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List of Figures

1.1 Phenotypic variation for resistance to PhCR in strawberry. Estimated marginal

means (EMMs) were estimated for 475 individuals from three to four single
plant replicates (clones)/individual/year and eight time points/year in 2017-18
and 2018-19 field experiments in Davis, CA (24,600 phenotypic observations are
displayed). (A-B) EMMs for resistance score are shown for each timepoint in both
years. The bold colored lines highlight resistant and susceptible individuals: blue
= 'Strawberry Mountain’ (P1616601), gold = "Tamella’ (PI551411), teal = ’Sitka
D x Red Rich’ (P1551472), green = 'Cyclone’ (P1551412), red = ’Senga Sengana’
(P1264680), and pink = 'N2’ (P1616675). (C-D) PhCR resistance score and AUDPS
EMMs for UCD individuals (blue) and non-UCD individuals (gold) in the training
population are shown for both years. The between-year phenotypic correlations were

r=0.39 (p < 0.001) for both resistance score and AUDPS.

1.2 Estimated-marginal means for PhCR resistance score and AUDPS plotted against

the year or origin for 60 UCD (blue points) and 62 non-UCD (gold points) cultivars
released since 1923. Slopes for linear regressions (solid black lines) with 95%

confidence intervals (gray bands) were significant for resistance score (R* = 0.050;

p < 0.01) and non-significant for AUDPS (R* = 0.017; p = 0.08).

1.3 Genome-wide search for loci affecting resistance to Phytophthora crown rot in

a population of 321 UCD and 116 non-UCD individuals genotyped with an
Axiom™ 50K SNP array. Estimated marginal means for resistance score and
area-under-the-disease-pressure-stairs (AUDPS) were estimated from multiple

replicates within each year of the study (2017-18 and 2018-19). The within year
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EMMs were analyzed as separate dependent variables using multivariate GWAS.
False discovery rate (FDR)-adjusted p-values are shown (the horizontal dashed lines
depict 0.01 p-value thresholds). The SNP physical positions were ascertained in the
haplotype-phased 'Royal Royce’ reference genome (FaRR1). (A) Manhattan plot
for the initial genome-wide search without covariates. (B) Manhattan plot for a

genome-wide search using the RPc2-associated SNP AX-184109190 as a covariate.

1.4 Estimated marginal means (EMMs) for Phytophthora crown rot resistance score
and AUDPS among 437 training population individuals segregating for the
RPc2-associated A/G SNP marker AX-184109190, where A is the favorable and
G is the unfavorable allele. The minimum (phenotype for the most resistant
individual), median, Q1-Q3 inter-quartile range, and maximum (phenotype for the
most susceptible individual) are plotted for each AX-184109190 SNP genotype for

both traits.

1.5 Phenotypic and genomic-estimated breeding value (GEBV) distributions for
Phytophthora crown rot resistance score and AUDPS among 437 individuals
phenotyped in 2017-18 and 2018-19 field experiments in Davis, CA. Across-year
phenotypes (estimated marginal means) are shown on the x-axis. GEBV means
estimated from 1,000 iterations of 80/20 cross-validation using G-BLUP are shown
on the y-axis. UCD and non-UCD individuals are shown in blue and gold points,

respectively.

1.6 Genomic-estimated genetic variances and population EMMs for Phytophthora crown
rot resistance score are shown for 190,532 simulated segregating populations (n = 200
full-sib individuals/population) developed from crosses (with reciprocals) among 437
individuals (prospective parents) in the training population. The prospective parents
were classified as resistant or susceptible using resistance score EMMs or GEBVs
as a selection criteria to model the outcomes of phenotypic and genomic selection,

respectively. The truncation selection cutoffs were EMM < 2.0 for phenotypic

X
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selection and GEBV < 2.6 for genomic selection. There were 32 parents in the
resistant groups (32/437 = 0.073) for phenotypic and genomic selection with an
intersection of 15 parents between resistant groups. (A) and (C) show estimates for
phenotypic selection, whereas (B) and (D) show estimates for genomic selection. (A)
and (B) show statistics for all possible crosses between resistant non-UCD parents
and all other training population individuals (gold points) and all possible crosses
between resistant UCD parents and all other training population individuals (blue
points). (C) and (D) display the lower tails of the EMM distribution (population
EMMs < 2.0) and highlight crosses between resistant parents. The gold points
identify UCD x non-UCD crosses, whereas the blue points identify UCD x UCD

crosses. The grey points identify non-UCD x non-UCD crosses.

1.7 Cross usefulness criteria (U) and population EMMs for Phytophthora crown rot
resistance score are shown for 190,532 simulated segregating populations (n = 200
full-sib individuals/population) developed from crosses (with reciprocals) among
437 individuals (prospective parents) in the training population. (A) Statistics are
shown for all possible UCD x UCD crosses (blue points) and all possible non-UCD
x non-UCD crosses (gold points). (B) Statistics are shown for the lower tail of
the EMM distribution (population EMM < 2.0). Crosses between resistant UCD
parents only (UCD x UCD crosses) are shown in blue, whereas other crosses
between resistant parents (UCD x non-UCD and non-UCD X non-UCD crosses) are
shown in gray. (C) Statistics are shown for the lower tail of the EMM distribution
(population EMM < 2.0). Crosses between resistant UCD and non-UCD parents
(UCD x non-UCD crosses) are shown in gold, whereas other crosses between

resistant parents (UCD x UCD and non-UCD X non-UCD crosses) are shown in

gray.

2.1 Genomic prediction strategies across and within families for fruit quality

traits in strawberry. Nine genomic prediction schemes and seven training set (T'S)

X

34
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sizes were evaluated to calculate Genomic Estimated Breeding Values (GEBVs) using
Genomic Best Linear Unbiased Predictions (G-BLUP) for both progeny and family
mean. Monte Carlo Markov chain simulations with 1,000 iterations were employed to
select individuals for the TS using random sampling without replacement. GEBVs
across families were calculated by selecting individuals as the TS from A) 80%,
50%, or 20% sampling across families (FD80, FD50, and FD20, respectively) and
F) historical records (HD1). For within families, the TS was built from B) 20%
sampling across families and 20% from the targeted family (FD20_Fi20), C) 20%
sampling across families and historical data (FD20_HD), D) 20% sampling from the
targeted family and historical data (Fi20_.HD), E) 20% sampling across families, 20%
from the targeted family, and historical data (FD20_Fi20_HD), and F) historical
records (HD2). Historical data includes breeding records from wild ancestors to
modern cultivars (Feldmann et al., 2024a). The grayscale arrow indicates the target

population, highlighting the TS sizes from 200 to 500 individuals. 52

2.2 Genetic distance unveils distinct subpopulations within the studied
families. The first two principal components, derived from 30,092 Single Nucleotide
Polymorphisms (SNPs), show genetic distance A) between an elitexelite backcross
and nine elitexexotic crosses and B) only elitexexotic crosses. The elitexelite
backcross was developed between two California breeding lines (16C108P605 and
05C197P002) and the elitexexotic population was derived from the elite cultivar
'Royal Royce’ and nine exotic parents ("Kaoling’, 'Morioka 17, "Primella’, "Madame

Moutot’, "Titan’, 'MDUS 5130’, "Tangi’, 'EarliMiss’, and ’Linn’). 53

2.3 Genetic relatedness of elite xexotic families with a California population.
The first two principal components were obtained from 30,092 Single Nucleotide
Polymorphisms (SNPs). The California backcross population (ExE) was developed
by crossing the California breeding lines 16C108P605 and 05C197P002. The

crossbred families were derived from the crosses between the elite cultivar 'Royal
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Royce’ and nine exotic parents ("Kaoling’, 'Morioka 17°, 'Primella’, 'Madame
Moutot’, 'Titan’, '"MDUS 5130°, 'Tangi’, 'EarliMiss’, and 'Linn’). Grey points
indicate individuals from a California genetic pool described by Feldmann

et al. (2024a). Parents from the California population are represented by gold

diamond-shaped points, and exotic parents by gold square-shaped points.

2.4 Phenotypic variation of fruit quality traits within and across strawberry
families. Phenotypic distribution of A) firmness, B) total soluble solids (TSS),
C) titratable acidity (TA), D) TSS:TA ratio, and E) anthocyanin content in an
elitexelite backcross and nine elitexexotic crossbred families. Estimated marginal
means (EMMs) were obtained from a single plant per individual at two harvests
in 2018-2019. Full-sib families include an elitexelite backcross population from
two California breeding lines (16C108P065 and 05C197P002) and nine elite x exotic
populations derived from the crosses between the elite cultivar 'Royal Royce’ and
exotic parents ("Kaoling’, "Morioka 17’, "Primella’, "Madame Moutot’, 'Titan’,

'MDUS 5130°, "Tangi’, 'EarliMiss’, and ’Linn’).

2.5 Hybrids from the elitexexotic population show superior performance for
several fruit quality traits. Useful heterosis (UH) was evaluated for firmness,
total soluble solids (TSS), titratable acidity (TA), TSS-TA ratio, and anthocyanin
content (ANC) in elitexelite and elitexexotic populations. The elitexelite family
was derived from the backcross between two California breeding lines (16C108P065
and 05C197P002), while the crossbred families between the elite cultivar 'Royal
Royce” and nine exotic parents (Kaoling, Morioka 17, Primella, Madame Moutot,
Titan, MDUS 5130, Tangi, EarliMiss, and Linn). The California breeding material
05C197P002 and the elite cultivar 'Royal Royce” were used as elite parental sources

to estimate UH. Hybrids were organized using firmness as a reference.

2.6 Absence of genotypexenvironment interaction for fruit quality traits

in strawberry during post-harvest storage. Progeny from four elite xexotic
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crossbred families derived from the elite cultivar 'Royal Royce’ and exotic
parents ('Primella’, "Madame Moutot’, 'Tangi’, and 'EarliMiss’), along with an
elitexelite backcross family between two California breeding lines (16C108P065 and
05C197P002), were evaluated over a 12-day post-harvest period (dph). Phenotypic
changes of A) strawberry fruit in elitexexotic full-sib families at post-harvest,
including B) firmness, fruit diameter, total soluble solids (TSS), titratable acidity
(TA), TSS-TA ratio, and anthocyanin content. Solid and thick lines indicate the
average value of the full-sib family, while dashed and black lines are the average

value of the elitexelite and elite xexotic populations.

2.7 Genetic correlations among fruit quality traits in strawberry. Genomic
estimated breeding values were calculated for texture (firmness, skin strength, and
elasticity), taste (total soluble solids (TSS), titratable acidity (TA), TSS:TA ratio,
and pH), fruit size, anthocyanin content (ANC), and color components (L, a, and
b). The two principal components were obtained from an elitexelite and four
elitexexotic full-sib families ("Primella’, "Madame Moutot’, "Tangi’, and "EarliMiss’)
evaluated at 0, 4, and 8 days post-harvest. Genetic correlations for fruit quality
traits were analyzed A) and B) by including both populations, while C) and D)
considering exclusively the elitexexotic full-sib families. Polygons represent the
distribution patterns of fruit quality traits during post-harvest in the principal

component analysis.

2.8 Genome-wide association analysis uncovers loci involved in fruit quality
traits in strawberry. Estimated marginal means (EMMs) were calculated from
two harvest times in 2019. Through a genome-wide association study, EMMs of 795
individuals were statistically associated with 31,269 single nucleotide polymorphisms
(SNPs). Manhattan and Q-Q plots for A) firmness, B) total soluble solids (TSS), C)

titratable acidity (TA), and anthocyanin content (ANC). Dashed lines indicate the
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Bonferroni threshold. SNP physical positions were mapped to the haplotype-phased
genome of 'Royal Royce’ (FaRR V1). 68

2.9 Training set optimization to improve genomic prediction for fruit quality
traits in strawberry. Genomic-estimated breeding values (GEBVs) were obtained
from estimated marginal means (EMMs) through Genomic Best Linear Unbiased
Predictions (G-BLUP). EMMs were calculated for 795 individuals from a single
plant per individual at two harvests in 2018-2019. Individuals were genotyped with
an Axiom™ 50K SNP array. We used Monte Carlo Markov Chain simulations
with 1,000 iterations to randomly select individuals for the training set using
non-replacement sampling to estimate GEBVs for the test set. The simulations
were executed under nine scenarios described in Figure 2.1. The predictive ability
was calculated as the correlation between true breeding values and GEBVs divided
by the square root of the narrow-sense heritability for A) firmness, B) total soluble
solids (TSS), C) titratable acidity (TA), D) TSS-TA ratio, and anthocyanin content
(ANC). 75

2.10Accuracy of population mean estimates using genomic prediction

strategies for fruit quality traits in strawberry. Pearson’s correlation between
the observed and predicted family mean for A) firmness, B) total soluble solids
(TSS), C) titratable acidity (TA), D) TSS-TA ratio, and E) anthocyanin content.
Genomic-estimated breeding value (GEBV) mean for each family was calculated
from the average of progeny GEBVs. Monte Carlo Markov Chain simulations with
1,000 iterations were employed for random non-replacement sampling. Nine scenarios
were evaluated to select individuals for the training set (Figure 2.1) through seven
different training population sizes (from 200 to 500 individuals). Genomic prediction
accuracy is shown for the nine breeding strategies using a training set of 200, 350,

and 500 individuals. 76
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3.1 Reaction efficiency for quantitative polymerase chain reaction (qPCR)
analysis. Dilution series in a fivefold decrease from 0.2 to 0.00032 for qPCR
efficiency of DNA binding protein (DBP) and PG1-6A1 at A) unripe and B) white
fruit stages, and C) DBP and PG1-6A2 at ripe fruit stage. Black dashed lines
represent the threshold for optimal qPCR dilution (0.008).

3.2 Genome-wide association study (GWAS) and quantitative trait transcript
(QTT) analyses identify genetic variants associated with phenotypic
variation for fruit firmness and transcripts associated with differentially
expressed genes among soft- and firm-fruited individuals (n = 85). Study
population individuals were genotyped for 49,330 single nucleotide polymorphisms
(SNPs) physically anchored to the FaRR1 reference genome. (A) The GWAS
Manhattan plot illustrates SNPs associated with fruit firmness across the strawberry
genome (physical positions of array-genotyped SNP on the x-axis are shown in the
FaRR1 reference genome). GWAS was applied to phenotypic means estimated from
24 observations/individual using a Bonferroni-corrected significance threshold of
5.7 (depicted by the horizontal dashed line). (B) The physical positions of SNPs
associated with phenotypic variation for fruit firmness are shown for Mb 26-32 on
chromosome 6A. (C) The QTT Manhattan plot was constructed from analyses of
59,126 transcripts mapped in the FaRR1 reference genome using mRNAs isolated
from ripe fruit of soft- or firm-fruited individuals in the study population (n = 85).
QTT was applied to transcript counts estimated from short-read mRNA sequences
using a Bonferroni-corrected significance threshold of 3.3 (depicted by the horizontal
dashed line). The differentially expressed genes labeled in the QTT Manhattan
plot are pyrophosphate-specific phosphatasel (PPSPASEL), -galactosidase 16
(BGall6), ribosomal protein L24C (RPL24C), RNA processing factor 1 (RPF1),
chaperone DNAj-domain (DNAJ), polygalacturonase 1 (PG1), S-adenosylmethionine

decarboxylase (SAMDC), protein phosphatase 2¢ (PP2C), pectin methylesterase 34
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(PME34), and amino acid transporter avt6c (AVT6C). (D) The physical positions of
differentially expressed genes are shown for Mb 26-32 on chromosome 6A. Asterisk

indicates a gene with unknown function on chromosome 6A. 117

3.3 Single nucleotide polymorphisms (SNPs) associated with phenotypic variation
for fruit firmness among a genetically diverse collection of soft- to firm-fruited
individuals (n = 460) phenotyped as described by Hardigan et al. (2021b). These
individuals were genotyped with a 50K Axiom® SNP array. The physical positions
of SNPs on the x-axis of the Manhattan plot are coordinates in the Royal Royce
reference genome (FaRR1). The genome-wide association study analysis was
applied to phenotypic means estimated from 11 observations/individual using a
Bonferroni-corrected significance threshold of 5.9 (depicted by the horizontal dashed
line). 118

3.4 Annotations and physical positions of polygalacturonase genes in
linkage disequilibrium with a fruit firmness QTL on chromosome 6A in
octoploid strawberry. (A) Organization and synteny of three tandemly duplicated
polygalacturonase-encoding genes on chromosome 6A in the 'Royal Royce’ and
"Camarosa’ genomes and chromosome 6 in the 'Hawaii 4’ F. vesca genome. (B)
Transcript counts per million (CPM) for four polygalacturonase-encoding genes
observed in the soft-fruited cultivar "Mara des Bois” and firm-fruited cultivar 'Royal
Royce’. CPMs were estimated from short-read RNA sequences normalized for

sequencing depth. Gold lines depict the synteny of PG1 paralogs across genomes. 119

3.5 Local synteny and phylogenetic tree. A) Synteny analysis of homoeologous
PG1 genes across strawberry subgenomes using the "Royal Royce’ reference genome.
The synteny relationships for the PG1 genes across different subgenomes are
indicated by gold lines. B) Evolutionary relationships among homoeologous PG1
genes from different subgenomes, highlighting tandemly arranged PG genes on

chromosome 6A in red. Phylogenetic tree constructed using amino acid sequences of
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all homoeologous PG1 genes identified in this study. Bootstrap values are shown at
the nodes, representing the confidence level for each branch based on 1,000 bootstrap

replicates.

3.6 The expression profiles of 18 polygalacturonase-encoding genes in ripe
fruit of 85 individuals. The 18 genes include three tandemly duplicated paralogs
associated with a fruit firmness QTL on chromosome 6A (PG1-6A1, PG1-6A2,
and PG1-6A3), a homoeolog on chromosome 6D (PGI1-6D1), and 14 additional
homoeologs on chromosomes 6B, 6C, and 6D. The heat map color indexes the
logs-transformed transcript count per million estimated from short-read RNA

sequences isolated from ripe fruit.

3.7 Relative gene expression profiles of polygalacturonase genes across
strawberry fruit ripening stages. Quantitative analysis of mRNA abundance
for A) PG1-6A1, B) PG1-6A2, and C) PG1-6D1 genes in strawberry accessions
with distinct fruit firmness profiles at unripe, white, and ripe stages. Expression
was quantified over three biological and technical replicates, using a DNA-binding
protein gene as the normalization standard. The favorable allele for firmness is

indicated as +.

3.8 Fruit firmness variation among 43 soft- to firm-fruited individuals
genotyped for an Enhancer/Suppressor-mutator (En/Spm) insertion-
deletion (INDEL) and single nucleotide polymorphisms (SNPs) associated
with the PG1-6A1 locus on chromosome 6A. Genetic variants were genotyped
using genotyping-by-sequencing. The points display phenotypic means (estimated
marginal means) estimated from five biological replicates (clones)/individual, five
harvests, and three subsamples/replicate/harvest among greenhouse grown plants
of the DNA sequenced individuals (11 observations/individual). The box displays
the genotypic median and interquartile range within each genotypic class, where -/-

are unfavorable allele homozygotes, + /- are heterozygotes, and +/+ are favorable
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allele homozygotes. (A) SNP interrogated by AX-184953741, one of four Axiom®
50K array SNP markers identified by GWAS found upstream of PGI1-6A1 and in
complete LD with one another. (B) SNP interrogated by AX-184210676, one of four
Axiom® 50K array SNP markers identified by GWAS found upstream of PG1-6A1
and in complete LD with one another. (C) A 4,948-bp En/Spm INDEL 3,926 bp
upstream of PG1-6A1. (D) A G/T SNP in the 5-UTR of PG1-6A1. (E) SNP
interrogated by AX-184242253, an Axiom® 50K array SNP marker identified by

expression-QTL analysis found downstream of PG1-6A1. 123

3.9 Gene model and sequence alignment for PG1-6A1 in firm- and soft-
fruited strawberry accessions.(A) Gene model for PGI1-6A1 showing single
nucleotide polymorphisms (SNPs) detected in the 5’UTR as well as insertion-deletion
(INDEL) events located at 1121, 1385, 1745, and 3926 bp upstream from the ATG
codon. Alignment of high fidelity long-read DNA sequences was shown for the
firm-fruited cultivar (B) 'Royal Royce’ (0.35 kg-force), and the soft-fruited exotics
(C) "Mara des Bois’ (0.10 kg-force), (D) 'Beaver Belle’ (0.09 keg-force), and (E) 'ILE
02’ (0.13 kg-force). 124

3.1Co-expression network analysis of transcripts in ripe fruit of 85 discovery
population individuals. (A) Transcript abundance heat map for genes in the
PG1-6A1 polygalacturonase co-expression network (upper panel) and two other
networks identified by co-expression analysis (middle and lower panels) using
hierarchical cluster analysis. (B) The correlation between transcript abundance and
fruit firmness for genes in the co-expression network is shown in the upper panel of
A. (B) The correlation between transcript abundance and fruit firmness for genes
(nodes) in the co-expression network is shown in the middle panel of A. (B) The
correlation between transcript abundance and fruit firmness for genes (nodes) in the

co-expression network is shown in the lower panel of A. 125
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3.1TFruit firmness variation among 92 soft- to firm-fruited individuals (the
diversity population; left column) and 152 full-sib progeny (the full-sib
population; right column) genotyped with KASP markers developed for
an Enhancer/Suppressor-mutator (En/Spm) insertion-deletion (INDEL)
and single nucleotide polymorphisms (SNPs) associated with the PG1-
6A1) locus. The points display phenotypic means (estimated marginal means) for
92 individuals in the diversity population (four observations/individual) and 152
individuals in the full-sib population (six observations/individual). The box displays
the genotypic median and interquartile range within each genotypic class for each
KASP marker, where -/- are unfavorable allele homozygotes, +/- are heterozygotes,
and +/+ are favorable allele homozygotes. Genotypes and phenotypes are shown for
four KASP markers associated with the PG1-6A1 locus: (A) K-676 (Mb 27,676,285);
K-SPM (Mb 27,743,085); K-732 (Mb 27,751,732); and K-253 (Mb 27,888,596). 139

3.12Allele discrimination scatter plot displaying the fluorescence intensity of FAM signal
on the x-axis and HEX signal on the y-axis for 92 octoploid strawberry individuals
(the diversity population) genotyped with four KASP markers: (A) K-676; (B)
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Abstract

This thesis explores advanced strategies to enhance strawberry breeding by applying ge-
nomic prediction, harnessing underutilized genetic diversity, and investigating key genetic
mutations affecting fruit quality traits. The first chapter focuses on enhancing strawberry
resistance to Phytophthora crown rot (PhCR), a soil-borne disease that thrives in warm, wet
conditions and severely impacts yields. It addresses the limited genetic gains in breeding for
PhCR resistance and the discovery of a significant locus, RPc2, which explains a substantial
portion of genetic variance. Incorporating underutilized gene bank resources doubled addi-
tive genetic variance and improved genomic prediction accuracy, highlighting the potential
of genomic selection for enhancing PhCR resistance.

The second chapter further solidifies the success of these strategies, evaluating the use of
useful heterosis and genomic prediction to improve fruit quality traits and shelf life in straw-
berries. It examines the introgression of favorable alleles from exotic genetic resources into
elite breeding pools, resulting in significant improvements in total soluble solids and titrat-
able acidity. The study not only highlights the genetic correlations among fruit traits and
the impact of genotype combinations on hybrid performance but also underscores the im-
portance of genomic prediction in efficiently selecting superior genotypes and optimizing
breeding programs.

The third chapter investigates the domestication of strawberry for improved fruit firmness
and shelf life. It identifies a loss-of-function mutation in the polygalacturonase gene PG1I-
6A1, significantly increasing fruit firmness and reducing perishability. This mutation and
several structural variants have been positively correlated with fruit firmness and negatively

with gene expression. Developing high-throughput genotyping assays for these mutations
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facilitates marker-assisted selection, enabling the breeding of firmer and longer-lasting straw-
berry cultivars.

Collectively, these studies provide valuable insights into the genetic basis of key traits in
strawberries and showcase the potential of genomic technologies to accelerate breeding efforts

and improve fruit quality and disease resistance.
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CHAPTER 1

Harnessing Underutilized Gene Bank Diversity and Genomic
Prediction of Cross Usefulness to Enhance Resistance to

Phytophthora cactorum in Strawberry

1.1. Abstract

The development of strawberry (Fragaria x ananassa) cultivars resistant to Phytophthora
crown rot (PhCR), a devastating disease caused by the soil-borne pathogen Phytophthora
cactorum, has been challenging, partly because the resistance phenotypes are quantitative
and only moderately heritable. To develop deeper insights into the genetics of resistance and
build the foundation for applying genomic selection, a genetically diverse training population
was screened for resistance to California isolates of the pathogen. Here we show that genetic
gains in breeding for resistance to PhCR have been negligible (3% of the cultivars tested
were highly resistant and none surpassed early twentieth century cultivars). Narrow-sense
genomic heritability for PhCR resistance ranged from 0.41-0.75 among training population
individuals. Using multivariate GWAS, we identified a large-effect locus (predicted to be
RPc2) that explained 43.6-51.6% of the genetic variance, was necessary but not sufficient for
resistance, and was associated with calcium channel and other candidate genes with known
plant defense functions. The addition of underutilized gene bank resources to our training
population doubled additive genetic variance, increased the accuracy of genomic selection,
and enabled the discovery of individuals carrying favorable alleles that are either rare or
not present in modern cultivars. The incorporation of an RPc2-associated SNP as a fixed
effect increased genomic prediction accuracy from 0.40 to 0.55. Finally, we show that parent
selection using genomic-estimated breeding values, genetic variances, and cross-usefulness

holds promise for enhancing resistance to PhCR in strawberry.
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1.2. Introduction

Strawberry (Fragaria x ananassa Duchesne ex Rozier) plant health and production are ad-
versely affected by a broad spectrum of diseases caused by soil-borne pathogens, including
Phytophthora cactorum (Lebert & Cohn) J. Schrot (Erwin and Ribeiro, 1996; Paulus, 1990).
This pathogen has a wide host range, a wide geographic distribution, and causes Phytoph-
thora crown rot (PhCR) of strawberry, a disease that was not reported on strawberry until
the middle of the twentieth century in Germany (Deutschmann, 1954) and thrives under
warm and wet growing conditions (Erwin and Ribeiro, 1996; Wilcox, 1989). P. cactorum
produces zoospores from oospores that can persist in soil or infected plant material for many
years (Verdecchia et al., 2021), a factor that limits the utility of crop rotation for reducing
the incidence of the disease (Rosskopf et al., 2005; Schneider et al., 2003). Soil fumigation
with methyl bromide, an ozone-depleting gaseous chemical introduced in the 1960s to control
P. cactorum and other soil-borne pathogens, greatly decreased the incidence of the diseases
they cause, increased yields, decreased production risk, and enabled a phenomenal expansion
of stawberry production (Rosskopf et al., 2005; Schneider et al., 2003; Yagi et al., 1993).

The application of methyl bromide as a soil fumigant was banned by a global treaty es-
tablished in 2005 to protect the ozone layer (https://www.epa.gov/ods-phaseout/methyl
-bromide). The soil fumigants that replaced methyl bromide appear to be less effective for
controlling P. cactorum and other soil-borne pathogens (Duniway, 2002; Rosskopf et al.,
2005; Schneider et al., 2003). Pincot et al. (2022) postulated that the widespread adoption
of soil fumigation with methyl bromide decreased both natural selection pressure and the
imperative of breeding for resistance to Fusarium wilt, Verticillium wilt, and other diseases
caused by soil-borne pathogens in strawberry. They showed that a significant percentage of
the cultivars worldwide are susceptible to one or both of these wilt diseases and speculated
that the frequency of susceptible cultivars increased from the 1960s onward because they
could be commercially produced without disease-associated yield losses in methyl bromide-

reliant production systems (Pincot et al., 2022).
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The apparent scarcity of PhCR resistant cultivars reported in earlier studies (Eikemo et al.,
2000; Mangandi et al., 2017; Shaw et al., 2006) suggests that, similar to the history of
breeding for resistance to Verticillium wilt and Fusarium wilt in strawberry (Pincot et al.,
2020), breeding for resistance to Phytophthora crown rot has either not been systematic or
widespread, not produced significant genetic gains, not substantially increased the frequency
of resistant cultivars, or a combination thereof. This was difficult to assess from previous
reports because of the diversity of screening protocols, phenotyping methods, pathogen iso-
lates, experiment designs, environments, population composition, and outcomes, in addition
to a dearth of common resistant and susceptible checks across studies (Denoyes-Rothan
et al., 2004; Eikemo et al., 2003; Mangandi et al., 2017; Parikka, 1998; Pitrat and Risser,
1977; Seemiiller, 1977; Shaw et al., 2006,0; van Rijbroek et al., 1997).

The genetic variation previously uncovered for resistance to PhCR in strawberry has been
quantitative with broad-sense heritability estimates in the 0.40-0.66 range and narrow-sense
heritability estimates in the 0.26-0.39 range; hence, a significant fraction of the phenotypic
variation previously observed for resistance to PhCR has been non-genetic (Denoyes-Rothan
et al., 2004; Mangandi et al., 2017; Nellist et al., 2019; Shaw et al., 2006). Although several
sources of resistance to this disease have been reported, a high percentage of the previously
tested cultivars and other genetic resources worldwide appear to be susceptible, gene-for-
gene resistance has not been discovered, and breeding for resistance to this pathogen has
been challenging (Mangandi et al., 2017; Marin et al., 2022). Here we explore the feasibil-
ity of increasing resistance to PhCR through the application of genome-informed breeding
approaches, particularly genomic selection and parent selection using genomic-estimated
breeding values, genetic variances, and usefulness criteria (Allier et al., 2019; Goddard et al.,
2010; Heffner et al., 2009; Lehermeier et al., 2017).

Historically, breeding for PhCR resistance has depended on phenotypic selection, and more
recently on phenotypic selection combined with marker-assisted selection (MAS) targeting

RPc2, a large-effect quantitative trait locus (QTL) identified by Mangandi et al. (2017).



Genomic selection could perhaps complement phenotypic selection, accelerate genetic gains,
and increase the frequency of highly PhCR resistant cultivars in strawberry (Bernardo and
Thompson, 2016; Goddard and Hayes, 2007; Habier et al., 2007; Heffner et al., 2009; Meuwis-
sen et al., 2001; Poland and Rutkoski, 2016). RPc2 was discovered by QTL mapping and
explained 13.7-25.3% of the phenotypic variation in a University of Florida population (Man-
gandi et al., 2017).

Earlier studies of the genetics of resistance to PhCR (Denoyes-Rothan et al., 2004; Eikemo
et al., 2003; Mangandi et al., 2017; Nellist et al., 2019) pre-dated the development of octo-
ploid reference genomes (Edger et al., 2019; Hardigan et al., 2021b), genotyping platforms
populated with single nucleotide polymorphisms (SNPs) physically anchored to the octo-
ploid genome, and genome-wide alignment and mapping of next-generation DNA sequences
to the octoploid genome (Hardigan et al., 2020). These advances have enabled the straight-
forward application of octoploid genome-informed genome-wide association study (GWAS)
approaches and high-resolution sub-genome specific genetic mapping of DNA variants (Hardi-
gan et al., 2020; Pincot et al., 2022,2).

Our working hypothesis was that the Phytophthora crown rot resistance breeding problem
cannot be fully or effectively solved by targeting individual QTL (Bernardo, 2008), but rather
by applying genomic selection with or without the inclusion of RPc2 or other large-effect
QTL as fixed effects, an approach that frequently improves genomic prediction accuracy
(Bernardo, 2014; Rice and Lipka, 2019; Rutkoski et al., 2014). Our study included a mul-
tivariate genome-wide association study (GWAS) search for large-effect loci in a genetically
diverse genomic selection training population (George and Cavanagh, 2015; Segura et al.,
2012; Tibbs Cortes et al., 2021; Zhang et al., 2010). Lastly, we undertook this study to
shed light on historic genetic gains, the impact of past breeding on genetic variation for
resistance to PhCR, and the prevalence of resistance to P. cactorum among elite and exotic
genetic resources, in addition to assessing the feasibility of enhancing resistance to PhCR

through genome-informed prediction of breeding values, genetic variances, and usefulness



criteria (Crossa et al., 2017; Heslot et al., 2012; Labroo et al., 2021; Lehermeier et al., 2017;

Mohammadi et al., 2015b).

1.3. Materials and Methods

1.3.1. Plant material. Collectively, 435 F. x ananassa, 18 F. chiloensis, and 22 F.
virginiana individuals (asexually propagated genetic resources) were phenotyped for resis-
tance to PhCR in our study. The F. x ananassa individuals included 64 cultivars developed
at UC Davis (UCD), 282 UCD hybrids (offspring from crosses between non-inbred parents),
75 non-UCD cultivars, and 14 non-UCD hybrids. Thirty-eight individuals were phenotyped
in one year, whereas 437 individuals were phenotyped in both years of our studies. The
latter were used as the ’training’ population for genomic prediction of breeding values and
genetic variances. The training population included 321 UCD and 116 non-UCD individu-
als. Of the latter, 40 were wild ecotypes. The F. chiloensis and F'. virginiana ecotypes were
originally collected from habitats across their natural ranges in North and South America
(Staudt, 1999). Other than a single F. virginiana subsp. platypetala ecotype (15X001P001)
collected near the Trout Creek Campground, California (41.5°W, -121.9°W), the non-UCD
genetic resources were originally acquired as single mother plants from the United States
Department of Agriculture (USDA) National Plant Germplasm System (NPGS) National
Clonal Germplasm Repository, Corvallis, OR (https://www.ars-grin.gov/). These in-
dividuals were multiplied from stolons in a low-elevation field (41 m) in Winters, CA, and
maintained in the UC Davis Strawberry Germplasm Collection. To produce bare-root clones
(’daughter’ plants) for replicated testing, bare-root 'mother’ plants were harvested from the
low-elevation nursery in January, temporarily stored in the dark at —3.5°C', and transplanted
to a high-elevation (1,294 m) nursery in April 2017 and 2018 (Cedar Point Nursery, Dorris,
CA). Clones (bare-root plants) of each individual were harvested in mid-October of each
year and stored in the dark at 3.5°C' for two to three weeks before pathogen inoculation and

planting.
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1.3.2. Pathogen isolates and artificial inoculation protocols. Five isolates of Phy-
tophthora cactorum (Ph9, Ph10, Ph23, Ph24, and Ph25) cultured from infected plants in
coastal California were acquired from Dr. Kelly Ivors (Cal Poly, San Luis Obispo). The P.
cactorum spore samples we used for artificial inoculation of bare-root plants were produced
by California Seed and Plant (CSP) Labs (https://csplabs.com/, Pleasant Grove, CA)
from a mixture of these isolates. Samples were prepared by releasing zoospores in water and
creating 1 x 10 spores/mL spore solutions the day of planting. The roots of each bare-root
plant (four/individual/year) were submerged in 40 ml of inoculum solution for approximately
5 minutes before being transplanted to the field. One month after transplanting, 11 g of P.
cactorum infected oats were spread around the base of every plant in the field. This inocu-
lum was produced by CSP using using the protocol described by Ivors (2015). The field was
periodically sprinkler irrigated over the following week to promote the spread of spores and

infection.

1.3.3. Field experiments. Our study populations were phenotyped for resistance to
PhCR in field experiments at the UCD Plant Pathology Research Farm, Davis, CA in both
years of our study (the soil is classified as a Yolo loam; https://websoilsurvey.sc.egov
.usda.gov/). Field preparation and agronomic practices were identical to those previously
described for Verticillum wilt resistance screening studies done side-by-side with the present
study (Pincot et al., 2020). Our planting sites were pre-plant flat-fumigated by TriCal
(https://trical.com/) with a chloropicrin-based fumigant (Pic-Clor 60, Cardinal Profes-
sional Products, Woodland, CA; 560 kg/ha) and sealed with a totally impermeable film tarp
for one-week post-fumigation. Once the tarps were removed, fields were prepared for planting
by creating 15.3 ¢cm high raised beds with 76.2 cm of spacing between beds center-to-center
and installing drip irrigation before covering the bed with with black plastic mulch. Sub-
surface drip irrigation was applied as needed to maintain adequate soil moisture throughout
the growing season. Fertilization was done via injection through the drip system with 10-34-0

solution in fall and early spring and 32-0-0 solution in late spring and summer of each year.
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Approximately 198 kg/ha of nitrogen was applied over the 2017-18 and 2018-19 growing
seasons.

The study populations were planted on 10-23-2017 and 10-10-2018. The roots of each bare-
root plant was submerged in the P. cactorum inoculum suspension (1 x 10* spores/mL) for 5
min. before transplanting into a single row in the middle of each planting bed. The between-
plant spacing within rows was 30.5 cm. The individuals were arranged in 22 x 22 square
lattice experiment designs with 22 individuals/incomplete block x 22 incomplete blocks (484
individuals) and four single-plant replications/individual arranged in complete blocks (repli-
cations) (Hinkelmann and Kempthorne, 2007). The R package agricolae (De Mendiburu and
Simon, 2015) was used to assign individuals to incomplete blocks and randomize individuals

within incomplete blocks.

1.3.4. Disease resistance phenotyping. The training population was visually scored
for resistance to P. cactorum on eight different dates each year using an ordinal disease rating
scale from the onset of symptoms until the resistance scores of check cultivars plateaued. We
used the time-series progression of symptoms, phenotypes of check cultivars, and shapes of
the phenotypic distributions to guide our phenotyping schedule. The 437 individuals selected
for inclusion in the training population were phenotyped both years. We used a combination
of stunting, wilting, chlorosis, and die back to score plants, where 1 = symptomless, 2 =
mild stunting and wilting of outer leaves, 3 = stunted growth, wilting of outer leaves, and
mild chlorosis, 4 = wilting and chlorosis throughout the plant canopy, and 5 = complete die
back. The entire population was phenotyped once every 10 to 14 days from 4-13 to 6-28
in 2018 and 4-1 to 7-18 in 2019. We collected 24,600 data points and calculated the area
under the disease progression stairs (AUDPS) (Simko and Piepho, 2012) from the eight time

points within each year using the R package agricolae (De Mendiburu and Simon, 2015).

1.3.5. DINA isolation and SNP genotyping. DNA was extracted from 0.2 g of dried
young leaf tissue with the E-Z 96 Plant DNA Kit (Omega Bio-Tek, Norcross, GA) according

to manufacturer’s instructions. To increase DNA quality and yield, Proteinase K was added
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to the lysis buffer to a final concentration of 0.2 mg/ml and lysis incubation was extended to
45 min. at 65°C. Training population individuals were genotyped using these DNA samples
with an Axiom™ Strawberry 50K SNP array (Hardigan et al., 2020) by ThemoFisher Scien-
tific Axiom Genotyping Services (Palo Alto, CA; https://www.thermofisher.com/). The
raw genotypic data files returned by ThermoFisher Scientific were analyzed using the Ax-
iom Analysis Suite Software v4.0.3.3 (https://www.thermofisher.com/us/en/home/life
-science/microarray-analysis/microarray-analysis-instruments-software-services/
microarray-analysis-software/axiom-analysis-suite.html). SNP calls for the 50K
loci were filtered to identify and only include markers with well separated co-dominant geno-
typic clusters and identify and eliminate SNPs with minor allele frequencies < 0.05. The
filtering process yielded 40, 334 SNPs.

The physical positions of the Axiom™ SNPs in the octoploid genome were originally ascer-
tained by Hardigan et al. (2020) by aligning DNA sequences for array probes to the ’Ca-
marosa’ V1 reference (FaCA1l; https://phytozome-next.jgi.doe.gov/info/Fxananassa
_v1.0_al) described by Edger et al. (2019). They have since been aligned to the haplotype-
phased 'Royal Royce’ V1 reference (FaRR1; https://phytozome-next. jgi.doe.gov/info/
FxananassaRoyalRoyce v1_.0) described by Hardigan et al. (2021b). The 'Royal Royce’
physical addresses and chromosome nomenclature described by Hardigan et al. (2020) were

used for GWAS analyses in the present study.

1.3.6. Statistical analyses. The resistance scores observed at the eighth time point
and AUDPS metrics were analyzed using linear mixed model (LMM) functions in the R pack-
age Imej::Imer() (https://cran.r-project.org/web/packages/lme4/index.html; Bates
et al. (2015)). The raw phenotypic data were initially analyzed using LMMs for square lattice
experiment designs with a completely random effects model. Because the square lattice was
found to be no more efficient than a randomized complete blocks experiment design, statistics
are reported for analyses of LMMs for the latter only (Hinkelmann and Kempthorne, 2007).

Estimated marginal means (EMMSs) for training population individuals were estimated using
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the R package emmeans (https://cran.r-project.org/web/packages/emmeans/; Lenth

(2021)). The LMM for individual year analyses was
(11) yij = bz + Gj + €Z'j

where y;; is the observed phenotype for the jth genotype (individual) in the ith block, b; is
the random effect of the ith complete block, G; is the random effect of the jth individual,
ei; is the 7jth residual effect, ¢« = 1,2, ...,4, 7 = 1,2,...,n, and n is the number of individuals.

The LMM for the across-years analysis was
(1.2) Yijk = b; + Gj +Y, + GY}k + €ijk

where y;;;, is the observed phenotype for the jth genotype (individual) in the ith complete
block in the kth year, Y} is random effect of the kth year, GYj; is the random effect of the
interaction between the jth genotype and kth year, e;;; is the ¢jkth residual effect, and &
indexes years.

The variance components in these analyses were estimated using the restricted maximum
likelihood (REML) method (Bates et al., 2015). The broad-sense heritability on a clone-
mean basis was estimated by H? = 6%/ 6%, where 67, is a REML estimate of the among
individuals (genotypes) variance component, 62,y is a REML estimate of the genotype X
year interaction variance component, and &, is a REML estimate of the residual variance
component, 6% = 62 + 62,y /y+ 62/ry is a REML estimate of the phenotypic variance on
a clone-mean basis, y is the number of years, and r is the harmonic mean of the number of
replications/individual (r = 2.23 in 2018, 3.60 in 2019, and 5.72 across years). The harmonic
mean number of replications was less than four (the number of replicates/individual originally
planted) because of the loss of plants to factors other than disease. Narrow-sense genomic

heritability was estimated by h2 = 6%/62, where 6% is a REML estimate of the genomic

P’
additive genetic variance (Endelman, 2011; Mathew et al., 2018). The coefficient of additive

genetic variance was estimated by CV, = 100 X 64/i, where i is population mean.


https://cran.r-project.org/web/packages/emmeans/

1.3.7. Multivariate GWAS. The EMMs for individuals for each year were analyzed
as separate dependant variables in a multivariate GWAS (MV-GWAS) using GEMMA 0.98.1
(Zhou and Stephens, 2012,1). The independent variables for these analyses were the geno-
types for 39,195 Axiom™ array SNP markers with alleles coded 0, 1, and 2 (Hardigan et al.,
2020). The genomic relationship matrix (K) was estimated from the coded SNP marker
genotypes as described by Pincot et al. (2020). The K matrix was used in MV-GWAS
analyses to correct for genetic relationships among individuals (Zhou and Stephens, 2012,1).
We used a 5% false-discovery rate (FDR)-corrected significance threshold to test the null
hypothesis of no SNP effect (Benjamini and Hochberg, 1995). The single most significant
SNPs in each cluster of one or more tightly linked SNPs were used as independent variables
in multilocus genetic models to estimate the percentage of the genetic variance explained
(GVE = 63,/6%) and the percentage of the phenotypic variance explained (PVE = 63,/5%)
by each locus individually and collectively corrected for other loci in the genetic model, where
o4, is a bias-corrected average semi-variance (ASV) REML estimate of the genetic variance
explained by one or more SNP marker loci, 6% is the genetic variance among clonally repli-
cated individuals, and &% is the phenotypic variance on a clone-mean basis (Feldmann et al.,
2021). The genotype (individual) effect (G,) was partitioned into the effects of SNP marker
loci and individuals nested in SNP marker loci (the residual genetic variance not explained
by SNP marker loci). The initial GWAS identified two significant SNPs for resistance score
and eight significant SNPs for AUDPS, which were further analyzed. The SNP marker loci
included in multilocus genetic models were AX-184879834, AX-184292487, AX-184338462,
AX-184055612, AX-184127382, AX-184211829, AX-184673648, and AX-184109190 for re-
sistance score and AX-184211684 and AX-184109190 for AUDPS. REML estimates of the
variance components for these loci were used to calculate average semi-variance estimates of
GVEs and PVEs for each locus (Feldmann et al., 2021). The SNP with the largest effect (AX-
184109190) was shared between both traits. We subsequently repeated MV-GWAS analyses

of both traits with AX-184109190 as a covariate, which eliminated the other statistically
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significant signals; hence, GVEs, PVEs, and other statistics were subsequently estimated for
AX-184109190 alone. The additive and dominance effects of AX-184109190 were estimated
by G = fias — fice and d = (fiac — fian+ ficc)/2, respectively, where fiaa, fiag, and fige are
the EMMs for individuals with AA, AG, and GG genotypes for the AX-184109190 SNP locus
(Falconer and Mackay, 1996; Walsh, 2001). The degree of dominance of the AX-184109190
locus was estimated by |d/a| (Falconer and Mackay, 1996; Walsh, 2001).

1.3.8. Genomic prediction of breeding values. The statistical methods used to
estimate genetic parameters and genomic-estimated breeding values (GEBVs) in the present
study were previously described by Pincot et al. (2020) in a parallel study of the genetics
of resistance to Verticillum wilt (Pincot et al., 2020). Narrow-sense genomic heritability
(h?) was estimated as described by Mathew et al. (2018). GEBVs for resistance score and
AUDPS were estimated using three whole-genome regression methods implemented in the
R package BGLR (https://cran.r-project.org/web/packages/BGLR/index.html; Pérez
and de los Campos (2014)) with and without the inclusion of the RPc2-associated SNP
marker AX-184109190 as a fixed effect; specifically, genomic-BLUP, the Bayesian Lasso,
and Reproducing Kernel Hilbert Spaces (de Los Campos et al., 2010; de los Campos et al.,
2013; Gianola and Van Kaam, 2008; Habier et al., 2013). Across-year EMMs for training
population individuals were analyzed in BGLR by assuming a normal distribution for both
traits. We used Monte Carlo cross-validation (MCCV) with 1,000 iterations to estimate
the accuracy of genomic predictions of GEBVs by randomly sampling 80% of the original
individuals without replacement and predicting GEBVs for the other 20% of the individuals.
The estimates from individual year and across-year analyses were used to predict GEBVs for
individual years and across years. Genomic prediction accuracy was estimated from estimates
of the Pearson’s correlation coefficient between EMMs and GEBVs (Dekkers, 2007; Dekkers
et al., 2021; Van den Berg et al., 2019).

1.3.9. Genomic prediction of genetic variances and cross usefulness criteria.

We used the approach described by Mohammadi et al. (2015b) to estimate genomic-estimated
11
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genetic variances for simulated segregating populations (200 individuals/population) arising
from 190,532 crosses (a factorial mating design with reciprocals) among 437 individuals in
the training population (prospective parents). The across-year EMMs for resistance score,
Axiom™ SNP array genotypes, and a reference genetic map developed for the cultivar Ca-
marosa’ (Hardigan et al., 2020) were used as input in the R package PopVar to estimate
population means (/1) and genetic variances (6%) for each of the 190,532 simulated popula-
tions (https://cran.r-project.org/web/packages/PopVar/index.html; Tiede and Ney-
hart (2021)). To compare estimates of these genetic parameters for different subsets of
prospective parents under phenotypic and genomic selection scenarios, we selected the 32
most resistant individuals in the training population using EMMs (phenotypic selection)
and GEBVs (genomic selection). The EMM cutoff was 2.0, whereas the GEBV cutoff was
2.6. Fifteen of the selected (resistant) parents were common to both subsets, whereas 17
were unique to each subset. The cross usefulness criterion (U) was estimated by i + d¢

(Lehermeier et al., 2017).

1.3.10. Data Availability. The data associated with this study are publicly available

in a Dryad repository (https://doi.org/10.25338/B86D3M).

1.4. Results and Discussion

1.4.1. Heritability of Resistance to Phytophthora Crown Rot. The variation
we observed among training population individuals for Phytophthora crown rot resistance
score and area-under-the-disease-pressure-stairs (AUDPS)—a time-series metric that esti-
mates the progression of disease symptoms (Simko and Piepho, 2012)—was continuous and
approximately normally distributed, with phenotypes spanning the entire range in both years
of our study (Figure 1.1). The additive genetic correlation between resistance score and AU-
DPS was 74 = 0.82 (p < 2.2¢7'6). The phenotypic variation was noisier in 2017-18 than
2018-19—additive genetic variance and narrow- and broad-sense heritability estimates were

lower and the progression of symptoms over time was more erratic in 2017-18 than 2018-19
12
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(Figure 1.1; Table 1.1). The inclusion of a small, albeit highly diverse collection of exotic
individuals in the training population doubled or tripled genetic variation for resistance score
and AUDPS within and between years. The between-year rank correlations were moderately
positive and identical for both traits (7 = 0.39, p < 2.2¢719) and individual x year interac-
tions were non-significant—REML estimates of 6%, ./ ?7% were (.05 for resistance score and
0.09 for AUDPS (Figure 1.1; Table 1.1). Hereafter, we report across-year statistics unless

noted otherwise.

TABLE 1.1. REML estimates of narrow-sense genomic heritability (h2),
broad-sense heritability on a clone-mean basis (f[ %), the proportion of the
phenotypic variance explained by the genotype X year interaction variance
(6%, 5/0%), additive standard deviation (64), coefficient of additive genetic
variance (C'Vy = 100 x 64//1) for resistance score and area under the dis-
ease pressure stairs (AUDPS) among n = 437 training population individuals
phenotyped for resistance to P. cactorum in 2017-18 and 2018-2019 field ex-
periments in Davis, CA, where [ is the population mean. Statistics are shown
for the training population as a whole and for UCD (n = 321) and non-UCD
(n = 116) subsets of individuals in the training population.

Trait Population Year H?2 6éx 5/ 6123 h? o4 CVy
Score Training 2017-18 0.49 0.41 0.21 0.16
2018-19 0.59 0.41 0.26 0.19

Combined 0.67 0.05 0.57 0.26 0.18

UCD 2017-18 0.22 0.16 0.06 0.08

2018-19 0.44 0.29 0.14 0.14

Combined 0.51 0.03 0.38 0.11 0.12

Non-UCD 2017-18 0.75 0.75 0.66 0.27

2018-19 0.80 0.56 0.56 0.28

Combined 0.81 0.06 0.75 0.60 0.27

AUDPS Training 2017-18 0.55 0.37 12.52 0.14
2018-19 0.74 0.56 37.16 0.18

Combined 0.71 0.09 0.61 24.82 0.20

UCD 2017-18 0.37 0.36 8.01 0.11

2018-19 0.57 0.38 15.26 0.12

Combined 0.59 0.07 0.40 9.27 0.12

Non-UCD 2017-18 0.69 0.52 30.56 0.21

2018-19 0.86 0.63 78.79 0.27

Combined 0.77 0.12 0.77 61.56 0.31
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Ficure 1.1. Phenotypic variation for resistance to PhCR in strawberry. Estimated mar-
ginal means (EMMs) were estimated for 475 individuals from three to four single plant
replicates (clones)/individual/year and eight time points/year in 2017-18 and 2018-19 field
experiments in Davis, CA (24,600 phenotypic observations are displayed). (A-B) EMMs
for resistance score are shown for each timepoint in both years. The bold colored lines
highlight resistant and susceptible individuals: blue = ’Strawberry Mountain’ (P1616601),
gold = "Tamella’ (PI551411), teal = ’Sitka D x Red Rich’ (P1551472), green = 'Cyclone’
(PI551412), red = ’Senga Sengana’ (P1264680), and pink = N2’ (P1616675). (C-D) PhCR
resistance score and AUDPS EMMs for UCD individuals (blue) and non-UCD individuals
(gold) in the training population are shown for both years. The between-year phenotypic
correlations were r = 0.39 (p < 0.001) for both resistance score and AUDPS.
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1.4.2. Prospective Donors of Favorable Alleles for Enhancing Resistance to
Phytophthora Crown Rot. We found that 93.2% of the genetic resources (clonally prop-
agated individuals preserved in public germplasm collections) in our study population were
moderately to highly susceptible to PhCR (Figure 1.2). This conclusion was reached by
screening artificially inoculated plants (stolon-propagated clones) of cultivars and other hy-
brid individuals from the UCD population (n = 346), a geographically and historically di-
verse collection of non-UCD heirloom and modern cultivars (n = 89), and a phylogenetically
and geographically diverse collection of 18 F. chiloensis and 22 F. virginiana ecotypes. From
previous analyses of biodiversity (Hardigan et al., 2020,2; Pincot et al., 2021), these individ-
uals were predicted to broadly sample global diversity and included several check cultivars
previously reported to be resistant or susceptible to PhCR (Bell et al., 1997; Denoyes-Rothan
et al., 2004; Eikemo et al., 2003; Nellist et al., 2019; Parikka, 1998; Pérez-Jiménez et al., 2012;
Pitrat and Risser, 1977; Schafleitner et al., 2013; Seemiiller, 1977; van Rijbroek et al., 1997).
We compiled a database of previously reported PhCR resistance phenotypes for reference
and comparison. The PhCR resistance classifications for the resistant check ’Senga Sengana’
(P1264680; developed in 1954) and the susceptible check 'Tamella’ (P1551411; developed in
1964) have been highly consistent across studies and environments.

Of the 475 individuals screened for resistance to PhCR in the present study , 1.3% lacked
symptoms and were classified as highly resistant (had across-year EMMs in the 1.0 <7 < 1.5
range), 5.5% had mild symptoms and were classified as resistant (1.5 < 7 < 2.0), and
93.2% developed moderate to severe symptoms and were classified as moderately to highly
susceptible (2.0 < 7 < 5.0; ). The most resistant individual in our study was 'Senga
Sengana’ (7 = 1.25), an heirloom cultivar widely reported to be highly resistant (Denoyes-
Rothan et al., 2004; Eikemo et al., 2003; Parikka, 1998; Pitrat and Risser, 1977; Seemiiller,
1977; van Rijbroek et al., 1997). The other individuals in the highly resistant group were
"Cyclone’ (7 = 1.30; developed in 1950), "Addie’ (7 = 1.38; 1982), 'MD683’ (g = 1.38; 1955),
12C071P602 (y = 1.47; 2012), and '"Massey’ (7 = 1.50; 1934). Thirty-two individuals had

15



symptom scores in the resistant to highly resistant range (1.0 < 7 < 2.0), of which 20 were
cultivars developed 40 to 99 years before present. Approximately 80% of these cultivars
were developed before methyl bromide fumigation was introduced and widely adopted in the

1960s (Wilhelm and Paulus, 1980; Wilhelm et al., 1961).

N
o
(]

Score EMM
w
AUDPS EMM

1925 1950 1975 2000 1925 1950 1975 2000
Year Year

FIcURE 1.2. Estimated-marginal means for PhCR resistance score and AUDPS plotted
against the year or origin for 60 UCD (blue points) and 62 non-UCD (gold points) cultivars
released since 1923. Slopes for linear regressions (solid black lines) with 95% confidence
intervals (gray bands) were significant for resistance score (R* = 0.050; p < 0.01) and non-
significant for AUDPS (R? = 0.017; p = 0.08).

Of the 64 UCD cultivars screened for resistance to PhCR in the present study, only three
were found to be resistant, the heirloom cultivars 'Mrak’ (y = 1.84; developed in 1975),
"Tahoe’ (g = 1.98; 1936), and 'Douglas’ (7 = 2.03; 1972). The three modern UCD cul-
tivars reported by Shaw et al. (2006) to be PhCR resistant ("Camino Real’, *Albion’, and
"Aromas’) were found to be moderately to highly susceptible in our study. The across-year
EMMs for these cultivars were § = 2.64 ("Camino Real’; 1994), 7 = 3.46 ("Albion’; 1997),
y = 3.79 (CAromas’; 1991). Two modern UCD cultivars reported by Shaw et al. (2006) to be

PhCR susceptible were found to be susceptible: "Ventana’ (7 = 3.16; 1996) and ’Diamante’
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(g = 3.02; 1991). Of the other 282 UCD individuals screened for resistance to PhCR, which
represent a broad cross-section of diversity in the circa 2015 UCD population, only 2.5%
were classified as resistant. As discussed below, these findings have profound implications
for improving resistance to PhCR in the historically and commercially important UCD pop-
ulation and other elite populations that have undergone intense selection and experienced
population bottlenecks (Hardigan et al., 2021b).

Finally, we found that PhCR resistance was rare among ecotypes of the octoploid progenitors
of cultivated strawberry. Of the 40 F. chiloensis and F. virginiana ecotypes screened for
resistance to PhCR in the present study, only one was found to be resistant (y = 1.56),
whereas the other 39 were found to be moderately to highly susceptible (2.2 < 7 < 5.0).
The resistant ecotype was 'N2’ (PI616675), an F. virginiana subsp. wvirginiana individual
collected from a riparian habitat along the Sainte-Anne River, a tributary of the Saint-

Lawrence River in Quebec, Canada (49.1°N, -66.5°W).

1.4.3. Genetic Gains in Breeding for Resistance to Phytophthora Crown Rot
Have Been Negligible Over the Last Century. Using the assemblage of 122 cultivars
developed since 1923 as a barometer (Figure 1.1), genetic gains in breeding for resistance to
PhCR appear to have declined over the last century (Figure 1.2). On the ordinal disease
symptom rating scale we used, resistance to PhCR decreased as resistance score increased;
hence, slopes from linear regressions of resistance score or AUDPS on cultivar year of origin
were positive, albeit with weak coefficients of determination because phenotypic variation
spanned the entire range over several decades (Figure 1.2).

On closer inspection, we found that the PhCR resistance phenotypes of cultivars developed
since 1980 have drifted towards the population mean (g = 3.1), with the range dropping
by approximately one unit on the ordinal disease rating scale in both the upper (more
susceptible) and lower (more resistant) tails of the phenotypic distribution (Figure 1.2A;
). The pattern for AUDPS was even more pronounced with UCD cultivars falling in a

narrower range than non-UCD cultivars (Figure 1.2B). The narrowing of these phenotypic
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ranges coincided with a population bottleneck in the UCD breeding program (Hardigan et al.,
2021b; Pincot et al., 2021) that appears to have fortuitously decreased genetic variation for
resistance to PhCR (Table 1.1; Figure 1.1). The AUDPS range increased in both directions
(towards more susceptible and more resistant) among non-UCD individuals in the training
population, which is precisely what you would expect in a random sample of individuals
from a gene bank collection.

Although we sampled a broad cross-section of heirloom and modern cultivars and common
ancestors of modern cultivars to build the training population (Pincot et al., 2021), a short-
coming of our study was that plants of non-UCD cultivars developed later than 1989 were
either unavailable or could not be acquired for testing from public or proprietary breeding
programs in North America and Europe. Every UCD cultivar developed and released be-
tween 1935 and 2019, however, was tested . The year of origin for the 75 non-UCD cultivars
tested in our study ranged from 1854 to 1989 (the median year of origin was 1965); hence,
our insights into PhCR resistance were constrained by the spectrum of non-UCD cultivars
tested, which were biased towards older off-patent cultivars (Figure 1.2). The frequency of
PhCR resistant cultivars worldwide could obviously be greater than what we are reporting
here. Although that seems improbable (Mangandi et al., 2017; Marin et al., 2022; Nellist
et al., 2019), thorough sampling and screening of non-UCD modern cultivars is needed to
address this question (Figure 1.2).

Our data show that a high frequency of unfavorable alleles persist in the broad cross-section of
cultivars and elite and exotic genetic resources sampled, and importantly that the apparent
wellspring of favorable alleles found in gene banks have either not been discovered and
utilized or have simply been left behind over the last century of breeding (Figures 1.1-
1.2). We suspect that the increase in the susceptibility of cultivars over time was caused
by the widespread reliance on methyl bromide and other soil fumigants to suppress soil-
borne pathogens in many parts of the world (Rosskopf et al., 2005; Schneider et al., 2003),

a consequent decrease in natural selection pressure, inattention to breeding for resistance to
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PhCR and other soil-borne pathogens, and absence of initiatives to pyramid favorable alleles
from multiple sources of resistance, most of which are exotic, while simultaneously preserving
genetic gains for other horticulturally important traits. The latter poses a significant long-
term technical challenge because of the genetic complexity of resistance to this pathogen (as
discussed below) and exoticness of the most of the promising donors of favorable alleles for
improving resistance to PhCR (Table 1.1). The findings reported here for PhCR resistance
are consistent with our findings for Verticillium wilt, another disease caused by a soil-borne
pathogen ( Verticillium dahliae Klebahn) where the genetics of resistance is quantitative and
complex, and where genetic gains in breeding for resistance appear to have been declined

over the last century (Pincot et al., 2020).

1.4.4. Multivariate GWAS Uncovered the Segregation of a Large-Effect Lo-
cus. Our initial GWAS search identified nine statistically significant signals for resistance
score and two statistically significant signals for AUDPS in the training population (Table
1.2; Figure 1.3A). Only one was significant for both traits, a SNP (AX-184109190) associated
with a QTL on chromosome 7B that was predicted to be RPc2, a large-effect locus originally
discovered by Mangandi et al. (2017) in Florida populations and environments. The RPc2-
associated SNP AX-184109190 explained 28.7 to 39.7% of the genetic variance for resistance
score and 30.7 to 55.6% of the genetic variance for AUDPS (Table 1.2). These percentages
were estimated using bias-corrected methods and multilocus genetic models (Feldmann et al.,
2021). Several of the GWAS signals observed for resistance score were weak and hypothesized
be false positives. When AX-184109190 was used as a covariate in a multivariate GWAS
(George and Cavanagh, 2015; Segura et al., 2012; Tibbs Cortes et al., 2021; Zhang et al.,
2010), the other eight statistically significant signals decreased or disappeared altogether,
and none exceeded the statistical significance threshold (Figure 1.3B). Hence, we only found
statistical support for a single large-effect QTL predicted to be RPc2, and concluded that
RPc2 was the only locus that merited modeling as a fixed effect in our genomic prediction

study and the only locus that clearly warrants direct targeting by MAS.
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FiGURE 1.3. Genome-wide search for loci affecting resistance to Phytophthora crown rot
in a population of 321 UCD and 116 non-UCD individuals genotyped with an Axiom™
50K SNP array. Estimated marginal means for resistance score and area-under-the-disease-
pressure-stairs (AUDPS) were estimated from multiple replicates within each year of the
study (2017-18 and 2018-19). The within year EMMs were analyzed as separate dependent
variables using multivariate GWAS. False discovery rate (FDR)-adjusted p-values are shown
(the horizontal dashed lines depict 0.01 p-value thresholds). The SNP physical positions
were ascertained in the haplotype-phased 'Royal Royce’ reference genome (FaRR1). (A)
Manhattan plot for the initial genome-wide search without covariates. (B) Manhattan plot
for a genome-wide search using the RPc2-associated SNP AX-184109190 as a covariate.

1.4.5. The Dominant RPc2 Allele is Necessary But Not Sufficient for Re-
sistance to PhCR. The SNP most strongly associated with the RPc2 locus was AX-
184109190, an A/G variant (Figure 1.3; Table 1.2). We used AX-184109190 as a predictor
of RPc2-associated phenotypes in the training population. The favorable SNP allele (A)

was completely dominant (|d/a| = 1.00) for resistance score, nearly completely dominant

for AUDPS (|d/a| = 0.91), and highly frequent among UCD (f4 = 0.92) and non-UCD
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FIGURE 1.4. Estimated marginal means
(EMMs) for Phytophthora crown rot resis-
tance score and AUDPS among 437 train-
ing population individuals segregating for
the RPc2-associated A/G SNP marker AX-
184109190, where A is the favorable and G
is the unfavorable allele. The minimum (phe-
notype for the most resistant individual), me-
dian, Q1-Q3 inter-quartile range, and maxi-
mum (phenotype for the most susceptible in-

dividual) are plotted for each AX-184109190
SNP genotype for both traits.

(fa = 0.67) individuals, where f4 is the frequency of the A allele. The additive effect of
the AX-184109190 locus was a = —0.63 (p = 1.76e~®) for resistance score and & = —6.83
(p = 2.23¢7) for AUDPS. Similarly, the dominance deviation of the AX-184109190 locus
was d = 0.63 (p = 9.33¢77) for resistance score and d = 6.24 (p = 8.42¢~%) for AUDPS.
Hence, the favorable allele increased resistance (decreased the ordinal resistance score) and
slowed the progression of disease from the onset of symptoms to the point where symptoms
plateaued, which spanned 10-15 weeks across years.

We found that 100% of the UCD individuals in the training population (n = 321) were either
homozygous (A/A) or heterozygous (A/G) for the favorable SNP allele (Figure 1.4). The
frequency of the favorable allele (f4) was 0.92 among UCD and 0.67 among non-UCD indi-
viduals. The high frequency of the favorable allele in the UCD population was not expected
because resistance score EMMs spanned the entire range from highly resistant (y = 1.41)

to highly susceptible (7 = 4.54) among A/A homozygotes and heterozygotes. This result
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suggests that the favorable RPc2 allele is necessary but not sufficient for resistance, which
was consistent with our finding that AX-184109190 explained 43.6% of the genetic variance
for resistance score and 51.6% of the genetic variance for AUDPS across years (Table 1.2).
The wide range of resistance phenotypes observed within AX-184109190 genotypic classes
(Figure 1.4) can be attributed to several factors: non-genetic variation, genetic variation
(effects of other QTL), incomplete penetrance of RPc2 alleles, and historic recombination
between the SNP and the causal gene underlying RPc2 (MacLeod et al., 2014). One caveat
here is that the causal mutation underlying RPc2 is as yet unknown and thus almost cer-
tainly not in complete LD with AX-184109190. Even though AX-184109190 appears to be
in strong LD with the QTL, a certain percentage of resistant individuals (RPc2/RPc2 and
RPc2/rpc2) carry the G allele and vice versa for susceptible individuals (rpc2/rpec2).

The high-density SNP arrays we developed for strawberry have facilitated octoploid genome-
informed GWAS and the discovery of agriculturally important loci (Hardigan et al., 2020;
Petrasch et al., 2022; Pincot et al., 2022); however, they only capture and interrogate a
fraction of the nucleotide variants found throughout the genome (Hardigan et al., 2021b).
SNP array genotyping has been incredibly powerful and important in octoploid strawberry
genetic studies and facilitated the accumulation and integration of genotypic data across
populations and studies with minimal genotyping errors or missing data; however, the dis-
coveries and inferences enabled by SNP array genotypes are limited by LD between the
assayed variants and causal mutations (Druet et al., 2014). With the emergence of high
quality haplotype-phased genomes, strawberry is positioned to pivot to using whole-genome
sequence-facilitated approaches for genomic prediction. Hardigan et al. (2021b) showed that
homologous and homoeologous DNA variation can be disentangled in the octoploid using
next-generation sequencing and whole-genome shotgun genotyping-by-sequencing, e.g., >
80% of short DNA sequences (150 bp) can be unambiguously physically mapped (aligned)

in octoploid reference genomes; hence, using whole-genome sequence data for GWAS and
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genomic prediction is feasible and should accelerate the discovery of causal variants and im-
prove the accuracy of genomic prediction across-populations in octoploid strawberry (Druet

et al., 2014; Theshiulor et al., 2016; Meuwissen et al., 2021; Raymond et al., 2018).

1.4.6. Several Immunity-Related Genes are Associated with RPc2. We used
historic recombination (GWAS) in the training population to narrow the location of RPc2
down to a short DNA segment on chromosome 7B and searched the octoploid genome for
annotated genes with predicted or demonstrated plant defense functions that were in strong
linkage disequilibrium with RPc2 (Figure 1.3). Using a p = 0.001 statistical significance
threshold, AX-184109190 and 10 additional flanking SNPs on the 50K Axiom™ array were
found to be strongly associated with PhCR resistance phenotypes. These SNPs spanned Mb
21.73-22.99 in the 'Royal Royce’ reference genome ( https://phytozome-next.jgi.doe
.gov/info/FxananassaRoyalRoyce v1_0). This 1.26 Mb segment harbors 233 annotated
genes, of which 18 have immunity-related annotations: seven with homology to intracellular
LRR-type immune receptors (Bonardi and Dangl, 2012), one with homology to an immunity-
associated WRKY transcription factor (Pandey and Somssich, 2009), two with homology to
membrane-localized immune receptors (Boutrot and Zipfel, 2017), one with homology to a
Ca?*-dependent protein kinase, and seven with homology to cyclic-nucleotide-gated calcium
channels (CNGCs; Seybold et al. (2014)). Loss-of-function CNGC DEFENSE, NO DEATH1
and 2 mutations have been shown to disrupt broad spectrum disease resistance and inhibit
hypersensitive response cell death in Arabidopsis (Clough et al., 2000; Jurkowski et al., 2004).
The presence of several CNGCs in close physical proximity to RPc2 makes them intriguing
candidates for the causal gene. The gene most proximal to AX-184109190 is homologous to
WAKI1, another intriguing candidate for RPc2. WAK1 encodes a wall-associated receptor
kinase galacturonan-binding protein, senses the presence of cell wall fragments produced
during fungal or oomycete attack, and activates plant immune responses in Arabidopsis

(Brutus et al., 2010).
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1.4.7. Genomic Prediction Accuracy Was Strongly Affected by Population
Composition and RPc2 Allele Frequency. Our genomic prediction analyses were in-
formed by population-specific differences in additive genetic variance and heritability and
the discovery that RPc2 was segregating in the training population as a whole (Table 1.1;
Figure 1.3). GEBVs were separately estimated for UCD and non-UCD individuals and the
complete training population with and without the RPc2-associated SNP AX-184109190 as
a fixed effect using three whole-genome regression methods: genomic-best linear unbiased
prediction (G-BLUP), reproducing kernel Hilbert space (RKHS), and the Bayesian Lasso
(BL) (Table 1.3). Substantive differences in prediction accuracy were not observed among
methods; hence, findings and conclusions are henceforth only presented for G-BLUP unless
otherwise noted.

We went into this study without knowing if the RPc2 locus would segregate or have a
significant effect in the training population (Table 1.2; Figure 1.3). As shown earlier, the
favorable RPc2-associated SNP allele was nearly completely fixed (non-informative) in the
UCD population; hence, the inclusion of the RPc2-associated SNP marker as a fixed effect
decreased the accuracy of genomic predictions among UCD individuals for resistance score.
Conversely, including AX-184109190 as a fixed effect increased the accuracy of genomic
predictions among non-UCD and training population individuals as a whole because the
exotic (non-UCD) individuals segregated for RPc2 (Table 1.2). These findings suggest that
a fraction of the increase in additive genetic variation associated with the inclusion of exotic
(non-UCD) individuals in the training population (Table 1.1) was caused by the introduction
of RPc2 alleles (we are allowing here for the presence of multiple favorable and unfavorable
alleles). What this shows, in addition, is that genetic variation associated with loci other than
RPc2 was insufficient to drive genetic gains for resistance to PhCR in the UCD population
without the introduction of novel favorable alleles from non-UCD sources. The prediction
accuracy was only in the 0.19 to 0.24 range for resistance score and 0.28 to 0.32 for AUDPS

among UCD individuals in the training population (Table 1.3).
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FIGURE 1.5. Phenotypic and genomic-estimated breeding value (GEBV) distributions for
Phytophthora crown rot resistance score and AUDPS among 437 individuals phenotyped
in 2017-18 and 2018-19 field experiments in Davis, CA. Across-year phenotypes (estimated
marginal means) are shown on the x-axis. GEBV means estimated from 1,000 iterations
of 80/20 cross-validation using G-BLUP are shown on the y-axis. UCD and non-UCD
individuals are shown in blue and gold points, respectively.

Several noteworthy differences were observed in the EMM x GEBV distributions and ge-
nomic selection accuracy estimates between UCD and non-UCD individuals in the training
population (Table 1.3; Figure 1.5). First, breeding values for UCD individuals were more
substantially shrunk towards the population mean than breeding values for non-UCD in-
dividuals (Figure 1.5). GEBVs for UCD individuals clustered in a vertically narrow band
centered on the population mean (3.1), whereas GEBVs for non-UCD individuals were more
diffuse, spanned a much wider range (1.9-4.3), and substantially increased prediction ac-
curacy. The prediction accuracy estimates from cross-validations were 0.22 for G-BLUP
without the RPc2-associated SNP as a fixed effect among UCD individuals and 0.67 for
G-BLUP with the RPc2-associated SNP as a fixed effect among non-UCD individuals. Even
those UCD individuals with EMMs in the resistant range (1.0-2.0) had GEBV estimates close

to the population mean (3.1) and were consequently predicted to be moderately susceptible
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(Figure 1.4). Excluding one or two outliers in the lower and upper tails of the distribution,
the GEBV range among UCD individuals (2.6-3.6) was exceptionally narrow (Figure 1.5).
Second, the phenotypic and breeding value distributions were thin tailed (Figure 1.5). Using
GEBVs as a selection metric, 19 of the 20-most resistant individuals from the lower tail
of the distribution were non-UCD F. X ananassa cultivars and genetic resources (Figure
1.5). The GEBV range for those individuals was narrow (1.9-2.5). The genomic-estimated
breeding value for the most resistant UCD individual (the cultivar 'Tufts’) was 2.2. Using
the phenotypic mean as a selection metric, the two most resistant UCD individuals were
'Mrak’ (7 = 1.84) and "Tahoe’ (7 = 1.98); however, the GEBV estimates for both of those
cultivars were 3.1 and thus identical to the population mean.

Third, 10 of the 12-most susceptible individuals from the thin upper tail of the GEBV dis-
tribution were from the non-UCD population, disconnected from other individuals, and had
GEBVs in the 3.57-4.27 range (Figure 1.5). Seven of the 12 were F. chiloensis ecotypes
and one was an F. virginiana ecotype. These findings further highlight the prediction that
unfavorable alleles appear to be substantially more common in the exotic genetic resources
we sampled than in the UCD population, which has a lower frequency of highly susceptible
individuals. The F. X ananassa individuals from the highly susceptible tail of the GEBV
distribution were the cultivars 'Tamella’ (3.67) and *Jersey Belle’ (3.57) and the UCD hybrid
'94C016P001" (3.64). 'Tamella’ has been widely reported to be highly susceptible and was
clearly susceptible in our study (Figure 1.2). Hence, the inclusion of exotic genetic resources
in the training population widened the phenotypic and breeding value ranges in both direc-
tions, which increased genetic variation and genomic prediction accuracy (Tables 1.1 and 1.3;
Figure 1.5). However, further investigations need to focus on whether genomic prediction
accuracies using diverse populations will be durable in elite xelite crosses. A broader range
of individuals (e.g., unfavorable genotypes) in the training set may help maintain realistic

prediction accuracy.
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1.4.8. Revisiting the Selection of Prospective Donors of Favorable Alleles for
Enhancing Resistance to PhCR. Among the more compelling story lines to emerge
from our study were the scarcity of highly resistant individuals and consequential differences
in genetic variation between UCD and non-UCD individuals in the training population,
particularly for resistance score in 2017-18 (Table 1.1). The inclusion of a small, albeit
highly diverse collection of exotic individuals (n = 116) in the training population doubled
or tripled genetic variation for resistance score and AUDPS. Nevertheless, our estimates of
the additive coefficient of genetic variation (C'Vy4) or “evolvability” for the complete training
population (0.14-0.20) and elite UCD individuals only (0.08-0.14) highlight the challenge of
breeding for resistance to PhCR in strawberry (Table 1.1).

Several of the PhCR-resistant heirloom cultivars identified in strawberry have roots in early
twentieth century breeding for resistance to red stele or Lanarkshire disease in Scotland
where that disease was initially discovered, heavy clay and cool wet soils are common, and
the causal pathogen P. fragariae thrives (Adams et al., 2020; Wardlaw, 1927). Weaving back
through the breeding history (Eikemo et al., 2003,0; Pincot et al., 2021; Van de Weg, 1997) we
discovered that many of the cultivars found to be resistant to PhCR have common ancestors
previously shown to be resistant to red stele, most notably ’Frith” and "MD-683’. Frith was
a parent or more distant ancestor of several red stele resistant cultivars that were found
to be resistant to PhCR in the present study, e.g., ’Climax’ (2.38), 'Red Gauntlet’ (2.64),
and others with Auchincruive ancestry. ’Fairfax’ (1.75) and 'Scotland BK-4’, a descendant
of ’Frith’, are parents of '"MD-683" (1.38), a highly resistant parent found in the ancestry
of several cultivars shown to be PhCR resistant, e.g., ’Addie’ (1.38), 'Stelemaster’ (1.64),
'Delite’ (1.71), "Tribute’ (1.79), and "MDUS-5097" (1.89) (Pincot et al., 2021). Several other
descendants of "Fairfax’ were found to be resistant to PhCR in the present study, notably
"Empire’ (1.75), "Tribute’ (1.79), 'Bounty’ (1.84), 'Hood’ (1.85), "Jewel’ (1.85), 'Fairland’
(1.97), 'Cavalier’ (1.98), and 'Red Giant’ (2.00) . The interconnections here are intriguing

because the development of the cultivars resistant to P. fragariae in the early twentieth
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century pre-dated the emergence of P. cactorum-caused strawberry diseases in the middle
of the century (Deutschmann, 1954; Wardlaw, 1927). The correlation seems more than
coincidental, however, the genetic mechanisms underlying resistance to these pathogens are
different: gene-for-gene resistance to red stele has been rigorously documented and shown to
be widespread (Van de Weg, 1997), whereas resistance to PhCR appears to be quantitative,
albeit strongly affected by the segregation of the large-effect QTL RPc2 (Table 1.1; Figure
1.4; Mangandi et al. (2017)). One or more ’black box” QTL underlying quantitative resistance
to both of these pathogens could be shared but undiscoverable or simply not yet discovered.
Moreover, favorable QTL alleles underlying quantitative resistance to red stele could be
masked by the dominance of race-specific resistance genes (Van de Weg, 1997).

The breeding value estimates for cultivars trended upward (towards greater susceptibility)
from 1960 onward, with few cultivars released after 1960 falling in the resistant range (1.0,
2.0) for either EMMs or GEBVs (Figure 1.2). The eight most highly resistant cultivars
(1.25 <y < 1.75) in our study, with one exception ("Addie’, a cultivar developed in 1981),
originated between 1923 and 1958. Among UCD individuals in the training population, the
cultivars "Tufts’ (7 = 2.93; GEBV = 2.17; 1963), Capitola’ (g = 2.38; GEBV = 2.40; 1983),
and 'Santana’ (GEBV = 3.58; 1977) and the hybrid 65C065P601 (7 = 2.71; GEBV = 2.63;
1965) had the lowest GEBVs and were consequently predicted to be the most resistant.
Using GEBVs as a selection metric, the three most resistant individuals in our study were
the non-UCD cultivars 'Sparkle’ (7 = 2.25; GEBV = 1.91), ’Earlimiss’ (g = 2.13; GEBV
= 1.94), and ’Stelemaster’ (y = 1.64; GEBV = 2.06). Conversely, using phenotypic EMMs
as a selection metric, the three most resistant individuals in our study were the non-UCD
cultivars ’Senga Sengana’ (y = 1.25; GEBV = 3.14), 'Cyclone’ (7 = 1.30; GEBV = 2.21),
and ’Addie’ (y = 1.38; GEBV = 2.77). While the divergence between observed phenotypes
and GEBVs was pronounced for some of the individuals documented here (e.g., ’Senga
Sengana’), the degree of shrinkage observed towards the population mean was expected.

‘Senga Sengana’ and ’Cyclone’ are especially illustrative examples of validated resistant

30



genetic resources where the divergence between phenotypes and GEBVs markedly differed.
The outcome for these two cultivars clearly highlights the merits of selecting prospective
donors of favorable alleles using phenotypic means and GEBVs when applying selection
to individuals in the training population, versus the more challenging problem of applying
selection to non-training population individuals that have not been phenotyped (Miiller et al.,
2015). Selection on GEBV alone here would exclude ’Senga Sengana’, the most important
benchmark of resistance identified in the present and previous studies. This sort of hedging
seems prudent when selecting parents or prospective donors of favorable alleles because of
the uncertainty associated with both phenotypic and breeding value estimates (Tables 1.1
and 1.3).

The phenotypic and breeding value differences observed between UCD and non-UCD indi-
viduals in the training population (Figures 1.1 and 1.5) were aligned with insights gained
from previous genome-wide studies of nucleotide diversity. Using diverse genetic resources,
(Hardigan et al., 2021b) showed that strong directional selection, breeding bottlenecks, and
selective sweeps had progressively decreased genetic variation in the UCD population. The
decrease was hypothesized to have been driven by significant genetic gains for agriculturally
important traits (e.g., fruit yield, size, and firmness) over nearly 70 years of selection in
the UCD population, combined with the fixation and loss of alleles through random genetic
drift and hitchhiking in selective sweeps (Hardigan et al., 2021b). Our data suggests that
resistance to PhCR and Verticillium wilt has declined over the last half century in the UCD
population through 2012, the oldest generation analyzed in our studies (Figure 1.1; Pincot
et al. (2020)). The non-UCD individuals phenotyped in the present study appear to harbor
favorable alleles (lower tail of the GEBV distribution) and unfavorable alleles (upper tail of
the GEBV distribution) that are not present in the UCD population and are rare among

genetic resources preserved in gene banks (Figure 1.5).
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1.4.9. Prospects for Improving Parent Selection and Increasing Genetic Gains
Through Genomic Prediction of Genetic Variances and Cross Usefulness Crite-
ria. Although the gene bank diversity we sampled (primarily non-UCD heirloom cultivars
and octoploid ecotypes) substantially increased genetic variation, novel favorable alleles ap-
pear to be scared and, therefore, highly dispersed (Figure 1.1). Their introduction and
accumulation in elite populations will require several generations of hybridization and re-
combination, which could be accelerated by applying genomic selection (Crossa et al., 2010;
Labroo et al., 2021; Poland and Rutkoski, 2016). Our evolvability (C'Vy4) estimates (Table
1.1) predict that segregating populations developed with parents chosen at random from the
training population have a low probability of “producing phenotypic variation that is both
heritable and adaptive” (Payne and Wagner, 2019; Pigliucci, 2008). This conclusion is con-
sistent with our estimates of historic genetic gains for resistance to PhCR (Figure 1.5) and
estimates of narrow-sense heritability in elite California and Florida populations (Table 1.1;
Mangandi et al. (2017)). While parents would obviously not be randomly chosen in practice,
the low frequency of outstanding parents for PhCR resistance (individuals that have accu-
mulated favorable alleles for multiple QTL underlying resistance to PhCR) drastically limits
the choice of prospective parents, a preponderance of which have been selected for traits
other than PhCR resistance, e.g., out of 95,266 possible crosses among 437 individuals (ex-
cluding reciprocal crosses) in the training population, only 15 or 0.0157% would be between
pairs of prospective parents predicted to be highly resistant (using phenotypic means as the
selection criteria). The percentage predicted from GEBV estimates was virtually identical.
To take the parent selection problem one step further, additive genetic variances and use-
fulness criteria (Allier et al., 2019; Lehermeier et al., 2017) were estimated for phenotypic
and genomic selection schemes by simulating segregating populations (full-sib families of 200
individuals each) for all possible crosses (190,532 including reciprocals) among 437 prospec-
tive parents (individuals) in the training population (Figures 1.6-1.7). The latter were split

into resistant (R) and susceptible (S) groups using across-year phenotypic EMM and GEBV
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estimates as selection criteria . The truncation selection cutoffs were EMM < 2.0 for phe-
notypic selection and GEBV < 2.6 for genomic selection. There were 32 selected parents
in both resistant groups (the selected fraction was 32/437 = 0.073) with an intersection of
15 parents between resistant groups (49 different parents were selected between methods).
These analyses yielded classic isosceles triangle-shaped fi x &% distributions similar to the
those observed for many agriculturally important traits under directional selection in other
domesticated plants (Lado et al., 2017; Mohammadi et al., 2015b). As predicted, crosses be-
tween highly resistant parents (R x R) or highly susceptible parents (S x S) had the smallest
predicted genetic variances, whereas crosses between highly resistant and highly susceptible
parents (R x S) had the largest predicted genetic variances (Figure 1.6). Naturally, as se-
lection intensity increased among individuals with EMM < 2.0, the genetic variance range
(altitude of the triangle) and maximum (apex of the triangle) decreased, where EMM here
was predicted population mean estimated from 200 individuals/simulated full-sib family.

The subsets of crosses shown in the fi x 6% distribution were chosen to study the outcomes
of different phenotypic or genomic selection scenarios where resistant UCD and non-UCD
individuals were selected and crossed to every individual in the training population or sub-
sets of resistant individuals. The breeding scenarios we explored produced several insights.
First, broadly speaking, crosses between resistant non-UCD parents and all other parents
unlocked more genetic variation and were predicted to be more resistant (had lower popula-
tion means) than crosses between UCD parents and all other parents (Figure 1.6A-B). This
was fully expected and predicted by the differences observed in the whole-genome regression
(WGR) shrinkage of breeding values discussed earlier (Figure 1.5). Second, the genetic pa-
rameter estimates for crosses with resistant UCD parents (blue points) were shifted upwards
(increased genetic variance) and leftwards (decreased population mean) for genomic selection
(Figure 1.6B) compared to phenotypic selection (Figure 1.6A). This pattern suggests that
genomic selection on cross usefulness should produce greater gains than phenotypic selection

(Figures 1.6-1.7). Third, we observed a distinct band of prospective crosses to the right of
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FIGURE 1.6. Genomic-estimated genetic variances and population EMMs for Phytophthora
crown rot resistance score are shown for 190,532 simulated segregating populations (n = 200
full-sib individuals/population) developed from crosses (with reciprocals) among 437 individ-
uals (prospective parents) in the training population. The prospective parents were classified
as resistant or susceptible using resistance score EMMs or GEBVs as a selection criteria to
model the outcomes of phenotypic and genomic selection, respectively. The truncation selec-
tion cutoffs were EMM < 2.0 for phenotypic selection and GEBV < 2.6 for genomic selection.
There were 32 parents in the resistant groups (32/437 = 0.073) for phenotypic and genomic
selection with an intersection of 15 parents between resistant groups. (A) and (C) show
estimates for phenotypic selection, whereas (B) and (D) show estimates for genomic selec-
tion. (A) and (B) show statistics for all possible crosses between resistant non-UCD parents
and all other training population individuals (gold points) and all possible crosses between
resistant UCD parents and all other training population individuals (blue points). (C) and
(D) display the lower tails of the EMM distribution (population EMMs < 2.0) and high-
light crosses between resistant parents. The gold points identify UCD x non-UCD crosses,
whereas the blue points identify UCD x UCD crosses. The grey points identify non-UCD
x non-UCD crosses.
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the primary distribution that traced to the least resistant parents and most exotic genetic
resources in the training population, e.g., F. chiloensis and F. virginiana ecotypes. These
crosses were predicted to unleash the most genetic variation for resistance to PhCR albeit
with lower population means (Figure 1.6A-B). There were a small number of crosses with
non-UCD resistant parents near the apex in the right-shifted ‘exotic’ band that warrant
further exploration and inclusion in a long-term breeding strategy. These had maximum
genetic variance with population means that were only slightly greater than 2.0.

Shifting to the lower (more resistant) tail of the fi x 6% and fi x U distributions and focusing
only on crosses between resistant parents, we found that genomic and phenotypic selection
scenarios identified different complements of crosses (Figures 1.6C-D and 1.7B-C). Moreover,
the complements of UCD x UCD crosses (blue points) and UCD x non-UCD crosses (gold
points) differed between genomic and phenotypic selection (Figures 1.6C-D and 1.7B-C). The
gray points identify non-UCD X non-UCD crosses. The UCD X non-UCD crosses depict
possible outcomes for the exact breeding scenario that motivated our study, the identification
and introduction of possibly novel favorable alleles from highly resistant sources (found to
be heirloom cultivars) into modern UCD cultivars. We observed the predicted dichotomy
between UCD x UCD and UCD x non-UCD crosses for the phenotypic selection scenario
with lower genetic variances and population means for the former (Figure 1.6C). The pattern
was quite different for the genomic selection scenario where only three UCD x UCD crosses
(0.003% of the crosses simulated) were found in the tail and the UCD x non-UCD crosses
were shifted leftwards toward greater resistance (had lower population means and lower
genetic variances) compared to the pattern observed for phenotypic selection (Figure 1.6C-
D).

These analyses clearly identified the most promising crosses for pyramiding favorable alleles
from different sources and introducing novel favorable alleles from non-UCD sources into elite
UCD sources. The triangular i x 6% and ellipsoidal i x U distributions predict that useful

genetic variation can be unlocked by crosses among the resistant parents identified in our
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FIGURE 1.7. Cross usefulness criteria (U) and population EMMs for Phytophthora crown
rot resistance score are shown for 190,532 simulated segregating populations (n = 200 full-
sib individuals/population) developed from crosses (with reciprocals) among 437 individuals
(prospective parents) in the training population. (A) Statistics are shown for all possible
UCD x UCD crosses (blue points) and all possible non-UCD Xx non-UCD crosses (gold
points). (B) Statistics are shown for the lower tail of the EMM distribution (population
EMM < 2.0). Crosses between resistant UCD parents only (UCD x UCD crosses) are
shown in blue, whereas other crosses between resistant parents (UCD x non-UCD and non-
UCD x non-UCD crosses) are shown in gray. (C) Statistics are shown for the lower tail of
the EMM distribution (population EMM < 2.0). Crosses between resistant UCD and non-
UCD parents (UCD x non-UCD crosses) are shown in gold, whereas other crosses between
resistant parents (UCD x UCD and non-UCD x non-UCD crosses) are shown in gray.
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study, both exotic and elite (Figures 1.6-1.7). However, the altitudes and apices of the i x
6% distributions (Figure 1.6C-D) clearly show that the small fraction of crosses between pairs
of highly resistant parents unlock three to five-fold less genetic variance than crosses with
maximum genetic variance at the apex of the entire distribution of 190,532 crosses (Figure
1.6A-B). The latter, of course have intermediate population means. These results suggest
that the resistant individuals either share a preponderance of favorable alleles in common,
as would be expected from shared ancestry (Hardigan et al., 2020; Pincot et al., 2021), that
the cumulative effects of independent QTL combined in thousands of cross combinations are
not additive, or both. The prediction accuracy could, in addition, have been partly caused
by population structure rather than LD between SNP markers and QTL (Daetwyler et al.,

2012), which would further explain the patterns we observed.

1.5. Conclusions

Our study highlighted one of the most pressing challenges ahead for strawberry breeders:
stacking resistance to P. cactorum and other soil-borne pathogens without eroding genetic
gains for yield and other agriculturally important traits that have enabled the phenomenal
growth of the strawberry industry since the 1950s. The difficulty of that challenge was il-
lustrated by separately analyzing UCD (90% modern era elite) individuals in the training
population—100% of those individuals were predicted to be homozygous or heterozygous for
the favorable RPc2 allele. Our analysis of the UCD population mimicked a real world situ-
ation where MAS could be applied to a population to fix the favorable RPc2 allele, thereby
removing the segregation of RPc2 from the equation, and leaving selection to operate on the
‘black box’ residual quantitative genetic variation. The specific elite population we targeted
(UCD) had significantly less additive genetic variance and appeared to be devoid of many
if not most of the favorable alleles for PhCR resistance found in highly resistant heirloom
cultivars. We concluded that those alleles had simply been left behind as a consequence of
the germplasm conservation, breeding priority, and selection decisions made since the incep-

tion of the UCD breeding program in the 1920s. Those decisions profoundly affected the
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spectrum and frequencies of alleles preserved among elite individuals that passed through
breeding bottlenecks and were preserved in the 2015 rendition of the UCD population we in-
herited and broadly sampled to assemble the training population for the present study. Our
findings suggest that an influx of novel favorable alleles from exotic genetic resources into
our elite albeit bottlenecked population, and perhaps many others, is necessary to replicate
the highly resistant phenotypes of heirloom cultivars.

We undertook this study without any knowledge of the strength or spectrum of resistance
to P. cactorum in the UCD population that has been the source of commercially important
and groundbreaking cultivars for nearly a century. When paired with insights gained from
earlier population genomic and forward genetic studies, the genome-informed approaches
applied here further pulled back the shroud of mystery that has long surrounded the UCD
population, and genetic resources worldwide for that matter, in addition to enabling data-
driven decisions to unlock genetic variation for resistance to PhCR and other diseases stowed
away in phenotypically anonymous strawberry gene bank collections. We concluded that the
genetic complexity of resistance to P. cactorum, while important, has perhaps been less of
a factor in the scarcity of highly resistant modern cultivars and negative genetic gains than
widespread inattention to breeding for resistance. This conclusion was reached because a
preponderance of the highly resistant cultivars we discovered were developed in the early
twentieth century decades before methyl bromide fumigation emerged and modern genome-
informed breeding approaches were invented. The latter have actually come somewhat late to
strawberry breeding and cultivar development. While the highly resistant heirloom cultivars
documented in the present study are still the benchmark for resistance today, the application
of increasingly powerful predictive approaches should enable breeders to replicate the PhCR

resistance of early twentieth century heirloom cultivars in high yielding modern cultivars.

1.6. Abbreviations

AUDPS, area under the disease pressure stairs; ASV, average semi-variance; BL, Bayesian

Lasso; CNGC, cyclic-nucleotide-gated channel; EMM, estimated marginal mean; FDR, false
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discovery rate; G-BLUP, genomic-best linear unbiased prediction; GEBV, genomic-estimated
breeding value; GVE, percentage of the genetic variance explained by markers; U, genomic-
estimated cross usefulness criteria; GWAS, genome-wide association study; LMM, linear
mixed model; LD, linkage disequilibrium, MAS, marker-assisted selection; MAF, minor al-
lele frequency; MCCV, Monte Carlo cross-validation; MV-GWAS, multivariate genome-wide
association study; PhCR, Phytophthora crown rot; PVE, percentage of the phenotypic vari-
ance explained by markers; QTL, quantitative trait locus; REML, restricted maximum likeli-
hood; RKHS, reproducing kernel Hilbert space; SNP, single nucleotide polymorhism; WGR,

whole-genome regression.
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CHAPTER 2

Useful Heterosis and Genomic Prediction Strategies for Fruit

Quality Traits and Shelf Life in Strawberry

2.1. Abstract

The global expansion of strawberry production has been primarily influenced by the selection
of high-yielding long shelf life genotypes. The direct selection of traits for mass production
in strawberries, such as fruit size and firmness, has led to a trade-off with fruit quality traits
that are important to consumers. Exotic genetic resources might harbor favorable alleles to
improve the overall liking of strawberry fruit but may also carry undesired alleles, making
breeding efforts challenging. We analyzed the introgression of favorable alleles for fruit qual-
ity traits from nine soft-fruited exotic parents into a firm-fruited elite cultivar. We observed
a wide range of phenotypic values for firmness (z = 0.12-0.45 kg/cm?), total soluble solids
(TSS; 7 = 9.17-11.3%), titratable acidity (TA; T = 0.89-1.12%), and anthocyanin content
(ANC; T = 60.17-96.55 ug/mL) within full-sib families in the elitexexotic population. Sig-
nificant heterosis was detected in a few hybrids for firmness (0.0-7.7%) and ANC (0.0-14.8%),
while a greater number of hybrids showed substantial improvements in TSS (3.9-37.6%) and
TA (9.2-55.3%). Our results indicate that genotype combinations notably influence hybrid
performance. Genetic correlations among fruit traits indicate that firmness is positively cor-
related with TA (7 = 0.40) and negatively with TSS (7 = -0.50). Furthermore, the lack of
genotypextimepoint interaction suggests that measurements taken at harvest might be a re-
liable predictor of changes in fruit quality traits during storage. Genomic prediction may help
overcome challenges associated with introducing exotic resources into elite breeding pools.

This study showed that genomic prediction models incorporating half-sib individuals in the
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training set can achieve higher predictive abilities for fruit quality traits (0.44-0.91) com-
pared to models with only 20% of individuals from the target family (0.06-0.39) or unrelated
germplasm (0.01-0.50). While these results are promising, further investigation is needed to
optimize genomic prediction schemes for fruit quality traits, particularly in addressing the

impact of genetic distance.

2.2. Introduction

Cultivated strawberry (Fragaria X ananassa) is one of the most economically valuable and
extensively grown small fruits worldwide. The global expansion of strawberries has been
driven by the selection of high-yielding long shelf life genotypes over the past century (Feld-
mann et al., 2024a). While numerous commercially successful modern cultivars show high
yields, firmness, and extended shelf life, a prevailing concern among consumers is a perceived
compromise in taste quality (Predieri et al., 2021).

The historical genetic gain in the strawberry breeding program at the University of California,
Davis suggested that the direct selection of mass-production traits decreased sweetness,
acidity, and anthocyanin content (Feldmann et al., 2024a). Thus, mass-production traits are
hypothesized to negatively affect fruit quality traits associated with consumer preferences.
However, the disparity among studies on the phenotypic and genotypic correlations between
fruit quality traits in strawberry (Ghoochani et al., 2015; Hernanz et al., 2008; Lerceteau-
Kohler et al., 2012; Masny et al., 2016; Mishra et al., 2015; Shaw, 1988; Singh et al., 2018;
Ukalska et al., 2006; Whitaker et al., 2012; Zareei et al., 2022; Zorrilla-Fontanesi et al.,
2011) might reflect that the pleiotropic effects among these traits are not fully understood.
For instance, some studies reported a positive correlation between total soluble solids and
titratable acidity (Lerceteau-Kohler et al., 2012; Shaw, 1988; Whitaker et al., 2012), while
others documented negative correlations (Mishra et al., 2015; Singh et al., 2018). These
findings underscore the complexity of the genetic interactions underlying fruit quality traits
and highlight the need for further studies to improve the overall liking of strawberry fruit

without compromising traits for long-scale production.
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Genetic resources such as wild relatives and heirloom cultivars might carry novel favorable
alleles to expand the genetic base of elite pools and facilitate short- and long-term genetic
improvements (Allier et al., 2020). However, the performance gap between exotic resources
and modern cultivars often discourages breeders from incorporating them into crosses with
elite germplasm in breeding programs. For example, heirloom strawberries are perceived
as sweet with superior flavor; yet, their soft texture, susceptibility to damage, and limited
shelf life make them unsuitable for modern production environments and long-distance ship-
ping (Collins and Perkins-Veazie, 1993; Pelayo et al., 2003). To address these challenges,
genome-wide methods can be used to enhance the efficiency and accuracy of selecting desired
genotypes derived from crosses between elitex exotic parents.

The genetic architecture of fruit quality traits in strawberries is complex and involves several
genetic factors (Alarfaj et al., 2021; Castro and Lewers, 2016; Lee et al., 2021; Lerceteau-
Kohler et al., 2012; Natarajan et al., 2020; Rey-Serra et al., 2021; Verma et al., 2017; Zorrilla-
Fontanesi et al., 2011). Identifying reliable and stable loci associated with these traits is
crucial for developing DNA markers that allow the selection of desired genotypes. On the
other hand, genomic prediction has shown great promise in accurately predicting complex
traits in several crops (Ferrao et al., 2021; Gezan et al., 2017; Hong et al., 2020; Medina et al.,
2021; Merrick and Carter, 2021), enabling breeders to efficiently identify and select superior
genotypes earlier in the breeding process. However, genomic prediction accuracy is influenced
by several factors, including the number of markers used for calculating genomic estimated
breeding values (Spindel et al., 2015; Tayeh et al., 2015), trait heritability (Kaler et al., 2022;
Zhang et al., 2017), training set size (Norman et al., 2018; Tayeh et al., 2015; Zhang et al.,
2017), statistical models (Heslot et al., 2012; Spindel et al.; 2015), linkage disequilibrium
(Habier et al., 2007; Schopp et al., 2017a), the relationship between training and validation
sets (Albrecht et al., 2011; Clark et al., 2012), and population structure (De Roos et al.,
2009; Norman et al., 2018; Windhausen et al., 2012).
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We developed elite xexotic crosses derived from a firm-fruited elite cultivar and nine soft-
fruited exotic parents to evaluate the introgression of favorable alleles from exotic genetic
resources to enhance fruit quality traits in strawberries. Hybrid performance was evaluated
within full-sib families by contrasting each hybrid with its elite parent. Additionally, five
full-sib families were studied during post-harvest to evaluate their performance and estimate
the trade-off between fruit quality traits. We estimated phenotypic and genetic variance
explained by each locus detected for fruit quality traits and their interactions among and
within full-sib families. Finally, we considered nine genomic prediction strategies and seven
training set sizes to evaluate the effectiveness of genomic prediction for fruit quality traits

and the impact of the relatedness between the training and validation sets.

2.3. Materials and Methods

2.3.1. Plant Material. Ten full-sib families were evaluated for fruit quality traits,
including an elitexelite backcross between two California breeding lines and elitexexotic
crosses derived from the firm-fruited cultivar 'Royal Royce’ and nine soft-fruited exotic par-
ents ("Kaoling’, "Morioka 17’, "Primella’, 'Madame Moutot’, 'Titan’, 'MDUS 5130, 'Tangi’,
"EarliMiss’, and 'Linn’). Exotic parents were initially obtained as bare-root 'mother’ plants
from the United States Department of Agriculture (USDA) National Plant Germplasm Sys-
tem (NPGS) National Clonal Germplasm Repository in Corvallis, Oregon, USA. Exotic
parents were subsequently maintained and propagated asexually at the University of Cali-
fornia, Davis (UCD) facilities. Crosses were conducted during the winter of 2017-2018, with
seeds sown in the following spring and grown in pots. 795 seedlings (one per plant) and
their parents (ten plants per individual) were planted in a non-randomized row design at the
Wolfskill Experimental Orchard in Winters, California, in the fall of 2018. The plants were

cultivated throughout the 2019 field season.
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2.3.2. DNA Extraction and SNP Genotyping. Leaf tissue was lyophilized and
ground using a 1600 MiniG® - Automated Tissue Homogenizer and Cell Lyser (SPEX Sam-
ple Prep, Metuchen, NJ). 12 mg of ground leaf tissue was used for DNA extraction through
an E-Z 96 Plant DNA Kit (Omega Bio-Tek, Norcross, GA) following a modified protocol
described by Hardigan et al. (2018). A 50K genotyping array was utilized to identify Single
Nucleotide Polymorphisms (SNPs) as described by Hardigan et al. (2020). After filtering for
a minor allele frequency < 0.05 and missing data > 10%, followed by imputation through the
A.mat function from the rrBLUP R package (Endelman, 2011), 30,269 SNPs were retained

for subsequent analysis.

2.3.3. Population Structure Analysis. A principal component analysis (PCA) was
performed to evaluate the relatedness between the ten full-sib families and historical records
studied by Feldmann et al. (2024a). SNPs with variance = 0 were excluded from the analysis.
The PCA was carried out using the prcomp () function with the scale parameter set to TRUE
from the R package (R Core Team, 2021).

2.3.4. Fruit Quality Phenotyping. Fruit quality measurements were conducted at
full ripeness on May 15 and May 31. Firmness was evaluated from three fruits per individual
through a TA.XT plus Texture Analyzer (Stable Micro Systems Ltd., Goldaming, United
Kingdoms) equipped with a TA-53 3 mm puncture probe. Subsequently, the fruits were
stored at -20°C in Whirl-Pak@® Homogenizer Blender Filter Bags (Nasco, Fort Atkinson,
WI) until titratable acidity (TA) measurements. TA was determined using the Metrohm
Robotic Titrosampler System (Metrohm AG, Herisau, Switzerland) with 1-5 ml of defrosted
and homogenized fruit juice. Total soluble solids (TSS) were measured from 200 pl of fruit
juice with an RX-5000ca-Bev refractometer (ATAGO Co. Ltd., Tokyo, Japan). Anthocyanin
content (ANC) was determined by mixing 25 pl of fruit juice in a 200 pul solution of 1% HCI
in methanol. Absorption (Abs) was measured at 520 nm using a Synergy HTX Multi-Mode

Microplate Reader (BioTek Instruments, Inc.) with Genb software. A dilution series of
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Pelargonidin (Sigma Aldrich) from 0 - 300 pg/ml was used to calculate a standard curve of

the following formula:

(2.1) y=sr+1i

The concentration of anthocyanins in the juice was calculated with the following formula:

(2.2) C(png/ml) = Abs — is

Post-Harvest Evaluation of Fruit Related-Quality Traits. Fruit quality traits
were evaluated for 12 days post-harvest in the elitexelite backcross and four elitexexotic
crosses ('Primella’, '"Madame Moutot’, "Tangi’, and "EarliMiss’). Images of the fruit were
captured every two days through a Sony « 6000 camera equipped with an E PZ 16-50
mm F3.5-5.6 OSS lens (SONY, Tokyo, Japan). Fruit showing signs of fungal infection
was discarded and not included in subsequent analyses. Image processing was conducted
using a custom macro in Fiji to determine RGB color values (Rueden et al., 2017; Schin-
delin et al., 2012). These values were then converted into the Lab color space through the
convertColor() function in R (R Core Team, 2021). Texture, TSS, TA, and ANC were
measured every four days.

Genetic correlations among fruit quality traits at 0, 4, and 8 days post-harvest were esti-
mated using Genomic Best Linear Unbiased Predictions (G-BLUP) in the sommer R package
(Giovanny, 2016). A multitrait model for genetic correlations with all traits at once was not
feasible due to computational challenges. The analysis involved estimating 4704 variances

and covariances. Thus, pairs of traits were used to calculate genetic correlations.

2.3.5. Statistical Data Analysis. Phenotypic values were analyzed using linear mixed
model (LMM) functions from the R package lme4::lmer() (https://cran.r-project.org/

web/packages/lme4/index.html). Estimated marginal means (EMMs) were calculated
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through the emmeans R package (Lenth, 2021). The LMM was expressed as:
(2.3) Yij = bi + G + ey

where y;; indicates the observed phenotype for the jth genotype (individual) in the ith
harvest, b; is the random effect of the ¢th harvest, G, is the random effect of the jth individual,
and e;; indicates the ijth residual effect.

Variance components in these analyses were estimated using the restricted maximum like-
lihood (REML) method (Bates et al., 2015). Narrow-sense genomic heritability (h2) was

estimated using the formula h? = 6% /62, where 6% is the REML estimate of the genomic

P’
additive genetic variance and 6% is the REML estimate of the phenotypic variance (Endel-
man, 2011; Mathew et al., 2018). Additionally, Genotype, timepoint, and interaction effects

were examined for post-harvest assessments using Type I Analysis of Variance (ANOVA) in

R.

2.3.6. Useful Heterosis. F1 hybrid performance was evaluated over their check elite
parents through useful heterosis (UH) proposed by Meredith Jr. and Bridge (1972). UH was

analyzed via the following formula:

(2.4) UH =

Here, H; indicates the EMM of the H; hybrid, and BP is the EMM of the check elite
parent within a specific family. The elite parent selected for the elitexelite backcross was
05C197P002, while for the elitexexotic families was the elite cultivar "Royal Royce’ . Con-
trasts between hybrid and BP EMMs were estimated for every parent-hybrid combination

using the emmeans R package (Lenth, 2021).

2.3.7. Genome Wide Association Study. EMMs for firmness, TSS, TA, TSS-TA

ratio, and ANC were analyzed through Genome-Wide Association Studies (GWAS). The
46



Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) method
implemented by GAPIT version 3 (Wang and Zhang, 2021) was chosen for its ability to in-
crease statistical power by not assuming an even distribution of trait-associated genes across
the genome (Huang et al., 2019). Population structure was corrected by including the ge-
nomic relationship matrix (Zhou and Stephens, 2012,1) from the A.mat() function in the
rrBLUP R package (Endelman, 2011). The physical positions of SNPs were mapped to the
haplotype-phased reference genome 'Royal Royce’ v1.0 (Hardigan et al., 2021b).

The most significant SNPs identified for each fruit quality trait, along with their interactions,
were fitted into a linear model. Phenotypic (PVE = &3,/6%) and genetic (GVE = &3,/62)
variance explained by each locus and its interactions were calculated. The &3, indicates a
bias-corrected average semivariance REML estimate for the marker among individuals, 6%

is the phenotypic variance and &% is the genetic variance (Feldmann et al., 2021).

2.3.8. Genomic Prediction Across and Within Families. Nine genomic prediction
strategies and seven training set (TS) sizes were evaluated to estimate progeny and family
Genomic Estimated Breeding Values (GEBVs) for fruit quality traits (Figure 2.1). GEBVs
were calculated using the sommer R package (Giovanny, 2016). Monte Carlo Markov chain
simulations with 1,000 iterations were employed to select individuals for the TS using random
sampling without replacement. Predictive ability (PA = %72) was estimated for each genomic
prediction strategy (Daetwyler et al., 2013). Pearson’s correlation coefficient was calculated
between EMMs and GEBVs (r, ;) (Dekkers, 2007; Dekkers et al., 2021; Van den Berg et al.,
2019) for family mean. Normalized root-mean-square error (nRMSE) was calculated to
evaluate the performance of the genomic prediction strategies and TS sizes. nRMSE was

estimated through the following formulas:

n

1
2. MSE = — = Ui)?
(25 SB= 3 (o=
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MSE

Ymax — Ymin

(2.6) nRMSE =

Where y; is the observed value, y; is the predicted value, n indicates the total number of data

points, Ymax is the maximum value, and Yy, is the minimum value of the measured data.

2.4. Results and Discussion

2.4.1. Genetic Diversity and Phenotypic Variation in ElitexExotic Families.
The genetic distance analysis of ten full-sib families, including an elitexelite backcross pop-
ulation from two California breeding lines and nine crossbred populations derived from the
elite cultivar 'Royal Royce’ and exotic parents ('Kaoling’, "Morioka 17’, 'Primella’, "Madame
Moutot’, "Titan’, 'MDUS 5130’, "Tangi’, "EarliMiss’, and "Linn’), showed a clear separation
between these two populations (Figure 2.2A). However, the analysis of population structure
in the elitexexotic crosses displayed isolated genetic clusters involving the exotic parents
"Primella’, ’Madame Moutot’, and 'Kaoling’, while specific full-sib families derived from
exotic parents such as ’Morioka 17, "Titan’, '"MDUS 5130’, and ’EarliMiss’ showed overlap-
ping (Figure 2.2B). Additionally, the elitexelite and elite xexotic populations were analyzed
against an extensive compilation of breeding records (Feldmann et al., 2024a) that consid-
ered the domestication range from wild ancestors to modern cultivars (Figure 2.3). The
elitexelite backcross population and its parents were closely clustered with the California
population. In contrast, the elitexexotic families showed divergence from the California
pool. The exotic parents were located with Cosmopolitan sources, whereas 'Royal Royce’
remained closely related to the California germplasm. Thus, the genetic differentiation intro-
duced by the exotic parents resulted in new subpopulations from the California population,
as previously observed by Hardigan et al. (2021b) and Pincot et al. (2021).

A wide range of phenotypic values was observed within and across populations for firmness,

TSS, TA, TSS-TA ratio, and ANC (Figure 2.4). The elitexelite population exhibited higher
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firmness (Z = 0.34 kg/cm?; p = 3.81 x 1071), TSS-TA ratio (T = 13.4; p = 2.11 x 107%),
and ANC (T = 92.3 pg/mL; p = 2.71 x 107%). In contrast, the elitexelite population
showed lower TSS (T = 9.8%; p = 1.03 x 1073) and TA (z = 0.75%; p < 2.2 x 10719)
compared to the elitexexotic population (z = 0.23 kg/cm?, 10.5, 0.99%, 11.5%, and 75.3
ug/mL, respectively). However, some full-sib families within the elitexexotic population
exhibited similar or higher phenotypic values for firmness (T = 0.12-0.45 kg/cm?), TSS
(z = 9.17-11.3%), TA (z = 0.89-1.12%), TSS-TA ratio (z = 8.48-13.35), and ANC (T =
60.17-96.55 pg/mL) compared to the elitexelite population (Figure 2.4). Our findings align
with previous research emphasizing the importance of using diverse germplasm to enhance
horticultural and commercial traits in strawberries (Hummer et al., 2023; Mathey et al.,
2013). Mathey et al. (2013) analyzed several fruit quality traits from a diverse strawberry
collection, including accessions from breeding initiatives such as USDA, Michigan, Florida,
New Hampshire, and European programs. Their study revealed a wide range of phenotypic
values for TSS (Z = 3.1-19.5%), TA (Z = 0.2-2.2%), TSS:TA ratio (Z = 3.0-35.1), and ANC
(z = 5.3-1109.3 pg/mL). Thus, harnessing genetic diversity from gene banks might enhance
fruit quality traits in strawberry breeding programs by broadening the genetic base and
overcoming the limitations of elite germplasm with narrow genetic diversity.

The narrow-sense heritability (izz) estimates spanned from low to moderate values for the
elitexelite and elitexexotic populations (Table 2.1). We estimated low h? for TSS (0.17-
0.18) and TSS-TA ratio (0.03-0.18), whereas moderate h? was observed for firmness (0.35-
0.41), TA (0.34-0.38), and ANC (0.23-0.37). In the elitexexotic population, we noticed
a wide range of h? estimates across full-sib families (Table 2.1). Several full-sib families
from the elite xexotic population showed higher additive genetic effects than the elite xelite
population. For instance, Tangi’s family exhibited higher h? for firmness (0.60) and ANC
(0.43), while Madame Moutot’s family for TSS (0.33) and TA (0.55). h? estimates from
independent studies (Cockerton et al., 2021; Coman and Popescu, 1997; Gezan et al., 2017;
Ghoochani et al., 2015; Mishra et al., 2015; Murti et al., 2012; Ukalska et al., 2006) underscore
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TABLE 2.1. Narrow-sense heritability (h?) via restricted maximum
likelihood estimates for firmness, total soluble solids (TSS), titrat-
able acidity (TA), TSS-TA ratio, and anthocyanin content (ANC)
across diverse strawberry families. h? was estimated for an elitexelite
backcross population between two California breeding lines and elite x exotic
population derived from crosses between the elite cultivar 'Royal Royce’ and
nine exotic parents ('Kaoling’, 'Morioka 17’, 'Primella’, "Madame Moutot’,
'Titan’, 'MDUS 5130’ "Tangi’, 'EarliMiss’, and 'Linn’).

Population Firmness (kg/ecm?) TSS (%) TA (%) TSS:TA Ratio ANC (ug/mL)

ElitexElite 0.35 0.18 0.34 0.04 0.21

ElitexExotic 0.41 0.17 0.38 0.18 0.23
Kaoling 0.38 0.00 0.51 0.04 0.27
Morioka 17 0.39 0.20 0.58 0.11 0.00
Primella 0.00 0.28 0.41 0.26 0.39
Madame Moutot 0.40 0.33 0.55 0.34 0.43
Titan 0.52 0.00 0.45 0.04 0.00
MDUS 5130 0.24 0.00 0.36 0.22 0.25
Tangi 0.60 0.18 0.21 0.12 0.43
EarliMiss 0.21 0.12 0.37 0.13 0.36
Linn 0.24 0.29 0.40 0.26 0.10

the role of genetic backgrounds behind complex traits. The discrepancy of h2 estimates across
studies might be attributed to differences in population-specific parameters, such as additive
and non-additive genetic effects, environmental factors, and statistical methodologies used
to estimate h?2 (Visscher et al., 2008). These findings highlight the relevance of selecting
parents to increase genetic variation and genetic gain for fruit quality traits in strawberry

breeding programs.

2.4.2. Perspectives on Genotype Combination for Fruit Quality Traits in
Elite x Exotic Crosses. We estimated useful heterosis (UH) to evaluate the performance of
elitexelite and elitexexotic hybrids (Figure 2.5). The elitexexotic hybrids showed superior
performance for TSS (85.9%), TA (85.2%), TSS:TA (45.1%), and ANC (47.3%) and only
3% of them for firmness. By contrast, the elitexelite population showed improvements in
firmness (48.2%), TSS ratio (40%), and ANC (61.2%), with few hybrids performing well
in TSS (9.4%) and TA (3.5%). The low number of hybrids with high firmness in the

elite xexotic population may be attributed to the introgression of deleterious alleles from
50



exotic parents, which potentially disrupted the favorable alleles accumulated in the elite cul-
tivar 'Royal Royce’ (Feldmann et al., 2023; Li et al., 2022). However, a small percentage
of the elitexelite and elitexexotic hybrids was significantly greater than their elite parents
(Table 2.2). The elitexelite population showed significant improvement over its elite parent
for firmness (8.2%) and ANC (7.1%), while the elitexexotic population between all eval-
uated fruit quality traits, particularly in TSS (16.2%) and TA (28.6%). We noticed that
the likelihood of obtaining hybrids with superior performance for fruit quality traits var-
ied among the elitexexotic families (Table 2.2). Previous studies indicated heterosis varies
from one hybrid to another for fruit quality traits in strawberry (Kaczmarska et al., 2016;
Murti et al., 2012). Several elite x exotic families produced hybrids with higher improvement
for TSS (3.9-37.6%) and TA (9.2-55.3%) but showed less superior hybrids for TSS:TA (0.0-
7.3%), ANC (0.0-14.8%), and firmness (0.0-7.7%). Thus, the use of exotic genetic resources

must be carefully considered to enhance elite genetic pools.
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FiGURE 2.1. Genomic prediction strategies across and within families for fruit
quality traits in strawberry. Nine genomic prediction schemes and seven training set
(TS) sizes were evaluated to calculate Genomic Estimated Breeding Values (GEBVs) using
Genomic Best Linear Unbiased Predictions (G-BLUP) for both progeny and family mean.
Monte Carlo Markov chain simulations with 1,000 iterations were employed to select individ-
uals for the TS using random sampling without replacement. GEBVs across families were
calculated by selecting individuals as the TS from A) 80%, 50%, or 20% sampling across
families (FD80, FD50, and FD20, respectively) and F) historical records (HD1). For within
families, the TS was built from B) 20% sampling across families and 20% from the targeted
family (FD20_Fi20), C) 20% sampling across families and historical data (FD20_HD), D)
20% sampling from the targeted family and historical data (Fi20_.HD), E) 20% sampling
across families, 20% from the targeted family, and historical data (FD20_Fi20_.HD), and F)
historical records (HD2). Historical data includes breeding records from wild ancestors to
modern cultivars (Feldmann et al., 2024a). The grayscale arrow indicates the target popu-
lation, highlighting the TS sizes from 200 to 500 individuals.
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FIGURE 2.2. Genetic distance unveils distinct subpopulations within the stud-
ied families. The first two principal components, derived from 30,092 Single Nucleotide
Polymorphisms (SNPs), show genetic distance A) between an elitexelite backcross and
nine elitexexotic crosses and B) only elitexexotic crosses. The elitexelite backcross was
developed between two California breeding lines (16C108P605 and 05C197P002) and the
elite xexotic population was derived from the elite cultivar 'Royal Royce’ and nine exotic par-
ents ("Kaoling’, "Morioka 17’, "Primella’, "Madame Moutot’, 'Titan’, 'MDUS 5130, 'Tangi’,
"EarliMiss’, and ’Linn’).
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FiGURE 2.3. Genetic relatedness of elitexexotic families with a California pop-
ulation. The first two principal components were obtained from 30,092 Single Nucleotide
Polymorphisms (SNPs). The California backcross population (ExE) was developed by cross-
ing the California breeding lines 16C108P605 and 05C197P002. The crossbred families were
derived from the crosses between the elite cultivar 'Royal Royce’ and nine exotic parents
(’Kaoling’, "Morioka 17’, "Primella’; "Madame Moutot’, *Titan’, 'MDUS 5130, "Tangi’, 'Ear-
liMiss’, and 'Linn’). Grey points indicate individuals from a California genetic pool described
by Feldmann et al. (2024a). Parents from the California population are represented by gold
diamond-shaped points, and exotic parents by gold square-shaped points.
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FIGURE 2.4. Phenotypic variation of fruit quality traits within and across straw-
berry families. Phenotypic distribution of A) firmness, B) total soluble solids (TSS),
C) titratable acidity (TA), D) TSS:TA ratio, and E) anthocyanin content in an elitexelite
backcross and nine elite x exotic crossbred families. Estimated marginal means (EMMs) were
obtained from a single plant per individual at two harvests in 2018-2019. Full-sib families
include an elitexelite backcross population from two California breeding lines (16C108P065
and 05C197P002) and nine elitexexotic populations derived from the crosses between the
elite cultivar 'Royal Royce’ and exotic parents ('Kaoling’, "Morioka 17’, 'Primella’, "Madame
Moutot’, 'Titan’, '"MDUS 5130, 'Tangi’, 'EarliMiss’, and "Linn’).
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FiGure 2.5. Hybrids from the elitexexotic population show superior perfor-
mance for several fruit quality traits. Useful heterosis (UH) was evaluated for firmness,
total soluble solids (TSS), titratable acidity (TA), TSS-TA ratio, and anthocyanin con-
tent (ANC) in elitexelite and elitexexotic populations. The elitexelite family was derived
from the backcross between two California breeding lines (16C108P065 and 05C197P002),
while the crossbred families between the elite cultivar 'Royal Royce’ and nine exotic parents
(Kaoling, Morioka 17, Primella, Madame Moutot, Titan, MDUS 5130, Tangi, EarliMiss, and
Linn). The California breeding material 05C197P002 and the elite cultivar 'Royal Royce’
were used as elite parental sources to estimate UH. Hybrids were organized using firmness

as a reference.
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TABLE 2.2. Significant differences between hybrids and their elite parent for fruit quality traits
in elitexexotic families. The percentage of elitexelite and elitexexotic hybrids with useful heterosis (UH)
significantly greater than zero (UH > 0), significantly less than zero (UH < 0), and not significantly different
from zero (UH = 0) was estimated. We calculated UH between hybrids and the elite parent (UH = gy -
ypp), where g is the estimated marginal mean (EMM) for the hybrid and ypp is the best parent. EMMs
were derived from phenotypes of parents and hybrids across single plants and two harvest times for firmness,
total soluble solids (TSS), titratable acidity (TA), and anthocyanin content (ANC). The best parent for the
elitexelite hybrids (n = 85) was 05C197P002, while the best parent for the elitexexotic hybrids (n = 710)

was the elite cultivar 'Royal Royce’ .

Firmness (%) TSS (%) TA (%) TSS:TA (%) ANC (%)
Population n <00 =00 >00]<00 =00 >00|<00 =00 >00|<00 =00 >00|<00 =00 >0.0
Elite x Elite 85 0.0 91.8 8.2 153  84.7 0.0 2.4 97.6 0.0 0.0 100 0.0 0.0 92.9 7.1
Elitex Exotic 710 89.0 9.7 1.3 0.1 837 16.2 14 700 28.6 | 0.0 96.8 3.2 1.3 928 5.9
Kaoling 75 987 0.0 1.3 0.0 86.7 13.3 1.3 72.0 26.7 0.0 96.0 4.0 2.7 96.0 1.3
Morioka 82 80.5 18.3 1.2 0.0 92.7 7.3 6.1 76.8 17.1 0.0 92.7 7.3 4.9 82.9 122
Primella 88 100 0.0 0.0 0.0 784 216 0.0 7.3 227 0.0 100 0.0 0.0 85.2 148
Madame Moutot 84 100 0.0 0.0 1.2 75.0 238 0.0 679 321 0.0 97.6 2.4 1.2 95.2 3.6
Titan 66 773 19.7 3.0 0.0 95.5 4.5 0.0 81.8 18.2 0.0 100 0.0 0.0 93.9 6.1
MDUS 5130 65 46.2 46.1 7.7 0.0 8.1 169 | 31 87.7 92 0.0 938 6.2 0.0 9.9 31
Tangi 76 96.0 4.0 0.0 0.0 96.1 3.9 0.0 447 55.3 0.0 100 0.0 1.3 93.4 5.3
EarliMiss 93 100 0.0 0.0 0.0 624 376 | 00 634 366 | 00 957 43 1.1 989 0.0
Linn 81 90.1 9.9 0.0 0.0 90.1 9.9 2.5 63.0 34.6 0.0 95.1 4.9 0.0 93.8 6.2




2.4.3. Post-harvest Dynamics of Fruit Quality Traits. Strawberry fruit is highly
perishable and vulnerable to mechanical damage, dehydration, and physiological irregulari-
ties during storage (Vu et al., 2011). Although several technologies have helped to mitigate
these challenges (Castell6 et al., 2010; Joshi et al., 2019; Maraei and Elsawy, 2017; Muley and
Singhal, 2020), cultivar selection is critical for extending post-harvest quality in strawberry
(Prange and DeEll, 1997). We evaluated fruit quality-related traits in the elitexelite and
four elitexexotic full-sib families at post-harvest. We did not observe visual changes during
the storage period (Figure 2.6A), following common patterns of variation for fruit quality
traits across families (Figure 2.6B). We noticed post-harvest changes such as increasing T'SS,
TA, and ANC accumulation that have been previously reported in strawberry fruit (Corde-
nunsi et al., 2003; Lee et al., 2022; Nunes et al., 2006). Our results indicated an increase
in strawberry firmness as well as Chandra et al. (2015), whereas Collins and Perkins-Veazie
(1993) and Ali et al. (2011) reported firmness decay during storage. Thus, fruit quality traits
might be influenced by genetic backgrounds and storage conditions. On the other hand, our
analysis of variance indicated no significant genotype x timepoint interaction for these ob-
served changes, except in the cases of elasticity, ANC, and color components (Table 2.3).
The lack of genotypextimepoint interaction for most of the evaluated traits suggests that

assessing fruit quality traits at harvest might be a reliable predictor of post-harvest changes.

TABLE 2.3. Prediction of post-harvest performance for strawberry fruit quality
traits using harvest metrics. Analysis of variance for texture (firmness, skin strength, and
elasticity), taste (total soluble solids (T'SS), titratable acidity (TA), TSS:TA ratio, and pH),
pigmentation (anthocyanin content (ANC), a, b, and L values), and fruit size. An elitexelite
and four elitexexotic full-sib families were evaluated at 0, 4, 8, and 12 post-harvest days.

Firmness Df Sum Sq Mean Sq F value Pr(>F) Significance
Genotype 430 27.62  0.06 8.78 <2 % 10716
Timepoint 3 0.99 0.33 45.03 <2 x 10716 ek
Genotype:Timepoint 1044  8.27 0.01 1.08 0.0756
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Residuals 1684 12.32 0.01

Skin Strength

Genotype 430 10.37 0.02 5.27 <2 x 10716 ek
Timepoint 3 0.64 0.21 46.33 <2 x 10716 ok
Genotype:Timepoint 1044  4.49 0.00 0.94 0.8650

Residuals 1684 7.71 0.00

Elasticity

Genotype 430  755.80 1.76 3.53 <2 x 10716 ek
Timepoint 3 2205.18  735.06 1475.71 <2 x 10716 wxx
Genotype:Timepoint 1044  637.45 0.61 1.23 0.0001 ook
Residuals 1684  838.81 0.50

TSS

Genotype 430  8727.39  20.30 2.46 <2 x 10716 kkk
Timepoint 3 316.54  105.51 12.81 2.83 x 1078 *H*
Genotype:Timepoint 1044  5923.98  5.67 0.69 1

Residuals 1682  13859.54 8.24

TA

Genotype 430 107.58 0.25 5.67 <2 x 10716 kkx
Timepoint 3 31.19 10.40 235.70 <2 x 10716 oeek
Genotype:Timepoint 1038  43.23 0.04 0.94 0.8468

Residuals 1655 73.01 0.04

TSS:TA Ratio

Genotype 430  16854.80 39.20 2.55 <2 x 10716 ek
Timepoint 3 1295.24  431.75 28.04 <2 x 10716 kkk
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Genotype:Timepoint 1038  14420.35 13.89 0.90 0.9660

Residuals 1655 25482.57 15.40

pH

Genotype 430  85.37 0.20 4.90 <2 x 10716 ek
Timepoint 3 0.22 0.07 1.82 0.1418
Genotype:Timepoint 1038  34.46 0.03 0.82 0.9998

Residuals 1655 67.10 0.04

ANC

Genotype 430  381.32 0.89 4.84 <2 x 10716 ek
Timepoint 3 20.83 6.94 37.91 <2 x 10716 ok
Genotype:Timepoint 1044  228.71 0.22 1.20 0.0006 ook
Residuals 1682  308.11 0.18

a

Genotype 425  77090.62 181.39 8.07 <2 x 10716 Rk
Timepoint 3 17051.73  5683.91 253.02 <2 x 10716 ek
Genotype:Timepoint 1026  25567.48 24.92 1.11 0.0328 *
Residuals 1587  35651.33 22.46

b

Genotype 425 192301.61 452.47 10.34 <2 x 10716 kkk
Timepoint 3 36717.16 12239.05  279.61 <2 x 10716 wxx
Genotype:Timepoint 1026  49946.92 48.68 1.11 0.0296 *
Residuals 1587  69465.09 43.77

L

Genotype 425 120938.78 284.56 11.92 <2.2x 10716 kkx
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Timepoint 3 584.29  194.76 8.16 <2.2x 10716 wxx

Genotype:Timepoint 1026  27076.38 26.39 1.11 0.0372 *
Residuals 1587  37876.08 23.87

Fruit Size

Genotype 430  39132.00 91.00 3.22 <2 x 10716 ek
Timepoint 3 16442.53 5480.84 193.93 <2 x 10716 Hxx
Genotype:Timepoint 1044  20200.42 19.35 0.68 1

Residuals 1684  47593.23 28.26

Significance levels: *** 0.001 and * 0.05

Genetic correlations among the evaluated fruit quality traits during post-harvest exhibited
different relationship patterns when the elitexelite population was included (Figure 2.7).
The first two principal components for both the elitexelite and elitexexotic populations
explained 51.3% of the total additive genetic variance (Figure 2.7A). Firmness was positively
associated with fruit size (7 = 0.62), skin strength (7 = 0.74) and TSS:TA (7 = 0.42), but
negatively with T'SS (7 = -0.51) and TA (7 = -0.74). The elitexelite population was closely
associated with firmness and fruit size, while the elitexexotic population clustered with
color components, TSS, and TA (Figure 2.7B). On the other hand, the first two principal
components for the elitexexotic population explained 40.2% of the total additive genetic
variance (Figure 2.7C). Firmness was positively associated with skin strength (7 = 0.85),
TA (7 = 0.40) and negatively correlated with TSS (7 = -0.50), TSS:TA (7 = -0.62) and
ANC (7 = -0.38). We observed the four elitexexotic families were differentially pooled
among the studied fruit quality traits (Figure 2.7D). The 'Tangi’ full-sib family was closely
associated with firmness, size, and TA; the 'Primella’ full-sib family with ANC; and both the
"Madame Moutot” and "EarliMiss’ full-sib families with color components, elasticity, and TSS.
Similar discrepancies have been observed in previous studies for phenotypic and genotypic

correlations of fruit quality traits in strawberries (Adams et al., 2020; Ghoochani et al., 2015;
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FIGURE 2.6. Absence of genotypexenvironment interaction for fruit quality traits
in strawberry during post-harvest storage. Progeny from four elitexexotic crossbred
families derived from the elite cultivar 'Royal Royce’ and exotic parents ("Primella’, 'Madame
Moutot’, "Tangi’, and "EarliMiss’), along with an elitexelite backcross family between two
California breeding lines (16C108P065 and 05C197P002), were evaluated over a 12-day post-
harvest period (dph). Phenotypic changes of A) strawberry fruit in elitexexotic full-sib
families at post-harvest, including B) firmness, fruit diameter, total soluble solids (TSS),
titratable acidity (TA), TSS-TA ratio, and anthocyanin content. Solid and thick lines in-
dicate the average value of the full-sib family, while dashed and black lines are the average
value of the elitexelite and elite xexotic populations.

Lerceteau-Kohler et al., 2012; Masny et al., 2016; Mishra et al., 2015; Shaw, 1988; Singh et al.,
2018; Ukalska et al., 2006; Whitaker et al., 2012; Zareei et al., 2022; Zorrilla-Fontanesi et al.,
2011). Genetic correlations can vary among populations from changes in additive genetic

variances influenced by different environmental conditions (Holloway et al., 1990; Sgro and

Hoffmann, 2004) and inbreeding (Rose, 1984; Whitlock and Fowler, 1999). Therefore, our
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findings may be attributed to the population structure differences between the elite xelite
and elite xexotic populations (Figure 2.3). The elitexelite family was closely related to the
California population, which is highly inbred and has a narrow genetic base. In contrast, the
elite x exotic families represent new subpopulations created through the introgression of novel
alleles from exotic parents. Additionally, the population size in the elite xelite family (n = 85)
may have affected the sampling additive genetic variance of the genetic correlations among
fruit quality traits. The small sample size from the elitexelite family may have introduced
bias and weighted more for the genetic correlations among fruit quality traits (Visscher,
1998). Although some genetic correlations showed opposite directions when the elitexelite
family was included in the analysis, our study suggests a trade-off between firmness and
consumer preference-linked traits (e.g., sugar content). The identification of loci without
pleiotropic effects may help break down these negative correlations and improve the overall

liking of strawberry fruit.

2.4.4. Large-Effect Genetic Sources Within Families Influence Fruit Quality
Traits. We explored the genetic basis of fruit quality traits using the assumption of non-
uniform gene distribution across the genome through the Bayesian Information and Linkage
Disequilibrium Iteratively Nested Keyway (BLINK) method (Huang et al., 2019). Our analy-
sis revealed several statistically significant signals distributed throughout the genome (Figure
2.8; Table 2.4). We identified 11 significant associations for firmness (A = 1.18; Figure 2.8A),
four for TSS (A = 1.10; Figure 2.8B), five for TA (A = 1.10; Figure 2.8C), one for TSS:TA
(A = 1.06; Figure 2.8D), and four for ANC (A = 1.01; Figure 2.8E). Interestingly, two loci
were detected in the same chromosome at different physical positions for firmness (Figure
2.8A) and TA (Figure 2.8C). Moreover, our analysis did not reveal co-localized loci among
fruit quality traits. These findings, along with previous studies (Alarfaj et al., 2021; Castro
and Lewers, 2016; Lee et al., 2021; Lerceteau-Kohler et al., 2012; Natarajan et al., 2020;
Rey-Serra et al., 2021; Verma et al., 2017; Zorrilla-Fontanesi et al., 2011), suggest that fruit

quality traits are controlled by a complex genetic architecture in strawberry.
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TABLE 2.4. Genome-Wide Association Study (GWAS) statistics for
firmness, total soluble solids (TSS), titratable acidity (TA), TSS-TA
ratio, and anthocyanin content (ANC) using 795 hybrids genotyped
with a 50K Axiom” SNP array.

Trait Marker Chr® Position (bp)? p-value® Effect?
Firmness AX-184140198 1A 18891080 1.26 x 1073 -0.03
AX-184605081 2C 11102222 1.83 x 1073 -0.03
AX-184579310 3A 14173665 2.49 x 1073 0.02
AX-166512777 3B 24485373 2.89 x 1073 -0.01
AX-166512704 3D 8534698 1.40 x 1074 0.03
AX-184863957 4B 28803270 1.54 x 1077 0.03
AX-184162213 5C 10072899 1.26 x 1074 -0.05
AX-184608879  6A 7765714 3.79 x 1071 -0.07
AX-184089164 6A 25964115 1.74 x 1077 -0.01
AX-166527345 6C 31891573 4.47 x 1076 -0.05
AX-184244674 TA 17402423 1.26 x 1074 0.04
TSS AX-184312863 1B 15148429 4.74 x 1073 -0.64
AX-184148450 2C 10789397 1.45 x 1074 -0.72
AX-184416160 3B 9710031 1.18 x 1074 0.55
AX-184643646 6A 17383194 1.70 x 1077 0.57
TA AX-184495179 2A 12662897 1.31 x 107° -0.13
AX-184166518 2A 21657588 3.12x 1073 0.10
AX-166504739 3D 29585699 6.89 x 1073 -0.05
AX-184251393 4B 21918607 6.89 x 1073 -0.11
AX-184419884 5C 5024907 7.43 x 1074 -0.04
TSS:TA Ratio AX-184868046 7D 8136080 9.07 x 1074 1.45
ANC AX-184673952 1B 7893376 4.16 x 1079 -11.08
AX-184439966  5A 6936484 8.70 x 1073 -9.89
AX-123363930 5B 8770250 1.29 x 1074 8.34
AX-184367856  TA 20878974 2.62x 1073 11.73

& Chromosome number.

b Physical position mapped in the haplotype-phased 'Royal Royce’ reference
genome (FaRR V1).

¢ FDR-corrected p-value.

4 Estimated effect size of a genetic variant on the trait.
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FIGURE 2.7. Genetic correlations among fruit quality traits in strawberry. Ge-
nomic estimated breeding values were calculated for texture (firmness, skin strength, and
elasticity), taste (total soluble solids (TSS), titratable acidity (TA), TSS:TA ratio, and pH),
fruit size, anthocyanin content (ANC), and color components (L, a, and b). The two prin-
cipal components were obtained from an elitexelite and four elitexexotic full-sib families
("Primella’, "Madame Moutot’, "Tangi’, and "EarliMiss’) evaluated at 0, 4, and 8 days post-
harvest. Genetic correlations for fruit quality traits were analyzed A) and B) by including
both populations, while C) and D) considering exclusively the elitexexotic full-sib families.
Polygons represent the distribution patterns of fruit quality traits during post-harvest in the
principal component analysis.
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The most significant single nucleotide polymorphisms (SNPs) associated with fruit quality
traits (Table 2.4), along with the interaction between the identified loci as well as those with
two loci on the same chromosome, were fitted into a linear model. Our analysis indicated
that the genetic variance explained (GVE) and phenotypic variance explained (PVE) by
all firmness-linked loci were 76.53% and 49.05%, respectively (Table 2.5). We observed one
large-effect locus on chromosome 1A (GVE = 21.41% and PVE = 13.75%) for firmness.
However, three large-effect loci were identified within full-sib families from the elite xexotic
population (Table 2.5). These loci are located on chromosome 3D in Morioka 17 (GVE
= 26% and PVE = 16.08%), 4B in Titan (GVE = 35.52% and PVE = 11.78%), and 6A
in both "Primella’ (GVE = 37.81% and PVE = 17.58%) and 'EarliMiss’ (GVE = 29.87%
and PVE = 15.25%). The large-effect locus associated with firmness on chromosome 6A
has been previously identified (Cockerton et al., 2021; Hardigan et al., 2018; Lee et al.,
2021). This genomic region contains three tandemly arranged polygalacturonase (PG) genes
reported by Hardigan et al. (2021b). PGs are enzymes involved in pectin degradation, which
influences cell wall integrity and fruit softening in strawberry (Ramos et al., 2018). One of
these tandem PG genes, named FaP(G1, has been extensively studied for its role in strawberry
firmness (Julio-Gonzélez et al., 2018; Lépez-Casado et al., 2023; Paniagua et al., 2020,2; Pose
et al., 2015; Posé et al., 2013; Quesada et al., 2009; Ramos et al., 2018; Redondo-Nevado
et al., 2001; Villarreal et al., 2009,0). Strikingly, the knockout of PG1 did not significantly
affect other fruit quality-related traits of strawberries, such as sweetness, color, and nutrient
content (Julio-Gonzélez et al., 2018; Pose et al., 2015; Quesada et al., 2009). The unlinked
effect of PG1 on other fruit quality traits suggests that the general appeal of strawberries
can be improved with minimal trade-offs by identifying loci without pleiotropic effects. On
the other hand, a small fraction of the genetic and phenotypic variation was explained by
all the identified loci for TSS (GVE = 32.04% and PVE = 11.85%; Table 2.6), TA (GVE
= 13.08% and PVE = 7.09%; Table 2.7), TSS:TA (GVE = 13.02% and PVE = 4.75%;
Table 2.8), and ANC (GVE = 30.72% and PVE = 11.23%; Table 2.9). We detected one
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large-effect locus on chromosome 5C for TA in Madame Moutot (GVE = 20.32% and PVE
= 11.28%), while the loci on chromosomes 1B and 5B had a major effect on ANC in the
elitexelite population (GVE = 35.16% and PVE = 10.30%) and in Kaoling (GVE = 88.46%
and PVE = 71.03%), respectively. Additionally, the interaction between loci did not explain
much of the phenotypic and genetic variation observed for fruit quality traits. We observed
variable effects across and within families for the studied traits. For instance, epistatic
effects were observed for firmness both across and within two specific families (Table 2.5). In
contrast, no epistatic interaction between loci for TSS was detected across families. However,
epistatic effects were present in five of the six families with more than one locus (Table 2.6).
Therefore, we found that the additive genetic component of each locus explained a high
proportion of the phenotypic and genotypic variance for fruit quality traits. Monnahan and
Kelly (2015) used a similar approach to estimate pairwise epistasis for several floral traits in
Mimulus guttatus. Although they identified substantial epistatic interactions for most traits
and showed variable effects across different genetic backgrounds, the genetic variance was

predominantly explained by the additive effects of individual loci.
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FIGURE 2.8. Genome-wide association analysis uncovers loci involved in fruit
quality traits in strawberry. Estimated marginal means (EMMs) were calculated from
two harvest times in 2019. Through a genome-wide association study, EMMs of 795 in-
dividuals were statistically associated with 31,269 single nucleotide polymorphisms (SNPs).
Manhattan and Q-Q plots for A) firmness, B) total soluble solids (TSS), C) titratable acidity
(TA), and anthocyanin content (ANC). Dashed lines indicate the Bonferroni threshold. SNP
physical positions were mapped to the haplotype-phased genome of 'Royal Royce’ (FaRR
V1).
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TABLE 2.5. Contribution of single- and multi-locus effects to phenotypic and genetic variation
for firmness in strawberry. The percentage of phenotypic (PVE) and genetic variance explained (GVE)
by all identified single nucleotide polymorphisms (SNPs) for firmness using a genome-wide association study
was estimated by fitting single SNPs and their interactions in a linear model. PVE and GVE were calculated
within the studied population and across the ten full-sib families. Dashes indicate loci removed from the
analysis due to either a minor allele frequency < 0.05 or the observation of only one genotypic class.

Madame MDUS

Chr* Population elitexelite Kaoling Morioka 17 Primella Titan Tangi EarliMiss Linn
Moutot 5130
PVE (%) 13.75 5.13 - - 0.00 - 1.83 0.00 - - 0.00
A GVE (%) 21.45 10.88 - - 0.00 - 5.05 0.00 - - 0.00
PVE (%) 2.42 - 1.46 - 0.00 0.00 - - 0.00 - 0.00
2 GVE (%) 3.78 - 3.98 - 0.00 0.00 - - 0.00 - 0.00
PVE (%) 1.59 1.34 0.00 0.00 0.00 4.84 0.00 0.00 4.62 0.27 0.00
A GVE (%) 2.48 2.84 0.00 0.00 0.00 7.06 0.00 0.00 12.21 0.53 0.00
PVE (%) 2.19 - 1.33 0.00 0.00 2.16 1.98 4.40 0.48 0.00 0.00
b GVE (%) 3.42 - 3.62 0.00 0.00 3.15 5.48 10.21 1.26 0.00 0.00
PVE (%) 1.79 - 0.00 16.08 - 0.00 - 0.58 0.00 - -
i GVE (%) 2.79 - 0.00 26.00 - 0.00 - 1.35 0.00 - -
PVE (%) 6.46 4.39 - - - - 11.78 - - - -
» GVE (%) 10.08 9.30 - - - - 32.52 - - - -
PVE (%) 4.39 0.00 2.21 0.00 0.00 0.00 - - - - 2.88
o GVE (%) 6.85 0.00 6.01 0.00 0.00 0.00 - - - - 11.45
PVE (%) 6.61 - - 0.00 - - - - - - -
6A-1
GVE (%) 10.31 - - 0.00 - - - - - - -
PVE (%) 3.26 - 0.00 5.95 17.58 8.99 - 1.55 3.66 15.25 1.95
0A-2 GVE (%) 5.09 - 0.00 9.62 37.81 13.10 - 3.60 9.67 29.87 7.75
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Table 2.5 continued from previous page

PVE (%) 3.92 - 3.80 5.55 - - - - - - 0.00
6C

GVE (%) 6.11 - 10.33 8.97 - - - - - - 0.00

PVE (%) 2.67 - 11.09 - - 0.75 - 15.87 0.00 - 0.84
TA

GVE (%) 4.17 - 30.19 - - 1.09 - 36.80 0.00 - 3.33

PVE (%) 0.00 - - 5.88 - - - - - - -

6A-1:2°
GVE (%) 0.00 - - 9.50 - - - - - - -
PVE (%) 3.42 0.00 0.00 0.00 0.00 0.00 2.48 1.81 0.00 0.00 0.00
Interaction®
GVE (%) 5.33 0.00 0.00 0.00 0.00 0.00 6.84 4.19 0.00 0.00 0.00

“Chromosome for the most significant SNPs identified. Chr6A-1 and Chr6A-2 indicate the first and second peaks detected

on chromosome 6A, respectively.

Interaction term between 6A-1 and 6A-2.

“Interaction term between the most significant SNPs detected for firmness.
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TABLE 2.6. Contribution of single- and multi-locus effects to phenotypic and genetic variation for
total soluble solids in strawberry. The percentage of phenotypic (PVE) and genetic variance explained
(GVE) by all identified single nucleotide polymorphisms (SNPs) for total soluble solids using a genome-wide
association study was estimated by fitting single SNPs and their interactions in a linear model. PVE and GVE
were calculated within the studied population and across the ten full-sib families. Dashes indicate loci removed
from the analysis due to either a minor allele frequency < 0.05 or the observation of only one genotypic class.

Madame MDUS
Chr® Population elitexelite Kaoling Morioka 17 Primella Titan Tangi EarliMiss Linn
Moutot 5130
1B PVE (%) 2.37 - - - - - 0.00 - 0.13 -
GVE (%) 6.41 - - - - - 0.00 - 0.80 -
2C PVE (%) 1.09 - - - 2.55 - - - - 0.00 -
GVE (%) 2.94 - - - 5.21 - - - - 0.00 -
3B PVE (%) 3.36 0.64 0.00 - - 0.00 0.00 - - 0.62 -
GVE (%) 9.09 1.35 0.00 - - 0.00 0.00 - - 2.37 -
6A PVE (%) 5.03 1.26 0.00 - 8.24 0.00 - - - 0.20 2.34
GVE (%) 13.60 2.69 0.00 - 16.93 0.00 - - - 0.76 6.40
PVE (%) 0.00 7.96 5.39 - 3.51 11.78 1.88 - - 0.00 -
Interaction®
GVE (%) 0.00 16.91 33.01 - 7.22 29.79 10.98 - - 0.00 -

“Chromosome for the most significant SNPs identified. Chr6A-1 and Chr6A-2 indicate the first and second peaks detected

on chromosome 6A, respectively.

*Interaction term between the most significant SNPs detected for firmness.
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TABLE 2.7. Contribution of single- and multi-locus effects to phenotypic and genetic variation
for titratable acidity in strawberry. The percentage of phenotypic (PVE) and genetic variance explained
(GVE) by all identified single nucleotide polymorphisms (SNPs) for firmness using a genome-wide association
study was estimated by fitting single SNPs and their interactions in a linear model. PVE and GVE were
calculated within the studied population and across the ten full-sib families. Dashes indicate loci removed
from the analysis due to either a minor allele frequency < 0.05 or the observation of only one genotypic class.

Madame MDUS
Chr* Population elitexelite Kaoling Morioka 17 Primella Titan Tangi EarliMiss Linn
Moutot 5130
2A-1 PVE(%) 2.08 - - - - - - - 3.19 - -
GVE(%) 3.84 - - - - - - - 8.27 - -
2A-2 PVE(%) 0.00 - 5.34 - - - - - - - -
GVE(%) 0.00 - 10.00 - - - - - - - -
3D PVE(%) 1.18 5.85 0.00 0.00 2.83 0.06 5.29 0.00 0.58 0.00 0.56
GVE(%) 2.17 11.22 0.00 0.00 5.88 0.12 7.09 0.00 1.50 0.00 0.87
4B PVE(%) 0.00 7.87 - - 0.00 0.00 - 0.00 2.79 0.31 -
GVE(%) 0.00 15.09 - - 0.00 0.00 - 0.00 7.22 0.48 -
5C PVE(%) 3.83 2.02 1.18 7.39 7.46 11.28 0.00 3.93 0.89 0.00 0.00
GVE(%) 7.07 3.87 2.21 14.10 5.50 20.32 0.00 6.11 2.31 0.00 0.00
PVE(%) 0.10 - - - - - - - - - -
2A-1:2°
GVE%)  0.19 - : - . . - - . . .
PVE(%) 4.65 0.00 4.18 0.00 3.19 0.00 0.00 0.94 0.00 2.13 0.00
Interation®
GVE(%) 8.59 0.00 7.84 0.00 6.63 0.00 0.00 1.46 0.00 3.30 0.00

“Chromosome for the most significant SNPs identified. 2A-1 and 2A-2 indicate the first and second peaks detected
on chromosome 2A, respectively.
®Interaction term between 2A-1 and 2A-2.

“Interaction term between the most significant SNPs detected for firmness.
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TABLE 2.8. Contribution of single-locus effect to phenotypic and genetic variation for sugar:acid
ratio in strawberry. The percentage of phenotypic (PVE) and genetic variance explained (GVE) by the
identified single nucleotide polymorphisms (SNP) for the ratio between total soluble solids and titratable
acidity using a genome-wide association study was estimated. PVE and GVE were calculated within the
studied population and across the ten full-sib families. Dashes indicate locus removed from the analysis due
to either a minor allele frequency < 0.05 or the observation of only one genotypic class.

Madame MDUS
Chr* Population elitexelite Kaoling Morioka 17 Primella Titan Tangi EarliMiss Linn
Moutot 5130
7D  PVE (%) 4.75 - - - 2.38 - - - - 1.27 5.14
GVE (%) 13.20 - - - 4.82 - - - - 7.00 8.62

“Chromosome for the most significant SNPs identified.
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TABLE 2.9. Contribution of single- and multi-locus effects to phenotypic and genetic variation for
anthocyanin content in strawberry. The percentage of phenotypic (PVE) and genetic variance explained
(GVE) by all identified single nucleotide polymorphisms (SNPs) for anthocyanin content using a genome-wide
association study was estimated by fitting single SNPs and their interactions in a linear model. PVE and GVE
were calculated within the studied population and across the ten full-sib families. Dashes indicate loci removed
from the analysis due to either a minor allele frequency < 0.05 or the observation of only one genotypic class.

Madame MDUS
Chr* Population elitexelite Kaoling Morioka 17 Primella Titan Tangi EarliMiss Linn
Moutot 5130
1B PVE(%)b 6.23 10.30 0.00 0.00 2.02 0.21 4.96 0.90 3.01 - -
GVE(%) 17.04 35.16 0.00 0.00 3.58 0.39 10.78 4.29 5.55 - -
5A PVE(%) 1.35 0.00 - - - 0.00 0.53 0.24 - 0.89 -
GVE(%) 3.70 0.00 - - - 0.00 1.14 1.15 - 1.51 -
5B PVE(%) 2.23 - 71.03 1.15 0.49 3.43 0.00 0.82 0.51 4.90 0.00
GVE(%) 6.10 - 88.46 5.75 0.86 6.22 0.00 3.90 0.93 8.34 0.00
TA PVE(%) 1.42 - 0.00 0.00 - 0.00 - - - - 0.00
GVE(%) 3.88 - 0.00 0.00 - 0.00 - - - - 0.00
PVE(%) 0.00 1.68 0.06 0.00 0.00 0.00 6.53 0.00 0.00 0.92 0.00
Interaction®
GVE(%) 0.00 5.76 0.08 0.00 0.00 0.00 14.18 0.00 0.00 1.57 0.00

“Chromosome for the most significant SNPs identified.

®Interaction term between the most significant SNPs detected for anthocyanin content.
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FiGURE 2.9. Training set optimization to improve genomic prediction for fruit
quality traits in strawberry. Genomic-estimated breeding values (GEBVs) were obtained
from estimated marginal means (EMMs) through Genomic Best Linear Unbiased Predictions
(G-BLUP). EMMs were calculated for 795 individuals from a single plant per individual at
two harvests in 2018-2019. Individuals were genotyped with an Axiom™ 50K SNP array.
We used Monte Carlo Markov Chain simulations with 1,000 iterations to randomly select
individuals for the training set using non-replacement sampling to estimate GEBVs for the
test set. The simulations were executed under nine scenarios described in Figure 2.1. The
predictive ability was calculated as the correlation between true breeding values and GEBVs
divided by the square root of the narrow-sense heritability for A) firmness, B) total soluble
solids (TSS), C) titratable acidity (TA), D) T'SS-TA ratio, and anthocyanin content (ANC).
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FIGURE 2.10. Accuracy of population mean estimates using genomic prediction
strategies for fruit quality traits in strawberry. Pearson’s correlation between the ob-
served and predicted family mean for A) firmness, B) total soluble solids (T'SS), C) titratable
acidity (TA), D) TSS-TA ratio, and E) anthocyanin content. Genomic-estimated breeding
value (GEBV) mean for each family was calculated from the average of progeny GEBVs.
Monte Carlo Markov Chain simulations with 1,000 iterations were employed for random non-
replacement sampling. Nine scenarios were evaluated to select individuals for the training set
(Figure 2.1) through seven different training population sizes (from 200 to 500 individuals).
Genomic prediction accuracy is shown for the nine breeding strategies using a training set
of 200, 350, and 500 individuals.
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2.4.5. Harnessing Genomic Prediction for Targeted Improvement of Fruit
Quality in Diverse Strawberry Families. Plant breeding programs typically struc-
ture their populations using biparental families that rarely exceed 100 individuals each
(Lehermeier et al., 2014). These programs face challenges with small populations for population-
specific genomic prediction analysis, leading to the inclusion of unrelated populations (De Roos
et al., 2009; Lehermeier et al., 2014). The balance of incorporating information from both
related and unrelated populations into training sets (TS) for genomic prediction remains un-
certain. Several genomic prediction strategies were analyzed to improve genomic prediction
for fruit quality traits using the ten full-sib families studied here (Figure 2.1). We calculated
progeny and family genomic-estimated breeding values (GEBVs) by targeting individuals
across or within full-sib families. Genomic prediction was evaluated across full-sib families
using individuals for the TS from either i) 80%, 50%, and 20% of the total population (FD80,
FD50, and FD20, respectively) or ii) historical records analyzed by Feldmann et al. (2024a)
(HD1). In the case of within families, individuals were selected from iii) 20% of the target
family and 20% across full-sib families (FD20_Fi20), iv) 20% of the target family, 20% across
full-sib families, and historical records (FD20_Fi20_HD), v) 20% of the target family and his-
torical records (Fi20_HD), vi) 20% of the population and historical records (FD20_HD), or
vii) historical records (HD2). These genomic prediction strategies were implemented through
seven different T'S sizes.

Predictive ability (PA) of progeny GEBVs showed substantial differences among genomic
prediction strategies for fruit quality traits (Figure 2.9). We observed higher PA values when
progeny GEBVs were estimated across full-sib families than within families. For instance, the
average PA of progeny GEBVs for firmness was higher using the FD80 (PA = 0.91) strategy,
following by FD50 (PA = 0.84), FD20 (PA = 0.71), FD20_Fi20 (PA = 0.22), FD20_Fi20_HD
(PA =0.13), FD20_HD (PA = 0.13), Fi20_HD, FD20_HD (PA = 0.12), HD2 (PA = 0.12),
and HD1 (PA = 0.07). The low PA observed for fruit quality traits within families may be

influenced by using only 20% of the target family in the TS, which is likely insufficient for
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accurately predicting the Mendelian sampling term within the family (Werner et al., 2020).
Moreover, PA values were generally lower when the TS included individuals from historical
records. Previous studies have shown that TS consisting of individuals related to the target
population provide higher PA than those with unrelated individuals (Brauner et al., 2020;
Clark et al., 2012; Herter et al., 2019; Riedelsheimer et al., 2013; Stewart-Brown et al., 2019).
Interestingly, our forward validation using historical records to estimate progeny GEBVs
across full-sib families (HD1) exhibited comparable PA to the FD20_Fi20 strategy for T'SS
(Figure 2.9B) and ANC (Figure 2.9E). Additionally, the HD1 strategy showed higher PA for
TA (Figure 2.9C) and TSS:TA ratio (Figure 2.9D) than within family strategies. Individuals
from the elite x exotic population were not completely distant from historical records (Figure
2.3), likely sharing ancestral linkage disequilibrium (LD) between markers and quantitative
trait loci (QTL). In general, our results may be attributed to differences in LD (De Roos
et al., 2009; Schopp et al., 2017a), QTLxgenetic background interaction (Lorenz and Cohen,
2012; Melchinger et al., 2008; Mohammadi et al., 2015a), and the presence of population-
specific QTL alleles (Lorenz et al., 2012; Schulz-Streeck et al., 2012).

The correlation between observed and predicted family means varied across genomic pre-
diction strategies (Figure 2.10). Our results showed strong correlations across genomic pre-
diction strategies that included individuals from the elitexelite and elitexexotic full-sib
families (r > 0.85). The HD1 and HD2 strategies exhibited weak correlations for firmness
(7 = 0.08) and moderate to high for TSS (7 = 0.45), TSS-TA ratio (¥ = 0.56), ANC (7 =
0.63), and TA (7 = 0.77). Moreover, normalized root-mean-square error (nRMSE) indicated
genomic prediction accuracy is highly affected by unrelated strawberry germplasm (Table
2.10). For instance, genomic prediction strategies for firmness showed lower nRMSE when
the TS was exclusively built from individuals in the elite xelite and elite x exotic full-sib fam-
ilies (FD20, FD50, FD80, FD20_Fi20; nRMSE = 0.03-0.13) compared to either combined
data (FD20_HD, Fi20_ HD, FD20_Fi20_ HD; nRMSE = 0.38-0.63) or historical records alone
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(HD1 and HD2; nRMSE = 1.25-1.27). The high nRMSE values in genomic prediction strate-
gies that included individuals from historical records may be due to missing relatedness and
different sets of QTL segregating to the target population (Lehermeier et al., 2014; Schopp
et al., 2017b). These findings underscore the importance of optimizing the TS in genomic
prediction for complex traits to achieve desired breeding outcomes in strawberry breeding
programs.

The TS size did not show great differences in genomic prediction accuracy for fruit quality
traits (Figure 2.9 and 2.10). On average, we observed an increase of up to 0.01 in PA
with the addition of 50 individuals to the training population. Several studies have shown
that increasing the TS size improves PA but with diminishing returns at higher TS sizes
(Herter et al., 2019; Jarquin et al., 2014; Osorio et al., 2021; Stewart-Brown et al., 2019;
Windhausen et al., 2012; Zhang et al., 2017). We observed a decrease in PA for firmness
when larger TS sizes for the HD1 strategy were used to estimate progeny GEBVs (Figure
2.9A). The correlation between the observed and predicted family mean dropped from 0.23
(TS = 200) to -0.02 (TS = 500), which may be explained by opposite linkage phases with key
QTLs between the TS and the target population for firmness (Riedelsheimer et al., 2013).
Future efforts should focus on optimizing relatedness in T'S design to enhance short-term PA
without compromising long-term genetic gains. Osorio et al. (2021) suggested using average
predictions from multiple cycles in training genomic prediction models, particularly up to
four cycles when common individuals are included across trials in strawberries. Consequently;,
frequent re-estimation of SNP effects is essential to incorporate the most recent phenotypic
data from relatives (Habier et al., 2010). Our results advocate for combining several half-
sib families when available to form the TS. If insufficient individuals from such families are

available, other highly related genetic sources should be considered.
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TABLE 2.10. Genomic prediction performance of family mean estimates for fruit quality traits
in strawberry. Normalized root-mean-square error was calculated across genomic prediction strategies and
training population sizes (Figure 2.1) for firmness, total soluble solids (TSS), titratable acidity (TA), TSS-TA
ratio, and anthocyanin content (ANC).

Trait Training size FD80 FD50 FD20 FD20_Fi20 FD20_.HD Fi20.HD FD20_Fi20.HD HD1 HD2
Firmness 200 0.06 0.08 0.13 0.06 0.63 0.38 0.42 1.27  1.27
250 0.05 0.06 0.11 0.07 0.63 0.42 0.46 1.27  1.27
300 0.04 0.06 0.10 0.08 0.62 0.44 0.48 127 1.27
350 0.04 0.05 0.09 0.08 0.61 0.46 0.50 1.26  1.26
400 0.04 0.05 0.08 0.09 0.61 0.49 0.52 126 1.26
450 0.03 0.04 0.08 0.09 0.61 0.51 0.54 1.26  1.26
500 0.03 0.04 0.07 0.09 0.61 0.53 0.55 1.25  1.25
TSS 200 0.11 0.14 0.19 0.12 0.20 0.16 0.12 0.28  0.28
250 0.10 0.13 0.18 0.12 0.19 0.17 0.13 0.28  0.28
300 0.08 0.11 0.17 0.13 0.18 0.17 0.13 0.28  0.28
350 0.08 0.10 0.16 0.13 0.18 0.18 0.14 0.27  0.27
400 0.07 0.10 0.15 0.13 0.17 0.18 0.14 0.27  0.27
450 0.06 0.09 0.15 0.13 0.17 0.19 0.15 0.27  0.27
500 0.06 0.08 0.14 0.13 0.16 0.19 0.15 0.27  0.27
TA 200 0.08 0.09 0.12 0.08 0.15 0.13 0.10 0.28  0.28
250 0.07 0.08 0.11 0.08 0.14 0.14 0.11 0.27  0.27
300 0.07 0.08 0.10 0.09 0.13 0.15 0.11 0.26  0.26
350 0.07 0.08 0.10 0.09 0.13 0.15 0.11 0.26  0.26
400 0.07 0.07 0.09 0.09 0.13 0.15 0.11 0.26  0.25

450 0.07 0.07 0.09 0.09 0.13 0.16 0.11 0.25 0.25
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Table 2.10 continued from previous page

500 0.06 0.07 0.09 0.09 0.12 0.16 0.11 0.25 0.25
TSS:TA Ratio 200 0.17 0.19 0.22 0.17 0.20 0.14 0.14 0.27  0.27
250 0.16 0.18 0.22 0.18 0.19 0.14 0.14 0.27  0.27
300 0.16 0.18 0.21 0.18 0.18 0.14 0.14 0.27  0.27
350 0.16 0.17 0.21 0.19 0.18 0.14 0.14 0.26  0.26
400 0.15 0.16 0.20 0.19 0.17 0.14 0.14 0.26  0.26
450 0.15 0.16 0.19 0.19 0.17 0.14 0.14 0.26  0.26
500 0.15 0.16 0.19 0.19 0.16 0.14 0.14 0.26  0.26
ANC 200 0.12 0.15 0.23 0.13 0.63 0.45 0.43 1.18 1.18
250 0.11 0.14 0.21 0.14 0.61 0.49 0.46 1.15 1.15
300 0.10 0.13 0.19 0.15 0.59 0.51 0.48 1.13 1.13
350 0.09 0.12 0.18 0.15 0.58 0.53 0.49 1.10 1.10
400 0.08 0.11 0.17 0.16 0.58 0.55 0.51 1.08 1.08
450 0.07 0.10 0.17 0.16 0.57 0.57 0.51 1.07  1.07
500 0.07 0.09 0.15 0.16 0.57 0.59 0.52 1.06 1.06




2.5. Conclusions

Our study shows that incorporating exotic genetic resources into elite strawberry breeding
programs can significantly enhance fruit quality traits. We evaluated the introgression of
favorable alleles for fruit quality from nine soft-fruited exotic parents into a firm-fruited elite
cultivar, observing significant phenotypic variation within the resulting hybrid population.
These hybrids exhibited notable improvements in traits such as TSS and TA, indicating the
potential for significant genetic gain through strategic hybridization. The genetic correla-
tions among fruit quality traits revealed a trade-off between firmness and consumer-preferred
attributes like sweetness and acidity, suggesting the complexity of improving multiple traits
simultaneously. Moreover, the lack of genotypextimepoint interaction for most traits in-
dicated that fruit quality evaluation at harvest could reliably predict post-harvest perfor-
mance. We identified several large-effect loci associated with fruit quality harbored within
specific full-sib families. Notably, a significant locus on chromosome 6A linked to firmness
was consistent with previous studies, suggesting its potential as a target for marker-assisted
selection. The genetic architecture of these traits, predominantly additive in nature, under-
scores the importance of selecting parents with favorable alleles to maximize genetic gains.
Genomic prediction showed promise in predicting complex traits, with predictive abilities
varying across different TS strategies. TS designs that included closely related individu-
als, particularly half-sib families, yielded higher predictive accuracies compared to those
including unrelated individuals. This highlights the need to optimize TS composition to en-
hance the effectiveness of genomic selection in breeding programs. In summary, our findings
suggest that exotic resources can lead to substantial improvements in fruit quality traits.
Genomic-informed breeding strategies can further refine breeding efforts to select superior
genotypes. Future research should focus on validating identified loci and optimizing TS

designs to maximize the benefits of genomic selection in strawberry breeding programs.
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2.6. Abbreviations

LMM, linear mixed model; EMM, estimated marginal mean; TSS, total soluble solids; TA,
titratable acidity; ANC, anthocyanin content; UH, useful heterosis; REML, restricted max-
imum likelihood; PVE, percentage of the phenotypic variance explained by markers; GVE,
percentage of the genetic variance explained by markers; GWAS, genome-wide associa-
tion study; QTL, quantitative trait loci; LD, linkage disequilibrium; SNP, single nucleotide
polymorphism; TS, training set; G-BLUP, genomic-best linear unbiased prediction; GEBV,
genomic-estimated breeding value; PA, predictive ability; nRMSE, normalized root-mean-

square error.
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CHAPTER 3

Loss-of-Function Mutations in the Fruit Softening Gene
POLYGALACTURONASFE1 Doubled Fruit Firmness in

Strawberry

3.1. Abstract

Wildtype fruit of cultivated strawberry (Fragaria X ananassa) are typically soft and highly
perishable when fully ripe. The development of firm-fruited cultivars by phenotypic selection
has greatly increased shelf life, decreased post-harvest perishability, and driven the expan-
sion of strawberry production worldwide. Hypotheses for the firm-fruited phenotype include
mutations affecting the expression of genes encoding polygalacturonases that soften fruit
by degrading cell wall pectins. Here we show that loss-of-function mutations in the fruit
softening gene POLYGALACTURONASE1 (PG1-6A1) double fruit firmness in strawberry.
PG1-6A1 was one of three tandemly duplicated polygalacturonase genes found to be in
linkage disequilibrium with a quantitative trait locus affecting fruit firmness on chromosome
6A. PG1-6A1 was strongly expressed in soft-fruited (wildtype) homozygotes and weakly ex-
pressed in firm-fruited (mutant) homozygotes. Genome-wide association, quantitative trait
transcript, DNA sequence, and expression-QTL analyses identified genetic variants in linkage
disequilibrium with PG1-6A1 that were positively correlated with fruit firmness and neg-
atively correlated with PG1-6A1 expression. An Enhancer/Suppressor-mutator (En/Spm)
transposable element insertion was discovered upstream of PGI-6A1 in mutant homozy-
gotes that we hypothesize transcriptionally downegulates the expression of PG1-6A1. The
PG1-6A1 locus was incompletely dominant and explained 26-76% of the genetic variance for
fruit firmness among phenotypically diverse individuals. Additional loci are hypothesized

to underlie the missing heritability. Highly accurate, codominant genotyping assays were
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developed for modifying fruit firmness by marker-assisted selection of the En/Spm insertion

and SNPs associated with the PG1-6A1 locus.

3.2. Introduction

The development of cultivars with increased fruit firmness and decreased perishability has
been one of the most important domestication changes in cultivated strawberry (Fragaria
X ananassa; Darrow et al., 1966; Feldmann et al., 2024a; Fletcher, 1917; Lawrence et al.,
1990; Shaw and Larson, 2008). Wildtypes are generally, but not universally, exceptionally
soft and highly perishable when fully ripe, characteristics that enhance seed dispersal in
nature (Darrow et al., 1966; Hancock et al., 2001a,0). Significant phenotypic variation for
fruit firmness has been observed in natural and domesticated strawberry populations, which
has facilitated the development of cultivars with a wide range of fruit firmness and shelf life
characteristics (Hancock et al., 2001a,0,1; Shaw and Larson, 2008).

The improvement of fruit firmness has a long history in strawberry breeding with references
to cultivars developed in the late 1800s and early 1900s that were firmer than the wildtype
(Darrow et al., 1966; Fletcher, 1917). ‘Blakemore’, developed in 1931, was one of the earliest
cultivars reported to ”set the standard for firmness” necessary for shipping long distances
without significant post-harvest losses (Lawrence et al., 1990). The firmness of that cultivar
and other early firm-fruited cultivars, however, has been surpassed by the firmness of 'Royal
Royce’, ’Eclipse’, and other modern long shelf life (LSL) cultivars developed since the 1970s in
California (Darrow et al., 1966; Feldmann et al., 2024a; Knapp et al., 2023; Shaw and Larson,
2008). Using wild relatives and heirloom cultivars as benchmarks, Feldmann et al. (2024a)
showed that the genetic gains from breeding for increased fruit firmness have been in the 240-
770% range since the 1950s. Royce S. Bringhurst has been credited with identifying sthisces
of favorable alleles for increased fruit firmness and developing the extremely firm-fruited,
modern LSL cultivars that revolutionized strawberry production in California, several of
which were analyzed in this study (Darrow et al., 1966; Feldmann et al., 2024a; Shaw and

Larson, 2008).
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Strawberry is a non-climacteric fruit that ripens gradually and lacks a well-defined climacteric
peak, the point in the ripening process when ethylene production and respiration rate sharply
increase in climacteric fruits (Given et al., 1988; Gu et al., 2019; Symons et al., 2012). The
non-climacteric development of the fruit means that they do not ripen further once harvested
and that flavor and texture are determined at harvest. Their shelf life is determined by the
speed at which they deteriorate in storage. This post-harvest deterioration of the fruit
includes desiccation, dissipation of volatile aromatic compounds, diminished texture and
flavor, a decrease in glossiness, and rotting caused by gray mold (Botrytis cinerea) and other
fungal diseases (Gu et al., 2019; Jouki and Khazaei, 2014; Krivorot and Dris, 2000; Matar
et al., 2018; Petrasch et al., 2019,2; Shehata et al., 2020; Symons et al., 2012). The speed
of deterioration is partially determined by handling (harvest date, postharvest storage) but
is widely known to be strongly correlated with the softness of the fruit at harvest (Darrow
et al., 1966; Given et al., 1988; Petrasch et al., 2022).

The phenotypic variation observed for fruit firmness in cultivated strawberry has been shown
to be highly correlated with the expression of POLYGALACTURONASE1 (FaPG1), a fruit
softening gene expressed in the fleshy receptacle (Lépez-Casado et al., 2023; Paniagua et al.,
2020; Quesada et al., 2009). POLYGALACTURONASE1 (hereafter abbreviated PG1) plays
an important role in pectin disassembly and fruit softening in the wildtype (Quesada et al.,
2009). Hardigan et al. (2021b) discovered that three tandemly duplicated paralogs of PG1
were contained within a large-effect quantitative trait locus (QTL) for fruit firmness on
chromosome 6A in a phenotypically diverse genome-wide association study (GWAS) pop-
ulation. They hypothesized that one of these tandemly duplicated genes was the causal
gene underlying the QTL. We targeted these genes in this study of genetic variation for
fruit firmness in strawberry, in addition to searching for additional genotype-to-phenotype
associations using GWAS, transcript-to-phenotype associations using quantitative trait tran-

script (QTT) analysis, and genotype-to-transcript associations using expression-quantitative
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trait locus (eQTL) analysis (Albert and Kruglyak, 2015; Gilad et al., 2008; Hill et al., 2021;
Kliebenstein, 2009; Lappalainen et al., 2013; Zhang et al., 2015).

The fruit firmness QTL on chromosome 6A described by Hardigan et al. (2021b) appears to
be proximal to the fruit firmness QTL identified by Cockerton et al. (2021), Lee et al. (2021),
Munoz et al. (2024), and Prohaska et al. (2024) in independent segregating populations. Lee
et al. (2021) did not identify PG1 as a candidate gene for the QTL but proposed others.
PG1, however, has shown to be important in fruit softening (Paniagua et al., 2020,1; Pose
et al., 2015; Posé et al., 2013; Quesada et al., 2009). The downregulation of PG1 by antisense
RNA silencing in transgenic plants and CRISPR/Cas9 insertion-mutations of PG in gene-
edited plants either greatly decreased or eliminated the expression of PG1 and increased
fruit firmness (Lépez-Casado et al., 2023; Paniagua et al., 2020,2,1; Pose et al., 2015; Posé
et al., 2013; Quesada et al., 2009).

By aligning the DNA sequence for the PG1 gene (https://www.ncbi.nlm.nih.gov/nuccore/
AF380299; Paniagua et al., 2020; Quesada et al., 2009) targeted in those reverse genetic stud-
ies to the Camarosa and Royal Royce reference genomes and cross-referencing positions of
physically-anchored array-genotyped SNPs in the present study (Edger et al., 2019; Hardi-
gan et al., 2021a; https://phytozome-next.jgi.doe.gov/info/FxananassaRoyalRoyce
_v1.0), we hypothesized that the QTL identified in independent forward genetic studies of
phenotypic variation for fruit firmness was likely caused by mutations affecting one of the
three tandemly duplicated polygalacturonase genes (PG1-6A1, -6A2, and -6A83) found to be
in linkage disequilibrium (LD) with the QTL on chromosome 6A. Here we show that a loss-of-
function mutation in one of the three genes (PG1-6A1) doubled fruit firmness in strawberry,
that the PGI1-6A1 gene is strongly expressed in ripe fruit of wildtype homozygotes and
weakly expressed in ripe fruit of mutant homozygotes, that the favorable (mutant) allele
(PG1-6A17) explains a significant fraction of the genetic variance for fruit firmness, and
that the most firmly fruited cultivars are homozygous for the incompletely dominant mutant

allele (PG1-6A1%/PG1-6A1%). Although the causal mutation remains uncertain, we show
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that the mutant phenotype is associated with an Enhancer/Suppressor-mutator (En/Spm)
transposable element insertion upstream of PG1-6A1 and hypothesize that this transposable
element disrupted the transcription of PG1-6A1 in firm-fruited mutants (Feschotte, 2008).
Lastly, we describe highly predictive, high-throughput, codominant genotyping assays for
marker-assisted selection (MAS) of genetic variants in linkage disequilibrium with the PG1-
6A1 locus, and discuss the utility of native PG1-6A1 alleles for modifying fruit firmness in

strawberry.

3.3. Materials and Methods

3.3.1. Plant material and phenotyping. The fruit firmness (kg-force) phenotypes
reported in this chapter were recorded from samples of ripe fruit harvested from 178 individ-
uals grown in field experiments in Oxnard, Santa Maria, Davis, and Winters, California, and
a greenhouse experiment in Davis, California. The number and composition of individuals
differed across these experiments. They included 69 F. X ananassa cultivars developed be-
tween 1854 and 2017, 91 clonally propagated hybrid individuals with diverse F. x ananassa
parentage developed at UC Davis, four F. chiloensis ecotypes, 13 F. virginiana ecotypes,
and one F. vesca ecotype. Of the 91 hybrid individuals, 12 were developed between 1953
and 2012, and 79 were developed between 2016 and 2020. Of the latter, 43 originated from
crosses between elite, firm-fruited UC parents and soft-fruited non-UC heirloom cultivars,
whereas 36 originated from crosses between elite, firm-fruited UC parents.

The firmness of ripe fruit (kg-force) was measured using a FR-5120 Digital Fruit Firm-
ness Tester (penetrometer) fitted with a 3 mm puncture probe (Stable Micro Systems Ltd.,
Goldalming, United Kingdom). The penetrometer was held in a stand with the probe pointed
upward, and fruit was lowered horizontally onto the instrument so that the probe targeted

receptacle tissue near the latitudinal center.

3.3.2. Discovery population. The phenotypes for the genome-wide association study

(GWAS), quantitative trait transcript (QTT), and expression-QTL analyses were collected
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from 85 F. X ananassa individuals grown in Santa Maria and Oxnard, California field
experiments in 2020-21 and 2021-22 (hereafter the 'discovery’ population). They included
13 cultivars and 72 other hybrid individuals from the UC strawberry breeding program. They
were arranged in randomized complete blocks experiment designs and grown on commercial
farms using standard management practices. The experimental units were 20-plant plots
with plants equally spaced in raised beds planted with diagonal staggering of plants in
three rows to a density of 54,362 plants/hectare. The bare-root plants (clones) for these
experiments were produced in a commercial nursery (Cedar Point, Dorris, CA) between
April and October of each planting year. They were harvested and placed in cold storage
(4°C) for less than one week before being planted at the Oxnard and Santa Maria field sites.
Three ripe fruit were harvested from each plot in March and April of each year, placed in
cold storage (4°C) for less than 24 hours, and phenotyped as described above. Across-year
phenotypic means were estimated from 24 observations/individual (2 replications/individual
x 3 samples/replication x 2 harvests/year x 2 years).

The transcriptomes of the 85 discovery population individuals were analyzed using RNA
samples isolated from ripe fruit harvested in March, 2021 from three 20-plant plot repli-
cations/individual in both locations. Those data were previously analyzed and described
by Fan et al. (2022) and are available in the NCBI Short-Read Archive under Bioproject
#PRJNAT87565.

3.3.3. Diversity population. We assembled and phenotyped a genetically diverse col-
lection of clonally propagated hybrid individuals (n = 92) for the identification of genetic
variants associated with a fruit firmness QTL on chromosome 6A, the identification of genetic
variants associated with gene expression differences in different stages of fruit development,
the development and validation of high-throughput genotyping assays for SNPs and INDELs,
specifically Kompetitive allele-specific PCR (KASP) assays (Semagn et al., 2014), and anal-

ysis of the domestication history of long shelf life cultivars. These individuals were chosen
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to sample the widest possible range of fruit firmness phenotypes and for testing hypotheses
in different studies.

We used data for every individual and different subsets of individuals for specific analy-
ses. The subsets included eight individuals used for a quantitative RT-PCR study (see
below), 43 individuals used for an analysis of genetic variants among long-read DNA se-
quences (see below), and 101 individuals for a meta-analysis of fruit firmness phenotypes
across experiments. Those included phenotypes of 85 individuals collected for the discov-
ery population (see above), phenotypes collected from individual field grown plants of 87
individuals preserved in the UC Davis Strawberry Germplasm Collection at the Wolfskill
Experiment Orchard (WEQO), Winters, California in 2020-21 and 2021-22, and phenotypes
of three clones/individual of 43 long-read DNA sequenced individuals grown in a UC Davis
greenhouse in 2023. We phenotyped three fruit/harvest on six harvest dates in April and
May 2021 and four harvest dates in April and May 2022 at WEO and three fruit/clone on
five harvest dates in the greenhouse experiment. The data collected for the 87 individuals

at WEO were used for KASP marker testing and validation.

3.3.4. Full-sib families. We selected four full-sib families from 178 crosses within the
2023-24 breeding pipeline that showed three genotypic classes using K-676, K-SPM, K-732,
and K-253. We harvested all ripe fruits from one-year-old, seed-propagated plants grown at
WEO (n = 152) across two harvest dates in May, with an average collection of two and four
ripe fruits per individual, respectively. Fruit firmness was measured using the previously
described protocol.

Estimated marginal means (EMMs) were calculated for one-year-old, seed-propagated plants

through the sommer R package (Covarrubias-Pazaran, 2016) and emmeans R packages

(3.1) Yng = Hn + Gy + eng
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where y,, represents the observed phenotype for the g genotype in the " harvest. G, is

the effect of the ¢'" genotype and H}, is the random effect of the h'* harvest time.

3.3.5. GWAS population. Fruit firmness (kg-force) was measured on 460 wild and
domesticated individuals in 2018 from replicated 6-plant plots grown in Ventura, CA under
commercial field conditions. The data from the first harvest were first reported by Hardigan
et al. (2021b). Fruit firmness was measured on six randomly selected berries from each plot
from two harvests in March and April of 2018 as the maximum force with a QA Supplies
FT2 handheld penetrometer equipped with a 3mm probe (QA Supplies, Norfolk, VA, USA)

EMMs were calculated for this population using the Ime/

(3.2) Yhgbf = H; + By + Gg -+ Gng + Ehgbf

where yq,; represents the f fruit phenotype for the ¢'* genotype in the b** block during
the h'" harvest. In this model, Hj, denotes the fixed effect of the h'" harvest, G, is the fixed
effect of the g genotype. B is the random effect of the b block, G By, represents the
random effect of the interaction between the g'* genotype and the b block (i.e., plot and

experimental unit), and ey s is the residual effect of hgbf™ fruit (i.e., subsample).

3.3.6. Statistical analyses. Initial analysis of the raw phenotypic data was conducted
using a LMM through the sommer R package (Covarrubias-Pazaran, 2016). EMMs were
calculated for the UCD breeding collection via the emmeans R package (Lenth, 2021). The

LMM across years was formulated as:

(3.3) Yigyp = Li + Gy + Yy + LYy + GYyy + LY By, + €igyp

where ;1 is the observed phenotype for the g genotype in the I location during the y™

year at the b complete block. L; indicates the effect of the I location, G, is the effect of
91



the ¢g'" genotype. Y, is the random effect of the y' year, LY, is the random effect of the
interaction between the [ location and the y" year, GY,, is the random effect of the g
genotype in the y'* year, LY By, indicates the random effect of the interaction among the
["" location, y™ year, and b"" complete block, and ey, is the residual effect.

Variance components were calculated for the random effects in LMM using the restricted
maximum likelihood (REML) method. Broad-sense heritability on a clone-mean basis was
estimated by H? = 6%/6%, where 6% is the genetic variance among clonally propagated
individuals (genotypes), 6% = 6, + G4,y /y + 62/ry is the phenotypic variance on a clone-
mean basis, 62,y is the genotype X year interaction variance, 62 is the residual variance, y
is the number of years, and r = 11.23 is the harmonic mean of the number of replications
per genotype across years. Narrow-sense heritability was estimated by h? = 6% /0%, where

6% is an estimate of the additive genetic variance from an RR-BLUP analysis (Endelman,

2011; Mathew et al., 2018) and 6% is the phenotypic variance on a clone-mean basis.

3.3.7. Genome-wide association study. A single locus analysis for the across-year
EMMs was performed using GEMMA v0.98.1 (Zhou and Stephens, 2012,1). This analysis
incorporated 49,330 Axiom® array SNP markers mapped in the 'Royal Royce’ reference
genome (Hardigan et al., 2021b). The genomic relationship matrix (K), derived from SNP
marker genotypes (Pincot et al., 2020), was used to adjust for genetic relationships among
individuals (Zhou and Stephens, 2012,1). Percentage of genetic variance explained (GVE
= 63,/6%) and phenotypic variance explained (PVE = 6%,/6%) by the most significant
SNPs were calculated, where 6%, is the bias-adjusted REML semi-variance estimate for the
SNP marker, and 6% and 6% represent respective clone-mean-based genetic and phenotypic

variance (Feldmann et al., 2021).

3.3.8. DNA sequence analyses. We analyzed the structure and function of the Fxa6A
2103973 gene model in the Royal Royce genome using the Integrative Genomics Viewer
(IGV) v2.16.2 (Thorvaldsdéttir et al., 2013) and the InterPro database (https://www.ebi

.ac.uk/interpro/; Paysan-Lafosse et al., 2023), respectively. We used BLASTN 2.12.0+
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(Zhang et al., 2000), implemented by the Genome Database for Rosaceae (GDR, http://
www.rosaceae.org; Jung et al., 2019), to identify homologous sequences for the first and
last four exons, including the large intron between them in the Fxa6Agl103973 gene model.
The queried sequences were aligned against the reference genomes ’'Camarosa’ v1.0.al (Edger
et al., 2019), 'Camarosa’ v1.0.a2 (Liu et al., 2021) and Fragaria vesca v4.0.al (Edger et al.,
2018). Microsynteny for the curated Fxa6Agl03973 gene model was visualized with JCVI
v1.3.6 (Tang et al., 2008).

3.3.9. Phylogenomic analyses of polygalacturonase genes. Polygalacturonase (PG)
genes were identified in the 'Royal Royce’ reference genome using the gene ontology terms
for PG activity (GO:0004650). PG genes exhibiting high sequence similarity to those within
the firmness locus on chromosome 6A were detected via BLAST v2.15 (Altschul et al., 1990).
Local synteny analysis was performed on homoeologous PG1 genes. Alignments of amino
acid sequences for PG1 paralogs and homoeologs identified in this study were performed with
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/; Madeira et al., 2022). the
Interactive Tree Of Life v6 (https://itol.embl.de) was used to visualize the evolutionary

relationships among these PGs.

3.3.10. Quantitative trait transcript analysis. Transcriptomic data from the dis-
covery collection was aligned against the Royal Royce reference genome through STAR
v2.7.10a (Dobin et al., 2013). Normalization, filtration, and conversion to log,-scaled counts
per million (log, CPM) were performed using calcNormFactors(), filterByExpr(), and
cpm() functions from the edgeR package in R (Robinson et al., 2010), respectively. We
further adjusted the data by including the K matrix in the polygenic function from the
GenABEL package in R (Aulchenko et al., 2007). A Pearson’s correlation analysis of gene
expression profiles (60,685 transcripts) and EMMs of firmness values was conducted using
the cor.test function in R. We applied a threshold of 0.005 to identify transcripts as quan-

titative trait transcripts (QTTs) when this stringent criterion was met.
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3.3.11. Gene expression analyses. Expression profiles of the curated Fxa6Ag103973
gene model were analyzed in the firm-fruited cultivar 'Royal Royce’ and the soft-fruited
cultivar "Mara des Bois’ across the unripe, white, and ripe fruit development stages. Total
RNA was isolated from pooled three ripe fruits after flash-freezing in liquid nitrogen using
the Quick-RNA Miniprep Kit from Zymo Research. Sequencing on the Illumina NovoSeq
platform yielded an average of 17.6 Gb per sample. We aligned the sequencing reads to the
updated gene annotation of the 'Royal Royce’ reference genome. Subsequently, transcript
abundances were normalized to log, CPM and visualized with the pheatmap package in R

(Kolde and Kolde, 2015).

3.3.12. Real-time quantitative RT-PCR analyses. We quantified the expression
levels of PG1-6A1, PG1-6A2, and PG1-6D1 to evaluate their role in fruit firmness during
ripening. FEight accessions were selected based on their firmness phenotypes and known
genetic information concerning the En/Spm element upstream of the PG1-6A1 gene. The
accessions were grown at a UCD greenhouse facility in 2023 and represented by three bi-
ological replicates in a completely randomized design. We harvested three fruits for each
biological replicate and pooled them for RNA isolation. After flash-freezing the samples in
liquid nitrogen, the RNA extraction process was carried out using the Quick-RNA Miniprep
Kit from Zymo Research. First-strand cDNA from total RNA extraction was synthesized
through the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Inc.).
We established a DNA dilution of 1:125 for qPCR after analyzing the amplification efficiency
for each primer set through a series of dilution assays (Figure 3.1). Details of the primers
designed for each of the three PG genes with Primer3 v0.4.0 (Untergasser et al., 2012) are
provided in Table 3.1. We prepared the DNA template mixtures to a final volume of 10
uL, which included 4 uL DNA template, 1 uL of 10 gM primer mix, and 5 ul. PowerUp™
SYBR™ Green Master Mix (Applied Biosystem™). Amplifications were carried out on a
QuanStudio™ 3 Real-Time PCR System (Applied Biosystem™) under the following ther-

mal profile: initial denaturation at 95 °C for 10 minutes, 40 amplification cycles at 95 °C for
94



15 seconds and 60 °C for 1 minute, and followed by a dissociation curve analysis ramping
from 60 °C to 95 °C at 1.6°C/second. We considered three technical replicates per sample
and included water as a no-template control in every run. The mRNA levels were normal-
ized to the expression of Fragaria x ananassa DNA binding protein (DBP; Galli et al.,
2015). To elucidate the relationship between each PG gene and fruit firmness at different

developmental stages, we calculated Pearson’s correlations in R.
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FiGurE 3.1. Reaction efficiency for quantitative polymerase chain reaction
(gPCR) analysis. Dilution series in a fivefold decrease from 0.2 to 0.00032 for ¢PCR
efficiency of DNA binding protein (DBP) and PGI1-6A1 at A) unripe and B) white fruit
stages, and C) DBP and PGI-6A2 at ripe fruit stage. Black dashed lines represent the

threshold for optimal qPCR, dilution (0.008).
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FaPG1-6A1
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TABLE 3.1. List of primers for evaluating the gene expression of PG1-6A1, PG1-6A2, and PG1-

6D1, as well as for genotyping the PG1 locus using KASP markers.

Primer Name

Sequence (5’ ->3’)

Description

DBP qPCR-F

DBP qPCR-R

PG1-6A1 gPCR-F

PG1-6A1 qPCR-R

TTGGCAGCGGGACTTTACC

CGGTTGTGTGACGCTGTCAT

CCCATGGGGTCAGTGTAATAA

CGCAGTTGAAGTTGTCCCTA

Forward qPCR  primer
targeting the DNA-binding
protein housekeeping gene
described by Galli et al.
(2015).

Reverse  qPCR  primer
targeting the DNA-binding
protein housekeeping gene
described by Galli et al.
(2015).

Forward qPCR primer tar-
geting the PGI1-6A1 gene
(Fxa6Agl103973a)

Reverse qPCR primer tar-
geting the PGI1-6A1 gene
(Fxa6Agl103973a)
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

PG1-6A2 qPCR-F

PG1-6A2 qPCR-R

PG1-6D1 qPCR-F

PG1-6D1 qPCR-R

EnSpm1 KASP-FCOM

CAAAGGCTTGGAAAGCAAAT

TTCTTCATCTGGTGGAACCTG

GTTCAAAACCCAATCGTGCT

GCAATCTTCACGCCTAATGC

CTTTACGTATGAGTGCTAAGTCTTTGATTT

Forward qPCR primer tar-
geting the PGI1-6A2 gene
(Fxa6Agl103973c)

Reverse qPCR primer tar-
geting the PGI1-6A2 gene
(Fxa6Ag103973c)

Forward qPCR primer tar-
geting the PGI1-6D1 gene
(Fxa6Dg103429)

Reverse qPCR primer tar-
geting the PG1-6D1 gene
(Fxa6Dg103429)

Forward ~ KASP com-
mon primer targeting the
EnSpm-1 transposable
element upstream of the

PG1-6A1 gene promoter
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

EnSpm1 KASP-RHEX

gaaggteggagtcaacggatt AGCTTTGAGAAATTATTTTG
TTACTCGC

Reverse KASP-specific A
HEX primer targeting the
deletion of EnSpm-1 trans-
posable element upstream
of the PG1-6A1 gene pro-

moter
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

EnSpm1 KASP-RFAM

PG1-GWAS KASP-FCOM

gaaggtgaccaagttcatgct CTAGCTTTGAGAAATTATTT
TGTTACTCGT

GTCTTGGCGTGGAATTCCAAACCTT

Reverse KASP  specific
ACGACACTACCA-
GAAATTTCATTTTGGGC-
GAC-
GAAAAAAAATCGTCGC-
CCNGTCGCCCGG
TTTTTTTTGTTTCGT
CGCCCAAGACTCATTTT
CTGGTAGTG FAM
primer targeting the
EnSpm-1 transposable
element upstream of the
PGI1-6A1 gene

Forward KASP common
primer targeting the GWAS
peak SNP (AX-184210676)
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

PG1-GWAS KASP-RHEX

PG1-GWAS KASP-RFAM

PG1-5UTR732 KASP-

RCOM

gaaggteggagtcaacggatt GACAAGAATACCTTATTGGA
GGAATG

gaaggtgaccaagttcatgct TTTGACAAGAATACCTTATT
GGAGGAATT

CGAGAGCTAAGCAGTTTATAGTGTGATTT

Reverse KASP-specific C
HEX primer targeting the
GWAS peak SNP (AX-
184210676)

Reverse KASP-specific A
FAM primer targeting the
GWAS peak SNP (AX-
184210676)

Reverse KASP common
primer targeting the 5 un-
translated region (5’'UTR)
of the PG1-6A1 gene (phys-

ical position: 27,751,732)
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

PG1-5UTR732 KASP-

FHEX

PG1-5UTR732 KASP-

FFAM

PG1-6A1-eQTL
FCOM

KASP-

gaaggteggagtcaacggatt GTTGCAGGATGTCTTA
GTGCCGT

gaaggtgaccaagttcatgct TGCAGGATGTCTT
AGTGCCGG

GACGGCAGATATTGCCACAAATGCAA

Forward KASP specific
T HEX primer targeting
the 5 untranslated region

(5’'UTR) of the PGI-6A1

gene (physical position:
27,751,732)
Forward KASP specific

G FAM primer targeting
the 5 untranslated region

(5'UTR) of the PGI-6A1

gene (physical position:
27,751,732)
Forward KASP common

primer targeting the eQTL
SNP peak (AX-184242253)
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Table 3.1 continued from previous page

Primer Name

Sequence (5’ ->3’)

Description

PG1-6A1-eQTL  KASP-

RHEX

PG1-6A1-eQTL
RFAM

KASP-

gaaggtcggagtcaacggatt GTAACTCACACATCTTCTAG
TGCC

gaaggtgaccaagttcatgct TGTAACTCACACATCTTCTA
GTGCT

Reverse KASP-specific

G HEX primer target-
ing the eQTL SNP peak
(AX-184242253)

Reverse KASP  specific

A FAM primer target-
ing the eQTL SNP peak

(AX-184242253)




3.3.13. Long-read DN A sequencing and genetic variant analyses. We used highly
accurate long sequencing reads (HiFi reads) from a diverse assemblage of 43 strawberry ac-
cessions, including wilds, heirlooms, advanced selections, and modern cultivars, to identify
genomic variants in the PG locus. HiFi reads were aligned to the ’'Royal Royce’ reference
genome by using the pbmm2 tool (Li, 2018). We delimited the analysis of structural varia-
tions within the PG locus via samtools view from Samtools v1.13 (Danecek et al., 2021).
Subsequently, the identification and characterization of structural variation signatures were
executed through the pbsv discover and pbsv call functions, available in pbsv v2.8.0
(https://github.com/PacificBiosciences/pbsv).

The insertion-deletion (INDELs) found upstream of the PG1-6A1 gene’s promoter were
quantitatively associated with firmness metrics. The fruit firmness of the diverse strawberry
panel grown at a UCD greenhouse facility was measured in 2023. We computed EMMs
from five biological replicates and three ripe fruits per accession using a completely random
experiment design across five harvest times. Pearson correlation coefficients and the corre-
sponding p-values were calculated using R statistical software. In addition, we examined the
identity of the INDEL located at -3,926 bp from the ATG codon of the PG1-6A1 gene using
the CENSOR web server (https://www.girinst.org/; Kohany et al., 2006).

We identified SNPs within the PG1-6A1 gene using DeepVariant v1.4 (Poplin et al., 2018).
SNPs were filtered using BCFTools v1.19 (Danecek et al., 2021) with the view command,
applying a minor allele frequency threshold of < 0.05 and a quality score threshold of >
30. SNPs identified in the PG1-6A1 gene were classified using SnpEff v5.2¢ (Cingolani
et al., 2012b). We used SnpSift v5.2¢ (Cingolani et al., 2012a) to identify SNPs significantly
associated with fruit firmness by coding soft-fruited accessions as 1 (wildtype) and firm-
fruited accessions as 2 (mutant). Additionally, cis-eQTLs were identified within the discovery
population using the MatrixEQTL package in R (Shabalin, 2012), following the approach
described by Fan et al. (2022). For further analysis, we focused on the most significant

cis-eQTL associated with the PGI1-6A1 gene.
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3.3.14. DNA marker development. Four Kompetitive allele-specific PCR (KASP)
assays were designed to target the PG locus in a diverse strawberry panel (n = 92) and
one-year-old, seed-propagated plants grown in 2023-24 (n = 152). The design of KASP
markers was undertaken using the services provided by LGC Biosearch™ Technologies. We
aimed to target the GWAS peak SNP, the most significant eQTL peak SNP, the En/Spm-
1 transposable element, and an intragenic SNP variant in the PG1-6A1 coding sequence
(Table 3.1).

We established a statistical relationship between firmness EMMs and KASP markers by
conducting Pearson’s correlation in the R platform. The additive and dominance effects
were estimated by @ = [ipg6a1-/Pc1-641- — ﬂPG1_5A1+/PG1-6A1+ and d = ﬂPGJ-6A1+/PG1_6A1**
(ﬂPG1-6A1—/PG1-6A1— + ﬂPGz-6A1+/P01-6A1+)/27 where [ipgigai-/pai6ai—s Ipai6art/Pai-sA1-
fipG1sart/paisart are the EMMs for individuals with PG1-6A1~ /PG1-6A1~, PG1-6A1"/

PG1-6A1, and PG1-6A1"/PG1-6A1" genotypes for each KASP marker. PGI1-6A1 is the
unfavorable allele (wildtype), while PGI-6A1" is the favorable allele (mutant). The degree
of dominance of each KASP marker was estimated by |d/a| (Falconer and Mackay, 1996;
Walsh, 2001). We calculated the accuracy of KASP markers based on SNPs and the En/Spm

element using data from the 50K array (n = 90) and HiFi data (n = 37), respectively.

3.4. Results and Discussion

3.4.1. A genome-wide association study confirmed the segregation of a large-
effect QTL for fruit firmness on chromosome 6A. To identify genetic variants asso-
ciated with fruit firmness, we analyzed a population of 85 phenotyped, 50K Axiom® SNP
array genotyped, and ripe-fruit transcriptome profiled hybrid individuals developed at the
University of California, Davis. Their phenotypic means (7) were estimated from multiple
biological replicates (clones of hybrid individuals) and multiple harvests of ripe fruit over two
growing seasons (24 phenotypic observations/individual), ranged from extremely soft (0.13
kg-force) to extremely firm (0.45 kg-force), and were approximately normally distributed.

This population was dominated by firm-fruited individuals: 74 had phenotypic means in the
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0.30 to 0.49 kg-force range (the firmest individual was 17C140P012). This group included
the cultivar 'Royal Royce’ (7 = 0.48 kg-force), 11 other UC cultivars, and 62 other UC hy-
brid individuals. The soft-fruited group included the UC cultivar ’Chandler’ (g = 0.21) and
10 other UC hybrid individuals. Approximately half of the phenotypic variation observed
for fruit firmness in this discovery population was genetic. The REML estimates of narrow-
and broad-sense heritability were h? = 0.46 and H? = 0.50, respectively; hence, 92% of the
genetic variance for fruit firmness was estimated to be additive in the discovery population.
Using genetically validated physical positions of 49,330 array-genotyped SNPs for GWAS
in the discovery population, four SNPs on chromosome 6A (AX-184953741: Mb 27,253,734,
AX-184023221: Mb 27,593,175, AX-184726882: Mb 27,671,092, and AX-184210676: Mb
27,676,285) were found to be strongly associated with fruit firmness variation (Figure 3.2A-
B). We noticed that the fruit firmness QTL identified on chromosome 6A was discovered
in previous genome-wide association and genetic mapping studies (Cockerton et al., 2021;
Feldmann et al., 2024b; Hardigan et al., 2021b; Lee et al., 2021; Munoz et al., 2024; Prohaska
et al., 2024). We did not observe statistically significant SNPs elsewhere in the genome, nor
did Hardigan et al. (2021b) using a larger and more genetically diverse population (n = 466).
We substantiated this by repeating the GWAS analysis of that population using the original
phenotypic data and previously unpublished phenotypic data (10.9 fruit/individual x 460
individuals = 5,014 phenotypic observations). The broad-sense heritability on a clone-mean
basis was 0.81 for fruit firmness in that study. The two most significant SNPs in that analysis
were AX-184107692 (-log;o p-value = 7.1; Mb 27,812,192) and AX-184242253 (-logo p-value
= 6.4; Mb 27,888,596; Figure 3.3), both of which were in strong LD with SNPs identified in
the discovery population (n = 85).

The four statistically significant SNPs identified by GWAS in the discovery population (n =
85) were in complete linkage disequilibrium (LD) with one another (7#* = 1.0), spanned a
0.6 Mb haploblock on chromosome 6A in the FaRR V1 reference genome (Mb 27.3-27.9 in

FaRR V1), and exceeded a 1% false discovery rate (FDR)-corrected statistical significance
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threshold (Figure 3.2). They were linked with array-genotyped SNPs previously shown to
be associated with a fruit firmness QTL and three tandemly duplicated polygalacturonase-
encoding genes (Mb 7.046-7.064) on chromosome 6A (Hardigan et al., 2021b). The latter
were annotated as FxaC_6-1g13880, FxaC_6-1g13900, and FxaC_6-1g13910 in the 'Camarosa’
reference genome (FaCA V1; Edger et al., 2019).

3.4.2. Three tandemly duplicated polygalacturonase genes are in strong link-
age disequilibrium with the fruit firmness QTL on chromosome 6A. Transcriptomic
and BLAST analyses confirmed that the three polygalacturonase-encoding genes in LD with
the QTL on chromosome 6A are FaPG1 (PG1) paralogs (Figure 3.4A; Lépez-Casado et al.,
2023; Paniagua et al., 2020; Quesada et al., 2009); however, we discovered errors in their an-
notations of the ‘Camarosa’ genome (FaCA V1; Edger et al., 2019), a reannotation of the 'Ca-
marosa’ genome (FaCA V1R; Liu et al., 2021), and annotations of the 'Royal Royce’ genome
(FaRR V1; https://phytozome-next.jgi.doe.gov/info/FxananassaRoyalRoyce v1 0).
Specifically and briefly, the first PG1 paralog was merged with an Enhancer/Suppressor-
mutator (En/Spm) transposon and other non-genic DNA sequences in the original annota-
tion of the ’Camarosa’ genome (Edger et al., 2019), the first PGI paralog was missing in
the reannotation of the ‘Camarosa’ genome by Liu et al. (2021), and the second and third
PG1 paralogs were merged with a gene of unknown function (Fxa6Ag103973) in the original
annotation of the 'Royal Royce’ genome (https://phytozome-next.jgi.doe.gov/info/
FxananassaRoyalRoyce v1_ 0). These annotation errors were manually corrected by map-
ping transcripts isolated from unripe and ripe fruit to the 'Royal Royce’ reference genome
(FaRR V1). We identified three tandemly duplicated PG1 paralogs, which appear to be
arranged as shown in the uppermost chromosome displayed in Figure 3.4A. Fxa6Ag103973
in the original FaRR V1 annotation was split into two PG1 paralogs (Fxa6Agl03973a and
Fxa6Agl03973c) and a gene of unknown function (Fxa6Agl03973b) in the corrected anno-

tation of FaRR V1.
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The imperfections inherent in genome annotations (Salzberg, 2019), and the need to distin-
guish paralogs and homoeologs (Koonin, 2005) underscore the complications that commonly
arise when cross-referencing genes, loci, and alleles in genetic studies of octoploid strawberry,
a species where community-wide guidelines have not yet been adopted for naming chromo-
somes, linkage groups, homologous and homoeologous genes, haplotypes, and alleles (Figure
3.4A-Figure 3.5). To address this in the present study, we created and adopted gene names
of chromosome numbers (1-7) and genome letters (A-D) as suffixes followed by consecutive
numbers (1,2, ...,n) to identify paralogs where necessary. The chromosome identifiers (1A,
1B, 1C, 1D, ..., 7TA, 7B, 7C, 7D) follow the nomenclature proposed by Hardigan et al. (2020).
Chromosome numbers (1, 2, ..., 7) in the ancestral genomes (A, B, C, and D) match those
originally assigned in F. vesca, the diploid ancestor of the A-genome (Edger et al., 2019,1;
Session and Rokhsar, 2023; Shulaev et al., 2011).

Using these naming guidelines and the corrected FaRR V1 gene annotations, the gene iden-
tifiers for the three tandemly duplicated PG1 paralogs in LD with the fruit firmness QTL on
chromosome 6A are PG1-6A3 (Fxa6Agl03971), PG1-6A1 (Fxa6Agl0397a), and PG1-6A2
(Fxa6Agl0397c), as shown in Figure 3.4A. Their arrangement and annotations match those
found in the "Hawaii 4’ reference genome for F. vesca (FvH4 V1; Edger et al., 2018), as shown
in the lowermost chromosome displayed in Figure 3.4A. The sequences of these genes in FaRR
V1 are 99.5% identical to their homologs in the FvH4 V1 diploid and 100.0% identical to
their homologs in the FaCA V1 octoploid reference genomes. PG1-6A1 is 73.9% identical to
PG1-6A2 (62.1% similarity at the amino acid level) and 61.5% identical to PG1-6A3 (49.9%
similarity at the amino acid level; E < 1.0 x 107*%). The PG1-6A1 sequence in the UC culti-
var 'Royal Royce’ is 100% identical to the FaPG1 sequence previously isolated from the UC
cultivar ’Chandler’ (https://www.ncbi.nlm.nih.gov/nuccore/AF380299; Paniagua et al.,
2020; Quesada et al., 2009).

3.4.3. A single paralog of the fruit softening gene POLYGALACTURONASE1

underlies the fruit firmness QTL on chromosome 6A. We hypothesized that one of
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the three tandemly duplicated PG1 paralogs was the causal gene underlying the fruit firm-
ness QTL on chromosome 6A (Figure 3.4). To test this, quantitative trait transcript (QTT)
analysis was applied to short-read sequences of ripe-fruit RNAs isolated from the discov-
ery population (Figure 3.2B; https://www.ncbi.nlm.nih.gov/bioproject/PRINA787565).
Transcripts were observed in ripe fruit for 1,081 of the 1,761 annotated genes found in the 2.4
Mb genomic segment flanking the QTL. Three of these genes (PG1-6A1 = Fxa6Agl103973a,
Fxa6Ag104099, and Fxa6Ag104340) were found to be significantly associated with the fruit
firmness QTL (p < 0.005; Figure 3.2B). PG1-6A1 was in complete LD with the four peak
SNPs identified by GWAS in the discovery population (Figure 3.2D). Moreover, the ex-
pression of PG1-6A1 was negatively genetically correlated with the firmness of ripe fruit
(r = —047; p = 1 x 107%) in the discovery population (Figure 3.2). The function of
Fxa6Ag104099 remains unknown, while the other QTT-significant gene (Fxa6Ag104340) en-
codes an S-adenosyl-L-Met decarboxylase gene (FaSAMDC') known to play an important
role in the regulation of strawberry fruit ripening (Guo et al., 2018). FaSAMDC' is located
approximately one Mb downstream of PG1-6A2; hence, we concluded that the fruit firmness
variation associated with the QTL on chromosome 6A was likely caused by the segregation
of mutant and wildtype PG1-6A1 alleles (Figure 3.2). Throughout this chapter, alleles that
increase fruit firmness are described as favorable and identified by a plus sign superscript
(PG1-6A17), whereas alleles that decrease fruit firmness are described as unfavorable and
identified by a minus sign superscript (PG1-6A17). These designations are market class
dependant, e.g., mutant alleles that knockdown or knockout the expression of PGI1-6A1 are
favorable when breeding firm-fruited cultivars and unfavorable when breeding soft-fruited
cultivars.

BLAST analyses suggest that approximately 227 polygalacturonase-encoding genes have
survived polyploid evolution in the octoploid. Apart from the three PG1 paralogs on chro-
mosome 6A, 15 PG1 homoeologs were identified on chromosomes 6B, C, and D (Figure

3.5). Of these, only PGI-6A1 was strongly expressed in ripe fruit (Figure 3.4). PG1-6A2,
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PG1-6A3, and Fxa6Dgl03429 (PG1-6D1), a PG1 homoeolog on chromosome 6D, were very
weakly expressed in unripe-green fruit and unexpressed in ripe fruit (Figure 3.4B). The other
14 PG1 B-, C-, and D-genome homoeologs were unexpressed in fruit (Figure 3.6). POLY-
GALACTURONASE2 (PG2) is another polygalacturonase gene previously studied that has
been associated with fruit firmness in strawberry (Paniagua et al., 2020). Paniagua et al.
(2020) showed that fruit firmness could be increased by transgenic anti-sense silencing of
PG2 in combination with PG1-6A1, and that PG2 was more weakly expressed than PG1-
6A1 in ripe fruit, but expressed nonetheless. Consistent with our findings, Sanchez-Sevilla
et al. (2017) did not observe the expression of PG2 in ripe fruit of the firm-fruited cultivar
‘Camarosa’, whereas PG1-6A1 was strongly expressed.

The transcriptomes of the soft-fruited cultivar ‘Mara des Bois’ (7 = 0.10 kg-force) and
firm-fruited cultivar ‘Royal Royce’ (7 = 0.35 kg-force) were compared by RNA-seq across
different stages of fruit development, where 7 is the estimated marginal mean (EMM) for
fruit firmness (Figure3.4B). As predicted by the QTT analysis, PG1-6A1 was more strongly
expressed in ripe fruit of the soft-fruited wildtype ("Mara des Bois’; 2,033.1 CPM) than the
firm-fruited mutant ('Royal Royce’; 163.2 CPM), a 12.5-fold difference (Figure 3.4B). The
expression of PG1-6A1 increased from 57.0 CPM in unripe to 2,033.1 CPM in ripe fruit
of the wildtype, a 35.7-fold increase. By contrast, a 544-fold increase was observed in the
mutant from unripe (0.30 CPM) to ripe fruit (163.2 CPM). The weak PG1-6A1 expression
in ripe fruit of the firm-fruited cultivar 'Royal Royce” was consistent with the observation
in reverse genetic studies that PG1 knockdown and knockout mutations result in increased
fruit firmness (Lopez-Casado et al., 2023; Paniagua et al., 2020; Quesada et al., 2009). The
fruit firmness increases reported by Paniagua et al. (2020) from anti-sense silencing of PG1
ranged from 0 to 140% (approximated by us from phenotypic means of PGI transgenic
plants displayed in their bar chart). Similarly, Lépez-Casado et al. (2023) reported increases

in fruit firmness in the 37 to 70% range among transgenic plants carrying knockdown edited
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PG1 genes. These forward and reverse genetic studies clearly substantiate the importance
of the PG1-6A1 gene.

To further substantiate the association between PG1-6A1 expression and the QTL, we de-
veloped paralog-specific quantitative reverse transcription polymerase chain reaction (qRT-
PCR) assays for PG1-6A1, PG1-6A2, and PG1-6D1 and screened RNAs isolated from un-
ripe, green, and ripe fruit of three firm-fruited and five soft-fruited cultivars (Figure 3.7).
PG1-6A1, PG1-6A2, and PG1-6D1 are the only PGI paralogs that were observed to be
weakly to strongly expressed in developing fruit. The expression of PG1-6A1 was weak in
unripe-green fruit of every cultivar, progressively increased in the five soft-fruited cultivars as
they ripened, was 13.0-fold greater in ripe fruit of soft- than firm-fruited cultivars, and was
negatively correlated with fruit firmness in ripe fruit (7 = —0.82; p = 1.4 x 10~2; Figure 3.7
A). These analyses substantiated that PG1-6A2 and PG1-6D1 were very weakly expressed
in developing fruit and that their expression was uncorrelated with fruit firmness variation

(Figure 3.7 B-C).

3.4.4. An En/Spm transposon insertion-deletion and single nucleotide poly-
morphisms associated with differentially expressed PG1-6A1 alleles. To search for
prospective causal mutations and identify predictive genetic variants within and proximal to
the PG1-6A1 gene, we developed and analyzed high fidelity (long-read) DNA sequences for
43 individuals, including 37 F. X ananassa cultivars, two F. chiloensis ecotypes, and four F.
virginiana ecotypes differing in fruit firmness (phenotypic means for these individuals ranged
from 0.06 to 0.35 kg-force in a greenhouse study and 0.07 to 0.41 kg-force in field studies).
DNA sequences for those individuals were aligned to the FaRR V1 reference genome to iden-
tify structural variants and SNPs associated with the PG1-6A1 locus (Table 3.2; Figure 3.8
and 3.9). This analysis of the 0.6 Mb segment flanking the QTL (Mb 27.3-27.9) identified
7,221 SNPs (one SNP every 83.1 bp) among the 43 individuals. The Mb 27.5-27.8 segment

harboring the QTL and tandemly duplicated polygalacturonase genes (PG1-6A1, PG1-6A2,
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and PG1-6A3) was homozygous in ‘Royal Royce’ and the other nine firm-fruited UC cul-
tivars we sequenced. Analyses of pedigree records suggested that the favorable PGI-6A1

alleles found in these cultivars are identical-by-descent (Pincot et al., 2021).

TABLE 3.2. Statistics® for an Enhancer/Suppressor-mutator (En/Spm) insertion-
deletion (INDEL) and single nucleotide polymorphisms (SNPs) associated with
a polygalacturonase gene (PG1-6A1) and fruit firmness QTL on chromosome
6A in a population of 43 soft- to firm-fruited individuals.

Position a d
Marker (M)P Variant® (bp) FAFY 5y frem PVE GVE  (kg-force) Pr>TF (kgforce) Pr>F |d/al
AX-184953741 G/T 27,253,734 049 0.77 -0.86 0.68 0.76 0.08 < 0.0001 0.04 0.07 0.48
AX-184210676 C/A 27,676,285 0.55 0.68 -0.91 0.22 0.26 0.07 < 0.0001 0.06 0.01 0.82
En/Spm INDEL +/- 27,743,085 0.55 0.76 -0.79 0.49 0.55 0.08 < 0.0001 0.05 0.01 0.59
5-UTR G/T 27,751,732 045 0.81 -0.91 0.53 0.61 0.08 < 0.0001 0.03 0.24 0.33
AX-184242253 G/A 27,888,596 0.49 0.78 -0.75 0.54 0.61 0.08 < 0.0001 0.04 0.05 0.50

& 2Correlation between the phenotypic mean for fruit firmness () and marker locus genotypes (73, ar), correlation between the relative expression
(RE) of PG1-6A1 in ripe fruit and marker locus genotypes (frp.ar), estimates of the additive (&) and dominance (d) effects of the marker
locus on fruit firmness, degree-of-dominance (\(i/ al), fraction of the phenotypic variance explained by the marker locus (PVE), and fraction
of the genetic variance explained by the marker locus (GVE). Correlation coefficient estimates were significantly greater than zero for every
genetic variant (p < 0.0001 for 75 s and 0.020 < p < 0.008 for 7rg,ar). Additive and dominance effects were estimated by linear contrasts
among genotypic means (y+/+, Yy/-,and ?_/_). Significance levels (Pr > F) are shown in the columns to the right of additive and dominance
effect estimates for tests of the null hypothesis that the linear contrast was not significantly different from zero, where & = (7, /v~ Y- /_) /2
and d= (/4 +7-/-)/2 =4 /-

b bGenetic variants were genotyped by genotyping-by-sequencing (GBS). SNP and INDEL genotypes were called by aligning long-read DNA
sequences for 43 individuals to the 'Royal Royce’ reference genome (FaRR1). AX-184953741 is one of four 50K array SNP markers identified
by GWAS that was most strongly associated with the QTL on chromosome 6A. AX-184210676 is the 50K array SNP marker identified by
GWAS that was most tightly linked to PGI1-6A1 among the four that were strongly associated with the QTL on chromosome 6A and in
complete LD within the discovery population. The 4,948-bp En/Spm INDEL is located 3,926 bp upstream of PG1-6A1. The G/T SNP in
the 5-UTR is one of three that were in complete LD in the 5-UTR of PG1-6A1. Statistics were identical for the three highly predictive
5-UTR SNPs identified by sequence and QTL analyses among the 43 DNA sequenced individuals and are only shown for the G/T SNP (bp
27,751,732). The other two 5-UTR SNPS were A/G (bp 27,751,041) and T/C (bp 27,751,106). AX-184242253 is the 50K array SNP in LD
with PG1-6A1 that was identified by expression-QTL analysis.

¢ ¢The first nucleotide shown for each SNP is the favorable allele (the SNP associated with the PGI-6A1 allele predicted to increase fruit
firmness). The 4,498-bp insertion (+) is the favorable allele for the INDEL.

4 dFAF is the frequency of the SNP or En/Spm INDEL allele associated with the favorable PG1-6A1 allele.

We did not identify a definitive causal mutation in PG1-6A1; however, several genetic vari-
ants were found to be highly predictive of PG1-6A1 expression differences and fruit firmness
variation (Table 3.2; Figure 3.8). SIFT (Sorting Intolerant From Tolerant) statistics esti-
mated with SNPeff (Cingolani et al., 2012b) and SNPsift (Cingolani et al., 2012a) were used
to search for SNPs predicted to affect the function of the polygalacturonase encoded by PG1-
6A1, especially non-synonymous SNPs that could cause amino acid substitutions predicted

to be deleterious to protein function. SIFT analyses were done by comparing PG1-6A1 alle-

les between soft-fruited (7 < 0.30 kg-force) and firm-fruited (7 > 0.30 kg-force) individuals.
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Thirty-seven SNPs were identified among PG1-6A1 alleles, 19 in the 5-UTR, 12 in exons,
four in introns, and two in the 3’-UTR. Of the 12 SNPs found in exons, four caused synony-
mous and eight caused non-synonymous amino acid changes, none of which were predicted
to be deleterious.

We used SIFT statistics and single-marker QTL analyses to identify genetic variants asso-
ciated with fruit firmness phenotypes among the 43 long-read sequenced individuals (Table
3.2; Figure 3.8). Three genotyping-by-sequencing (GBS) called SNPs in complete LD with
one another in the 5-UTR (bp 27,751,041, 27,751,106, and 27,751,732; MAF = 0.45) were
found to be positively correlated with fruit firmness (7 = 0.81; p = 1.73 x 107®) and nega-
tively correlated with the expression of PG1-6A1 in ripe fruit (7 = —0.91; p = 0.002; data
are only shown for one of the three in Table 3.2). A single exonic SNP (bp 27,752,865; MAF
= 0.44) was similarly predictive of fruit firmness variation (# = 0.76; p = 8.63 x 10~7). This
SNP caused a conservative, non-synonymous amino acid change (M220T) and was predicted
by SNPsift to have a moderate effect on protein function, if any.

To complement these analyses, we used expression-QTL (eQTL) analysis to search the
genome for associations between 50K array genotyped SNPs and transcript abundance (count
per million) in ripe fruit of the 85 discovery population individuals. That analysis identified
10,780 eQTL associations in 5,159 differentially expressed genes in ripe fruit transcriptomes.
We identified a SNP (AX-184242253; p = 4.69 x 107'9) slightly downstream of PG1-6A1
that was significant in the GWAS analysis, tightly linked with PG1-6A1 and the four GWAS
peak SNPs, positively correlated with variation in fruit firmness, and negatively correlated
with PG1-6A1 expression differences (Table 3.2; Figure 3.2).

The analyses of GBS-called variants uncovered a 4,948-bp insertion-deletion 3,926 bp up-
stream of PG1-6A1 that was positively associated with fruit firmness variation (# = 0.76;
p < 0.0001) and negatively correlated with the expression of PG1-6A1 in ripe fruit (7 =
—0.79; p-value = 0.02) (Figure 3.7-3.8C-3.9; Table 3.2). The En/Spm insertion was only
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found in firm-fruited individuals, was homozygous in 'Royal Royce’ and the other nine mod-
ern, firm-fruited UC cultivars that were long-read sequenced, and was the only structural
variant proximal to PG1-6A1 that was strongly associated with variation in fruit firmness
and expression of PG1-6A1 in wildtype and mutant individuals (Table 3.8; Figure 3.7A).
The 4,948-bp insertion was discovered to be a CACTA family class II En/Spm transposable
element (TE) with sequence similarity to F. vesca, F. X ananassa, and other En/Spm TEs in
plants (Bennetzen, 2000; Bennetzen and Wang, 2014; McClintock, 1950,5). This TE carries
the characteristic 12-bp terminal inverted repeats (5-CACTACCAGAAA-3’) and proximal
subterminal direct repeats found in CACTA family class II TEs (Bennetzen, 2000; Feschotte
et al., 2002; Wessler, 1988). En/Spm elements are important mediators of phenotypic diver-
sity in plants (Bennetzen, 2000; Bennetzen and Wang, 2014; Feschotte et al., 2002; Hirsch
and Springer, 2017; Wessler, 1988), and often create novel phenotypes by disrupting the
function or modifying the expression of genes through insertional mutagenesis in coding or
promoter sequences. Although numerous TE insertional mutations have been described in
plants, and their effects are often predictable, the mutant phenotype observed in this study
was not caused by an insertional mutation in PG1-6A1 per se (Feschotte, 2008; Feschotte
et al., 2002; Hirsch and Springer, 2017). Castillejo et al. (2020) discovered an En/Spm-2 TE
insertion in the promoter of MYB10-2, an R2R2 MYB transcription factor that regulates
anthocyanin biosynthesis in strawberry. They showed that the mutation (TE insertion) en-
hanced the expression of MYB10-2 and increased the accumulation of anthocyanins in ripe
fruit. This appears to be the only TE insertional mutant reported to date in strawberry.
Apart from insertional mutagenesis, TEs create novel phenotypes by altering the regulation

of nearby genes (reviewed by

3.4.5. Wildtype PG1-6A1 alleles are incompletely dominant. Table 3.2 displays
the additive and dominance effects and other statistics for the five GBS-called genetic vari-
ants that were most highly predictive of PG1-6A1 expression differences and fruit firmness

variation in diverse germplasm. These include array-genotyped SNPs identified by GWAS
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(AX-184953741 and AX-184210676) or expression-QTL analysis (AX-184242253), one of
three SNPs in the 5-UTR of PGI1-6A1 identified by SIFT, sequence, and QTL analyses,
and the En/Spm INDEL identified by sequence and QTL analyses (Table 3.2; Figure 3.8).
The three SNPs in the 5-UTR of PG1-6A1 were in complete LD among the 43 long-read
sequenced individuals; hence, the statistics shown for the G/T SNP (bp 27,751,732) were
identical for the other two SNPs among those 43 individuals (Table 3.2).

The favorable allele frequencies, correlations between marker genotypes and phenotypic
means (7'5r), correlations between marker genotypes and relative expression levels of PGI-
6A1 (75.), and additive (@) and dominance (d) effect estimates were similar across genetic
variants (Table 3.2; Figure 3.8). The additive effects of these PGI1-6A1-associated genetic
variants were highly significant (p < 0.0001) and greater than their dominance effects, which
were significant for three of the five genetic variants (p < 0.05). The wildtype PG1-6A1"
allele was incompletely dominant to nearly dominant. The (|d/d| estimates ranged from
0.33 to 0.82 for the five genetic variants (Table 3.2; Figure 3.8). Four of the genetic variants
explained 49-68% of the phenotypic variance and 55-76% of the genetic variance for fruit
firmness among the 43 long-read sequenced individuals. The estimate of the genetic vari-
ance explained by the AX-184210676 SNP (26%) in the population of 43 long-read-sequenced
individuals was markedly lower than estimates for the other genetic variants, even though
the PG1-6A1 genotypes predicted by that SNP were strongly correlated with differences in
PG1-6A1 expression and phenotypic variation for firm firmness in the discovery population

(Table 3.2).

3.4.6. Quantitative trait transcript and co-expression analyses identified sev-
eral differentially expressed genes known or predicted to affect fruit development
and ripening. We knew from GWAS analyses that approximately 24-45% of the heritabil-
ity for fruit firmness was likely missing and undoubtedly caused by the segregation of loci
other than PG1-6A1 in the discovery population (Table 3.2). Although we only observed one

statistically significant genotype-to-phenotype QTL in the genome-wide association study,
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multiple QTL have been identified in other forward genetic studies (Cockerton et al., 2021;
Feldmann et al., 2024b; Lee et al., 2021; Munoz et al., 2024; Prohaska et al., 2024), and sev-
eral statistically significant transcript-to-phenotype QTL were observed in the QT'T analysis
(Figure 3.2). To shed light on the biological functions of the latter, we conducted a co-
expression analysis of the 39 genes identified by QTT analysis (Figure 3.10; Table 3.3).
This revealed three co-expression modules: one comprised of genes that were moderately
to strongly expressed in ripe fruit and negatively correlated with fruit firmness (module 1,
upper clade); one comprised of genes with low expression in ripe fruit that were negatively
correlated with fruit firmness (module 2, middle clade); and one comprised of genes with
that were moderately to strongly expressed in ripe fruit and positively correlated with fruit
firmness (module 3, lower clade), as shown in Figure 3.10. While some of these could be false
positives, future studies are bound to identify and validate additional QTL with predictable

effects across environments and genetic backgrounds.

116



A B
609 _ee _ _ _ ___.
—~ —~ °
(] ()] [ ]
= = ° °
T>’ P01 g e
a a . % [
< < o®
S > 2.0 o o 00
? g | $ Bgo-
o® L LD
.0 0.0-
1A1B1C1D2A2B2C2D3A 3B 3C 3D 4A4B4C4D5A5B5C5D 6A 6B 6C 6D 7A7B7C7D 26 28 30 32
Chromosome Chromosome 6A (Mb)
C D
6.0 BGal16 PGl — SAMDC  AVT6C 6.0 PGile
© *\ppspase1  RPL24C RPF1 DNAJ . PME34 / © *SAMDC
E ~ \, PP2C e 3
g 40 > ° ” S ° . g
[ ]
L - -t o e~ ®® — — — — — Pl B3 Sl St - L
3 3
S 20 S
o o
| |

.0 0.0
1A1B1C1D2A 2B2C2D 3A 3B3C3D4A4B4C4D5A 5B5C5D 6A 6B 6C 6D 7A7B7C7D 26 28 30 32
Chromosome Chromosome 6A (Mb)

FIGURE 3.2. Genome-wide association study (GWAS) and quantitative trait tran-
script (QTT) analyses identify genetic variants associated with phenotypic vari-
ation for fruit firmness and transcripts associated with differentially expressed
genes among soft- and firm-fruited individuals (n = 85). Study population indi-
viduals were genotyped for 49,330 single nucleotide polymorphisms (SNPs) physically an-
chored to the FaRR1 reference genome. (A) The GWAS Manhattan plot illustrates SNPs
associated with fruit firmness across the strawberry genome (physical positions of array-
genotyped SNP on the x-axis are shown in the FaRR1 reference genome). GWAS was
applied to phenotypic means estimated from 24 observations/individual using a Bonferroni-
corrected significance threshold of 5.7 (depicted by the horizontal dashed line). (B) The
physical positions of SNPs associated with phenotypic variation for fruit firmness are shown
for Mb 26-32 on chromosome 6A. (C) The QTT Manhattan plot was constructed from
analyses of 59,126 transcripts mapped in the FaRR1 reference genome using mRNAs iso-
lated from ripe fruit of soft- or firm-fruited individuals in the study population (n = 85).
QTT was applied to transcript counts estimated from short-read mRNA sequences using a
Bonferroni-corrected significance threshold of 3.3 (depicted by the horizontal dashed line).
The differentially expressed genes labeled in the QTT Manhattan plot are pyrophosphate-
specific phosphatasel (PPSPASEL), S-galactosidase 16 (5Gall6), ribosomal protein 1.24C
(RPL24C), RNA processing factor 1 (RPF1), chaperone DNAj-domain (DNAJ), polygalac-
turonase 1 (PG1), S-adenosylmethionine decarboxylase (SAMDC), protein phosphatase 2c
(PP2C), pectin methylesterase 34 (PME34), and amino acid transporter avt6e (AVT6C).
(D) The physical positions of differentially expressed genes are shown for Mb 26-32 on chro-
mosome 6A. Asterisk indicates a gene with unknown function on chromosome 6A.
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FIGURE 3.3. Single nucleotide polymorphisms (SNPs) associated with phenotypic variation
for fruit firmness among a genetically diverse collection of soft- to firm-fruited individuals
(n = 460) phenotyped as described by Hardigan et al. (2021b). These individuals were
genotyped with a 50K Axiom® SNP array. The physical positions of SNPs on the x-axis
of the Manhattan plot are coordinates in the Royal Royce reference genome (FaRR1). The
genome-wide association study analysis was applied to phenotypic means estimated from 11
observations/individual using a Bonferroni-corrected significance threshold of 5.9 (depicted
by the horizontal dashed line).
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FiGUuRrRE 3.4. Annotations and physical positions of polygalacturonase genes in
linkage disequilibrium with a fruit firmness QTL on chromosome 6A in octoploid
strawberry. (A) Organization and synteny of three tandemly duplicated polygalacturonase-
encoding genes on chromosome 6A in the 'Royal Royce’ and ’Camarosa’ genomes and chro-
mosome 6 in the 'Hawaii 4’ F. vesca genome. (B) Transcript counts per million (CPM)
for four polygalacturonase-encoding genes observed in the soft-fruited cultivar 'Mara des
Bois’ and firm-fruited cultivar 'Royal Royce’. CPMs were estimated from short-read RNA
sequences normalized for sequencing depth. Gold lines depict the synteny of PG1 paralogs
across genomes.
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FIGURE 3.5. Local synteny and phylogenetic tree. A) Synteny analysis of homoeol-
ogous PG1 genes across strawberry subgenomes using the 'Royal Royce’ reference genome.
The synteny relationships for the PG1 genes across different subgenomes are indicated by
gold lines. B) Evolutionary relationships among homoeologous PG genes from different
subgenomes, highlighting tandemly arranged PG genes on chromosome 6A in red. Phylo-
genetic tree constructed using amino acid sequences of all homoeologous PG1 genes identified
in this study. Bootstrap values are shown at the nodes, representing the confidence level for

each branch based on 1,000 bootstrap replicates.
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FIGURE 3.6. The expression profiles of 18 polygalacturonase-encoding genes in
ripe fruit of 85 individuals. The 18 genes include three tandemly duplicated paralogs as-
sociated with a fruit firmness QTL on chromosome 6A (PG1-6A1, PG1-6A2, and PG1-6A3),
a homoeolog on chromosome 6D (PG1-6D1), and 14 additional homoeologs on chromosomes
6B, 6C, and 6D. The heat map color indexes the logs-transformed transcript count per mil-
lion estimated from short-read RNA sequences isolated from ripe fruit.
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Ficure 3.7. Relative gene expression profiles of polygalacturonase genes across
strawberry fruit ripening stages. Quantitative analysis of mRNA abundance for A)
PG1-6A1, B) PG1-6A2, and C) PG1-6D1 genes in strawberry accessions with distinct fruit
firmness profiles at unripe, white, and ripe stages. Expression was quantified over three
biological and technical replicates, using a DNA-binding protein gene as the normalization
standard. The favorable allele for firmness is indicated as +.
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FiGureE 3.8. Fruit firmness variation among 43 soft- to firm-fruited individu-
als genotyped for an Enhancer/Suppressor-mutator (En/Spm) insertion-deletion
(INDEL) and single nucleotide polymorphisms (SNPs) associated with the PG1-
6A1 locus on chromosome 6A. Genetic variants were genotyped using genotyping-
by-sequencing. The points display phenotypic means (estimated marginal means) esti-
mated from five biological replicates (clones)/individual, five harvests, and three subsam-
ples/replicate/harvest among greenhouse grown plants of the DNA sequenced individuals
(11 observations/individual). The box displays the genotypic median and interquartile range
within each genotypic class, where -/- are unfavorable allele homozygotes, + /- are heterozy-
gotes, and +/+ are favorable allele homozygotes. (A) SNP interrogated by AX-184953741,
one of four Axiom® 50K array SNP markers identified by GWAS found upstream of PG1-
6A1 and in complete LD with one another. (B) SNP interrogated by AX-184210676, one
of four Axiom® 50K array SNP markers identified by GWAS found upstream of PG1-6A1
and in complete LD with one another. (C) A 4,948-bp En/Spm INDEL 3,926 bp upstream
of PG1-6A1. (D) A G/T SNP in the 5-UTR of PG1-6A1. (E) SNP interrogated by AX-
184242253, an Axiom® 50K array SNP marker identified by expression-QTL analysis found
downstream of PG1-6A1.
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FI1GURE 3.9. Gene model and sequence alignment for PG1-6A1 in firm- and soft-
fruited strawberry accessions.(A) Gene model for PGI-6A1 showing single nucleotide
polymorphisms (SNPs) detected in the 5’'UTR as well as insertion-deletion (INDEL) events
located at 1121, 1385, 1745, and 3926 bp upstream from the ATG codon. Alignment of high
fidelity long-read DNA sequences was shown for the firm-fruited cultivar (B) "Royal Royce’
(0.35 kg-force), and the soft-fruited exotics (C) 'Mara des Bois’ (0.10 kg-force), (D) 'Beaver
Belle’ (0.09 kg-force), and (E) 'ILE 02’ (0.13 kg-force).
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FiGURE 3.10. Co-expression network analysis of transcripts in ripe fruit of 85
discovery population individuals. (A) Transcript abundance heat map for genes in the
PG1-6A1 polygalacturonase co-expression network (upper panel) and two other networks
identified by co-expression analysis (middle and lower panels) using hierarchical cluster anal-
ysis. (B) The correlation between transcript abundance and fruit firmness for genes in the
co-expression network is shown in the upper panel of A. (B) The correlation between tran-
script abundance and fruit firmness for genes (nodes) in the co-expression network is shown
in the middle panel of A. (B) The correlation between transcript abundance and fruit firm-
ness for genes (nodes) in the co-expression network is shown in the lower panel of A.
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TABLE 3.3. List of genes significantly associated with strawberry firmness. Correlation between
transcript abundance and fruit firmness in 85 individuals was analyzed through a quantitative trait transcript
(QTT) analysis. Descriptions of QTTs significantly associated with fruit firmness (p < 0.005) include the gene
ID, chromosome location, physical position in bp, predicted function, and homology to Arabidopsis thaliana.

9¢1

Gene ID Chr Position (bp) Annotation AGI homolog
FxalAgl01585 1A 9326707-9329306 Potential Queuosine, Q, salvage protein family -
FxalAgl02738 1A 18599667-18601666 Putative Phosphatase AT1G73010
FxalBg202718 1B 21523590-21526505 C2 domain AT1G74720
FxalBg202317 1B 16467571-16474035 PHD finger protein male meiocyte death 1-related AT1G33420
Fxa2Agl03645 2A 25479922-25483823 Zinc carboxypeptidase AT5G42320
Fxa2Agl03376 2A 23950123-23952228 Nucleotide-diphospho-sugar transferases AT4G33330
Fxa2Agl02751 2A 20233768-20239168 Beta-galactosidase 16 AT1G77410
Fxa2Agl102750 2A 20224814-20228497 Proteasome subunit alpha/beta AT1G21720
Fxa2Agl100287 2A 1913880-1915521 Glucosyl/Glucuronosyl transferases AT1G05675
Fxa2Bg203454 2B 25810859-25813703 ATP-sulfurylase AT1G19920
Fxa2Cg202753 2C 21517798-21520068 Tetratricopeptide-like helical domain superfamily AT5G48850
Fxa2Dg201701 2D 15643431-15645723 Tetratricopeptide-like helical domain superfamily AT5G48850
Fxa3Agl03343 3A 24740383-24743537 CRAL/TRIO domain AT3G46450
Fxa3Agl102927 3A 21001962-21004626 Nucleic acid-binding, OB-fold AT5G08020
Fxa3Bg200155 3B 726016-729670 Aspartic proteinase-like AT1G11910
Fxa3Bg200138 3B 646897-648129 Chaperonin-like RbcX superfamily AT4G04330
Fxa3Bg200956 3B 5741483-5744448 Rx N-terminal domain AT3G07040
Fxa3Bg200627 3B 3696159-3701280 Acetolactate synthase small subunit 1, chloroplastic AT5G16290
Fxa3Bg200626 3B 3688029-3691371 Trehalose-phosphatase AT1G06410
Fxa3Bg202102 3B 15275341-15276575 Ribosomal protein L24e, conserved site AT2G44860




Lc1

Fxa3Bg201592
Fxa3Dg203357
FxadAgl03318
FxadAgl02677
FxadAgl102621
FxabAg203613
FxabBgl102468
Fxa6Agl104340
Fxa6Ag104099
Fxa6Agl03973
Fxa6Bgl00154
Fxa6Bgl100769
Fxa6Bgl104123
Fxa6Cg100650
Fxa6Dgl101561
Fxa7Ag203101
Fxa7Ag202485
Fxa7Ag200163
Fxa7Bg201670

3B
3D
4A
4A
4A
5A
5B
6A
6A
6A
6B
6B
6B
6C
6D
TA
TA
TA
7B

Table 3.3 continued from previous page

10628038-10639237
27620912-27624542
25110615-25112551
21393662-21398206
21064572-21065514
25050026-25053600
18678005-18680164
29976026-29976574
28496345-28497132
27751958-27753554
954903-957130
4567122-4575719
32806865-32808033
4042067-4042554
10880821-10881339
21166929-21170332
17801960-17803847
1310646-1315814
14335172-14342432

L-type lectin-domain containing receptor kinase IX.1-like

PentatricoPeptide Repeat (ppr) superfamily protein
EamA-like transporter family

HEAT repeat

Methyltransferase

DnaJ domain

S-adenosylmethionine decarboxylase, core

Pectin lyase fold/virulence factor

ATP synthase (E/31 kDa) subunit

0S03G0209700 Protein

PentatricoPeptide Repeat (ppr) superfamily protein
Zinc finger AN1-type

Pectinesterase

Amino acid transporter AVT6C
S-adenosyl-L-methionine-dependent methyltransferase

PHD-zinc-finger like domain

AT5G10530
AT1G12700
AT5G40240
AT3G25800
AT5G15880
AT1G78140
AT3G12170
AT3G02470
AT3G07820
AT5G51410
AT2G38600
AT3G29280
AT1G63330
AT2G36320
AT3G49220
AT3G56200
AT5G13710
AT3G61740




TABLE 3.4. The physical locations and putative functions of genes with statis-
tically significant quantitative trait transcript analysis (QTT) analysis signals
that belong to the PG1-6A1 co-expression network. The correlation (r) between
transcript abundance (count per million) and fruit firmness was estimated from short-read
RNA sequences of 85 individuals. Chromosome numbers (CNs), physical positions, and gene
IDs are from annotations of genes in the Royal Royce reference genome. The predicted gene
functions and Arabidopsis Genome Initiative (AGI) locus IDs are from annotations of genes
in The Arabidopsis Information Resource (TAIR).

Gene ID CN Position (bp) Predicted Function Locus ID r p-value

Fxa2Agl02750 2A  20,224,814-20,228,497 proteasome [ subunit C1 AT1G21720 -0.39 2.7 x 10~*
Fxa2Agl02751 2A  20,233,768-20,239,168 [-galactosidase 16 AT1G77410 -0.48 3.5 x 1076
Fxa3Agl03343 3A  24,740,383-24,743,537 SEC14 phosphoglyceride transfer protein AT3G46450 -0.40 1.3 x 1074
Fxa3Bg200155 3B 726,016-729,670 aspartic proteinase Al AT1G11910 -0.38 3.2x 1074
Fxa3Bg200626 3B 3,688,029-3,691,371 trehalose-6-phosphate synthase/phosphatase AT1G06410 -0.37 4.4 x 1074
Fxa3Bg200627 3B 3,696,159-3,701,280 valine-tolerant 1 AT5G16290 -0.39 2.7 x 10~*
FxadAgl02677 4A  21,393,662-21,398,206 protein phosphatase 2A subunit A2 AT3G25800 -0.39 2.5 x 1074
Fxa6Agl03973a 6A  27,750,926-27,751,957 polygalacturonase 1 AT3G07820 -0.50 1.1x 1076
Fxa6Agl04340 6A  29,976,026-29,976,574 S-adenosylmethionine decarboxylase AT3G02470 -0.47 7.2x 1076
Fxa6Dgl101561 6D  10,880,821-10,881,339 A20/ANI1-like zinc finger protein AT2G36320 -0.39 2.4 x 1074
Fxa7Ag200163 TA 1,310,646-1,315,814 sterol methyltransferase 1 AT5G13710 -0.38 3.6 x 1074
Fxa7Ag203101 T7A  21,166,929-21,170,332 pectin methylesterase 34 AT3G49220 -0.43 4.6 x 107°
Fxa7Bg201670 7B 14,335,172-14,342,432 SET domain protein 14 AT3G61740 -0.38 3.1 x 1074

Notably, module 1 (Table 3.4) contains PG1-6A1, FaSAMDC (Guo et al., 2018), and other
genes involved in cell wall remodeling, e.g., f-galactosidase 16 (SGAL16);Paniagua et al.,
2016,2) and pectin methylesterase 34 (Ponce et al., 2023). Although the genes in module 2
were less strongly expressed than those in module 1, several were identified to have functions
associated with abscisic acid signaling through phosphate metabolism (Jung et al., 2020;
Zhou et al., 2012) and fruit softening through carbon metabolism and methylation reactions
e.g., a glycogenin-like starch initiation protein (Ahn et al., 2019) and a SAM-dependent
methyltransferase (Ahn et al., 2019; Soares et al., 2021; Xiong et al., 2024). Interestingly,
module 3 contains several genes with DNA/RNA binding activity, which may reflect the
alternate metabolic profile of firm fruit with reduced cell wall breakdown. For example, the
restorer of fertility-like pentatricopeptide repeat protein is essential for efficiently processing
a mitochondrial NAD4 mRNA (Hélzle et al., 2011). Incorrect splicing of the mitochondrial

NAD4 transcript might disrupt carbon metabolism and ATP production due to abnormal
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NADH metabolism (Nakagawa and Sakurai, 2006). Further study of these genes, some
of which have not been studied or well characterized, could shed additional light on the

processes underlying fruit softening in strawberry.

3.4.7. KASP assays for marker-assisted selection of PG1-6A1-associated ge-
netic variants are specific and accurate. To facilitate marker-assisted selection of the
PG1-6A1 locus, Kompetitive Allele-Specific PCR (KASP) assays were developed and tested
for one of the peak SNPs identified by GWAS (AX-184210676), three SNPs in the 5-UTR
identified by SIFT and QTL analyses, a SNP downstream of PG1-6A1 identified by e-QTL
analysis (AX-184242253), and the En/Spm INDEL (Table 3.5; Figure 3.11). To assess their
specificity, accuracy, and predictive values, 92 individuals spanning the domestication and
fruit firmness spectra in strawberry (hereafter the 'diversity’ population) were selected and
genotyped. They included 29 heirloom cultivars (1854-1991), 27 UC cultivars (1935-2017),
23 additional UC hybrid individuals (1961-2020), four F. chiloensis ecotypes, eight F. vir-
giniana ecotypes, and a single F. vesca ecotype. Their fruit firmness phenotypes ranged
from 0.07 to 0.45 kg-force.

The KASP assays we developed for PG1-6A1-associated genetic variants appear to be
paralog-specific (only amplified PG1-6A1 alleles), but differed in genotyping accuracy and
genotype call rates (Table 3.5; Figure 3.11). Assays designed from the 50K array SNPs (K-
676 for the AX-184210676 SNP and K-253 for the AX-19424253 SNP) were highly accurate
with distinct, codominant genotypic clusters and 98.9-100.0% genotype call rates (Table 3.5;
Figure 3.2 and 3.11). The clusters were more well-separated and equidistant for K-253 than
K-676 (Figure 3.12). Although both performed well, the genotype-to-phenotype correlation
was stronger for K-253 (75 = 0.83) than K-676 (75 = 0.67). This is in keeping with
the reduced variation explained by AX-184210676 in the 43 long-read sequenced individuals,
indicating that this SNP may lose value in more diverse populations.

Of the three KASP assays designed for SNPs in the 5-UTR of PGI1-6A1, one was highly

accurate (K-732), one failed, and the other was slightly less accurate and did not perform
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TABLE 3.5. Statistics® for Kompetitive Allele-Specific PCR (KASP) markers
developed for genotyping an Enhancer/Suppressor-mutator (En/Spm) insertion-
deletion (INDEL) and single nucleotide polymorphisms (SNPs) associated with
the PG1-6A1 locus on chromosome GA.

Reference KASP Accuracy Call Rate a d

Population® Variant Marker (M) FAF (%)° (%) 7y (kg-force) Pr>TF (kg-force) Pr>F |d/a|

Diversity AX-184210676 K-676 0.55 97.8 98.9 0.67 0.09 < 0.0001 0.04 0.05 0.44
En/Spm INDEL K-SPM 0.65 81.0 86.0 0.64 0.09 < 0.0001 0.00 0.95 0.02
5-UTR K-732 0.55 100.0 82.8 0.82 0.10 < 0.0001 0.01 0.38 0.14
AX-184242253 K-253 0.50 95.6 100.0 0.83 0.10 < 0.0001 0.02 0.22 0.19

Full-sibs AX-184210676 K-676 0.54 NA 99.4 0.35 0.04 < 0.0001 0.01 0.28 0.33
En/Spm INDEL K-SPM 0.62 NA 97.0 0.45 0.04 < 0.0001 0.03 0.01 0.74
5-UTR K-732 0.40 NA 84.9 0.48 0.05 < 0.0001 0.03 0.01 0.56
AX-184242253 K-253 0.50 NA 95.8 0.51 0.05 < 0.0001 0.02 0.03 041

a8 is the correlation between the phenotypic mean (7) for fruit firmness (kg-force) and marker genotypes, a is the additive and (d) is the

dominance effect, and |(i/ a| is the degree-of-dominance of the KASP marker locus. The correlation coefficeint estimates (rgs) for every marker
locus were highly significant (p < 0.0001) in both populations. Additive and dominance effects were estimated by linear contrasts among genotypic
means (7, J40 Yy and g /,). Significance levels (Pr > F) are shown in columns to the right of additive and dominance effect estimates for tests
of the null hypothesis that the linear contrast was not significantly different from zero, where a = (@r/Jr —y,/,)/2 and d = (L/Jr +§,/,)/2 —Yy)—
b bKASP markers were designed for the En/Spm INDEL and SNPs shown in Table 3.2.

¢ °The diversity population consisted of 92 soft- to firm-fruited individuals. The full-sib population consisted of 152 one-year-old individuals within
four full-sib families segregating for mutant and wildtype PG1-6A1 alleles.

ddFAF is the frequency of the KASP-SNP or KASP-INDEL marker allele associated with the favorable PG1-6A1 allele.

¢ Accuracy (%) was estimated for the K-SPM and K-732 marker by comparing genotypes called by GBS among long-read DNA sequences of 43
individuals with genotypes called by KASP. Accuracy was estimated for the K-676 and K-253 markers by comparing genotypes called among 92
Axiom® 50K array-genotyped individuals with genotypes called by KASP. KASP marker accuracy could not be estimated among full-sib individuals
because they were only genotyped with the KASP markers and were not sequenced or genotyped with the 50K SNP array.

ffThe call rate is the percentage of individuals where KASP genotypes were successfully called.

as well as K-732. K-732 genotypes were strongly correlated with fruit firmness phenotypes
(. = 0.82). The genotype call rate for the K-732 assay (82.8%) was similar to that for
K-SPM assay (86.0%), both of which were markedly lower than the the genotype call rates
observed for the K-676 and K-253 assays (Table 3.11; Figure 3.11 and 3.12).

The KASP assay designed for the En/Spm INDEL (K-SPM) was less accurate than the K-
732 and K-253 assays (Table 3.5; Figure 3.11 and 3.12). The lower performance of that assay
was presumably caused by the technical difficulty of amplifying DNA sequences bordering the
4,948-bp insertion (Figure 3.9). Using long-read DNA sequences as a reference, genotyping
errors for the K-SPM assay appear to have been primarily caused by mistyping insertion
homozygotes as heterozygotes, which caused significant segregation distortion among the

full-sib progeny phenotyped and genotyped in this study (Figure 3.11).
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The observed segregation ratios for the K-676, K732, and K-253 assays were not significantly
different from the expected segregation ratio among the full-sib progeny genotyped in the
KASP marker validation study (1 +/+ : 2 +/- : 1 -/-): K-676 (x* = 2.88;p = 0.24),
K-732 (x* = 0.44; p = 0.81), and K-253 (x? = 0.25;p = 0.88). The observed segregation
ratio for the K-SPM assay (69 +/4 : 51 +/- : 32 -/-), by comparison, was significantly
distorted with an excess of favorable allele homozygotes and shortage of heterozygotes (y? =
34.36; p < 0.0001). Although the En/Spm was homozygous and appears to be predictive
of the favorable PGI-6A1 allele found in modern, firm-fruited UC cultivars, the En/Spm
insertion-deletion proved to be more difficult to accurately genotype by KASP than the SNPs

we targeted.

3.4.8. The favorable PG1-6A1 allele appears to be nearly fixed in a popu-
lation with a long history of selection for increased fruit firmness. Using GBS-
and KASP-called genetic variants, we discovered that the favorable PG1-6A1 allele was
nearly fixed in modern, firm-fruited UC cultivars and associated genetic resources, hereafter
identified as the California population (Figure 3.13 and 3.14). We discovered this in part
by screening the parents of 178 full-sib families with three KASP markers: K-676, K-SPM,
and K-253. Using those KASP markers, the frequency of the favorable PG1-6A1 allele was
estimated to range from 0.93 to 0.97 among 10,650 full-sib individuals sampled from the
California population in the 2023-24 cycle of selection. Of the 178 full-sib families, only
four originated from crosses where both parents were heterozygous for KASP marker al-
leles and predicted to segregate 1 PG1-6A1%/PG1-6A1% : 2 PG1-6A1T/PGI1-6A1 : 1
PG1-6A1"/PG1-6A1". Importantly, those were the only families in the survey of California
population progeny in 2023-24 where the additive and dominance effects of the PG1-6A1 lo-
cus could be estimated (where both parents were heterozygous for PG1-6A1 alleles). These
findings further substantiate that phenotypic selection alone has strongly swept the favorable

PG1-6A1 allele within the California population (Feldmann et al., 2023,2).
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Figure 3.11 displays the phenotypes of individuals observed within KASP marker genotypic
classes in the diversity and full-sib populations. The additive effect estimates for the PG1-
6A1 locus were nearly identical assay-to-assay and highly significant in the diversity popula-
tion (0.07-0.08 kg-force), whereas the dominance effects were smaller, mostly non-significant,
and slightly more variable (0.0-0.04 kg-force; Table 3.5; Figure 3.11). The same pattern was
observed in the full-sib population; however, the additive effect estimates were 50% smaller,
and the KASP markers were 30-49% less predictive. Wildtype PG1-6A1 homozygotes were
firmer, and the dominance of the wildtype PGI-6A1 allele was greater in the full-sib than
the diversity population (Table 3.5; Figure 3.11). The degree-of-dominance (|d/a|) estimates
for KASP markers associated with the PG1-6A1 locus ranged from 0.02 (nearly additive)
to 0.44 in the diversity population and 0.33 to 0.74 in the full-sib population, and increased
as the dominance of the wildtype allele increased.

The assay-to-assay variation observed within populations was attributed to differences in
KASP assay accuracy, identity-by-state variation, and stochastic variation (Table 3.5; Fig-
ure 3.11). We attributed the dampened effect of the PG1-6A1 locus in the full-sib population
to genetic background effects (Table 3.5; Figure 3.11). Although the analysis was limited to
four full-sib families because of the high frequency of the favorable PG1-6A1 allele, pheno-
types observed within PG1-6A1 genotypic classes suggest that favorable alleles for multiple
QTL have been targeted by phenotypic selection and accumulated in the California pop-
ulation (Figure 3.8 and 3.11; Tables 3.2 and 3.5). That conclusion is consistent with the
finding that long-term selection appears to have virtually eliminated genetic variation for
fruit firmness within the California population (Feldmann et al., 2024a,2), which we have
shown was substantially caused by the fixation of the favorable PG1-6A1 allele (Figure 3.13
and 3.14).

3.4.9. PG1-6A1 loss-of-function mutations more than double fruit firmness in
strawberry. The ecotypes and cultivars screened in this study spanned the domestication

spectrum from extremely soft-fruited wild relatives to extremely firm-fruited cultivars (Table
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3.5; Figure 3.11 and 3.14). Figure 3.15 displays the phenotypic means for 381 additional
cultivars and other hybrid individuals not shown in Figure 3.13. The firmest individual in
this study (17C140P012), a favorable allele homozygote (PG1-6A1"/PG1-6A17), withstood
0.45 kg-force of pressure (Figure 3.13). The UC cultivars 'Royal Royce’ (0.41-0.45 kg-force)
and "Surfline’ (0.41-0.44 kg-force) were similarly firm. At the other extreme were three
F. wirginiana ecotypes with extremely soft, fragile, and easily bruised fruit (0.07 to 0.08
keg-force). They were predicted to be homozygous for wildtype (unfavorable) alleles.

The phenotypes of several F. chiloensis and F. virginiana ecotypes are shown to the left of F.
X ananassa cultivars in Figure 3.13 and 3.15. The analysis shows that ecotypes of the wild
relatives are extremely to moderately soft-fruited (0.07 to 0.20 kg-force; § = 0.15). The fruit
firmness medians (7) and maximums (7,, 4y ) were lower for F. virginiana ecotypes (y = 0.15
and 7,4 = 0.18 kg-force) and F. chiloensis ecotypes (g = 0.16 and 7,4 = 0.20 kg-force)
than F. X ananassa cultivars (g = 0.24 and 3,, 4y = 0.45 keg-force) (Table 3.5; Figure 3.11
and 3.13). Statistics for the latter were estimated from the phenotypes of cultivars spanning
the fruit firmness range, from ’Sitka’ (P1616777; 3 = 0.09 kg-force) and ’Jucunda’ (P1551623;
7y = 0.10 kg-force) at the lower extreme to 'UC Surfline’ (g = 0.41 kg-force) and "UC Royal
Royce’ (g = 0.44 kg-force) at the upper extreme. The fruit firmness median for modern UC
cultivars (1988-present; § = 0.35 kg-force) was double that of heirloom cultivars (g = 0.18
kg-force) and slightly more than double that of wild species ecotypes (Figure 3.13).

We suspect that the phenotypic minimums for F. chiloensis and F. virginiana ecotypes were
overestimated (biased upward) because their fruit were often too soft to phenotype or even
disintegrated when fully ripe. Nevertheless, using the phenotypic extremes observed in the
diversity population, we estimated that domestication has increased fruit firmness by 628%
from the softest wild species ecotypes (0.07 kg-force) to the firmest cultivars (0.45 kg-force).
That estimate is remarkably close to the estimate of 768% reported for fruit firmness in a
study of historical genetic gains in strawberry (Feldmann et al., 2024a). That genetic gain

was substantially, but not solely driven by PG1-6A1 mutations, which appear to double fruit
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firmness in most genetic backgrounds, e.g., the mean fruit firmness predicted by the KASP
assay for the En/Spm INDEL was 7, /+ = 0.35 kg-force for the favorable allele homozygote
and y_,_ = 0.14 kg-force for the unfavorable allele homozygote (Table 3.5; Figure 3.11).

The PG1-6A1 genotypes predicted by the AX-184242253 SNP are depicted in a visual re-
construction of the history of breeding for increased fruit firmness in strawberry (Figure
3.13 and 3.14). The phenotypic means (7) displayed in Figure 3.13 were estimated from a
meta-analysis of phenotypic observations collected from field experiments over the course of
these studies (Figure 3.15). The hockey stick (exponential growth) curve for fruit firmness
uncovered by this analysis traces the increase in the frequency of the favorable PG1-6A1
allele and favorable allele homozygotes (PG1-6A1%/PG1-6A17) from the early 1950s on-
wards when moderately firm-fruited cultivars (PG1-6A1 heterozygotes) began emerging and
became catalysts for the expansion of strawberry production in California (Feldmann et al.,
2024a). The change in fruit firmness was negligible from 1850 to 1950, apart from notable

outliers, e.g., heirloom cultivars "Aberdeen’ and 'Titan’ (Figure 3.13).

3.4.10. Outliers and the prediction accuracy of identical-by-state genetic vari-
ants. This study could not unambiguously predict PG1-6A1 genotypes across diverse germpl
asm because the SNPs targeted for marker development are identical-by-state (IBS) (Table
3.2 and 3.5). They are highly predictive proxies for the causal mutations in elite UC genetics
but are less than 100% predictive across diverse germplasm. Using five array-genotyped
SNPs (AX-184953741, AX-184726882, AX-184210676, AX-184275052, and AX-184242253)
as proxies for PG1-6A1 alleles, the frequency of the wildtype PG1-6A1 allele was estimated
to range from 0.61 (AX-184275052) to 0.94 (AX-184242253) and 0.97 (AX-184953741) among
18 ecotypes of the wild relatives screened in this study. This highlights the breakdown in
prediction accuracy of non-causal (IBS) genetic variants in strawberry, a highly polymor-
phic and heterozygous species, e.g., using the AX-18424253 SNP, the F. chiloensis ecotype
ILE 02A (PI552038; 0.13 kg-force) and F. wvirginiana ecotype P1612320 (0.17 kg-force) were

predicted to be heterozygous for PG1-6A1 alleles. Their soft phenotypes, however, suggest
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that they are either homozygous or heterozygous for wildtype alleles. Also, the PGI1-6A1
gene was more strongly expressed in ripe fruit of ILE 02A than any of the F' X ananassa
cultivars screened by RT-PCR in this study (Figure 3.7). These examples highlight the am-
biguities associated with predictions using IBS genetic variants. Although only five of the
18 array-genotyped ecotypes were long-read sequenced, they were found to be homozygous
for the En/Spm deletion. The En/Spm INDEL appears to be highly predictive of wildtype
and mutant PG1-6A1 alleles that are nevertheless riddled with IBS genetic variants.

We suspect that the phenotype observed for ’Aberdeen’ in this study (1910; PI551630;
y = 0.35 kg-force) could be erroneous. ’Aberdeen’ was predicted to be homozygous for a
wildtype PG1-6A1 allele (Figure 3.13), was described by Darrow et al. (1966) as soft-fruited
and "too soft to ship”, and was soft-fruited (0.10 kg-force) in the Hardigan et al. (2021b)
study. Aberdeen could conceivably carry a favorable PG1-6A1 allele different from the one
found in modern UC cultivars or be a source of favorable alleles for loci other than PG1-6A1,
but that seems unlikely.

Titan (PI551398; 5 = 0.33 kg-force), another firm-fruited heirloom cultivar predicted to be
heterozygous for PG1-6A1 alleles, was as firm as many of the firm-fruited UC cultivars known
to be homozygous for the favorable allele (Figure 3.13). This cultivar could be heterozygous
for SNPs in LD with different favorable PG1-6A1 alleles or could carry favorable alleles at
loci other than PG1-6A1. Although we systematically sampled genetic diversity in the UC
and USDA genetic resource collections (https://www.ars-grin.gov/), deeper sampling in
other collections might identify additional outliers and sources of novel favorable alleles and

shed additional light on the domestication history of strawberry (Figure 3.13 and 3.14).

3.4.11. PG1-6A1, a single gene of pivotal importance to strawberry domesti-
cation. These analyses show that the mutant PG1-6A1 allele was swept up by phenotypic
selection over two decades (1953-1973) in the UC breeding program before mutant homozy-

gotes and long shelf life cultivars emerged that transformed strawberry production (Figure
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3.13, 3.14, and 3.15; Feldmann et al., 2024a). The fruit firmness transitions were exceed-
ingly fast compared to typical Neolithic plant domestication time scales (Doebley et al.,
2006; Meyer and Purugganan, 2013); however, strawberry domestication primarily occurred
in parallel with the Industrial Revolution and has been anything but typical (Darrow et al.,
1966; Feldmann et al., 2024a; Hardigan et al., 2021b). However, the central importance
of PG'1 mutations to strawberry domestication had not been previously established, despite
early clues from differential gene expression analyses (Salentijn et al., 2003). The phenotypic
range for early cultivars was found to be virtually identical to that for wild species ecotypes
in our study, most of which were predicted to be homozygous for the wildtype PGI1-6A1 al-
lele using KASP markers (blue points in Figure 3.13 and 3.15). ’Lassen’ (1935; 36C003P001;
not phenotyped), a descendant of 'Blakemore’ (1929; P1551421; 7 = 0.18 kg-force), was the
oldest UC cultivar predicted to be heterozygous for wildtype and mutant PG1-6A1 alleles
(Figure 3.14). GBS- and KASP-called genotypes suggest that the favorable PG1-6A1 allele
was present but infrequent in early cultivars, was present in UC genetics from inception, and
was inherited from 'Blakemore’ (Figure 3.14). We found that selection for increased fruit
firmness in the early 1950s began exposing the effect of the incompletely dominant favorable
PG1-6A1 allele transmitted by 'Tioga’ (1953; 53C009P002; 5 = 0.25 kg-force) and 'Tufts’
(1963; 63C120P011; 57 = 0.25 kg-force), both of which are descendants of 'Lassen’ and are
the second oldest UC cultivars predicted to be heterozygous for PG1-6A1 alleles (Figure
3.13 and 3.14).

These early heterozygotes were superseded in the 1970s by the emergence of super firm-
fruited PG1-6A1" homozygotes with greatly increased shelf life and decreased perishability,
starting with the cultivars 'Douglas’ (1972; 72C266P604; 5 = 0.13 kg-force) and ’Selva’
(1975; 75C071P107; 5 = 0.30 kg-force). Digging deeper into the breeding history, the
favorable PG1-6A1 allele found in modern UC cultivars was targeted by phenotypic selection
in segregating populations as early as 1953 and increased in frequency until favorable PG1-

6A1 allele homozygotes began emerging approximately two decades later (Figure 3.13 and
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3.14). There are thousands of descendants of 'Tioga’, "Tufts’, 'Douglas’, and ’Selva’ in UC
pedigree records, which include every UC cultivar developed since 1970, all of which appear
to be homozygous for the favorable PG1-6A1 allele (Figure 3.13 and 3.14). The abbreviated
family tree developed for UC cultivars, from 'Lassen’ and 'Tioga’ to ’Golden Gate’ and
‘Surfline’, illustrates the transition from soft- to firm-fruited phenotypes, the emergence and
flow of the favorable PG1-6A1 allele in UC parents and progeny, and the critical importance
of the favorable PG1-6A1 allele to strawberry domestication (Figure 3.14). The speed with
which PG1-6A1 mutant homozygotes emerged in the twentieth century seems exceedingly
slow from our modern, genome-informed breeding vantage point: marker-assisted selection
and CRISPR/Cas9 editing of the PG1-6A1 gene could conceivably collapse the half century
domestication process into mere two years (Lépez-Casado et al., 2023; Rodriguez-Leal et al.,

2017; Zsogon et al., 2018).

3.5. Conclusions

These results showed that PG1-6A1 is a major player in determining fruit firmness. The
expression of PG1-6A1 was significantly higher in soft-fruited genotypes compared to firm-
fruited ones, suggesting a negative correlation between PG1-6A1 expression and fruit firm-
ness. The PG locus was significantly associated with several structural variants, which
were highly predictive of firmness phenotypes. Furthermore, KASP markers for the PG1-
6A1-associated SNPs and the En/Spm INDEL might efficiently facilitate the selection of
firmer genotypes to improve fruit firmness and shelf life in strawberry breeding programs.
Additionally, this study identified additional genes associated significantly with fruit firm-
ness, highlighting the co-expression between PG1-6A1and genes such as FaSAMDC and
BGAL16. Overall, these findings provide valuable insights into the genetic architecture of
fruit firmness in strawberries and offer practical tools for its improvement through targeted

breeding efforts.
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3.6. Abbreviations

EMM, estimated marginal means; GWAS, genome-wide association study; QTT, quantita-
tive trait transcript; MAS, marker-assisted selection; SNP, single nucleotide polymorphism;
INDEL, insertion-deletion; LMM, linear mixed model; REML, restricted maximum likeli-
hood; PVE, phenotypic variance explained; GVE, genetic variance explained; qPCR, quan-
titative polymerase chain reaction; KASP, Kompetitive allele-specific PCR; LD, linkage dis-

equilibrium; TE, transposable element; RNA-seq, RNA sequencing.
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FiGure 3.11. Fruit firmness variation among 92 soft- to firm-fruited individu-
als (the diversity population; left column) and 152 full-sib progeny (the full-
sib population; right column) genotyped with KASP markers developed for an
Enhancer/Suppressor-mutator (En/Spm) insertion-deletion (INDEL) and sin-
gle nucleotide polymorphisms (SNPs) associated with the PG1-6A1) locus. The
points display phenotypic means (estimated marginal means) for 92 individuals in the diver-
sity population (four observations/individual) and 152 individuals in the full-sib population
(six observations/individual). The box displays the genotypic median and interquartile range
within each genotypic class for each KASP marker, where - /- are unfavorable allele homozy-
gotes, +/- are heterozygotes, and +/+ are favorable allele homozygotes. Genotypes and
phenotypes are shown for four KASP markers associated with the PG1-6A1 locus: (A) K-
676 (Mb 27,676,285); K-SPM (Mb 27,743,085); K-732 (Mb 27,751,732); and K-253 (Mb
27,888,596).
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FI1GURE 3.12. Allele discrimination scatter plot displaying the fluorescence intensity of FAM
signal on the x-axis and HEX signal on the y-axis for 92 octoploid strawberry individuals
(the diversity population) genotyped with four KASP markers: (A) K-676; (B) K-SPM; (C)
K-732; and (D) K-253.
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Ficure 3.13. Fruit firmness phenotypes of wild relatives, cultivars, and other
genetic resources of cultivated strawberry originating 1850 to present. The birth
years of F. X ananassa cultivars are plotted on the x-axis. The phenotypes of several F.
chiloensis and F. virginiana ecotypes are shown in random order to the left of 1850 on the
x-axis. Genotypes of the AX-184242253 SNP were used to predict to PG1-6A1 unfavorable
allele homozygotes (-/-; blue points), heterozygotes (+/-; red points), and favorable allele ho-
mozygotes (+/+; brown points), where the favorable (mutant) allele (PG1-6A27") increases
fruit firmness. See Figure 3.15 for a version of this figure showing additional cultivars.
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FiGURE 3.14. Tracing the ancestry of the favorable (mutant) PG1-6A1 allele
found in firm-fruited UC cultivars. The family tree illustrates a small fraction of
the thousands of descendants of "Tioga’ and "Tufts’ in the pedigree records of firm-fruited
progeny developed at UC, including every UC cultivar developed since 1970. Genotypes
of the AX-184242253 SNP were used to predict PG1-6A1 unfavorable allele homozygotes
(-/-; blue points), heterozygotes (+/-; red points), and favorable allele homozygotes (+/+;
brown points), where the favorable (mutant) allele (PG1-6A2%) increases fruit firmness.
Gray nodes identify individuals that were not genotyped or phenotyped, many of which are
extinct.
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FI1GURE 3.15. An expanded version of Figure 3.13 showing the fruit firmness phe-
notypes of 500 wild relatives, cultivars, and other genetic resources of cultivated
strawberry originating 1850 to present. The birth years of F. X ananassa cultivars and
other hybrid individuals are plotted on the x-axis. The phenotypes of several F. chiloensis
and F. wrginiana ecotypes are shown in random order to the left of 1850 on the x-axis.
Genotypes of the AX-184242253 SNP were used to predict to PG1-6A1 unfavorable allele
homozygotes (-/-; blue points), heterozygotes (+/-; red points), and favorable allele homozy-
gotes (+/+; brown points), where the favorable (mutant) allele (PG1-6A17") increases fruit
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