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Key Points:7

• The 5-year return values of extreme rainfall vary only minimally on spatial scales8

smaller than 100 kilometers.9

• The gauge-only Mountain Mapper algorithm, used to spatially interpolate rain-10

gauge data in the operational Next-Generation Radar (NEXRAD) data products11

where radar data is unavailable, underestimates 5-year return values far from the12

locations of rain gauges.13

• The Risser et al 2019 algorithm for spatially interpolating extreme value statis-14

tics between rain gauges represents these statistics more accurately than Moun-15

tain Mapper over the majority of CONUS.16

Corresponding author: Edward M. Molter, emolter@berkeley.edu
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Abstract17

Constructing an accurate, continental, in-situ-based, kilometer-scale, long-term record18

of the precipitation field and its spatiotemporal changes remains a significant challenge.19

Here we determine the extreme-value behavior of the NEXRAD Stage IV radar-based20

quantitative precipitation estimate (QPE). We find that the climatology of 5-year daily21

return values in CONUS East of the Rocky Mountains shows only slight variability on22

spatial scales smaller than ∼100 km. In light of this finding, we test whether rain-gauge-23

only daily precipitation datasets can produce accurate extreme-value behavior at spa-24

tial scales finer than the spacing between gauges. We find that the 5-year daily return25

values are accurate at locations far from rain gauges only if the interpolation between26

gauges is carried out appropriately for extremes. Precipitation statistics derived from27

in-situ rain gauge data are therefore of sufficient spatial resolution to faithfully capture28

daily extremes over much of the eastern United States.29

Plain Language Summary30

Accurate measurement of the amount of precipitation that falls within a given re-31

gion and time period is crucial for environmental modeling, climate change research, and32

resource and risk management. For all of those applications, it is desirable to understand33

not only how much precipitation falls on average, but also how much precipitation falls34

during an extreme event, such as a severe storm. Using data from weather radar, we show35

that certain statistical properties of extreme rainfall are highly correlated on spatial scales36

up to 100 kilometers over the eastern United States. This means that rain gauge net-37

works, which have typical inter-gauge spacings of roughly 30 kilometers over the east-38

ern United States, are dense enough to accurately measure these statistical properties.39

However, it’s imperative to interpolate between the rain gauge measurements in a way40

that explicitly captures extremes if the application of interest requires capturing extremes41

accurately. Our research represents a step toward constructing an accurate, continental-42

scale, long-term, high-resolution precipitation dataset.43

1 Introduction44

Accurate measurement of the amount of precipitation that falls within a given re-45

gion and time period is crucial for environmental modeling (e.g. Jones et al., 2001; Parra46
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et al., 2004; Abatzoglou, 2013), climate change research (e.g. Groisman et al., 1999; Alexan-47

der et al., 2006; Schär et al., 2016), and resource and risk management (e.g. Rosenzweig48

et al., 2002; Schumann, 2011; Vogel et al., 2019). All of these applications require un-49

derstanding not only the seasonal-mean or annual-mean precipitation but also the ex-50

treme tail of the daily or sub-daily precipitation distribution. Precise measurements of51

the total rainfall over a specific area at scales of tens of kilometers or less, such as a city52

or watershed, are often also needed.53

Estimating the true spatiotemporal distribution of precipitation from observational54

data is known as quantitative precipitation estimation (QPE), and is currently obtained55

from three main data sources: satellite, rain gauges, and ground-based radar. Each source56

provides unique advantages subject to specific limitations. Satellite observations provide57

spatially continuous measurements, but are subject to severe uncertainty because pre-58

cipitation must be inferred from cloud top height or temperature as derived from microwave59

and/or infrared spectra (Iguchi et al., 2009; Tapiador et al., 2012). This uncertainty gen-60

erally leads to overestimation of extreme precipitation events relative to gauge- or radar-61

based estimates (AghaKouchak et al., 2011; Mehran et al., 2014). Over the contiguous62

United States (CONUS), where the density of both rain gauges and radar stations is high,63

satellite-based QPE products tend to perform compared unfavorably to other estimates.64

For example, Timmermans et al. (2019) found significant biases in the representation of65

daily precipitation extremes from satellite-based gridded QPEs compared with rain gauge66

estimates. Satellite products are therefore not considered further here.67

Rain gauges provide the most accurate and temporally continuous point measure-68

ments of precipitation despite errors from undercatch, variance in management quality,69

and changes in location or equipment (see Tapiador et al., 2012, for a recent review). They70

also provide the longest time record of any precipitation measurement by far. However,71

gauges yield point measurements only, and one must interpolate spatially between them72

to estimate precipitation over an area. Ground-based radar observations provide very73

high native spatial and temporal resolution. Each Weather Surveillance Radar 88 Doppler74

Radar (WSR-88D) radar stations in CONUS (NOAA, 2006) completes a full scan of the75

sky every ∼10 minutes, and the station’s preprocessing algorithm bins the scan into 176

km range by 1◦ azimuth sections, amounting to sub-hourly precipitation estimates on77

a .4 km grid (Fulton et al., 1998). However, the relationship between radar reflectiv-78

ity and precipitation rate is degenerate and differs for different types of storms, and there-79
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fore it must thus be determined empirically via comparison with rain gauge data (Fulton80

et al., 1998; Young et al., 2000). Multisensor estimates combine the high spatial and tem-81

poral coverage of the radar data with the high fidelity of the gauge data and hence rep-82

resent the state-of-the-art in operational QPE. However, experiments to validate these83

QPEs often take place over small regions and on timescales shorter than a few months84

(e.g., Willie et al., 2017; Spies et al., 2018; B.-C. Seo et al., 2018).85

A variety of studies make use of gauge-based QPE and solve the aforementioned86

spatial interpolation problem in various ways, sometimes making use of elevation cor-87

rections or models of climatology (e.g. Daly et al., 1994, 2015; Schaake et al., 2004; Sheri-88

dan et al., 2010; Livneh et al., 2013). We refer to this class of gauge-based analysis of89

extremes as “grid-then-fit” techniques because they interpolate at the native temporal90

scale (e.g., daily) and then calculate statistical properties of the interpolated data. These91

approaches tend to underestimate extreme precipitation, especially at small (0.25◦) scales92

(Sun & Barros, 2010; Gervais et al., 2014; Behnke et al., 2016). To rectify this issue, Risser93

et al. (2019) have developed a statistical “fit-then-grid” technique in which Generalized94

Extreme-Value (GEV) statistics (see Coles et al., 2001) are calculated at individual rain95

gauges, the GEV parameters are spatially interpolated, and then the gridded GEV dis-96

tributions are reconstructed from these interpolated parameters. This method implic-97

itly assumes that the parameters of the GEV distribution vary smoothly in space such98

that high-quality inference about extremes can be made in between stations. The op-99

timal gauge interpolation technique depends on both the grid resolution and the appli-100

cation of interest (Chen & Knutson, 2008; Gervais et al., 2014), and best practices for101

interpolating to smaller scales than the inter-gauge spacing have not been established.102

This study seeks to determine whether the extreme statistics of daily precipitation103

vary smoothly between rain gauges over the CONUS, testing the assumption of Risser104

et al. (2019) over that domain, and to evaluate the accuracy of this novel fit-then-grid105

technique as compared with standard grid-then-fit algorithms. To these ends, we con-106

sider the GEV statistics of a dataset at very high (4 km) spatial resolution, namely the107

NEXRAD Stage IV daily dataset (Fulton et al., 1998; D.-J. Seo & Breidenbach, 2002;108

Lin & Mitchell, 2005; Lin, 2011), a radar-based multisensor QPE, from 2002-2019. Stage IV109

is available at hourly, six-hourly, and daily frequencies. We focus on daily maxima here110

to facilitate comparison with the GHCN-D network, the most extensive network of rain111

gauges in the CONUS, and to test the results of Risser et al. (2019) directly. Stage IV112
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has been evaluated extensively in the literature, including via the use of percentile-based113

metrics to capture extreme value behavior (Prat & Nelson, 2015; Nelson et al., 2016).114

However, percentile-based metrics have been shown to produce different results depend-115

ing on the specific metric used (Schär et al., 2016). McGraw et al. (2019) previously em-116

ployed GEV statistics in a comparison between rain gauges and Stage IV data at hourly,117

3-hourly, 6-hourly, and daily frequencies. However, they only reported those statistics118

at the locations of ∼500 rain gauges and did not consider spatial variability in their GEV119

fits. Our paper is the first (to our knowledge) to publish GEV statistics at every grid120

cell in Stage IV.121

We describe our data processing and GEV fitting in Section 2. In Section 3, we use122

this new data product to explore whether the high spatial resolution of this QPE pro-123

vides new information on the climatology of extremes at finer spatial scales than acces-124

sible using gauge-only estimates. In Section 4, our product is compared with the Risser125

et al. (2019, hereafter R19) gauge-only interpolation technique, as well as with the Moun-126

tain Mapper algorithm (Schaake et al., 2004), a more conventional gridded QPE that127

incorporates the Parameter-elevation Relationships on Independent Slopes Model (PRISM)128

climatological model (Daly et al., 2015) and is widely used for operational weather anal-129

yses. Specifically, Mountain Mapper is the official rainfall product distributed by the California-130

Nevada, Colorado Basin, and Northwest River Forecast Centers of the National Oceano-131

graphic and Atmospheric Administration (NOAA). We contextualize our findings within132

existing literature on the spatial scales of extremes in Section 5, then summarize our work133

in Section 6.134

2 Data Processing135

We computed and made use of three distinct extreme-value datasets in this paper;136

these are summarized below.137

Stage IV GEV: We downloaded the 4-km-resolution daily NEXRAD Stage IV grid-138

ded multisensor QPE for every day between 1 January 2002 and 31 December 2019, to-139

taling 6573 days (18 years) on a 881 × 1121 grid. We compared the Stage IV daily mea-140

surements to Global Historical Climatology Network Daily (GHCN-D) rain gauge data141

(Menne et al., 2012) in grid cells that contained a GHCN station. These validation steps142

are outlined in Supporting Information S1. Stage IV was found to agree very well with143
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GHCN-D in both means and extremes in grid cells that contained a gauge, meaning that144

the normalization of the radar data to nearby rain gauges in the Stage IV processing pipeline145

preserves information about extremes.146

As noted by other authors (Prat & Nelson, 2015; Nelson et al., 2016), Stage IV is147

a fundamentally heterogeneous dataset. The product from the three western NOAA River148

Forecast Centers (California-Nevada, Northwest, and Colorado Basin, hereafter “West-149

ern RFCs”) differs substantially from that of the nine other RFCs comprising the CONUS150

(hereafter “Eastern RFCs”). Specifically, the Western RFCs produce their QPE using151

the gauge-only Mountain Mapper technique discussed below and do not incorporate radar152

data at all, while the Eastern RFCs use the radar-inclusive procedures outlined in Fulton153

et al. (1998) and Lin and Mitchell (2005). Data from the Western RFCs are therefore154

not actually made using a multisensor technique, and so are for the most part not con-155

sidered further in this paper.156

In each grid cell of Stage IV, we extracted seasonal maximum precipitation amounts157

for each season (DJF, MAM, JJA, and SON), and then fit the GEV distribution to the158

18 seasonal maxima over our period of record. This is a fairly short period of record over159

which to apply GEV statistics; however, in this work we draw our conclusions from the160

5-year return values only, which are well sampled by 18 years of data. To assess whether161

our GEV fits provided an adequate representation of the data, we performed a 2-sided162

Kolmogorov-Smirnov (K-S) test to quantify the likelihood that the observed seasonal max-163

ima were drawn from the GEV distribution. We found a p-value of < 0.05 in at least164

94% of grid cells in the Eastern RFCs in all seasons, meaning that the data were plau-165

sibly drawn from the GEV distribution. We used the GEV fit to generate 5-year return166

value estimates in each grid cell for each season. Following R19, we assessed the errors167

in our fit parameters using a bootstrap resampling technique: the seasonal maxima at168

each grid cell were resampled with replacement and then re-fit 250 times, and the stan-169

dard deviation of the fit parameters in those 250 fits were used to define the 1-σ error170

on the parameters.171

R19 GEV: We used the same extreme-value dataset as R19, which is based on GHCN-D172

rain gauge measurements, but extracted 5-year return values instead of 20-year return173

values as in that paper. To create a mean climatology from the R19 analysis, the exact174

same procedures described in R19 were applied to GHCN measurements of seasonal av-175
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erage daily precipitation (instead of seasonal maximum daily precipitation), and an or-176

dinary least-squares fit was applied at each station such that the spatially-interpolated177

parameters were the mean and variance instead of the GEV parameters. We refer to this178

mean climatology hereafter as the “R19 mean”.179

Mountain Mapper: The Mountain Mapper dataset (Schaake et al., 2004) is a gauge-180

only gridded precipitation product at 4-km resolution that is widely used in operational181

weather analysis. It interpolates from rain gauges to the 4-km grid using an inverse-square182

weighting scheme, incorporating also the PRISM climatological model (Daly et al., 2015).183

However, the official Mountain Mapper product is not archived at NOAA. Instead, we184

have created several versions of the dataset using an identical procedure to Schaake et185

al. (2004). The creation of our own versions of the dataset is beneficial for direct com-186

parison to R19 and Stage IV for three reasons. First, we have used the same rain gauge187

network as Risser, namely stations from the GHCN-D network in CONUS with at least188

66.7% nonmissing values over our time period (8097 stations). Second, we can interpo-189

late the gauge network onto any grid we choose. Finally, we can force the long-term mean190

of Mountain Mapper to equal any chosen climatology; versions of Mountain Mapper con-191

strained to the R19 mean and to the mean of our 18-year slice of Stage IV are employed192

in this paper. We compute GEV statistics and their errors at each grid cell in the same193

way as for Stage IV. Our computations using the Mountain Mapper procedure are dis-194

cussed further in Supporting Information S2.195

3 Spatial Scales of Extremes196

If the hypothesis that the extreme statistics of daily precipitation vary smoothly197

between rain gauges over the CONUS is true, then a spatial power spectrum of the 5-year198

return value map should show little power at .50-km scales. We thus used a wavelet de-199

composition to compute a spatial power spectrum of the 5-year return values in the Stage IV200

dataset using a 2-D continuous wavelet transform. Following the procedure outlined in201

Torrence and Compo (1998), we used Morlet wavelets with non-dimensional frequency202

ω0 = 6, and 40 widths equally spaced on a log scale from 4 km to ∼2000 km.1 Maps203

of the power on various representative spatial scales are shown for JJA and DJF in Fig-204

1 Using a Morlet wavelet in this way is mathematically identical to a “short-time” Fourier transform

using a Gaussian window function
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Figure 1. Wavelet decomposition of Stage IV 5-year return value map for (Top:) DJF and

(Bottom:) JJA at four representative spatial scales. The colormap denotes power spectral

density in arbitrary units.

ure 1 to help visualize the wavelet decomposition. The power spectrum of our 5-year re-205

turn value map is presented in Figure 2. (The same maps and power spectra are shown206

for the MAM and SON seasons in the Supporting Information.) The spatial scales s plot-207

ted on the x-axis are nearly equal to the Fourier wavelength λ for this choice of wavelet208

(formally λ = 1.02s following Torrence & Compo, 1998), and should be interpreted in209

the same manner as a Fourier wavelength, namely as the combined length scale of a pos-210

itive and negative fluctuation about the mean. Note that substantial edge effects obscure211

any useful information at scales larger than s = 1000 km, so these are not plotted.212

To aid in understanding the implications of Figure 2, we have overplotted the power

spectrum of a test dataset that contains pure white noise within the entire domain (the
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Figure 2. Seasonal wavelet power spectrum of the Stage IV 5-year return value map for

Top: JJA and Bottom: DJF over the eastern RFCs only (blue lines). Vertical lines show the

mean spacing of 27 km between GHCN stations in the eastern RFC domain. The power spec-

trum of white noise correlated at the 100 km scale is also shown (red line). The left panels show

the raw power spectra; the right panels show the spectra after being divided by the P = s2 line.
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eastern RFCs), correlated at the 25-pixel (100-km) scale; that is, we made a map of pure

Gaussian noise then oversampled it by a factor of 25. A log-linear power spectrum takes

the form

Sν(f) = cf−β (1)

where f is the spatial frequency and β is the spectral scaling. The correlated noise test213

spectrum can be interpreted as transitioning between β = 2 at the smallest length scales,214

where the map is highly autocorrelated, and β = 1 at the largest length scales, where215

the map is completely uncorrelated and looks like pure white noise. Note that white noise216

is not spectrally flat on a log-linear scale, but instead follows a β = 1 scaling. In be-217

tween these two regimes is stored all the information content in the map, and as such,218

the power spectrum is strongly peaked at 100 km length scales. This can be seen most219

clearly after the spectra have been divided by the P = s2 line in the right panel of Fig-220

ure 2. The 5-year return value maps in both JJA and DJF show similar behavior to the221

correlated noise map, with strong autocorrelation (P ∝ s2) at small spatial scales but222

with a broader, less prominent spike in power that begins near 200-km scales and con-223

tinues out to 800-km scales. This means that 5-year return values are strongly autocor-224

related at s < 200 km, confirming the hypothesis that extreme statistics of daily pre-225

cipitation vary smoothly between rain gauges over the CONUS. The power spectral den-226

sity is maximized at very large length scales of ∼800 km. The strong autocorrelation at227

small scales is present in each of the four major Köppen-Geiger climate classes within228

the eastern CONUS, as shown in the Supplementary Material.229

4 QPE Product Comparison230

Section 3 validated the implicit assumption of the R19 fit-then-grid technique that231

extreme statistics of daily rainfall vary smoothly between rain gauges. It is a priori un-232

clear, though, whether this fit-then-grid algorithm is actually more accurate than a stan-233

dard grid-then-fit algorithm when applied to an identical set of rain gauges and given234

an identical mean climatology. We set up this test by comparing the extreme-value be-235

havior between the Mountain Mapper and R19 datasets. To ensure a direct comparison,236

we used a version of Mountain Mapper constructed such that its long-term seasonal mean237

(Ȳ in Supporting Information S2) was equal to the R19 mean. As Figure 3 shows, the238

return values are substantially different between the two datasets, with Mountain Map-239

per underestimating R19 by greater than 10% over much of the CONUS in both DJF240
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Figure 3. Difference between 5-year return value from R19 and our Mountain Mapper imple-

mentation constrained to the R19 mean climatology for Top: JJA and

Bottom: DJF. The extremes in Mountain Mapper are lower in magnitude than in R19 over the

majority of CONUS in both seasons.

and JJA. An assessment of the statistical significance of this difference is given in Sup-241

porting Information S3.242

We next evaluated the R19 and Mountain Mapper 5-year return values against Stage IV.243

This comparison is somewhat difficult to probe directly because the long-term means of244

R19 and Stage IV are not strictly equal, so differences in extremes may be partially caused245

by differences in the long-term means of those datasets. To get around this, we computed246

return values from a version of Mountain Mapper that is forced to equal the long-term247

means of Stage IV, and compared both this Mountain Mapper version and Stage IV it-248

self with R19 (see Figure 4). In so doing, any differences are isolated to the treatment249
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Figure 4. Difference between 5-year return value from (a) R19 and Stage IV in JJA, (b) R19

and Mountain Mapper in JJA, (c) R19 and Stage IV in DJF, and (d) R19 and Mountain Map-

per in DJF. Here the Mountain Mapper datasets have been constrained to the Stage IV mean

climatology. The R19 extremes agree more closely with Stage IV than Mountain Mapper in

both JJA and DJF (i.e., the discrepancies are smaller in panels a and c than in panels b and d),

validating the ability of the R19 technique to interpolate extremes to smaller spatial scales.

of extremes. This Mountain Mapper version is found to underestimate extremes rela-250

tive to Stage IV over large portions of the Eastern RFCs, whereas R19 agrees more closely.251

The difference between Mountain Mapper and R19 is attributable to the grid-then-252

fit approach taken by Mountain Mapper: using an inverse-square weighting scheme to253

interpolate between grid points makes it unlikely for extremes to occur at grid points far254

from any one rain gauge. This hypothesis is confirmed by considering the difference be-255

tween Mountain Mapper and Stage IV as a function of distance from the nearest rain256

gauge over the eastern RFCs. The 5-year return values from Mountain Mapper agree257

well with Stage IV at distances .10 km from the nearest gauge, but begin to underes-258

timate Stage IV at larger distances in both DJF and JJA (Figure 5). It is important to259

note that the spatial averaging inherent in the Mountain Mapper technique is not a de-260

ficiency per se, and is in fact the appropriate way to measure the spatial average of ex-261

tremes over a large grid box (Gervais et al., 2014) for comparison to climate models at262

∼100 km resolution. However, we have shown that the Risser technique provides a more263
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Figure 5. Five-year return value difference between Stage IV and Mountain Mapper as a

function of distance from the nearest rain gauge used in Mountain Mapper for Left: DJF and

Right: JJA over the eastern CONUS. The small grey points denote individual grid cells; the

contours describe the cumulative density of points. The red line shows a least-squares linear fit

to the grey points. The return values agree in grid cells near rain gauges, but Mountain Mapper

begins to underestimate Stage IV as the distance from a gauge is increased.

accurate estimate of rainfall extremes at ∼25 km scales, assuming the radar-aided Stage IV264

dataset to be a “ground truth”.265

5 Discussion266

The long correlation lengths of 5-year return values in the eastern CONUS derived267

in Section 3 are perhaps unsurprising in the context of the dynamical systems that pro-268

duce extreme precipitation in that region. In the central and eastern United States, ex-269

treme precipitation is most often associated with one of three categories of storm: mesoscale270

convective systems (MCSs), landfalling tropical cyclones (TCs), and synoptic forcing events271

(i.e., extratropical cyclones). MCSs are organized groups of thunderstorms that produce272

distinct circulations at scales longer than 100 km and persist over timescales of 3 hours273

to 1 day (Parker & Johnson, 2000; Houze, 2004; Feng et al., 2019). These systems ac-274

count for over half of extreme rainfall events at 24-h duration in the warm season in these275

regions (Schumacher & Johnson, 2006; Stevenson & Schumacher, 2014). Landfalling trop-276

ical cyclones (TCs) also contribute substantially in the summer and fall in the eastern277

and southeastern United States, especially in coastal regions (Shepherd et al., 2007; Knight278

& Davis, 2009; Miniussi et al., 2020). In the cool season, extreme precipitation results279
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primarily from strong synoptic forcing events (Maddox et al., 1979; Schumacher & John-280

son, 2006; Stevenson & Schumacher, 2014). Although synoptic forcing events occur with281

nearly unchanging frequency throughout the year, MCSs and TCs are much more sel-282

dom present in DJF (Stevenson & Schumacher, 2014), and extremes in DJF tend to be283

of lower magnitude than in JJA (Maddox et al., 1979; Stevenson & Schumacher, 2014).284

Individual storms of these types all tend to produce heavy precipitation over length scales285

of 100 km or more. The long correlation lengths in the statistics of extreme precipita-286

tion presented here can thus be partially attributed to the long correlation lengths of in-287

dividual events. This interpretation is in good agreement with Touma et al. (2018), who288

used indicator semivariograms to assess the correlation scales of 90th percentile rainfall289

days over CONUS. Although that analysis was split into more climatological regions, their290

North, Northeast, South, and Southeast regions all display DJF length scales within 1σ291

of 300 km.292

Previous studies (e.g. Kursinski & Mullen, 2008) have shown, perhaps in appar-293

ent tension with the above, that individual extreme storms can be highly localized in both294

space and time, with heavy precipitation falling over spatial scales of ∼50 km or less. Im-295

portantly, though, the spatial statistics of rainfall depend strongly on the time cadence296

considered. In a case study of the Cévennes-Vivarais region of France, Lebel et al. (1987)297

and Kirstetter et al. (2010) showed that the decorrelation distance of rainfall amounts298

increases with lengthening temporal scale from hourly to daily cadence. We wish to stress299

that our results are only valid at the daily cadence we considered; the assumption of smoothly-300

varying GEV statistics between rain gauges, and therefore the R19 technique, may not301

be justified at sub-daily cadences.302

It is interesting to consider Figure 2 in terms of the fractal properties of rainfall303

explored by Lovejoy (1982) and Lovejoy and Mandelbrot (1985). Those authors describe304

the spatial structure cloud and rain areas according to N ∼ L−D, where N is the ex-305

tent to which a fractal fills space as measured at scale L. Bies et al. (2016) explored the306

relationship between the fractal and power spectrum interpretations of scaling fields, find-307

ing that the fractal dimension D and β in Equation 1 are related according to D = 1 + (4− β)/2308

for a 2-dimensional field. (In the terminology of Bies et al. (2016), we measured here a309

“surface β” and the cited papers use a “coastal edge D”.) We find β ≈ 2 (which leads310

to D ≈ 2) for this process up to scales of a few hundred km; that is, the extreme pre-311

cipitation field is 2-dimensional. This is another way of interpreting the high level of au-312
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tocorrelation on small scales. D = 2 is larger than the fractal dimension found by Lovejoy313

and Mandelbrot (1985) for cloud and rain areas, meaning that the spatial scales over which314

extreme statistics vary in Stage IV are larger than the spatial scales of individual pre-315

cipitation events.316

6 Conclusions317

We have tested the assumption that the climatology of extremes varies only min-318

imally at length scales smaller than the average inter-rain-gauge spacing of ∼30 km in319

the eastern CONUS. We find that this assumption is valid: 5-year daily return values320

are strongly autocorrelated at scales up to at least 100 km in both DJF and JJA. We321

also find that the fit-then-grid algorithm of R19 substantially improves the fidelity of daily322

extreme statistics compared with the grid-then-fit Mountain Mapper technique. On both323

4-km and 25-km scales, the grid-then-fit Mountain Mapper technique underestimates ex-324

tremes relative to the more spatially complete multi-sensor Stage IV QPE in the east-325

ern United States, whereas the Risser et al. (2019) technique measures extremes more326

accurately than Mountain Mapper at 25 km scales. Taken together, these findings show327

that rain gauge observations are sufficient to capture the large majority of the extreme-328

value information in the climatology of the true rain field, but only if interpolated ap-329

propriately for the application of interest. This paper improves confidence that appropriately-330

constructed gauge-only gridded products provide an accurate historical record of daily331

extreme statistics beyond the years in which radar data are available, an important step332

toward creating an accurate, continental-scale, in-situ-based, long-term precipitation record333

for use in hydrological modeling, resource management, and climate change studies. As334

the resolution of global circulation models continues to increase into the future, QPEs335

will be required at finer and finer scales, and standard gauge-interpolation techniques336

will fail to accurately represent precipitation within these grid boxes. The human im-337

pacts of extreme events are felt at human scales, e.g. homes (10m), farms (1 km), and338

watersheds (10 km). Our work moves toward casting measurements of extremes into a339

risk framework at those scales.340
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