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ABSTRACT OF THE DISSERTATION 

Analytical Strategies for the Interpretation of DNA Methylation 

and Gene Expression Data 

by 

Larry Tao Lam 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2016 

Professor Matteo Pellegrini, Chair 

RNA expression profiling and DNA methylation analysis have been essential tools in 

understanding genomic mechanisms underlying human health and disease. Although many 

annotation databases are publically available, alternative data resources may be overlooked. This 

work focuses on the development of computational tools and strategies that incorporate results 

from both the leading functional annotation tools as well as working directly with publicly 

available expression and methylation datasets. Chapter 1 outlines the leading approaches for 

interpreting DNA methylation and RNA expression analyses. In addition, chapter 1 provides a 

brief background of Burkitt’s lymphoma and amyotophic lateral sclerosis (ALS) for studies 

discussed in later chapters. In chapter 2, we developed a set of methylation characterization and 

visualization tools for bisulfite sequencing data. These tools also characterize methylation levels 

at genomic features, like gene bodies as well as transcription factor targets. We provide a means 
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to detect epigenetic regulation of transcription factor binding sites. Chapter 3 describes a multi-

omics approach to understand an epigenetic mechanism for chemoresistance in Burkitt’s 

lymphoma. Burkitt’s lymphoma cell lines were cultured with drugs and developed increasing 

levels of resistance to chemotherapy. By analyzing transcriptional profiles of the chemoresistant 

cell lines with healthy B-cells at different stages of maturation as well as subsequent integration 

of DNA methylation and ChiP-Seq data from the chemoresistant cell lines, we were able to 

propose a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-

cell epigenome. In chapters 3 and chapter 4, we focused on the transcriptional and DNA 

methylation analysis of peripheral blood mononuclear cells (PBMCs) of patients affected with 

amyotrophic lateral sclerosis (ALS). Using transcriptional data of monocytes stimulated by 

different molecules, we were able to categorize our samples into inflammatory and non-

inflammatory groups. A pathway enrichment analysis of the differentially expressed genes 

reveals potential targets of immune based treatments for ALS. In chapter 5, we investigated the 

differences in DNA methylation profiles in PBMCs from a pair of monzygotic twins discordant 

in the diagnosis for ALS. We developed a cell type abundance analysis method which suggest 

that the affected twin loses T-cells and gains monocytes during the course of the disease. Our 

direct use of reference data sets highlights the potential for understanding RNA-Seq and BS-Seq 

data and provides the groundwork for development of generalized transcription or methylation 

analysis tools, like CEllFi. Chapter 6 outlines the implementation of CEllFi, a bisulfite 

sequencing based method that allows for cellular deconvolution of heterogenous samples. 
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Chapter 1: 

Introduction 
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1.1 Introduction to interpreting RNA expression 

RNA expression profiling has been an essential tool in understanding biological activity 

at the genomic level. One specific tool for quantifying expression levels, RNA-Seq, provides 

transcriptome wide measurements with high levels of precision compared to alternative high 

throughput methods (Wang, Gerstein, & Snyder, 2009). While RNA-Seq provides quantification 

of tens of thousands of genes, analyzing and understanding expression dynamics remains a 

challenge.  

Typical studies using RNA-Seq seek to identify genes with differential levels of 

expression between case control studies. A common approach in producing a list of differentially 

expressed genes, is to test that the fold change between the two groups of samples are 

significantly different from the null. Some of the most commonly used tools to test for 

differential expression are edgeR and DESeq2 (M. I. Love, Huber, & Anders, 2014; Robinson, 

McCarthy, & Smyth, 2009). Once a list of differentially expressed genes are produced, tools like 

DAVID can identify pathways or gene families enriched in the differentially expressed genes 

(Huang, Lempicki, & Sherman, 2009). Another approach for interpreting gene expression levels 

of interest is to test for enrichment of expression levels against different sets of genes stored in 

databases, like MSigDB (Liberzon et al., 2011; Subramanian et al., 2005). Although many tools 

and data sources have been developed to understand RNA-Seq results, summarizing expression 

results remains cumbersome.  

1.2 Introduction to DNA methylation analysis 

An important epigenetic mark that is related to gene expression is the methylation of 

cytosine. DNA methylation levels can be affected by the expression of genes and in the promoter 

are often associated with gene silencing (Laird, 2003). Studies have also shown that DNA 
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methylation levels can change during cancer progression (Landan 2012). The gold standard in 

performing genome wide methylation profiling, whole genome bisulfite sequencing (WGBS), 

couples sodium bisulfite conversion of unmethylated cytosines with PCR amplification and short 

read sequencing, providing methylation quantitation at single nucleotide resolution. An 

alternative and cost effective approach to WGBS, is reduced representation bisulfite sequencing 

(RRBS). RRBS utilizes restriction enzymes to enrich for DNA fragments high in CpG 

dinucleotides (Meissner et al., 2005). Using bisulfite sequencing alignment tools, like 

BSSeeker2, one can produce methylation level calls for further post-alignment analyses (Guo et 

al., 2013).  

Many DNA methylation analyses focus on identifying and annotating loci or fragments 

that are differentially methylated between groups. One metric for detecting differentially 

methylated cytosines is the difference in the percent of methylated cytosines in one group 

compared to another. As changes in methylation often occur in hotspots that correspond to CpG 

islands, it is useful in aggregating the methylation levels into regions or fragments (Lister et al., 

2011). In order to annotate lists of differentially methylated regions, regions may be associated to 

genes based on proximity to transcriptional start sites. Lists of gene families may be 

subsequently tested for enrichment against  pathway databases (McLean et al., 2010).  

1.3 Epigenetics of Burkitt’s Lymphoma 

Burkitt’s lymphoma is a B-cell lymphoma characterized by the rapid proliferation of 

malignant cells and deregulation of the MYC gene via translocation to one of the 

immunoglobulin loci (C. Love et al., 2012). Multiagent chemotherapy can lead to complete 

remission in 90-95% of children and 60-70% of adults. Patients that show primary 

chemoresistance frequently die early. Although rescue chemotherapy is effective to children that 
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relapse, success has not been reported for adults. Previous studies have shown that the epigenetic 

modifier 5-aza-2-deoxycytidine is able to repress MYC expression. Yet, understanding the 

mechanism of epigenetic repression as well as the molecular basis for chemoresistance remains 

an important clinical goal (Guan et al., 2013; Richter-Larrea et al., 2010). 

1.4 ALS and Autoimmunity 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to upper 

and lower motor neuron loss and is associated with frontotermporal dementia. The median 

survival of ALS is 3 to 5 years after symptomatic onset with 20% surviving beyond 5 years. It 

has been theorized that autoimmunity is part of the pathogenesis or mediated in the apparent 

sporadic nature across affected patients (Turner, Talbot, & Goldacre, 2013). With increasing 

evidence associating autoimmune disease and ALS, there is greater interest in modulating 

inflammation to mediate the effects of ALS. 

1.5 Project overview 

In this dissertation, multiple analytical tools and strategies were developed and employed 

for the interpretation of DNA methylation and expression data. One key aim of this dissertation 

is to develop the computational tools to aid in the interpretation of both expression and 

methylation analyses. The second aim is to identify genes and genomic regions that change in 

expression and DNA methylation in concert with the changes in cell line resistance. Using a 

mouse model for Burkitt's lymphoma, several lines of Eµ- myc /Arf-/- cells were generated with 

varying levels of resistance to mafosfamide treatment. A multi-omics approach was employed to 

identify the mechanisms leading to the change in resistance across the cell lines. Data sets 

generated from the chemoresistant cells include microarray expression, RRBS, Chip-Seq, DNA-

Seq, and metabolomics. Chapter 3 of this dissertation reports methylation fragments with 
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monotonic changes across the cell lines, and a covariance analysis is performed to identify the 

extreme genes and DNA fragments whose expression or methylation vary with the cell lines in 

concert with resistance.  

The third aim is to understand the immune activity of ALS patients. RNA-Seq was 

performed on the peripheral blood mononuclear cells (PBMCs) of 9 ALS patients and one 

unaffected identical twin. Using an unsupervised clustering analysis of the 10 samples, two 

groups were identified as inflammatory and non-inflammatory using expression signatures 

derived from perturbed PBMCs from published expression datasets. Chapter 4 of this work 

reports the immune pathways enriched in the differentially expressed genes between the 

inflammatory and non-inflammatory samples. The fourth aim is to identify the epigenetic and 

expression differences between the PBMCs of monozygotic twins discordant for ALS. Both 

RRBS and RNA-Seq was performed on the patient PBMCs. Chapter 5 of this dissertation reports 

the differentially expressed genes and differentially methylated fragments between the identical 

twins using the RRBS analysis tool CEllFi. CEllFi’s implementation is described in Chapter 6. 
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RESEARCH Open Access

MethGo: a comprehensive tool for analyzing
whole-genome bisulfite sequencing data
Wen-Wei Liao1†, Ming-Ren Yen1†, Evaline Ju2, Fei-Man Hsu1, Larry Lam3, Pao-Yang Chen1*

From Joint 26th Genome Informatics Workshop and Asia Pacific Bioinformatics Network (APBioNet) 14th
International Conference on Bioinformatics (GIW/InCoB2015)
Tokyo, Japan. 9-11 September 2015

Abstract

Background: DNA methylation is a major epigenetic modification regulating several biological processes.
A standard approach to measure DNA methylation is bisulfite sequencing (BS-Seq). BS-Seq couples bisulfite
conversion of DNA with next-generation sequencing to profile genome-wide DNA methylation at single base
resolution. The analysis of BS-Seq data involves the use of customized aligners for mapping bisulfite converted
reads and the bioinformatic pipelines for downstream data analysis.

Results: Here we developed MethGo, a software tool designed for the analysis of data from whole-genome
bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS). MethGo provides both
genomic and epigenomic analyses including: 1) coverage distribution of each cytosine; 2) global cytosine
methylation level; 3) cytosine methylation level distribution; 4) cytosine methylation level of genomic elements;
5) chromosome-wide cytosine methylation level distribution; 6) Gene-centric cytosine methylation level; 7) cytosine
methylation levels at transcription factor binding sites (TFBSs); 8) single nucleotide polymorphism (SNP) calling, and
9) copy number variation (CNV) calling.

Conclusions: MethGo is a simple and effective tool for the analysis of BS-Seq data including both WGBS and RRBS.
It contains 9 analyses in 5 major modules to profile (epi)genome. It profiles genome-wide DNA methylation in
global and in gene level scale. It can also analyze the methylation pattern around the transcription factor binding
sites, and assess genetic variations such as SNPs and CNVs. MethGo is coded in Python and is publically available
at http://paoyangchen-laboratory.github.io/methgo/.

Background
Cytosine methylation is a crucial epigenetic modification
involved in numerous biological processes, including
transcriptional regulation, cell differentiation, and
X-chromosome inactivation [1]. It is very important in
the development in plants, animals, and human [2,3].
Many human diseases and cancers have been found to
be associated with abnormal DNA methylation [4].
To evaluate DNA methylation, bisulfite treatment of

genomic DNA has been widely used to convert

unmethylated cytosines (Cs) to uracils while methy-
lated Cs remain unconverted [5]. After PCR amplifica-
tion, the converted Cs (to uracils) will be replaced by
thymines (Ts). By comparing the bisulfite-converted
sequences with the unconverted, the methylation status
can be revealed.
Sodium bisulfite treatment coupling with high through-

put sequencing (BS-seq) makes it possible to profile gen-
ome-wide DNA methylation in single base resolution
[5,6]. The two major sequencing strategies for BS-seq
are, reduced representation bisulfite sequencing (RRBS)
which uses restriction enzymes to digest genomic DNA
and size selects CpG-rich areas of genome [7], and
whole-genome bisulfite sequencing (WGBS) which inves-
tigates all cytosines in the genome, and is state-of-the-art

* Correspondence: paoyang@gate.sinica.edu.tw
† Contributed equally
1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529,
Taiwan
Full list of author information is available at the end of the article

Liao et al. BMC Genomics 2015, 16(Suppl 12):S11
http://www.biomedcentral.com/1471-2164/16/S12/S11

© 2015 Yen et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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profiling method for genome-wide DNA methylation
[8,9]. Both methods are used to profile the epigenomes of
cell lines and tissues by large consortiums such as the
ENCODE project [10], NIH Roadmap Epigenomics pro-
ject [11], and The Cancer Genome Atlas (TCGA) [12].
The first step to process BS-seq data is to align the BS

reads to the reference genome. Aligners such as Bowtie2
[13] and SOAP [14] are not applicable since the C-to-T
conversion in the BS reads are incorrectly treated as
mismatches for mapping penalty. Customized bisulfite
aligners such as BS-Seeker 2 [15] were introduced to
efficiently perform genome indexing, read mapping and
methylation level calling.
After alignment, further bioinformatics steps are

required for extracting biologically meaningful informa-
tion. Several tools for such post-alignment analysis
including Kismeth [16], Bis-SNP [17], GBSA [18], Repi-
tools [19], and ReadDepth [20]. As these tools are
designed for specific analyses, there is a lack of platforms
providing a comprehensive overview of the BS-Seq data
covering both genomic and epigenomic analyses.
In this paper we present MethGo, a post-alignment

tool consisting of 9 analyses in 5 functional modules for
processing and analyzing BS-Seq alignments. MethGo
provides coverage distribution across all methylation
sites, global methylation states and methylation levels
according to several defined regions, such as promoter,
gene body or transcription factor binding sites (TFBSs).
In addition to DNA methylation, MethGo also provides
the information of genetic variations including CNV call-
ing and SNP calling. MethGo produces high quality
figures and tables for data presentation that are ready for
scientific publication.

Implementation
MethGo is a Python software that takes the alignment file
from both WGBS and RRBS as the input data. It consists
of three modules for methylation analysis and two mod-
ules to detect genetic variations (Figure 1, and see
Additional file 1 and Additional file 2 for the description
of the modules): COV module generates coverage distri-
bution for methylation sites. MET module provides glo-
bal cytosine methylation levels, cytosine methylation level
distributions, cytosine methylation levels of genomic ele-
ments, chromosome-wide cytosine methylation level dis-
tributions, and gene-centric cytosine methylation levels.
TXN module plots the methylation level relative to
TFBSs. The SNP module detects SNPs and the CNV
module detects CNVs across the genome.
Here we describe the 5 modules in more details:

COV: coverage distribution of methylation sites
Coverage of the methylation sites is a factor for evaluating
the quality of sequencing data. Sites with high coverage

are likely to provide accurate methylation status estima-
tion. The COV module extracts the coverage for each
cytosine from post-alignment data (i.e., CGmap) and gen-
erates reverse cumulative plot for methylation sites by the
genomic contexts (CG, CHG and CHH, H refers to A, C,
or T). For example, Figure 2 shows the coverage distribu-
tion of two Arabidopsis methylomes. In the WT methy-
lome approximately 20% of the genome are covered with
20× depth of sequencing, whereas the met1 methylome
shows ~70% of the genome are covered. The coverage
plot helps user to evaluate the quality of sequencing data
and defines the cutoff for reads depth.

MET: methylation profiling
The MET module takes methylation calls generated
from the bisulfite aligner such as BS Seeker 2, and
gene annotation file for analyses. Five analyses are car-
ried out in MET module. First, global cytosine methy-
lation level of CG/CHG/CHH are calculated and
plotted (Figure 3A). Second, methylation level of sites
in each context is calculated and plotted into cytosine
methylation level distribution plot (Figure 3B). Third, a
genome is further divided into promoter, gene body,
exon, intron and intergenic non-coding region (IGN),
referring to genomic elements, and generated cytosine
methylation level of genomic elements plot (Figure 3C).
The promoter is defined as the region 1,000 bp
upstream of transcription start site (TSS), and gene
body is defined as the region between TSS and
transcription termination sites (TTS). Fourth, chromo-
some-wide cytosine methylation level distribution are
generated so that user could visualize the methylation
level dynamics across each chromosome (Figure 4A).
Fifth, MET module profiles gene-centric cytosine
methylation level (Additional file 3), a gene whose
methylation levels of promoter, gene body, intron and
exon are listed in a summary table.

TXN: evaluating DNA methylation level at transcription
factor binding sites
DNA methylation at the TFBSs can interfere with the
binding of proteins and hence affects the activation of
transcription [21]. The TXN module aims to reveal such
a relationship by plotting the DNA methylation level at
the TFBS of specific transcriptional factors. The TXN
module processes methylation calls and transcription
factor binding positions. The methylation levels within
1,500 bp of the TFBSs are averaged over tiling windows
(30 bp) and reported in a scatter plot to reveal the
methylation pattern around the TFBS (Figure 4B). By
comparing the methylation patterns between transcrip-
tion factors, alternated methylation level around the
TFBS suggests the binding of the transcription factor
may be associated with DNA methylation.
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CNV: CNV calling
Since BS-seq is DNA-based sequencing, the coverage of
the reads (i.e. depth) can be used as a proxy for asses-
sing CNVs. The CNV module extracts the read coverage
from the alignments and plots the coverage across the
genome (Figure 3C). Genomic regions with large-scale

rearrangement such as duplication and deletion are
likely to show in coverage plot, amplification and deple-
tion respectively. Therefore, the CNV module is able to
detect genome abnormality such as aneuploidy. Regions
of continuous depletion or amplification, indicative of
genome duplication or deletion, are reported in a text

Figure 1 Overview of MethGo software pipeline. MethGo is a comprehensive tool for analyzing post-alignment bisulfite reads. MethGo
consists of five modules for investigating DNA methylation as well as genetic variations.

Figure 2 Coverage distribution of Arabidopsis WGBS. A. wild-type. B. met-1. Reverse cumulative plot with x-axis representing the coverage
and y-axis representing the percentage of sites across genome. CG/CHG/CHH contexts are indicated by green/blue/red.
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file and represented in a plot of genome-wide copy
number.

SNP: SNP calling
The SNP module identifies both homozygous and het-
erozygous SNPs from the alignment. The homozygous
SNPs are polymorphisms where the majority reads show
one dominant allele, which is different from the allele on
the reference genome. The heterozygous SNPs are the
ones where reads show two major alleles, potentially
reflecting the two parental alleles (Additional file 4).

In BS-seq, the alignment on the genomic C is not applic-
able due to the C-to-T conversion, so instead the align-
ment on the other strand G is used for SNP calling.

Results and discusssion
Feature evaluation with other major analyzers
We examined the functional features of MethGo together
with five major post-alignment tools for BS-seq analysis,
namely Bis-SNP, Kismeth, GBSA, Repitools, and Read-
Depth. (see Table 1 for a summary of their functional fea-
tures). Bis-SNP is written in Java, provides methylation

Figure 3 DNA methylation profiles in wild-type and met1 mutant Arabidopsis. A. Global cytosine methylation levels. B. Distribution of
cytosine methylation. The x-axis represents methylation levels binned in ten increment of 10% (i.e. 0%-10%, 10%-20%, etc.); y-axis is the fraction
of total CG/CHG/CHH. C. Plot of CG methylation levels in different genomic elements.
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levels for each cytosine and calls SNPs from BS-seq data.
Kismeth is a web-based tool, which calculates global
methylation levels and provides platform for nucleotide-
resolution methylation status visualization. GBSA is a tool
written in Python and provides sequencing quality assess-
ment, gene-centric methylation level, functional data man-
agement and visualization of methylation in nucleotide
resolution. Repitools is an R package for the analysis of
enrichment-based assay and displays the distribution of
enriched DNA across the genome followed by visualizing
and summarizing the interaction between epigenetic mark
and gene expression. ReadDepth is also an R package to
detect CNVs by measuring the depth of coverage in the
sequencing data. MethGo provides 9 analyses for both
epigenetic and genetic profiling, including coverage distri-
bution, global cytosine methylation level, cytosine methy-
lation level distribution, chromosome-wide cytosine
methylation level distribution, cytosine methylation level

of genomic elements, gene-centric cytosine methylation
level, cytosine methylation level of TFBSs, CNV calling,
and SNP calling. Altogether, MethGo includes the func-
tions such as cytosine methylation level distribution, cyto-
sine methylation level of genomic elements, chromosome-
wide cytosine methylation level distribution and cytosine
methylation level of TFBSs, which are not included in
Bis-SNP, GBSA, Kismeth, Repitools, and ReadDepth.
In addition, MethGo is the only tool to profile both SNPs
and CNVs.

Demonstrating COV, MET, CNV and SNP modules with
Arabidopsis WGBS data
In order to demonstrate MethGo on real data, we down-
loaded and processed WGBS data of wild-type and met1
mutant of Arabidopsis [22]. MET1 is methyltransferase 1,
which controls faithful maintenance of cytosine methyla-
tion primarily at CG sites. After mapping with BS aligner,

Figure 4 MethGo profiling of Arabidopsis and mouse WGBS. A. Chromosome-wide distribution of cytosine methylation levels in wild-type
(top) and met1 mutant (bottom) Arabidopsis. B. Methylation level around TFBS in mouse WGBS. The length of each TFBS is variant, and MethGo
takes the center of the sequence for analysis. C. CNV on all chromosomes in Arabidopsis WGBS.

Liao et al. BMC Genomics 2015, 16(Suppl 12):S11
http://www.biomedcentral.com/1471-2164/16/S12/S11

�3 



BS-Seeker2, the output was loaded into MethGo for pro-
cessing. COV module outputs reverse cumulative plot of
coverage distribution. Different sequencing samples show
different coverage distribution due to sequencing depth
of data. (Figure 2A, B).
As for DNA methylation profiling with MET module,

the CG methylation in met1 mutant is much lower com-
pared to WT (Figure 3A). The met1 mutant almost
abolishes the CG methylation with relatively less effect on
CHG and CHH contexts. The cytosine methylation distri-
bution plots show the methylation distribution of cytosine
sites in all three contexts. As shown in Figure 3B, the CG
methylation shows a bimodal distribution where most
sites are either in low or high methylation. The CHG and
CHH sites are generally weakly methylated. The cytosine
methylation level of genomic elements plots showed the
average methylation level in genome, promoter, gene
body, exon, intron, and intergenic regions by CG, CHG,
and CHH contexts (Figure 3C and Additional file 5). Com-
pared with other regions, the methylation level in

promoters is lower due to facilitation of protein binding.
The chromosome-wide cytosine methylation level distri-
bution showed the landscape of DNA methylation
throughout a genome (Figure 4A). The plots showed that
in Arabidopsis, the methylation levels are higher near the
pericentromeric regions in all contexts. The MET module
also generates gene-centric cytosine methylation levels for
each gene for wild-type Arabidopsis (Additional file 3).
The CNV module profiles genome-wide CNVs (Figure 4C).
Peri-centromeric regions of all 5 chromosomes show high
coverage due to the presence of repetitive sequence. The
SNP calling module generates tabular file of homozygous
and heterozygous SNPs, which helps researchers to investi-
gate potential mutations or serves as a marker for genotyp-
ing (Additional file 6 and Additional file 7).

TXN module demonstration with mouse WGBS data
We downloaded WGBS data of mouse primordial germ
cells to demonstrate TXN module of MethGo [23]. The
accessibility of TFBS is important for gene regulation

Table 1. Summary of bioinformatic tools for data analysis using aligned BS-seq
MethGo Kismeth[16] Bis-SNP

[17]
GBSA[18] Repitools[19] ReadDepth

[20]

Programming
Language

Python unknown Java Python R R

Operating System Windows/ Unix web Windows/
Unix

Windows/ Unix Windows/ Unix Unix

Interface Command-line GUI Command-
line

GUI/ Command-
line

Command-line Command-
line

Coverage
distribution

Yes (*F) - - - Yes -

Global cytosine
methylation level

Yes (*F) Yes - - - -

Cytosine
methylation level
distribution

Yes (*F) - - - - -

Cytosine
methylation level
of genomic
elements

Yes (*F) - - - - -

Chromosome-
wide cytosine
methylation level
distribution

Yes (*F) - - - - -

Gene-centric
cytosine
methylation level

Yes (*T) - - Yes - -

Cytosine
methylation level
of TFBSs

Yes (*F) - - - - -

SNP calling Yes (*T) - Yes - - -

CNV calling Yes (*F) - - - - Yes

Main functions of
tool

Methylation profiling and
extracting genetic variation
information from bisulfite
sequencing data

Global methylation
levels calculation and

visualization at
nucleotide resolution

SNP calling Gene-centric
methylation level
scoring and
visualizetion

Enrichment based
epigenomic data analysis
such as coverage
distribution of CpG sites

CNV calling

*F: the output file is figure; *T: the output file is table.
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and TFBS should be exploited of DNA methylation.
TXN module plots methylation levels of specific tran-
scription factor of interest and an average methylation
level for comparison. In Figure 4B, SOX2 is a transcrip-
tion factor regulating cell pluripotency [24], and its cor-
responding TFBS shows significant decrease of
methylation relative to average of all TFBSs.

Conclusions
We presented MethGo, specifically for analyzing post-
alignment from BS-seq. In comparison with other popu-
lar similar tools, MethGo is a streamlined tool capable
of profiling both genome-wide DNA methylation and
genetic variations. It also generates high resolution
plots. MethGo comes with a user-friendly manual and
tutorials with examples for biologists to evaluate DNA
methylation. The MethGo installation guide and module
requirements can be found in Additional file 8. We have
made this tool publicly available for the community.

Additional material

Additional file 1: Detailed description of implementation. This file
contains information on the implementation for all the modules.

Additional file 2: File format of input and output. Table of file format
of input and output required for MethGo modules.

Additional file 3: DNA methylation of genes in wild-type
Arabidopsis. Average DNA methylation levels of regions related to
genes, including promoter, gene body, exon, and intron.

Additional file 4: Heterozygous and homozygous SNP. A. The
illustration of heterozygous and homozygous SNP. B. Screenshot of
heterozygous SNP. There are two different alleles comparing to reference
genome (bottom). C. Screenshot of homozygous SNP. There is one allele
different from the reference genome (bottom).

Additional file 5: Non-CG methylation levels in different genomic
elements in Arabidopsis. A. wild-type. B. met1.

Additional file 6: Homozygous SNPs. This file contains homozygous
SNP calling of WT Arabidopsis.

Additional file 7: Heterozygous SNPs. This file contains heterozygous
SNP calling of WT Arabidopsis.

Additional file 8: Software installation guide and requirements. This
file contains the MethGo installation guide and module requirements.
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Abstract

Background: The genetic origins of chemotherapy resistance are well established; however, the role of epigenetics
in drug resistance is less well understood. To investigate mechanisms of drug resistance, we performed systematic
genetic, epigenetic, and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a
series of resistant lines derived by drug dose escalation.

Methods: Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drug-
resistant mouse Burkitt’s lymphoma cell lines. Whole genome sequencing, DNA microarrays, reduced representation
bisulfite sequencing, and chromatin immunoprecipitation sequencing were used to identify alterations in DNA
sequence, mRNA expression, CpG methylation, and H3K27me3 occupancy, respectively, that were associated with
increased resistance.

Results: Our data suggest that acquired resistance cannot be explained by genetic alterations. Based on integration
of transcriptional profiles with transcription factor binding data, we hypothesize that resistance is driven by epigenetic
plasticity. We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the
parental lines. Moreover, we observed DNA methylation changes in the promoters of genes regulated by E2a and
members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of
E2a. The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance. By
integrating our results with data from the Immunological Genome Project (Immgen.org), we showed that these
transcriptional changes track the B-cell maturation axis.

Conclusions: Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in
the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosis.
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Background
Many anticancer therapies lose effectiveness over time as
tumors acquire resistance. Despite significant study [1],
acquired resistance remains a major obstacle to improving
remission rates and achieving prolonged disease-free sur-
vival. A number of explanations for resistance have been
proposed, including the presence of cancer stem cells [2]
and mutations that confer drug resistance [3].
Although Burkitt’s lymphoma is extremely aggressive

[4], 90–95 % of children receiving the standard-of-care
therapy, a combination treatment of rituximab, cyclo-
phosphamide, doxorubicin, vincristine, and prednisone,
enter complete remission. Treatment of adults is not as
successful [5], in part due to acquired resistance. In both
children and adults, salvage treatment has a poor suc-
cess rate, with only one-third of children and very few
adults obtaining positive outcomes from salvage therapy.
The mechanisms underlying acquisition of resistance in

Burkitt’s lymphoma are only partially understood. Numer-
ous genetic mechanisms have been hypothesized, including
up-regulation of expression of proteins involved in drug ef-
flux, such as the ATP-binding cassette transporter family,
cyclophosphamide inactivation through aldehyde dehydro-
genase up-regulation, increased expression of DNA repair
enzymes, and deregulation of apoptosis through the loss of
Tp53 [1]. Genetic mutations are unable to explain cases of
acquired resistance that arise rapidly or that reverse in re-
sponse to a drug holiday [6, 7].
Alterations in histone modifications and DNA methy-

lation that lead to an altered transcriptional program
have been proposed to lead to acquired drug resistance
in B-cell lymphoma [8, 9]. Recent work in an in vitro
model of Burkitt’s lymphoma has shown that treatment
with the DNA methylation inhibitor 5-azacytidine reacti-
vates expression of Id2, which encodes a repressor of
translocated Myc, resulting in the inhibition of prolifera-
tion [10]. Similarly, treatment of lymphoma cell lines
with the histone deacetylase inhibitor suberoylanilide
hydroxamic acid has been shown to re-sensitize lymph-
oma cell lines to various therapeutic agents [11].
Studies of clinical specimens have revealed that tu-

mors are both genetically and epigenetically heteroge-
neous [8, 12]. The role of genetic heterogeneity within
tumors and its effect on treatment response and out-
come has been extensively studied, but less is known
about how epigenetic heterogeneity impacts disease
progression and clinical outcome. Previous studies have
shown that drug treatment generates selective pressure on
heterogeneous populations that leads to the enrichment of
specific genetically distinct subpopulations [13, 14]. These
subpopulations can ultimately become the dominant popu-
lation in a tumor, resulting in resistance to the therapeutic
agent. It is possible that similar mechanisms of selection
act at the epigenetic level. Recent research in prostate

cancer has documented the inherent heterogeneity of
DNA methylation in patient tumor samples [15], though
the selection of epigenetically distinct subpopulations has
yet to be shown.
Here we used dose escalation with mafosfamide on

parental Eμ-Myc Cdkn2a-/- non-Hodgkin’s B-cell lymph-
oma cells to generate a series of drug-resistant cell lines.
We then investigated the mechanism by which these
cells acquired resistance. In our experiment, parental
cells were cultured with increasing doses of mafosfa-
mide, from 100 nM to 4 μM, over 5 weeks. At four steps
in the dose escalation, resistant clones were isolated and
molecularly profiled. Whole-genome sequencing of the
parental and resistant cell lines did not reveal any gen-
etic alterations that might explain the acquired resist-
ance. However, analyses of transcriptomic and DNA
methylation profiling suggested that the acquired resist-
ance is associated with genes and promoters targeted by
transcription factor E2a and by members of the poly-
comb repressive complex 2 (PRC2), Suz12 and Pcl2. An
integrative analysis considering histone H3 lysine 27 tri-
methylation (H3K27me3) further supported a role for
PRC2 in mediating resistance. Comparison of the tran-
scriptomic data from resistant lines and from B cells at
different developmental stages [16] suggested that resist-
ance is associated with epigenetic changes that are found
along the B-cell maturation axis. E2a is a master regula-
tor of B-cell development in mice. An analysis of human
diffuse B-cell methylation data revealed that the methy-
lation status of genes regulated by the human ortholog
of E2a, TCF3, is associated with treatment failure. Thus,
our study implicates epigenetic factors in evolution of
acquired resistance.

Methods
Creation of resistant Eμ-Myc Cdkn2a-/- lines
The parental Eμ-Myc Cdkn2a-/- lymphoma line was gener-
ated from a C57BL/6 J mouse as described in Schmitt et al.
[17]. Lymphoma cells from these mice were cultured in
vitro to generate the cell line. Resistant strains were gener-
ated from this parental line via dose escalation from 100
nM to 4 μM of mafosfamide (Cell Signaling Technology)
over a 34-day period.

Cell viability and cell cycle analysis
Cell viability was measured using the Perkin-Elmer
Operetta platform with 2.5 μM Draq5 (Abcam) for nu-
clear detection and 5 μg/mL of propidium iodide
(Sigma-Aldrich, St. Louis, MO, USA) to detect dead
cells. For cell cycle analysis, cells were fixed in ethanol
and placed in solution with propidium iodide. Cells
were gated for G0/G1, S, and M phase on a Beckman
LSRII.
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Genome sequencing
Genomes of cell lines were sequenced to a minimum of 8×
average coverage using Illumina HiSeq 2000 sequencers.
The reads were aligned to the mm9 (MGSCv37) Mus mus-
culus reference genome using BWA version 0.6.2-r126
(backtrack) [18] with default parameters. Duplicate reads
were removed using PICARD version 1.85(1345) with
default parameters (Additional file 1). The whole-genome
sequencing data are available via the Sequence Read Arch-
ive under accession number SRP071753.

Oligonucleotide microarray analysis
Oligonucleotide microarray analysis was carried out using
Affymetrix GeneChip Mouse Gene ST 1.0. The resulting
data are publically available via Gene Expression Omnibus
accession GSE60342. Data were quantified and processed
with robust multi-array averaging using the justRMA
function of the 1.40.0 affy R package [19]. Expression
values were log2 transformed for further downstream ana-
lysis. Probe sets were annotated using the Affymetrix
MoGene-1_0-st-v1.na33.2.mm9.probeset.csv file. We se-
lected the top 1000 probe sets ranked by their covariance
to identify differentially regulated genes (Additional file 1).

Transcription factor analysis
Targets for 64 murine transcription factors were identi-
fied from ChIPBase (http://deepbase.sysu.edu.cn/chip-
base, downloaded August 1, 2013) [20] and limited to
genes with binding events within 5 kilobases (kb) of
transcriptional start sites. To identify potential up-
stream regulators, we identified the overlap of chroma-
tin immunoprecipitation-sequencing (ChIP-seq) data
with predicted transcription factor targets and used a
one-sided Fisher’s exact test to determine significance.

ChIP-seq
Chromatin was immunoprecipitated as described previ-
ously [21]. Briefly, cells were grown to 50 % confluency.
Formaldehyde was added for 10 min at room temperature
and 100 μl of the lysate (5× 106 cells) was used for each
immunoprecipitation with anti-H3K27me3 (Active Motive,
catalogue number 39155). Libraries were sequenced using
an Illumina HiSeq 2000 to obtain 50-bp-long reads.
Peaks were called by comparing counts in the immuno-

precipitated libraries with input libraries in windows tiling
the genome using Poisson statistics as previously described
[21]. Combinatorial clustering of data was achieved by
determining significant enrichment for the histone mark in
each condition within 5 kb upstream of transcription start
sites (at least three 50-bp bins with p < 1.0e-6). A binary
distribution was created based on a promoter being
enriched (1) or not enriched (0) and a combinatorial
matrix was created with all possible combinations across
all conditions. H3K27me3 data were plotted based on the

combinatorial clustering and visualized by a Cluster 3.0-
generated CDT file loaded on Java-Tree view to produce a
heat map. The ChIP-seq datasets are publically available
via Gene Expression Omnibus accession GSE78939.

Bisulfite sequencing
Reduced representation bisulfite (RRBS) libraries were
generated following the standard RRBS protocol [22]. The
genome was digested with the methylation-insensitive re-
striction enzyme MspI and fragments from 100 to 300
bases were selected. The fragments were ligated with Illu-
mina adaptors, denatured, and treated with sodium bisul-
fite. The libraries were sequenced using Illumina HiSeq
2000 sequencers. The reads were aligned using the bisul-
fite aligner BS Seeker2 [23] to determine where fragments
uniquely mapped allowing for three mismatches to the
reference genome (mouse mm9). The RRBS datasets are
publically available via Gene Expression Omnibus acces-
sion GSE78939.

DNA methylation analysis
To identify DNA methylation changes correlated with
resistance, we computed RRBS fragment CpG methyla-
tion levels and calculated the covariance between the
fragment methylation score and sample order (ordered
from least to most resistant; Additional file 1).

Principal component analysis
Principal component analysis of expression profiles was
performed by applying the R prcomp function with the
scaled option to the expression microarray values of the
resistant cell lines and B cells at different stages of devel-
opment (NCBI Gene Expression Omnibus accession
GSE15907). See Additional file 1 for samples used.

Results
Generation of resistant lines and assessment of cell cycle
characteristics
To investigate the factors driving acquisition of resist-
ance to chemotherapy, we employed a widely used cell
line derived from an Eμ-Myc mouse model of Burkitt’s
lymphoma [17]. We refer to this line as our “parental”
line. This model has two genetic alterations: (1) a trans-
location in the c-Myc oncogene that causes its expression
to be controlled by an immunoglobulin heavy chain en-
hancer, thus restricting its expression to B cell lineage
cells; and (2) a deletion in Cdkn2a that recapitulates a
common mutation seen in human tumors [24]. Eμ-Myc
Cdkn2a-/- mice develop lymphomagenesis with highly in-
vasive tumors with apoptotic defects [17]. Resistant lines
were generated by gradually exposing the parental line to
increasing concentrations from 100 nM to 4 μM of mafos-
famide (an in vitro active form of cyclophosphamide) in
cell culture (Fig. 1a, b; Additional file 1: Figure S1). Four
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resistant sub-clones were isolated during the 5-week period
of dose escalation (R100, R500, R1000, and R4000) for sub-
sequent analysis. We refer to these as the “resistant” lines.
The cycling rate of our parental and resistant lines in the
absence of mafosfamide was very similar (Additional file 1:
Table S1, Figure S2), suggesting that the resistance is not
associated with large changes in cell cycle phases.
Mafosfamide treatment led to a greater percentage of

apoptotic cells in the parental line relative to the resistant
lines (Fig. 1b; Additional file 1: Table S1, Figures S1 and S2).
In all lines, non-apoptotic cells showed an equivalent cell
cycle delay as assessed by the decrease in percentage of cells
in G1 and a concurrent increase in G2 percentage upon
treatment. As all the lines showed approximately the same
amount of cell cycle delay upon treatment in the non-
apoptotic fraction, resistance is most likely not a result of an
increased cell cycle delay.

Resistance is unlikely to have arisen by genetic mechanisms
Given the four-fold difference in drug sensitivity be-
tween the parental and resistant cell lines (parental half

maximal effective concentration, EC50, 857 ± 68 nM;
R4000 EC50 3446 ± 138 nM, mean ± standard error of
the mean), we initially hypothesized that acquired resist-
ance was mediated by genetic variants that were
enriched in the population over the course of the dose
escalation. To identify possible resistance-associated var-
iants, we performed whole-genome sequencing and
identified single-nucleotide variants (SNVs) that showed
an increase in allele frequency that correlated with in-
creased resistance. Twenty-three SNVs displayed this
pattern (Additional file 1: Figure S3). Of these, 13 had
variant alleles in only one sample (the most resistant
line) and manual inspection of read alignments showed
that the SNVs all occurred solely at the ends of sequen-
cing reads or in repetitive regions (Additional file 1:
Table S2) and were, therefore, likely sequencing artifacts.
To validate that these were in fact false positives, we per-
formed Sanger sequencing on regions surrounding five of
the potential SNVs. No mutations were observed using
this sequencing technique (Additional file 1: Figure S4).
Additionally, no novel large structural variations or poten-
tial copy number variations were found in any of the lines.
Together, these data suggest that genetic alterations are
not the principal explanation for the acquired resistance.

Alterations in gene expression of mafosfamide-resistant
cell lines
To determine whether the decreased sensitivity to mafosfa-
mide observed in the resistant lines was associated with al-
tered transcription, we measured the changes in gene
expression for the parental and each resistant line. A subset
of these gene expression changes were confirmed by quan-
titative PCR (Additional file 1: Figure S5). We expected to
identify genes known to be involved in drug metabolism,
transport of mustard alkylating agents, and DNA repair
[25, 26]. We found that the expression of most genes
involved in these processes did not increase signifi-
cantly in our resistant lines, suggesting that none of
these processes are likely to play a major role in medi-
ating resistance (Additional file 1: Figure S6).
To identify transcripts with expression patterns that

were perturbed with increasing resistance, we com-
puted the covariance of the expression of each gene
with the EC50 of the resistant cell line. The 1000 genes
with highest and lowest covariance were clustered
(Fig. 2a). Pathway analysis of those genes that showed a
positive covariance with resistance (i.e., an increase in
gene expression with increasing resistance) indicated
that they encode proteins involved in B-cell maturation
and development (Fig. 2b). Genes that showed a nega-
tive covariance were enriched for those associated with
EIF2-mediated signaling and T helper cell differenti-
ation (Fig. 2c).

Fig. 1 Dose escalation of Eμ-Myc Cdkn2a-/- cells and resistance to
mafosfamide. a Eμ-Myc Cdkn2a-/- cells were cultured with increasing
doses of mafosfamide. After 10, 18, 23, and 37 days, corresponding
to cells cultured in 100, 500, 1000, and 4000 nM of mafosfamide,
surviving cells were harvested. b The percentage viability of the
resistant cells was measured after 24-h exposure to mafosfamide
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DNA methylation changes with drug resistance
DNA methylation is a central mechanism of transcrip-
tional regulation and alterations in the methylome have
previously been shown to contribute to lymphomagene-
sis and drug resistance [27–29]. To gain further insights
into epigenetic changes that occurred during the acquisi-
tion of drug resistance, we measured DNA methylation
using reduced representation bisulfite sequencing
(RRBS) of the parental and resistant lines. This approach
allowed us to quantify the methylation of approximately
one million CpGs. To identify methylation sites associ-
ated with drug resistance, we computed the covariance
between the methylation state of each CpG and the EC50

of the resistant cell line. Covarying sites were clustered
(Fig. 3a). High covariance RRBS fragments had lower
levels of gene expression compared with overall expres-
sion based on all annotated probes, whereas low covari-
ance RRBS fragments had higher levels of gene
expression (Additional file 1: Figure S7). The top 1000
high covariance RRBS fragments were located in gene
regions that were functionally enriched for DNA bind-
ing, transcription factor activity, and cell differentiation
(Additional file 1: Table S3).
We next asked whether the genes that were proximal

to these sites were associated with specific transcription
factors. Each transcription factor from ChIPBase [20]
was tested for association with the 1000 genes with the
highest and lowest DNA methylation covariance with

respect to resistance (Fig. 3b). From this analysis, we
identified the transcription factors E2a and PU.1; these
transcription factors are involved in B-cell development
[30–33]. We also found that members of the polycomb
repressive complex 2 (PRC2) Suz12 and Pcl2 were very
strongly enriched over positively covarying genes, sug-
gesting an involvement of this complex in mediating epi-
genetic changes during the acquisition of drug
resistance. The expression of PRC2 members was similar
in parental and resistant lines; however, Uty, which en-
codes one of three known histone H3 lysine 27
demethylases [34], was down-regulated in the resistant
lines, suggesting that Uty may be involved in the epige-
nome alteration that confers drug resistance (Additional
file 1: Figure S8a, b).

Resistant cell lines show altered H3K27me3 occupancy
As PRC2 has been shown to be involved in placement of
the H3K27me3 mark [35], we performed ChIP-seq for
H3K27me3 in all lines (grown in the absence of mafosfa-
mide) to verify the involvement of PRC2 in the transition
to drug resistance. We found widespread acquisition of
H3K27me3 at the transcriptional start sites of a large
group of genes in the least resistant (R100, R500) lines
(Fig. 4a). These effects appeared to be stable across bio-
logical replicates, as seen by the high correlation between
replicate profiles (Additional file 1: Table S4). However,
the lines with increased resistance (R1000, R4000) had

Fig. 2 Microarray expression profile of untreated cell lines. a Heat map of the probe sets. Positive covariance with increasing resistance to mafosfamide is
indicated by the red cluster; negative covariance with resistance is indicated by the blue cluster. b The top 15 pathways enriched in negative covariance
genes. c The top 15 pathways enriched in positive covariance genes
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decreased levels of H3K27me3 with respect to the paren-
tal line at many loci.
As most H3K27me3 peaks are near the transcription

start sites, we analyzed promoters by means of combina-
torial clustering (described in “Methods”) and identified
three major groups of genes: those with a high level of
H3K27me3 throughout the time course (K1), those with
rapid and widespread H3K27me3 acquisition followed
by a gradual decrease (K2), and those with little to no
H3K27me3 (K3). Functional analysis of these groups
showed enrichment for developmentally regulated genes
in K1 and cell cycle-regulated genes in K2 (Fig. 4b, c).
The level of H3K27me3 across all genes bound by E2a
revealed that the average profile followed a similar pat-
tern of change to that of cluster K2 (Fig. 4d). Further-
more, E2a-bound genes were enriched in cluster K2 and
were depleted from K1 (Fig. 4e). These results suggest
that H3K27me3 occupancy may regulate expression of
E2a-bound genes.
Previously published literature shows a linkage between

Ezh2-mediated H3K27 methylation and DNA methyla-
tion. Ezh2 is the catalytic subunit of PRC2. Analysis of our
RRBS data revealed that DNA methylation levels prox-
imal to K2 genes increased between the parental and
resistant cell lines (Additional file 1: Figure S9a); we did
not observe an increase in DNA methylation in genes
in K1 or K3 subsets compared with parental levels

(Additional file 1: Figure S9b, c). Additionally, we found a
significant overlap between the high covariance RRBS
fragments and the K1 and K2 clusters (Additional file 1:
Figure S10). These results suggest a linkage between
H3K27me3 and DNA methylation at loci with altered ex-
pression during acquisition of resistance.

Principal component analysis of basal gene expression
indicates alterations in B-cell maturation
The observation that changes in expression, DNA
methylation, and H3K27me3 levels in the resistant
lines involve genes that encode regulators of B-cell de-
velopment (e.g., E2a and PU.1) led us to hypothesize
that gradual dose escalation results in epigenetic
changes associated with a B-cell maturation axis. To
identify the transcriptional profile characteristic of the
B-cell maturation axis, we used the Immunological
Genome Project (Immgen.org) dataset [36], which con-
tains expression data collected from B-cell progenitors,
cells at multiple stages during maturation, and mature
B cells.
To associate our expression data with the B-cell de-

velopmental axis, we performed a combined principle
component analysis of gene expression data obtained
from parental and resistant cell lines and B cells at
different stages of development gathered from the
Immgen dataset. We found that the second principal

Fig. 3 DNA methylation analysis. a Heat map of the top and bottom 1000 RRBS fragments based on covariance. b Heat map of the –log10(p) values
for the overlap of high and low covariance genes with transcription factor targets
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component, PC.2, captures the developmental state of
B cells (Fig. 5a) with less differentiated progenitor cells
toward the negative direction of the PC.2 axis and the
more mature states in the positive. Our four resistant
lines are ordered by their differentiation, with the least
resistant line more differentiated than the most resist-
ant line. This result suggests that the transcriptomes of
our cells vary monotonically along this B-cell develop-
mental axis. Additionally, functional annotation of the
top principal component genes showed enrichment for
the B-cell receptor signaling pathway in the top 1000
PC.2 genes (Additional file 1: Table S5).
To identify factors associated with this B-cell develop-

mental axis, we identified genes that had a positive cor-
relation with development (i.e., an increase in expression
during differentiation). We then used ChIPBase data to
identify factors with targets enriched within this list.
Genes positively correlated with development were often
targets of E2a and PU.1 (Fig. 5b).

Differential methylation status of E2a target genes is
associated with treatment failure in patients with
aggressive B-cell lymphoma
To confirm that E2a mediates resistance development, we
sought to determine the methylation status of genes
bound by TCF3, the human ortholog of E2a, in a clinically
relevant dataset. We obtained DNA methylation data
from diffuse large B-cell lymphoma (DLBCL) patients col-
lected from the Cancer Genome Atlas project. DLBCL dif-
fers from Burkitt’s lymphoma but is the most similar
lymphoma for which we were able to access data on clin-
ical samples.
Of 19 DLBCL samples available, 14 corresponded to pa-

tients who were tumor-free after their initial treatment
course and five were from patients who experienced disease
progression. For all methylation sites, we computed the
Kolmogorov–Smirnov statistic and an associated p value
between these two groups. From 482,421 total CG sites on
the Illumina 450 K array, 5541 had a Kolmogorov–Smirnov

Fig. 4 H3K27me3 ChIP-seq analysis. a Clusters of promoters based on their H3K27me3 levels in the parental and resistant lines (n = 2). TSS transcription
start site. b Group K1 shows enrichment for developmental genes. GO gene ontology. c Group K2 shows enrichment for cell cycle-regulated genes.
d Average H2K27me3 levels across E2a-bound genes. e Analysis of E2a-bound genes in the three clusters
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test with p < 0.05. We linked CpG sites to TCF3 binding re-
gions if both the CpG and binding region occurred within
the gene body or within 10 kb of the gene’s transcription
start site. We then identified the intersection of genes that
had both evidence of TCF3 binding and at least two CpG
sites with significant methylation changes between the two
patient populations. From a total of 17,744 genes used in
the linking calculations, we derived Table 1, which shows a
strong enrichment of TCF3-bound genes associated with
differentially methylated sites (p value ≤ 0.0001). This ana-
lysis suggests that TCF3-bound genes are differentially
methylated and are associated with treatment failure in a
lymphoma subtype.
To further test the clinical significance of differential

methylation, we compared lists compiled from our gene
expression and DNA methylation analyses with a 1458-
gene signature of DLBCL survival obtained from the
Precog data set [37]. Fifty-eight genes from the top 449
high expression covariance gene list and an additional
58 genes from the top 597 high methylation covariance
significantly overlapped with the 1458 genes associated

with DLBCL survival (p = 0.0001 and p = 0.0006, respect-
ively; Additional file 1: Figure S11a, b). Furthermore, those
genes that overlap between our H3K27me3 cluster K1 and
the high covariance RRBS fragments (Additional file 1:
Figure S10) similarly significantly overlapped with the
1458 genes associated with DLBCL survival (Additional
file 1: Figure S11c).

Discussion
By treating Eμ-Myc Cdkn2a-/- cells with escalating doses
of mafosfamide, we developed four cell lines with in-
creasing resistance to the drug. We hypothesized that if
a mutation provided a proliferative or survival advan-
tage, then the frequency of that mutation would increase
over time in culture. We observed no verifiable muta-
tions that displayed this pattern.
Reasoning that measuring gene expression changes

across cell lines might reveal the resistance mechanism,
we calculated the covariance of gene expression with
respect to increasing resistance. Pathway enrichment
analysis showed an enrichment for genes encoding pro-
teins involved in B-cell development. Given the role that
DNA methylation plays in B-cell lineage commitment
[28, 38], we characterized the DNA methylome of our
resistant lines. Analysis of DNA methylation changes
suggested that expression of genes regulated by the his-
tone methyltransferase complex PRC2 were altered in
the most resistant lines.
PRC2 plays a critical role in B-cell development by

repressing genes necessary for hematopoietic differentiation

Fig. 5 B-cell development principal component analysis. a Scatter plot of the principal components of the Immunological Genome Project data
and the data on resistant lines. b Heat map of the –log10(p) values for the overlap of high and low covariance genes with transcription factor
target genes

Table 1 TCF3 target gene methylation
TCF3 target Not TCF3 target

Differential methylation 208 80

No differential methylation 5086 12,370

DNA methylation data obtained from The Cancer Genome Atlas shows an
increase in differential methylation in TCF3 target genes in patients with
DLBCL who showed stable or progressive disease compared with individuals
who had complete response
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through the addition of tri-methylation to lysine 27 of his-
tone H3. During hematopoietic stem cell differentiation,
this repressive mark is lost from genes that commit
hematopoietic stem cells to differentiation [30, 31, 39]. Nu-
merous studies have shown that overexpression of, or acti-
vating mutations in, PRC2 components, particularly Ezh2,
contribute to proliferation and lymphomagenesis in DLBCL
patients [40, 41]. To evaluate how the presence of the
H3K27me3 mark is correlated with resistance, we per-
formed ChIP-seq on H3K27me3 in the parental and resist-
ant cell lines. A large fraction of promoters in the resistant
lines showed rapid and widespread H3K27me3 acquisition
followed by a gradual reduction. This pattern of rapid
H3K27 methylation followed by demethylation has been
reported in patients: loss of H3K27me3 is a predictor of
poor outcome [42]. These results suggest that PRC2 is rap-
idly activated by the DNA damage induced by mafosfamide,
which is consistent with previous literature suggesting
the PRC2 is targeted to sites of DNA damage [43, 44].
Furthermore, these results suggest that this initial re-
sponse is attenuated as cells become adapted to higher
doses of mafosfamide and the most resistant cells have
an H3K27me3 state that is similar to that of the paren-
tal cells.
The observation that H3K27me3 is rapidly gained but

then lost suggests that it may not be the only mechan-
ism leading to resistance in our setting. The removal of
H3K27me3 at many loci may lead to its replacement
with DNA methylation, a more permanent mark. It has
been suggested that histone methylation by PRC2 may
recruit Dnmt3l, an inactive homolog of DNA methyl-
transferase, resulting in the inhibition of CpG methyla-
tion [32]. The gradual removal of H3K27me3 could lead
to the replacement of Dnmt3l by its active counterparts,
Dnmt3a and Dnmt3b, resulting in an increase in DNA
methylation. In agreement with a potential coupling
between PRC2 and DNA methyltransferases, we ob-
served that genes that gained H3K27me3 early and then
lost this mark (cluster K2) showed a gradual increase in
DNA methylation. Thus, we conclude that the addition
of H3K27me3 to these loci results in the acquisition of
DNA methylation, leading to a stable, drug-resistant
epigenome.
Our analyses also indicate the involvement of B-cell

developmental regulators in the epigenetic transition to
drug resistance. Among these regulators, which include
E2a and PU.1, we believe that E2a plays a central role.
Clustering of the H3K27me3 ChIP-seq data showed that
E2a is strongly associated with genes that gain and sub-
sequently lose H3K27me3 that also gradually gain DNA
methylation. Genes with significant levels of differential
DNA methylation were also enriched in those bound by
E2a. E2a encodes two proteins, E12 and E47, that are
known to be master regulators involved in the process

of B-cell lineage commitment [33]. Principle component
analysis of gene expression from the resistant lines and
from various stages of B-cell development indicated that
the expression of E2a target genes is strongly correlated
with B-cell maturation states. In addition, the E2a locus
is repressed early in B-cell development but it becomes
transcriptionally active during B-cell commitment [45].
The central role of E2a-mediated regulation of gene ex-
pression in Burkitt’s lymphoma is made evident by the
fact that it is the fifth-most mutated gene in patients
with Burkitt’s lymphoma and all mutations affect the
DNA binding domain [46]. Inhibition of E2a expression
using small interfering RNA results in lower levels of
Cdkna1 (p21) and higher PUMA expression, impairment of
cell cycle arrest, and increased Tp53-dependent apoptosis
[47]. Our data suggest that E2a may be playing a critical
role in mediating the resistance phenotype as it appears to
be a key regulator of the response to mafosfamide.
Taken together, our results suggest that PRC2 and

known regulators of B-cell development induce epigen-
etic changes in genes encoding key hematopoietic devel-
opmental and pluripotency genes that result in the
resistant phenotype. Upon treatment with mafosfamide,
the cells we studied underwent rapid and widespread ac-
quisition of the repressive mark H3K27me3. This methy-
lation is coupled to changes in the activity of B-cell
developmental regulators, such as E2a, ultimately result-
ing in changes in transcription of genes involved in B-
cell development. As the cells became more resistant,
the H3K27me3 response was attenuated and replaced by
the more permanent mark 5-methylcytosine. We specu-
late that these changes led the Eμ-Myc cell lines to epi-
genetically transition along the B-cell developmental
axis, leading to a suppression of the apoptotic response
upon exposure to mafosfamide. Evidence for this transi-
tion is provided by our integrative analysis of Immgen
data that captures a principal component of the B-cell
developmental axis. As the cells became more resistant
to mafosfamide, they appear to move backwards along
this axis. The diminished apoptotic response of cells
with stem-like characteristics compared with that of dif-
ferentiated cells has been described in many other sys-
tems and may thus represent a general mechanism for
the acquisition of drug resistance [48, 49].
Finally, we have shown that similar mechanisms may

also occur in human lymphomas. Our analysis of sam-
ples from patients with diffuse large B-cell lymphoma
suggests that there are epigenetic differences between
patients who remain disease-free versus those who have
disease progression. Moreover, the sites of differential
methylation are significantly associated with genes that
are bound by Tcf3, the human ortholog of E2a. Thus,
our murine model may capture epigenetic resistance
mechanisms that are also present in human disease,
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suggesting that epigenetic plasticity impairs therapeutic
regimens in the clinic.

Conclusions
Our results indicate that resistance to DNA alkylating
agents in B-cell lymphoma is associated with alterations
in both CpG methylation and H3K27me3 but not with
genetic changes. We found that repressive epigenetic
markers are preferentially altered in the promoter re-
gions of genes bound by the B-cell development regula-
tor E2a, suggesting that this transcription factor plays a
key role in mediating the resistance phenotype, possibly
by suppressing apoptosis. We also showed that differen-
tial methylation of genes bound by TCF3, the human
ortholog of E2a, is associated with treatment failure in
diffuse large B-cell lymphoma patients.
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Abstract: Sporadic ALS patients display heterogeneous immune pathways in peripheral blood mononuclear cells 

(PBMCs). We tested nine sALS patients and one unaffected identical twin of an index case by RNA-Seq of PBMCs. 

The inflammatory patients (n = 3) clustered into a subset with an inflammatory Th1/Th17 signature and the non-
inflammatory patients (n = 7) into another subset with a B cell signature. The inflammatory subset was remarkable 
for granulocyte and agranulocyte diapedesis, hepatic fibrosis, roles of cytokines and metalloproteases. The non-
inflammatory subset was highlighted by degradation of vitamin E, serotonin and nucleotides, altered T cell and B cell 
signaling, agranulocyte diapedesis, and up regulation of B cell genes. Identification of these differentially regulated 
pathways in sALS patients may guide the choice of anti-inflammatory therapies.

Keywords: Amyotrophic lateral sclerosis, immune pathways, tocilizumab, hepatic fibrosis, vitamin E

Introduction

The presence of inflammation in the spinal cord 
of sporadic amyotrophic lateral sclerosis (sALS) 

patients is documented by immunohistochemi-

cal demonstration of activated microglia, astro-

cytes, and activated complement components 

[1], along with the infiltration by dendritic cells, 
macrophages [2], and IL-17A-positive CD4 and 

CD8 T cells and mast cells [3]. Inflammatory 
macrophages phagocytize both normal and 

apoptotic neurons in the ALS spinal cord [4] 

and infiltrate the spinal cord of sALS patients 
[3] and animal models of ALS, contributing to

disease progression [5, 6]. Others claim that

only T cells cross the blood-brain barrier and

activate microglia [7], but this is inconsistent

with the results in experimental models [5, 6]

and infiltration by monocyte/macrophages in
the ALS spinal cord [8]. The inflammatory cyto-

kines IL-1 and IL-6 are induced in peripheral
blood mononuclear cells (PBMCs) of sALS pati- 

ents by mutant or aggregated wild-type super-

oxide dismutase-1 (SOD-1) [3]. IL-6 and TGF-β

are present in the serum of sALS patients early 

in the disease and IL-17A is found in the mid-

course of the disease [4]. Th17 cells have been 

increasingly found in ALS patients [3, 9, 10], 

and ALS has been associated with prior his- 

tory of autoimmune diseases, including multi-

ple sclerosis, myasthenia gravis and systemic 

lupus erythematosus [11].

Thus inflammation, including autoimmune inf- 
lammation, is documented in sALS but anti-

inflammatory therapy has not yet been proven 
successful. A recent study identified hetero- 
geneous, Th1, Th17, and IL-6 driven inflamma-

tory pathways in ALS patients [10]. Specific neu-

rotoxic mechanisms include Th17 cell disrup-

tion of the blood-brain barrier [12] and IL-6 

trans-signaling [13]. Although the clinical trial  

of celecoxib failed [14], recent anti-inflammato-

ry approaches against ALS are promising [15, 

16]. In addition, the lipidic mediator resolvin D1 

(RvD1) attenuated IL-6 and TNF-α production in 
ALS macrophages, suggesting beneficial role of 
omega-3 supplementation [4].
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The recognition of IL-6-driven inflammation in 
inflammatory sALS patients [16] has stimulated 
a pending clinical trial of the IL-6 receptor anti-

body tocilizumab (ActemraR). As shown in a pre-

vious cross-sectional study, one subgroup of 

´inflammatoryµ sALS patients had a highly 
increased expression of inflammatory cyto-

kines, in particular IL1, IL6, and IL8, chemo-

kines, metalloproteinases and transcription 
factors, whereas the ´non-inflammatoryµ group 
had a near normal expression, except for in- 

creased chemokines C;CL�, C;CL10 and C;CL- 
11 [17]. Two ´inflammatoryµ patients respond-

ed to ActemraR therapy by down regulation of 

inflammatory genes [16]. To develop a scheme 
for sub grouping sALS patients for an appro- 

priate anti-inflammatory therapy, we have in- 
vestigated the transcriptome of ALS patients’ 

PBMCs for the signatures of signaling path- 

ways.

0aterials and methods

Patients and controls

The immune and genetic investigation had 

institutional and ethical review board approval. 

The study population included ALS patients 

from a previous study [16] and a pair of twins 

discordant in the diagnosis of ALS ()igure �A). 

The assignment to the previously described 

inflammatory group was based on RT 3CR 
expression of IL-1β and IL-6 in PBMCs [16] with 

the threshold value (Ct) at most time-points < 

�4 cycles� in ´non-inflammatoryµ patients , the 
threshold C

t
 was � 24 cycles. Three patients 

received ActemraR infusions from their private 

physicians.

RT PCR assay of inflammatory gene mRNAs

The assay was done using a custom array  

of inflammatory genes (SABiosciences) on the 
Roche LightCycler using the ƄƄCt method [��]. 
A lower number of cycles (C

t
) indicate a higher 

inflammation.

Th17 cell assay

3B0Cs were isolated by the ficoll-hypaTue
gradient method, washed with 1XPBS and re-

suspended in completed medium. 0.5-1.0×106

cells were incubated with medium, or medium

with superoxide dismutase1 (SOD-1) or SOD-1

(2 µg/ml) plus tocilizumab (10 µg/ml) for 20

hours, and in presence of Brefeldin A (Golgi-

plug) (1 µl/ml) (BD Biosciences) for last 6 hours. 

The cells were harvested and washed with a 

FACS buffer (PBS in 0.02% NaN
3
 (wt/vol) and 

0.5% BSA), labeled with FITC-conjugated anti-

CD3 antibodies, washed, fixed and permeabi-
lized with cyofix/cytoperm (BD Biosciences) 
solution according to the manufacturer proto-

col and stained by PE or APC-conjugated anti-

IL-17 (BD Biosciences, San Diego, CA). Flow 

cytometry was performed using a FACSCalibur 

instrument. Data were analyzed using FlowJo 

software (Ashland, OR) with lymphocyte gate, 

based on forward and side scatter.

Patient expression profiling

RNA-seq was performed on patient PBMCs 

using standard Illumina RNA-seq library con-

struction protocols. RNA-seq libraries were 

sequenced on Illumina HiSeq 2000. Reads 

were aligned to the hg19 reference genome 

using Top+at [30]. Gene counts were Tuantified 
with HTSeq and normalized with DESeq, fol-

lowed by adding a pseudo count of 1 for each 

gene [31]. To cluster the patient PBMC RNA-

Seq data, gene expression signatures were 

identified from microarray intensity values of 
published works in which 3B0C derived mono- 
cytes were stimulated by IL4 (IL4_06, IL4_24), 

IL10 (IL10_06, IL10_24), IL15 (IL15_06, IL15_ 

24), NOD2L (NOD2L_06, NOD2L_24), TLR2/1L 

(TLR2/1L_06, TLR2/1L_24), Vitamin A (VIT_A), 

or Vitamin D (VIT_D) at different periods of 

exposure [18-20]. fRMA was used for normal-

ization of the microarray intensity values [32]. 

To identify genes highly expressed in the stimu-

lated monocytes, the ratio of the median inten-

sity value of a perturbation set to the median 

intensity value of their respective control set 

was used to rank the genes. The top �0 ranking 
genes were chosen for each perturbation to 

serve as the signature for high expression. 

Additional signatures include the genes induced 

by interferon-β (IFN-β) and interferon-Ƣ (IFN-γ) 

from IFN-treated PBMCs [33]. For each patient, 

a signature expression value was determined 

by calculating the arithmetic mean of the log
10

 

gene count across the 50 genes within a signa-

ture for each signature. Patients were subse-

quently clustered on their set of mean signa-

ture values distanced by correlation.

Pathway enrichment analysis

Differentially expressed genes between the 

inflammatory patients (1, �, and 11) and non-
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)igure �� Unsupervised clustering of patient popula-
tion. A. Patient disease status and demographics 
ordered by correlation-based cluster of PBMC gene 
counts. B. Hierarchical clustering dendrogram of ALS 
blood expression measured by their relative enrich-
ment (Z-score) for immune perturbation signatures 
across the ALS samples. Unique gene signatures de-
rived from adherent PBMC stimulated by perturbation 
at 6 h or 24 h as indicated. Each square represents 
the enrichment score of the top 50 unique genes of 
a signature (column) for a patient (row) with respect 
to the other patients, where red indicates a higher en-
richment and blue indicates a lower enrichment score 
of the signature genes. Patients are organized into two 
main clusters by correlation, where magenta includes 
inflammatory patients 1, � and 11. The orange cluster 
includes non-inflammatory patients 6, 1�, 13, 14, 1�, 
16 and 18. C. Transcriptional responses of the down-
stream genes in the IL-15 pathway. Note downregula-
tion of IL-6 responses but heterogeneity in IL-1beta 
responses in ´non-inflammatoryµ patients.

inflammatory patients (6, 1�, 13, 14, 1�, 16, 
and 18) were detected using DESeq (Anders et 
al. �010). The genes were ranked by the fold 
change expression of the inflammatory pati- 
ents to the non-inflammatory patients. To iden-
tify pathways enriched in the high expression 
genes among the inflammatory patients, the 

top 750 genes with a log2 fold change > 2 and 
an FDR < 0.05 were submitted to QIAGEN’s 
Ingenuity® Pathway Analysis (IPA®, QIAGEN 
Redwood City, www.qiagen.com/ingenuity). The 
bottom 539 genes with a log2 fold change <  
-2 and an FDR < 0.05 were submitted to In- 
genuity’s pathway analysis tool to identify en- 
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riched pathways for higher expression genes 
among the non-inflammatory patients.

5esults

Clustering of sporadic ALS patients according 
to the signatures of Th1 and B-cell pathways

Clinical and demographic data of nine sALS 
patients and one identical non-affected twin of 
the patient #5 from a previous study [16] are 
displayed ()igure �A). Through an unsuper-
vised clustering method, the sALS patients #6, 
12, 13, 14, 15, 16 and 18 were tightly clus-
tered together based on the expression of 
25,367 genes, while sALS patients #1, 5, and 
11 formed a second cluster (Supplemental 
Figure 1).

To characterize the inflammatory state of the 
sALS patients, we intersected their PBMC 
mRNA expression profiles with gene expression 
signatures induced by activation of immune 
cells. These signatures are derived from previ-
ous studies involving the stimulation of adher-
ent 3B0Cs with Th1-and Th�-like cytokines (IL-
4, IL-10, IL-1�, IFN-β, or IFN-Ƣ), microbial ligands 
to innate immune receptors (NOD2L, TLR2/1L), 
and the vitamins A and D [18-20]. We generat-
ed a list of unique signature genes that were 
upregulated in response to each of these per-
turbations (see Methods). The relative enrich-
ment score (Z-score) of each perturbation sig-
nature across the ALS blood samples was clus-
tered and represented as a heat map of the 
enrichment score ()igure �%), in which the ALS 
profiles are clustered based on their signature 
enrichment. Strikingly, we find that this analysis 
also generated two contrasting groups, much 
as the previous one in )igure �A. This allows us 
to characterize the larger of the two groups 
(patients 16, 13, 18, 6, 14, 12, and 15) as 
B-cell ´noninflammatoryµ, as it has lower levels
of IL-1�� N2'�L� and TLR2/1L-induced gene
signatures in comparison to the Th1 (patients
�,11, and 1) ´inflammatoryµ group ()igure �%).
:e find that the cytokine response signatures
of the noninflammatory group are more hetero-
geneous. The patient #6 had elevated levels
of IL-4 and IFNγ signatures, the patient #15
showed higher levels of the vitamin A program,
and the patients #6, 12, 16, and 18 had higher
levels of both the ligands APRIL and BAFF and
the receptors BCMA and TACI (Supplemental
Figure 2). The transcriptional responses of the

down-stream genes in the IL-15 pathway ()igure 
�&) separate the patients in a greater detail 
and confirmed that some patients had a mixed 
pattern (e.g. patient #6 and #15).

Clustering of sporadic ALS patients with follow-
up samples

A follow-up set of RNA-Seq samples were avail-
able for patients #18 and 14 and clustered  
on the expression of 25,367 genes along with 
other patient samples. The paired set of sam-
ples 18_R1, 18_R2, and 14_R1, 14_R2 reveal 
tight clustering within patients that is indicative 
of high correlation in gene expression profiles 
from the same individual at different time 
points (Supplemental Figure 1). This suggests 
that the gene expression signatures are quite 
robust over time, although they manifest some 
differences resulting from the treatment or dis-
ease progression.

Enriched pathways of high expression genes in 
inflammatory patients

:e next asked whether the genes that were dif-
ferentially expressed in the inflammatory and 
noninflammatory groups were enriched for cer-
tain functions and pathways using the Ingenui- 
ty Pathway Analysis tool (QIAGEN’s Ingenuity 
Pathway Analysis IPA, QIAGEN Redwood City 
<http://www.qiagen.com/ingenuity>. Accessed 
2015 Mar 5). We found that the pathways 
enriched among the inflammatory patients 
include granulocyte and agranulocyte adhesion 
and diapedesis, hepatic fibrosis, differential 
regulation of cytokine production in macro-
phages and T helper cells by IL-17A and IL-17F, 
inhibition of matrix metalloproteases, athero-
sclerosis signaling, and IL6-signaling ()igure 
2A). Genes among the IL-6 signaling pathway 
include IL6 itself and many genes downstream 
of the IL-6 responsive element (TSG6, COL1A1, 
and IL8) ()igure �%). The differential regulation 
of cytokine production in macrophages and T 
helper cells by IL-17A and IL-17F pathways in- 
clude pro-inflammatory genes that are induced 
in macrophages by either IL-17A or IL-17F (IL-1β� 
IL-6, IL-10, IL-12, IL-13, CCL2, CCL3, and G-CSF) 
()igure �&).

Enriched pathways of high expression genes in 
non-inflammatory patients

Pathways enriched among the genes that have 
higher expression in non-inflammatory patients 
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include alpha-tocopherol degradation, altered 

cytokine signaling, agranulocyte adhesion, 
serotonin degradation, retinoate biosynthesis, 

B cell development, atherosclerosis signaling, 

and other pathways ()igure �A). Highly express- 

ed genes in non-inflammatory patients include 
(a) the genes CYP4F2 and CYP4F3 involved in

alpha-tocopherol degradation ()igure �%); (b)

the genes in the B cell development pathway

including the members of MHCII (HLA-DMA,

HLA-DMB, HLA-DRB1, HLA-DRB5) ()igure �&);

and (c) the genes SULT1A1, SULT1B1, DHRS9,

ALDH2, and ALDH1A1 involved in serotonin

degradation ()igure �'). In addition, the ligand

for the B cell developmental pathway (APRIL)

and the receptors (%C0A�TNFR6F1� and BCR)
were heterogeneously overexpressed in non-

inflammatory patients (Supplemental Figure 2).

TK1� Fells are inFreaseG in tKe inflammatory 
subgroup and are inhibited by tocilizumab

In freshly isolated PBMCs, Th17 cells were in- 

creased in the inflammatory subgroup patients 
in comparison to the non-inflammatory group 
patients and control subjects ()igure �). After 

overnight stimulation by fibrillar SOD-1, Th17 
increased �- to �-fold in the inflammatory sub-

group subMects but did not change significantly 
in the non-inflammatory subgroup and control 
subjects. Overnight treatment with tocilizumab 

reduced (N.S.) Th17 induction by SOD-1 in the 

inflammatory subgroup, but did not have an 
effect in the non-inflammatory subgroup.

Inflammatory FytoNines are GoZn-regXlateG Ey 
ActemraR tKerapy in tKe ´inflammatoryµ sXEset 
EXt not in tKe ´non-inflammatoryµ sXEset

A brief follow-up of patients #1 and #6 was pre-

viously published [16]. Here we show that on  

a longitudinal follow-up of the inflammatory 
patient �1, and the non-inflammatory patients 
�6 and 14, inflammatory or non-inflammatory 
transcription, respectively, appeared to be a 

stable biomarker of these sALS patients in the 
course of the disease (600-1400, 100 to 600, 

and 750 to 950 days after onset, respectively) 

()igure �). Extended follow-up of the inflamma-

tory patient 1 revealed up regulation of inflam-

matory cytokines on entry into the ActemraR 

therapy in May 2012 (913 days after onset), 

but, following the start of therapy, down regula-

tion of inflammatory cytokines for 4 months 
with immediate down regulation 2 hours after 

infusion of Actemra (see )igure �'). The patient 

then developed a brief resistance to ActemraR 

therapy for 2 months followed again by attenu-

ation of inflammation. +owever, he stopped 
therapy in February 2013 (1200 days after on- 

set) and afterwards became more inflammato-

ry and expired 1930 days after onset. Two non-

inflammatory sALS patients were given a short 
course of ActemraR therapy. They had low tran-

scription of inflammatory cytokines on entry 
into the therapy, but their inflammatory cyto-

kine transcription actually increased during the 
therapy, which was then stopped ()igure �% 

and �&). To determine the immediate response 

to Actemra, inflammatory cytokine transcrip-

tion was measured before and 1-2 hr after 

treatment. For patient 1, the IL1A and IL8 tran-

scription decreased immediately after the infu-

sion ()igure �'). For patient 6, all inflammatory 
cytokine, with the exception of IL1A, increased 

following the infusion ()igure �().

'iscussion

In this study, we confirmed the heterogeneity of 
inflammation in sALS patients, which was previ-
ously observed and believed to be important 

for selection of appropriate patients for tocili-

zumab (Actermra) therapy [16]. Only ´inflamma-

toryµ patients are likely to respond to Actemra. 
Although inflammation has been demonstrated 
in a longitudinal study [16] and cross-sectional 

studies of sALS patients [10, 21], the progres-

sion of inflammation since the beginning to the 
end has not been completely analyzed. Here we 

observe that the inflammatory or non-inflam-

matory phenotype was maintained throughout 

the observed disease course, which however, 

started only 600 days after onset in the ́ inflam-

matoryµ patient. Thus, it is still plausible that a 
non-inflammatory phase preceded the inflam-

matory phase early after onset, as described by 

S. Appel’s group [22]. It will be important to fol-

)igure �� 3athway Enrichment of +igher Expression Genes in Inflammatory 3atients. A. The top �� significant ca-
nonical pathways from the high expression genes in inflammatory patients. B. IL-6 signaling pathway. Highly ex-
pressed genes in inflammatory patients are marked in purple. Omitted from the figure is the pathway involved in T 
helper cells. C. Differential regulation of cytokine production in macrophages and T helper cells by IL-17A and IL-17F 
pathways.
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low ALS patients over time for establishing their 
´inflammatoryµ phenotype, as ´non-inflamma-
toryµ ALS patients may become ´inflammatoryµ 
and respond to Actemra therapy.
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)igure �� 3athway Enrichment of +igher Expression Genes in Non-Inflammatory 3atients. A. The top �� significant 
canonical pathways from the high expression genes in non-inflammatory patients. B. α-tocopherol (vitamin E) deg-
radation. C. B-Cell development pathway with high expression genes in the non-inflammatory patients marked in 
purple. D. Serotonin degradation pathway. +ighly expressed genes in inflammatory patients are marked in purple. E. 
Retinoate Biosynthesis I pathway. +ighly expressed genes in inflammatory patients are marked in purple.

The ´inflammatoryµ patient �1 had inflamma-
tory phenotype before and after treatment with 
ActemraR, but became less inflammatory dur-
ing ActemraR therapy, except for a transitory 
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resistance to this therapy probably due to 
reduced uptake and degradation of IL-6 caused 
by tocilizumab [�3]. The ´inflammatoryµ pati- 
ents had more Th17 cells in comparison to 
´non-inflammatoryµ patients. Tocilizumab ther-
apy in vitro and in vivo attenuated Th17 cell 
induction as well as inflammatory cytokines. 
The patients in the ´non-inflammatoryµ sub-
group had low transcription and production of 
inflammatory cytokines and chemokines at 
baseline but, in response to the ActemraR ther-
apy, two patients actually increased the tran-
scription of IL-6 and other inflammatory cyto- 
kines.

The up regulated Th1 and B-cell pathways clar-
ify certain features of the pathophysiology of 
sALS patients. In both groups of patients, im- 
mune cell adhesion and diapedesis explain the 
infiltration by immune cells (granulocytes and 
agranulocytes) of the affected spinal cord seg-
ments [3]. In the inflammatory group, hepatic 
fibrosis and stellate cell activation is consistent 
with fibrosis and liver dysfunction in sALS pati- 
ents [24]. Atherosclerosis signaling could be 
related to vascular changes with downregula-
tion of tight junctions caused by SOD-1 in an 
animal model [��] and to inflammation caused 
by SOD-1 in human macrophages in vitro [3]. 
Increased α-tocopherol degradation may lead 
to deficiency of vitamin E. 3atients with familial 
isolated vitamin E deficiency have neurological 

inform personalized therapy with drugs target-
ing various pathways, including inflammatory, 
vitamin, cytochrome P450 superfamily of 
enzymes, and B-cell developmental pathways. 
Currently, tocilizumab (Actemra) has shown 
positive effects in Th1 patients. However, tocili-
zumab would not be beneficial in the non-
inflammatory subset of patients who might 
benefit from other approaches, such as a ther-
apy targeted at B cells, since the B cell activa-
tion and survival genes were upregulated in 
these patients. These results provide a new 
rationale for a targeted molecular therapy of 
inflammatory sALS patients guided in a person-
alized fashion by the PBMC transcriptome.
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disorders characteristic 
of vitamin E deficiency 
such as cerebellar ataxia 
and dysarthria [26]. Im- 
portantly, in a large study 
of ALS incidence, long-
term vitamin E supple-
ment use was associated 
with lower ALS rates [27]. 
Increased serotonin deg-
radation may be related 
to depression, which is 
common in ALS patients, 
as 37� patients are tak-
ing anti-depressant medi-
cation [28]. Increased re- 
tinoate may contribute to 
osteoporosis in ALS pati- 
ents.

In conclusion, this study 
describes heterogeneity 
of signature pathways in 
sALS patients that may 
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6upplemental )igure �� Clustering of patient population with follow-up samples. Correlation based cluster of PBMC 
gene counts of UCSC hg19 genes with the patient initial RNA-Seq samples along with follow-up results for (A) patient 
14 (14_R2) and (B) patient 18 (18_R2).
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6upplemental )igure �� Transcriptional responses of Th1 and Th2 genes in individual ALS patients. Differential 
responses by the cytokines, the chemokine CCL�0, the enzyme C<34F�, and the genes in B cells developmental 
pathway. A. Transcriptional response high in the inflammatory patients (IL1A, IL1B, IL6, CCL�). B. Transcriptional 
responses high in the non-inflammatory patients (C<34F�, A3RIL, BC0A, BCR).
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Epigenetic changes in T-cell and monocyte signatures
and production of neurotoxic cytokines in ALS patients
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ABSTRACT: We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells
(PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring
DNAmethylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time,
theALStwindevelopedhigherabundancesof theCD14macrophagesand lowerabundancesofTcells compared to the
non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq).
Moreover, the twins differed in themethylome at loci near several genes, includingEGFR andTNFRSF11A, and in the
pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS
twin’sPBMCsspontaneouslyproduced IL-6andTNF-a,whereasPBMCsof thehealthy twinproduced these cytokines
only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and
CD127 suggest the presence ofmemory T cells in both twins, but effector T cells only in theALS twin. TheALS twin’s
PBMCsupernatants,butnot thehealthy twin’s,were toxic torat corticalneurons,andthis toxicitywasstrongly inhibited
by an IL-6 receptor antibody (tocilizumab) and lesswell by TNF-a and IL-1b antibodies. The putative neurotoxicity of
IL-6andTNF-a is in agreementwithahighexpressionof these cytokineson infiltratingmacrophages in theALSspinal
cord.Wehypothesize that highermacrophage abundance and increasedneurotoxic cytokines have a fundamental role
in thephenotypeand treatmentof certain individualswithALS.—Lam,L.,Chin,L.,Halder,R.C., Sagong,B., Famenini,
S., Sayre, J., Montoya, D., Rubbi L., Pellegrini,M., Fiala,M. Epigenetic changes in T-cell andmonocyte signatures and
production of neurotoxic cytokines in ALS patients. FASEB J. 30, 000–000 (2016). www.fasebj.org

KEY WORDS: inflammation • ALS • SOD-1

Neuronal death in the amyotrophic lateral sclerosis (ALS)
spinal cord is related to intrinsic neuronal mechanisms re-
lated to pathogenic proteins that are aggregated, modified,
and mislocalized into the cytoplasm, and immune mecha-
nisms stimulatedby these proteins. Thepathogenic proteins
include superoxide dismutase (SOD)-1, transactive re-
sponse (TAR) DNA-binding protein (TDP)-43, and

RNA-binding protein fused in sarcoma/translocated in
liposarcoma (FUS) (1,2), as well as RNA-peptide aggre-
gates (3). TDP-43 becomes ubiquitinated in sALS and
frontotemporal dementia (4). RNA-binding proteins have
prion-like domains important in assembly of stress gran-
ules, as well as in pathologic protein aggregation and
intercellular propagation (5). TDP-43 proteinopathy is
associated with antisense RNA foci in the motor neu-
rons of patients with C9ORF72-ALS (6).

Since the 1990s, the pathophysiology of ALS has been
thought to involve the participation of immunemechanisms
(7–10), including autoimmunity (11). The roles of non-
neuronal cells, including microglia (12), astrocytes (13, 14),
and oligodendrocytes (15), have been described in animal
models.However, in the spinal cord inhumansporadicALS
(sALS),macrophages appear to assume the canonical role of
microglia in animal models. The postmortem ALS spinal
cord is densely infiltrated by large macrophages visibly
exiting from the vessels and morphologically distinct from
ramified microglia (8), thus suggesting their blood origin.
The immigration of blood-bornemacrophages into the CNS
iswellknowninotherhumanneuroinflammatorydisorders,
such as HIV-1 encephalitis (16) and Alzheimer disease (17).

ABBREVIATIONS: ALS, amyotrophic lateral sclerosis; APL, acute pre-
myelocytic leukemia; ChIP-seq, chromatin immunoprecipitation se-
quencing; CSF, cerebrospinal fluid; EGF, epidermal growth factor; ExAC,
exome aggregation consortium; FBS, fetal bovine serum; GREAT, Geno-
mic Regions Enrichment of Annotations Tool; HCP, high-CpG-density
promoters; IGV, integrative genomics viewer; IOD, integrated optical
density; MAF, minor allele frequency; MEM, minimal essential medium;
MIF, migration inhibitory factor; MRC1, mannose receptor, CD206; Neutro,
neutrophil; PBMC, peripheral blood mononuclear cell; PGRC, polycomb
group repressor complex; RNA-seq, RNA sequencing; RRBS, reduced rep-
resentation bisulfite sequencing; sALS, sporadic ALS; SDExp, signature delta
expression; SOD, superoxide dismutase; TAR, transactive response
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SOD-1 has a central role in sALS immunopathology
through the induction of inflammatory cytokines by the
aggregated form of its wild-type (18). SOD-1 aggregation
is aprominent featureofALS,occurringboth invitroandin
the spinal cord of transgenic mice (19). Denatured SOD-1
has been found in granular inclusions colocalizing with
lysosomes in spinal motoneurons of patients with sALS
(20). Disease progression in a mouse model is related to
the abundance of mutant SOD-1 (3). Oxidized SOD-1 has
a similar gain of toxic functions as mutant SOD-1 (21, 22).
Both mutant and wild-type SOD-1 inhibit axonal trans-
port (23).

Various epigenetic mechanisms, including DNA
methylation (such as hypermethylation of CpG islands in
C9orf72 expansion (24), histone remodeling, abnormal
miRNA biogenesis, and other silencing mechanisms have
been described in sALS (25). In the CNS, changes in the
expression of C9orf72, MATR, and VEGFA are present
in affected regions (26). Transcriptional alterations in
peripheral blood mononuclear cells (PBMCs) involve
the genes B2M, ACTG1, DYNLT1, SKIV2L2, C12orf35,
TARDBP, and ILKAP (27). TBK1 was identified as an
ALS gene linking autophagy of ubiquitinated proteins
with inflammation (28).

Despite thediversity ofmolecularmechanisms in sALS,
a common finding in the disease is an infiltration of the
gray matter in affected spinal cord segments by macro-
phages, CD4 and CD8 T cells, and mast cells (18), dem-
onstrating that both innate and adaptive immune
mechanisms areoperative in thepathologic course ofALS.
Immunopathologic mechanisms include phagocytosis of
apoptotic and nonapoptotic neurons by inflammatory
macrophages (29), toxicity induced by granzyme-positive
CD8 T cells (30), disruption of the blood–brain barrier by
Th17 cells (31), and IL-6 trans-signaling (demonstrated to
be toxic in a dose-related fashion in the mouse brain) (32).
Neuroprotective function declines through inhibition of
microglia andT cells byTGF-b (33), decrease in regulatory
T cells (34), and lack of trophic factors (35). Blocking ac-
cumulation of misfolded SOD-1 in mitochondria by ele-
vating the cytokine macrophage migration inhibitory
factor (MIF) enhances neuronal survival (36). In addition,
proteomic analysis of cerebrospinal fluid (CSF) samples of
patientswith sALS, in comparison to controlCSF samples,
revealed enrichment of proteins related to inflammation
(in particular complement components) and decreased
levels of proteins related to synaptogenesis and extracel-
lular matrix organization (37).

A study of 5monozygotic twin pairs discordant inALS
phenotype did not reveal nucleotide differences (38). An-
other study of monozygotic ALS-discordant twins with
the C9orf72 repeat expansion did not find epigenetic
modification of the genome (39). In the current study, we
investigated by reduced representation bisulfite sequenc-
ing (RRBS) themethylomeof amonozygotic twinpair that
was discordant in the diagnosis of ALS and inferred dif-
ferences in blood cell type abundances and pathways.
Moreover, we hypothesized that a downstream cause of
neuronal demise in the affected twin involves the pro-
duction by macrophages of neurotoxic cytokines stimu-
lated by effector T cells.

MATERIALS AND METHODS

Patients and controls

The immunologic andepigenetic investigationofpatients and rat
neurons was approved by the University of California, Los
Angeles Institutional and Ethics Review Board. The twin pair in
the study were monozygotic females 50 yr of age. The ALS twin
had onset of ALS in the right arm in the spring of 2011 and
subsequently progressed to bulbar involvement, whereas the
non-ALS twinwas not affected by 2015. Two other patients with
sALS are included in the study of neuronal toxicity: a 72-yr-old
man and a 56-yr-old woman, both with bulbar onset and upper
extremity weakness.

RNA sequencing

RNA-sequencing (RNA-seq)was performedonPBMCs byusing
standard RNA-seq library construction protocols (Illumina, San
Diego, CA, USA). RNA-seq libraries were sequenced on the
Illumina HiSeq 2000. Reads were aligned to the hg19 reference
genome by using TopHat Johns Hopkins University, Baltimore,
MD,USA; https://ccb.jhu.edu/software/tophat/index.shtml) (40). Gene
counts were quantified with HTSeq and normalized with DESeq
(41, 42).

Expression cell-type signatures

To characterize expression differences between the twins, their
gene counts were analyzed using multiple cell-type signatures
derived from a human tissue atlas (43). Frozen robustmultiarray
analysis (fRMA) was used for normalization of the microarray
intensity values of the atlas (44). To identify signature genes for
each cell type, we calculated the ratio of the median intensity
value of a cell type to the median intensity value. The top 50
ranking genes by this metric defined the cell-type–specific ex-
pression signature. For each RNA-seq sample, a signature d ex-
pression (SDExp) value between the twins was determined by
calculating the arithmeticmeandifference of the log10 gene count
(X) of the sample to themean log10 gene count (!X ) across all genes
within a signature.

SDExp ¼ 1
50

+50
1 ðXi 2 !X iÞ

RRBS

Genomic DNA for making RRBS libraries was extracted
from PBMCs according to the standard protocol (45). Ge-
nomic DNA was digested with a methylation-insensitive
endonuclease, MspI. Fragments of 40–220 bp were isolated,
because they are enriched for CpG-rich regions, such as CpG
islands, promoter regions, and enhancer elements. TheMspI-
digested DNA was end repaired, A tailed, and ligated with
Illumina adaptors. The double-stranded DNA was dena-
tured, followed by bisulfite conversion and PCR amplifica-
tion. These libraries were sequenced with Ilumina HiSeq
2000 sequencers (San Diego, CA, USA). The reads were aligned
to the reference genome (human hg19) using the modified bi-
sulfite aligner BS Seeker2 (46), and only the uniquely mapped
reads were kept. We calculated the methylation level for each
cytosine on the genome. Because bisulfite treatment converted
unmethylated cytosines (Cs) to thymines (Ts), the methylation
level at each cytosine were estimated by #C/(#C+#T), where #C
is the number of methylated reads and #T is the number of
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unmethylated reads. In this study, only cytosines that were
covered by at least 4 reads in all samples were included in the
subsequent analysis.

Epigenetic cell-type signatures

Cell-type methylation signatures were derived from the data
generated by the Blueprint epigenome project (http://www.
blueprint-epigenome.eu/) (47). For each cell type, we identified
CpG sites that were uniquely hypomethylated compared to
the other cell types. The criteria were that these CpG sites had
methylation levels ,0.3 in the specific cell types of interest,
and the methylation was at least 0.5 higher in all other cell
types. The Mann-Whitney U test with Bonferroni correction
was used to compare the median signature values between
the samples. Based on our selection criteria, we established
B-cell, NK-cell, T-cell, neutrophil (Neutro), andCD14+/monocyte
(CD14) signatures that consist of 551, 463, 217, 324, and 184 CpG
sites respectively (Supplemental Fig. 1A).

Differentially methylated RRBS fragments

Visualization of differentially methylated fragments was per-
formed with the Integrative Genomics Viewer (IGV) (48) (Broad
Institute,Cambridge,MA,USA; http://www.broadinstitute.org/igv/).
RRBSfragmentmethylation levelsweredeterminedbycalculating
the mean CpG methylation levels within each fragment. Differ-
entially methylated fragments between the twin samples were
restricted to regions that containedat least a singleCpGsite,with a
Fisher’s exact test P , 0.05, and within 100 kb of a gene tran-
scription start site. The fragmentswere ranked by the difference in
fragment methylation between the twin samples.

Genomic Regions Enrichment of Annotations

We tested for enrichment of annotations of genes associatedwith
the top and bottom 1000 differentially methylated fragments
usingGenomicRegionsEnrichmentofAnnotationsTool (GREAT),
and report termswith a false-discovery rate (FDR), 0.05 from the
MSigDBperturbationandMSigDBimmunologic signatures (Broad
Institute; http://software.broadinstitute.org/gsea/msigdb/index.jsp/) (49).
Fragments were ranked by the difference in methylation level be-
tween samples. Fragment-to-gene associations were determined
basedon the singlenearest genewithin100kb,with thewholehg19
genome set as the background.

Genetic screening

DNA samples from the twins were screened using targeted se-
quencing of genes previously implicated in a series of neurode-
generative disorders, including the ALS genes TARDBP, FUS,
SQSTM1,VCP,OPTN, SOD1,CHCHD10,ALS2,MATR3,VAPB,
PFN1, TAF15, HNRNPA1, HNRNPA2B1, and DCTN1. Exonic
regions for these genes were captured with a custom designed
library and sequenced on an Illumina HiSeq 2500. Sequence
readsweremapped to theGRCh37/hg19 reference genome, and
variants were interactively joint-called with GATK Haplotype
Caller according to GATK Best Practices recommendations
(https://www.broadinstitute.org/gatk/) (50). The joint variant calling
file was annotated with refGene, dbSNP138, functional effect
prediction tools, aswell as 1000 Genomes, ExomeVariant Server
and Exome Aggregation Consortium (ExAC) MAFs, according
toAnnovar (http://annovar.openbioinformatics.org/). In addition, all
samples were screened for the hexanucleotide repeat of C9orf72,
using both fluorescent and repeat-primed PCR (51).

Multiplex cytokine assays

The assays included multiplexed immunometric assay panels
(Luminex platform; R&D Systems, Minneapolis, MN, USA) for
thehumancytokines IL1-b, IL-6, IL-8, IL-10,GM-CSF,andTNF-a
and TGF-b1, -b2, and -b3 (R&D Systems). The Luminex xMAP
system tests multiple analytes simultaneously, using spectrally
addressed bead sets, each ofwhich is conjugatedwith a different
capturemonoclonal antibody specific for agiven targetmolecule.
The antibody-conjugated beads are allowed to react with the
sample and a secondary detection antibody, to form a capture
sandwich immunoassay. After the assay is completed, the assay
solution is drawn into the Bio-Plex 200 Luminex array reader
(Bio-Rad, Hercules, CA, USA) to quantify the amount of each of
the analytes.

Memory cells analysis

PBMCs were isolated from the healthy donors or patients with
ALS by using a Ficoll-Hypaque (GE Healthcare, Pittsburgh, PA,
USA) gradient method. PBMCs were surface-stained using anti-
CD3 and anti-human CD127 PE, anti-human CD45RA PerCp-
Cy5.5, or antihuman CD45RO APC and were analyzed with
FlowJo software (TreeStar, Ashland, OR, USA)with lymphocyte
gating, based on forward and side scatter.

Antibodies

Anti-human CD127 PE, anti-human CD45RA PerCp-Cy5.5, and
anti-human CD45RO APC (Tonbo Biosciences, San Diego, CA,
USA); anti-human Foxp3PerCp.Cy5.5 (eBioscience, San Diego,
CA, USA); neutralizing IgG1 monoclonal antibody to TNF-a
(InvivoGen, San Diego, CA, USA); neutralizing monoclonal hu-
man IL-1a antibody (R&DSystems); anti-IL6 receptora antibody
(tocilizumab; Actemra; Genentech, South San Francisco, CA,
USA); anti-Neu-N and anti-MAP-2 (EMS-Millipore, Billerica,
MA, USA); and goat anti-rabbit Alexa 488 and goat anti- mouse
Alexa 555 (Thermo Fisher Scientific Life Sciences, Carlsbad,
CA, USA).

Rat primary cortical neurons

All animal use protocols were approved by the University of
California, Los Angeles, Chancellor’s Animal Research Commit-
tee, and were in compliance with the NIH guidelines. Rat pups
(postnatal d 0–1) were euthanized by decapitation, and cortices
were dissected on ice in dissection medium [minimum essential
medium (MEM)] supplemented with streptomycin (100 mg /ml),
penicillin (100 U/ml) and 0.01 M HEPES (pH 7.5). The cortical
tissues were digested for 15 min with 1 mg/ml papain, and cells
were mechanically dissociated in MEM supplemented with 10%
fetal bovine serum (FBS), 0.5% glucose, 2 mMGlutamax (Thermo
Fisher Scientific Life Sciences). Cells were then centrifuged for 5
min at 145.2 g, resuspended in feeding medium (MEM supple-
mentedwith5%FBS, 0.1mg/ml transferrin, 2%B27, 0.5%glucose,
24 mg/L insulin, and 2 mM Glutamax) and plated on poly-D-
lysine-coated coverslips (0.05mg/ml) at adensity of 4.53 104/cm2.
Neurons were incubated at 37°C and 5%CO2 and, 72–96 h after
plating, feedingmediumwas supplementedwith 2mMcytosine
and b-D-arabinofuranoside to avoid astrocyte proliferation.

Testing of toxicity to rat neurons

Neuronswere cultured on coverslips in 24-well plates. Eight-day
in vitro neurons were treated with the PBMC supernatants at the
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ratio of 3ml of the supernatant in300mLof themedia for6h.Anti-
IL-1a, anti-TNF-a,, and anti-IL-6R were used in the inhibition
studies at a concentration of 2 mg/ml.

Immunofluorescence

Neurons were washed with PBS, fixed with 4% parafor-
maldehyde, and, after permeabilization with 0.1% Triton
X-100 (3 min) and blocking (30 min) with PBS containing
1% FBS and 1% BSA, were immunostained in blocking so-
lution with antibodies against MAP-2 (green dendrites) and
NeuN (red perinuclear cytoplasm). Three imageswere taken
from the top, middle, and bottom of each coverslip using the
Olympus research microscope with 340/0.75 objective and a
Hamamatsu camera (HamamatsuCity, Japan). Thepictureswere
scanned with Image-Pro software (MediaCybernetics, Rockville,
MD, USA).

Statistics

The differences in means and their 95% confidence limits
(mean 6 2 SEM) of fluorescence intensities were analyzed in 2
experimentswith 2 different supernatants by repeated-measures
ANOVA pairwise comparison, with adjustment for multiple
comparisons. Computations were performed with SPSS for
Windows, ver. 20.0 (IBM, Armonk, NY, USA).

RESULTS

Genetic screening

To demonstrate lack of genetic differences between the
twins discordant for ALS, the coding regions of 15 genes
previously implicated in ALS were screened in both indi-
viduals. Both individuals shared common (ExACMAF.
30%) codingvariantswithin theALS (2 synonymous and1
nonsynonymous), FUS (2 synonymous), OPTN (1 non-
synonymous), SQSTM1 (2 synonymous), and CHCHD10
(2 synonymous) genes. They also shared one rare (ExAC
MAF = 0.8%), nonsynonymous DCTN1 variant (NM
[lowen]001135041: c.A184G, p.I62V) predicted to be be-
nign. These individuals carried repeats within the normal
range for the C9orf72 hexanucleotide repeat.

Analysis of cell types in monozygotic twins

Weused the RRBS technique to profile the methylomes of
the monozygotic twins. Blood specimens were obtained
from the ALS twin in November 2013 and August 2014
and from the healthy twin in November 2013 and De-
cember 2014. The RRBS approach allowed us to measure
;2 million CpG sites in the genome, representing;7% of

Figure 1. Methylation distribution at cell-type–specific CpG sites in the PBMC samples from ALS-discordant twins. Methylation-
level box plots for the PBMC samples obtained in 2013 (box 1: November 6, 2013; box 2: November 6, 2013) and 2014 (box 3:
August 21, 2014; box 4: December 8, 2014) at T-cell, CD14+, NK, neutrophil, and B-cell-specific CpG sites. Blue: healthy twin; red:
ALS-affected twin. The inner band of the box plot marks the median methylation value of the of the sample, with the lower and
upper bounds of the box marking the first and third quartiles. The Bonferroni-adjusted P values were calculated to test for
differences in the methylation level distribution between samples; the Mann-Whitney U test was used to analyze the differences
between the twins in the 2013 and 2014 samples and in the batches from the unaffected and affected twins. Methylation
distribution is shown at these CpG-specific sites: A) T-cell–specific, (B) CD14-specific, and (C) NK-specific CpG sites with adjusted
P values. D) Neutrophil-specific and (E) B-cell–specific CpG sites.
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the total. Because of the sequence preference of the MSPI
enzyme used to digest the genome, we preferentially se-
lected sites that are within CpG islands, promoters, and
enhancers. We only kept sites with at least 103 the

coverage across all samples, leaving us with a total of
2,168,334 sites.

Two effects can cause DNA methylation differences
between the twins: 1) changes in cell type composition

Figure 2. Differentially methylated RRBS fragments and associated genes in the PBMC samples from ALS-discordant twins. A) Delta
methylation of the top 20 and bottom 20 fragments within 100 kb of a reference gene (RefGene) transcription start site. The top 20
and bottom 20 fragments were determined by pooling the 2013 and 2014 PBMC RRBS sample reads by individual. Individual CpG
sites were filtered for a minimum coverage of 10 times common across the 4 samples (2,168,334 sites). The CpG methylation counts
were pooled within replicates, and fragment-level methylation was determined by taking the mean CpG methylation within the
fragment. The fragments were filtered for fragments with 1 or more CpGs that are significantly different in methylation level between
the twins with a Fisher’s exact test, P , 0.05. The fragments were ranked by the difference in fragment methylation (D methylation)
of the affected twin to the unaffected twin and contained a minimum of a single CpG, which tested for differential methylation
between the twins with a 2-sided Fisher’s exact test, P , 0.05. Differentially methylated CpG sites were subsequently mapped to the
mappable RRBS fragments. B) Visualization of the aligned RRBS reads to the fragment chr18:60,051,935–60,052,123 that spans exon
10 of the TNFRSF11A gene. The dotted lines in the non-ALS (2013) plot represent individual reads that aligned to the chr18 fragment
within the TNFRSF11A gene body. The circles on each line represent individual CpG sites along the read. Filled circle: methylated
CpG; open circle: unmethylated CpG. Within the fragment, the non-ALS (2013), non-ALS (2014), ALS (2013), and ALS (2014)
samples had 63.5, 69.36, 92.73, and 88.34% of the aligned CpGs methylated, respectively.
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in theirPBMCs, and2) changes in themethylationof specific
cell types in activatedvs. resting states.We first analyzed the
changes that were related to differences in cell-type com-
position between the twins, by using the methylome data
collected for different hematopoietic cell types by the Blue-
print Consortium (Supplemental Fig. 1A). In brief, for each
cell type, we identified the sites that fell within RRBS
fragments that were uniquely demethylated in one cell
type with respect to all the others. These signatures were
then used as a proxy for the abundance of those cell types
within the PBMCs as follows: lower average signature
methylation implies that the cell type is more abundant,
whereas higher levels indicate lower abundance.

We measured the differences in the cell-type signature
in the twin PBMC samples collected in 2013 and 2014.We
observed that the cell-type signatures were not signifi-
cantly different between the twins in the 2013 samples, but
the difference became significant in 2014 (Fig. 1). Specifi-
cally, we found that T- and NK-cell signatures were sig-
nificantly higher in the ALS twin, indicating that these cell
types were less abundant in the affected twin. In contrast,
we found that the CD14 monocyte signature was signifi-
cantly lower in the ALS twin (P , 0.001), suggesting that
the affected twin had significantly higher levels of mono-
cytes. We did not detect significant changes in the neu-
trophil and B-cell signatures, suggesting that these cell
types did not vary between the twins (Fig. 1).

Differentially methylated RRBS fragments
include immune-related regions

Considering that DNA methylation changes may be
caused by activation of immune cells, we also directly
compared the methylomes of the twins, to identify the
regions with the most significant differential methylation.

Using this approach, we identified 20 top and bottom
fragments of the pooled samples ranked by the difference
in fragment methylation (Fig. 2A). The genes proximal to
the differentiallymethylated fragments included immunity-
related genes, such as EGFR, TGFb1, and TNFRSF11A.
Specifically, we found that the fragment on chr18, at po-
sition 60,051,935–60,052,123, and 59,481 bp downstream
of theTNFRSF11A transcription start site, had an increase
in fullymethylated reads in theALS twin (Fig. 2B). On the
contrary, the fragment on chr7 (55,073,097–55,073,297),
which is 13,597 bp upstream of the EGFR transcription
start site, had an increase in unmethylated reads in the
ALS twin compared to the unaffected twin at both
the 2013 and 2014 samples (Supplemental Fig. 3A). The
fragment on chromosome 19 (41,831,930–41,832,049) had
an increase in methylated reads in the ALS-affected twin
compared with the unaffected twin at both the 2013 and
2014 samples (Supplemental Fig. 3B). An unpooled
analysis intersecting the top 50 differentially methylated
fragments high in ALS from 2013 and 2014 identified
fragments associatedwithGNG13,VPS53,EMC10,PAX8,
TRPC3, and EGFR as consistently differentially methyl-
ated in both the 2013 and 2014 samples (Supplemental
Fig. 4A). Similarly, the intersection of the bottom 50 dif-
ferentially methylated fragments low in ALS from 2013
and 2014 identified fragments associated with CCKBR,
TNFRSF11A, TGFB1, POFUT1, and GMEB2 to be consis-
tently differentially methylated in both 2013 and 2014
samples (Supplemental Fig. 4B).

Specific pathways associated with epigenetic
changes differentiate the twins

To determine whether the genes that are proximal to the
differentially methylated regions are associated with

TABLE 1. DNA Methylation differences between the twins related to the H3K27me3 marker

Ontology
Enriched terms of differentially
methylated fragments (2013) Binomial FDR q Observed gene hits (n) Total genes (n)

Low methylation in ALS
MSigDB perturbation Genes up-regulated in NB4 cells

(APL) in response to tretinoin
[PubChem 444795]; based on
ChIP-seq data

5.11E-30 111 781

MSigDB perturbation Genes with HCP bearing a histone
H3 trimethylation marker at
K27 (H3K27me3) in MEF cells
(embryonic fibroblast)

5.30E-23 87 573

High methylation in ALS
MSigDB perturbation Genes up-regulated in NB4 cells

(APL) in response to tretinoin
[PubChem 444795]; based on
ChIP-seq data

2.61E-33 101 781

MSigDB perturbation Genes with HCP bearing the
trimethylation marker, at H3K27
(H3K27me3) in MCV6 cells
(embryonic fibroblasts trapped in
a differentiated state)

1.51E-27 70 418

Top and bottom 1000 differentially methylated fragments ranked by the difference in fragment methylation between the ALS twin and the
unaffected twin 2013 samples were subjected to GREAT enrichment testing in the MSigDB perturbation and MSigDB immunologic signatures.
The 5 most enriched terms for each ontology are reported, with a minimum FDR , 0.05.
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specific pathways or functional terms, we used the GREAT
tool as previously described. The differentially methylated
fragments in the 2013 ALS twin’s samples were associated
with the genes that are up-regulated in acute promyelocytic
leukemia (APL) cells in response to tretinoin (retinoic acid or
vitamin A) and with the genes associated with H3K27me3
markers (Table 1). The differentially methylated fragments
in the 2014 samples also include both tretinoin terms
and H3K27me3. However, the differentially methylated
fragments from the 2014 samples also include gene sets
from MSigDB immunologic signatures that are associated
withdifferences betweenblood cell types (e.g., genesdown-
regulated in comparison to monocytes treated with

anti-TREM-1vs.monocytes treatedwithavehicle) (Table2),
reinforcing the hypothesis that a portion of the differences
in methylation is because of the changes in cell-type
abundances discussed above.

Differential mRNA expression supports
cell-type abundance changes in PBMCs

Along with the extraction of DNA for RRBS analysis, we
also extracted RNA from the PBMCs of both the twins.
Using the rationale presented above, the differences in gene
expression between the twins may be caused either by the

TABLE 2. MSigDB immunologic signatures associated with differences between blood cell types

Ontology
Enriched terms of differentially
methylated fragments (2014) Binomial FDR q Observed gene hits (n) Total genes (n)

Low methylation in ALS
MSigDB perturbation Genes up-regulated in NBA cells

(APL) in response to tretinoin
[PubChem 444795]; based on
ChIP-seq data

3.39E-08 124 781

MSigDB perturbation Genes up-regulated in the human
mammary epithelial cells upon
expression of TP53 [GeneID 7157]
off adenoviral vector

3.30E-08 156 1065

MSigDB immunologic signatures Genes down-regulated in
comparison of monocytes treated
with 1 ng/ml LPS (TLR4 agonist)
vs. monocytes treated with vehicle.

2.25E-03 38 192

MSigDB immunologic signatures Genes down-regulated in comparison
of healthy CD4 [GeneID 920]
T cells vs. healthy myeloid cells

1.44E-03 38 197

MSigDB immunologic signatures Genes down-regulated in
comparison of monocytes treated
with anti-TREM1 [GeneID
54210] vs. monocytes treated
with vehicle

1.28E-03 38 193

MSigDB immunologic signatures Genes down-regulated in
comparison to healthy B cells vs.
healthy myeloid cells

1.88E-02 35 198

MSigDB immunologic signatures Genes up-regulated in comparison of
dendritic cells vs. central memory
CD4 [GeneID 920] T cells

2.64E-02 34 197

High methylation in ALS
MSigDB perturbation Genes up-regulated in NB4 cells

(APL) in response to tretinoin
[PubChem 444795]; based on
ChIP-seq data

1.59E-08 111 781

MSigDB perturbation Genes with high-CpG-density
promoters (HCP) bearing the
trimethylation marker at H3K27
(H3K27me3) in MCV6 cells
(embryonic fibroblasts trapped in
a differentiated state)

2.58E-08 71 418

MSigDB perturbation Genes within amplicon 16p13
identified in a study of 191 breast
tumor samples.

5.91E-03 22 110

MSigDB perturbation Genes up-regulated in comparison of
naive CD4 [GeneID 920] T cells vs.
d 0 monocytes

4.01E-02 30 187

Top and bottom 1000 differentially methylated fragments ranked by the difference in fragment mediation between the ALS twin and the
unaffected twin 2014 samples were subjected to GREAT for enrichment testing in the MSigDB perturbation and MSigDB immunologic signatures.
The 5 most enriched terms for each ontology are reported, with a minimum FDR , 0.05.
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changes in cell-type abundances or by the changes in the
activation state of the immune cells. We investigated these
possibilities by gathering gene expression signatures that
were specific to individual cell types as previously de-
scribed. For each sample we computed the average log
expressionof thegeneswithin the signatures: ahigher score
implied a higher abundance of that cell type and a lower
score signified a lower abundance.We compiled signatures
several of immune cells in both resting and activated states.

To interpret the differences in gene expression between
the twins, we examined the difference in the average sig-
nature expression value between the affected and un-
affected twins across multiple cell-type signatures (Fig.
3A). We found that among the 13 expression signatures,
only the dendritic cell signature reveals a significant dif-
ference between the twins.

We also examined the most differentially expressed
genes between the twins (Fig. 3B). We observed that the
genes with both significant fold changes and P values for
those changes are strongly enriched for chemokines and
metalloproteases (Table 3).

PBMCs of the ALS twin produce high
concentrations of IL-6, TNF-a, and IL-1

The alterations inmonocyte and T-cell abundances between
the twins suggest that altered immune cell interactions in
the ALS twin could explain the increased cytotoxicity by
macrophages in the ALS spinal cord. To investigate this
hypothesis, PBMCs of the twins were incubated overnight,
and cytokines were measured in the supernatant. The
PBMCs of the ALS twin, but not those of the non-ALS twin,
spontaneously produced the inflammatory cytokines IL-1,
IL-6,andTNF-a in thesupernatant innanogrampermilliliter
concentrations (Fig. 4B). In addition, IL-6, in nanogram per
milliliter concentrations, was produced by macrophages of
the ALS twin (Fig. 4C). Stimulation by SOD-1 increased cy-
tokineproductionbynon-ALS twin’s PBMCs to 50% level in
the ALS twin, and stimulation by SOD-1 in the presence of
the mismatched ALS twin’s serum strongly potentiated the
cytokine production. Stimulation by SOD-1 and tocilizumab
increased IL-6 production by PBMCs of both twins. Only
picogram per milliliter concentrations of IL-10 and -17 were
produced in PBMCs after overnight incubation.

Memory and effector T cells in the ALS twin

The strong spontaneous production of inflammatory cy-
tokines by the ALS twin’s, but not the healthy twin’s,
PBMCs suggested the presence of effector T cells only in
the ALS twin. Flow cytometric testing showed a higher
ratioofCD45RO/RAanda lowerproportionof theCD127
memory T cells in the ALS twin (Table 4).

Neurotoxic cytokines in the ALS
PBMC supernatants

Given the high concentrations of inflammatory cytokines
producedby theALS twin’sPBMCsandmacrophages,we
investigated induction of neuronal toxicity by PBMC

supernatants. In an in vitroassayof rat corticalneurons, the
supernatants of theALS twin’s PBMCs, but not of the non-
ALS twin’s, caused attrition of neurites revealed by di-
minished staining with MAP-2 antibody and increasing
neuronal destruction. The results of 2 experiments in 2
different rat neuronal cultures with 2 different ALS and
non-ALS PBMC supernatants showed destruction of
neurons exposed to the ALS twin’s supernatants, but

Figure 3. Differences in expression signatures between the twins.
A) Heat map of the z scores for the signature D expression levels.
Left column: signature D z score for the non-ALS PBMC sampled
on October 15, 2013; right column: signature D z score for the ALS
PBMCs sampled on July 19, 2013. Red: higher signature expression
level vs. the mean D. Blue: lower signature expression level vs. the
mean D. Among the 13 expression signatures, the dendritic cell
signature z score reveals a significant difference from the matrix
mean. B) A volcano plot of the 15,152 normalized gene count.
Differences between the twins in gene expression are shown as
log2 on the horizontal axis. The significance of differentially
expressed genes is shown on the vertical axis, with a minimum
Bonferroni corrected 2log10, P = 6.18.
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not the nonaffected twin’s supernatants (Fig. 5A).
The difference in MAP-2 mean fluorescence intensities
between the neurons exposed to the twin superna-
tants was analyzed by pairwise comparison by using
repeated-measures ANOVA with adjustment for multiple

comparisons with significant results (P, 0.001) (Fig. 5B).
In another experiment, the effects of antibodies to cyto-
kinesonneurotoxicityby theALS twin’s supernatantwere
compared. Tocilizumab, the blocking antibody to the IL-6
a receptor, produced the strongest protection, and IL-1b

TABLE 3. Comparison between most differentially expressed genes in the twins

Category
Terms associated with differentially

expressed genes Count List total FDR

UP_SEQ_FEATURE Disulfide bond 16 21 2.73E-06
SP_PIR_KEYWORDS Chemotaxis 6 21 9.80E-06
INTERPRO Small chemokine, IL-8-like 5 21 1.42E-04
GOTERM_MF_FAT Chemokine activity 5 16 1.70E-04

Figure 4. Cytokine concentrations in the twins. Cytokines in the 2014 twin samples. A) Serum cytokines: only picograms per
milliliter concentrations of cytokine with equal concentrations of IL-6 in both twins. B) PBMC supernatant cytokines: up to 10
ng/ml concentrations of IL-6 in PBMC supernatants of the ALS twin in the absence or presence of SOD-1 or tocilizumab with
matched or with mismatched serum; substantial IL-6 concentrations in the PBMC supernatants of the non-ALS twin were present
only with SOD-1 stimulation; other cytokines, GM-CSF, IL10, IL-1b and TNF-a showed similar differences. C) Macrophage
supernatant cytokines: up to 2 ng/ml of IL-6 in the supernatants of the ALS twin’s macrophages, with or without SOD-1 or
tocilizumab stimulation with matched or with mismatched serum; no IL-6 produced by non-ALS macrophages; and TNF-a, IL-10,
and IL-1b were produced in negligible amounts.
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and TNF-a antibodies afforded lower protection [all
pairwise comparisons by ANOVA repeated-measures
after adjustment for multiple comparisons were signifi-
cant (P , 0.001)]. Finally, neuronal toxicities of PBMC
supernatants from 2 other ALS patients were tested and
compared to the twins’ supernatants. One patient had
toxic supernatant with activity comparable to the ALS
twin’s. TheotherpatientwithALSdidnothaveneurotoxic
supernatant, as the activity of his activitywas equal to that
of the non-ALS twin’s in the same experiment.

DISCUSSION

Twins with the same genetic background, including
common coding variants implicated in ALS, but different
ALS phenotypes, differ in the abundance of blood cell
types and regulation of inflammatory signaling resulting
in increased production of neurotoxic cytokines from the
ALS twin’s PBMCs and macrophages. The neurotoxicity
of ALS twin’s supernatants was inhibited by IL-6 receptor
and TNF-a antibodies.

We used a novel approach to estimate cell-type abun-
dances using DNA methylation data. This method deter-
mines the methylation of specific cytosines that are found
tobedemethylated inonlyonehematopoietic cell typeand
hypermethylated in all others. Using this approach, we
found that the ALS twin had comparable T-cell and
monocyte composition when compared with the un-
affected twin in 2013. The T-cell composition decreased as
themonocyte composition increasedover the course of the
disease by 2014 (Fig. 1). These changes may account for
altered interactions between T cells, macrophages, and
dendritic cells that could lead to production of the in-
flammatory cytokines IL-1b, IL-6, and TNF-a (Fig. 4). The
testing of transcriptional signature by RNA-seq largely
supports the conclusion from the DNA methylation data
that the affected twin loses T cells and gains monocytes
during the course of the disease when compared to the
unaffected twin (Fig. 3).

We also observed that the DNA methylation differ-
ences between the twins involved genes related to cell
signaling, including hypermethylation of TNFRSF11A
in the ALS twin and hypomethylation of EGFR in the
ALS twin (Fig. 2). TNFRSF11A encodes amember of the
TNF-receptor superfamily named tumor necrosis factor
receptor superfamily member 11A, which interacts
with various adaptor TRAF family proteins and induces
activation of NF-kB and MAPK/JNK inflammatory
pathways (52, 53). EGFR encodes a glycoprotein cell-
surface receptor for members of the epidermal growth
factor (EGF) family. The downstream signaling pro-
teins from this receptor initiate several signal trans-
duction cascades, principally the RAS-RAF-MEK-ERK,

Akt, PLC-g, and STATs pathways. EGFR inhibitors in-
fluence adaptive immune responses by altering immune
gene expression (54), and EGFR participates in the down-
regulation of immune responses by Foxp3+ regulatory
T cells (55). EGFR has an inhibitory function on neurite
outgrowth,which could be important in theALS twin (56).

We found that the pathways associatedwith genes that
are proximal toDNAmethylation differences between the
twins were related to the gene sets “response to tretinoin
(vitamin A)” and “H3K27me3 marks” (Table 1). This
finding suggests that the activities of both vitamin A and
the histone methyltransferase polycomb group repressor
complex (PGRC)-2 could be increased in the ALS twin.
PGRC2 is associated with the methylation of H3K27me3
and repression of transcription, typically during de-
velopmental processes or cellular differentiation (57). It
has been shown that vitamin A inducesMMP9 in macro-
phages and increases macrophage phagocytosis (58). In-
deed, MMP9 was up-regulated in the ALS twin (Fig. 3B)
who also displayed increased transcription of the genes
related to immune cellmigration andactivation, including
the metalloproteinase MMP9, the chemokines CCL1 and
-7 that attract monocytes, the receptor FPR3 for mono-
cytes, and the receptor on “proresolving” macrophages
MRC1 (mannose receptor, CD206).

In animal models, the SOD-1-stimulated microglia-
derived neurotoxic factors have been largely unidentified
but are thought to involveexcessiveglutamate release (59).
In the current study, we have found production of neu-
rotoxic levels of inflammatory cytokines, in particular IL-6
and TNF-a, by the ALS twin’s PBMCs and macrophages.
The levels of IL-6 produced bymacrophages were 5 times
lower than those produced byPBMCs, suggesting that the
interactions between effector T cells andmacrophages are
necessary for high IL-6 production. Tocilizumab increased
IL-6 production, because it inhibits internalization of IL-6
(60). That finding notwithstanding, tocilizumab blockade
of IL-6 signaling is anticipated to have therapeutic benefits
in a current clinical trial of the drug.

The cells of the healthy twin required stimulation by
SOD-1 for production of these cytokines, suggesting the
presence ofmemorybut not effector T cells. The PBMCs of
the ALS twin had a higher CD45RO/RA ratio (Table 3),
suggesting increased central and effector memory T-cell
subset (61) and decreasedCD127 proportion, indicative of
an increased proportion of effector T cells (62) in the ALS
twin.Macrophages of sALSpatients (differentiated in vitro
in autologous serum) showed increased inflammatory
activation with progression of the disease (data not shown)
compatible with stimulation by effector T cells.

The PBMC supernatants from the ALS twin containing
IL-1, IL-6, andTNF-a causeddemise of ratmotor neurons,
which was strongly inhibited by the antibody to the IL-6
receptor and less so by the antibodies to IL-1b and TNF-a.
IL-6 signaling in a mouse model is known to cause neu-
ropathology in a concentration-dependent fashion (32). In
addition, IL-6 and TGF-b participate in the expression of
IL-17A on CD8 T cells and mast cells in the affected spi-
nal cord (18). Finally, we demonstrated the presence of
infiltrating macrophages enclosing fragmented motor
neurons in the ALS spinal cord. The epigenetic and

TABLE 4. Memory vs. effector T cells in the twins

Patient Ratio of CD45RO:CD45RA CD127 (%)

ALS twin 36.5/20 = 1.8 32.4
Healthy twin 63.4/46.6 = 1.3 63.5
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transcriptional differences between the twins and higher
abundance of IL-6- and TNF-a-producing macrophages in
theALStwinmayaccount for theirdifferentphenotypes.The
putative but heterogeneous role of neurotoxic cytokineswas
highlighted in 2 other sALS patients, onewith and the other
without neurotoxic cytokines. Our recent study of immune
pathways inPBMCsof9sALSpatients revealedthatpatients
cluster into an ‘inflammatory” subset with an inflammatory
Th1/Th17 signatureanda“noninflammatory” subsetwitha

B-cell signature (63).Wepropose thatRNAsequencingoffers
anapproach to the selectionofALSpatients fordifferentanti-
inflammatory therapies.
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Chapter 6: 

 CEllFi: cellular epigenetic fingerprinter -- a bisulfite sequencing based method for cellular 

deconvolution of heterogeneous samples 
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ABSTRACT 

Variation of immune cells across patient blood and biopsy samples provides insights to 

the immunobiology of auto-immune disorders and infectious diseases. Research has 

demonstrated the importance of DNA methylation of CpG dinucleotides in defining cellular 

identity. Here we present a method that utilizes bisulfite sequencing to measure millions of CpG 

sites to yield a robust platform for interpreting blood profiles into their constituent cell types. 

Through the selection of cell type-specific DNA methylation signatures and non-negative least 

squares regression, we demonstrate the estimation of cell type proportions from in vitro cell 

mixture experiments. Our method provides a translational computational approach to quantify 

immune cellular quantities with potential for the diagnosis or prognosis of disease. 

BACKGROUND 

Over the past few years there has been a greater availability of immunotherapies for 

cancer. These newer classes of cancer treatments such as, ipilimumab, target proteins produced 

by tumors that suppress the immune system. This drug unmasks the cancer cells from the 

immune system, leading to the proliferation of the T-cells and improved survival rates (Olson & 

McNeel, 2013). A recent clinical study has shown that patients with delayed increases in CD4 

and CD8 T cells after ipilmumab treatment proceeding an early increase in absolute lymphocyte 

counts are associated with positive clinical outcomes of melanoma, which highlights the need for 

immune response monitoring for personalized treatments (A. Martens et al., 2016). One 

proposed method of monitoring immune response is to quantify the cell type composition of 

blood in treated individuals. Works by Houseman and Accomando have shown that estimating 

the leukocyte composition of peripheral blood can be achieved through DNA methylation 
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profiling of bulk samples using DNA methylation microarrays (Houseman et al., 2012). Their 

approach provides researchers a means of monitoring both inflammatory and suppressive 

immune activity based on the methylation profile of multiple purified references. In addition, 

their efforts provide a high throughput means of sub cell type distribution for heterogeneous 

samples.  

As the gold standard for studying DNA methylation has shifted to NGS based methods, a 

growing set of whole genome methylomes from purified cell types have been made accessible to 

researchers. The BLUEPRINT project generated several reference epigenomes of healthy 

individuals to identify key epigenetic features involved in hematopoietic differentiation programs 

(J. H. A. Martens & Stunnenberg, 2013). This reference set provides methylation calls at 

millions of CpG loci as opposed to the hundreds of thousands available to the microarrays 

utilized in previous DNA methylation deconvolution methods. Here we present a method that 

utilizes bisulfite sequencing to yield a robust platform for decomposing blood profiles into their 

constituent cell types. Following the selection of cell type specific DNA methylation signatures 

and non-negative least squares regression, we demonstrate our method on in vitro mixtures of 

hematopoietic cell types. Our method provides a comprehensive pipeline to detect unique CpG 

markers and estimate cell type composition in blood that utilizes a greater number of markers 

available in DNA methylation array based approaches. with potential applications beyond 

immune-biology. 

IMPLEMENTATION 

Linear Model 
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CEllFi is a computational pipeline for the estimation of cell mixture composition in 

heterogeneous samples using DNA methylation profiles from BS-Seq methylation calls. Using a 

reference set of purified cell type specific methylation profiles; CEllFi estimates the proportion 

of each referenced cell type within a sample’s methylation profile. To estimate the cell type 

proportions, CEllFi utilizes a non-negative least squares algorithm where ! is a m by n matrix of 

m CpG methylation calls for n reference cell types to minimize ! (cell type proportions), where 

! is the vector of corresponding CpG methylation calls for a heterogeneous sample and ! is

constrained to be non-negative (Lawson & Hanson, 1974). 

min ||!" − !||! ,  ! ≥ 0 

The CEllFi pipeline incorporates multiple pre-processing steps to organize the methylation calls 

of replicate reference methylation profiles as well as select common CpGs across a multi-sample 

analysis. The preprocessing step identifies regions with optimal differences in methylation 

between groups. 

Processing Overview 

The input data for the CEllFi pipeline consists of methylation call files in UCSC 

bedgraph or BSSeeker2 CGmap file formats for the reference cell types. The bedgraph files are 

joined and low variance CpG sites may be removed from additional processing. The sample 

methylation call files are joined and filtered to identify common CpG sites with a user defined 

minimum coverage level across all samples. 

The CEllFi workflow begins with the “meth_matrix” process to join multiple reference 

methylation calls in bedgraph format into a single matrix. The “matrix_metrics_std” process 
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selects for CpG sites with large variance across the different reference files. The default 

minimum methylation standard deviation of 0.20 across all references files per CpG site. The 

“cgmap_data_frame” process is used to merge the sample methylations, that have been generated 

by BS_Seeker_2, into a single matrix. The “join_ref_sample” process joins the reference matrix 

and the sample matrix into a merged matrix file. The “bind_dmr_col” process will perform the 

fragment detection step by performing the region detection algorithm previously described. 

Single site CpG methylation values are subsequently aggregated into fragment methylation 

values by calculating the arithmetic mean for both the reference and sample input. In the 

“matrix_metrics_delta” step, the minimum fragment methylation differences is calculated 

between cell type groups and recorded. The “filter_ref_sample,” step removes fragments with a 

threshold delta of -0.20 and a minimum unadjusted anova p-value of 0.05. “decon_int_est” is the 

final process in which the non negative least squares regression estimates the cell type 

proportions for each sample using the cell type group as the reference set (Figure 1). 

Region Detection 

A sliding CpG method is used to identify regions with similar levels of methylation 

between neighboring CpG sites. Starting at a single end of a chromosome, a seed region is set as 

the starting CpG. The methylation difference between the seed region methylation call and a 

neighboring CpG is calculated for all reference values. When the maximum methylation 

difference between the seed region and bp distance is below a maximum threshold, the CpG is 

merged into the region. In the merge step, the region methylation values are updated as the mean 

methylation for the CpG members and the region boundaries are expanded to the most distal 

CpGs. When neighboring CpGs exceed the maximum methylation difference or distance 
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threshold, the CpG is initialized as the starting point for the new region. Once the reference 

regions are defined, the region methylation values are calculated for the samples by calculating 

the arithmetic mean of the CpG methylation values of sites within the defined region.  

Differential Methylation 

To identify regions of differential methylation, replicate methylation calls are aggregated 

into an average cell type methylation value. Pairwise differences in the cell type methylation are 

calculated between cell types. For each cell type, cell specific regions are ranked based on the 

minimum difference to the remaining cell types. Regions can be filtered by an anova and t-test p-

value between cell types. A minimum difference threshold may also be set to choose regions 

with cell specific methylation levels.  

MATERIALS/METHODS 

In Vitro Cell Mixture 

Six in vitro mixtures were prepared composed of CD4 positive T cells, CD8 positive T 

cells, Neutrophils, Natural Killer, B cells, and Monocytes. The cell types were isolated from 

healthy human whole blood using Ficoll-Paque density centrifugation. Isolated cell types were 

subsequently mixed into six different test tubes with varying percentages of each cell type (Table 

1). 

RRBS Alignment 

Genomic DNA for making RRBS libraries was extracted from the six in vitro mixtures 

according to the standard protocol (Smith, Z.D., et al.). Genomic DNA was digested with a 
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methylation-insensitive endonuclease, MspI. Fragments of 40–220 bp were isolated, because 

they are enriched for CpG-rich regions, such as CpG islands, promoter regions, and enhancer 

elements. The MspI digested DNA was end repaired, A tailed, and ligated with Illumina 

adaptors. The double-stranded DNA was denatured, followed by bisulfite conversion and PCR 

amplification. These libraries were sequenced with Ilumina HiSeq 2000 sequencers (San Diego, 

CA, USA). The reads were aligned to the reference genome (human hg19) using the modified 

bisulfite aligner BS Seeker2, and selecting for the uniquely mapped reads (Guo et al., 2013). We 

calculated the methylation level for each cytosine on the genome. Because bisulfite treatment 

converted unmethylated cytosines (Cs) to thymines (Ts), the methylation level at each cytosine 

were estimated by #C/(#C+#T), where #C is the number of methylated reads and #T is the 

number of unmethylated reads. In this study, only cytosines that were covered by at least 10 

reads in all samples were included in the subsequent analysis. 

In Vitro Cell Mixture Estimation 

Six cell types were selected for deconvolution, B Cell, CD14, CD4, CD8, Natural Killer, 

and Neutrophils. The reference methylation calls for the six cell types were download from the 

Blueprint Epigenome project (J. H. A. Martens & Stunnenberg, 2013). Together with the six cell 

mixture methylation calls, the inputs were submitted to the CEllFi processing pipeline to 

generate % composition of each cell type for all samples. The CEllFi pipeline utilized the default 

parameters for detected fragments with two or more fragments per cell type, use hypo 

methylated fragments with a methylation distance of at least 20% from the reference cell type.  

RESULTS/DISCUSSION 
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The preprocessing steps in selecting CpG signatures hypomethylated in the different cell 

types reveal that 1154, 372, 443, 13, 30, and 235 CpG sites are uniquely low in methylation for 

the Neutrophil, CD14, Natural Killer, CD4 T Cell, CD8 T Cell, and B Cells may be incorporated 

into a fragment for estimation (Figure 2). Our method is able to identify unique markers, specific 

to each cell type. Unfortunately, identifying a large number of CpG sites to distinguish between 

similar cell types like CD4 and CD8 cells remain a challenge. To overcome this limitation we 

may incorporate hyper methylated CpG sites rather than focus solely on hypomethylated 

features.  

Our method was able to estimate the % cell type composition for each of the cell 

mixtures with mean error levels of 4.30% in tube 1, 8.21% in tube 2, 16.06% in tube 3, 3.06% in 

tube 4, 3.25% in tube 5, and 4.09% in tube 6 (Table 2). A correlation analysis between the 

estimated and expected values for each cell type reveal that a positive correlation is consistent 

between the observed and estimated cell type mixture levels with a Pearson’s correlation 

coefficient of 0.716, 0.996, 0.894, 0.977, 0.991 and 0.996 for the B Cell, CD14, CD4, CD8, 

Natural Killer, and Neutrophil cell types respectively (Figure 3). The weakest performing 

estimation occurred in the tube 2 and tube 3 mixtures, which consist of the highest percentage of 

CD4 or CD8 T cells. By identifying additional features for CD4 and CD8, we may be able to 

improve on their estimation. When we assess the error of the mixtures with moderate to low 

levels of CD4 or CD8 T cells, the average sample estimation error remains below 10% and 

maintains strong correlation between estimated and expected values within cell types (Figure 4).  

CEllFi provides a means of both identifying cell type specific epigenetic marks as well as 

estimate the cell type composition of heterogeneous samples using WGBS or RRBS. As new 

immune therapies for cancers undergo development, it will be informative to utilize a high 



66	

throughput method for both the monitoring of immune response as well as identify key 

epigenetic biomarkers.  
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TABLES 

Table 1. In Vitro Blood Cell Mixtures 
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Table 2. Cell Composition 

Tube No. Tube Label Cell Type Expected % Estimated % Error 

1 uniform B Cell 19.40% 14.29% 5.11% 
1 uniform CD14 19.40% 22.46% 3.06% 
1 uniform CD4 19.40% 21.41% 2.01% 
1 uniform CD8 19.40% 10.57% 8.83% 
1 uniform Natural Killer 19.40% 22.97% 3.57% 
1 uniform Neutrophil 3.00% 6.20% 3.20% 
2 hi_t_cd4 B Cell 0.50% 8.96% 8.46% 
2 hi_t_cd4 CD14 1.00% 1.06% 0.06% 
2 hi_t_cd4 CD4 82.80% 57.28% 25.52% 
2 hi_t_cd4 CD8 10.20% 13.45% 3.25% 
2 hi_t_cd4 Natural Killer 5.10% 11.83% 6.73% 
2 hi_t_cd4 Neutrophil 0.40% 5.66% 5.26% 
3 hi_t_cd8 B Cell 1.00% 8.10% 7.10% 
3 hi_t_cd8 CD14 2.60% 0.50% 2.10% 
3 hi_t_cd8 CD4 0.50% 23.04% 22.54% 
3 hi_t_cd8 CD8 84.60% 37.35% 47.25% 
3 hi_t_cd8 Natural Killer 10.40% 21.84% 11.44% 
3 hi_t_cd8 Neutrophil 0.80% 6.72% 5.92% 
4 hi_nk B Cell 2.70% 2.70% 0.00% 
4 hi_nk CD14 5.50% 4.96% 0.54% 
4 hi_nk CD4 1.10% 0.87% 0.23% 
4 hi_nk CD8 0.50% 1.95% 1.45% 
4 hi_nk Natural Killer 88.50% 79.80% 8.70% 
4 hi_nk Neutrophil 1.70% 9.10% 7.40% 
5 hi_neut B Cell 15.90% 12.59% 3.31% 
5 hi_neut CD14 31.90% 33.80% 1.90% 
5 hi_neut CD4 8.00% 0.24% 7.76% 
5 hi_neut CD8 3.20% 4.09% 0.89% 
5 hi_neut Natural Killer 1.60% 4.19% 2.59% 
5 hi_neut Neutrophil 39.50% 42.53% 3.03% 
6 hi_mono B Cell 10.00% 6.06% 3.94% 
6 hi_mono CD14 81.30% 75.21% 6.09% 
6 hi_mono CD4 5.00% 1.42% 3.58% 
6 hi_mono CD8 2.50% 6.29% 3.79% 
6 hi_mono Natural Killer 1.00% 3.57% 2.57% 
6 hi_mono Neutrophil 0.10% 4.65% 4.55% 
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FIGURES 

Figure 1. CEllFi Workflow 

The CEllFi workflow consists of 8 processes. The “meth_matrix” combines reference bedgraph 

files into a single matrix. The “matrix_metrics_std” selects for CpG sites with high variance. The 

“cgmap_data_frame” process is used to merge the sample methylations. The “join_ref_sample” 

process joins the reference matrix and the sample matrix. The “bind_dmr_col” process will 

perform the fragment detection and aggregate the methylation calls into fragments. In the 

“matrix_metrics_delta” step, the fragment delta is calculated. The “filter_ref_sample,” step 
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removes fragments with a minimum threshold delta. “decon_int_est” is the final process to 

estimate the cell type proportions for each sample. 
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Figure 2. Heatmap of Cell Type Specific CpG Sites 

The heatmap is a visualization of the methylation level across the reference methylation data set 

of sites uniquely low in methylation with high levels of methylation in red and low methylation 

levels in blue. 1154, 372, 443, 13, 30, and 235 CpG sites were identified as uniquely hypo 

methylated for the Neutrophil, CD14, Natural Killer, CD4 T Cell, CD8 T Cell, and B Cells 

respectively.  
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Figure 3. Correlation of Estimated and Expected Cell Type Composition 

Scatter plot of the expected cell type percentage within the tube mixture against the estimated 

percentage across all tube mixtures. A) Scatter plot of B Cell expected and estimated cell mixture 

contribution with a Pearson’s correlation coefficient of 0.716. B) Scatter plot of CD14 cell 

expected and estimated cell mixture contribution with a correlation coefficient of 0.996. C) CD4 

T Cell expected and estimated cell mixture contribution, with a Pearson’s correlation coefficient 

of 0.894. D) CD8 T Cell expected and estimated cell mixture contribution, with a Pearson’s 

correlation coefficient of 0.977. Natural Killer expected and estimated cell mixture contribution, 

with a Pearson’s correlation coefficient of 0.991. F) Neutrophil expected and estimated cell 

mixture contribution with a Pearson’s correlation coefficient of 0.996. 
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Figure 4. Cell Composition Heatmap 

Heatmap of both the expected and estimated % composition of B Cell, CD14, CD4, CD8, 

Natural Killer, or Neutrophils within a sample mixture. A white cell indicates an undetected or 

low % of a cell type within a sample. A red cell indicates a high % composition of a cell type 

within a sample. The % composition values are clustered based on correlation across the % 

values across the in vitro mixtures (tubes 1 – 6).  
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Chapter 7: 

Conclusion 
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The biological interpretation of DNA methylation or RNA-Seq data has been aided by 

leveraging biomedical publications and publicly available datasets, like MSigDB. By performing 

an enrichment analysis, it is possible to associate differentially expressed genes or differentially 

methylated regions to curated pathways or sets of genes. Analysis approaches are greatly 

simplified through the use of online tools, like DAVID or GREAT, with access to numerous 

gene set ontologies. Unfortunately, as newer expression and epigenetic data becomes available, 

the online annotation tools may fail to include the latest pathways or gene sets. Throughout this 

work, tools and analysis strategies employed underused data resources to provide insight into a 

series of biomedical experiments. 

The work in the second chapter was to build a collection of DNA methylation analysis 

tools. Features of the bisulfite sequencing tool, MethGO, includes several methylation 

characterization analyses to examine methylation coverage, sample methylation levels, 

methylation level distribution, methylation characterization of specific genomic features, single 

nucleotide polymorphism calling, and copy number variation calling. Among the methylation 

characterization tools, MethGO is able to visualize the methylation levels across transcription 

factor targets that may correspond to changes in expression. MethGO is coded in Python and is 

publicly available. One opportunity for expansion of MethGO, is to provide a web or user 

interface for biologists. Automation and simplification of methylation analysis can reduce time 

and effort involved in established a computational pipeline. It may also be informative to 

incorporate methylation profiling at additional genomic features, such as chromatin states, CpG 

islands, or chromatin states. 

The analysis approach in the third chapter incorporated multiple external data resources 

to interpret the expression and epigenetic changes that occurred in the increasingly 
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chemoresistant mouse Burkitt’s lymphoma cell lines. A PCA analysis of the expression data of 

the lymphoma cell lines along with control B-cells undergoing maturation reveals that the 

transcriptional changes of the increasingly resistant B-cells corresponds with the 

dedifferentiation of the control B-cells. In working with the DNA methylation data, multiple 

transcription factor targets were identified from external CHiP-Seq experiments. An enrichment 

analysis of the genes associated with differential methylation and transcription targets indicate an 

association with transcription factors involved in B-cell development. The analysis also 

identified transcription factors involved in mediating epigenetic changes. Through the integration 

of the expression and epigenetic analyses, an epigenetic mechanism of chemoresistance was 

proposed. A potential application of the study is to identify epigenetic markers of 

chemoresistance or B-cell dedifferentiation in B-cells. By utilizing healthy WGBS data from 

healthy B-cells at different stages in differentiation, like Blueprint Epigenome Project, it should 

be possible to identify DMRs to be used as a marker for chemoresistance in Burkitt’s lymphoma. 

In the fourth and fifth chapters, transcriptional and epigenetic profiles of PBMCs were 

examined in patients affected with ALS. An unsupervised cluster analysis of the expression 

profiles identified two main groups. By defining a series of inflammatory expression signatures 

from microarray expression data from GEO, it was possible to annotate the group as having an 

inflammatory transcriptional profile or non-inflammatory profile. A subsequent differential 

expression analysis followed by pathway enrichment analysis reveals differences in mechanistic 

activity between the inflammatory and non-inflammatory samples. One challenge to analyzing 

PBMCs is gauging the effect of differences in blood cell type composition. In the fifth chapter 

we download the methylation calls from multiple haematopoietic cell lines to build a cell type 

specific set of hypomethylated CpG sites. By examining the methylation level distribution of the 
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cell type specific CpG sites across the ALS samples it was possible to identify qualitative 

differences in cell type composition between the samples.  

The sixth chapter describes the methylation based cellular deconvolution tool CEllFi. The 

methylation analysis scripts used in the fifth chapter were modified into a quantitative tool to 

estimate the cell type composition of heterogeneous samples. By using a non-negative least 

squares regression function, CEllFi is able to quantify the cellular composition of blood samples 

mixed in vitro. The cell type estimates across our in vitro mixtures reveal strong correlation 

between the expected and estimated values. 

Interpretation of differentially methylated or differentially expressed genes has been 

greatly simplified by web-based tools like DAVID or GREAT. By aggregating gene sets and 

gene families to a single access point, biologists are able to annotate results on a large set of 

reference data. However, when datasets have not been fully disseminated to the databases of 

popular annotation tools, it becomes necessary to develop an analysis pipeline able to profile the 

methylation and expression activity in our studies. By working with expression or methylation 

reference data directly, biologists may exploit information from new or underutilized data. 




