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Abstract

The location, timing, and intermittency of precipitation in California make the
state integrally reliant on winter-season snowpack accumulation to maintain 
its economic and agricultural livelihood. Of particular concern is that winter-
season snowpack has shown a net decline across the western United States 
over the past 50 years, resulting in major uncertainty in water-resource 
management heading into the next century. Cutting-edge tools are available 
to help navigate and preemptively plan for these uncertainties. This paper 
uses a next-generation modeling technique—variable-resolution global 
climate modeling within the Community Earth System Model (VR-CESM)—at 
horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM 
provides the means to include dynamically large-scale atmosphere–ocean 
drivers, to limit model bias, and to provide more accurate representations of 
regional topography while doing so in a more computationally efficient 
manner than can be achieved with conventional general circulation models. 
This paper validates VR-CESM at climatological and seasonal time scales for 
Sierra Nevada snowpack metrics by comparing them with the “Daymet,” 
“Cal-Adapt,” NARR, NCEP, and North American Land Data Assimilation 
System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the 
SNOTEL observational dataset, a standard-practice global climate model 
(CESM), and a regional climate model (WRF Model) dataset. Overall, given 
California’s complex terrain and intermittent precipitation and that both of 
the VR-CESM simulations were only constrained by prescribed sea surface 
temperatures and data on sea ice extent, a 0.68 centered Pearson product-
moment correlation, a negative mean SWE bias of <7 mm, an interquartile 
range well within the values exhibited in the reanalysis datasets, and a mean
December–February extent of snow cover that is within 7% of the expected 
MODIS value together make apparent the efficacy of the VR-CESM 
framework.
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1. Introduction

California receives one-half of its total annual precipitation in 5–15 days of 
the year, making its precipitation patterns some of the most intermittent in 
the United States (Dettinger et al. 2011). Important is that most of the 
state’s precipitation falls during the winter months [December–February 
(DJF)] and that two-thirds of it precipitates in the northern and mountainous 
parts of the state (Wise 2012). The precipitation that falls in the mountainous
region largely accumulates as snow (Pandey et al. 1999). Thus, winter 
snowpack acts as a natural surface reservoir for water that is then released 
during dry portions of the year. Snowpack provides approximately three-
quarters of the annual freshwater supply in the western United States 
(Palmer 1988; Cayan 1996), and 60% of California’s developed water supply 
originates from the snowpack-dominated Sierra Nevada (Bales et al. 2011). 
Along with the Colorado River, this natural store of water contributes to the 
maintenance of California’s economy and its status as one of the largest 
agricultural providers in the world (Tanaka et al. 2006; Hanak and Lund 
2012). These water reserves also provide up to 21% of the energy found 
within California’s diverse energy portfolio via hydroelectric plants (Stewart 
1996). Therefore, the integrity of California’s economy, and its agricultural 
identity, are largely dependent on ample snowpack accumulation in the 
Sierra Nevada.

A major cause of interannual variability in winter precipitation in California 
and the greater western United States is global teleconnections. 
Teleconnections are recurrent and persistent atmosphere–ocean patterns 
that affect large swaths of latitudinal and longitudinal bands (Wallace and 
Gutzler 1981; Glantz et al. 1991). They are important from a water-resources
perspective because they determine overall temperature, precipitation, and 
snowpack trends within California. Atmosphere–ocean climate interactions 
have been found to cause annual precipitation to vary by 20%–45% in the 
western United States (Dettinger et al. 1998); such interactions include El 
Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the 
Pacific–North American (PNA) pattern, the North American monsoon, and the 
Aleutian low, as well as more short-term events known as atmospheric rivers
(AR) that are equatorially generated whiplike water vapor bands (Dettinger 
et al. 1998; Cayan et al. 1999; Ralph et al. 2004; Dettinger 2011; Wise 2012; 
Guan et al. 2013; Fang et al. 2014). The internal variability associated with 
teleconnections modulates the spatial and temporal variability of strong 
precipitation events in the western United States (Wise 2012). Therefore, 
teleconnection modulation, on both yearly and decadal time frames, has a 
direct impact on the amount of total seasonal snowpack deposited in the 
Sierra Nevada. This modulation is also essential in resolving historical trends 
as well as projecting future snowpack tendencies. For example, ARs alone 
account for ~30%–40% of seasonal snowpack accumulation in the Sierra 



Nevada (Guan et al. 2010). Thus, a representation of global processes, 
ideally with a global climate model (GCM), is necessary to accurately account
for California’s temperature, precipitation, and snowpack trends.

To observe how this crucial natural freshwater reserve is characterized, both 
spatially and temporally, snowpack metrics such as snow water equivalent 
(SWE), snow centroid date (SCD), and the extent of snow cover (SNOWC) 
have been developed to quantify the patterns of Sierra Nevada snowpack. 
SWE is used to determine the total water content for a given snow depth. It 
can be quantified by taking a given depth of snow and melting it; the 
resultant water content represents the SWE. This is useful since snow 
densities can fluctuate as a result of variations in snowfall as well as melt 
and ablation events in the snowpack. SCD represents the date of peak 
snowpack accumulation, which is useful in understanding snowmelt onset. 
SNOWC characterizes the total areal coverage of snow over a given region. 
This metric is helpful in quantifying shifts in regional and global albedo as 
well as the freezing-line extent in mountainous environments. Over the 
historical record, the Sierra Nevada has shown a mean difference in 1 April 
SWE of 2.2% (i.e., a northern Sierra Nevada decline of 50%–75% and a 
southern Sierra Nevada accumulation of 30%; Mote et al. 2005), western U.S.
SCD was found to shift 0.7 days earlier per decade (Kapnick and Hall 2012), 
and total SNOWC declined by 9% across the Northern Hemisphere (Rupp et 
al. 2013). The shift in SCD appears to be 8 days earlier per degree Celsius of 
warming in temperatures associated with the end of winter season (March 
and April). In addition, Bales et al. (2006) found that the fraction of storms 
that occur with surface temperatures in the range from −3° to 0°C accounts 
for up to 36% of the annual precipitation events in many parts of the Sierra 
Nevada, highlighting the sensitivity of snow storms in the Sierra Nevada to 
increasing temperatures due to anthropogenic global climate change. Using 
IPCC Fifth Assessment Report RCP 4.5 and 8.5 scenarios, projected end-of-
the-century trends for snowpack highlight that western U.S. SWE may 
decline by 40%–70% (Pierce and Cayan 2013), snowfall may decrease by 
25%–40% (Pierce and Cayan 2013), more winter storms may tend toward 
rain rather than snow (Bales et al. 2006), and relatively warmer storms (e.g., 
ARs) may be more frequent and intense for California (Dettinger 2011). In a 
review paper by Gimeno et al. (2014), Dettinger et al. (2011) represented 
the only western-U.S.-specific paper on the future projected trends of ARs. Of
note is that the authors expressed that the results in this study were a 
preliminary step and should be assessed more from a qualitative sense 
because of the small sample size of AR events in the CMIP5 archive and the 
various assumptions associated with the relatively coarser temporal and 
spatial extents of the models in the CMIP5 archive. Therefore, if the 
aforementioned projected outcomes hold, mean precipitation is not expected
to change dramatically, but interannual variability will likely increase through
modulation in AR events. Because snowpack is affected by both precipitation
and temperature, it is expected that increased end-of-century temperatures 



coupled with more intense warmer storms in the western United States will 
prevent snow accumulation and will lead to changes in runoff timing that 
could be problematic for water management. Thus, an analysis of causal 
mechanisms of snowpack accumulation and snowmelt timing, with a 
dynamic inclusion of large-scale atmosphere–ocean drivers and an accurate 
representation of the complex topography of California, is needed to allow 
water managers to make more informative and preemptive decisions on 
California’s water future.

One key approach to address the aforementioned need is through climate 
models; however, both global and regional models have limitations in their 
predictive capacities. As demonstrated by the North American Regional 
Climate Change Assessment Program (NARCCAP), regional climate models 
(RCMs) were shown to produce too-dry, too-warm, and too-little-SWE 
conditions for the western United States, and snow-cover duration was found
to start too late and to end too early (Salzmann and Mearns 2012). Model 
bias was associated with inadequate topography representation, 
imperfections in observational data, and differing land-surface model (LSM) 
components (Salzmann and Mearns 2012). Caldwell (2010) similarly found 
that RCMs generally overpredict winter precipitation in California, whereas 
GCMs generally underpredict winter precipitation in California. The 
precipitation bias associated with GCMs was related not solely to model 
resolution (this factor was standardized before comparison) but also to 
factors such as subgrid-scale parameterizations and coarse model 
topography (Caldwell 2010). The aforementioned RCM findings regarding 
precipitation and SWE appear contradictory to one another, but note that 
California hydroclimatic trends have shown dissimilarities from several of 
those shown in other parts of the western United States (Mote et al. 2005; 
Kapnick and Hall 2012), likely because of a combination of relatively higher 
topographical elevation in the southern Sierra Nevada (when compared with 
other western U.S. mountain ranges), proximity to the Pacific Ocean, and 
effects from ARs.

This paper aims to analyze the efficacy of variable-resolution modeling using 
the Community Earth System Model (VR-CESM) at resolutions of 0.125° (14 
km) and 0.25° (28 km) in representing Sierra Nevada snowpack, in 
comparison with observational, reanalysis, and dynamically downscaled 
model results. Variable-resolution modeling is a novel tool for modeling the 
climate system and represents a hybrid of global and regional climate 
models. We envision that this new modeling framework will bring added 
value to the snowpack-modeling community with the benefit of a global 
solution that accounts for major teleconnections and regional high-
resolution, better representation of winter storms and orographic forcings. 
This hypothesis has been corroborated for temperature and precipitation 
climatic trends within California (X. Huang et al. 2015, manuscript submitted 
to J. Adv. Model. Earth Sys.). These benefits will lead to a better 
representation of observed summary statistics for winter snowpack within a 



GCM framework. Further, several studies have shown that CESM has skill in 
representing the major wintertime teleconnections of the western United 
States, including the ENSO (DeFlorio et al. 2013; Wang et al. 2014), the PDO 
(DeFlorio et al. 2013), and the PNA pattern (Li and Forest 2014). 
Teleconnection representation in these studies is expected to carry over into 
VR-CESM.

The structure of the remainder of the paper is as follows: Section 2 contains 
information about the CESM setup and experimental design, including VR-
CESM grid implementation. Section 3 discusses the comparative datasets 
used to assess model efficacy. Section 4 provides summary statistical 
comparisons of snow trends on seasonal to multidecadal scales, including 
SWE and SNOWC. Section 5 provides further discussion and the conclusions 
of this study.

2. CESM setup and VR-CESM grid implementation

a. CESM setup

This project utilized version 1.2 of CESM, a widely used and community-
supported climate model developed by the National Center for Atmospheric 
Research (NCAR) and the U.S. Department of Energy. CESM is a fully coupled
GCM composed of seven geophysical models that simulate the major 
components of the Earth system, including the atmosphere, land surface, 
land ice, ocean, ocean waves, river runoff, and sea ice, all of which can be 
coupled dynamically. One of the “F component” sets in CESM (“FAMIPC5”) is 
the standard protocol for the Atmospheric Model Intercomparison Project and
was used for each of the CESM simulations in this study (Gates 1992). This 
component set consists solely of the atmosphere–land coupled model with 
prescribed sea surface temperatures (SSTs) and sea ice extent. This limited 
configuration maximizes computational efficiency and inhibits propagation of
model bias. This is advantageous for a local server environment (<1000 
processors per simulation) like the one used in this study. Although the 
oceanic and sea ice systems were not incorporated dynamically into this 
study, this component set ensures that interannual climate variability 
(mainly via SST anomalies) and global albedo effects from sea ice extent are 
incorporated into the simulations. Future research will target the VR-CESM 
simulation performance with and without a dynamic ocean model. Thus, for 
this study, only the atmosphere model [Community Atmosphere Model, 
version 5.3 (CAM5); Neale et al. 2010] and the LSM [Community Land Model, 
version 4.0 (CLM4.0), with satellite phenology (SP); Oleson et al. 2010] were 
utilized.

CAM was run with the spectral-element (SE) dynamical core with a cubed-
sphere grid structure (Taylor et al. 1997; Dennis et al. 2011). CAM-SE uses a 
continuous Galerkin spectral finite-element method for solving the 
hydrostatic atmospheric primitive equations. CAM-SE provides several 
benefits over other CESM dynamical cores, including linear scalability with 
increasing computer processor counts, machine-precision conservation of 



mass and tracers, elimination of nonuniform grid spacings due to 
convergence zones at higher latitudes, and variable-resolution capabilities 
(Taylor and Fournier 2010; Dennis et al. 2011; Zarzycki et al. 2014a,b; 
Zarzycki and Jablonowski 2014). The CAM5 physics is broken down into six 
main categories: shallow convection (Park and Bretherton 2009), deep 
convection (Neale et al. 2008), microphysics (Morrison and Gettelman 2008),
macrophysics (Park et al. 2014), radiation (Iacono et al. 2008), and aerosols 
(Ghan et al. 2012). Details on each of the physics schemes can be found in 
Neale et al. (2010).

CLM subdivides each cell into land types such as glacier, lake, urban, 
vegetated, and wetland (Oleson et al. 2010; Lawrence et al. 2011). The 
vegetated component of the grid cell is further broken down into various soil 
types that are then characterized by 16 unique plant functional types (PFTs), 
including nonvegetated. CLM4.0 PFTs include five evergreen species and six 
deciduous species for temperate, boreal, and tropical climates, three grasses
for Arctic and non-Arctic climates (with C3 and C4 variations), and a few 
staple cereal crops. PFT cover is derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) satellite data at 0.5° resolution with 
canopy heights for each of the PFTs assumed to range from 0.5 m (crops, 
grasses, and shrubs) to 35 m (trees). PFTs and percent cover of PFTs within 
each vegetated land unit play a crucial role in shaping snowpack trends. This
is because the interaction between the canopy and snowpack is PFT specific 
for biogeochemical, radiative, and hydrological processes such as 
interception, throughfall, canopy drip, water removal via transpiration, and 
optical-property interactions that are based on leaf angle and specific PFT 
(Lawrence et al. 2011).

The parameterizations of snowpack within CESM are based primarily on work
done by Anderson (1976), Jordan (1991), and Yongjiu and Qingcun (1997). 
These parameterizations characterize several important state variables for 
snowpack, including the mass of water, mass of ice, snowpack-layer 
thickness, temperature profile of the snowpack layer, black carbon and 
mineral deposition, and snowpack aging and optical properties. The model is 
discretized using five snow layers with dynamic compaction, water transfer, 
and energy transfer.

b. VR-CESM grid implementation

The VR-CESM grids were generated using a freely available software package
(“SQuadGen”; Ullrich 2014). To generate the variable-resolution grid files, 
SQuadGen interpolates a picture-image file, with variations in its grayscale 
properties, creates a refinement map, and uses spring dynamics to smooth 
the transitional regions between various grid resolutions. VR-CESM 0.25° (28-
km resolution) and VR-CESM 0.125° (14-km resolution) grids were 
constructed for both CAM and CLM (Fig. 1). Topographic smoothing was 
varied between the two VR-CESM 0.25° simulations [VR-CESM 0.25° 
(smooth) and VR-CESM 0.25° (rough)] without modifying the grid structure 



so as to assess the sensitivity of topographical influences on VR-CESM 
simulations. This study represents the first time that variable-resolution grids
were implemented into CLM.

c. Topographic representation in the VR-CESM simulations

Topographical datasets were generated for each variable-resolution grid. The
topographic smoothing was varied between the two VR-CESM 0.25° 
simulations by adjusting the c parameter from Eq. (1) in Zarzycki et al. 
(2015). In the case of the VR-CESM 0.25° (smooth) topography, this 
parameter was equal to 1.33 times that used for generating the VR-CESM 
0.25° (rough) case. This resulted in the differences in topographical 
representation seen in Figs. 2a and 2b. Careful consideration is required 
when generating the VR-CESM topographical datasets because CAM-SE uses 
terrain-following vertical coordinates that exhibit, with excessive terrain 
roughness, a tendency toward generation of spurious vertical velocities and 
numerical artifacts (Zarzycki et al. 2015). The topographical datasets were 
derived using bilinear interpolation with a linear smoothing operator on the 
National Geophysical Data Center (NGDC) global-relief 2-minute gridded 
elevations/bathymetry for the world dataset (ETOPO2v2; NGDC 2006) 
coinciding with the variable-resolution grids’ surface geopotential and the 
order of the hyperviscosity term. This provides more (less) topographical 
structure in the high-resolution (low resolution) region of the nest. For 
example, maximum Sierra Nevada topographical elevations (see Fig. 2) in 
the 111-, 28-, and 14-km resolutions of CESM were 1583.31, 2677.08, and 
3147.28 m, respectively. When compared with the ETOPO2v2 NGDC dataset,



topographical elevation in the Sierra Nevada matches more closely as model 
resolution increases (Fig. 2).

3. Reference datasets and statistical methods

a. Reference datasets

Observational datasets for snowpack metrics such as SWE and SNOWC are 
particularly difficult to develop in mountainous environments. The fractal 
nature of snowpack deposits, quick shifts in elevation, angular differences in 
topography, alpine vegetation cover, cloud cover, and the large footprint 
radius associated with satellite instrumentation are key challenges. In 
addition, many satellite products span less than a decade, preventing 
analysis of climate patterns over decadal timeframes. In situ measurements 
help to alleviate some of the highlighted issues, yet they are irregularly 
located and so may not be representative in regions of rapidly varying 
topography. LSMs have been used to abate the discontinuous nature of in 
situ observations but often contain their own biases. Therefore, to provide a 



rigorous assessment, a blend of the aforementioned data types will be used 
in this assessment.

The datasets that this study used for validation purposes are listed in Table 
1. Datasets vary in snowpack-product availability (i.e., SWE and SNOWC), 
spatial and temporal resolution, map projection, and temporal range. 
Therefore, all datasets were standardized to monthly averaged, seasonally 
averaged (DJF), and climate-averaged (DJF from 1980 to 2005) temporal 
resolutions during the assessment of the VR-CESM simulations. To 
accomplish this task, utilities from the “netCDF” operators (NCO), the 
climate-data operators (CDO), and the NCAR Command Language (NCL) 
were used.

The North America Land Data Assimilation System Phase 2 (NLDAS-2) 
produced 0.125° datasets by incorporating large quantities of observational 
and model reanalysis datasets into three non–atmosphere coupled LSMs (i.e.,
Princeton’s implementation of VIC, NOAA’s Noah, and NASA’s Mosaic) over 
the continental United States. The three datasets provide SWE and SNOWC 
and are extensively analyzed by Xia et al. (2012a,b). For the 2008 California 
climate-change assessment, four GCM (i.e., CCSM3, CNRM, GFDL, and PCM1) 
datasets were downscaled using bias-corrected statistical downscaling 
methods along with the VIC model at a resolution of 0.125°. This dataset, 
known as Cal-Adapt, provides SWE values over the entirety of California, with
the method discussed in Maurer and Hidalgo (2008). The “Daymet” dataset 
provides SWE estimations that are based on meteorological stations. The 
station data are then extrapolated, using a truncated Gaussian weighting 
filter, to create a high-resolution gridded output (Thornton et al. 2014). The 
MODIS satellite remote sensing dataset [MODIS/Terra Snow Cover Monthly 
0.05° (5 km), version 5 (MOD10CM V005)] provides SNOWC using a snow-
mapping algorithm with a normalized-difference snow index (NDSI; Hall et al.



2006). The NDSI is used to distinguish between snow and other features 
(such as cloud cover) by using visible and shortwave near-IR spectral bands. 
A comprehensive analysis and a validation of the MODIS dataset for a region 
of the Sierra Nevada were conducted in Hall and Riggs (2007). The Snowpack
Telemetry (SNOTEL) in situ dataset is composed of 32 automated 
observational stations spread throughout the Sierra Nevada that measure 
SWE (Serreze et al. 1999). The areal extent of the SNOTEL stations ranges 
from 38.07° to 42.99° in latitude and from −120.79° to −119.23° in 
longitude, with an average elevation of 2343 m. Of the 32 stations, only 19 
were utilized, because they spanned the entire 1980–2005 temporal range. 
The North American Regional Reanalysis (NARR) dataset provides monthly 
averaged SNOWC output variables using a high-resolution atmospheric 
model (the Eta Model) forced by a Regional Data Assimilation System (RDAS;
Mesinger et al. 2006). The other reanalysis dataset that was used (NCEP 
CFSv2) is an updated version (2013) of its predecessor (2004) and provided 
SNOWC data (Saha et al. 2014). The NCEP dataset provides better 
representations of 2-m surface temperature, Madden–Julian oscillation (MJO),
and SST forecasts while upgrading overall performance in seasonal-to-
subseasonal forecasting results relative to its predecessor, and its use has 
been advised for decision makers in the water management and agricultural 
sectors (Saha et al. 2014).

A 0.25° (finite volume; CESM-FV) and a 1° (spectral element; CESM-SE) 
uniform-resolution CESM run were used for comparison with the VR-CESM 
simulations as well. The 0.25° simulation is described in Wehner et al. 
(2014), and the 1° simulation was performed by the research team with the 
same component set and dynamical core as were used in the VR-CESM 
simulations. The final datasets utilized for this assessment were a pair of 
simulations conducted at the University of California, Davis, using the 
Weather Research and Forecasting (WRF) Model, which has been used 
extensively for regional climate studies. Several common parameterization 
combinations (including different cumulus schemes and radiation schemes) 
were tested over a 1-yr simulation period and were compared with gridded 
observations. Those final options were chosen for climate applications that 
balance long-term reliability and computational cost, representing a typical 
RCM configuration. Subgrid parameterizations include the Kain–Fritsch 
cumulus scheme (Kain 2004), the WSM 6-class graupel microphysics scheme
(Hong and Lim 2006), and the CAM shortwave and longwave radiation 
schemes (Collins et al. 2004). The simulations used a nested domain with a 
coarse resolution of 27 km (WRF-27) and a finer-resolution domain of 9 km 
(WRF-9) situated over the western United States (centered over the Sierra 
Nevada). The initial and boundary conditions and sea surface temperatures 
were all provided by ERA-Interim reanalysis data, which is a widely used and 
validated dataset for this kind of work (Dee et al. 2011). Both WRF domains 
provide SWE and SNOWC output variables via the Noah LSM (Chen and 



Dudhia 2001) coupled with the Yonsei University boundary layer scheme 
(Hong et al. 2006).

The Noah and CLM4.0-SP LSMs are derived from similar snow-model 
formulations (i.e., Anderson 1976) yet also deviate in several ways. The Noah
LSM pulls primarily from Yen (1965), whereas CLM4.0-SP draws from Jordan 
(1991). This creates differences in both of the snow models’ fundamental 
equations and parameterizations. Differences include number of snow layers 
(Noah LSM has three, whereas CLM4.0-SP has five), snow thermal 
conductivity (CLM4.0-SP uses a snow-density function and Noah LSM uses a 
constant), snow-cover hyperbolic functions (CLM4.0-SP utilizes a slightly 
more complicated formulation) and snowpack–canopy interactions (Oleson et
al. 2010; Yang et al. 2011). Of relevance to this paper’s overall conclusions is
that snow depths (and thus SWE) estimations in the Noah LSM have been 
noted to be significantly overestimated in certain cases because of the 
assumption that snowpack density, physical characteristics, and thermal 
conductivity are constant, therefore neglecting heat transfers via meltwater 
movement in the snowpack (Yang et al. 2011).

b. Statistical methods

The DJF climatological mean state and seasonal variability in snow products 
found within the Sierra Nevada were analyzed. The assessment aimed to 
understand the efficacy of the new VR-CESM approach in representing 
snowpack trends against observation, reanalysis, and other widely used 
GCMs and RCMs. To do this, the datasets were remapped to similar map 
projections and resolutions using both the Earth System Modeling Framework
capabilities in the NCL and the “TempestRemap” (Ullrich and Taylor 2015) 
software suite. The observational and reanalysis datasets were further 
remapped to all possible resolutions used in the models (i.e., 0.125°, 0.25°, 
and 1°). The climate averages and seasonal averages were computed using 
a mask of the Sierra Nevada (see Fig. 3). This mask was developed by the 
U.S. Environmental Protection Agency (EPA) ecoregions classification system 
(ecoregion level III—6.2.12). Summary statistics of the Sierra Nevada were 
calculated for each of the datasets for SWE and SNOWC, including mean, 
standard deviation, lower quartile, median, upper quartile, and maximum.





For most of the datasets assessed, 25 seasons of average DJF values were 
used. WRF-9 had 22 DJF seasons. In addition, MODIS had 12 DJF seasons, 
many of which fall outside the historical period (1980–2005 vs 2000–12), but,
because of the scope of this paper in analyzing the climatological and 
seasonal mean trends (rather than precise seasonal forecasting), this was 
assumed to be largely irrelevant.

4. Seasonal and multidecadal snow trends in the Sierra Nevada

a. Snow water equivalent summary statistics

A panel plot of the DJF average SWE is shown across datasets for California 
(Fig. 4). Clear resolution dependence is apparent across all modeling 
platforms. Each of the datasets highlighted an overall increasing trend in 
SWE with an increase in model resolution, likely correlated with 
topographical representation (see Fig. 2) and resultant orographic forcing on 
weather fronts as well as sustained below-freezing temperatures. Of note is 
that the NCEP dataset did not characterize enough SWE for the Sierra 
Nevada region to be further assessed in greater statistical detail. The model 
datasets are compared with the average of the reanalysis datasets at their 
closest respective resolution of 0.125°, 0.25°, or 1°. Within the Sierra Nevada
masked region, VR-CESM 0.125° and VR-CESM 0.25° (rough) demonstrated 
the closest statistical match across all observational and reanalysis datasets,
with mean DJF SWE absolute-bias values of 6.4 and 2.7 mm, respectively 
(the reanalysis-dataset average SWE value was 97.4 mm), and median 
values within 8–13 mm (Table 2). Maximum DJF SWE values were most 
closely represented by CESM-FV 0.25° and VR-CESM 0.25° (rough), both 
within 68 mm. Note that an artificial cap on maximum SWE at 1000 mm is 
imposed in CLM4.0, which affected maximum SWE values for all VR-CESM 
and uniform CESM simulations. CESM-FV 0.25° and WRF-9 both showed a 
positive bias in DJF SWE values for mean and median when compared with 
the reanalysis-dataset average. CESM-FV 0.25° had a positive bias of 1.8 
times the mean DJF SWE and 2.4 times the median value for the Sierra 
Nevada mask. WRF-9 exhibited a similar response, with a positive bias of 2.4 
times the mean and 1.4 times the median DJF SWE. The coarser-resolution 
version of VR-CESM and WRF had a negative bias with VR-CESM 0.25° 
(smooth) at one-half the mean for DJF SWE in the Sierra Nevada and WRF-27 
at 74%. CESM-SE 1°, the model resolution used in most IPCC simulations, 
was unable to represent both climatological and seasonal DJF SWE trends in 
the Sierra Nevada, with a maximum DJF SWE value of 41.7 mm (<5% of the 
reanalysis-dataset average maximum value), with similar tendencies seen in 
the mean and median values as well.





b. Seasonal variability in snow water equivalent

SWE DJF mean seasonal variability is represented with a plot of standard 
deviation at each grid point across all datasets (Fig. 5). Characterization of 
interseasonal variability, in comparison with the reanalysis datasets, was 
shown to be more difficult for most of the modeling platforms. VR-CESM 
simulations were best represented by VR-CESM 0.25° (rough), which 
exhibited a slight positive bias of 1% relative to the reanalysis-dataset 
average (Table 2). VR-CESM 0.125° and VR-CESM 0.25° (smooth) were at 
87% and 36% of the standard deviation, respectively. CESM-FV 0.25° had a 
large discrepancy in standard-deviation tendency with a positive bias of 2 
times the reanalysis-dataset average of the reanalysis datasets. WRF-9 
showed an exceedingly high variability with 6.8 times the standard deviation 
of the reanalysis-dataset average, although this could be partially amplified 
by the fact that Daymet and CESM SWE values were capped at 1000 mm. 
Although the standard-deviation values were highly variable across modeling
platforms in comparison with the reanalysis-dataset average, the average 
seasonal interquartile ranges (IQR) were more closely aligned (Fig. 6). The 



IQRs for VR-CESM 0.125° and VR-CESM 0.25° (rough) were closest to the 
reanalysis-dataset average, with a slightly negative bias of 11 and 7.8 mm, 
respectively. WRF-9 and CESM-FV 0.25° had a positive bias in IQR, with 
exceedingly high 75th percentiles, whereas VR-CESM 0.25° (smooth) and 
WRF-27 were conservative in their higher-quartile marks.



c. Pattern correlation and bias in snow water equivalent



The average DJF centered Pearson product-moment coefficients, or the 
average statistical similarity between two datasets at identical locations for 
SWE across the 25 seasons (with removal of the mean), for all of the 
simulations were computed against each of the remapped reference 
datasets for the Sierra Nevada masked region (Table 3). The Pearson 
product-moment coefficients are calculated by computing the covariance of 
the two datasets and dividing by the product of their standard deviations. 
Averaging all of the Pearson product-moment coefficients across all grid 
points within the mask is useful in showing the seasonal similarity in SWE 
trend across the entire Sierra Nevada. Of interest is that the VR-CESM 
simulations were almost identical in average seasonal correlation with the 
reanalysis datasets (at ~0.67–0.71) for the Sierra Nevada. WRF-9, remapped 
to 0.125° (14 km) resolution, showed the highest seasonal correlation at 
0.83; this was not unexpected given that the WRF simulations were forced by
ERA-Interim data. Both CESM-FV 0.25° and CESM-SE 1° had the lowest 
correlations, with 0.28 and 0.19, respectively.

In addition, seasonal average bias was computed across model simulations 
for the Sierra Nevada (Table 3). VR-CESM 0.25° (rough) had the smallest 
average seasonal bias to the reanalysis-dataset average with a slight 
negative bias of −2.7 mm, with VR-CESM 0.125° the next closest at −6.4 
mm. WRF-9 showed the best agreement with the NLDAS reanalysis datasets.
The WRF and uniform-CESM simulations had similar tendencies to one 
another, with a positive seasonal bias occurring in the higher-resolution 
simulations and a negative trend in the coarser-resolution simulations, much 
the same as Caldwell (2010) indicated for winter-precipitation tendencies in 
California. Figure 7 shows the average climatological difference in snow 



water equivalent between model and reanalysis datasets. Bluer (redder) 
colors represent a more positive (negative) model bias over the simulation 
period. In general, higher-resolution models tend to overproduce SWE 
whereas lower-resolution models tend to underproduce SWE. This is likely 
due to the underrepresentation of topography within the model simulations. 
Of interest is that in several of the simulations a positive bias appears on the
western slopes of the Sierra Nevada and a negative bias occurs on the 
eastern slopes. This may be caused by an oversensitivity to orographically 
forced upslope winds that push the model to overproduce snowfall as the 
storms move from the windward side to the leeward side of the Sierra 
Nevada. In addition, increased topographic height that does not preserve the
fractal peaks and valleys in more detailed representations (see ETOPO2v2 in 
Fig. 2) could artificially enhance orographic uplift. For example, in Fig. 7 the 
orographic uplift bias was shown in the northern Sierra Nevada for VR-CESM 
0.125° and less so in VR-CESM 0.25° (rough), a potential reason why nominal
improvement was seen in snowpack characteristics for the Sierra Nevada 
when VR-CESM model resolution was increased.



d. Climatological behavior of total snowpack over the water year

The mean daily climatological total SWE (kg) within the Sierra Nevada was 
calculated to characterize the total water content of the region provided by 
snowpack (Fig. 8). By averaging the total SWE each day over all years (1980–
2005) and then multiplying by the area of the mask (53 102 699 313 m2), the
average snowpack mass is shown for the Sierra Nevada across model and 
reference datasets. Each of the datasets was grouped according to its 
comparable-resolution counterparts [i.e., 1) 0.125° (14 km), 2) 0.25° (28 
km), and 3) 1° (111 km)] to better showcase relative magnitudes of Sierra 
Nevada SWE found within a given climatological day. Note that Daymet has 
biases introduced during the dataset formulation that affect its overall ability
to characterize midseason snowpack and thus alter the SCD and timing of 
snowmelt. Further, the Cal-Adapt datasets were not used because daily-
resolution outputs were not available (only monthly and annual), and the 
first hour (0000) of each day within the NLDAS datasets was used within the 



analysis. In general, VR-CESM 0.125° and VR-CESM 0.25° (rough) appear to 
match most closely to all of the reanalysis datasets in relative magnitude 
(Fig. 8). A bimodal profile in VR-CESM 0.125° is likely indicative of the 
artificial 1000-mm cap in SWE imposed within CLM4.0 to prevent excessive 
snow accumulation over Antarctica—future simulations will attempt to 
alleviate this by removing the cap away from the polar regions. WRF-9, 
remapped to 14 km, had a high bias associated with total SWE in the Sierra 
Nevada, with an SCD value of ~21.4 × 1012 kg (more than 2 times the value 
shown in most of the reanalysis datasets as well as VR-CESM 0.125°). In the 
28-km datasets, the magnitude of total SWE is consistent with the 14-km 
results. VR-CESM 0.25° (rough) matched most closely to the NLDAS VIC 0.25°
reanalysis dataset at 8.0 × 1012 kg, with all other datasets falling under that 
mark (<6.0 × 1012 kg). The 111-km-resolution datasets differed greatly from 
one another, with the peak accumulation of CESM-SE 1° values falling much 
further below the remapped reanalysis datasets. This result further 
highlights the inability of standard-practice 1° GCM simulations to capture 
Sierra Nevada snowpack characteristics, especially with respect to total 
water content.





e. Snowpack timing and melting patterns

Peak timing of western U.S. snowpack accumulation (or SCD) is traditionally 
thought to occur around 1 April (water day 182), although this has shifted 
because of regional warming trends in the western United States (Kapnick 
and Hall 2012; Montoya et al. 2014). Since most of the reanalysis datasets 
had discrepancies in representing the total water content and SCD within the
Sierra Nevada, normalized values of average climate day SWE are shown in 
Fig. 9 for all datasets in comparison with 19 SNOTEL stations (Fig. 3). These 
stations were chosen on the basis of daily observation availability spanning 
1980–2005. Further, the SNOTEL locations are representative of several 
elevations found within the Sierra Nevada, spanning from 1864 m (Spratt 
Creek) to 2879 m (Virginia Lakes Ridge). Of note is that the SNOTEL stations 
are clustered from the northern to central Sierra Nevada, with no stations 
present in the south. As such, a subregion of the Sierra Nevada was made to 
compare model results with observations from SNOTEL stations (see the 
solid black subregion in Fig. 3). This subregion was created using 12 of the 
USGS hydrologic units in the Sierra Nevada (Seaber et al. 1987). If a SNOTEL 
station was located within or near an adjoining hydrologic unit then the 
entire unit was kept (within the boundary of the Sierra Nevada ecoregion). 
Further, since the lowest-elevation SNOTEL station was located at 1864 m 
(Spratt Creek), a topographical threshold of 1824 m was imposed to create 
the subregion (this altitude was chosen to provide a buffer around Spratt 
Creek). The normalizations were computed by removing the relative mean 
from all climatological days within a given dataset and then dividing the 
resultant values by the standard deviation. Like the plots for the mean daily 
climatological sums of SWE, all datasets are grouped according to resolution,
with added comparison with SNOTEL in each plot (Fig. 9). Among models, 
VR-CESM 0.125° and WRF-9 matched most closely to SNOTEL, but both had 
an early SCD bias. The SCD in VR-CESM 0.125° falls around water yearday 
170 (21 March), the closest match to SNOTEL across all model datasets. SCD 
for WRF-9 falls around water yearday 160 (11 March), around 2 weeks before
the expected date. Melt rate and the date on which the complete melt of 
SWE occurs differentiated VR-CESM 0.125° and WRF-9, with WRF-9 more 
closely matching SNOTEL. The melt rate in VR-CESM 0.125° was too rapid, 
resulting in a complete melt occurring approximately 30 days sooner than in 
the SNOTEL dataset. Daymet had a late SCD around day 191 (10 April), 10 
days after SNOTEL. The melt rate in the Daymet dataset was much slower 
than in all other datasets. Further, since Daymet analyzed each year in 
isolation, the snowpack was discontinuous at water yearday 91 (Thornton et 
al. 2014). Snowpack accumulation onset matched fairly well across all 
datasets, with the onset date around water yearday 36 (5 November). Within
the 28-km simulations, most model datasets seem to match in terms of 
having an earlier expected SCD clustered on water yearday 151 (1 March), 
approximately 30 days sooner than SNOTEL. The remapped version of 
Daymet at 0.25° showed a similar late SCD bias (water yearday 191) and 



showed a more drastic slowdown in melt rate. All 0.25° datasets matched 
fairly well in snowmelt rate and accumulation onset, matching well with 
SNOTEL. Full melt generally occurred earlier (water yearday 240) across 
models relative to SNOTEL (water yearday 270). In the 1° datasets, CESM-SE 
1° had a physically unreasonable SCD (water yearday 90), snowmelt rate, 
and accumulation onset date. Of interest is that, at the 1° resolution, the 
biases in Daymet are minimized and the SCD, snowmelt rate, date of 
complete melt, and accumulation onset date all are well within the range of 
SNOTEL.





f. Linear trends in DJF seasonal snowpack

Figure 10 highlights the linear trend in DJF seasonal mean SWE values for the
historical period in the Sierra Nevada SNOTEL subregion. For comparison, the
19 SNOTEL station datasets are plotted in the upper-left panel. The gray 
lines indicate individual SNOTEL stations, with the mean SNOTEL-station 
seasonal trend shown in black and the linear trend line in red. Each of the 
model and reanalysis datasets is plotted using similar axis bounds, except 
for WRF-9, which exhibited larger values of SWE. SNOTEL stations are plotted
with a larger axis, representative of these observations being pointwise 
measurements in regions of greater snow accumulation. The general trend 
across VR-CESM simulations is a slight decrease in DJF seasonal mean SWE. 
VR-CESM 0.125° had the largest negative trend at −0.198 mm yr−1, with VR-
CESM 0.25° (smooth) at −0.093 mm yr−1 and VR-CESM 0.25° (rough) at 
−0.029 mm yr−1. Except when compared with Cal-Adapt, which shows a 
dramatic increase in SWE, and Daymet, which shows a faster decrease in 
SWE, the general trends for VR-CESM datasets are slightly more negative 
than for the SNOTEL and NLDAS reanalysis datasets. This result is 
corroborated by Mote et al. (2005) who found a 2.2% decline in mean 1 April 
SWE across the in situ snowpack observational stations within the Sierra 
Nevada over the historical record [i.e., 1990–97 (final period) minus 1945–50
(initial period)], with inclusion of snow-course data also. Of interest is that 
the 19 sampled SNOTEL stations showed a nearly flat trend (0.016 mm yr−1) 
in DJF mean seasonal SWE over the study period. WRF simulations showed 
differing results, with WRF-9 showing an exceedingly strong positive trend 
(0.410 mm yr−1) in mean seasonal SWE and WRF-27 having a stagnant to 
slightly positive trend (0.011 mm yr−1), matching most closely with SNOTEL. 
CESM-SE 1° and CESM-FV 0.25° both had a negative trend in mean seasonal 
SWE, with magnitudes of −0.259 and −0.200 mm yr−1, respectively.



g. SNOWC summary statistics

Figure 11 represents average climatological DJF SNOWC plotted for all 
datasets over California. Similar to SWE, an increase in resolution results in a
much more heterogeneous representation of SNOWC properties that is more 
closely matched to observations, as represented by 12 seasons of MODIS 
(MODIS-5) data. A topographic influence is clearly seen as resolution is 
increased, with higher-resolution models capturing lower-elevation basins 
that are otherwise smoothed out. This resolution dependence manifests itself
in statistical calculations of average DJF SNOWC within the Sierra Nevada 
(Table 4). WRF-9 showed the closest match to mean seasonal SNOWC, with a
value only 1.5% lower than that for the MODIS dataset. VR-CESM 0.25° 
(rough) and VR-CESM 0.125° were the next closest with a slightly more 
conservative estimate (7% below MODIS) of SNOWC. All other datasets, 



except CESM-FV 0.25°, which had a positive bias of ~8%, had much smaller 
estimates of mean seasonal SNOWC. CESM-SE 1° provided the largest 
underestimate among the model datasets with mean seasonal values at one-
quarter of the comparable remapped version of MODIS. Interestingly, two of 
the best available high-resolution reanalysis datasets (NCEP and NARR) seem
unable to capture properly the Sierra Nevada SNOWC characteristics in the 
MODIS dataset, with most of the reanalysis datasets showing a negative bias
for SNOWC. NARR-32 and NCEP-35 had mean SNOWC values from one-half to
two-thirds of the value indicated by MODIS, and NLDAS VIC, Noah, and 
Mosaic were at 84%, 74%, and 47% of MODIS, respectively. The median 
values for DJF SNOWC for VR-CESM 0.125° and VR-CESM 0.25° showed a 
close approximation to those seen in NLDAS VIC. As expected, since SNOWC 
is capped at 100%, maximum DJF SNOWC was reached by most modeling 
platforms.



h. Seasonal variability in snow cover

Mean seasonal variability (interannual standard deviation of the seasonal 
mean) in SNOWC is shown over California (Fig. 12). Standard-deviation 
values for each of the simulations are given in Table 4. As with the mean 
seasonal SNOWC values, WRF-9 had the best representation of seasonal 
variability within the Sierra Nevada, with a close approximation to standard-
deviation values in the remapped MODIS dataset (although it underestimates
standard deviation in the lee of the Sierra Nevada). VR-CESM 0.25° (rough) 
also was able to characterize seasonal variability at a realistic level, with a 
standard deviation only 14% below that of MODIS. All other modeling 
platforms had a conservative estimate of variability, ranging from one-half to
three-quarters of the observed standard deviation, when compared with 
common remapped resolutions. This result is apparent in Fig. 13 for each 
dataset and in analyzing the IQRs. All datasets, save for WRF-9 and CESM-FV 
0.25°, had a conservative estimate of SNOWC summary statistics when 
compared with MODIS. Median values, along with IQRs, are too low, with a 
noticeable bias in the 75th percentiles.





i. Pattern correlation and bias in snow cover

The average seasonal centered Pearson product-moment coefficients and 
mean climatological bias for SNOWC are exhibited in Table 5. MODIS was not
used in the centered Pearson calculations because it only spanned five years
of the historical period (2000–05). A close match was seen across both VR-



CESM and WRF modeling platforms when compared with the three NLDAS 
datasets. Most values fell around 0.74 for the VR-CESM simulations and 0.84 
for the WRF simulations. The CESM-FV and CESM-SE had the lowest 
correlations at 0.53 and 0.15, respectively. The smallest mean climatological
bias in DJF SNOWC between MODIS and the model datasets was for VR-CESM
0.125°, VR-CESM 0.25° (rough), and WRF-27, with negative biases of 
approximately 6%–7%. CESM-SE 1° produced the worst match across model 
datasets, with a −28.5% bias. Of note is that the NLDAS reanalysis datasets 
also widely varied in their ability to characterize mean climatological SNOWC
bias when compared with MODIS, with consistent negative biases ranging 
between −9.2% (NLDAS VIC) and −29.4% (NLDAS Mosaic).

5. Discussion and conclusions

The primary goal of this paper has been to assess the efficacy of VR-CESM in 
simulating the mean climatological state and seasonal variability within 
Sierra Nevada snowpack metrics (i.e., SWE, SCD, and SNOWC). It was 
determined that the efficacy of the VR-CESM framework in simulating 
climatological mean and seasonal variability in both SWE and SNOWC was 
competitive with traditional dynamical downscaling. Overall, given 
California’s complex terrain and intermittent climate, a 0.68 centered 
correlation (less correlated yet similar to values seen in WRF), a negative 
mean SWE bias of <7 mm, and an IQR well within the range of values 
exhibited in the best available spatially continuous datasets for SWE 
together confirm the ability of both VR-CESM 0.25° (rough) and VR-CESM 
0.125° to simulate SWE on both climatological and seasonal scales. Of note 
is that both of the VR-CESM simulations were solely constrained by 
prescribed SST and sea ice data, whereas WRF simulations were further 
constrained at lateral boundaries by ERA-Interim data (in addition to SST and
sea ice), yet both showed comparable statistical properties. This was 
similarly confirmed for the climatological mean for DJF SNOWC, for which 
both the VR-CESM 0.125° and VR-CESM 0.25° (rough) simulations were 
within 7% of the expected mean MODIS value. VR-CESM 0.25° (rough) was 



able to characterize MODIS’s standard deviation well (86% match). WRF-9 
had the best representation of SNOWC, with a near identical representation 
in mean, standard deviation, and IQR when compared with MODIS, but at the
cost of unreasonably high SWE values. This is likely indicative of the 
overexaggeration of topography at higher resolutions in the model, where 
the fractal nature of peaks and, more important, valleys are misrepresented 
(cf. ETOPO2v2 with model topography in Fig. 2), leading to a bias in overall 
snowpack characterizations. VR-CESM, as well as WRF, conveyed mixed 
results in representing seasonal variability in SWE (average standard-
deviation value at each grid point), with generally conservative estimates 
across all assessed modeling platforms except WRF-9 and CESM-FV 0.25°, 
which had much higher estimates. The total water content of snowpack 
within the Sierra Nevada was best represented in both VR-CESM 0.125° and 
VR-CESM 0.25° (rough) when compared with the remapped NLDAS VIC 
reference dataset at their respective resolutions. VR-CESM 0.125° and WRF-9
showcased the best representation, across datasets, of SCD timing, 
snowmelt rate, and snowpack accumulation onset in comparison with 
SNOTEL. The two datasets differed in the date on which complete melting of 
SWE occurred, with VR-CESM 0.125° occurring too early whereas WRF-9 had 
a slightly late onset. It is interesting that both SWE and SNOWC did not show 
a significant enhancement in snowpack properties when VR-CESM resolution 
was moved from 0.25° to 0.125°; in fact, the 0.25° simulation [VR-CESM 
0.25° (rough)] was slightly more skillful when considering all metrics. 
Topographical roughness was found to play a much more significant role in 
representing snowpack properties, with VR-CESM 0.25° (rough) seeing a 16-
fold decrease in average seasonal SWE bias, a threefold increase in SWE 
seasonal variability, an IQR increase from 48.9 to 64.1, and a considerable 
increase in the SCD total water content for the Sierra Nevada. These results 
are an improvement when compared with the average of all of the reanalysis
datasets. Furthermore, DJF temperature characteristics may have played a 
role in modulating which of the simulations performed most optimally. Figure
14 highlights average climatological DJF 2-m surface temperatures for only 
the model simulations. Below-freezing (<273 K) temperatures are shown to 
be maintained over greater areas for the climatic period across all higher-
resolution (≤0.25°) simulations, likely because of increased topographic 
elevations in those areas. This temperature maintenance likely drives winter-
season snowpack accumulation and sustainment.



The VR-CESM framework provides greatly enhanced representation of 
snowpack properties relative to widely used GCMs (i.e., CESM-FV 1° and 
CESM-FV 0.25°). Simulation of Sierra Nevada snowpack in the VR-CESM 
framework is competitive with traditional dynamical downscaling techniques 
but has the additional means of providing dynamic interaction with large-
scale atmosphere–ocean drivers and teleconnections that might not 
otherwise manifest in an RCM constrained by boundary conditions. These 
two points lend them themselves well to using certain versions of VR-CESMs 
[viz., VR-CESM 0.25° (rough) and VR-CESM 0.125°] in projecting future 
climate-change scenarios and their resultant impacts on water resources 
over the western United States.

The topographical smoothing between the two VR-CESM 0.25° simulations 
had the most dramatic influence on snowpack-product tendencies found 
within the VR-CESM framework, even when compared with changes resulting
from a doubling of model resolution from 0.25° to 0.125°. As shown in Table 
2, mean seasonal SWE for the Sierra Nevada nearly doubled from 50.4 to 
95.2 mm between VR-CESM 0.25° (smooth) and VR-CESM 0.25° (rough), with
a decrease in average DJF climate bias in SWE from −52% to −2.3% when 
compared with the reanalysis-dataset average. This tendency was similar for
the lower-quartile, median, and higher-quartile values. In a similar way, the 
seasonal variability, indicated by the standard-deviation plots (Fig. 5) and 
standard-deviation values (Table 2), nearly tripled, making the VR-CESM 
0.25° (rough) simulation the closest match to the reanalysis-dataset average
within all model simulations. Changes in SNOWC trends were also apparent, 



although they were less dramatic than those for SWE (Table 4). Average 
seasonal SNOWC increased by 9%, and the IQR increased from 48.9 to 64.1, 
matching more closely to the MODIS dataset value of 74.5, with the higher 
quartile being less conservatively biased.

Improved topographical resolution also resulted in better representation of 
the snow characteristics of the maritime mountain ranges (e.g., the 
Cascades and the Coast Ranges) (Fig. 4). Maritime mountain ranges have 
shown some of the greatest snowpack decreases over the historical record 
(Serreze et al. 1999; Mote 2003; Mote et al. 2005) and are in need of the 
best available climate-change impact analysis because of a greater 
susceptibility to climate-change trends (i.e., warmer and potentially more 
precipitous weather fronts originating from relatively warmer ocean waters). 
This is important because conventional GCM simulations are generally 
performed at resolutions that are too coarse to properly resolve the 
aforementioned topographical forcings and thus may bias evaluations used 
to guide climate-impact studies and climate-policy formulation. This is not to 
say that the VR-CESM framework provides perfect representation of these 
ranges but that it provides a more realistic and computationally effective 
means to characterize these ranges in a changing climate. This subject will 
be the target of further research.

A higher-resolution surface dataset for PFTs would have been beneficial for 
this study so as to capitalize on the higher-resolution (<0.5°) VR-CESM grids 
that were implemented into CLM, but none were available at the time of 
writing. An extensive review of the North American and European literature 
on snowpack–canopy interaction by Varhola et al. (2010) argued that 
snowpack accumulation and melting patterns can be significantly altered by 
changes in forest cover, accounting for relative variance changes of 57% in 
snow accumulation and 72% in snow ablation. After discussion with the CLM 
development team at NCAR, a 2-min PFT dataset for the year 2000 was 
identified. This dataset will be used in future simulations to assess the 
effects of canopy interactions on snowpack metrics within a VR-CESM 
framework.

Added benefits of the VR-CESM framework, not discussed previously, include 
the large enhancement in computational efficiency. For example, the 0.25° 
(0.125°) VR-CESM grid had approximately 8400 (11 300) elements. When 
compared with conventional uniform resolution grids at 1.00°, 0.25°, or 
0.125°, which have 5400, 86 400, and 345 600 elements, respectively, a 
theoretical speedup in computation time of 10–30 times is expected for the 
VR-CESM framework, with the assumption of linear computational scalability 
highlighted in Dennis et al. (2011) and Zarzycki et al. (2014a). Therefore, for 
a relatively similar computational cost of a uniform 1.00° grid, one can get 
vastly improved snowpack-product characteristics over a limited region of 
interest, especially within the California Sierra Nevada. This is not only a 
function of resolving smaller-scale meteorological features but is also due to 
better representations of topography and, in some cases, land-surface 



properties. Therefore, for only a fraction of the cost of a high-resolution 
uniform GCM run, the VR-CESM approach can be performed on a local server 
(<1000 processors), with 20–40-day turnarounds on 25-yr simulation periods
and can provide model resolutions from 0.25° (28 km) to 0.125° (14 km), 
which decision makers (especially in the western U.S. water sector), may find
more useful in regional-planning endeavors. The enhanced representation of 
snowpack and the relative computational efficiency of VR-CESM lend 
themselves well to future investigations of other SWE-dependent regions of 
the western United States, as well as to ensemble-based climate-change-
scenario analysis.
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