1/v 1<i,j<1/v
li—j|>1 li—j|>1
and hence
f( Z )p/2 de < =2 Z f )p/2
B <ij<i 1<i,j<1/v
li—j[>1 li—j|>1

By bilinear decoupling, the above is bounded above by

“OIDEEmy Y (Y €9 C Y 1€

1<i,j<1/v JePsy 2 (13) JeP12(15)
li—j|>1

Note that here we have used that v/6%/2 € 2Y. Since 6'/2 is dyadic and I; and I; are dyadic

intervals, this is bounded above by

vPD(0m)P (D 1E59 e )"
JeP12([0,1])

Now we consider the diagonal contribution. The triangle inequality followed by Cauchy-

Schwarz gives that

[ Z 1E1,91|E,9| Lerzpy < 2 |E1,9] r ()€1, 9] Lr(5) (2.77)
1<ij<l/v 1<i,j<1/v
li—jl<1 li—j|<1
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Let I = a + [0,v] be an interval of length v. Let L(¢) = (£ —a)/v, gr := go L7,
and T = (§2%). A change of variables then gives that [(£19)(z)| = v|(Ejp19.)(Tx)| and

therefore
€19 Loy = Vl_s/pHg[o,l]gL”LP(T(B))- (2.78)

Note that T'(B) is a parallelogram contained in a 3v6~! x v?§~! rectangle. Covering T'(B)
by squares B = {A} of side length 12§~ gives that

VP Eongel ey < vV I€0ngL ) - (2.79)
AeBB

Applying the definition of the decoupling constant (and using that v6—/2 € 2V), gives that
for each square A,

1€01921 700y < Dpp@/2PC Y0 16090l En@an P

JeP;1/2,,([0,1])

Inserting this into (2.79) bounds the left hand side of (2.79) by

Dpp(/) (DS Y (0 PE gL e )PP

AeB JEP51/2/V([071])
Applying the same change of variables as in (2.78) followed by Minkowski’s inequality (using
that p > 2) gives that the above is bounded by
Dyu(@/v*)( Y 1Es9ltns oy tinpor)

J€P51/2(I)

<7207 D6/ Y, 1€s91Erun )™
JeP 12 (I)

By Proposition 2.3.11, lN?p,E((S) < E™FD, (6) and so the above gives that

|€191 o3y < EPPDpp(@/v?) (0 D 1€190Enun )
JGPSI/Q(I)

for each interval I of length v.

Using this for each interval that shows up on the right hand side of (2.77) gives an upper

bound of
O P 2% S S G SN 1771 Yoty i (R SR For2'] [P Rk
1|<7,,]‘<1;{V JEP§1/2(I’i) J/EP61/2(Ij)
1—7 <
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Using that 2ab < a? + b?, the above is bounded by

1
ElSOEDp,E<5/V2)2 . 5 Z ( 2 ngg”%p(wB’E) + Z ”gj’g’%P(U/B,E)>

1<i,j<1/v * JePs (1) J'€Ps1/2(15)
li—jI<1

<2. ElsoEDpE((s/VQ)z Z HEJgH%P(wB,E).
JeP12([0,1])

Therefore if §V/2 € 27N and 6/2v~ € 27N, we have

5. 2
D, p(d) <2- E75ED,,,E(§) + TDPE((S, m)

which completes the proof of Lemma 2.5.2. Il

Proposition 2.5.3. Let £ > 100 and 2 < p < 6. Fiz an arbitrary integer m > 1. Let
62 € 27N and K be the largest positive integer such that 6Y?v=5 € 27N, Then

D, p(8) < 6'09Fle By =tmax(1, Jnax D, g(6v~% m)).
i=0,1,.... K —

Proof. Note that 6/2 € 27N and 620K € 27N imply that for i = 0,1,..., K, 62v " e 27N,
In particular for each i = 1,2,..., K, both 620! and 620~ are in 27N and hence

. . 1 .
DP7E(5V—21+2> < E100E<DP7E<5V—21> + _Dp,E((;V_?H_Z, m))
v

Combining these K inequalities then gives that

D, p(8) < E"PX(D, p(ov2K) + 20" max D, p(6v~%, m)). (2.80)

=01, K1
To control D, (§v=2K), we use the definition of K. In particular, since §%/2 € 27N §1/2y~(K+1)
is dyadic but > 1. Therefore §"/2075-1 > 1 and so 620K > v. The trivial bound then

gives that
DPE(&/*QK) < 2E/p(5V72K)71/4 < 2E‘V71/2'

Since 620K <1, K <log,-1 6 %2 and hence

ElOOEK < 550E10guE.

Inserting the above two centered equations into (2.80) then completes the proof of Proposi-

tion 2.5.3. ]
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2.6 Ball inflation

We first discuss some basic geometry. Let P := {(£,£2): £ €[0,1]} and 7 : P — [0, 1] be the
projection map which sends (¢, £?) — &. Since I, I, are d-separated, for any P € I, Q € Iy,
we have |P — Q| = d. Observe that

(—2P, 1)

V1+4P?

and similarly for Q (where here n(7~!(P)) refers to the normal vector to the parabola at
the point 7=1(P)). Let 6 be the angle between n(n~*(P)) and n(7~(Q)). Then since
P-Ql=d

(71 (P)) =

o 2|P - Q) 2
sin = V(1 +4P?)(1 + 4Q?) > 54

In the terminology of [BD17], I; and I, are 2d/5-transverse.

We will now prove the following effective ball inflation inequality.

Theorem 2.6.1. Letp >4, 0<§ < 1/10, E > 100, and 0 < d < 1/2. Let I, I, < [0,1] be
two d-separated intervals of length = 6 such that |I;|/6 € N. Let B be an arbitrary square in
R? with side length 6=2 and let B be the unique partition of B into squares A\ of side length
6~1. Then for all g : [0,1] — C, we have

2 p/2
Z geom( Z Hg‘]gHL:f(uij,E))

AeB JePs (Il)

1
|B]
50F 1 1 /2 2 /2 (281)
P _\P p
< BV (log )" geom( Y, 1Exglys,
JEP(;(Ii)

)

Furthermore, for p = 4, the estimate is true without the logarithm.

This inequality allows us to keep the frequency scale the same while increasing (inflating)
the spatial scale and is a key step in the iteration. We will first prove a version of Theorem
2.6.1 where we additionally assume that all the |€;g| are of comparable size (for each I;).

Then we remove this assumption by dyadic pigeonholing to obtain (2.81).

Lemma 2.6.2. Let p > 4 and everything else be as defined in Theorem 2.6.1. Furthermore,

let Fi be a collection of intervals in Ps(I1) such that for each pair of intervals J, J' € Fy, we
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have

1 1€190 272
- S (2.82)
2 HEJ’QHLZ#/Q(@B’E)

Similarly define Fy. Then for all g : [0,1] — C we have

B B| 2, geom( D 1€sgl5, g, P < BT geom( 3 191, VP (2.83)
AeB JeF; JeF;

Proof. For each J € Ps(I;) centered at ¢y, cover B by a set T; of mutually parallel nonover-
lapping boxes P; with dimension §~1 x §=2 with longer side pointing in the direction of the
normal vector to P at 7~ 1(c;). Note that any 6! x =2 box outside 4B cannot cover B itself.
Thus we may assume that all the boxes in 7; are contained in 4B. Finally, let P;(x) denote
the box in 7; containing x and let 2P; be the 267! x 2572 box having the same center and

orientation as Pj.

Since p > 4, Holder’s inequality yields that

2 ”5J9||Lp/2 p/2 Z H&;g”i/fm )2|]:i|p/2—2‘
JeFi JeF;
Thus the left hand side of (2.83) is bounded above by

2
[T7 g 2 [ 9 ) (280

AeBz 1 JeF;

For x € 4B, define

/2 .
SUPyeop, ( H Jngp/z if € Up,er, Pr
Hyw)={ =0 L @pgs-1),5) 7 (2.85)

0 it 2 € 4B\Up o, P

For each z € A, observe that A < 2P;(x). Therefore for each x € A, ca € 2P;(x) and hence

13917 ) < Ho2) (2.86)

64



for all z € A. Thus

2 s ufrjguiﬁmﬂg

AeBz 1 JeF;
1
-3 Z I L f da
Jle]-"l | & Ly Ly (@ap) |A| Ja
JoEF
1
= flf Hy, () Hy, (z) dx (2.87)
J1EF B
JoeFo

where the last inequality we have used (2.86). By how H} is defined, H; is constant on each
Pj e T;. That is, for each = € UPJGTJ P

= Z Cp; 1PJ (SL’)

PieTs
for some constants cp, = 0. Then
1 1
= | Hn(@)Hy(2)de = Z cp, cpy,|(Pr, 0 Py,) 0 B
5] ); Bl 4,
PJQETJ2

E i D1 ep,cp, [Py 0 Py
71€7T0
Pj,eTy,
where the last inequality is because c¢p, = 0 for all P;. Since |P;| = 573 we also have
! Hy(z)d ! > eplp,(x)de =6 ),
— J\T)axr = Cp,1p Xr = Cp,.
1Bl Jis |B] o1 !

Ue €T Py P;eTy P;eTy

Recall that J; € F; < Ps(1;) and Jy € Fy < Ps(I,). Since I; and I, are d-separated, so
are J; and Jy. Let Z; ;, be the angle between the directions of J; and Jy. By geometry
discussion at the beginning of this section, sin(Z, s,) = 2d/5. Therefore

(5—2 (5—2

< .
sin(LJhJQ) 2d/5

|PJ1mPJz|<

Applying this gives

1
m Z CleCpJ2|PJ1ﬂPJ2|
PJlele
PJQETJQ
_ 302! 3d7t 2
B 21|B|f (@) dr) |B|2ﬂLB (@) do
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Therefore (2.87) is bounded above by
2
3d' [ [(D] J Hy(z)dx) = 768d~ H Z H,;(z)dz). (2.88)
i=1 JeF; i=1 JeF; 4B
We now apply Lemma 2.6.3, proven later, to (2.88). This gives that an upper bound of
e T](Y, €597 1)
i=1 JeF; BE

where here we have also used that £/ > 100 and p > 2. Thus (2.84) is bounded above by

2 2
e ([T |AP Z L. (289)
i=1 1=1

To obtain the right hand side of (2.83) we now use that intervals in F; satisfy (2.82). We

have

2

2 2
1 /2 i
(EWP/ ) H 2, €51 o, grﬂp/ 107 max a7 )

i=1 JeF; i=1
2 p/2
A 2 1/2
(H (7 maxlErally g, )
2 p/2
< (TI(Z ety )
i=1 JeF;

= 2" geom( 3 €913y g, )"
JeF;

where the second inequality is due to (2.82). Inserting this into (2.89) then completes the

proof of Lemma 2.6.2. [

Lemma 2.6.3. Let H; be as defined in (2.85). Then

1

— | Hj(x)dz < E3P|E,9]""?
48] ), 0 |

LY (wp.g)’

Proof. This is the inequality proven in (29) of [BD17] without explicit constants. We follow

their proof, this time paying attention to the implied constants.

Fix arbitrary J < [0,1] of length ¢ and center ¢;. For x € {Jp o, P7 = supp H; < 4B,
fix arbitrary y € 2P;(x). Note that 2P;(x) points is a rectangle of dimension 25! x 2§2

with the longer side pointing in the direction of (—2cy, 1).
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Let R; and 6; be as in Lemma 2.2.5. Since c¢; € [§/2,1 — §/2], both cosf; and sin6;
are nonzero. Note that R; is the rotation matrix such that R;l applied to 2P;(x) gives an
axis parallel rectangle of dimension 26! x 26=2 with the longer side pointing in the vertical

direction. Since y € 2P;(x), we can write
R'y=R;'z+7%y

where [7;| < 267! and [y,| < 2672, We then have

wB( 51y, E)

001 o = | NED O Baieenzayels)ds
]RQ
Writing 7 = (7,,0)7 + (0,%,)7 and a change of variables gives that the above is equal to
| 1€+ o+ Ro0.5) )P i, 5,05 150 (2.90)
R

Inserting Lemma 2.2.5 into (2.90) gives that

0017y <167 | (Ea0)s 0+ Bo0.5) )PP B0y pls)ds. (291)
R

(Dpy,5-1),8
Observe that
(E59)(s + x + R;(0,7,)7)| = | f Erg(Ne(\ - (s + 2))e(A - Ry(0,7,)7) dA|.
R2

Since R; is a rotation matrix, a change of variables gives that the above is equal to

], Esg(RaXe(r- By s +2))e(h- (0.7)") )| (2.92)
Writing
=\ (2mi)Fgk
(- (0.7)7) = el(ha — AT)elST) = e(E7) 3, T (3, — )
k=0 ’

and using that [7,] < 2672 shows that (2.92) is

ee]

4m)Fk
<Z(

)e(A-RJ1(3+x))()\252 L)Rd)|

Applying the change of variables n = A — 7 !(c;) gives that the above is

\230 | B+ 7 et RS s+ a) (o) dal. (209
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Note that E/ZJ\g(RJ(n +771(cy))) is supported in a 44 x 46% box centered at the origin pointing
in the horizontal direction. Thus we may insert the cutoff U from Lemma 2.2.10 in (2.93).

Then (2.93) becomes

230 | B+ 7 et Ry s + ) (2 W)W d

Note that we are a bit wasteful since ¥ (r,/(20))¥(12/(20)) is equal to 1 on [—26, 2§]* rather
than [—24, 2] x [—26%,25?], but this will turn out to not matter.

Let @ (t) := t*U(¢) and let

(MD)@) = | FRs(n+ 77 en)eln 28 (50 @u(55) din

Thus we have shown that

|<5Jg><s+x+RJ<o,yz>T>|<23£, (MyE19) (R7\(5 + 2))

and combining this with (2.91) gives that for x € | Jp ., Py and y € 2P;(x),

30" N
HSJQH}Z/;?}(@B@’&?I)’E)<16E52 f (Z | (MLEsg) (R (s + ) )P B0.5-1).(5) ds.
Thus
L Hy(0) da
x
[4B] Jis

30k
< 165 156J f 0 (ME19) (B3 (s + )P 2 @051, (5) ds
1B Jr2

_ 167148 J (Z 3]3 (M) (w))P"2( L s plRu) da)du. (294)

As 145 < 48045 E < < 64F 0 £ and since B is centered at the origin,
LB WR(es-1),5(lyu) dv = (14p * Wpos-1),£) (Ru)
< 647 (Wp,p * Wpos-1)p) (Ryu) < 25675 *Wp p(Ru).
Thus it follows that (2.94) is bounded by

30F
212E54(Z HngJg © RJ HLP/2
k=0

P2, (2.95)

(0B,E)
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Inserting an extra e(R;m !(cy) - s) and applying a change of variables gives

(OVEs9)(RS'3) = | | EatBatn-+ w (ea)elRom- 5 W(35)0(32) i

= | y E19()ely - s)mu(y) v

where

Y1 €080y + yosinf; — cy Yo cosy — vy sinfy; — 3

28 )Pk 26 )

my(y) = ¥(
Then |MpEyg 0 R;'| = |E59 * my| < |Esg] * |my,| and Hélder’s inequality implies
(€591 il < (15017 » lme] s 77"

Therefore

_ 1-2
|Mi&rg o Ry o2y, ) < Hmk”Ll(]}ég)HSJgHLP/Q(ﬁB’E*|mk|(7-)) (2.96)

where here |my|(—) is the function |my|(—x). Since ® and ¥ are both Schwartz functions,
our goal will be to use the rapid decay to show that |my| <gp Wp . A change of variables

gives

mela)| = | | mi)emeran]
R
_ 452|J \I/(w1)62“(331$)1(25“’1)dw1J (Dk(w2)627ri(R;1x)2(26w2) dws|.
R R

Since ¥ = ®, by Lemma 2.2.10,

ESE
(1 + 20| (Ry " w)a])?F

[ wtwpers e gu,| <
R

and
o 6kE5E
P 2mi(R; " x)2(20w2) d < .
| JR w(wa)e w| (1 + 26|(R;'z)a])?F
Therefore
—1 -1
)] < 4710814 Loy o (g o (297
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Thus we have

HmkH212ﬂé€) X (6kE11E)172/p. (298)

Applying Lemma 2.2.6 to (2.97) shows
()| < 4(6"E"F)6*Wp(0,5-1),5 ().

Note that this inequality does not change if we replace x with —z on the left hand side since

the right hand side is radial. Lemma 2.2.1 then implies that
’lT]B,E * ]mk\(—) < GREllE?DBjE
and hence

HngHme('@B’E*‘mk‘( ) (6kE11E)2/pHng||Lp/2 wB E)

Combining this with (2.95), (2.96), and (2.98) shows that

180
k!

1

H d < 212EE11Ep/254
8] ), 5

k=0

2
€191 0230,0)""* < E¥IESGI o

where in the last inequality we have used that £ > 100 and p > 2. This completes the proof
of Lemma 2.6.3. ]

Proof of Theorem 2.6.1. If p = 4, the proof of Lemma 2.6.2 (in particular (2.89)) implies
that we can just take F; = P5(/;) and discard the requirement in (2.82) since the only reason
we dyadically decomposed and restricted to p > 4 was to match the Lff with the /2 sum
over Y, 5 in (2.83).

From now on we assume p > 4. For ¢ = 1,2, let
MZ' = JI%?(X “EJgHLp/Q 5.5)"
For each i = 1,2, let F; o denote the set of intervals J' € P5(I;) such that

1691153 < 5°M

70



and partition the remaining intervals in P5(I;) into [log,(6~3)| many classes F; . (with k =

1,2,...,[logy(673)]) such that
k=153 k 53
DM, < 1€l e, ) < 20M

for all J" € F; ). Note that F; satisfies the hypothesis (2.82) given in Lemma 2.6.2. For
1 <k, 1< [logy(673)], let

Falks D) i= (20 180915y, ) V40 20 1E000 T 0, )7

JEF 1, JeFa,
Note that Fa(a,b) = Fa(b,a).

The left hand side of (2.81) is equal to

2 p/4
EDIANND SRD Y 1 RO .

AGB O<k [log2(6_3)] JE}—Lk
J/E]'—Ql

< ([logy(67%)] + 1)%72 Z N Fa(k). (2.99)

AEB 0<k,I<[logy(673)]

We then have

FA(ka l)
’B’ AeB k=0
) (2.100)
[10g2(5 3) 1 [10g2(5 3)] 1
3 Z Fa(0,0) — Z > & D F
’ ‘ AeB k=1 | AeB k=1 ’ ’ AeB

We first consider the third sum on the right hand side of (2.100). In this case, both

families of intervals satisfy (2.82) in Lemma 2.6.2. Thus applying Lemma 2.6.2 gives that

[logy (672)1
> |B|ZFAM [log,(67%) P E**Pd ™" geom( ) \|5Jg\\§p/2(ﬁBE))P/2. (2.101)
kl=1 AeB JePs(1;) * 7

The first two sums on the right hand side of (2.100) are taken care of by trivial estimates.
We consider the first sum. From Proposition 2.2.14, W g < 48E2DBVE (we can obtain a better

constant using Lemma 2.2.1 and 1o < 1p but this is not needed). Therefore for J' € F;,

—4/p4Q2E/p 3—4/pyQ2E/p 0T
1221)3( ||g‘]/gHLZ2(171A,E) < ) 48 Hng'gHLi/Q(aB,E) < 0 48 M,. (2102)
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Since |Fio| < |Ps(L;)] <071,

1

E Z FA(0,0) < (‘]:1,0"«7:2,0’512_16/p488E/pM12M22)p/4

AeB (2.103)
< 67244827 geom( M2,

Since p > 4, 5p/2 — 4 > 6 and so the union bound implies that (2.103) is bounded by

8 geom( Y gl 2104
# JE
JePs(1;)

Finally we consider the second sum on the right hand side of (2.100). From the same

proof as (2.102), for J' € Fy ), with k # 0 we have
—4/pyQ2E/p
max ||5J/g|]Li/z(aA7E) < OTPABHHIP M.

Therefore by the same reasoning as in the previous paragraph we have

1

B Z Fa(0,k) < (| Frol| Four| (63424822 N1y )2 (5~ 4/PA8%EIP M, )2 )P/

AeB

< 6P*48%F geom (M?)P/?.

Since p > 4, we can discard the power of ¢ and hence
D g 2 Fa(0.) < 2logy (67148 goom( D) 1Es0l g, P
AeB JePs(L;) o

Combining this with (2.100), (2.101), and (2.104) shows that (2.99) (and hence the left hand
side of (2.81)) is bounded above by

(ygeom( Y 1€l yas,
JePs(I;) o

where (---) is equal to
([logy(673)] + 1)% 72 ([ log, (6 )P E*Y#Pd 1 + 2[log, (07?)]%48%F + 482E>.

Since § < 1/10 and E > 100, this is bounded above by E**"Pd~!(log $)?/* which completes
the proof of Theorem 2.6.1. O]
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2.7 The iteration: preliminaries

We now setup the iteration scheme as in [BD17] except this time we pay attention to various
integrality constraints from previous sections. Let g : [0,1] > C, ¢t > 1, ¢ < r, and I, I two
intervals in [0,1]. Let B” be a square in R? with side length §~". Define
Gilg.r) = geom( Y €0l 30 )"
JGP(;q (Il)

and

1 1/p
Agr) = Avg  Gi(q,q)")" = (m > GQ(q,Q)”) :

BiePs—a(B7) BieP;—q(B")
Strictly speaking we should be writing Gy(q, B") instead of Gy(q,r) since this expression is
different for different B", however all that matters is keeping track of what our frequency

and spatial scales are so for simplicity we will write r instead of B".
Remark 2.7.1. Note that for G(q,r) and A,(q,r) to be defined, we need |I;/077 € N and
0" e N.

For a square B9, note that A,(q,q) = Ga(q, q) for all p. In A,(q, r), increasing g represents
smaller frequency scales and increasing r represents larger spatial scales.

We note that G; and A, here are essentially the same as D, and A,, respectively in
[BD17]. The only difference is that here we use the weight wp instead of wg. This is

because our bilinear decoupling constant is defined with weight wpg rather than wg.

Observe that G; and A, obey the following two basic properties. First the ¢ parameter

in GG} obeys Holder’s inequality.

Lemma 2.7.2 (Holder’s inequality for G;). For each square B" < R?, if (1—a)/p1+a/ps =
1/t, then

Gt<q7 1”) < Gpl <Q7 r>1iaGp2 <q> r)a'

Proof. The factor 1/|B"| in the definition of G; balances out by how « is defined and hence

we may replace Ly, LY, and L% with L', LP', and LP2, respectively. Next, it suffices to
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prove that

11— [e%
v \&giwm<( v ng@%T)) ( 3 \5J92%T)).
)

JePsq (IL) JePsq (I,' JePsq (Iz)

Applying Holder’s inequality gives that

2
—Q o 2(1—« o 2(1—« fe%
Eralse < |IEaaliztIErl5n] = |10l Ersl) < IEa0liEIEsals
lJ lJ
where here by LP we mean LP(wpr). This completes the proof Lemma 2.7.2. O

Second, the averaging in the r parameter in A, allows us to increase it.

Lemma 2.7.3. Fiz arbitrary positive integers r < s <t and suppose ¢ is such that |I;|67" €

N, %" e N, and 6~'** € N. Then for each square B' — R?,

Avg  Ay(r,s)P = Ap(r,t)".

BseP;_,(Bt)

Proof. Fix arbitrary square B* — R?. Expanding the left hand side, we have

Avg  A,(r,s)P = Avg Avg  Gy(r,r)P =  Avg  Ga(r,r)? = Ay(r,t)P.

BseP;_,(B) BsePs_s(Bt)BreP;_, (B%) BrePy_,(Bt)

This completes the proof of Lemma 2.7.3. n

Finally, we end this section with an outline of our strategy. As in Section 2.5, let m > 1,
E >100,2 < p<6, and v := 27162"F"" et [ I, be two arbitrary intervals in P,([0,1])

which are at least v-separated.

Lemma 2.7.4. Suppose 6 was such that 62" € 2N and v§~Y*" € N. Then for each square

B! of side length 6=, we have

_ m+1 ].
HL;(Bl) < ElOOEy1/2§ 1/2 Ap(2—m’ 1)

| geom 1,9
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Proof. Note that since 6~ Y2" e 2N, §~ 12" ¢ N since m > 1. This proof is just an

application of Holder, Minkowski, and Bernstein inequalities. We have

1 1
| geom Tr gy = —J geom P= _J geort | Z Ergl"
) I !
#( ’B | Bl |B | B! J€P51/2m(1i)
m 1
R T
1B Jp
JEP 1/2m (Iz)
_ m+1
_ (V1/25 1/2m+ )p Avg || geOHl( Z ’5J9‘2)1/2H]£%(31/2m)-

BI/QMEP(S_l/Qm (Bl) JeP 1/2m (I )

Note that

H geom( Z |€ g| )1/2HL17 (B1/2™) 7 geom ”( Z |g g| )1/2||LP (B1/2™)"
JEP(;I/Qm (]7,) JeP, 1/2m (I)

Since p = 2,

A\

”( Z ‘5 g| )1/2HLp (B1/2my S ( Z ”ngH%p(Blﬂm))p/z'

JEPy jom (I;) JEP;1om (I;)

Combining the above three centered equations gives that

| geom|Ex, g HL;(Bl)

Bl/2nLEP6_1/2m (Bl) JeP '$1/2m (I ) #

Bernstein’s inequality (Lemma 2.2.20) and that p < 6, £ > 100 gives that

€9 1z, (Brr2m) < APER(pE[2)PFR2|E,g] 12 (@ p1jom ) S EIOOEHEJQHH
# #\Wpl/2™ g

B1/2m )
Inserting this above gives that
m 1
| geom [Ergl| e, 1) < B PV 26712 HAp(Q—m, 1)
which completes the proof of Lemma 2.7.4. n
Our target will be to prove an estimate of the form
m 1
Ap(277,1) Sawpm Gol3:1) (2.105)
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because then combining this with Lemma 2.7.4 gives an upper bound on the bilinear decou-
pling constant. Proposition 2.5.3 then allows us to control the linear decoupling constant.
To prove (2.105), we will use ball inflation, [2L? decoupling to prove an estimate of the form
A (278278 < p AL (2751 279 for each £ = 2,3,...,m. Then Lemma 2.7.3 allows us

to patch all the estimates together.

The iteration is easier in the 2 < p < 4 regime and so we will first do that case, then
we will move on to the case when 4 < p < 6. Finally, to control the decoupling constant at
p = 6, we will apply Bernstein’s inequality and use the decoupling constant at p’ for some p’

suitably close to 6.

2.8 Control of the bilinear decoupling constant

We now iterate to control the bilinear decoupling constant. We have two separate but similar

cases. Our goal is to prove the following result.

Proposition 2.8.1. Fix integers m > 3 and E = 100. Let v := 9162 BT suppose

is such that 6~Y2™ € 2N and v6~1/2" € N,
(a) If2 < p <4, then

Dy 5(6.1m) < vV A(EPOFL g

—4
() If 4 <p <6, leta= ;;TQ, then

1 m—1
D, 5(5,m) < V1/2(E300EV—1/4(10g 5)1/2)m5—27n%Dp7E(5)1—(1—a) ‘

2.8.1 Case2<p<i4

Lemma 2.8.2. Fix an integer 2 < { < m. Suppose 5712 € 9N gnd v5—Y2 € N. Then for

'3
each square B*?* < R?, we have

1

2 100E, ,—1/4 2 2
A4(?,?) < FE 1% A4<?,?>
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Proof. Fix an arbitrary square B2 of side length 6-%2". Note that our restrictions on &
and v also imply that v0-%2" € N. We have

1 2
207 2t

1 1 1 2
)t = Avg Galogr 57)" < EQOOEV_lGQ(?a ) (2.106)

A
BY2'eP 0 (B2) 2 2

/14(

where the inequality is by an application of Theorem 2.6.1. By [>L? decoupling (Lemma
2.2.21), for each interval J € Py, 5 (1;), we have

2 13E 2
€591 ) < B J/EPZ . €791 z5 5 0
52/2¢
Therefore
2 13E 2
2 ez, < EY X  1Edlize,,
JeF}LQg(h) Je}31p4(h)“pe}}2ﬂf(J)

Since I;, J and J’ are all dyadic intervals, the above is equal to

E™E Z HgJ/QH%i(a

2/2¢ )
J’EP52/24 (LL) B B

Therefore
L2 13E/24 (2 2 138/2 4 (2 2
Combining this with (2.106) completes the proof of Lemma 2.8.2. O

Holder’s inequality allows us to change from Ay to A, for 2 < p < 4 at no cost.

Corollary 2.8.3. Fiz an integer 2 < { < m. Suppose 5712 € 9N gnd v5~V2 € N. Then for

14
each square B¥?* < R?, we have

Proof. Applying Hoélder’s inequality to the definition of A, shows that for 2 < p < 4,
A,(q,r) < Ay(q, 7). Lemma 2.8.2 and that

then completes the proof of Corollary 2.8.3. O
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Now for each square B! with side length d~!, we partition into squares of side length

672/2" and sum the previous corollary over all such squares. This yields the following result.

Lemma 2.8.4. Fiz an integer 2 < { < m. Suppose 62" € 2N and v6~Y2" € N. Then for

each square B! = R?, we have

1

1
?’1) < ElOOEV_1/4Ap(— 1)

AP( 2¢-17

Proof. Fix an arbitrary square B! of side length §=. Since 62" € 2V, we can dyadically

partition B! into squares of side length 6~/ 2. Lemma 2.7.3 and Corollary 2.8.3 then give

that
1 1 2
Ap(5g, 1) = | Ave Ap(55: 5¢)"
B2/2 €P572/2g (Bl)
2 2 2
< F100Ep,—p/4 Avg Ap(?, ?)p = ElOOEpy*p/‘lAp(?, 1)P.
B2/2Z6P672/2g (B1)
This completes the proof of Lemma 2.8.4. ]

Now we combine the m — 1 inequalities together to obtain the following result.

Lemma 2.8.5. Suppose 6~ 2" € 2N and v6—?" € N, then for each square B' < R?, we

have

1 1
Ayl 1) < (BE0 1A, (2 1),

Proof. Since 672" € 2N 5712 ¢ 9N for ¢ = 1,2,...,m. Since 612" € 2¥ and 512" € N,
it follows that v6~%2""" € N. Since 6~ 2""" € 2V, we have that v0~/2""* € N. Continuing
this shows that 642 € N for £ = 1,2,...,m. Iterating Lemma 2.8.4 a total of m — 1 times

then completes the proof of Lemma 2.8.4. n

We now finally relate A,(1/2,1) to G,(1/2,1) which will prove (2.105) in the case when

2<p<4

Lemma 2.8.6. If 6~ /2,06 2 e N, then

1 1
@S@<@W@§@.
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Proof. Hélder’s inequality (2.3) implies that

11
G2(§7§)<g€0m( Z |E19]7 )2,

#(wBl/z,E)
JePél/Q(Ii)
Since | geom f;|, < geom | f;|, and so
A< o geon( Y (X sl )
Py S P (B 9908 @ )"
B12eP,_y5(B') JePa(1i)

Changing the L% to LP, interchanging the {?> and [ norms, and then applying Proposition
2.2.14 shows that this is < 48/PG,(1/2,1) which completes the proof of Lemma 2.8.6. [

Combining Lemmas 2.8.4 and 2.8.6 then proves (2.105) in the case when 2 < p < 4.

Lemma 2.8.7. Suppose 6~ 2" € 2V and v6=?" € N, then for each square B' < R?, we

have

1 1
Ayl 1) < (B™0E 141G, (1),

Combining Lemma 2.8.7 with Lemma 2.7.4 and applying the definition of the bilinear

decoupling constant gives Proposition 2.8.1 in the case when 2 < p < 4.

28.2 Cased<p<6

We now implement the iteration in the case when 4 < p < 6. This case is similar to the case

when 2 < p < 4. For 4 < p <6, a = 2= satisfies

p—2
1 _a+1—a
p/2 p 2

Note that 2(1 — a) decreases monotonically to 1 as p increase to 6. The analogue of Lemma

2.8.2 and Corollary 2.8.3 is as follows.

Lemma 2.8.8. Fiz an integer 2 < { < m. Suppose 62" € 2N and v6=2" € N. Then for

14
each square B¥?* < R?, we have

1 2 60F , —1/4 112 2 21—(1 1 2a
Ap(?,?) < Ew /(10g5) / Ap(?7?) G5z 52)"
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Proof. The proof is similar to that of Lemma 2.8.2. Since p > 4, in the definition of A,
we can increase the L7, (@ g2t ) 1O L’#Q(@ g2t ) using Holder’s inequality. Combining this

with Theorem 2.6.1 gives that

1 2 _ 1 1
Ayl 7)< BP0 log 5) 2G5, =),

2079t

Holder’s inequality for Gy (Lemma 2.7.2) then shows that
1

Gp/2(_ b

Proceeding as at the end of the proof of Lemma 2.8.2 gives that

1 2 13E/2 2 2
Galgp ) S B /Ap(?>?)

Putting the above three centered equations together then completes the proof of Lemma

2.8.8. [l

The analogue of Lemma 2.8.4 is as follows. The strategy of proof is essentially the same
as that in Lemma 2.8.4 except this time we also need to deal with the G,(27¢,27%"1)¢ term

from Lemma 2.8.8.

Lemma 2.8.9. Fiz an integer 2 < ¢ < m. Suppose 62 € 2N and v6~Y% € N. Then for

each square B! = R?, we have

1

1
7 5

| T
Ay (s DGy (5 1)

AP( 24—17 2¢’

1) < EIOOEV—1/4(1Og

Proof. Fix an arbitrary square B! of side length 6='. Since 672" € 2¥ we can dyadi-
cally partition B! into squares of side length 6~/2°. Lemmas 2.7.3 and 2.8.8 and Holder’s

inequality gives that

1 1 2
ﬁal)p = , AVg AP(???
B2/2 €Lyt (BY)

Ap( )P

1—a a
<E60Epy_z(1og%)p/2( Avg Ap(% —)p) ( Avg Gp(i@ —)p)-

BY?eP _, .0 (BY)
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Lemma 2.7.3 gives that the first parenthetical term is equal to A (% 1)P0=9) " Thus the

lemma is complete if we can show that

1
Avg Gpl=, =

B2/2t ep, (BY)

— 1) (2.107)

—2/2¢

Expanding definitions and interchanging geometric mean and the sum over B% 2! gives that

1 2
AVg Gp<?,?)p
B2/2¢ EP 2/22(31)

1 2 /2
<gmeen( Y (Y [l )
B2/2€EP /2(31) JepP 1/2g( i)
Since p > 2, we can switch the [? and [P norms inside the geometric mean. Finally, apply

Proposition 2.2.14 then proves that the above is < 487G (4, 1)? which proves (2.107). This

2¢

completes the proof of Lemma 2.8.9. [

Combining the above m — 1 inequalities in Lemma 2.8.9 gives the following result.

Lemma 2.8.10. Suppose 6~ € 2N and v6='2" € N, then for each square B' < R?, we

have
1 100E,,—1/4 1/2\m—1 1 a)™1 - a(l a)m—*t
Ayl 1) < (BFy (10g5) )AL ( ]‘!Gp 51
Proof. The proof is the same as that of Lemma 2.8.5. m

To control A,(%, 1), we use Lemma 2.8.6. However, now we also need to control G,(5,1)

which we achieve by the following trivial bound.

Lemma 2.8.11. Fiz an integer 2 < { < m. Suppose 512 ¢ 2N and v6=12" € N. Then

1 1
Gp(?, 1) < ElOOEDp,E(d)Gp(g, 1).

Proof. For each J € Py, ,¢(I;), we have

€19 51y = [E10,11(910) | Lo (B1)
<Dps@)( D 1En(9l)Eeay, )

J'€Pg1/2([0,1])

:ﬁp,E((S)( Z HSJ’QH%p(aBl,E))l/Z

J'eP 1/2( )
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where the last equality is because both §V/2° and §'/2 are dyadic. Applying Propositions
2.2.11 and 2.3.11 then shows that

159 p(@ig1 ) < 127PETDyp(0)( Y, 1Erdlina, )"

J/€P61/2 (J)

Combining this with the definition of G,(1/2%, 1) then completes the proof of Lemma 2.8.11.
[

Combining Lemmas 2.8.6, 2.8.10, and 2.8.11 gives the following result.

Lemma 2.8.12. Suppose 5~ 2" € 2N and v6~'/?" € N, then for each square B < R?, we

have

1 1 m
AP<2_m? 1) < (EIOOEV—1/4(10g 5)1/2>mDp,E(5)1_(1_a)

1 1
GP(§7 1)

This with Lemma 2.7.4 then proves Proposition 2.8.1 when 4 < p < 6. Note that in this
case we obtain a small improvement over the trivial bound of D, (9, m) <, g D, () which

is the key to obtaining control of the linear decoupling constant when 4 < p < 6.

2.9 Decoupling at lacunary scales

Using Propositions 2.5.3 and 2.8.1 we bound the linear decoupling constant at a sequence of
lacunary scales. The lacunary scales are because of the integrality conditions in Proposition

2.8.1. Our goal will be to prove the following result.

Proposition 2.9.1. Let E > 100, m > 3, v := 27162"E" " gnd 5 e {12"1}*

n=1-

(a) If2 <p <4, then

2 _om o _1_
Dp,E(é) < 2m E400Emy 2 am

(b) If4 <p <6, then

m 1 _ 1
D, p(8) < (2 E*0Fmy, =2\ @l § s T
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(¢) If p =6, then for p' € (4,6), we have

m 1 — 1 o1 _1
D67E<5) < E50E(2m2E400Emlj72 )(2/(p/72))m715 2[4/(p' —2)]m—1 2(P/ 6)'

The proof of Proposition 2.9.1 actually shows that D, g(5) < E00Fmy=2"§-12" for
2 < p < 4, but the extra 2m* i harmless and will allow us to treat all three cases in
essentially the same manner. Note that in Propositions 2.8.1 and 2.9.1, the bound when
2 < p < 4 is same as the bound for 4 < p < 6 except with p = 4 (and so a = 0) and no
(log %)1/ 2. When we prove Proposition 2.9.1, we will only consider the more complicated case

when 4 < p <6 and p = 6.

29.1 Cased<p<6

We first prove the following lemma.

Lemma 2.9.2. Let v = 271062 B 512 c 9N gnd ¢ = ﬁ%;l. Let K be the largest integer

such that 62~ € 27N Suppose (sv=2)"12" € 2N for alli = 0,1,...,K — 1. Then

2 _om ._ 1 9Nl —(1—q)m—1
D, p(§) < 2m EA00Em,=2" 5= om max D, p(6p~2)1-(-a)"
p7 p7
i=0,1,.., K—2m—1-1

Proof. Observe that

V(5U—2i)—1/2m _ (5V—2(i+2m*1))—1/2m

and so for i = 0,1,..., K —2™' — 1, we have that v(dv=%)"1/2" e N.

Fori=0,1,..., K —2™! — 1, we may apply Proposition 2.8.1 which gives that for such

)mfl

Dp7E(5V_2Z, m) < (E3OOEV—1/4(10g 5)1/2)m5—2m%Dva(5V—21)1—(1—a
Fori= K —2m™1 ... K —1, the trivial bound (Lemma 2.5.1) gives that
D, 5(0v=%,m) < 4P (sp72) 711 < AP (5712 )12 m5 (D) (2.108)

By how K is defined, §"20~K-1 ¢ 27N Since §'/? and v are dyadic numbers, we must then

have §/20~K-1 € 22 and hence 6Y20~5-1 > 1 which implies that 6~ /2v% < v~!. Inserting
83



this into (2.108) gives that for such ¢,
D, p(6v™% m) < 4Fy="/,
Therefore Proposition 2.5.3 gives that

Dp,E<5)

— _om o
< §100Blogy By =lypax (1, 45,7274 max D, 5(0v™*",m))
i=0,1,..., K—2m=1-1

— _om
< §100Eog, B =10 (4EV 2 /4’

1 , —
(ESOOEV_1/4(IOg 5)1/2)7715—2"1% o H[l(ajém_lil Dp7E((SV_2Z)1_(1_a) 1)

m ]_ 1 . —
— ———4+100FE'1 E — —(1—g)m—1
< EBOOETI’LV 2 (].Og )m/QS omF1 00 og,, max D ’ (51/ 22)1 (1 a)

) i=0,1,....K—2m—1_1 !

where in the last inequality we have used that D, (§) = 1275/ for all § which follows from

the same proof as Lemma 2.3.5. Observe that log% < éé‘a for a > 0, and hence
(log %)m/Q < 9™ FABM S g g

_710 . . .
Furthermore, from our definition of v, §1%°Fe. £ < §72m8F  Inserting this into the above

completes the proof of Lemma 2.9.2. O]

Because of the generality of the statement of the previous lemma, we can upgrade the

above result so that the same maximum appears on both left and right hand sides.

Lemma 2.9.3. Suppose v,d, K, and a are as in Lemma 2.9.2. The left hand side of the

inequality in Lemma 2.9.2 can be replaced with max;—q 1. —gm-1_1 Dy p(dv2").

Proof. Fixa j=0,1,...,K —2™! —1. Let K(j) := K — j. Since K is the largest integer

such that 820~ € 27N, it follows that K (j) is the largest integer such that
(5V—2j)1/2,/—1<(j) = 512~ (K(G)+i) ¢ 9-N

We similarly also have (6v~20+))=1/2" ¢ 9N for § = 0,1,..., K(j) — 1. Therefore Lemma

2.9.2 gives that

_ 95 2 _om ~_ _1_ _9(4 —(1—pq\m—1
Dp7E(6V 2]) < om E400Emy 2 5 m max Dp,E(6V 2(]+Z)>1 (1—a)
£=0,1,.. . K—2m-1_1_j
2 _om ~_ _1_ _ _(1_\ym—1
<™ E400Emy 2 5T max Dp,E(5V QZ)I (1-a) )

0=0,1,...,K—2m—1_1
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Since j on the left hand side of the above inequality is arbitrary and the right hand side is
independent of j, the above inequality is still true if we take the maximum over all j on the

left hand side. This completes the proof of Lemma 2.9.3. n

This gives the following corollary.

Corollary 2.9.4. Suppose v,6, K, and a are as in Lemma 2.9.2. Then

m 1
max D, p(0v™) < (2m2E4OOEmy*2 5*2%)(1_11)“1*1

Taking ¢ = 0 in Corollary 2.9.4 and observing that the choice of § € {v*""}*_, satisfies
the hypothesis of Lemma 2.9.2 completes the proof of Proposition 2.9.1 when 4 < p < 6.

Indeed, with this choice of §, K = 2™ !'n — 1 and so observe that
(5V72i)71/2m _ (Vfl)ani/Zm

and for i =0,1,..., K — 1, we have n — 2i/2™ > 0.

2.9.2 Casep=56

At p = 6 the argument no longer gives a better than trivial estimate since here 2(1 —a) = 1.
The advantage we have however is that we know a good bound on D,y g(d) for all p’ arbitrary
close to 6. This combined with reverse Holder and Holder is enough to give a better than

trivial bound at p = 6.

Let 4 < p’ < 6 to be chosen later. The proof of Lemma 2.2.20 along with Corollary 2.2.9
and Proposition 2.2.11 imply that

[€0.19] o8y < 2507 VO E2E € 119 1

wWB,E)

<E*D, @0 Y 1l

JePs12([0,1])

)1/2'

WB,E)

Holder’s inequality to increase LP to LS then implies that

D p(0) < EPE(5~H)VP=18D, 1(6).
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Combining this with Proposition 2.9.1 for 4 < p’ < 6 shows that under the hypothesis of

Proposition 2.9.1 and arbitrary 4 < p’ < 6, we have

" 1 _ 1 _o(l _1
DG}E((S) < E5OE(2m2E4OOEmV72 )(2/(1)/_2))771715 2[4/(p/_2)]m71 2(pl 6).

Thus if we choose p’ so that 1/p’ — 1/6 is sufficiently small and then choose m sufficiently
large, we once again can do better than the trivial bound of O ,(§~1/4). This completes the

proof of Proposition 2.9.1 when p = 6.

2.10 Decoupling at all scales

While Proposition 2.9.1 is for a lacunary sequence of scales, recall that the decoupling con-
stant defined in (2.1) is for 6 € N2, To upgrade Proposition 2.9.1 to all scales § € N2 we

use lacunarity and Proposition 2.4.1.

Lemma 2.10.1. Suppose 6 € [01,02] " N72 and §,/6, = c. Then
D, 5(6) < E'EERAD, 1(65,).
Proof. Using Proposition 2.4.1 and the trivial bound on decoupling we have
Dyp(9) < EIOOEDp,E(%)Dp,E(é—Z)
< E100E2E/p(%>1/4DpyE(52> < BY0E9E/RIAD L(5,)
which completes the proof of Lemma 2.10.1. Il

Combining this lemma with Proposition 2.9.1 gives the following result.

Proposition 2.10.2. Let E > 100, m > 3, and suppose § € N2,

(a) If2<p <4, then

D, p(6) < 24" P 5

(b) If 4 <p <6, then
D, 5(5) < (24" 5~ ) mehT.
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(¢) If p =6, then forp' € (4,6) we have

1

Dp,E((S) (24mE15E5,27m)W5 (5~ %).

Proof. Recall that v = 27162"E"" " The proof of all three parts is essentially the same, so

we only concentrate on the 2 < p < 4 case. If § € [12",1] nN~2, the trivial bound gives that
D, p(0) < 2F/py=2"/4 = gB/praam BT, (2.109)
From Lemma 2.10.1, if 6 € [¢?"(™+1) 12""] A N=2 for some n > 1, then
Dp,E<5) < E100E2E/py—2m/4Dp’E(V2mn)'

Inserting the bound from Proposition 2.9.1 gives that the above is bounded by

EI00E9E/p,,—2™ [Agm? [A00Em ,—2™ 5= < 9m? [P00Em -2 5o

Using that £ > 100 and the definition of v, we have

2 5 10E 15E
om ESOOEm —32m < 2100~4’"~E < 24mE )

14

This then shows
D, 5(8) < 2" F 5w
for all § € [p2" (1) 12" n > 1. Combining with (2.109) completes the proof of Proposition

2102 when 2 <p<4. When4d <p <6 — > 1 and so we can repeat the same proof as

Y 2/
above in the remaining two cases of the proposition. This completes the proof of Proposition

2.10.2. [l

2.11 Proof of Theorem 2.1.1

Since Proposition 2.10.2 is true for all m > 3 and § € N2, we now optimize the bound on

D, g(6) in m. This will give the proof of Theorem 2.1.1.
Proof of Theorem 2.1.1. We combine the cases of 2 < p < 4 and 4 < p < 6. Fix arbitrary
de N2 and E > 100. Let m be the largest integer such that

27 < E°P(log, 67173 < 27mHL (2.110)
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Since § < 27%4F"" 1 > 3. Then
m ol 1 ]_
QUM s < exp(5(log 2)Y3E*E (log 3)2/3) < exp(5- E°F(log 5)2/3) (2.111)

which finishes the case of Theorem 2.1.1 when 2 < p < 4. For 4 < p < 6, observe that

2 1
(m)*m—l) = exp(=(m — 1)log —=) < (log 5)—% loga(5%5), (2.112)

Combining (2.111) and (2.112) then proves Theorem 2.1.1 in the case when 4 < p < 6.

For the case when p = 6, choose m as in (2.110). Then for 4 < p’ < 6,

2

1 373 —— —
D (6) < exp(10 - E5E(10g5)§ élogz(p,%))é 2(

1 1, _1y0e (4 1
< exp(E*(log 3)[(log )+ + (-

)

e
o=

é)]). (2.113)

It thus remains to optimize

for 4 < p' <6.

Let A := L — 1 and suppose we choose p’ sufficiently close to 6 such that A < 1/4. Then
P 6

A
ﬁ = % and
log — 5 > 8.
Thus
1 1 1
1 31052p/2 — )< 1 ~\—3A A
(log =) (p, ) < (log =)™ +
Setting
) — log(3log log %)
3loglog %
gives that
(log 1)_3)\ o 1+ log 3 + logloglog 5 < log log log (2.114)
) 3loglog % log log %

where we have used that 1 + log 3 < loglog log% for our range of 4. Note that for our range
of §, A < 1/4 since this is equivalent to 3log log% < (log %)3/ 4 which is certainly satisfied if

61 > 108. Inserting (2.114) into (2.113) then completes the proof of Theorem 2.1.1. O
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CHAPTER 3

An [? decoupling interpretation of efficient

congruencing in 2D

3.1 Introduction

Since we will once again be studying {?> decoupling for the parabola, we adopt essentially
the same notation as in Chapter 2 with a few small differences (namely § in Chapter 2 is §*
in this chapter and we just set £ = 100). For an interval J < [0,1] and ¢ : [0,1] — C, we
define
(€9)(0) 1= | g(E)eléar + ) d¢
J

where e(a) := €™, For an interval I, let P;(I) be the partition of I into intervals of length
(. By writing P;(I), we are assuming that |I|/¢ € N. We will also similarly define P(B) for
squares B in R% Next if B = B(c, R) is a square in R? centered at ¢ of side length R, let

wp(x) = (1 + %)_100.

We will always assume that our squares have sides parallel to the z and y-axis. We observe

that 15 < 2'%wp. For a function w, we define
Flastor = (| @) uta) o)
For § e N7! let D(d) be the best constant such that

|€09lsm) < DO D 1€:9) 00w (3.1)

JePs([0,1])
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for all g : [0,1] — C and all squares B in R? of side length 6~2. Let D,(d) be the decoupling
constant where the L5 in (3.1) is replaced with LP. Since 1p < wp, the triangle inequality
combined with Cauchy-Schwarz shows that D,(8) <, 6-%/2. The I*> decoupling theorem for
the paraboloid proven by Bourgain and Demeter in [BD15] implies that for the parabola we

have D, () <. 67° for 2 < p < 6 and this range of p is sharp.

This chapter attempts to probe the connections between efficient congruencing and [?
decoupling in the simplest case of the parabola. Our proof of I? decoupling for the parabola
is inspired by the exposition of efficient congruencing in Pierce’s Bourbaki seminar exposition

[Piel9]. This proof will give the following result.

Theorem 3.1.1. For § € N~ such that 0 < § < e=20" we have

log &
D(§) < 30—=9 ).
( ) exp( loglog%

This improves upon a previous result of Theorem 2.1.1 in Chapter 2. In the context
of discrete Fourier restriction, Theorem 3.1.1 implies that for all N sufficiently large and

arbitrary sequence {a,} < [?, we have

, log N

27i(nx+n2t) g 2\1/2
|5 ey < (OB (Y fanl)
|n|<N [n|<N

which rederives (up to constants) the upper bound obtained by Bourgain in [Bou93, Propo-
sition 2.36] but without resorting to using a divisor bound. It is an open problem whether

the exp(O(log)i]gVN)) can be improved.

3.1.1 More notation

Once again we will let ) be a Schwartz function such that n > 1p(9,1) and supp(n) < B(0, 1).
For B = B(c, R) we also define np(x) := n(*z¢). Since we care about explicit constants in
Section 3.2, we will use the explicit n constructed in Corollary 2.2.9. In particular, for this 7,
np < 10?*®ywg. For the remaining sections in this chapter, we will ignore this constant. We

refer the reader to [BD17, Section 4] and Chapter 2, Section 2.2 for some useful properties

of the weight wp and np.
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Finally we define
1
P =T pd 1p
W liyeer = (5 | 1@ as)

and given a collection C of squares, we let

Avg f(8) = 17 oA

AeC AeC

3.1.2 Outline of proof of Theorem 3.1.1

Our argument is inspired by the discussion of efficient congruencing in [Piel9, Section 4]
which in turn is based off Heath-Brown’s simplification [Heal5] of Wooley’s proof of the

cubic case of Vinogradov’s mean value theorem [Wool6].

Our first step, much like the first step in both 2D efficient congruencing and decoupling,
is to bilinearize the problem. Throughout we will assume ¢! € N and v € N™! » (0, 1/100).

Fix arbitrary integers a,b > 1. Suppose d and v were such that v*9~1, 16! € N. This
implies that 6 < min(v%, ") and the requirement that (@551 e N is equivalent to having
v6~1 12571 € N. For this § and v, let M, 4(d,v) be the best constant such that

L|519|2|51f9|4<Ma,b(5w)6( D0 €910 D5 1Er9l 70w’ (3.2)

JePs(I) J'ePs(I')
for all squares B of side length 672, ¢ : [0,1] — C, and all intervals I € P,.([0,1]), I' €
P, ([0,1]) with d(I,I") = 3v. We will say that such I and I’ are 3v-separated. Applying
Hoélder followed by the triangle inequality and Cauchy-Schwarz shows that M, ;(d, v) is finite.
This is not the only bilinear decoupling constant we can use (see (3.27) and (3.31) in Sections
3.4 and 3.5, respectively), but in this outline we will use (3.2) because it is closest to the one

used in [Piel9] and the one we will use in Section 3.2.

Our proof of Theorem 3.1.1 is broken into the following four lemmas. We state them

below ignoring explicit constants for now.

Lemma 3.1.2 (Parabolic rescaling). Let 0 < 6 < o < 1 be such that 0,6,8/c € N7'. Let I

be an arbitrary interval in [0, 1] of length o. Then

o
1€19]zs(m) = D()( Y €591 swa)"

JePs(I)
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for every g : [0,1] — C and every square B of side length §=2.

Lemma 3.1.3 (Bilinear reduction). Suppose § and v were such that v6~— € N. Then

D(0) < D(é) + v M4 (5,v).

14

Lemma 3.1.4. Let a and b be integers such that 1 < a < 2b. Suppose & and v were such
that v**6~' € N. Then
Ma,b(5a l/) S V_1/6M2b7b(5, V).

Lemma 3.1.5. Suppose b is an integer and 6 and v were such that v**6~' € N. Then

J

Moy (6, v) < My (0, V)I/QD(J)I/?

Applying Lemma 3.1.4, we can move from M;; to My; and then Lemma 3.1.5 allows
us to move from Msy; to Mo at the cost of a square root of D(6/v). Applying Lemma
3.1.4 again moves us to M, 4. Repeating this we can eventually reach Myn-1 ov paying some

1

O(1) power of v~ and the value of the linear decoupling constants at various scales. This

combined with Lemma 3.1.3 and the choice of v = §Y/2" leads to the following result.

Lemma 3.1.6. Let N € N and suppose § was such that 52" € N and 0 < § < 10072" .
Then

N-1
D(0) < D((Sl_%”) 5328 D (6Y2) 52N H D( )2

7=0
This then gives a recursion which shows that D(J) <. §7° (see Section 3.2.3 for more

details).

The proof of Lemma 3.1.2 is essentially a change of variables and applying the definition
of the linear decoupling constant (some technical issues arise because of the weight wp, see
Chapter 2, Section 2.4). The idea is that a cap on the paraboloid can be stretched to the
whole paraboloid without changing any geometric properties. The bilinear reduction Lemma
3.1.3 follows from Hoélder’s inequality. The argument we use is from Tao’s exposition on the
Bourgain-Demeter-Guth proof of Vinogradov’s mean value theorem [Taol5]. In general

dimension, the multilinear reduction follows from a Bourgain-Guth argument (see [BG11]
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and [BD17, Section 8]). We note that if a and b are so large that v, 1 ~ § then M, ~ O(1)
and so the goal of the iteration is to efficiently move from small a and b to very large a and

b.

Lemma 3.1.4 is the most technical of the four lemmas and is where we use a Fefferman-
Cordoba argument in Section 3.2. It turns out we can still close the iteration with Lemma
3.1.4 replaced by My, < My, for 1 < a < band M, < 7/71/6M2b7b. Both these estimates
come from the same proof of Lemma 3.1.4 and is how we approach the iteration in Sections 3
and 4 (see Lemmas 3.3.3 and 3.3.5 and their rigorous counterparts Lemmas 3.4.7 and 3.4.8).

The proof of these lemmas is a consequence of [?L? decoupling and bilinear Kakeya.

As a and b get larger and larger the estimate in Lemma 3.1.4 generally gets better
and better than the trivial bound of M,, < v~ #=9/6My,,. The v~/% comes from the

v-transversality of I; and I in the definition of M,;. In particular, should be viewed as

2-1)

(v~=(=1)1/6 where the 1/6 comes from that we are working in L® and the v~ comes from

—(d—1

v ) with d = 2 which is the power of v arising from multilinear Kakeya. Finally, Lemma

3.1.5 is an application of Holder and parabolic rescaling.

3.1.3 Comparison with 2D efficient congruencing as in [Piel9, Section 4]

The main object of iteration in [Piel9, Section 4] is the following bilinear object

[1 (X> a, b)
—  max f | e(aqx + aza?) | e(ary + azy?)|* da.
&#n (mod p) J(g1]% 1@2@( 1<yZ<X
z=¢ (mod p?%) y=n (mod p*)

Lemma 3.1.2-3.1.5 correspond directly to Lemmas 4.2-4.5 of [Piel9, Section 4]. The obser-
vation that Lemmas 4.2 and 4.3 of [Piel9] correspond to parabolic rescaling and bilinear

reduction, respectively was already observed by Pierce in [Piel9, Section 8|.

We can think of p as v=!, J(X)/X? as D(4), and p*™2°1,(X;a,b)/X? as M,,(6,v)5. In
the definition of I;, the max¢., mod p) condition can be thought of as corresponding to the
transversality condition that [; and I, are v-transverse (or since we are in 2D, v-separated)

intervals of length v. The integral over (0, 1]? corresponds to an integral over B. Finally the
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expression

| Z e(arr + apr?)]

I<e<X
z=¢ (mod p%)

can be thought of as corresponding to |E7g| for I an interval of length v* and so the whole
of I1(X;a,b) can be thought of as §, |E1,g[*|E,9|* where (1)) = v* and (1) = v* with I,

and I, are O(v)-separated. This will be our interpretation in Section 3.2.

Interpreting the proof of Lemma 3.1.4 using the uncertainty principle, we reinterpret
L(X;a,b) as (ignoring weight functions)
Avg g7z (a)IEr gl (3.3)
AEPV, max(a,b) L#(A) L# (A)
where I and I’ are length v® and 1?, respectively and are v-separated. The uncertainty

principle says that (3.3) is essentially equal to ﬁ S E911Erg]*.

Finally in Section 3.5 we replace (3.3) with
Avg ( Z H5J9||%§¢(A))( Z HgJ’QH%f#(A))Z
AP, v(B) jep (1) JIEP (1)
where I and I’ are length v and v-separated. Note that when b = 1 this then is exactly
equal to ﬁ $51€191%|Erg|*. The interpretation given above is now similar to the A, object

studied by Bourgain-Demeter in [BD17].

3.1.4 Comparison with 2D [* decoupling as in [BD17]

Let be’@(é, v) be the bilinear constant defined in (3.2). Let Ml(i’?))(é, v) be the bilinear
constant defined as in (3.2) with a = b = 1 except instead we use the true geometric mean.

This latter bilinear decoupling constant is the one used by Bourgain and Demeter in [BD17].
The largest difference between our proof and the Bourgain-Demeter proof is how we
iterate. Both proofs obtain that

D(5) < D(%) + v M (0,) (3.4)

where s = 3 corresponds to the Bourgain-Demeter proof while s = 2 corresponds to our

proof. However we proceed to analyze the iteration slightly differently. Bourgain-Demeter
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applies (3.4) to D(6/v) and D(6/v?) to obtain

o _ )
D(5) £ D(=5) + v (MY (0 v) + MY (6,0))
o _ o )
< D(g) + v (MEP (o) + MY v) + My (0,0))

and we continue to iterate until 6/v2" is of size 1. It now remains to analyze Ml(?l’?’)(é, v) for
various scales 0 which is done by the A, expressions that are used in [BD17]. For our proof,

in two steps (of applying Lemmas 3.1.4 and 3.1.5) we obtain

D(0) < D(é) + v MY (0, V)”QD(é)l/2
1% ’ 1%
5. B 5
D)+ MY (S, y)1/4D(—V2)1/4D(;)1/2

and we continue to iterate §/v%" is of size 1. Note that while the iteration here is able to
tackle the endpoint LS estimate directly and as written [BD17] could not do so, the iteration
in [BD17] can be slightly modified so it can handle the endpoint estimate directly (thanks

to Pavel Zorin-Kranich for pointing this out).

3.1.5 Comparison of the iteration in Section 3.2 and 3.4

The way we iterate in Section 3.2 will be slightly different than how we iterate in Section
3.4. In Section 3.2, we first apply the trivial bound M;; < v~Y9M;,. Then Lemmas 3.1.4
and 3.1.5 imply that for integer b > 2,

o

Myjap(8,1) < Y0 My o4(6, V)WD(E)I/Q-

Thus from this we can access Myn-1 on for arbitrary large N but lose only v~9M)  In contrast,
for Section 3.4, we use that M,;, < M, for 1 < a < b (from I2L? decoupling) and My <
v~Y8 My, (from bilinear Kakeya). Combining these two inequalities with Lemma 3.1.5 gives

that for integer b > 1,

J

Myp(9,v) < V71/6M2b,2b<57 V)1/2D(—b)1/2'
1%

Now we can access the constant Myn ov for arbitrary large N but lose only =90 Both

iterations give similar quantitative estimates.
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3.1.6 Overview of chapter

Theorem 3.1.1 will be proved in Section 3.2 via a Fefferman-Cordoba argument. This ar-
gument does not generalize to proving that D,(d) <. ¢ except for p = 4,6. However in
Section 3.3, by the uncertainty principle we reinterpret a key lemma from Section 2 (Lemma
3.2.8) which allows us to generalize the argument in Section 3.2 so that it can work for all
2 < p < 6. We make this completely rigorous in Section 3.4 by defining a slightly different
(but morally equivalent) bilinear decoupling constant. This will make use of >L? decoupling,
Bernstein’s inequality, and bilinear Kakeya. A basic version of the ball inflation inequality
similar to that used in [BD17, Theorem 9.2] and [BDG16, Theorem 6.6] makes an appear-
ance. Finally in Section 3.5, we reinterpret the argument made in Section 3.4 and write an
argument that is more like that given in [BD17]. We create a 1-parameter family of bilinear
constants which in some sense “interpolate” between the Bourgain-Demeter argument and

our argument here.

The three arguments in Sections 3.2-3.5 are similar but will use slightly different bilinear
decoupling constants. We will only mention explicit constants in Section 3.2. In Sections
3.4 and 3.5, for simplicity, we will only prove that D(J) <. d7°. The estimates in those
sections can be made explicit by using explicit constants obtained from Chapter 2. Because
the structure of the iteration in Sections 3.4 and 3.5 is the same as that in Section 3.2, we
obtain essentially the same quantitative bounds as in Theorem 3.1.1 when making explicit

the bounds in Sections 3.4 and 3.5.

In Section 3.6 we modify the argument in the previous sections to illustrate how to tackle
I2LP decoupling for the parabola for 2 < p < 6, taking p = 4 as an example. Finally in
Section 3.7, we address ongoing work with Shaoming Guo and Po-Lam Yung about effi-
cient congruencing in [Heal5] and sketch how we give a new (bilinear) proof of sharp {*L'?

decoupling for the moment curve ¢ — (¢, 2, t%).
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3.2 Proof of Theorem 3.1.1

We recall the definition of the bilinear decoupling constant M, ; as in (3.2). The arguments
in this section will rely strongly on that the exponents in the definition of M, are 2 and 4,

though we will only essentially use this in Lemma 3.2.8.

Given two expressions x; and x», let

_2/6_4/6
geOH1274 (L‘i . .7}1 LL’Q .

Holder gives | geom, 4 74, < geomy 4 2],

3.2.1 Parabolic rescaling and consequences

The linear decoupling constant D(§) obeys the following important property.

Lemma 3.2.1 (Parabolic rescaling). Let 0 < § < o < 1 be such that 0,6,0/0c € N~'. Let I

be an arbitrary interval in [0, 1] of length o. Then
)
€191 om) < 10" D(=)( D0 €591 o)
JePs(I)

for every g : [0,1] — C and every square B of side length §=2.

Proof. See [BD17, Proposition 7.1] for the proof without explicit constants and Section 2.4
with £ = 100 for a proof with explicit constants (and a clarification of parabolic rescaling

with weight wg). O

As an immediate application of parabolic rescaling we have almost multiplicativity of the

decoupling constant.

Lemma 3.2.2 (Almost multiplicativity). Let 0 < § < o < 1 be such that 0,8,0/0 € N7,
then
D(5) < 10 D(0)D(6/0).

Proof. See Proposition 2.4.1 with £ = 100. m
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The trivial bound of O(v@+#®)/65=1/2) for M,,(5,v) is too weak for applications. We

instead give another trivial bound that follows from parabolic rescaling.

Lemma 3.2.3. If 6 and v were such that v*6~ ", 16~ € N, then

o o

ab((s V) 1020000D( .
1%

)1/3D( )2/3.

Proof. Fix arbitrary I) € P,.([0,1]) and Iy € P([0,1]) which are 3v-separated. Hoélder’s

inequality gives that

; B) S HSAQH%G(B)Hglgg”it%(s)-

Parabolic rescaling bounds this by

) )
10120000D e 2D e
yn

)( 2 HEJQH%G(WB)>( 2 HSJ’QH%G(U,B))2-

JEPg(Il) J’EPg(Ig)

Taking sixth roots then completes the proof of Lemma 3.2.3. O

Holder and parabolic rescaling allows us to interchange the a and b in M.

Lemma 3.2.4. Suppose b =1 and § and v were such that v**6~' € N. Then

Mbe(5 V)\ OIOOOOM ( ) (5/ )1/2'

Proof. Fix arbitrary I; and I, intervals of length »?* and 1, respectively which are v-

separated. Holder’s inequality then gives

lngl En o < (| IEnal'Eng) (| i)

Applying the definition of M4, and parabolic rescaling bounds the above by

4]
(10°%)7 My, (3, 1) D(—)°( D 1€l swn)C D 1€r9lTo0g)?
JePs(I1) J'ePs(I2)
which completes the proof of Lemma 3.2.4. O]

Lemma 3.2.5 (Bilinear reduction). Suppose § and v were such that v6—' € N. Then

D(9) < 1030°°°(D(§) + v My (6,v)).

v
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Proof. Let {I;}_, = P,([0,1]). We have

12
I€o0ngloo =1 Y. > i
1<i<p—! 1<i,j<v—!
1/2 1/2
<ﬁ(| 2 PRI DY i ) (3:5)
1<i,j<v! 1<i,j<v!

li—j]<3 li—j|>3
We first consider the diagonal terms. The triangle inequality followed by Cauchy-Schwarz
gives that

Iy 2

1<i,j<v ! 1<ij<v!
li—j|<3 li—j|<3

Parabolic rescaling bounds this by

4
1020000 (2 y2 Z (Z ||5J9H%5(w3))1/2( Z HngH%G(wB))l/Q

v
1<i,j<v—) JePs(I;) JePs(1;)
li—j|<3

1040000 52 ) 9
S D VI (I Y T ARRRR Y T ey

1<i,j$l/_1 JGP(;(]Z') JEP&(I]')
ji—jl<3

)
<1007 1€l
JePs([0,1])
Therefore the first term in (3.5) is bounded above by

J
0D D €09 Eswm) ™ (36)
JePs([0,1])

Next we consider the off-diagonal terms. We have

1/2 -1 1/2
| 1€ngllEnallsgm < v | e lErgllEL 91l /s s

1<ij<v™!

1—7|>3
[i—j|>3 =l

Holder’s inequality gives that

1/2 1/3|5] g|2/3H1/2

and therefore from (3.2) (and using that v§~! € N), the second term in (3.5) is bounded by

V2rTt My (6, v)( Z HSJQH%fS(wB))m-

JePs([0,1])
Combining this with (3.6) and applying the definition of D(J) then completes the proof of

Lemma 3.2.5. N
99



3.2.2 A Fefferman-Cordoba argument

In the proof of Lemma 3.2.8 we need a version of M,; with both sides being L%(wp). The

following lemma shows that these two constants are equivalent.

Lemma 3.2.6. Suppose § and v were such that v*0~", v*0~" € N. Let M, ,(8,v) be the best

constant such that

J|519|2|5pg!4w3<M£L,b(f5w)6( > €391t D0 1E19lT0um)?

JePs(I) J'ePs(I')
for all squares B of side length 672, g : [0,1] — C, and all 3v-separated intervals I €
P,.([0,1]) and I' € P([0,1]). Then

M ,(5,v) < 12900, (5, v).

Remark 3.2.7. Since 15 < wg, May(6,v) < M, (6, v) and hence Lemma 3.2.6 implies M, ; ~
Mé]7b.

Proof. Fix arbitrary 3v-separated intervals I € P,«([0,1]) and I € P,»([0,1]). It suffices to

assume that B is centered at the origin.

Corollary 2.2.4 gives

| geoms 4 [Er,9 H%G(w}g) <3 f , | geomy 4 [Er,9 H?,;(B(y,(S*Q))wB(y) dy.
R

Applying the definition of M, ; gives that the above is

<31°°54Ma,b<5,v>6f geomy (S €100, ) ws(y) dy
]RQ

JePs(I;)

1,
< 308 M 0.0 geomsy [ (D 10l o) Cunlo) dy
R? jeps(1y) ’

WB(y,6-2)

< 308 M (5,0)° geom (3] (| s

6
sl ie gy g ay 0B (W) dY)
JEP&(LL')

where the second inequality is by Holder and the third inequality is by Minkowski. Since B

is centered at the origin, wp * wp < 4'%°6~*wp (Lemma 2.2.1) and hence

o JRz Hg‘]g”GL‘s(wB(y,afz))wB (y)dy < 4100H‘S.JgH(zS(wB)'
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This then immediately implies that M (6, v) < 129960, (6, v) which completes the proof
of Lemma 3.2.6. O

We have the following key technical lemma of this paper. We encourage the reader to
compare the argument with that of [Piel9, Lemma 4.4]. This lemma is a large improvement

—(2b—a)

over the trivial bound of M,; < v / 6 Moy, especially at very small scales (large a, b).

Lemma 3.2.8. Let a and b be integers such that 1 < a < 2b. Suppose 6 and v was such that
v?*6~1 e N. Then
Mmb(é, l/) < 1010001/_1/6Mgb7b(5, l/).

Proof. Tt suffices to assume that B is centered at the origin with side length 672. The
integrality conditions on § and v imply that § < v? and v*6~', %5~ € N. Fix arbitrary
intervals I} = [, a+1v%] € B,a([0,1]) and Iy = [3, B+1°] € P,+([0, 1]) which are 3v-separated.

Let gs(z) := g(x + B), Ty = (} ), and d := o — 3. Shifting I, to [0, "] gives that
fB (E19)(@) ) (Eng) (@)]* dx = f (et gs) (Ts) P (E o gs) (Taa)|* de

- L " |(Eta.arv198) (@) *1(Eppmgs) ()] de. (3.8)

Note that d can be negative, however since g : [0,1] — C and d = o — 8, Eqa+1e195 is
defined. Since |3| < 1, T3(B) < 100B. Combining this with 11005 < 71005 gives that (3.8) is

N

Lz“g[dd”a 98) (@) *1(€10,1198) () [*moon () dw

-2 fR (€4,99)(2)(E95) (@) (E0m98) (@) 'moos (@) dz. (3.9)

Jl,JQEPVQb([d,d-FVa])

We claim that if d(Jy, Jo) > 100271, the integral in (3.9) is equal to 0.

Suppose Ji, J» € Pav([d,d + v*]) such that d(J;, J5) > 100?71, Expanding the integral

in (3.9) for this pair of Jj, Jo gives that it is equal to

3
JRQ (L 0w [0 Hgﬁ §)95(&ivs)e Hd&)mow( ) dz (3.10)

where the expression inside the e(---) is

(G — &)z + (& — D) + (o + & — & — &)rr + (65 + & — & — &) wa).
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Interchanging the integrals in £ and x shows that the integral in z is equal to the Fourier
inverse of 1190p evaluated at

3

Z £z+3 72 z+3

i=1 i=1

w

Since the Fourier inverse of 7195 is supported in B(0,§2/100), (3.10) is equal to 0 unless

3
| Y (& — &iva)| < 67/200
i=1
3
- H—S ? : .
Z ¢ < 62/200 (3.11)

Since 0 < % and & € [0,v°] for i = 2,3,5,6, (3.11) implies

€1 — &alléy + &l = I — &3] < 5™ (3.12)

Since Iy, I, are 3v-separated, |d| = 3v. Recall that & € Jy, & € J and Jy, Jy are subsets of
[d,d + v®]. Write & =d +r and £ = d + s with r, s € [0,v%]. Then

&1+ &l = |2d + (r+ 8)| = 6v — |r + s| = 6v — 20" = 4v. (3.13)
Since d(Ji,JJo) > 100271 |& — &| > 10v®7L. Therefore the left hand side of (3.12) is

> 40v% | a contradiction. Thus the integral in (3.9) is equal to 0 when d(Jy, J5) > 100271,

The above analysis implies that (3.9) is

) Z fRng‘]lgﬂ)(x)H(nggﬂ)( 2)||(Epo v 98) (@) *moon () da.

J1,J2€P 21 ([d,d+17])
d(Jy,J2)<10020—1

Undoing the change of variables as in (3.8) gives that the above is equal to

| (e @llEnn@llEna) @) monn(Tse) de. (314

J1,J2€P 2 (11)
d(J1,J2)<1002b—1
Observe that

77100B(T65B) < 102400101003(T6.CE) 10 2600 wlDOB(LE) < 102800’LUB($)
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where the second inequality is an application of Lemma 2.2.16 and the last inequality is
because wg(x) twigop(z) < 102, An application of Cauchy-Schwarz shows that (3.14) is

<1090 S (| lEnollEnglen) | 1EnPEnglwn)
R R

J1,J2€P 2 (1)
d(J1,J2)<100201

Note that for each J; € P, (I;), there are < 10000v~ ! intervals Jo, € P2 ([;) such that

d(Jy, J2) < 100271, Thus two applications of Cauchy-Schwarz bounds the above by

102892, —1/2< Z J €5.9] |<‘3129|47v019)1/2

J1€P, 25 (I1)
(N3] Pt

JIEP 2p(I1)  J2€P 2p(12)
d(Ja, J2)<101/2b 1

Since there are < 10000v~ ! relevant J, for each J;, the above is

<10 S [ (esgPlenslen

JeP 2b Il

< 10712 My, (5,)°C Y 1€191 700 D 1€r91 ()’
JePs(I) J'ePs(I2)

where the last inequality is an application of Lemma 3.2.6. This completes the proof of

Lemma 3.2.8. O

Iterating Lemmas 3.2.4 and 3.2.8 repeatedly gives the following estimate.

Lemma 3.2.9. Let N € N and suppose 6 and v were such that 2 51 e N. Then

J 1 ) 2 i 1) j+1
QN 1)32ND( 2N)3‘2N D(_)1/2 ’ *
14

J=0

Ml 1(5 V) < 1060000 71/3D(

v

Proof. Lemmas 3.2.4 and 3.2.8 imply that if 1 < a < 2b and 6 and v were such that
1?6~ e N, then

J

Map(8,v) < 1020005~ VO M, 5(6,v) 2D (). (3.15)
1%

Since 12 6 ' e N, /6~ e Nfor i =0,1,2,...,2V. Applying (3.15) repeatedly gives

6 1
40000,,—1/3 + 1/2J+
M, 1(6,v) < 10 Mon-19v (6, v) N |_| sz .
Bounding Mj~-1 onv using Lemma 3.2.3 then completes the proof of Lemma 3.2.9. O]
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Remark 3.2.10. A similar analysis as in (3.11)-(3.13) shows that if 1 < @ < b and 0 and
v were such that 107! € N, then M,;(5,v) < Myu(6,v). Though we do not iterate this
way in this section, it is enough to close the iteration with M,;, < M, for 1 < a < b, and
My < V_I/GMQM,, and Lemma 3.2.4. This gives M) < 1/_1/6]\/[2117/’2%D(5/V )1/2 which is much
better than the trivial bound. We interpret the iteration and in particular Lemma 3.2.8 this

way in Sections 3.3-3.5.

3.2.3 The O.(0~¢) bound

Combining Lemma 3.2.9 with Lemma 3.2.5 gives the following.

Corollary 3.2.11. Let N € N and suppose 0 and v were such that 2" 51 eN. Then

v v

5 ) _ o 1 5 o N ) it
D) < 10" (D) + 13 D(e) D) [] D))

=0
Choosing v = 62" in Corollary 3.2.11 and requiring that v = 62" € N~1 ~ (0,1/100)
gives the following result.

Corollary 3.2.12. Let N € N and suppose § was such that 62" € N and § < 10072".
Then

N—
D(5) < 10 (D(a1 W) 4§y ]_[ )

=0
Corollary 3.2.12 allows us to conclude that D(J) <. 6. To see this, the trivial bounds
for D(0) are 1 < D(8) < 0~Y/2 for all 6 e N™'. Let \ be the smallest real number such that
D(8) <. 0727 for all § € N1 From the trivial bounds, A € [0,1/2]. We claim that A = 0.

Suppose A > 0.

Choose N to be an integer such that

5 N 4
E . 1
62 3 (3.16)

Then by Corollary 3.2.12, for 6~ %2" € N with § < 10072",

D(6) <. 67 207a)7e 4 57 5an v Xine (1-gn=) gt ==

5—)\(1—2%)—5_1_5—/\(1—(%4-%—%)2%\,)—5 < 5—)\(1—2%\,)—5
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where in the last inequality we have used (3.16). Applying almost multiplicativity of the
linear decoupling constant (similar to Section 2.10 or the proof of Lemma 3.2.14 later) then

shows that for all § € N71,
D(5) gN,s 5*)‘(1*2%)75.

This then contradicts minimality of A. Therefore A = 0 and thus we have shown that

D(6) <. 6 forall 6 e N1,

3.2.4 An explicit bound

Having shown that D(d) <. 0~°, we now make this dependence on ¢ explicit. Fix arbitrary

0 <& < 1/100. Then D(6) < C.67° for all § € N~1.

Lemma 3.2.13. Fiz arbitrary 0 < € < 1/100 and suppose D(6) < C.6~° for all § € N71.
Let integer N =1 be such that
5 N 4

2L N2
672 37

Then for & such that 62" € N and § < 10072", we have

1
€

D) <2-100°CL g5,

Proof. Inserting D(9) < C.6~¢ into Corollary 3.2.12 gives that for all integers N > 1 and ¢
such that 672" e N, § < 10072", we have
D(5) < 101 (CLo3 4+ L 2% gan G ¥ =)y 5-e.
Thus by our choice of N,
D(5) < 10" (C.65% + Cb 5 )5, (3.17)

There are two possibilities. If § < C-!, then since 0 < & < 1/100, (3.17) becomes

= _ e 2 __&_
D(0) < 10°°(C: 27 4 Cr 7V )5F <2100 2V 5e, (3.18)
On the other hand if § > C!, the trivial bound gives

D(¥) < 9100/65-1/2 2100/6081/2
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which is bounded above by the right hand side of (3.18). This completes the proof of Lemma
3.2.13. O

Note that Lemma 3.2.13 is only true for § satisfying 62" € N and § < 10072". We now

use almost multiplicativity to upgrade the result of Lemma 3.2.13 to all 6 € N1,

Lemma 3.2.14. Fiz arbitrary 0 < & < 1/100 and suppose D(§) < C.67° for all § € N1,
Then

D(6) < 1010624'8”5051_81%5—6

for all § e N1,

Proof. Choose

N = [% - 21 (3.19)

and 6 € {272""}* = {5,}*_.. Then for these §, 6" € N and § < 10072". If § €
(67,1] n N1 then

D((S) < 2100/65—1/2 < 2100/622N*1~7‘

If § € (841,05 for some n > 7, then almost multiplicativity and Lemma 3.2.13 gives that

D(6) < 1020000D(6H)D(£)

O
__e )
< 10200009 . 10105051 2N 5=y (9100/6(Ony1/2
( )@y
< 101092V ol AV e

where N is as in (3.19) and the second inequality we have used the trivial bound for D(§/9,,).

Combining both cases above then shows that if N is chosen as in (3.19), then
D(6) < 101°272" 7 72V 5=

for all 6 € N7, Since we are no longer constrained by having N € N, we can increase N to

be 3/e and so we have that
D(8) < 10102487 o757 2

for all § € N1, This completes the proof of Lemma 3.2.14. O
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Lemma 3.2.15. For all 0 <& < 1/100 and all § e N7', we have
D(5) < 2200 5=,

Proof. Let P(C,)\) be the statement that D(5) < C§* for all § € N7'. Lemma 3.2.14
implies that for € € (0,1/100),

5 1_%5
P(C.e) = P(10"°248"°C. ¥'7 ¢,

Iterating this M times gives that

e A=)

5 € - _ i 1—
P(C.e) = P([1010624.81/ ]Zj]viol(l e’ oA o).

Letting M — oo thus gives that for all 0 < e < 1/100,
D(5) < (101062481/5)81/8/86—6 < 21001/6/55—5 < 22001/65—5
for all § € N=1. This completes the proof of Lemma 3.2.15. O]
Optimizing in € then gives the proof of our main result.

Proof of Theorem 3.1.1. Note that if n = log A —loglog A, then nexp(n) = A(1 — %) <

A. Choose € such that A = (log, 200)(log 5), n = £ 10g 200, and 1 = log A — loglog A. Then
1/e 1
2007 log2 < elog 5

and hence

1/e ]_
2200 5-¢ < exp(2e log 5) (3.20)

Since n = log A—loglog A, we need to ensure that our choice of ¢ is such that 0 < ¢ < 1/100.

Thus we need

_ log 200 _ 1
~ log((log, 200)(log £)) — loglog((log, 200)(log 3)) ~ 100°

107



1/2

Note that for all z > 0, loglogz < (log z)"/# and hence for all 0 < § < e_1°g24200,

1 1
log((log, 200)(log ) — log log((log, 200)(log +))
1 1
> log((log, 200) (log 5)) — [log((log, 200)(log ))]**
1 1 1 1
>3 log((log, 200)(log 5)) >3 log log 5 (3.21)

4
Thus we need 0 < § < e 8220 to also be such that

21log 200 1
—1 < _
loglog s 100

and hence 0 < e=209""  Therefore using (3.20) and (3.21), we have that for § € (0,e20"") A
[\

log %

D(0) < exp(30 ).

log log %

This completes the proof of Theorem 3.1.1. O]

3.3 An uncertainty principle interpretation of Lemma 3.2.8

The main point was of Lemma 3.2.8 was to show that if 1 < a < 2b,  and v such that

v?6~1 e N, then

| tengPlengtt < vt Y
B

JEPVQb (11

| tesstiengt 3.2
)

for arbitrary I) € P,«([0,1]) and Iy € P,([0,1]) such that d(I;, [) 2 v. From Lemma 3.2.9,
we only need (3.22) to be true for 1 < a < b. Our goal of this section is to prove (heuristically

under the uncertainty principle) the following two statements:
(I) For 1 < a <b, Myp(6,v) < Mp(d,v); in other words

| tengPlenst < | tesgPlensl (323
B B

JGPyb(Il)
for arbitrary I, € P, ([0, 1]) and I € P,([0, 1]) such that d(Iy, [5) = v.
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(IT) My,(6,v) S v~ Mayy (8, v); in other words

f Engllengt <t Y
B

JEP o (11

INCZEEYE (3.2)
) B
for arbitrary Iy, I € P,([0,1]) such that d(Iy, I5) 2 v.

Replacing 4 with p — 2 then allows us to generalize to 2 < p < 6 (in Section 3.6 we illustrate
this in the case of p = 4). Note that all results in this section are only heuristically true. In
this section we will pretend all weight functions are just indicator functions and will make

these heuristics rigorous in the next section.

The particular instance of the uncertainty principle we will use is the following. Let I be
an interval of length 1/R with center c¢. Fix an arbitrary R x R? rectangle T oriented in the
direction (—2c, 1). Heuristically for z € T, (£7g)(z) behaves like ap ;e*™ .11 (x). Here the
amplitude ar depends on g, 7T, and [ and the phase wy depends on T" and I. In particular,
|(E1g)()| is essentially constant on every R x R? rectangle oriented in the direction (—2c, 1).
This also implies that if A is a square of side length R, then |[(£;g)(x)] is essentially constant
on A (with constant depending on A) and |Eg| 17,(a) Is essentially constant with the same

constant independent of p.

We introduce two standard tools from [BD17, BDG16].

Lemma 3.3.1 (Bernstein’s inequality). Let I be an interval of length 1/R and A a square
of side length R. If 1 < p < g < o0, then

1€19l23, ) < [€19ll12,()-

We also have

[€rgloa) < [E€r9lr, (a)-
Proof. See [BD17, Corollary 4.3] or Lemma 2.2.20 for a rigorous proof. O

The reverse inequality in the above lemma is just an application of Holder.
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Lemma 3.3.2 (I?L? decoupling). Let I be an interval of length > 1/R such that R|I| € N
and A a square of side length R. Then

1€r9]L2(a) < ( Z HngH%?(A))l/Q-

JGPl/R(I)

Proof. See [BD17, Proposition 6.1] or Lemma 2.2.21 for a rigorous proof. Il

The first inequality (3.23) is an immediate application of the uncertainty principle and

I12L? decoupling.

Lemma 3.3.3. Suppose 1 < a <b and § and v were such that v°6~' € N. Then

f EngPIEngl < f €591 1Engl!
B

JeP (1)

for arbitrary I, € P,([0,1]) and Iy € P,([0,1]) such that d(I,,15) 2 v. In other words,
Ma7b((5, V) S Mb,b(67 I/).

Proof. It suffices to show that for each A’ € P,—+(B), we have

Z f E59P Engl".

JEP

f EngPIEngl <
A/

Since I, is an interval of length 1, |Ef,g] is essentially constant on A’. Therefore the above

f Engl <
A/

which since a < b and I is of length v* is just an application of [?L? decoupling. This

reduces to showing

I L

JeP, (1)

completes the proof of Lemma 3.3.3. n

Inequality (3.24) is a consequence of the following ball inflation lemma which is reminis-
cent of the ball inflation in the Bourgain-Demeter-Guth proof of Vinogradov’s mean value
theorem. The main point of this lemma is to increase the spatial scale so we can apply [2L?

decoupling while keep the frequency scales constant.
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Lemma 3.3.4 (Ball inflation). Let b > 1 be a positive integer. Suppose Iy and Iy are

—2b

v-separated intervals of length v°. Then for any square A’ of side length v=2°, we have

A 2 4 < .1 2 . 4 N
Aep V§ thgHLQ#(A)H‘SbgHLi#(A) SV H‘gthL;(A)H‘SIQQHL;(A)

Proof. The uncertainty principle implies that |£7, g| and |, g| are essentially constant on A.

Therefore we essentially have

1 1
Avg | En9|? Enal? ~— E
AeP, (A ” n HLi(A)H 2 HL%&(A) |Pl/’b(A,)| AeP _,(A") |A|

1
- 1 | lenoPlensl

f EngPIEngl’
A

On A, note that |£,g] ~ Y7 len|1r, and similarly for I, where {T;} are the v=° x v=2
rectangles covering A’ and pointing in the normal direction of the cap on the parabola living
above I;. Since I; and Iy are v-separated, for any two tubes T, T corresponding to [y, I,

we have [T} N Ty| < v~ 172, Therefore

1 _
| enaientt ~ vt

| 4 T,
Since
thgﬂii(g)HSIQQHALL;(A/) ~ ,‘2 Z ler, [*|en|*
11Ty
and |A’| = 7% this completes the proof of Lemma 3.3.4. O

We now prove inequality (3.24).

Lemma 3.3.5. Suppose § and v were such that v**6~ € N. Then

j EngllEnglt < vt Y j €59P Engl’
B

JeP o4 (I1)

for arbitrary I, € Pu([0,1]) and Iy € P([0,1]) such that d(I1,15) 2 v. In other words,
Mb,b(5> V) < V_1/6M2b7b(6, I/).
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Proof. This is an application of ball inflation, [?L? decoupling, Bernstein, and the uncertainty
principle. Since v?*67! € N, 10! € N and § < v*. Fix arbitrary I}, I, € P([0,1]). We

have

> f EngllEngl*

AEP —b (B

S j €0,0P)|Engltecs)
(B) VA

AEPV,b
1

1 ) )
ST 5 (| e enlty

AEPV_;)(B)

A ] I 2
AEPVng(B)HE’,IIgHLi(A) ||8129HL;1¢(A) (3.25)

1
5 L EngPIEngl =

N

where the second inequality is because of Bernstein. From ball inflation we know that for

each A’ € P, -2 (B),

A 2 4 < _1 2 ! 4 7\ *
Aepulbg(A/)thgHLi(A)HgfngL‘l#(A) SV ||5119“Li(A )H&QQHL;(A)

Averaging the above over all A’ € P,-2(B) shows that (3.25) is

<v ™t Ave €92 anlELGlEe .
W Bl €l

Since I; is of length v*, [?L? decoupling gives that the above is

vt )] Avg H‘S'JQH%;&(A’)Hgfngi‘;#(A’)
JePVQb (]1) Alepufgb (B)

1
| 4 )
Sk PPV e

JEP 2 (I1) A’€P,_2(B)

1
o1t \ )
=y B Z Z 5 (JA, \E1,9] )||5Jg||Li(A,)_

JeP o (I1) A’eP 5, (B)

Since |€;¢| is essentially constant on A’, the uncertainty principle gives that essentially we

have
(| tengt sy ~ | tEsPlensl
A A

Combining the above two centered equations then completes the proof of Lemma 3.3.5. [
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Remark 3.3.6. The proof of Lemma 3.3.5 is reminiscent of our proof of Lemma 3.2.8. The
|€1,9]lL=(a) can be thought as using the trivial bound for &, i = 2,3,5,6 to obtain (3.12).
Then we apply some data about separation, much like in ball inflation here to get large

amounts of cancelation.

3.4 An alternate proof of D(d) <. 6°°

The ball inflation lemma and our proof of Lemma 3.3.5 inspire us to define a new bilinear
decoupling constant that can make our uncertainty principle heuristics from the previous

section rigorous.

The left hand side of the definition of D(9) is unweighted, however recall that Proposition
2.2.11 implies that
|€019150s) < DO D, 1€s910wm) ™ (3.26)
JePs([0,1])

for all g : [0,1] — C and squares B of side length §—2.

We will assume that 6! € Nand v € N™'(0,1/100). Let M,4(6, v) be the best constant

such that

Avg 1912 o IErglte
per V8 B9l s [y )

< Map(6,0)°( )] 1€1901 75, 1)) > 1€090 %8, ())*

JePs(I) JePs(I')

(3.27)

for all squares B of side length §72, g : [0,1] — C and all intervals I € P,.([0,1]), I’ €
Pu([0,1]) with d(I,T') > v.

Suppose a > b (the proof when a < b is similar). The uncertainty principle implies that

1 1
A Engl? Englt ~ —f EnglMEngl?
veg )H IIQHL;(A)H IQQHL;;(A) 1P, (D) Z(B)(’A| A\ 1,919l hQHL;(A)

AeP, (B AeP .,
v

1
T JB EngPIEngl’

where the last ~ is because |£7, g| is essentially constant on A. Therefore our bilinear constant

M, is essentially the same as the bilinear constant M, ;, we defined in (3.2).
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3.4.1 Some basic properties

Lemma 3.4.1 (Bernstein). Let I be an interval of length 1/R and A a square of side length
R. Then

|11 a) S 109l 2z, wa):

Proof. See [BD17, Corollary 4.3| for a proof without explicit constants or Lemma 2.2.20 for

a version with explicit constants. O

Lemma 3.4.2 (I2L? decoupling). Let I be an interval of length > 1/R such that R|I| € N

and A a square of side length R. Then

Hgfg||L2(’UJA)S( Z ||5J9H%2(m))1/2-
JePy gr(1)

Proof. See [BD17, Proposition 6.1] for a proof without explicit constants or Lemma 2.2.21

for a version with explicit constants. n

We now run through the substitutes of Lemmas 3.2.3-3.2.5.

Lemma 3.4.3. Suppose § and v were such that v*6~', v°6~t € N. Then

May(6,v) < D(£)1/3D(£)2/3.

pe vb

Proof. Let I, € P,.([0,1]) and I € P([0,1]). Holder’s inequality gives that

Avg glgzw 5194w
Aepu—max(a,b)(B)” 1 HLg#( ol€n HL;( 5

< Avg glg2w 5194w
Aepumax(a,b)(B)H 1 HL%( A)H 2 ||L§¢( A)

<(Avg Engllg ) Aves (€l )
<A€Py,max(a,b)(3)” 1 HL%( A)> (AEPVmaX(a,b)(B)| 2 HL%( A))

< ||5119H2Lg£(w3)||5129\|Ai;(w3>

where the last inequality we have used that )\ wa <, wg (see Proposition 2.2.14). Finally

applying (3.26) with parabolic rescaling then completes the proof of Lemma 3.4.3. O
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Lemma 3.4.4. Suppose v*6~',v°6~ 1 € N. Then

Mo (0,v) < Mpa(9, V)l/QD(%)l/Q.
Proof. Let I € P,a(]0,1]) and Iy € P([0,1]). We have
Avg  1Engliz €91 Ts (wa)
AP max(arn)
< Ave €091z wwa) €090 13 we) €918 oa)

AGPV— max(a,b) (B)

< ( Avg thg”ii(m)HgIzQH%;(wA))l/z( Avg Hglngi;(wA))m

AGPV— max(a,b) (B AGPD— max(a,b) (B

< 4 2 1/2 3
~ (Aepu‘é:ii‘b) (B)thg”Li(wA)HgIngLi(wAQ HgbgHLg&(wB)

where the first and second inequalities are because of Holder and the third inequality is an
application of Holder and the estimate ), wa < wp. Applying parabolic rescaling and the

definition of M, , then completes the proof of Lemma 3.4.4. O

Lemma 3.4.5 (Bilinear reduction). Suppose § and v were such that v6~' € N. Then

D((S) §n D(é) + V_1M171(6, l/).

v
Proof. The proof is essentially the same as that of Lemma 3.2.5 except when analyzing (3.7)

in the off-diagonal terms we use

ol st g = Ave o5 ] 1Pl of
< Ae?y‘_flg(B)51,-9|%i(A)||51j9§oo(A)
< AE?V\S% )HSI,-Q \ii(wA)||5Ij9HAi;£(wA)
where the second inequality we have used Bernstein. O]

3.4.2 Ball inflation

We now prove rigorously the ball inflation lemma we mentioned in the previous section.
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Lemma 3.4.6 (Ball inflation). Let b > 1 be a positive integer. Suppose Iy and Iy are

v-separated intervals of length v°. Then for any square A’ of side length v=2°, we have
2 4 -1 2 4
LN R GV TN T PO

Proof. Without loss of generality we may assume that A’ is centered at the origin. Fix
intervals I; and I, intervals of length v which are v-separated with centers ¢, and c,
respectively.

Cover A’ by a set 7; of mutually parallel nonoverlapping rectangles T} of dimensions
v~ x v~ with longer side pointing in the direction of (—2¢, 1) (the normal direction of the
piece of parabola above I;). Note that any v~° x =2 rectangle outside 4A’ cannot cover A’
itself. Thus we may assume that all rectangles in 7; are contained in 4A’. Finally let T} (z)

be the rectangle in 7; containing z. Similarly define 75 except this time we use Is.

For x € 4/A’, define

SUDyeaT (2) thgHL;&(wB@fb)) if e Uper, Th

0 it © € AA\ Upers Th

Fi(z) =

and

SupyEQTQ(ZE) thgHLiﬁ(wB(y,y—b)) ifxe UTQG’TQ T2

0 it 2 € 4A\ Upyer, T

FQ(.’E) =

Given a A € P,»(A'), if z € A, then A < 2T;(x). This implies that the center of A,

ca € 2T;(z) for x € A and hence for all z € A,

thgHLi(wA) < Fi(x)

and

”gfngLi#(wA) < Fz(l’)

Therefore

1
08135 €11 ) < 737 | PPl (3.29)
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By how F; is defined, F; is constant on each T; € 7;. That is, for each = € UTieTi T;,
Fy(z) = Z cr 1z, (2)
Tieﬂ
for some constants ¢z, = 0.

Thus using (3.29) and that the T; are disjoint, the left hand side of (3.28) is bounded

above by
1 2 4 1 2 4 v 2 4
A Fi(z) Fy(x)" dr = Y] Z cr.cr,|Th nTh| S v ) Z CT,Cr, (3.30)
A Tl,Tz T17T2

where the last inequality we have used that since I; and I, are v-separated, sine of the angle

between Ty and Ty is = v and hence |T} N Ty| < v~172°. Note that
—3b
2 _ v 2
“F1‘|Li(4A/) = —|4A’\ ;CTl
and
L—3b
P74 aan = =1 O, Chy-
IPel g 0y = A7 Z
Therefore (3.30) is
-1 2 4
SV ”FlHLi(A‘A’)”FQHL;&(ALA’)’
Thus we are done if we can prove that

HFlHi;é(w) < Hff’hgﬂi;(%,)

and
HF2HZ£;£(4A') S HSIQQHLE;;(%,)
but this was exactly what was shown in [BD17, Eq. (29)] (and Lemma 2.6.3 for the same

inequality but with explicit constants). O]

Our choice of bilinear constant (3.27) makes the rigorous proofs of Lemmas 3.3.3 and

3.3.5 immediate consequences of ball inflation and [*L? decoupling.
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Lemma 3.4.7. Suppose 1 < a < b and § and v were such that v°6~' € N. Then
Mﬂ,b(57 V) < Mb,b((sv V)'

Proof. For arbitrary I; € P,([0,1]) and I € P,+([0, 1]) which are v-separated, it suffices to
show that

Avg gIQQw gfg4w < Avg 5J92w 51941”'
sive Il €191 ) Je];wepﬂ(m 122 s N1 ()

But this is immediate from [2L? decoupling which completes the proof of Lemma 3.4.7. [
Lemma 3.4.8. Let b > 1 and suppose § and v were such that v**6~' € N. Then

Mb,b((sa V) < V71/6M2b,b(57 V)'

Proof. For arbitrary I; € P,.([0,1]) and I € P,+([0, 1]) which are v-separated, it suffices to

prove that
Ave  [Engl7s ) l€n9lTs sy S VT Avg  €191%2 ) 1€1915 ()
AP, o(B) #(wa) T () JePszl;(Il)A,EPD%(B) #(0a) T war)

But this is immediate from ball inflation followed by I2L? decoupling which completes the
proof of Lemma 3.4.8. O

Combining Lemmas 3.4.4, 3.4.7, and 3.4.8 gives the following corollary.

Corollary 3.4.9. Suppose § and v were such that v**5~' € N. Then
4]

1/2
)

Myy(5,1) S v Moy (8, )2 D(

This corollary should be compared to the trivial estimate obtained from Lemma 3.4.3

which implies My, (0, ) < D(6/v°).

3.4.3 The O.(6¢) bound

We now prove that D(§) <. 07°. The structure of the argument is essentially the same as

that in Section 3.2.3. Repeatedly iterating Corollary 3.4.9 gives the following result.
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Lemma 3.4.10. Let N be an integer chosen sufficiently large later and let 6 be such that

V2" e N and 0 < 6 < 100~2". Then
N—

D(o

2]+1 A

7=0

Proof. Tterating Corollary 3.4.9 N times gives that if § and v were such that 2" 6! € N,

then
! 5
Mii(0,v) S V_1/3M2N,2N(5, V)1/2 . H D(—)2"T
=0V

Applying the trivial bound for the bilinear constant bounds gives that the above is

T = N
Sy D)V [ D)o
1%

23
j=o Y

Choosing v = 62" shows that if 6=%2" € N and 0 < § < 100~2", then

N—
1
2N J 27+1‘

M1 (6,627 <

By the bilinear reduction, if § was such that (5_1/ 2 eNand 0 < § < 10072", then

N—
D(5) < D(5'73%) + § 321 ]_[ a7 ) e

7=0

This completes the proof of Lemma 3.4.10. O]

Trivial bounds for D(§) show that 1 < D(8) < 6~2 for all 6 e N~!. Let A be the smallest
real number such that D(§) <. §27¢ for all § € N7L. From the trivial bounds \ € [0,1/2].
We claim A = 0. Suppose A > 0.

. . 8
Let N be a sufficiently large integer > 5%

N 4
42 2oy
T3 T

Lemma 3.4.10 then implies that for § such that 672" € N and 0 < § < 10072", we have

. This implies

D(8) <. M3 4 Mg (45 —50)=e < 5=A(1-gk)—<

~NE

where the last inequality we have applied our choice of N. By almost multiplicity we then
have the same estimate for all § € N~! (with a potentially larger constant depending on N).

But this then contradicts minimality of A\. Therefore A = 0.
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3.5 Unifying the two styles of proof

We now attempt to unify the Bourgain-Demeter style of decoupling and the style of decou-
pling mentioned in the previous section. In view of Corollary 3.4.9, instead of having two

integer parameters a and b we just have one integer parameter.

Let b be an integer > 1 and choose s € [2,3] any real number. Suppose § € N1 and

v e N~1 1 (0,1/100) were such that /6~! € N. Let M{” (8, ) be the best constant such that

2 6—s
Avg ()] ||5J9H%§¢(m))2( > |\5J'9Hii(%)) ?
Aenyb(B) JEPyb(I) J/EPDb(I/) (3 31>
s s 6—s '
<MPE ) Y €T s P (D 109l g0y 2
JePs(I) J'ePs(I')

for all squares B of side length 672, ¢ : [0,1] — C, and all intervals I, I’ € P,([0,1]) which
are v-separated. Note that left hand side of the definition of Ml()S)(é, v) is the same as
Ag(q, B",q)® defined in [BD17] and from the uncertainty principle, Mgz)(é, v) is morally the
same as M 1(0,v) defined in (3.2) and M (d,v) defined in (3.27). The [? piece in the
definition of M,()s)(é, v) is so that we can make the most out of applying [*L? decoupling.

We will use Ml()s) as our bilinear constant in this section to show that D(J) <. 67°. The

bilinear constant M,()S) obeys much the same lemmas as in the previous sections.

Lemma 3.5.1 (cf. Lemmas 3.2.3 and 3.4.3). If § and v were such that v°6~' € N, then

MY (5,0) < D(2).

b
Proof. Fix arbitrary I, I, € P,([0,1]) which are v-separated. Moving up from L7 to Lj
followed by Holder in the average over A bounds the left hand side of (3.31)
6\g 6\6—s
( Avg (3, €907 w0a))?) (Ave ( D 1E€rglTe ) )

AP, ~0(B) Jep,,(n) Fov(B) yrep, (1)

Using Minkowski to switch the * and [° sum followed by >, wa < wp shows that this is

2 £ 2 6-s
< ( Z HSJQHL%(UJB))Z( Z HSJ’QHL;(»LUB)) 2.
JGPUb(I1) J’EPUb(Ig)
Parabolic rescaling then completes the proof of Lemma 3.5.1. O
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Lemma 3.5.2 (Bilinear reduction, cf. Lemmas 3.2.5 and 3.4.5). Suppose § and v were such

that v6~* € N. Then
0 -1
D($) < D(— )~|—1/ M (6, v).
Proof. Note that the left hand side of the definition of Mgs)(é, V) is

Avg [€ngle wA)H&Qg\Lz

AeP,_1(B) (wa)’

Proceeding as in the proof of Lemmas 3.2.5 and 3.4.5, for [;,I; € P,(]0,1]) which are v-

separated, we have

1 2 1 2 5
lIEngliEn gl s < | 16 )| [Engl' Lo (5 (3.32)
We have
1-516 _ AVg 6—s
‘ Lf#(B) AeP, ’A| ‘
< Avg mlEn 9Tt
AEPV_1(B)

S Avg (€190 o) I€L )77
AEP 1(B

2(wa)

where the last inequality we have used Bernstein. Inserting this into (3.32) and applying the
definition of Mgs)(é, v) then completes the proof of Lemma 3.5.2. [

Lemma 3.5.3 (Ball inflation, cf. Lemma 3.4.6). Let b > 1 be a positive integer. Suppose I
and Iy are v-separated intervals of length v. Then for any square A’ of side length v=2° and

any € > 0, we have

s 6=s
Avg  ( Z HSJQH%;&(wA))2( Z HSJ’g”ii*S(wAQQ

AeP, (A7) JeP ;(I1) J'eP ; (I2)

—1—be 5 B
< v Z €59 %;(wA/)ﬁ( Z ||8J/9Hig;5(wA/)) ’

JEPU}, (Il) J’ePyb(Ig)

El

Proof. The s = 2 case be proven directly using Lemma 3.4.6 without any loss in »~". The
proof for s € (2, 3] proceeds as in the proof of ball inflation in [BD17, Section 9.2] (see also

Section 2.6 for more details and explicit constants).
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From dyadic pigeonholing, since we can lose a v~%, it suffices to restrict the sum over J

and J’ to families F; and F, such that for all J € Fy, |E59

L3, (wy) AT€ comparable up to a
factor of 2 and similarly for all J' € F,. Holder gives

s 6—s
Avg (D 15007 wa)) ( 2] 1€0007s )

AeP, 4 (&) Jer, JIeFs

<<#f1>%*1<#f2>6*?*1A Avg (X 1659035 ) Zusmgm )

v(A) JeF J'eFs

The proof of Lemma 3.4.6 shows that this is

RON Y 1€59155% )

JeF1 J'eFs

71(#]‘—1) #]:2

Since for J € Fy the values of |€,9|Ls,(w,,) are comparable and similarly for J’ € 73, the

above is
El 6—s
SV 1E91T g ) 20 1Eral T e,)
JeF, J'eFa
This completes the proof of Lemma 3.5.3. O

Lemma 3.5.4 (cf. Corollary 3.4.9). Suppose § and v were such that v**6~* € N. Then for
every € > 0,

J

Ml()S)((S, I/) <. V_%(1+b5)MgZ)(5, V)l/ZD(F)l/Q-

Proof. Let 6 and ¢ be such that & + 120 = 1 and £ + 1o _ 7. Then Hélder gives
— 1—
e < | £ £ and | Fllze-s < IF1:0F156%.

Fix arbitrary Iy, I, € P,([0,1]) which are v-separated. We have

6—s

Avg (] 1€59172, (wa)) 2 ( > 1€59172 ()

ACP,-0(B) JeP (1) JEP, (1)

s 6—s
< Avg o Ave (3 €0l wa) 0 X 1Erglie )

A'EP, 2y (B)AEP, (&) yep (1)) J'eP,y (I2)
—S

—1—be s 6
<cv ' Avg Z €59 %;(%,))2( Z \|5J’9||i§;75(%,)) ?

A'€P, 2 (B) jep \(1y) J'eP 4 (I2)

where the first inequality is from Holder and the second inequality is from ball inflation. We

now use how 6 and ¢ are defined to return to a piece which we control by I2L? decoupling
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and a piece which we can control by parabolic rescaling. Holder (as in the definition of

and @) gives that the average above is bounded by

Avg (D) €93 g IEslT ) X

Al -2(B) jep ,(n)

2(1 6—s
(2 1EwgliG g IErglie 2 )7
J'EP  (I2)

Holder in the sum over J and J’ shows that this is

e

< Avg )(< S el Y I€lty,))

A’eP (B JeP (I1) JEP,;(I1)
6—s
2
(€ 2 Ierlyua)t X Iensly))
J’EPyb(IQ) JIEPU[)(IQ)

Since s = 3 — 5 and ¢(6 — s) = 3, rearranging the above gives

] 3(3-3) 2 1l.s
Avg(B)(( Z HSJgHLi(wA’))2 2( Z HSJ’QHLi(wN)>2 2>><

A’EPI,—Qb JEP,,b(Il) J/EPVb(IQ)
Llgrs_ 1. s
<( D 1€s9lTe W )FPERC X 1€l )T 2>).
JEPVb(Il) J/epub(IQ)

Cauchy-Schwarz in the average over A’ then bounds the above by

1

(A (3 Il )T S lemly,)) x

A,GPV_Zb(B) JEPVb(Il) JIEPVb(IQ) ) (333)

3(s—2) 3(4—s) 2

(A (3 ey ) T X sty )

A/GPV72b(B) JEPVb(Il) J/EPVb(IQ)
After [2L? decoupling, the first term in (3.33) is

s 1. 6-—s l.s

SME G0 D) 100502 7 (D IErglis )t (3.34)
JePs(Iy) J'ePs(I2)

Holder in the average over A’ bounds the second term in (3.33) by

(Avg (D) €9l w)) T Ave (3 €90y,

A'eP,_o,(B) jep b (1) A'eP,—2y(B) jep b(I1)

6, 4—s
2

)

Applying Minkowski to interchange the [ and [° norms shows that this is

3(s—2)
()] ng]gHii(wB)) ()] HgJ’QHQL;(wB))

JEP 1, (I1) J'EP,y(I2)
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Parabolic rescaling bounds this by

) 1.3(s=2) 1.3(4=s)
DOV S sl )T Y 1ol 5. (339
JePs(I) J'ePs(I2)
Combining (3.34) and (3.35) then completes the proof of Lemma 3.5.4. O

With Lemma 3.5.4, the same proof as Lemma 3.4.10 gives the following.

Lemma 3.5.5 (cf. Corollary 3.2.12 and Lemma 3.4.10). Let N be an integer chosen sufficient
large later and let § be such that 62" € N and 0 < § < 10072". Then
N—-1
D(8) <. D(6'73) + 6wy oav [ | D(8' 77 )5,
3=0
Proof. This follows from the proof of Lemma 3.4.10 and the observation that
11 , = 0 1
M (0,v) <. v TEV MR (0,0)55 [ | D(—57) 77,
along with Lemmas 3.5.1 and 3.5.2. ]

To finish, we proceed as at the end of the previous section. Let A € [0, 1/2] be the smallest

real such that D(§) <. ~*7°. Suppose A > 0. Choose N such that

1+N' 4>1
2 3\

Then for 6 such that 62" € Nand 0 < § < 100-2", Lemma 3.5.5 gives

D((S) <. 57/\(172%\,)75+57)\(172%\,(1+%f%))75(172—1\,)+2{\;\,fﬁgf\, (54(172%)75'

Almost multiplicativity gives that D(J) <n. 573N "¢ for all § € N~!, contradicting the

minimality of \.

3.6 An efficient congruencing style proof of [2L* decoupling for the

parabola

3.6.1 Setup and some standard lemmas

Having compared the iteration from Bourgain-Demeter with an efficient congruencing style

decoupling proof at L8, we compare the two arguments for some 2 < p < 6. We using
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techniques from the previous sections to prove an explicit upper bound for the [2L* decoupling
constant for the parabola. We will make use of the uncertainty principle at times, however
the rigorous argument can easily be made in a similar manner as how we transitioned from

Section 3.3 to Section 3.4.

Aside from the notation for the linear and bilinear decoupling constants, we adopt all
notation from the previous sections. For simplicity, in this section we write D(d) to be the
I2L* decoupling constant for the parabola. That is, for § € N7!, let D(d) be the best constant
such that

|€019lsm) < DO Y, 1€591Tswm)
JePs([0,1])
for all g : [0,1] — C and all squares B of side length 62
Let geom be the standard geometric mean. We will assume that 6! € N and v €

N1~ (0,1/10000). Fix arbitrary integer a > 1, Suppose § and v was such that v%§~! € N.
For this § and v, let M,(d,v) be the best constant such that

lzam) < Ma(8,v) geom( > [€59]7a(p) "
JEP(S(LL')

| geom €19

for all squares B of side length 672, g : [0,1] — C, and all intervals I}, I, € B,.([0,1]) with
d([17[2> > 3.

In Chapter 2 we showed that D(§) < exp(O((log +)*?)). In this section we will show
that the methods from the previous section give

D(5) < exp(O((log £)*)) (3.36)

which is qualitatively the same as the bound we obtained in Chapter 2.

Remark 3.6.1. Since 4 = 2 + 2, it turns out that we only need to have one frequency
scale in M,(9,v). One could also define an alternative bilinear decoupling constant with
two frequency scales M, ;(d, ) analogously as in (3.2). In this case, the key properties
are Moy(6,v) = My (5,v) and M,,(6,v) < v~=Y* My, (8,v). In both definitions we obtain
essentially the same iteration and that D(5) < exp(O((log 3)3/*)).
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We have the following standard lemmas which we will state without proof.

Lemma 3.6.2 (Parabolic rescaling). Let 0 < § < o < 1 be such that 0,6,5/0 € N, Let I
be an arbitrary interval in [0, 1] of length o. Then

)
1€19] 2By < D(;)( Z 1€19074 )"
JEP,;(I)

for every g : [0,1] — C and every square B of side length §=2.

Lemma 3.6.3 (Almost multiplicativity). Let 0 < § < o < 1 be such that 0,6,5/0c € N7},
then
D(0) < D(o)D(d/0).

Lemma 3.6.4 (Bilinear reduction). Suppose § and v were such that v6—' € N. Then

o

D(8) € D(=) + v ' M (5,v).
v

Lemma 3.6.5. If § and v are such that v*5~! € N, then

M,(6,v) < D(i)

ya
3.6.2 The key technical lemma

Much like how Lemma 3.2.8 was the key step in the previous section, the following key

technical lemma drives our iteration.

Lemma 3.6.6. Let a and b be integers such that 1 < a < b. Suppose § and v are such that

P61 e N. Then

Ma(57 V) < Mb<5> V)'

Proof. Tt suffices to assume that B is centered at the origin with side length 2. Note that

the integrality conditions imply that § < v* and since v=! e N, v%§~1, 1°6~1 € N.

Fix arbitrary intervals I} = [a, a + v*] and Iy = [, 8 + v*] both in P,.([0, 1]) and are

3v-separated. Observe that

| geom |Er,g \|Ai4(3) = JB En9*|Engl*.
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Let gs(x) == g(xz + B), Ts = (; %), and d := o — . Then shifting I, to [0, "] gives that
[ 100100 = [ (Einaromigs) (T30 Pl€l0,mig5) (T30 do
= J |(Eid,arve198) (@) (0.1 95) ()| da. (3.37)
T5(B)

Note that d can be negative, however since g : [0,1] — C and d = a — B, Eqa+1e195 is
defined. Since || < 1/2, T3(B) < 10B. Combining this with 105 < m105 gives that the

above is

N

[ a0 Etnergs) @ s (a)

= > J E198€5,95EK,95E K290 di- (3.38)

J1, JQEP b([d d+l/
K1 KQEP b([O 14 ])

We will show that the integral above is zero unless d(J;, Jo) < v* and d(K;, Ks) < 0. If
we can show this, then we can add these two conditions into the sum in (3.38) and hence
Cauchy-Schwarz bounds (3.38) by

Z f €1951* 1€k g5|* Mo da.

JeP 4 ([d,d+v"]
KeP,([0,v ])
Undoing the change of variables as in (3.37) gives that the above is equal to
Z J €197 |Exg*mon(Ts) de.
JeP b(Il)
KeP, b (12)
The definition of M, and the observation that n10p(1sr) < wp(zr) gives that the above is
bounded above by (here we will need a version of M, with the left hand side with weight

wp, but such a constant is equivalent to M)

MyO,v) D0 ) 1€mal ) Yy 1Ek9lTaw)

JEPVb(Il) J’EP(;(J) K/EP(;(K)

KeP 4 (I2)

<M (Y5 16591 Esm)C D 1€ Tsgun))-
JePs(I1) KePs(I2)

This then proves Lemma 3.6.6 provided we can add in the conditions d(J;, J;) < v* and

d(Ky, Ky) < v’ into (3.38).
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Fix Ji, Jo € Pu([d,d + v?]) and K, Ky € Ps([0,%]). Suppose d(Jy, J2) > °. We claim
that

J En98€1.95E K, 95€ K, 9pMop d = 0 (3.39)
R2

in this case. The case when d(K;, K5) > 1/ is similar. The left hand side is equal to

L e f (- Yo (x) da dé

RQ

where the expression in the e(---) is

(&1 —&— &+ &)a + (f% - é% - f§ + 53)1’2)-

Therefore by the Fourier support of 1195, (3.39) is equal to 0 unless

52
|§1—§2—§3+§4|<1—0
2 2 2 2 52
|§1—52—§3+§4|<1—0‘

Since d(Jy, J2) > v°, |& — & > v° and since I} and I, are 3v-separated, |&;, — &, > 3v. Note

that |&;] < 1 and

G-G-G+8=E -6+ -&)E -+ (E-&—-&+84) (& + &)

Therefore

1 B 1 B
6 — &+ & — &y < =0t < =L

We claim that the above inequalities are inconsistent. Since we are not given the relative

positions of the &;, we have the following two cases.

(’L) 51 > 52 and 54 > 53 OR 52 > 51 and 53 > 542 We have

52
=6 —&—E+& =18 — &+ & —&| =6 —&| > V.

b

Since § < v, we then have v* < ?°/10, a contradiction.
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(ZZ) §1 > £2 and fg > €4 OR 52 > 51 and 54 > 532 We have

1_10V2b1 > 6 — b+ & — &l =16 — &l + 16— &l =16 — & >,

a contradiction since b > 1 and v is sufficiently small.

Therefore in all cases (3.39) is equal to 0 when d(J;, Jo) > v*. This completes the proof of
Lemma 3.6.6. ]

The following alternate to Lemma 3.6.6 can also be used and is reminiscent of the proofs

of Lemmas 3.3.4 and 3.3.5.

Lemma 3.6.7. Let a be a positive integer. Suppose § and v are such that v**5~' € N. Then
M,(0,v) S v Y4 Moy (6, v).

Proof. We will make use of the uncertainty principle in this proof, but this can be made

rigorous through the same methods we used to make Section 3.3 rigorous.

It suffices to prove that

f EgP|Ergl* < v! 2 J €19 1Ergl? (3.40)
B JEP o, (1) VB

TP, 20 (I')
for I,1' € P,a([0,1]) with d(I,I") = v.

Fix I,1" € P,a([0,1]) with d({,I") 2 v. To show (3.40), it suffices to show that

1f 1
— ErglP|Ergl? < vt —J Eql?1E g 3.41
& ), [ErollEng] Z(I)‘A‘Amuw (3.41)

JEPVQG
J'eP 2q (I")

for each A € P,-2(B).

Since the uncertainty principle implies that |€;g| and |€;g| are essentially constant on

A, combining this with [2L? decoupling shows (3.41) reduces to showing that

1 o X
W JA |5Ig’2|51/9‘2 <v 1(m J; ‘519‘2)(W JA |£I’g’2)- (342>
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Now as in the proof of Lemma 3.3.4, the uncertainty principle says that on A, |Eg| ~
Sirler|ir and [Epg| ~ X4 [ |17 where {T'} and {T"} are v™* x v~2® rectangles covering
A’ and pointing in the normal direction of the cap on the parabola living above I and I’,

respectively.

Thus we would have (3.42) if we could show that for each pair of tubes T',7" associated

to 1,1, we have

1 1 1
(m JA lply) S v (m JA 1T)(m JA L) (3.43)

for some absolute constant C'. But since d(I, ") = v, the left hand side is equal to v~1(v®)
while the right hand side is v~!(v*)? which proves (3.43) and hence proves (3.40) which

completes the proof of Lemma 3.6.7. n

3.6.3 The iteration and endgame

First applying Lemma 3.6.4 followed by Lemma 3.6.6 and then Lemma 3.6.5 then gives the

following lemma.

Lemma 3.6.8. Let m > 10. Suppose 6 and v were such that v5~' € N. Then

D(d) < D(g) + y*lD(im).

v

Choosing v = §™ (and recalling that we also require v € N™' n (0,1/100)) gives the

following result.

Lemma 3.6.9. Let m > 10. Suppose § was such that 6~ e N and § < 100~™. Then
D(5) < D(§*7m) 4 5= Hm
where the implied constant is independent of m.
We now give a proof that D(d) <. 6 for all € > 0.

Proposition 3.6.10. For all 6 e N™!' D(4) <. 6.
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Proof. The trivial bounds for D(§) are 1 < D(8) < 6~Y/2 for all § e N™'. Let A be the
smallest real number such that D(§) <. 67 for all § € N7, From the trivial bounds,

A€ [0,1/2]. We claim that A = 0. Suppose A > 0.
Since A < 1/2, choose m to be an integer such that

1<1 1
mA m

Then by Lemma 3.6.9, for /™ e N with § < 100™™,
D(6) <. A=) 4 5= AGx) <. g A=) =
Applying almost multiplicativity then shows that for all § € N=1,
D(5) <me (5—A(1—%)—67

contradicting minimality of A\. Therefore A = 0. This completes the proof of Proposition

3.6.10. 0

Having shown that D(J) <. ¢, we now make this bound explicit. Fix arbitrary 0 <
£ < 1/100. Then D(§) < C.6 ¢ for all 6 e N™1,
Lemma 3.6.11. Fiz arbitrary 0 < e < 1/100. Let m > 10 be such that
1 1

- <]l = —
me m

and § such that 6~Y™ e N and § < 100~™. Then
D(8) < Cle/mg—=
where the implied is absolute.

Proof. Increasing C., we may assume that C. > 1. Inserting D(d) < C.6 ¢ into Lemma

3.6.9 gives that for all integers m > 1 and ¢ such that =™ € N and § < 100™™, we have
D(8) < (C.§m + 6 m*e)§e, (3.44)
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If additionally 6 < C-', then (3.44) becomes

1— £

D(5) < CF o=, (3.45)

On the other hand if § > C=!, we can just apply the trivial bound D(5) < 6~V2 < CY?

e

which is bounded above by the right hand side of (3.45). This completes the proof of Lemma
3.6.11. 0

Using almost multiplicativity to get rid of the integrality conditions, we have the following

lemma.

Lemma 3.6.12. Fiz arbitrary 0 < & < 1/100. For all § € N7,
1 1-e2/2 5—¢
D) < exp(O(L)Cr257=
£

Thus if P(C, \) is the statement that D(6) < C§ for all § € N7, Lemma 3.6.12 implies
that
1
P(C.,e) = P(Cexp(O(=))CL =2 ¢)
£

for an absolute constant C'. Iterating this repeatedly then gives the following result.

Lemma 3.6.13. Fiz arbitrary 0 < e < 1/100. For all § e N7,

D(6) < eXp(O(g—lg))(SE.

Optimizing in e then proves (3.36).

3.7 A decoupling interpretation of efficient congruencing for the

cubic moment curve

Having interpreted efficient congruencing for the quadratic Vinogradov conjecture in terms
of 1? decoupling, one immediate question is whether other works of efficient congruencing
such as [Heal5] or [Woo19] can give a new and different proof of decoupling for the moment

curve.
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We sketch an argument that is ongoing work with Shaoming Guo and Po-Lam Yung in
this direction. We reinterpret the iteration given in [Heal5|] into decoupling language. To
rigorously use the uncertainty principle, we use a slightly different formulation than what
is below, however, the formulation below makes the connection to [Heal5| clearer. We are
able to give a new proof of [*L'? decoupling for the moment curve t — (t,¢2,¢3) that is
different from that given by Bourgain-Demeter-Guth in [BDG16] (who actually prove an
[2L*? decoupling theorem). In particular, we use a bilinear argument while [BDG16] uses a

trilinear argument.

For the purposes of number theory, any [P L'? decoupling theorem is sufficient. However
our argument is only able to prove an [?L'? decoupling theorem for the cubic moment curve

for p > 4.
Let
(Erg)(x) = f 9()e(€ar + 0y + E3) de.

I
We let D(§) be the best constant such that

€019 2r2(8) < D(0)( Z HfS'JQHiH(B))l/4
JePs([0,1])

for all functions ¢ : [0,1] — C and all squares B of side length § 3. We prove that
D(§) <. 614
which is the sharp [*L'? decoupling theorem for the moment curve t — (t,12,¢3).
Suppose v € 272" A (0,1/1000). We define two bilinear decoupling constants M , (8, v)
and My, 4(d,). Suppose a and b are integers and § and v are such that v%0~1, %61 € N.
Let M 44(6,v) be the best constant such that

JB |519|2|51'9|10<M1,a,b(57V)12( Z HngH%m(B))l/Q( 2 ”5}/9”%12(3))5/2

JePs(I) J'ePs(I')
for all functions g : [0,1] — C, cubes B = R3 of side length §=2 and all pairs of intervals
I € P.([0,1]), I" € P,([0,1]) with d(I,I") 2 v. Similarly, let M, (0, ) be the best
constant such that
JB Erg*1Ergl® < Maap(9, V)”(J%:(D \5J9i12(3))(J/€;5:(1/) |E901712())?
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for all functions g : [0,1] — C, cubes B = R? of side length 63 and all pairs of intervals
Ie Pu([0,1]), I" € P([0,1]) with d(I,I') = v. In addition to parabolic rescaling, our {*L'?

decoupling theorem is a consequence of the following five additional lemmas.

Lemma 3.7.1 (Bilinearization). If § and v were such that vé~' € N, then
“1japy 0 -1
D((S) <v D(;) +v M271,1(5, l/).

Lemma 3.7.2. If a and b are positive integers and § and v were such that v26~', v°5 ! e N,

then
M2,a,b(67 l/) S M?,b,a((sa V)l/BMl,a,b(da V)2/3'

Lemma 3.7.3. If a and b are positive integers and § and v were such that v26~', °5 ' e N,

then
)

Miap(6,v) € Mapa(0, V)1/4D(ﬁ)3/4_

Lemma 3.7.4. Let a and b be integers such that 1 < a < 3b. Suppose d and v were such

that 1v3*6~' e N. Then
Miap(0,7) Zap V_i(?’b_a)_COML?)b,b(@ V)
for some large absolute constant Cy.

Lemma 3.7.5. Let a and b be integers such that 1 < a < b. Suppose § and v were such that

v?*-a5-1 e N. Then for every e > 0,
M2,a,b(67 V) Sa,b,s Vﬁ%(1+€)(bia)M2,2bfa,b(57 V)
for some large absolute constant Cy.

The proof of Lemma 3.7.1 is similar to that of Lemma 3.2.5. The proof of Lemmas 3.7.2

and 3.7.3 essentially follow from the observations that

f Fie® < (J f894)1/3(f f2g'0)%?
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and
szglo < (f f894)1/4(f 9P

The proof of Lemma 3.7.4 relies on [2L? decoupling and two ball inflation lemmas similar
to that in Lemma 3.3.4. Bourgain-Demeter-Guth’s proof of {?L'? decoupling for the cubic
moment curve will make use of [?L% decoupling of the parabola as a lower dimensional input.
It turns out that Lemma 3.7.5 will make use of the following lower dimensional decoupling

theorem.

Lemma 3.7.6. Let (E7Pg)(x) := §, g(&)e(Exy + Ea2) dE. Then for every e > 0,

|Boglem < 6750 20 1B gl tawn)
JePs([0,1])

for all functions g : [0,1] — C and squares B < R? of side length 5.

The loss of /% in Lemma 3.7.6 is sharp (up to 6 ¢ losses) which can be seen by taking
g = 1[o1). Furthermore, the use of Lemma 3.7.6 is precisely why we were only able to prove

an [*L'? decoupling theorem rather than an (>L'? decoupling theorem.
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CHAPTER 4

More properties of the parabola decoupling constant

In this chapter, we collection some short stories about the parabola decoupling constant.
First we prove some more equivalences of the parabola decoupling constant and show that
these parabola decoupling constants are all monotonic. Among these parabola decoupling
constants is the global decoupling constant that is used in [BD15]. Next, after having given
iterative proofs of [2L* decoupling for the parabola in Chapter 2 and Section 3.6, we give
an elementary proof which shows that in the case of 12L* decoupling for the parabola, the
associated decoupling constant is O(1). Finally in Section 4.4, we address a “small ball”
I decoupling theorem for the paraboloid that the author first learned from Hong Wang in

January 2018.

4.1 Equivalence of some more parabola decoupling constants

In Section 2.3 (in particular (2.38)), we showed many spatially localized decoupling constants
were all equivalent. Now we define a few more decoupling constants and show that they are
equivalent. The decoupling constants we introduce are all of the type that involve an f
with Fourier support in a ¢ neighborhood of the parabola above [0,1]. We then relate
this to lA)p7 £(0) from Definition 2.3.3 thus proving that a slew of local and global decoupling
constants are equivalent. Here by local we mean spatially localized while by global we mean
nonspatially localized. This section and Section 2.3 combined provide similar results that

were stated (though not explicitly proven) in Remark 5.2 of [BD15].

As we stated in Remark 2.3.6, equivalence of various parabola decoupling constants is

an extremely useful result. Because of the shear matrix, parabolic rescaling is easier using
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the global formulation rather than the local formulation. Thus by also showing that certain
global decoupling constants are equivalent to some local decoupling constants we can apply
parabolic rescaling using the global decoupling formulation and then pass this result to
the local decoupling formulation. Also the result of this section shows that various local
decoupling constants involving a function Fourier supported in some O(§?) neighborhood
of the parabola are equivalent to each other regardless of decay E in the weight wp g or
thickness C' of the C'6% neighborhood of the parabola. The results in this section can be
generalized to an arbitrary h € C? satisfying: h(0) = A'(0) = 0, 0 < I/(t) < 1 for t € (0,1],
and 1/2 < h"(t) < 2 for t € [0, 1] but we do not pursue that here.

4.1.1 Basic tools and definitions

We first define two local and global decoupling constants. We show that these decoupling
constants are equivalent by linearly approximating the regions where f has Fourier support

and using that Fourier restriction to polygons are bounded in LP.

For a square B centered at ¢ with side length R, let wp g(z) := (1 + %)_E. Let 1 be a
Schwartz function such that n > 1p(,1) and supp(7) < B(0,1). For a square B centered at

c of side length R, we let np(x) := n(*%°).

If J e Ps([0,1]) and n € N, let
01 = 1{(s,s +1) :s€J|t| < 252} (4.1)
and O, := (. P5([0.1/2]) 0. We now define the following two decoupling constants.

Definition 4.1.1. Let D}, 1(8) be the best constant such that

|£lre) < Dynp@C D0 onlEogus )
JePs([0,1])

for all f with Fourier support in ©,, and squares B of side length 6=2.

Let DS, () be the best constant such that

1£l> < D@ 35 Mosal2)?

JePs([0,1])

for all f with Fourier support in ©,,.
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We reintroduce the parallelograms from the discussion above Lemma 2.3.1 though this
time instead of a 10§ neighborhood we use an nd? neighborhood (we also have switched
notation slightly so that ¢*/? and ¢ in Chapter 2 have become & and 62, but this does not
change any of our results). If J = [n,0, (n; + 1)0] € P5([0, 1]), let L; be the line connecting
the point (ns4,n%6%) and ((ny + 1)d, (ny + 1)%6?). Explicitly we have

Ly(z):=62ny + 1)(x — nsé) + n36>
For J € Ps([0,1]) and n € N, let
0, = {(s, Ly(s) +1) : s € J|t| < 352}.

Pictorially, ¢, is a parallelogram with sides parallel to L; of height nd?. Finally, we let
O, = UJePg([O,l]) 9{,’,1.
We now define two more decoupling constants we will consider which are the parallelo-

gram versions of Definition 4.1.1.

Definition 4.1.2. Let Dﬁ%”’é(d) be the best constant such that
ar,L
| floy < DEEO)C DT 1o, I
JePs([0,1])
for all f with Fourier support in ©' and squares B of side length 6—2.
Let DPerS(5) be the best constant such that
[l < DECE)C D, e, 1)
JePs([0,1])

for all f with Fourier support in ©,.

In Lemmas 4.1.5-4.1.6 we show that no matter how we modify the n and E parameter,
the local and global decoupling constants defined in Definition 4.1.2 are equivalent. The
proof will make use that ¢, is a parallelogram, in particular, we will often make use that
Fourier restriction to a parallelogram is bounded as an operator on LP. We also have the

following reverse triangle inequality which will prove to be useful.
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Lemma 4.1.3 (Reverse triangle inequality). Let 6 and 0" be two parallelograms with disjoint

interior. Then for 1 < p < o0,
[ follp + [ forlo ~» [ foerlp-

Proof. Since 6 and ' are disjoint, faue = fo + for and hence || fouo |, < | folp + | for], from
the triangle inequality. We observe that fy = (fgue ) and for = (foue)er and so since Fourier

restriction to a parallelogram is bounded in L? for 1 < p < o0,

[ follp + [ forlly = 1 (Focer)olp + [ (oo )orlp < [l focerlp-

This completes the proof of Lemma 4.1.3. O]

4.1.2 Equivalence of parallelogram decoupling constants

We first show that we have many equivalences for the parallelogram decoupling constants.
The restriction to 2 < p < 6 is not important and is just there to get rid of the dependence

on p.
Lemma 4.1.4 (Global equivalence for n # m). For 2 < p <6 and n # m,

ar,G ar,G

Proof. 1t suffices to show the case when n = 1. Since m > 1, ©] < ©/, and hence if f is

Fourier supported in ©7(h), we then have

1£lp < DRSO >0 oy, I

JePs([0,1])

However since f is Fourier supported in O/, for,. = fo,, and hence D? arG((S) < DG (§).

The reverse inequality will make use of Lemma 4.1.3. The idea is to partition ©/, into
m translates of ©, apply D}?" "%(§) to each of these translates, and then sum them together

using Lemma 4.1.3 (losing a constant depending on m).

Let f be Fourier supported in ©/ . For each J € P5([0,1]), we can write

U@ (0, ¢;)
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for some ¢; and the union is a disjoint union (except at the boundary). Explicitly if m is
odd, then we can take {¢;} = {’%Q : k even, |[k| < m — 1} and if m is even, then we can take

{e;} = {2k odd, |k| < m — 1},

Next Lemma 4.1.3 implies that

| for, .. Z | for, \+ 0.

where here we have removed the dependence on p because 2 < p < 6. Therefore

Z | for, +0enllp < Z | for, \+ 0.0

=1
With this, we write f = 27", fo1(0.c;) and estimate

'rG
)2 < DR Z > | for, +0.en)

i=1 JePs([0,1])

p)” Sm I fo, I (4.2)

J,m

171 Sm 2 o+ 00 21,

Interchanging sums and then applying (4.2) then shows DS (8) <, Dgflf’G(é). This com-

pletes the proof of Lemma 4.1.4. Il

Lemma 4.1.5 (Local-global equivalence for the same n). For 2 < p <6,

D" L(8) ~p i DPene(s).

pn,E

Proof. We first show that D?%"%(8) < g Dﬁz’é(é). Let B be a partition of R? into squares

of side length 672, Since Y5 5z1p = 1, convolving both sides with Wp(0,6-2),r and using

convolution properties of wp g (Lemma 2.2.1) shows that Y, s wpr <pg 1.

Let f be Fourier supported in ©/,. Then

1£15 = 25 110 < Dyae@) 230 >0 1o, [Eoquws )"

BeB BeB JePs([0,1])

Using Minkowski (and that p > 2) to interchange the (% and /%, bounds this by

C > Mo sy s

JePs([0,1])

Finally using that Y}, swp g <p 1 then shows that DE%-%(5) <p Dgz’é(é) where here we

have used that p < 6 to remove the dependence on p.
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From Lemma 4.1.4, to show the reverse inequality, it suffices to show

DY L(5,h) Snp DEYE (6, h).

p,n,E p,10n

Let f be Fourier supported in ©,. We have

£ i) S oy, Vitwmey + I8y 24 U Bowsey

Since n/2 + 1 < 10n, the Fourier transform of ng fg/w _

for J € Ps([0,1]),

18 supported in ©],,,. Observe that

3],

-

(anef]r,n)efLIOn lf J = [07 5]
(anelJ,n)ef],lon + (aneflr,n>9f],10n lf J = [67 26]
1815, 5105000 = § Srenny 8Se, o o if Je P5([26,1 — 26]) (4.3)

(1o, )00, + (MBS0, Doy, 3T = [1-20,1 6]

\ (aneflg,n>9f],10n if J = [1 — 0, 1]
where J, and J,. are the intervals to the left and right of J, respectively. Applying the
definition of Dﬁ%g(é) gives

G
nsf,, B <DERS@R S (om0
JePs([0,1])

Using (4.3) and the observations that 6,4, (h) is a parallelogram and Fourier restriction to
a parallelogram is bounded in L, the above is
G (5\2 2
SR C) R SR N
JePs([0,1])
where we have removed the dependence on p because p < 6. Since np <gp wp g, it then

follows that Dgfﬁ;’é(é) <e Dgﬁgfj (0). This completes the proof of Lemma 4.1.5. O

Corollary 4.1.6 (Local equivalence for n # m, fixed E). For 2 <p <6 and n # m,

Dﬁjlr:’é«;) ~n,m,E nglrg,%(é)

Proof. From Lemma 4.1.5, Dg:ﬁé(é) ~np DPC(6). From Lemma 4.1.4, DFC(5) ~
ar,G : :
Do (0). Applying Lemma 4.1.5 again then completes the proof of Corollary 4.1.6. O]
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Corollary 4.1.7 (Local equivalence for n # m, Fy # Ey). For2<p <6, n # m, E; # Es,

Z,ar:’él (6) ~nm,E1,Ey Dﬁﬁ;’iﬂz (5)

Proof. Corollary 4.1.6 and Lemma 4.1.5 gives that
DL (5> ~n,m,Eq Dyt (5) ~m,Ey me’G(é) ~m,E Dt (6)

p,n,Ey p,m,Ey p,m pym,Eo

which completes the proof of Corollary 4.1.7. O

4.1.3 Equivalence of decoupling constants

We have the following lemma which will help us relate the parallelogram decoupling constants

from Definition 4.1.2 to the decoupling constants we have defined in Definition 4.1.1.

Lemma 4.1.8. Forn > 2, we have

051 < Ogn = 09,
Proof. For s € J, recall from (2.35) that

|s? — L;(s)| < §*/4.

Since n = 2, for s € J,

52 52
Lyls)+ 5 <s*+ ”7 < Ly(s) + nd?
which completes the proof of Lemma 4.1.8. O]

Like the parallelogram decoupling constant equivalence, we have the following three
equivalences. The purpose of introducing the parallelogram decoupling constants was be-
cause Fourier restriction to 6, is not a bounded operator on L”, however, Fourier restriction

to 0/, is a bounded operator on LP.
Lemma 4.1.9 (Local-global equivalence for the same n). For 2<p <6 andn > 2,

D]ﬁn,E((S) ~n,E Dgn((s)
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Proof. Since n > 2, Lemma 4.1.8 implies O] < ©,, < ©), and hence

Dy (0) < Dy 5(0) < Dy (6) S Dy (9) (4.4)

p,n,E

where the last inequality we have used Corollary 4.1.6. Using similar reasoning and Lemma

4.1.4 gives
ar, ar, ar,G
Dy e(0) < Dfy(8) < Dy5f(0) < DT (). (4.5)
Finally combining these two estimates and Lemma 4.1.5 imply D/, (8) ~n g DS, () which
completes the proof of Lemma 4.1.9. O]

Corollary 4.1.10 (Global equivalence for n # m). For2 < p < 6 and n # m withn,m = 2,
el a
Dp,n(é) ~n,m Dp,m((s)

Proof. Tt suffices to show that for each n > 2, DS (8) ~n Dgflf’G((D. But this exactly was

shown in (4.5). O

Corollary 4.1.11 (Local equivalence for n # m, fixed E). For 2 < p < 6 and n # m with
n,mz= 2,

D;I;,n,E<5) ~n,m,E D;I;:m,E((;)'

Proof. For each n > 2, it is enough to show that D’ 5(d) ~n D;af:’é(é) but this is what was

shown in (4.4). O

Corollary 4.1.12 (Local equivalence for n # m, Fy # Es). For 2 < p <6 and n # m with
n,mz= 2,

D;I):n,El (5) ~nm,E1,FEy D]IJ:m,EQ (5) .

Proof. From Corollary 4.1.11, it is enough to show that D}, o () ~m,5, g, D}, 5,(6). But

this follows immediately from Lemma 4.1.9. m

Note that ZA?p,E((S) defined in Definition 2.3.3 is the same as Dﬁ%ﬁf(é) in this section.
Therefore we have shown that for 2 < p < 6, all the following constants are equivalent (up

to constants that depend on all parameters of the constants involved except for p and 9):
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(a) Extension operator based, spatially localized:

e D, (), defined in (2.1), used in [BD17]

~

e D, g(0), defined in (2.2)

e D,(9), defined in Definition 2.3.3
(b) Fourier based, spatially localized:

. lA)p7E(5), defined in Definition 2.3.3, equal to Dg%wa)

e DL

pn, B

(0), defined in Definition 4.1.1

o D1(5), defined in Definition 4.1.2

(c) Fourier based, global:

e DY (4), defined in Definition 4.1.1, used in [BD15]

o DPenG(§), defined in Definition 4.1.2

That is, take any number of the eight above decoupling constants, for example, D, g, (9),

DrerG(§), D,(6), and DX

S m.m,(0) (also assume n,m > 2). Then our results show that for

2<p<6,

Dy.5,(0) ~n,px Dy (8) ~n Dy(6) ~m.ps Dy 1, (9)-

p7m7E2

4.2 Monotonicity of the parabola decoupling constant

One immediate application of the results in Section 4.1, is that we can show that the de-
coupling constant, however defined in the list above is essentially a decreasing function of ¢.
The way we show Corollary 4.2.2 is not the most efficient way to show this for a particular
decoupling constant. If one is willing to work with weight functions wg g, Wg g, np directly
one can show the applicable monotonicity result using a calculation that is similar to the
proof of parabolic rescaling (Section 2.4). However, having done the heavy lifting in Section
4.1 in showing many decoupling constants are equivalent we present a nice application of our

work. This application of the equivalence of decoupling constants shows the power of such an
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equivalence since often certain calculations are easier with some decoupling constants while

others are much more tedious.

The main proposition we claim is the following;:

Proposition 4.2.1. For N € N and 2 < p < 6, we have

1 1
D,sz(ﬁ) < Dﬁg(N—H)

where DS, (8) is as in Definition 4.1.1.

Proof. This proof is a change of variables. To emphasize the interval and the scale 9, instead
of using the notation 6,5 from (4.1), we will let T'(8, I') be the piece of §-tube living above
I < [0,1]. That is

T, 1) :={(s,s*+1):se L [t| <5} (=0r2).

Suppose f is Fourier supported in a 1/N2-tube of the parabola living above [0,1]. We

have

N+1, ~N+1 (N+1)? N+1 (N + 1)
= d
Therefore
N+1.,
I fllp = (T>3 2gn (4.6)
with

~N+1 (N+1)>
onta) = | PO S m e o g (0t ) dn

N+1° N+

Note that gy is Fourier supported in a 1/(N + 1)?-tube of the parabola living above [0, 1].
Then

N +1

N+15 3,nc 1
D
( N

DS ()

) lgnlly < ( [Ggw)- )2 (4.7)

145



For i < N,

and when i = N, (gn), = 0. Undoing the change of variables used to obtain (4.6) gives that
(4.7) is equal to

1

Dy () | f o).
P,2 Tlp
N +1 0</N-
T (5[ 5 ])
Applying the definition of DSZ(l /N) then completes the proof of Proposition 4.2.1. Il

The following corollary follows from combining the above proposition and the results in
Section 4.1.

Corollary 4.2.2. For N e N and 2 < p < 6, the following eight inequalities are true:

1 1
Dy p(+) <k Dp,E(—N - 1)
~ 1 1
Dp,E(N) <E Dp,E(N n 1)
~ 1 ~ 1
Dp,E(N) SE Dypi(

N—l—l)
DparL< 1) Dpar,L( 1 )
pn,E N NTL;E pn,E N +1
1 1
L
Dan(N) NnEDan<N+1

)
— 11
s D)

1
Dpar,G - Sn par,G
() S DI ()

1 1
D¢ n DS
p,'n,(N)"\-* pn<N+1)
We can obtain a similar result when applying this idea to the observation that DSQ((S)
is almost multiplicative, that is, for d;,d, € N71, D])G,Q(élc?g)

DS (01)DS,y(d2), however we
omit the proof here.
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4.3 An elementary proof of [?L* decoupling for the parabola

Having seen two iterative proofs of [2L* decoupling for the parabola, we now give a direct
proof. This is the only nontrivial parabola decoupling theorem that can be proven directly
(as far as the author knows). The proof is similar in spirit to the short proof of discrete

Fourier restriction in L?* for (n,n?) that Bourgain gives in Proposition 2.1 of [Bou93].

For an interval I < [0, 1], let
E9)a) = | ©)e(Enr + Eaa)
I
where e(x) = €*™*. We will prove that not only can we decouple [0, 1] into intervals of length
d at some O(1) cost, but also we can decouple [0, 1] into an arbitrary collection of intervals

at an O(1) cost. Let Z = {I;}¥| be an arbitrary partition of [0, 1] into N intervals. Let

R = (min |I])~2

IeZ

and if B is a square of side length R centered at cp, let

r—c
wp(x) = (1+ lz = cal = B’)—IOO‘

Let n be a Schwartz function such that supp() < B(0,1) and 1g1) < 7. For a square
B = B(cp, R), let np(z) = n(*522).

Proposition 4.3.1. For all g : [0,1] — C and all squares B of side length R,

1€0m9ls8) < QO 1€9]7 1) (4.8)
IeZ

where the implied constant is an absolute constant independent of the partition Z.

Remark 4.3.2. Tt is an open problem whether an analogous statement is true with L* replaced

with LP for some other p < 6 even if we accept an (#Z)° loss.

Proof. Since g : [0,1] — C is arbitrary, we may assume that B is centered at the origin. We

have

\|5[0,1]9HA£4(B) = [€0.119 - 5[(),1]9“%2(3)-
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Then

1€omgliam S| Y, En9€ngliam + 1 Y, En9EL9li2em). (4.9)
1<i,j<N 1<i,j<N
li—jl<1 li—j|>1

We analyze the first expression in (4.6). We have

[ Z Er9€r9l72m) < ( Z |€69lram) | EL9llam)” < (Z 19074 (wp)? (4.10)
1<ij<N 1<i,j<N IeT )
li—jl<1 li—j|<1

where the last inequality is by Cauchy-Schwarz. We now analyze the second term in (4.9).
Since 1g < 119 < 1108, it suffices to analyze

H Z gligglng%Q(ﬂloB)

1<i,j<N
[ijl>1

— (4.11)
= 2 J‘prlvx[.,xl., 9(51)9(52)9(53)9(54) \[RQ e(. .. )nIOB<CU) dx df

1<i i’ j,j' <N
li—j|>1,[i'=5'|>1

where the expression in e(---) is

(G- &—-&+&)n +(§ - & - &+ &
We claim the integral in € above is equal to 0 if [ —¢'| > 1 or |[j — j'| > 1 and so we can add
the conditions that |[i —¢'| <1 and |j — j'| <1 to the sum in (4.11).

We only show that case when |i —é’| > 1, the case when |j — j| > 1 is similar. Since 7595

has Fourier support on B(0,1/(10R)), for the integral in (4.11) to not be 0, it is necessary

that
(T
10K (4.12)
G- el <

for all & € I;, & € I, &3 € Iy, and & € I and therefore we can insert this condition into
the integral in the ¢-variables. Since |i — j| > 1, |i' — j'| > 1, and |i — /| > 1, we have
&1 — & > R7Y2) &3 — &4 > R7Y2, and |€; — &| > R™Y2, respectively. We claim that these

inequalities are incompatible with (4.12).
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Lemma 4.3.3. Suppose 0 < &1,&,&3,&4 < 1. The system

G- - +al <o (4.13)
§-8-8+8l< = (4.14)
&5 — &l > # (4.15)
61 — &l > ﬁ (4.16)

has no solution.

Proof. Suppose there was a solution to the above system of inequalities. Note that

G-G-G+8=(G-L-G+a)(E+&E)+ (G -8)(E+&E— G- &)

and so combining this with (4.13), (4.14), (4.15), the triangle inequality, and that &; € [0, 1]
gives

1

3

——=& + & — & — & < 10R

Rl D12
Therefore

3

W. (4.17)

|61+ & — & — &l <

Since we are not given the relative positions of the &;, we have the following four cases.

(1) & > & and & > & Using (4.13), positivity of {3 — & and & — &4, and (4.16) gives

1

1
g = e G ta -Gl =G -alta-el=ls -Gl > 45

which is impossible.

(17) & > & and & > &: Using (4.13), positivity of & — & and & — &, and (4.16) gives

1

TR = > 6 -6 —G+8 =1 -8 F[&—& =4 - & >

1
R1/2

which is impossible.
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(171) & > & and &4 > &0 Using (4.17), positivity of &3 — & and §4 — &, and (4.16) gives
3 - B - 1
T0R2 = €3 =&+ & —&| =[] +[8— & =[G - & > T2

which is impossible.

(iv) & > &3 and & > & Using (4.17), positivity of & — &3 and & — &, and (4.16) gives

3

1
gz > G-t -Gl =la -Gl -l =6 - &6l > 55

R1/2

which is impossible.

Thus we have shown the inequalities (4.13)-(4.16) to be incompatible. This completes the

proof of Lemma 4.3.3. O
Therefore Lemma 4.3.3 implies (4.11) is

< > JRQ €1,9E1,9E1, 91, 9|mop dzx

1<i,d’ jj'<N
[i—j]>1,]i" —5'|>1

li—i'|<1,[i—j'|<1 (4.18)

< % | lesPiElunde < (3 1l

1<i,j<N IeT

where the second inequality is by Cauchy-Schwarz and that n;0p < wiop < wp and the last
inequality is by Hoélder’s inequality. Combining (4.9), (4.10), and (4.18) then proves (4.8).

This completes the proof of Proposition 4.3.1. O]

4.4 Small ball /? decoupling for the paraboloid

Decoupling for the paraboloid as stated in 1.2 has an L”(B) where B is a cube in R™ of side
length 2. This is a natural scale since we are decoupling into frequency cubes in [0, 1] !

of side length ¢ and hence the wavepackets that arise are of size 71 x -+~ x =1 x §72,

One can ask perhaps what happens in [? decoupling for the paraboloid when we consider
B to be a ball of radius 6" with 1 < r < 2. The following result was communicated to the
author by Hong Wang in January 2018. This a purely expository chapter and the author
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claims no originality in the argument below. All errors are my own misunderstanding of her

argument.

For Q < [0,1]" ! and g : [0,1]""! — C, define the extension operator

(Eas)a) = |

Q
Also define £g := &g 1n-19. We will ignore any weight functions or integrality issues that

G(E)e(Erts 4 Eurtno + |EP ) de = ng@e(g [P de.

may arise in this analysis and freely make use of the uncertainty principle. Given a cube Q),
let Ps(Q) be the partition of @) into cubes of side length .

Fixl<r<2and2<p< %, let D,(6,7) be the best constant such that

1€grzy < Do) D1 1EylEns)? (4.19)
Qeps([0,1]"1)

for all g : [0,1]""! — C and all cubes B, < R™ of side length 6~". Note that the standard
Bourgain-Demeter decoupling for the paraboloid [BD15] gives that 1 < D,(9,2) <. 67°. We
claim the following result.

2(n+1)
n—1 7

Proposition 4.4.1. For 1 <r <2 and2 <p <

r r

5—(1—5)@—%)(”—1) < D,(8,7) <. 5—(1—5)(%—%)@—1)—5‘

In particular, Proposition 4.4.1 implies that at spatial scales smaller than §~2, to decouple
we must lose some negative power of §. For the lower bound, we exhibit a specific g (in
particular g = 1[07&/2]71_1) and compute both sides of (4.19). For the upper bound, we reduce

the problem using the uncertainty principle to be a problem about the Fourier transform.

4.4.1 The lower bound

Without loss of generality we may assume that B, = [0,07"]". Let g := 1jg srpn— (if B, is
a different cube in R™ of side length §~", then we can multiply g by an appropriate phase).
We then have

(ELpg ) (1) = f o€zt |EPw) de
[0,67/2]n—1
= 5("_1)T/2f e(n - 6%z + 5"z, dn.
[0,1]7—1
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Another change of variables then gives

n+1

— galn=1-%

Hgl[07ar/2]n—l HLP(BT) ||g]_ 0, 1 n—1 HLp 0 O~ T/Q]n 1y [0 1]) (420)

Since |E1pp,1ja-1| is essentially constant on 1 x 1 x -+ x 1 boxes, for z € [0,67"/2]"! x [0,1]
we can replace |(E1p1pn—1)(2)| by [(E1jo1y»-1)(z,0)| and hence (4.20) is essentially the same
as

n—1—ntly v

6%( P ) H 1[071]77.—1 ||Lp([0’5—r/2]n—1) = 5 o

%(n 1— n+1 ‘

([0 g2
The same computations give that the right hand side of (4.19) is
( Z 10110 5r/29n-1 [T ,) > = ( Z 1€16)10(5,)) "
QePs([0,1]"1) QePs([0,67/2]" 1)
T(p—1—ntl
= 53 ) Z ||51QHip([o7afr/2]n71x[071]))1/2-

QEP(;lfT/2([071]n_1)
Note that here we have implicitly used that r < 2 since this implies 6'~"/2 < 1. From the

uncertainty principle, this is once again essentially

I (n—1-—ntl i
gzn=1=% )( Z ||1QHip([g,é*rﬂ]"*))1/2
QEPs1_pp2([0,1]771)

T(p—1—n+ly . (q_ryn=1
262( 1 p )5 (1=3)%3 H1[0761—T‘/2]n—1‘|Lp([075—7‘/2]n—1)

Tn—1— n+1 1—-T n—1 ~ n—
— 52( P ) ( 2) 2 "1[0’517r/2]”Lp(l[o’(;—r/Z])

n—1

T(p—1—n+tly_(1_ryn=1 Y (1=1)(n
:52( 1 D ) (1 2) P} +(1 2)(1 p)( 1) Lp([(]’(gl—r])'

Therefore

77‘/2])

HSQHLP By) / S5 (1— (éfp)(nq)(Hl[OJ]
)1 2

o

sup =
9,Br (ZQGP5 0,1]»—1) HSQQHLP (By) Hl[O,l]HLP([O,él—T])
Since r/2 > r — 1, the ratio of L norms is > 1 which then proves the lower bound of

Proposition 4.4.1.

4.4.2 The upper bound

As in the lower bound we will apply a (slightly different) change of variables and the uncer-

tainty principle to transform the problem into a problem about the Fourier transform. We
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want to show that

—(1=TYW (i _LYp—1)=¢
1€glze(s,) <c 67UDETDOI=C N gog) )
QePs([0,1]~1)
for all g : [0,1]"! — C and all cubes B, = R" of side length 62. Since 2 < p < Antl)

n—1 7

decoupling for the paraboloid gives that
1Egle(s,) <07 ) 1€ 912 (5,) -
Q,epér/Q([Ovl]nil)
Therefore it remains to show that for each Q' € Ps.2 ([0, 1]"71),

1=y (i _Ly(p—
|Eqgllos,) <07 PEDVC N gqg) )2 (4.21)
QePs(Q")

Without loss of generality (in particular ignoring issues with weights), we may assume that

Q' = [0,0"2]""L. Let gs(z) := g(6x). A change of variables gives that

(Epprp19)(a) = f 9(E)e(€ -z + |¢]7,) de

[0’51"/2]n71
_ f gs(n)e(n - 62 + In[26%z,) dn
[0,6—1+7/2]n—1

and hence

n+1

[€0.6721n19 Loy = 8707 | Efgs-1mv2n1 95 L o.5-r+ 1101 0,52y (4.22)

From the uncertainty principle, |(£p s-1+r2j0-195)(x)] is essentially constant on 0*7/2 x - - x
61772 x 6% boxes. Therefore for x € [0, 7" x [0,077%2], [(Eg g-1+r/2pn-195) ()] s

essentially equal to |(jy s-1+r/21n-195) (2, 0)| and hence (4.22) becomes essentially equal to

2—7r n— n+1
55 x 5D~ |f g5 (M) - ) dnl sy s-rriprs)
[0,5-1+7/2]n

The same reasoning then shows that

( Z HgQQH%p(BT))l/Q

QePs([0,67/2]"=1)

2=r n—1)—nt+l
0 x0TV ( Z ‘f gs(m)e(n - y) dnuig([o,&rﬂ]nfl))lm-
QEPI([O76_1+T/2:|"_1 Q

Therefore since r — 1 = 0, (4.21) then follows from the following lemma and parallel decou-
pling. The argument below basically is from Lecture 2 of Larry Guth’s lectures notes on

decoupling [Gut18].
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Lemma 4.4.2. Suppose f is supported on [0, N]%. Then

(-1
[ £ oy N2 0 >0 I falZngone)
QePr([0,N]?)

where here f; = ]?1@.

To prove Lemma 4.4.2, we first recall Bernstein’s inequality (and we ignore weight func-

tions).

Lemma 4.4.3. Suppose f s supported on a cube of side length 1. Then for any cube B of

side length 1, | fl1=(5) < | fl11(s)-

Proof of Lemma 4.4.2. Since f = Zerl([OyN]d) fo, almost orthogonality and ignoring weights
gives that essentially
1 £1Z20,170) S Z | fol 720,174
QePy([0,N]4)
Observe that

f[o 14 I < Hf|];32([0,1]d) f[o e ’f\2 < ( Z HfQHLOC([O,l]d))p72 Z HfQH%%[o,l]d)'

QePi([0,N]%) QePi([0,N]%)

Holder and Bernstein then bound the above by

(=2) p=2
N Z HfQH%CD([OJ]d)) z ( Z ||fQH%2([0,1]d))

QeP1([0,N]%) QePi([0,N]%)

(p—2)
SN el qone)”
QePy([0,N]4)

Taking 1/p powers then completes the proof of Lemma 4.4.2. Il

154



[BBG18]

[BCT06]

[BD15]

[BD16]

[BD17]

[BDG16]

[BDG17]

[BG11]

[BHS18]

[Bou93|

[Boul3]

[Boul7a]

[Boul7b]

[BW18]

REFERENCES

Jonathan Bennett, Neal Bez, Susana Gutiérrez, and Sanghyuk Lee. “Estimates
for the kinetic transport equation in hyperbolic Sobolev spaces.” J. Math. Pures
Appl. (9), 114:1-28, 2018,

Jonathan Bennett, Anthony Carbery, and Terence Tao. “On the multilinear re-
striction and Kakeya conjectures.” Acta Math., 196(2):261-302, 2006.

Jean Bourgain and Ciprian Demeter. “The proof of the [? decoupling conjecture.”
Ann. of Math. (2), 182(1):351-389, 2015.

Jean Bourgain and Ciprian Demeter. “Mean value estimates for Weyl sums in two
dimensions.” J. Lond. Math. Soc. (2), 94(3):814-838, 2016.

Jean Bourgain and Ciprian Demeter. “A study guide for the [ decoupling theo-
rem.” Chin. Ann. Math. Ser. B, 38(1):173-200, 2017.

Jean Bourgain, Ciprian Demeter, and Larry Guth. “Proof of the main conjecture
in Vinogradov’s mean value theorem for degrees higher than three.” Ann. of Math.
(2), 184(2):633-682, 2016.

Jean Bourgain, Ciprian Demeter, and Shaoming Guo. “Sharp bounds for the cubic
Parsell-Vinogradov system in two dimensions.” Adv. Math., 320:827-875, 2017.

Jean Bourgain and Larry Guth. “Bounds on oscillatory integral operators based
on multilinear estimates.” Geom. Funct. Anal., 21(6):1239-1295, 2011.

David Beltran, Jonathan Hickman, and Christopher D. Sogge. “Variable coeffi-
cient Wolff-type inequalities and sharp local smoothing estimates for wave equa-
tions on manifolds.” arXiv:1801.06910, 2018.

Jean Bourgain. “Fourier transform restriction phenomena for certain lattice sub-
sets and applications to nonlinear evolution equations. I. Schrodinger equations.”
Geom. Funct. Anal., 3(2):107-156, 1993.

Jean Bourgain. “Moment inequalities for trigonometric polynomials with spectrum
in curved hypersurfaces.” Israel J. Math., 193(1):441-458, 2013.

Jean Bourgain. “Decoupling, exponential sums and the Riemann zeta function.”
J. Amer. Math. Soc., 30(1):205-224, 2017.

Jean Bourgain. “Decoupling inequalities and some mean-value theorems.” J.
Anal. Math., 133:313-334, 2017.

Jean Bourgain and Nigel Watt. “Decoupling for perturbed cones and mean square
of |C(% +it)|.” International Mathematics Research Notices, 2018(17):5219-5296,
2018.

155



[DGG17]

[DGL17]

[DGL18]

[DGO18]

[DZ19]

[For(2]

[FSW18]

(GIO18]

[GS09]

[GS10]

[Guol7]

[Gut18]

(GZ18a)

[GZ18D)

[Healb]

Yu Deng, Pierre Germain, and Larry Guth. “Strichartz estimates for the
Schrodinger equation on irrational tori.” J. Funct. Anal., 273(9):2846-2869, 2017.

Xiumin Du, Larry Guth, and Xiaochun Li. “A sharp Schrodinger maximal esti-
mate in R2.” Ann. of Math. (2), 186(2):607-640, 2017.

Xiumin Du, Larry Guth, Xiaochun Li, and Ruixiang Zhang. “Pointwise con-
vergence of Schrodinger solutions and multilinear refined Strichartz estimates.”
Forum Math. Sigma, 6:e14, 18, 2018.

Xiumin Du, Larry Guth, Yumeng Ou, Hong Wang, Bobby Wilson, and Ruixiang
Zhang. “Weighted restriction estimates and application to Falconer distance set
problem.” arXiv:1802.10186, 2018.

Xiumin Du and Ruixiang Zhang. “Sharp L? estimates of the Schrodinger maximal
function in higher dimensions.” Annals of Mathematics, 189(3):837-861, 2019.

Kevin Ford. “Vinogradov’s integral and bounds for the Riemann zeta function.”
Proc. London Math. Soc. (3), 85(3):565-633, 2002.

Chenjie Fan, Gigliola Staffilani, Hong Wang, and Bobby Wilson. “On a bilinear
Strichartz estimate on irrational tori.” Anal. PDE, 11(4):919-944, 2018.

Larry Guth, Alex losevich, Yumeng Ou, and Hong Wang. “On Falconer’s distance
set problem in the plane.” arXiv:1808.09346, 2018.

Gustavo Garrigds and Andreas Seeger. “On plate decompositions of cone multi-
pliers.” Proc. Edinb. Math. Soc. (2), 52(3):631-651, 20009.

Gustavo Garrigés and Andreas Seeger. “A mixed norm variant of Wolft’s in-
equality for paraboloids.” In Harmonic analysis and partial differential equations,
volume 505 of Contemp. Math., pp. 179-197. Amer. Math. Soc., Providence, RI,
2010.

Shaoming Guo. “On a binary system of Prendiville: the cubic case.”
arXiv:1701.06732, 2017.

Larry Guth. “Lectures Notes for Math 118, Topics in Analysis: Decoupling.”
http://math.mit.edu/~1guth/Math118.html, 2018.

Shaoming Guo and Ruixiang Zhang. “On integer solutions of Parsell-Vinogradov
systems.” arXiv:1804.02488, to appear in Inventiones mathematicae, 2018.

Shaoming Guo and Pavel Zorin-Kranich. “Decoupling for moment manifolds as-
sociated to Arkhipov—Chubarikov—Karatsuba systems.” arXiv:1811.02207, 2018.

D. R. Heath-Brown. “The Cubic Case of Vinogradov’s Mean Value Theorem —
A Simplified Approach to Wooley’s “Efficient Congruencing”.” arXiv:1512.03272,
2015.

156



[Heal7]

[Hor90)]

[Joh02]

[Leel6]

[Lew15]

[LPOG]

[LW02]

[Pie19]

[Taol5|

[Vin35|

[Wol00]

[Woo12]

[Woo13]

[Wool5]

[Wo016]

[Woo17]

D. R. Heath-Brown. “A new kth derivative estimate for exponential sums via
Vinogradov’s mean value.” Tr. Mat. Inst. Steklova, 296(Analiticheskaya i Kom-
binatornaya Teoriya Chisel):95-110, 2017.

Lars Hormander. The analysis of linear partial differential operators. I, volume
256 of Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin,
second edition, 1990. Distribution theory and Fourier analysis.

Warren P. Johnson. “The curious history of Faa di Bruno’s formula.” Amer.
Math. Monthly, 109(3):217-234, 2002.

Jungjin Lee. “A trilinear approach to square function and local smoothing esti-
mates for the wave operator.” arXiv:1607.08426, 2016.

Mark Lewko. “The Bourgain-Demeter-Guth breakthrough and the Riemann zeta
function?” https://mathoverflow.net/q/225644, 2015.

Izabella Laba and Malabika Pramanik. “Wolft’s inequality for hypersurfaces.”
Collect. Math., (Vol. Extra):293-326, 2006.

Izabella Laba and Thomas Wolff. “A local smoothing estimate in higher dimen-
sions.” J. Anal. Math., 88:149-171, 2002. Dedicated to the memory of Tom Wolff.

Lillian B. Pierce. “The Vinogradov Mean Value Theorem [after Wooley, and
Bourgain, Demeter and Guth|].” Astérisque Ezposés Bourbaki, 407:479-564, 2019.

Terence Tao. “The two-dimensional case of the Bourgain-Demeter-Guth proof of
the Vinogradov main conjecture.” terrytao.wordpress.com, 2015.

Ivan M. Vinogradov. “New estimates for Weyl sums.” Dokl. Akad. Nauk SSSR,
8:195-198, 1935.

Thomas Wolff. “Local smoothing type estimates on L? for large p.” Geom. Funct.
Anal., 10(5):1237-1288, 2000.

Trevor D. Wooley. “Vinogradov’s mean value theorem via efficient congruencing.”
Ann. of Math. (2), 175(3):1575-1627, 2012.

Trevor D. Wooley. “Vinogradov’s mean value theorem via efficient congruencing,
I1.” Duke Math. J., 162(4):673-730, 2013.

Trevor D. Wooley. “Multigrade efficient congruencing and Vinogradov’s mean
value theorem.” Proc. Lond. Math. Soc. (3), 111(3):519-560, 2015.

Trevor D. Wooley. “The cubic case of the main conjecture in Vinogradov’s mean
value theorem.” Adv. Math., 294:532-561, 2016.

Trevor D. Wooley. “Approximating the main conjecture in Vinogradov’s mean
value theorem.” Mathematika, 63(1):292-350, 2017.

157



[Wool9] Trevor D. Wooley.  “Nested efficient congruencing and relatives of Vino-

gradov’s mean value theorem.” Proceedings of the London Mathematical Society,
118(4):942-1016, 2019.

158





