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REVIEW Open Access

The gut microbiome’s role in the
development, maintenance, and outcomes
of sepsis
Max W. Adelman1* , Michael H. Woodworth1, Charles Langelier2, Lindsay M. Busch3, Jordan A. Kempker4,
Colleen S. Kraft1,5 and Greg S. Martin4,6

Abstract

The gut microbiome regulates a number of homeostatic mechanisms in the healthy host including immune
function and gut barrier protection. Loss of normal gut microbial structure and function has been associated with
diseases as diverse as Clostridioides difficile infection, asthma, and epilepsy. Recent evidence has also demonstrated a
link between the gut microbiome and sepsis. In this review, we focus on three key areas of the interaction between
the gut microbiome and sepsis. First, prior to sepsis onset, gut microbiome alteration increases sepsis susceptibility
through several mechanisms, including (a) allowing for expansion of pathogenic intestinal bacteria, (b) priming the
immune system for a robust pro-inflammatory response, and (c) decreasing production of beneficial microbial
products such as short-chain fatty acids. Second, once sepsis is established, gut microbiome disruption worsens and
increases susceptibility to end-organ dysfunction. Third, there is limited evidence that microbiome-based
therapeutics, including probiotics and selective digestive decontamination, may decrease sepsis risk and improve
sepsis outcomes in select patient populations, but concerns about safety have limited uptake. Case reports of a
different microbiome-based therapy, fecal microbiota transplantation, have shown correlation with gut microbial
structure restoration and decreased inflammatory response, but these results require further validation. While much
of the evidence linking the gut microbiome and sepsis has been established in pre-clinical studies, clinical evidence
is lacking in many areas. To address this, we outline a potential research agenda for further investigating the
interaction between the gut microbiome and sepsis.
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Background
Sepsis, a dysregulated immune response to infection
resulting in end-organ damage and potentially death, is a
major public health threat [1]. Sepsis affects 1.7 million
patients in the USA annually with mortality of up to
50% [2, 3]. Despite high incidence, morbidity, and mor-
tality, there are few established treatments for sepsis.

The mainstays of therapy—antibiotics and supportive
care—have not changed significantly for decades.
The gut microbiome modulates several responses to

sepsis and is a potential therapeutic target in sepsis [4].
Loss of normal gut microbiome structure and function
has been implicated in several diseases including Clostri-
dioides difficile infection (CDI), inflammatory bowel dis-
ease, and obesity [5]. While the pathogenesis of sepsis is
multifactorial and incompletely understood, there is in-
creasing evidence that gut microbiome disruption pre-
disposes to sepsis and negatively impact sepsis outcomes
[6]. In this review, we highlight this evidence, review the
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use of fecal microbiota transplant (FMT) in sepsis, and
outline research priorities for clarifying the role of the
gut microbiome in sepsis. Although research into associ-
ations between the gut microbiome and sepsis has been
increasing, differences in methods and outcome mea-
sures make comparisons across studies difficult. Table 1
provides an overview of important terminology for inter-
preting microbiome research and key terms used in this
review.

Gut microbiome disruption predisposes to sepsis
Although thought to be sterile in utero, the neonatal in-
testine is colonized at birth. Over the first several weeks
of life, acquisition of phylogenetic diversity, especially
with obligate anaerobes, protects from pathogen
colonization [7, 8]. A 2019 prospective cohort study of
over 200 preterm infants found that increased bacterial
diversity and anaerobic bacterial colonization of the neo-
natal gut microbiome protects against sepsis [9]. Import-
antly, bacterial species that predominate in the absence
of anaerobes, including Staphylococcus species and
Escherichia coli, are those that translocate and cause
bacteremia [7, 9, 10].
Less is known about gut microbiome changes that pre-

dispose adults to sepsis, but an early study demonstrated
a pathogenic role of gut microbiome colonization and
translocation in post-operative sepsis [11]. There are few
studies that prospectively track gut microbiome changes
prior to sepsis onset, and all have only been published as
conference abstracts to date [12–14]. However, these
preliminary studies indicate that patients with low gut
microbiome diversity [12, 14] and high relative abun-
dance of pathogenic gram negatives and enterococci [13]

are at higher risk of sepsis. Other studies have shown
similar risk factors for bacteremia in hematopoietic stem
cell transplant recipients [15, 16] and for infection in in-
tensive care unit (ICU) patients [17].
Two recent large epidemiologic studies provide cir-

cumstantial evidence that gut microbiome disruption is
a risk factor for sepsis [18, 19]. Although neither of these
studies specifically characterized the gut microbiomes of
included patients, they examined the impact of CDI and
broad-spectrum antibiotics on sepsis development. Be-
cause CDI and broad-spectrum antibiotics are closely
linked with gut microbiome disruption, patients who
had CDI or received broad-spectrum antibiotics should
have more significant microbiome disruption than those
who did not. The first, a 2015 study of over 10,000
Medicare recipients, examined the risk of sepsis after an
episode of CDI [18]. In this cohort, patients were 70%
more likely to develop severe sepsis after hospitalization
for CDI than after hospitalization for an infectious cause
other than CDI. The second study looked at risk of se-
vere sepsis after receipt of different classes of antibiotics
in over 12 million patients [19]. Patients who received
antibiotics most associated with CDI (e.g., 3rd and 4th
generation cephalosporins, carbapenems, and fluoroqui-
nolones) had 65% higher odds of readmission for severe
sepsis or septic shock than patients who did not receive
antibiotics. This association was attenuated in patients
who received antibiotics less associated with CDI (e.g.,
1st and 2nd generation cephalosporins and macrolides).
These studies therefore suggest a strong correlation be-
tween gut microbiome disruption and subsequent sepsis
development. Although the correlation may be strong,
the mechanisms by which these microbiome changes

Table 1 Glossary of key concepts for interpreting microbiome research

Concept Definition Notes

Techniques for identifying microbiome components

Culture-based Uses traditional techniques for culturing bacteria to determine
which species are present

Some species (e.g., anaerobes) are difficult to culture; once
cultured, definitive identification may be difficult

16S rRNA
sequencing

Uses a conserved region of bacterial RNA to identify bacteria,
combined with a species-specific sequence to determine which
species are present

Unable to identify genes or presence of non-bacterial compo-
nents (e.g., protozoa or fungi)

Metagenomic
sequencing

Uses “unbiased” sequencing to determine all genes present in a
sample and construct community structure; allows for
determination of community composition and function

Remains relatively expensive, although cost has decreased;
applications are still most suitable for research

Classification of microbiome composition

Abundance Relative amount of specific bacterial groups in a sample Most techniques only allow for determination of relative
abundance of bacteria, not absolute (i.e., unable to determine
total number of bacteria present in a sample)

α-diversity Within-group microbiome diversity Describes the makeup of a microbial community from one
sample (e.g., one patient or one body site)

β-diversity Between-group microbiome diversity Allows for comparisons between groups of samples

Dysbiosis Describes a microbial community that has been altered from its
normal structure

Can be nonspecific; for example, unclear if this refers to
decreased relative abundance of one group, decreased α-
diversity, or another measure
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affect sepsis risk, and potential confounders of this risk, were
not evaluated in these studies and require clarification.
In addition to predisposing to sepsis, decreased gut

microbiome diversity modulates host response to sepsis
in animal models. In one experiment, genetically identi-
cal mice purchased from different vendors had compos-
itionally distinct gut microbial communities (i.e., β-
diversity) and different amounts of diversity (i.e., α-
diversity). When subjected to experimental abdominal
sepsis, mice with greater α-diversity were more likely to
survive than those with lower α-diversity (47% vs. 10%
7-day survival). Co-housing mice led to equilibration of
both α- and β-diversity between groups with resultant
improved sepsis survival among mice previously more
likely to die [20]. Similarly, the gut microbiomes of mice
who survived sepsis were protective against sepsis when
given to sepsis-susceptible mice via FMT [21]. Similar
effects of microbiome depletion and loss of diversity on
mortality have been shown in several experimental
models of sepsis [22, 23], including models of influenza
A and pneumococcal pneumonia [24, 25]. Potential
mechanistic links between gut microbiome diversity and
sepsis susceptibility are discussed in the next section.
Whether gut microbiome disruption prior to sepsis

onset worsens sepsis outcomes in humans remains un-
known. One randomized controlled trial (RCT) exam-
ined the impact of pre-treatment with broad-spectrum
antibiotics on outcomes in healthy young men given
intravenous lipopolysaccharide (LPS) [26]. Although
subjects randomized to broad-spectrum antibiotics had
decreased α-diversity and lower abundance of several
beneficial gut bacteria, there was no effect on surrogate
markers of sepsis severity including vital signs and fi-
brinolysis [26]. As this study shows, gut microbiome
composition and diversity are unlikely to account for all
of the clinical heterogeneity seen in sepsis. The gut
microbiome is likely one of many factors that regulate
systemic sepsis response; more research is needed to
clarify interactions between regulatory mechanisms.

Mechanisms of increased sepsis susceptibility
Selection for pathobionts
In the presence of protective commensal bacteria, bac-
teria with pathogenic potential that reside in the intes-
tinal lumen of healthy hosts (“pathobionts”) may not be
able to proliferate and cause disease [27]. Loss of pro-
tective bacterial taxa allows for pathobiont proliferation
[28, 29]. In a key early study, when mice were exposed
to colonic inflammation and antibiotics, the gut micro-
biome was characterized by expansion of a pathogenic
clone of multi-drug resistant (MDR) E. coli, which dis-
seminated systemically [30].
In a separate experiment, mice were fed a high- or

normal-fat diet, given broad-spectrum antibiotics, and

then subjected to partial hepatectomy. The high-fat diet
mice had decreased gut microbiome α-diversity, were
less able to survive partial hepatectomy, and had expan-
sion of MDR gram-negative bacteria compared to mice
fed a normal diet [31]. High-fat diet mice had higher
mortality and more bacterial dissemination from the gut,
demonstrating that decreased gut microbiome diversity
can predispose to intestinal translocation even if the pri-
mary injury is remote.

Altered immune response
The microbiome’s influence on immune development be-
gins with colonization of the neonatal gastrointestinal
tract at birth [7, 32]. Germ-free neonatal mice have de-
creased development of bone marrow myeloid precursors
and resultant decreased myeloid lineage cells in the spleen,
rendering them susceptible to E. coli, Listeria monocyto-
genes, and Staphylococcus aureus sepsis [33, 34]. Intestinal
re-colonization can reduce immunologic dysfunction that
predisposes to increased sepsis susceptibility [34].
After intestinal colonization during the neonatal period,

differences in gut microbiome composition direct differen-
tial immune responses to sepsis. Mice with increased gut
microbiome α-diversity have improved sepsis survival,
which is mediated by a distinct immunophenotype charac-
terized by an increased CD4+ T cell response [20]. Enhan-
cing microbiome α-diversity in mice by co-housing not
only led to increased sepsis survival, but also changed the
immune response to sepsis [20]. Mice who survived sepsis
had improved outcomes when exposed to sepsis with simi-
lar bacteria as those that colonized their intestines, due to
improved T cell response against those specific bacterial
antigens [35]. In addition to impacting T cell responses, the
gut microbiome also influences humoral immunity: com-
mensal bacteria direct IgA production, which is protective
in subsequent sepsis through bacterial homology [36].
These studies indicate a role for the gut microbiome in
“priming” the immune system to respond to sepsis.
After sepsis onset, gut microbiome changes character-

ized by decreased abundance of gut commensals affect
inflammatory responses. Animal studies have demon-
strated conflicting results regarding specific inflamma-
tory pathways, reflecting the complexity of the
relationship between the gut microbiome and the im-
mune system. For example, in a mouse model of Strepto-
coccus pneumoniae sepsis, pre-treatment with oral
antibiotics prior to sepsis onset was associated with
lower levels of lung TNF-α, a pro-inflammatory cytokine
[25], whereas others have shown the opposite effect of
gut microbiome depletion on TNF-α [21, 22, 37–39].
Despite differences in specific cytokine expression be-
tween studies, the overall effect of alteration of normal
gut microbiome structure prior to sepsis onset appears
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to be a more robust inflammatory response to sepsis [21,
22, 25, 37–41].
Differences in cytokine expression may be due to the

effect of commensal bacteria on specific immune path-
ways. A study of 500 healthy adults demonstrated inter-
actions between gut microbial commensal species and
cytokine expression by correlating gut microbiome com-
position with cytokine response when peripheral blood
mononuclear cells were stimulated by microbial antigens
ex vivo [42]. For example, the authors showed that the
commensal bacteria Coprococcus comes influences pro-
duction of cytokines IL-1β and IL-6 to modulate the
acute inflammatory response to Candida albicans infec-
tion [42].
While important, ex vivo studies do not fully replicate

conditions present during sepsis in humans. Outside of a
few small studies, there is little human data on the gut
microbiome’s impact on immune modulation in sepsis
[26, 43–46]. One study did not find a relationship be-
tween the gut microbiome and immune response in ex-
perimentally induced sepsis [26], whereas other studies
in clinical sepsis have shown a link between gut micro-
biome alterations characterized by an increase in patho-
bionts and an exuberant immune response [43–45].
Given the importance of immune dysregulation in sepsis
pathogenesis [47], the gut microbiome’s role in immune
response to sepsis deserves further study.

Decreased production of beneficial microbial products
Commensal members of the gut microbiome produce
short-chain fatty acids (SCFAs) which regulate several
functions of the gut microenvironment [48]. For ex-
ample, Clostridia and Faecalibacterium produce the
SCFA butyrate, which influences colonic regulatory T
cell differentiation through upregulation of Foxp3, a key
regulatory T cell transcription factor [49], and inhibits
histone deacetylation to decrease NF-κB-regulated pro-
inflammatory cytokines, including TNF-α and IL-6 [50].
In addition to their immune effects, SCFAs are crucial

for epithelial cell function [51]. Acetate, produced by the
gut commensal Bifidobacterium, protected mice from in-
testinal E. coli translocation through its effect on epithe-
lial cell function [52]. Epithelial cell metabolism of
butyrate decreases tissue oxygen concentration, thereby
stabilizing HIF-1, a transcription factor that regulates
several genes important for barrier function [53]. Prelim-
inary data indicate that lower abundance of butyrate-
producing bacteria may be a risk factor for sepsis onset
[12], and increased gut membrane permeability is one
plausible explanation that requires validation. For ex-
ample, elevated serum markers of gut permeability in-
cluding zonulin and FABP2 are associated with a gut
microbiome with predominant gram negatives [54], but

if these markers are elevated prior to sepsis onset in as-
sociation with microbiome disruption is unknown.

Sepsis worsens gut microbiome disruption
As described above, alterations in the gut microbiome
can predispose to sepsis by allowing for proliferation of
pathobionts, promoting a dysregulated immune re-
sponse, and decreasing production of beneficial SCFAs.
Gut microbiome changes not only affect outcomes prior
to sepsis onset: after sepsis onset, alterations in normal
gut microbiome structure can worsen and contribute to
worse outcomes (Fig. 1).
The mechanisms underlying sepsis-driven gut micro-

biome changes are unclear. Antibiotics are a major
driver of sepsis-related microbiome alteration [55]. How-
ever, opioids [56], parenteral nutrition [57], and proton-
pump inhibitors [58] also have an effect. Clearly, the
benefits of these interventions likely outweigh their dele-
terious microbiome impacts. An understanding of the
impact of critical illness and associated interventions on
the gut microbiome is necessary to inform research to
limit these adverse effects.
Several prospective cohort studies have identified an

association between decreased gut microbiome diversity
in sepsis and higher relative abundance of potentially
pathogenic bacteria including aerobic gram negatives
[39, 46, 56, 59–61]. The earliest study to examine micro-
biome changes in critically ill patients showed that pa-
tients with systemic inflammatory response syndrome
(SIRS) had lower abundance of obligate anaerobes, and
their gut microbiomes were enriched with potential
pathogens such as Staphylococcus and Pseudomonas
[46]. As expected, a significant number of these patients
were being treated with antibiotics, which confounded
the relationship between sepsis and observed micro-
biome changes.
Early studies relied on culture-based techniques for

determination of microbiome composition (Table 1).
With increasing use of culture-independent techniques
including 16S ribosomal RNA (rRNA) and metagenomic
next-generation sequencing, recent studies have detected
small changes in abundance of difficult-to-culture bac-
terial commensals that may impact sepsis outcomes. For
example, Faecalibacterium, which is associated with
pathways that decrease intestinal inflammation, generally
occupies a small niche in the gut microbiome and is
wiped out during sepsis [59, 60]. The disappearance of
Faecalibacterium and other commensals allows hospital-
acquired pathogens such as Enterococcus to colonize the
intestinal microbiome during sepsis [62]. In turn, the in-
testinal microbiome acts as a reservoir for MDR organ-
isms [28, 56]. These colonizing pathogens may
disseminate and cause bacteremia later in the course of
sepsis [46, 63].
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In addition to allowing domination by organisms with
significant pathogenic potential, alterations in micro-
biome function worsen detrimental changes seen prior
to sepsis onset. For example, patients with sepsis have
fewer fecal SCFAs [46, 64], which may worsen gut epi-
thelial integrity and immune dysfunction seen in sepsis
[4, 47]. No studies have tracked longitudinal microbiome
changes in sepsis survivors after discharge from the hos-
pital to determine how long these microbiome changes
persist. However, preliminary studies indicate that de-
creased SCFA concentrations last through at least 6
weeks of hospitalization, corresponding with persistent
pathobiont colonization [64].

Gut microbiome and end-organ damage in sepsis
Sepsis affects end-organ damage through several mecha-
nisms, including alterations in gut microbiome structure
and function. Gut microbiome-derived SCFAs protected
against acute kidney injury (AKI) in a mouse model of
sepsis [65] and a specific gut microbiome composition
decreased liver injury in a separate experiment [21]. Fas-
cinatingly, the gut microbiome appears to impact delir-
ium not only indirectly via inflammatory pathways, but
also by bacterial translocation to the brains of septic pa-
tients with gut-derived bacteria [41, 44]. In an animal
experiment on sepsis-induced delirium, mice with sepsis
had decreased microbiome diversity and more severe
neurocognitive damage, including more seizures, and
FMT lessened the detrimental neurologic impact [41].

A relationship between the gut and lung microbiome
has been established by several key studies but still needs
to be translated to patients with sepsis. In one study, the
lung microbiome of mice with non-pulmonary sepsis
was enriched with gut bacteria, including Enterococcus,
even though the mice did not have clinical bacteremia
or pneumonia [66]. Importantly, this was true whether
sepsis was induced via an intestinal puncture model or
through systemic LPS injection, indicating that systemic
inflammation was sufficient to affect end-organ function
and microbiome composition.
In humans, patients with the acute respiratory distress

syndrome (ARDS) have significantly higher abundance
of enteric bacteria in their lung microbiomes than do
healthy controls, and this correlates with higher markers
of systemic inflammation [66]. Although not specific to
sepsis, gut microbiome changes in hematopoietic stem
cell recipients precipitated pulmonary complications,
and in one patient, intestinal expansion of Klebsiella
pneumoniae closely predated K. pneumoniae pneumonia
[67]. One plausible explanation for this is the “gut-lymph
theory,” by which increased intestinal permeability leads
to bacterial translocation to lymphatics and ultimately
the pulmonary circulation via the thoracic duct [68].
Despite increasing evidence that the gut microbiome

affects end-organ damage in non-human studies and in
diseases other than sepsis, only one small study in
humans has looked at whether gut microbiome features
(including decreased diversity and changes in compos-
ition) are associated with end-organ dysfunction in

Fig. 1 Conceptual illustration of the pathway between gut microbiome disruption and sepsis. Gut microbiome alteration predisposes to selection for
pathobionts (potentially pathogenic bacteria that can reside in the gut microbiome), immune dysregulation, and decreased production of short-chain
fatty acids, beneficial products produced by the gut microbiome. These changes can lower the threshold for sepsis development. Sepsis and
treatment with antibiotics can drive worsening microbiome disruption in a vicious cycle, contributing to ongoing end-organ dysfunction. ARDS, acute
respiratory distress syndrome; FMT, fecal microbiota transplant; MDRO, multi-drug resistant organism; SCFA, short-chain fatty acid
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sepsis, including AKI and ARDS, and did not identify an
effect on these outcomes [59]. Gut microbiome compos-
ition with fewer total obligate anaerobes [63] and abun-
dant Enterococcus [17] at sepsis onset have been
associated with mortality, whereas other studies have
shown that microbiome diversity does not appear to be
associated with mortality in sepsis [17, 59, 61]. In some
of these studies, not all patients had sepsis, and sepsis
patients were not analyzed as a subset [17, 59, 61]. Fur-
ther studies designed to specifically track adverse out-
comes in sepsis are needed to characterize the impact of
gut microbiome changes, both composition and diver-
sity, on sepsis outcomes.

Microbiome-based therapeutics
Selective digestive decontamination, probiotics and
synbiotics
The past 30 years have seen increasing interest in targeting
the gut microbiome to improve outcomes of critically ill
patients. One microbiome-related approach to preventing
sepsis from MDR bacteria has involved “selective” oral or
digestive decontamination using oral or parenteral antimi-
crobials with theoretical activity against many resistant
healthcare-associated pathogens [69, 70]. Although some
data do not show significant long-term effects of these
strategies [71], concern for re-colonization with MDR bac-
teria soon after treatment discontinuation and undesired
selection for even more resistant organisms in the micro-
biome has limited uptake of selective oral and digestive
decontamination [70, 72].
Probiotics, i.e., bacteria associated with potential benefi-

cial properties, are perhaps the most studied microbiome-
based intervention to prevent sepsis and improve sepsis
outcomes. A 2017 RCT of over 4500 healthy newborns in
rural India found that a synbiotic (i.e., a probiotic com-
bined with a non-digestible compound that the probiotic
requires for metabolism), in this case, Lactobacillus plan-
tarum and fructooligosaccharide, reduced neonatal sepsis
or death by 40% [73]. Whether these results are
generalizable to regions with fewer nutritional deficiencies
or infants at higher risk is uncertain.
Furthermore, the effect of specific probiotic species

and strategies to ensure probiotic colonization require
investigation. A RCT of the probiotic Bifidobacterium
breve as prophylaxis in over 1000 very preterm infants at
high risk of sepsis did not demonstrate reduction in sep-
sis incidence or mortality compared to placebo [74]. A
sub-analysis using 16S rRNA sequencing showed that
probiotic administration was not associated with micro-
biome composition or α-diversity, and only 70% of in-
fants who received the probiotic were colonized with
Bifidobacterium breve, indicating that probiotic adminis-
tration alone is not sufficient for colonization and subse-
quent beneficial effects [75]. The effect of probiotics also

may be specific to the formulation studied. Because for-
mulations vary, this may decrease the overall signal for
probiotic efficacy.
Studies of probiotics in critically ill adults have shown

similarly mixed results, but a meta-analysis of probiotics
for infection prophylaxis in critically ill patients demon-
strated an association between probiotics and reduction
in infections and ventilator-associated pneumonia [76].
The included trials were heterogeneous with respect to
inclusion criteria and probiotic species used and only a
subset specifically included patients with sepsis. Concur-
rent broad-spectrum antibiotic use in patients with sep-
sis may limit probiotic colonization and beneficial
effects. Furthermore, concerns over probiotic-associated
bacteremia, as demonstrated in a recent genomic study
[77], have given clinicians pause.
Previous studies have focused largely on probiotics con-

taining Lactobacillus and Bifidobacterium species, but sev-
eral other next-generation probiotic species appear
promising in pre-clinical studies. Akkermansia, for ex-
ample, is associated with increased sepsis survival in mice
[37]; in a separate study, Akkermansia directed T cell dif-
ferentiation [78], providing one mechanism by which
Akkermansia may improve sepsis outcomes. Probiotic
“consortia,” i.e., groups of probiotics, can theoretically be
manufactured to achieve specific synergistic effects. For
example, one probiotic consortium degraded ampicillin
and decreased colonization with vancomycin-resistant En-
terococcus (VRE) in antibiotic-treated mice [79]; it is
plausible that this could decrease subsequent VRE
bacteremia. More mechanistic studies are needed to deter-
mine the impact of specific next-generation probiotic spe-
cies and consortia prior to translating these findings into
probiotics for patients with or at risk of sepsis.

Fecal microbiota transplant
While probiotics and synbiotics contain only one or a
small number of bacterial species, FMT potentially al-
lows for colonization of an entire donor gut microbiome
in a recipient. Therefore, FMT may allow for more ro-
bust microbiome reconstitution and impact sepsis out-
comes through several mechanisms including SCFA
production and immune regulation.
There are five case reports of FMT for non-CDI sepsis

[43, 80–82] (Table 2). These reports vary in quality, as
some do not specify the suspected cause of sepsis [43,
80, 82]. Prior to FMT receipt, these patients suffered
from prolonged ICU admissions with complications in-
cluding bacteremia, MDR bacterial infection, respiratory
failure, and organ dysfunction. Notably, many of the
cases had prolonged hemodynamic compromise despite
not having a specific defined infection for up to weeks
prior to FMT [43, 80, 82]. This may indicate a prolonged

Adelman et al. Critical Care          (2020) 24:278 Page 6 of 10



immune-dysregulated state associated with sepsis and its
numerous consequences.
In four of five cases, FMT was temporally associated

with improved organ function, resolution of sepsis, and
survival [43, 80, 82]. Prior to FMT, the patients that sur-
vived had gut microbiomes characterized by abundance of

hospital-associated pathogenic bacteria. After FMT, the
patients’ microbiomes were similar to those of their stool
donors and had higher abundance of commensal bacteria
[43, 80, 82]. In one case, FMT correlated with lower sys-
temic levels of pro-inflammatory cytokines, although the
direct impact of FMT remains uncertain [43].

Table 2 Published case reports on the use of fecal microbiota transplant (FMT) to treat sepsis (other than sepsis secondary to
Clostridioides difficile infection)

Author, year
[citation]

Location Patient age, sex,
comorbidity

ICU complications Sepsis
etiology

Gut microbiome
changes with FMT

Outcome

Li, 2014 [80] China 29F, UC Bacteremia, shock Unclear;
prolonged
diarrhea

• Pre: few anaerobes, abundant
pathogens including Enterobacter

Clinical
improvement

• Post: shifted to donor stool;
increased Bacteroides and
Firmicutes

Li, 2015 [43] China 44F, s/p proximal
gastrectomy and
vagotomy for NET

Shock, respiratory
failure (V-V ECMO),
AKI (CRRT)

Unclear;
prolonged
diarrhea

• Pre: few anaerobes, abundant
pathogens including Enterobacter
and Klebsiella

Clinical
improvement

• Post: increased Firmicutes;
decreased pathobionts

Wei, 2016 [82] China 65M, hemorrhagic CVA Shock, respiratory
failure, bacteremia

Unclear;
prolonged
diarrhea

• Pre: different from donor Clinical
improvement

• Post: increased Firmicutes,
Bacteroides

Wei, 2016 [82] China 84M, ischemic CVA AKI (CRRT) Unclear;
prolonged
diarrhea

• Pre: different from donor Clinical
improvement

• Post: increased Firmicutes,
decreased pathobionts

Gopalsamy, 2018 [81] USA 57M, TBI MDRO infection,
respiratory failure

Pneumonia Not studied Death

AKI acute kidney injury, CRRT continuous renal replacement therapy, CVA cerebrovascular accident, F female, ECMO extra-corporeal membrane oxygenation, FMT
fecal microbiota transplant, ICU intensive care unit, M male, MDRO multi-drug resistant organism, NET neuroendocrine tumor, TBI traumatic brain injury, UC
ulcerative colitis, USA United States of America, V-V veno-venous

Table 3 Proposed research priorities for study of the interaction between the gut microbiome and sepsis

Current knowledge gap: Studies should address:

The role of gut microbiome alteration on sepsis
predisposition

• Longitudinal microbiome changes in groups at high risk for sepsis

• Microbiome characteristics that indicate high risk for sepsis, including whether these can be
used for prediction/diagnosis

• Mechanisms linking increase or decrease of specific taxa to sepsis risk

• How gut microbiome alterations with loss of protective taxa impacts immune dysregulation
predisposing to sepsis

• Impact of SCFAs on protection from sepsis

• If altering the gut microbiome can decrease sepsis risk

How the gut microbiome impacts sepsis outcomes • Correlation of markers of gut microbiome alteration with end-organ dysfunction and
mortality

• Whether specific patterns of alteration can predict adverse outcomes in sepsis

• Gut microbiome changes that contribute to dysregulated immune responses of sepsis

• Role of pathobionts and antibiotic resistance genes in antibiotic selection

Whether microbiome-directed therapeutics can im-
pact sepsis outcomes

• Which patients with microbiome alteration may benefit from attempting to restore the gut
microbiome to lower risk of sepsis

• Which patients with sepsis may benefit from microbiome-directed therapeutics to improve
sepsis outcomes

• The ideal method of gut microbiome therapeutics (i.e., probiotics, FMT)

• The specific dose, timing, and frequency of FMT that may benefit patients in these groups

FMT fecal microbiota transplant, SCFA short-chain fatty acid
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Although these case reports are intriguing, FMT for
sepsis is clearly preliminary. Research to identify patients
who may benefit and effect on patient-centered out-
comes could inform its utility in broader application for
sepsis. Additionally, multiple recent reports of E. coli in-
fections acquired via FMT, including several resulting in
death, highlight the need for careful donor screening, es-
pecially in patients with significant medical comorbidi-
ties [83, 84].

Conclusions and future directions
Gut microbiome disruption appears to be a risk factor
for sepsis and subsequent organ dysfunction. The gut
microbiome affects host susceptibility and response to
sepsis through a number of pathways. Specifically, fewer
beneficial taxa allow for pathobiont colonization and
alter host immune response and SCFA production. A
direct link between abnormal gut microbiome develop-
ment and sepsis risk has been established in neonates.
However, there are several aspects of the relationship be-
tween the gut microbiome and sepsis that require fur-
ther study (Table 3). In adults, there is evidence of a
correlation between gut microbiome alteration and sep-
sis risk; however, the potential confounders require fur-
ther investigation. Once sepsis develops, the gut
microbiome appears to effect end-organ dysfunction in-
cluding ARDS and delirium, although mechanisms re-
quire further validation. Lastly, strategies to alter the gut
microbiome, including FMT, either prior to sepsis onset
or during the course of sepsis may be beneficial for se-
lected patients with significant change in microbiome
structure and function. Before further uptake of FMT in
sepsis, several factors including patient selection, timing,
and optimal route of administration require further re-
search. Hopefully, improved mechanistic insights into
the interaction between the gut microbiome and sepsis
will allow for development of novel microbiome-based
therapeutics to mitigate sepsis morbidity and mortality.
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