UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Model of Syntactic Parsing Based on Domain-General Cognitive Mechanisms

Permalink
https://escholarship.org/uc/item/0d00v4t{

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Authors

Cassimatis, Nicholas
Murugesan, Arthi

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0d00v4tf
https://escholarship.org
http://www.cdlib.org/

A Model of Syntactic Parsing Based on Domain-General Cognitive Mechanisms

Arthi Murugesan (muruga@rpi.edu)
Nicholas Cassimatis (cassin@rpi.edu)
Rensselaer Polytechnic Institute
Department of Cognitive Science, 110 8™ Street

Troy, NY 12180 USA

Abstract

The relationship between linguistic and nonlinguistic cogni-
tion is an important area of study including the questions of
language modularity and learnability. We believe that insights
to this relationship can be obtained by implementing a precise
computational model of sentence understanding within a gen-
eral cognitive architecture. In this paper we have represented
a wide-coverage grammar (Head-driven Phrase Structure
Grammar) using non-linguistic representation. ~We have
shown how grammar-specific representations like specifier,
complement, modifier and gap map to domain-general event
representations such as subgoals and temporal constraints.
The paper thus demonstrates that domain-general cognitive
mechanisms are sufficient and adequate for syntactic parsing.

Keywords: Syntactic Parsing; domain-general mechanisms;
HPSG; Polyscheme; modularity of language.

Introduction

The relationship between linguistic and nonlinguistic cogni-
tion is an important question in cognitive science. One way
of studying this topic is to ask if language is an independent
module or integrated with the rest of cognition. Both ap-
proaches have problems explaining the phenomenon.

The modularity of language has been argued for by
Fodor (1983) and Chomsky (1988). Both in computational
linguistics and in cognitive modeling of sentence process-
ing, modular approaches have trouble explaining the inter-
action of people’s syntax-specific processing mechanisms
and general inference mechanisms about the world. A
number of sentences that we parse in daily life require vis-
ual information, social awareness, higher reasoning and
other complementary cognitive processes to obtain the sub-
tle meanings, for example:

I saw a star with a telescope.
I saw an astronomer with a telescope.

In these sentences, the telescope could be the instrument
used to view the object (star or astronomer) or the telescope
could be seen near (with) the object. However, typically
people infer the star to be viewed through the telescope and
the astronomer to be near the telescope. Disambiguation can
be attributed to both the visual perception of the telescope
and the reasoning that an astronomer uses the instrument
frequently while watching an astronomer through the tele-
scope is improbable. This reasoning also requires knowl-
edge about astronomers, their instruments and the action of

seeing. Therefore, the mechanisms used to understand a
seemingly simple sentence include language, vision, reason-
ing and semantic knowledge. The modular theory doesn’t
address the question raised by this phenomenon: if the
mechanisms of language and other kinds of inferences are
so different, how do they interact so tightly and so well?

On the other hand, the non-modular approach
claims that language is a part of and interacts freely with the
greater cognitive system (Newell & Simon 1972; Marslen-
Wilson and Tyler, 1989). The striking problem here, per-
haps most visible in syntax, is that concepts involved in lan-
guage (e.g., argument structure, head projection or agree-
ment) and concepts involved in physical reasoning (e.g.,
gravity, time or place) seem to be very dissimilar and unre-
lated. How could we use, for example, the same mechanism
to solve an equation, plan a shortest route to a restaurant and
determine the binding properties of a given pronoun? The
lack of a detailed answer to these questions makes the
modularity hypothesis more plausible.

Cassimatis (2004) addressed this disparity by
showing that aspects of language syntax such as categories,
word order and constituency can be mapped onto domain-
general cognitive structures. Although this work demon-
strated that broad linguistic concepts have duals in domain-
general cognition, it did not demonstrate that these high-
level dualities were sufficient to map a sophisticated gram-
matical theory onto domain-general cognitive structures.

Addressing Modularity with Cognitive Models
of Sentence Understanding

We believe that designing a sentence parsing system within
a cognitive architecture will aid us to get a better insight of
language integration with cognition. Our approach is driven
by the hypotheses described in this section.

Language processing uses the same mechanisms
as the other forms of cognition. We accept the evidence
that language is highly integrated with the rest of cognition.
In addition to the commonalities between syntactic and
physical structure outlined in Cassimatis (2004), there are
several reasons for this hypothesis in other parts of lan-
guage. For example, Bloom (2000) and Tomasello, Kruger,
and Ratner (1993) provide experimental results that show
the general theory of mind learning also aids in learning
words. Jackendoff (1990) demonstrates how concepts from
physical reasoning can be used to formalize semantics of
verbs in many fields. Clark (1996) analyzes many aspects
of language use as a species of social interaction. All this

1850

work makes it at least plausible that the syntactic structure
of human languages can be accounted for using domain-
general cognitive notions.

Wide-coverage of linguistic mechanisms is re-
quired. We hope to show how the various aspects of sen-
tence processing relate to and rely on general cognitive
processes. More specifically in modeling terms, the chal-
lenge is to show how a cognitive architecture with domain-
general mechanisms can be used to model syntactic parsing.
The design of such a model can be approached either by (1)
detailed modeling of the components of the process (e.g.
part of speech disambiguation, past tense retrieval (Taatgen
& Anderson 2002)) followed by integration or (2) through
comprehensive modeling of the entire process from the be-
ginning. Though careful accurate component modeling can
give us tight fits to human data, these highly focused models
have fewer constraints leading to higher risk of overfitting
exclusively to the data set studied. On the other hand in a
comprehensive model the need for the various subparts to
interact with each other naturally, provides a stronger and
more restrictive list of constraints. Though we realize that
even a comprehensive model is just a possible explanation,
the chances of overfitting are greatly reduced with the in-
crease in the complexity of the task being modeled. Fur-
thermore, limiting the study to a specific component may
also lead to situations where the hardest part of the problem
lies outside the focus of study. These convictions lead us to
build a model of the entire sentence parsing system instead
of focused components.

Base model on wide-coverage grammatical the-
ory. To be confident that our model can potentially account
for the wide array of syntactic phenomena, we decided to
base our model on a wide-coverage theory of grammar.
Among the various candidate grammatical theories, Head-
driven Phrase Structure Grammar (HPSG) has wide accep-
tance and several computational implementations. The
flexibility and broad coverage offered by few general rules
make HPSG a powerful tool. Though we are primarily con-
cerned with the syntactic aspect of sentences, HPSG can
also be used as a tool to bridge syntax with semantics
(Dorna & Emele, 1996). These features of HPSG and the
general trend in the field towards HPSG have led us to base
our model on HPSG as proposed by Sag, Wasow and
Bender (2003).

Parsing integrates multiple cognitive structures
and processes. For example, a common trend in HPSG and
other parsing and grammatical literature has been to use sta-
tistics to fine tune the bare HPSG Parser (Torisawa, Ni-
shida, Miyao, & Tsujii, 2000). The various aspects in which
statistics are used include skewing the success of a phrase in
the lexicalization step, handling word sense disambiguation,
prioritizing the selection of possible parse tree path and as-
signing weight to HPSG rules themselves. Certain tech-
niques like learning rules based on induction are best cap-
tured by connectionist models. Thus to be able to implement
a complex system like a parser, we require a framework that
provides a seamless way of integrating various computa-

tional mechanisms. Because the Polyscheme cognitive
framework is designed to model the integration of multiple
reasoning and learning mechanisms, we developed our
model within it.

Polyscheme

Polyscheme is a cognitive framework which has been used
to model a wide range of phenomena from fundamental
physics laws to theory of mind based intention reading
(Cassimatis 2005). The driving principle behind Poly-
scheme is that different high-level tasks use the same under-
lying set of common functions and that these common func-
tions can be implemented using multiple computational ap-
proaches. Each module implementing a common function is
called a specialist and a specialist shares opinions with the
other specialists through altering the truth values of a com-
mon substrate of propositions. As the specialists are inte-
grated through a common substrate, the internal working of
each specialist is abstracted, enabling the specialist to use
any computational method required. Some of the mecha-
nisms used for implementing the parser include rules,
spreading of activation and constraint satisfaction.

The various specialists used for the parser include
difference specialist, temporal specialist and rule specialist.
The difference specialist checks for uniqueness and identity
of objects, while the temporal specialist handles sequencing
of events. The rule specialist by itself enables a simple and
powerful production system. The rules stored in the rule
specialist consist of a set of antecedent propositions, the set
of resulting propositions and a strength of the rule in terms
of confidence level. For the sake of familiarity an example
of a proposition is

PropositionName objectl object2 Time World.

A proposition can take any number of objects. Note
that all propositions have the time, for which they hold true,
associated with them. A proposition can exist with varying
truth values in different worlds and this world concept can
be thought of as namespaces within the common substrate.

A Model of Syntactic Parsing

The major insight our model is based on is that representa-
tions normally used to capture nonlinguistic relations can be
used to represent linguistic relations. Once we show how to
represent these nonlinguistic relations in Polyscheme, then
its existing domain-general reasoning mechanisms will infer
the structure of a sentence with no special inference ma-
chinery just for syntax.

The HPSG grammar is based on words and phrases
modeled as feature structures. The feature structures interact
with each other through the constraints of the Grammar
rules to form larger phrases and eventually a sentence.
Hence the essential components of modeling a HPSG parser
are word and phrase representations, feature structures,
grammar rules and lexical rules. Here we show how these
basic HPSG entities can be represented in terms of domain
general concepts.

1851

Words and phrases as events

The utterance of a word is treated in our model like the oc-
currence of any other event that can be perceived. In this
case the perceived event is the Utterance event. Some of
the properties required to distinctly identify and describe an
Utterance event (for example the occurrence of word
“dog” in the sentence “The dog barked”) are the start time,
end time and phonology of the word.

ISA dogphr UtteranceEvent E R.
StartTime dogphr t2 E R.
EndTime dogphr t3 E R.
Phonology dogphr ‘dog’ E R.

ISA theDogPhr UtteranceEvent E R.
StartTime theDogPhr tl E R.
EndTime the DogPhr t3 E R.
Phonology theDogPhr ‘the dog’ E R.

A phrase which is formed by combining neighboring words
is also considered a Utterance event as the phrase shares
the same properties of unique start time, end time and pho-
nology. For example, the noun phrase “the dog” which is
generated by combining thephr of time tl to t2 and
dogphr of time t2 to t3 has the structure shown above. ISA
is the Polyscheme proposition denoting object category.

Feature Structure as Event Structure

Feature Structures of words and phrases form the basic
building blocks of parse trees and sentences in HPSG. The
typical features of a phrase or word are Head, Part of
Speech, Agreement, Number, Person, Specifier,
Complement, Phonology and Gap. In Polyscheme, the
utterance of a word is an event and the features of this event
are considered as objects. For example, the Head feature of
the event dogphrase is an object, say dogphrHead. A
characteristic property of all these features is that each fea-
ture can take only one object as its value. In Polyscheme an
object taking a single value is termed as an attribute. Declar-
ing the features as attributes, lets us leverage on a number of
built in Polyscheme functionalities.
POS Noun
Head | AGR [NUM Singular]
COUNT Countable
PHONOLOGY ('dog ")

Polyscheme representation of the above feature structure is

UtteranceEvent dogphr E R.
Head dogphr dogphrHead E R.
POS dogphrHead Noun E R.
AGR dogphrHead dogphrAgr E R.
NUM dogphrAgr Singular E R.
COUNT dogphrHead Countable E R.
PHONOLOGY dogphr ‘dog’ E R.

Note that the nested features are written as propositions re-
lating the internal contained object to the subsuming object
as shown with Agreement and Num. The Gap and Comple-

ment features take a list instead of one object. In Poly-
scheme this is captured by creating a list-object which in
turn is associated with all the objects that it contains.

Tags In HPSG besides features, tags are used widely to rep-
resent relations between feature structures. Tags with the
same label indicate that the feature structures are identical
with essentially the same reference and not just copies hold-
ing similar values. For e.g. phrasel and phrase3 are con-
strained to be the same by tag ||1].
phrase3
[|1]l| Head [POS Noun |
PHONOLOGY 'bat'

This is captured in Polyscheme by ensuring that the
two objects are one and the same instance using the Same
proposition as in Same phrasel phrase3 E R.

. phrasel phrase2
I Head|[POS Noun] | | Head[POS Verb]

Grammar Rules

An important part of HPSG is a small number of very gen-
eral grammar rules. With just Head-Specifier, Head-
Complement, Head-Modifier and Head-Filler Rule, an ef-
fective parsing system can be built.

Head-Specifier Rule: The Head Specifier Rule states that a
phrase selecting a preceding or “specifier” phrase, when
preceded by the required specifier combine to form a larger
phrase. A typical example of Head Specifier rule instance is
a verb requiring a subject as the specifier phrase. For exam-
ple, in the sentence “Dogs barked”, “barked” is the verb re-
quiring the subject “dogs” as the specifier. Another com-
mon example of Head Specifier phrase is a noun requiring a
determiner, as in “dog” requiring “a” or “the”, to precede it.

Though the constraints of Head Specifier rule seem
to be specific to words and phrases, we can see its core idea
as an instance of a general rule, relating events with other
events that must precede them. This concept of an event re-
quiring another event to come before and qualify the event
is common in many domains like planning where the pre-
conditions (Fikes & Nilsson, 1971) of an event are explicitly
stated. We can also find analogies of preceding events in
common physical reasoning scenarios. For example, in the
action of opening a locked door, the event of unlocking and
opening the door is the main or head event. However, the
unlocking-door-event is incomplete without the re-
trieval-of-keys event preceding it. Hence the unlock-
ing-door-event corresponds to an example of a Head
Specifier rule where the head event is unlocking and open-
ing the door and the specifier event is taking out the keys.
Examples of physical world preceding events are:

(Take out the keys) (Opening a locked door)
(Loading a gun) (Firing the shot)

Thus the specifier as defined in HPSG can be thought of as
a preceding event in domain-general terms. Hence the
specifier attribute of a HPSG feature structure is captured
through the Preceding proposition in Polyscheme.

1852

The HPSG head specifier rule is defined as follows
in terms of feature structures and tags.

) phrase

phrase

e ()| I HIseR)
COMPS ()

There are three constraints posed by the Head Specifier rule.
The first constraint is that the Head phrase must immedi-
ately follow the Specifier (SPR) phrase in time. Secondly,
the Complement (COMPS) feature of the Head phrase must
already be satisfied and made empty. The final constraint
ensures the identity of the event that comes before the
phrase and the specifier of the phrase through the tag ||1]|.

The domain-general Polyscheme rule that captures
the Head Specifier rule is in terms of preceding event and
following event corresponding to the specifier and comple-
ment attributes of HPSG.

Meets ?precedingevt ?headevent E ?w +
Preceding ?headevent ?precededby E ?w +
Following ?headevent empty E ?w +

Same ?precedingevt ?precededby E ?w

=>,

Preceding ?Phrase- empty E ?w +
PercolatePrinciples ?Phrase- ?headevent E ?w

The immediate sequencing of the specifier and
Head phrase is an essential constraint to be modeled. In
Polyscheme, the Temporal Specialist tracks the se-
quencing of events and the Meets proposition specifically
indicates the ending time of the first event coinciding with
the beginning time of the second event. The next constraint
enforced by the Head Specifier rule is on the Following-
event attribute of the Head Phrase to be empty. The final
constraint of the Head Specifier rule, imposed by the tag ||1]|
is captured though the Same proposition.

Though Same (precedingevt, precededby) is
easy to capture, Polyscheme does not initially assume that
precedingEvt and precededBy phrases could be the
same as each word occurs independently of the other words.
The new object created for Preceding event attribute of
the head phrase is hence independent of the phrase, pre-
cedingevt. To capture the identity between preced-
ingevt and precededBy, a pre-head Specifier rule is in-
troduced in Polyscheme. The pre-head Specifier states that
if all other constraints of a Head Specifier Rule are satisfied
then the phrases precedingevt and precededby are
likely to be the same.

Meets ?precedingevt ?headevent E ?w +
PrecedingEvent ?headevent ?precededby E 2w+
FollowingEvent ?headevent empty E ?w
~~> , Same ?precedingevt ?precdedby E ?w

The difference specialist verifies that no attributes in the
two phrases contradict and automatically falsifies the likeli-
hood of Same proposition in the case of a contradiction.
Hence the domain general Head-Specifier rule proceeds on

the likelihood of Same (precedingevt, precededby)
being conserved by the difference specialist. This process of
rejection by difference specialist is the essential constraint
that filters invalid phrases like “the go” from valid head
specifier phrases like “the dog”.

Let us consider the formation of the phrase “the
dog”. The table below compares the feature structures of
‘the’ and ‘dog’ phrases.

The phrase Dog phrase

Start Time tl

End Time t2

POS Noun

Preceding detPhrase

Start Time tO
End Time tl1

POS determiner
Preceding empty
Following empty Following empty

The matching rule instance of the pre-head specifier rule is

Meets ThePhr DogPhr E ?w +
Preceding DogPhr detPhrase E ?w +
Following DogPhr empty E ?w

~~> , Same ThePhr detPhrase E ?w

The difference specialist gives opinion on Same (ThePhr,
detPhrase) by comparing the attributes of the two
phrases. The attributes of ThePhr are listed above and the
feature structure of a generic detPhrase in HPSG is given as:

Head [POS determiner]

SPR <empty>

COMPS <empty>

MOD <empty>

GAP <empty>
As the attributes defined for ThePhr - POS, Preceding and
Following are determiner, empty and empty showing con-
sistency with the feature structure of detPhrase, the differ-
ence specialist allows the claim Same (precEvt,

precBy) to exist in likely confidence.
However, considering the phrase “the go”

The phrase Go phrase

Start Time tl

End Time t2

POS Verb

Preceding nounPhrase

Start Time tO
End Time tl

POS determiner
Preceding empty
Following empty Following empty

Matching rule instance:

Meets ThePhr GoPhr E ?w +
Preceding GoPhr nounPhrase E ?w +
Following GoPhr empty E ?w

~~> , Same ThePhr nounPhrase E ?w

The HPSG feature structure of a generic noun phrase is
similar to the detPhrase except that the value of POS is
Noun. The difference specialist falsifies Same (ThePhr,
nounPhrase) as the POS attribute of ThePhr and noun-

1853

Phrase are different. This falsification prevents the Head
Specifier rule of ‘the go’ phrase from firing.

In the cases where the difference specialist pre-
serves the likelihood of the same proposition, all the condi-
tions required for the domain general Head Specifier rule
are met. The result of Head Specifier rule is the complete
feature structure of the combined event. The Percolation
principles aid in the creation of the new phrase.

Percolation Principles:

When feature structures interact through Grammar Rules,
only the specific feature corresponding to the rule applied is
defined for the new phrase. For example a phrase formed by
the Head Specifier Rule has only the preceding attribute de-
fined (here empty). Hence in HPSG there are principles that
fill in the other attribute values of a new phrase given that
the feature structure of the composing phrases including the
Head Phrase are known. The Gap Percolation rule concate-
nates the list of all the composing phrases’ Gap objects in
the order of occurrence. While the Head Feature Principle
and Valence Principle state that the Head Feature and the
Valence Feature of the new created phrase are the same as
that of the Head Phrase. The applicability of Percolation
rules in a domain general scenario is also intuitive. In the
example of a gun firing event, the Head event is firing the
shot. The features of this head event would include the type
and features of the gun say Remington Model 68, 6.22 mm
shotgun. These features are essential in the bigger gun firing
event created by combining preceding and following terms
to the head shot fired event.

Head-Complement Rule': The HPSG Head Complement
Rule is similar to Head-Specifier Rule in that a head phrase
needs another qualifying phrase to build a new and com-
plete phrase. However, the Head-Complement rule differs
on the two accounts of the qualifier phrase following the
head and the head phrase taking more than one qualifying
phrase.

A typical example of a head complement rule is a
verb taking objects. A strictly transitive verb like ‘devour’
takes a single complement after it like in the sentence ‘he
devoured the food’. On the other hand, a ditransitive verb
like ‘handed’ takes a two object complement list as in ‘he
handed (me) (the pen)’. Prepositions, like in and on, also
take complements typically noun phrases to create complete
phrases like ‘on the roof” and ‘in the room’.

Even in real world events like dining in a restaurant
need complement actions to complete the event. In this ex-
ample, the process of dining would be the head event and
paying the bill event which follows the head would be the
complement. Considering an event of starting a car, the
complements would be essentially the events that immedi-
ately follow it like engine starting and making a sound.

! Our treatment is specific to SVO but that we are confident
we can generalize to other word orders.

Hence the domain-general following event can effec-
tively capture the Complement attribute of HPSG features.
The HPSG rule in terms of feature structures is

h
|:p rase (ILl,-., [In]]

phrase
— H
COMPS <J {COMPSQHH“”Hnm

The domain general Polyscheme rule enforcing the head
complement rule is

Following ?headEvent ?actionlList E ?w +

NOT Same ?actionlist empty E ?w +

First ?actionList ?firstComplement E ?w+

Rest ?actionlist ?otherComplements E 2w+

Meets ?headEvent ?followingEvent E ?w +

Same ?firstComplement ?followingEvent E ?w
=> ,

COMPS ?Phrase- ?otherComplements E ?w +
PercolatePrinciples ?Phrase- ?headEvent E ?w

In Polyscheme, the Head-Complement rule is im-
plemented as a recursive rule that creates phrases by com-
bining the Head with the first complement phrase. The Fol-
lowing attribute of the new phrase created has all but the
first element of the Head event’s Following, while all the
other attributes of the new phrase are filled in through the
percolation principles.

Head-Modifier Rule: Head modifier rule states that a
phrase can modify a head even though it is not specifically
selected by that head. For example, “The dog in the park
barked” is a sentence in which the phrase “the dog” is fur-
ther described using the modifier “in the park”. Note that
the phrase “The dog barked” would still make a valid sen-
tence even without the modifier “in the park”. Hence the es-
sence of the head modifier relation is that the head can exist
independently of the modifying event. However, the modi-
fying phrase supplements the effect of the main event.

As with previous rules, we can generalize head-
modifier rule to beyond language. This depends on seeing
modifiers as events that contribute to alter another event
without being required by it.

The Head Modifier rule given by HPSG and the
corresponding domain general Polyscheme rule are shown
below.

[phrase] — H||1||[COMPS < >] {COMPS(q

MOD (||1]))

Meets ?headEvent ?ModifyingEvent E ?w +
Following ?headEvent empty E ?w +
Modifies ?ModifyingEvent ?BossEvent E ?w +
Following ?ModifyingEvent empty E ?w +
Same ?headEvent ?BossEvent E ?w +

=> ,
PercolatePrinciples ?Phrase- ?headEvent E ?w

Head-Filler Rule: Head Filler Rule is HPSG’s rule for
dealing with long distance dependencies. An example of a
sentence with long distance dependency is “The table that

1854

Jim uses is old”. In this sentence, although intuitively we
know the object of the verb ‘uses’ to be ‘the table’, ‘the ta-
ble’ is not spoken after the verb ‘uses’. Hence the table
though stated only once is essentially used in two places as
in ‘Jim uses the table’ and ‘the table is old’. Such hidden
reference to a previously used term as in the phrase ‘Jim
uses’ alluding to the object ‘the table’, is termed as a long
distance dependency.

The concept of long distance dependencies can be
thought of as a subordinate event modifying a super event.
In this example “the table” is the super event while the
phrase ‘Jim uses the table’ is the subordinate event or sub-
goal adding more information to the super event or super
goal. Note that ‘the table’ or the super goal is itself a part of
the subgoal ‘Jim uses the table’. Real world analogies to an
event with a subgoal include the scenario of launching a ball
to break a window. The main event or super goal in this
scenario is launching the ball. However, a possible subgoal
is to swing a golf club for launching the ball. The swing-
golf-club event provides more information to the launch-
ball event while in itself taking the launch-ball event as a re-
sulting action.

] SuperEvent
(e.g. Launchball)

SubEvent
(e.g. SwingGolfClub)
[Result ||1|| Launchball]

Long distance dependencies are common in language usage
and form a difficult problem in language understanding. In
HPSG the unspecified preceding or following event in
the subordinate phrase is indicated through the GAP feature.
In the example sentence the object of the verb ‘uses’ would
be a gap feature. The Head Filler rule describes how a new
phrase can be formed when the super goal precedes a sub-
goal event with a gap in it. The corresponding Polyscheme
rule is also shown below.

[phrase] =141 [GaP ()] H{COMPS< q

GAP (|I1]))

Meets ?superEvent ?subEvent E ?w +
Following ?subEvent empty E ?w +
SuperGoal ?subEvent ?missing E ?w +
Same ?superEvent ?missing E ?w
==>SuperGoal ?Phrase- empty E ?w +
PercolatePrinciples ?Phrase ?subEvent E ?w

Domain-General Representations

HPSG Type Category
SPR Preceding Event
COMPS Following Event
MOD Modifies Event
GAP Super Goal

The HPSG features are mapped to the above representations
which are automatically handled by Polyscheme’s common
functions with no additional language specific mechanisms.

Conclusions

Our model demonstrates that domain-general cog-
nitive mechanisms are sufficient to model syntactic parsing.

This has several implications for issues surrounding re-
search into language and thought. First, the implausibility
of non-modular approaches due to the superficial conceptual
differences between linguistic and nonlinguistic cognition
are reduced. Second, it suggests a possible explanation for
children’s ability to learn language within a short time
frame (Chomsky, 1980) and with relatively small exposure
to linguistic input (Pullum, 1996). Many of the processes
and structures required for language may have developed in
children before they begin to understand and use language.
Third, if the mind represents syntactic and non-syntactic in-
formation using the same mechanisms, the puzzle of how
the two forms of information can interact so seamlessly in
language use is reduced.

In the future, we plan to expand on this ability of
reasoning, social awareness, and meta-information to aid in
the disambiguation of both word senses and parse trees. In-
tegrating the semantics HPSG offers with the syntactical
parse structures is another area to be pursued.

References

Cassimatis, N. (2005). Integrating cognitive models based
on different computational methods. Proceedings of the
10™ Conference of the Cognitive Science Society.

Cassimatis, N. L. (2004). Grammatical Processing Using the
Mechanisms of Physical Inferences. The Twentieth-Sixth
Annual Conference of the Cognitive Science Society.

Chomsky, N. (1980). Rules and Representations. Oxford:
Basil Blackwell.

Clark, H. H. (1996). Using Language. Cambridge Univer-
sity Press, Cambridge.

Dorna, M. & Emele, M. (1996) Semantic-based Transfer,
Proc. 16th Inernational Conference on Computational
Linguistics (pp. 316—321). Kebenhavn, Denmark.

Fodor (1983). The Modularity of Mind, Cambridge, MA

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence, 2:189-208.

Jackendoff, R. (1990). Semantic Structures.Cambridge,MA.

Marslen-Wilson, W., & Tyler, L. (1989). Modularity in
Knowledge Representation and Natural-Language Un-
derstanding. Cambridge, MA: MIT Press. 37-62.

Newell, A., & Simon, H. A. (1972). Human problem solv-
ing. Englewood Cliffs, NJ: Prentice-Hall.

Pullum, G. (1996). Learnability, hyperlearning, and the
poverty of the stimulus. 22nd Annual Meeting of the
Berkeley Linguistic Society. Berkeley, California.

Sag, 1., Wasow, T., & Bender, E. (2003). Syntactic Theory:
A Formal Introduction. (CSLI Lecture Notes No. 152).

Taatgen, N.A., & Anderson, J.R. (2002). Why do children
learn to say "broke"? A model of learning the past tense
without feedback. Cognition 86(2).

Tomasello, M., Kruger, A., and Ratner, H. (1993). Cultural
Learning. Behavioral and Brain Sciences, 16:495-552.

Torisawa, Nishida, Miyao, & Tsujii (2000). An HPSG
parser with CFG filtering. Jounal of Natural Language
Engineering 6(1):63—-80

1855

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

