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Dirk-Uwe G. Bartsch2, William R. Freeman2, Truong Q. Nguyen1, Cheolhong An1

1Electrical and Computer Engineering Department, UC San Diego

2Jacobs Retina Center, Shiley Eye Institute, UC San Diego

Abstract

Age-related Macular Degeneration (AMD) is a degenerative eye disease that causes central vision 

loss. Optical Coherence Tomography Angiography (OCTA) is an emerging imaging modality that 

aids in the diagnosis of AMD by displaying the pathogenic vessels in the subretinal space. In 

this paper, we investigate the effectiveness of OCTA from the view of deep classifiers. To the 

best of our knowledge, this is the first study that solely uses OCTA for AMD stage grading. 

By developing a 2D classifier based on OCTA projections, we identify that segmentation errors 

in retinal layers significantly affect the accuracy of classification. To address this issue, we 

propose analyzing 3D OCTA volumes directly using a 2D convolutional neural network trained 

with additional projection supervision. Our experimental results show that we achieve over 80% 

accuracy on a four-stage grading task on both error-free and error-prone test sets, which is 

significantly higher than 60%, the accuracy of human experts. This demonstrates that OCTA 

provides sufficient information for AMD stage grading and the proposed 3D volume analyzer is 

more robust when dealing with OCTA data with segmentation errors.

1. Introduction

Age-related Macular Degeneration (AMD), one of the leading causes of severe irreversible 

vision impairment, is a progressive eye disease associated with abnormal vascular alteration 

and growth originating from the choroid. Starting from an early non-exudative stage, AMD 

can progress to an exudative stage where 90% of patients may lose vision [5]. Since the 

progression of AMD has manifestations associated most commonly with the choroidal 

neovascular (CNV), early detection of pathological vessels is crucial in optimal treatment 

management and maintaining vision for AMD patients.

However, imaging vessels within different retina layers is not supported by typical retinal 

imaging techniques. For example, fundus imaging can only reveal large retinal vessels, 

drusens, and areas of atrophy, which may indicate the presence of AMD, but make it 

difficult to determine the stage of the disease. Fluorescein Angiography (FA) can show 

CNV only at a specific time point, which is often short and challenging to capture. Optical 
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Coherence Tomography (OCT) can display retinal layers and fluid but lacks the ability to 

visualize vessels. In contrast, OCT Angiography (OCTA), as an emerging imaging modality, 

has the capability to display vascular networks in different retinal layers [8, 25, 12], as 

depicted in Fig. 1 and Fig. 3. It shows superficial and deep vascular complex (SVC and 

DVC), avascular layer and choriocapillaris (CC). By visualizing the pathological CNV 

vessels directly, it enables not only an earlier detection, but also a way to monitor the clinical 

response to treatment. In Fig. 1, we provide a comparison between fundus and OCTA w.r.t. 

different AMD stages.

Unfortunately, even with the above-mentioned benefits, OCTA has not been regarded as the 

gold standard in clinical decision making yet, because the correlation between vessels in 

OCTA and AMD stages is not strictly proven. On the clinical side, ophthalmologists are 

actively searching biomarkers for AMD diagnosis from OCTA, mainly based on manual 

analysis and their own experience. In this work, we present experimental evidence of 

the informativeness of OCTA from the perspective of data-driven classifiers. We believe 

that deep learning is capable of this task with two advantages. Firstly, some deep 

learning algorithms have been proven to surpass human-level performance on natural 

image classification [14]. Moreover, it is more efficient for computer to handle 3D data 

or multiple projections than human. Consequently, we expect that deep learning classifiers 

would identify hidden patterns imperceptible to human eyes and improve AMD diagnosis.

In this paper, we focus on OCTA modality only and build a series of deep learning based 

AMD stage graders. We summarize our contributions as follows:

• We experimentally verified that the OCTA projections, which ophthalmologists 

usually use for diagnosis, are easily affected by layer segmentation errors. Those 

errors degrade the classification performance.

• We propose to use 3D raw OCTA volume to avoid the impacts of those 

errors. To achieve this, we modify a pretrained 2D network to perform volume 

classification. We also adopt an additional projection supervision to facilitate 

training of shallow feature extractor.

• Experimental results show that the proposed classifier can achieve the accuracy 

of more than 80%, regardless of the presence of layer segmentation errors. 

These results prove the effectiveness of our methods and suggest that OCTA is a 

promising modality to distinguish various stages of AMD disease.

2. Related Works

OCTA analysis in computer vision.

In recent years, OCTA has emerged as a valuable tool in ophthalmology, offering a non-

invasive way to visualize and analyze the vascular network of the retina. Therefore in 

the realm of computer vision, most OCTA-based works have focused on segmentation 

tasks. Alam et al [1] used U-Net to perform artery-vein classification and adopted 

transfer learning to compensate for the small dataset. In [13], the avascular area was 

detected in OCTA projections with a multi-scaled encoder-decoder neural network. Li 
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et al [19] proposed to segment vessels with 3D OCTA inputs to get rid of projection 

images and retinal layer segmentation. In addition to segmentation, there are also some 

deep learning-based OCTA classification works. For example, Le et al [18] adopted 

the VGG16 network to classify diabetic retinopathy stages. Lin et al [20] went further 

and performed classification and segmentation simultaneously using boundary shape and 

distance map as additional supervision to improve accuracy. Apart from classification and 

segmentation, some researchers have focused on 3D vessel reconstruction [35], projection 

quality assessments [33] and improving the en face OCTA generation [36]. Although these 

works have shown promising results, none of them have considered the grading of AMD 

stage, which is a critical task in the clinical management of AMD patients.

AMD diagnosis with deep learning.

To the best of our knowledge, there is no existing AMD diagnosis work using OCTA 

modality only. Instead, they usually use color fundus, FA and most recently OCT modality. 

Alqudah et al [2] trained a customized CNN to classify retina into five distinct stages of 

AMD based on OCT B-scans. Motozawa et al [21] first classified AMD/no AMD and then 

identified the presence of exudative changes. Das et al [9] integrated multi-scale deep image 

features to enhance OCT classification. He et al [16] leveraged GANs to generate synthetic 

images in order to increase training data size. In addition to stage classification, Banerjee 

et al [3] combined hand-craft and CNN features in a LSTM to predict AMD progression. 

Rakocz et al [23] designed a SLIVER-net to classify risk factors of AMD progression 

which could operate on both 2D B-scans and 3D volumes. Russakoff et al [27] predicted 

the likelihood of converting from early/intermediate to advanced AMD. Furthermore, there 

have been several recent works [31, 17, 30] that employ multimodal images such as fundus 

photographs, OCT B-scans, and OCTA projections to grade AMD. In this paper, we focus 

on the latest work [30] in Sec. 4.2 for comparison, which utilizes OCT B-scans, OCT 

projections and OCTA projections.

OCTA datasets.

The advancement in deep learning has led to significant progress in the field of retinal 

disease diagnosis and management. Various challenges have been organized to evaluate 

the performance of computer-aided diagnosis systems on different retinal diseases, such as 

glaucoma and AMD. The GAMMA challenge [34] is one such challenge, which provides 

2D fundus image and 3D OCT volume, focusing on glaucoma diagnosis. The ADAM 

challenge [11] evaluates the performance of automated AMD diagnosis based on fundus 

image. Although these challenges have provided valuable insights into the development 

of automated diagnosis systems, they do not include OCTA information in their datasets, 

which is the key objective of this paper. Consequently, it is impossible for us to experiment 

on those datasets. In the supplementary material, we report the detailed information about 

existing OCTA datasets to show their limitation in OCTA based AMD stage grading. In this 

paper, we experiment with an OCTA dataset collected by ourselves, which has the largest 

number of AMD samples available and is specifically curated for AMD stage grading task.
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3. Methods

3.1. 2D Classifier based on OCTA projection images

In clinical practice, ophthalmologists usually refer to OCTA projections for diagnosis, 

inspiring related classifiers [18, 30] using the same inputs. In this section, we also develop a 

baseline classifier with 2D OCTA projection inputs, for analysis and comparison.

Classifier structure.—Different from existing method [30], which used a custom CNN 

without pretraining, our approach utilizes a well established image classification network 

as backbone. Moreover, we pretrain the backbone with ImageNet [10], and subsequently 

fine-tune it with our OCTA projections. As shown in Fig. 2 (a), we adopt the EfficientNet 

in our network, because it is reported to achieve the best trade-off between performance and 

model size [29]. Since we set up four input channels to take four OCTA projections, we 

include an additional convolution layer with kernel size 1 before the EfficientNet to address 

channel mismatching. Additionally, since we only have four target categories, we adjusted 

the output of the last fully-connected layer to match the number of categories.

Warmup strategy.—Consequently as shown in Fig. 2, the layers are divided into two 

groups: the red layers with no pretrained weights and the blue layers pretrained with 

Imagenet [10]. Since different layers have different initialization weights, the red layers 

could disrupt the tuning of the blue ones if fine-tuned all the layers together. So we use a 

warmup strategy as follows. We first freeze all the blue layers and train only the red ones for 

600 epochs. During this step, we also train all the BatchNorm layers to better transfer from 

natural images distribution to OCTA projections distribution. Then we finetune all the layers 

together for another 900 epochs with a smaller learning rate.

3.2. Presence of layer segmentation errors

During the development of our 2D classifier, we find that OCTA projections are not 

always reliable due to their sensitivity to the quality of retinal layer segmentation, which 

plays an important role in OCTA projection generation. This problem is common but 

often overlooked in most published literature [18, 30]. It is worth noting that previous 

research [19] has also reported that failures in layer segmentation can lead to difficulties in 

OCTA vessel segmentation. In this section, we aim to investigate the prevalence of layer 

segmentation errors and their impact in context of AMD stages grading.

OCTA projection generation.—Raw OCTA data capture the movements of blood in 

a 3D retinal space which are difficult to interpret by humans. Therefore, OCTA imaging 

machines commonly project raw OCTA volumes onto 2D images to enhance their visual 

interpretation. The projection process may differ among commercial instruments. Here, we 

consider the image taken by Heidelberg1 as an example [24]. As illustrated in Fig. 3, the 

Heidelberg software estimates the boundaries of different retinal layers to divide the 3D 

space into several slabs. Within selected slabs, which are determined by anatomical criteria, 

it calculates the summation of OCTA responses along z-axis to generate a 2D image. 

1The Heidelberg HRA+OCT Spectralis System, version 1.11.2.0 (Heidelberg Engineering, Heidelberg, Germany)
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Additionally, the software employs a contrast function and a projection artifact removal 

algorithm to enhance the image quality. When executed successfully, these steps produce 

highly informative and visually appealing 2D images that are easily interpretable by doctors.

Influence of segmentation errors.—Unfortunately, the estimated layer boundaries in 

the first step are not always accurate, resulting in segmentation errors that significantly 

impact the quality of OCTA projections. Since most commercial instruments usually 

estimate those boundaries based on image gradient and graphcut algorithm [28], which 

is not robust enough, the layer segmentation errors are actually prevailing, especially for 

distorted retina with AMD disease. To gain a better understanding of the magnitude of the 

problem, we conduct a manual check of 530 OCTA samples from different AMD stages and 

report the results in Table 1. Not surprisingly, we find that almost three-fourths of samples 

in the active stage have layer segmentation errors. The overall error rate among 530 samples 

is as high as 54.3% and, more accurately, we can calculate the balanced overall error rate 

by averaging the last row of Table 1, which is 46.2%. These findings indicate that the 

problem of layer segmentation error is pervasive and requires urgent attention. As shown 

in Fig. 4, layer segmentation errors lead to incorrect vascular networks or missing vessels 

in OCTA projections, which complicates the classification for both ophthalmologists and 

neural networks. The influence of layer segmentation errors on deep classifier is quantified 

and discussed in Sec. 4.1.

3.3. Avoid segmentation errors with 3D input

Since the errors in layer segmentation significantly affect the quality of OCTA projections, 

we propose to directly apply raw OCTA volume2 for classification. In this section, we 

provide a detailed description of our method, which utilizes a 2D convolutional neural 

network to analyze 3D OCTA data. We then delve into the reasons behind our choice of 

channel dimension and how we further improve the training process to achieve optimal 

performance.

2D backbone for volume classification.—Considering that there is no available large-

scale 3D dataset for pretraining a 3D classifier, we use a 2D network with pretrained weights 

to analyze 3D data. It means that we take one dimension of 3D as channel and the other two 

as spatial. As shown in Fig. 2 (b), we gradually reduce the input channel by extending the 

additional convolution to two Conv-BN-Swish blocks with kernel size 3. Each block divides 

the channels by 2 and the input channel of the EfficientNet is ultimately revised to a desired 

number, i.e. 64 in our experiments. Based on the ablation experiments reported in Table 

5, we find that better accuracy is achieved by treating the dimensions of B-scan as spatial 

and incorporating different B-scans in the channel dimension, i.e. taking the y-axis as the 

channel.

Why y-axis is better.—This result is not in line with our expectations, because the 2D 

network, which takes OCTA projections as input, is equivalent to treating the z-axis as a 

2OCTA volume in this paper represents for the raw blood motion responses in 3D space before projection. No structural OCT B-scan 
is used in this method.
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channel. So we investigated this issue and identified an explanation. In typical convolutional 

networks, the first convolution layer reduces the spatial resolution by a factor of 2 while 

significantly increases the number of channels, for instance, from 3 to 64. Consequently, 

there is no significant loss of information in this layer. In contrast, our additional convolution 

blocks drastically reduce the number of channels, from 256 to 64, resulting in a loss of 

information if they are not appropriately trained. When considering the z-axis as a channel, 

this loss of information is especially significant. However, it is less pronounced when using 

the y-axis as the channel because consecutive B-scans are often similar to each other and 

contain a lot of redundancy.

Projection supervision.—This analysis leads to a method further enhancing the 

performance, whose key idea is to improve the training of shallow feature extractor. To 

achieve this, we propose to add another branch onto the EfficientNet backbone, as illustrated 

in Fig. 2 (c). This newly added branch functions in a similar way to the decoder of the Unet 

[26] and is capable of generating OCTA projections from the 3D OCTA volume. By doing 

so, the additional convolutional blocks, along with some shallow layers in EfficientNet, 

can better preserve the information necessary for displaying vessel patterns and aiding in 

AMD grading. It is worth noting that this branch serves only for loss calculation and can 

be discarded during the inference stage. As a result, we improve accuracy without requiring 

additional inputs or incurring extra inference time costs.

4. Experiment Results

Dataset.

Because there is no public OCTA dataset suitable for AMD stage grading, we use our own 

dataset collected from Jacobs Retina Center at Shiley Eye Institute in experiments. The 

dataset consists of 889 raw OCTA volumes with corresponding projections belonging to 

four AMD stages: active, remission, dry and normal. Please refer to Fig. 1 for examples. 

‘Active’ means the pathogenic vessels are leaking fluid while ‘remission’ means the 

pathological vessels were once active but recovered after treatment and showing no fluid. 

‘Dry’ represents an early stage of AMD which is not exudative and ‘normal’, as name 

implies, is obtained by imaging healthy retina. For dataset division, we firstly choose a 

predetermined number of samples from each category to form the testing set. Then, we 

randomly select validation set from the remaining samples to conduct a 5-fold validation 

experiment. Following this strategy, we created two sub-datasets: an easier subset which 

only had samples with no layer segmentation errors in its testing set, indicated as ‘error-free’ 

and a harder subset containing numerous samples with errors in its testing set, indicated as 

‘error-prone’. Please refer to the supplementary material for more details about the dataset 

design.

Implementation.

We implement all our deep classifiers on PyTorch platform. To save GPU memory, we 

down-sample OCTA projections and volumes to 256×256 and 256×256×256, respectively. 

Then we adopt several data augmentations to increase their diversity. In detail, we 

use random flipping, rotation and cropping with resizing. We randomly apply gamma 
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transformation and Gaussian smooth to increase the diversity of intensity. For projections, 

we also use grid distortion to augment the shapes. For both 2D and 3D data, we adopt 

a sample-wise normalization to whiten the sample intensity. Oversampling training data 

in each category is used to balance their distribution. The networks are trained by Adam 

optimizer with 10−5 weight decay. The initial learning rate is 10−3 and decreases via a cosine 

scheduler with minimum value 10−5. The cosine loss serves as our optimization target, 

which is proven to be effective with small data amounts [4]. For projection supervision 

branch, we employ MSE to compute projection differences, and the ratio between cosine 

loss and MSE is decided by ablation experiments shown in Table 5. We have released our 

models and codes on this website.

4.1. Influence of layer segmentation errors

We create two datasets to assess the impact of layer segmentation errors: ‘clean’ and 

‘mixed’. They have the same size but the ‘clean’ set only includes error-free samples, while 

the ‘mixed’ set includes data with and without segmentation errors. For ‘clean’ dataset, 

we randomly selected 14 samples from each category for testing and used the remaining 

samples as training. Then we considered samples with errors. For the three categories except 

‘normal’, we replaced 7 testing samples with randomly selected 7 samples with errors. 

Consequently, we obtained a testing set that has the same scale as ‘clean’ but includes 

data both with and without errors. We generated a training set with same properties by 

running the same process and name this dataset as ‘mixed’. By considering both ”mixed” 

and ”clean” dataset, we plan to simulate the process in which we correct layer segmentation 

errors in ‘mixed’ dataset.

We conduct 5-fold validation experiments using Resnet18 [15] on both datasets and use the 

ensemble prediction as the final result by averaging the predictions of 5 classifiers trained 

in each fold. Note that we can choose to train and test with either ‘clean’ or ‘mixed’ set, 

resulting in 4 different combinations, shown in Table 2. The first two rows of Table 2 show 

that the classifier struggles to generalize from clean samples to those with errors, indicating 

data with and without errors follow different distributions. Taking the last row into account, 

we find adding samples with errors to the training set benefits, showing that the classifier 

may learn the joint distribution of samples with and without errors if given enough training 

data. The accuracy in the last two rows shows that, even trained on samples with errors, the 

clean test still works better, implying that samples with errors are hard to learn.

This experiment suggests two ways for improving the performance: 1) collecting enough 

data to cover the joint distribution of samples with and without errors; 2) avoiding layer 

segmentation errors and reducing the gap between each distribution. We focus on the second 

option, as it is not practical to collect sufficient data in a short time.

4.2. Performance of deep classifier

In this section, we experiment mainly on two datasets, namely error-free and error-prone. 

For the error-free test set, we utilized the clean test set from Sec. 4.1. However, as 

indicated in Table 2, the training set must be cleaned to enhance its performance. Therefore, 

we integrated error-free training samples along with samples without error annotations, 
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referred to as ‘unknown’ samples, while eliminating all known error-prone training samples. 

By adopting this approach, we can effectively cleanse the training set while keeping its 

size. In contrast, the error-prone test set comprises solely of samples containing errors 

in all AMD stages, and all samples except those designated for testing were utilized to 

construct the error-prone training set. More detail about relevant datasets can be found in the 

supplementary material.

For baseline method, as far as we know, there is no deep learning based AMD stage grader 

using OCTA only. Therefore, we use a multimodal AMD grader [30] for performance 

comparison. We train their networks on our dataset for fair comparison since their dataset 

is not publicly available. We implement two classifiers based on their official codes which 

use OCTA information only and use multimodal information from OCT B-scan, OCT and 

OCTA projection. Note that there are two differences between their task and ours: 1) they do 

not have ‘remission’ in their target categories, and 2) we do not have high-definition OCT 

B-scans in our dataset, so we use common B-scans as an alternative. We also replace ORCC 

projection used in their experiments with SVC projection. We conduct 5-fold validation 

experiments on two sub-datasets: an easier subset which only has samples with no layer 

segmentation errors in its testing set (error-free), and a harder subset containing numerous 

samples with errors (error-prone). In Table 3 and 4, we report the ensemble accuracy, AUC 

of RoC in ‘one v.s. rest’ manner, and the performance of human experts on the same test 

sets. Please refer to supplement material for details of human expert evaluation.

As shown in Table 3, Ours-2D with pretrained weights significantly outperforms Thakoor 

et. al. [30] regardless of the use of multimodal information. This is due to the difference in 

network structure and training strategy. Note that [30] trained a customized network with 

four 3D convolution and three fully connected layers from scratch, which is much simpler 

than EfficientNet. The benefit of EfficientNet backbone is evident from the first and third 

rows and, as shown in the third and fourth rows, pretraining the model further improves 

its ability to identify useful patterns in OCTA projections. Note that Ours-2D demonstrates 

significant improvements compared to human experts, indicating the potential of OCTA as a 

diagnostic modality in AMD grading. These promising results call for further exploration of 

OCTA-derived biomarkers for accurate AMD diagnosis.

When considering Ours-3D in Table 4, we observed a notable improvement compared 

to Ours-2D. Since the structures of both networks are quite similar (Fig. 2), this gain 

demonstrates the advantages of directly grading 3D OCTA volumes and reducing the gap 

between data with and without errors. The advantage of Ours-3D method can be also 

substantiated by examining the performance differences of Ours-2D and Ours-3D in error-

free and error-prone settings. In the error-free setting, where fewer samples are affected 

by errors, the improvement gained from using Ours-3D is relatively smaller. However, 

in the error-prone setting, where errors are more prevalent, the performance of Ours-2D 

experiences a significant decline, while Ours-3D maintains high performance levels. This 

differential behavior in error-free and error-prone settings serves as evidence that the 

proposed Ours-3D method is more robust in the presence of layer segmentation errors.
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In comparing Ours-3D with 3D EfficientNet and MedicalNet34 [7], both of which utilize 3D 

convolutions, we find that 2D backbone is more effective. This finding is actually consistent 

with some early works in action recognition [32, 22, 6]. Their experiments verified that 

well-designed 2D convolution network is better than 3D, especially when training data is 

limited. Our result indicates that utilizing a pretrained 2D network is currently a promising 

method for analyzing 3D OCTA until a large-scale 3D OCTA dataset is available. Finally, 

the efficacy of our proposed projection supervision is demonstrated in the last two rows, 

where the accuracy is improved to over 80%. It also indicates that OCTA is an informative 

modality for AMD grading.

4.3. Ablation study

This section presents our ablation experiments, which aim to investigate the impact of 

different factors on the performance of our classifiers. Specifically, we examine the effects 

of different choices of channel axis, different ratios of loss weights, and the use of pretrained 

weights and projection supervision. The accuracy of different classifiers trained on the first 

validation fold are reported in Table 5.

Firstly, our results indicate that taking y-axis as the channel is more effective than z-axis 

when projection supervision is not used. The reason has been elaborated in Sec. 3.3. Then 

the use of projection supervision improves the z-axis inputs while negatively impacting y-

axis channel inputs. This outcome is consistent with our expectations since taking z-axis as 

channel means taking x and y dimension as spatial which aligns with the spatial dimension 

of OCTA projections. It is unreasonable to generate OCTA projections from a stack of 

OCTA B-scans. Furthermore, our experiments on various weight ratios demonstrate that the 

ideal ratio between Cosine loss and MSE loss is approximately 1:103 for z-axis channel 

inputs. Finally, our experiments also show that the use of pretrained weights improves the 

performance of the classifiers, regardless of which dimension is selected as the channel.

4.4. Detailed comparison with human expert

As described in Fig. 1, we expect our method outperforms human experts in this four-stage 

grading task. To compare the performance of our proposed method with that of human 

experts, in this section, we conducted a detailed analysis of the confusion matrix in different 

settings.

Firstly, we evaluated the matrix of the human expert on the error-free test set. It 

can be observed that the ophthalmologist who took this experiment performed well in 

distinguishing between the ‘dry’ and ‘normal’ categories but struggled in differentiating 

between the ‘remission’ and ‘active’ categories. This highlights the ongoing challenge in 

accurately determining the active stage of AMD for human experts, thereby emphasizing the 

significance of our work.

Subsequently, we analyzed the matrix of the human expert on an error-prone test set. It 

can be found that the human expert continued to face difficulty in distinguishing between 

the ‘active’ and ‘remission’ categories, but this time, the accuracy of the ‘dry’ category 

significantly decreased. This is exactly the consequence caused by layer segmentation errors, 
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i.e. the incorrect vascular networks and missing vessels in the OCTA projections caused 

confusion for the human expert.

In contrast, our proposed method, termed Ours-3D, shows a significant improvement in the 

confusion matrix, accurately classifying the majority of test samples in each category. On 

the error-free test set, Ours-3D performed slightly worse in the ‘remission’ category, owing 

to the relatively fewer training samples in this category. On the error-prone test set, our 

method demonstrated greater robustness to segmentation errors by directly taking the raw 

OCTA volume as input and bypassing the impact of those errors. Overall, our proposed 

method not only outperforms human experts in this AMD grading task but also offers 

increased robustness to segmentation errors, which is a critical consideration in accurately 

detecting and grading AMD.

5. Conclusion

In this paper, we firstly elaborate the influence of layer segmentation errors in the context 

of AMD stage grading and propose to address it via analyzing the 3D OCTA volume 

directly. With the pretrained 2D EfficientNet backbone and projection supervision, we 

achieve an accuracy of over 80% on both error-free and -prone test sets, which significantly 

outperforms 60% accuracy of human experts. Our results suggest that OCTA modality 

alone can identify different AMD stages and encourage the exploration of OCTA-derived 

biomarkers for diagnosis. In future work, we plan to explain the decision-making of these 

well-performed classifiers so as to develop deep learning-based biomarkers for accurate 

AMD diagnosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison between fundus and OCTA w.r.t. AMD stages. As shown by the blue arrows, 

all AMD stages exhibit drusens and it is difficult to differentiate each stage based on the 

pattern of drusens. For instance, in the provided example, the early stage (dry) displays 

clearer drusens than the progressive stage (active). In contrast, OCTA allows for a distinction 

between dry and normal stages using the hollows in CC projection, and between active and 

dry stages with the presence of CNV in avascular projection. It is still an ongoing challenge 

to tell active stage from remission for human experts, yet this paper demonstrates it is 

achievable with the proposed deep classifiers in both 2D and 3D cases.
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Figure 2. 
The proposed network structures for (a) 2D projections, (b) 3D volumes and (c) 3D volumes 

with 2D projection supervision. The layers in blue have pretrained weights while those in 

red are trained from scratch.
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Figure 3. 
Illustration of the interrelationships among OCT and OCTA raw volume, B-scans, and 

OCTA projection. A single B-scan is a cross-sectional slice of the 3D volume with a specific 

y-axis value. Retinal slab masks are derived from retinal layer segmentation in each B-scan 

of 3D OCT volume. OCTA projections are generated by summing up the motion responses 

in selected OCTA slabs followed by quality enhancement.
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Figure 4. 
Examples of avascular projection w/o and w/ manual layer segmentation error correction 

by human experts. Layer segmentation errors lead to incorrect vascular networks, missing 

vessels and noise in OCTA projections, which complicates the classification for both 

ophthalmologists and neural networks.
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Figure 5. 
Confusion matrix comparison between our proposed method and human experts on different 

test sets. Ours-3D, outperforms human experts in accurately distinguishing between the 

‘active’ and ‘remission’ categories. Also, as indicated by the smaller performance drop 

observed in the ‘dry’ category, our method demonstrates greater robustness to layer 

segmentation errors.
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Table 1.

Distribution of error-free and error-prone samples and associated error rates. Clearly, samples with more 

severe AMD have larger error rate. The overall error rate shows layer segmentation error is a common problem 

in OCTA projections. Please refer to Fig. 4 for visual indication of the detrimental effects of segmentation 

errors on the quality of the OCTA projections.

sample type Active Remission Dry Normal Total

# w/ seg. error 138 91 57 2 288

# w/o seg. error 52 39 90 61 242

error percentage 72.6% 70% 38.8% 3.2% 54.3%
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Table 2.

Classification accuracy with different training/testing datasets. ‘Clean’ means a set with no segmentation 

errors and ‘Mixed’ means a set mixed with samples with and without errors.

Train on Test on Accuracy

Clean set Clean set 69.64%

Clean set Mixed set 53.57%

Mixed set Clean set 64.29%

Mixed set Mixed set 57.14%
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Table 3.

Ensemble accuracy (%) and RoC-AUC performance of different AMD graders with 2D inputs. Error-free and 

Error-prone are two testing sets w/ and w/o segmentation errors, respectively.

2D Input
Setting Error-free Error-prone

MM PT Accuracy AUC Accuracy AUC

Thakoor et. al. [30]
✗ ✗ 55.36 0.8159 57 0.8176

✓ ✗ 62.5 0.8512 66 0.8428

ours(2D)
✗ ✗ 73.21 0.8565 62 0.8065

✗ ✓ 80.36 0.9264 72 0.8697

Human - - 58.92 - 60 -

MM: Multimodal information (including OCT B-scan, OCT and OCTA projections), PT: Pretraining.
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Table 4.

Ensemble accuracy (%) and RoC-AUC performance of different AMD graders with 3D inputs.

3D Input
Setting Error-free Error-prone

PT PS Accuracy AUC Accuracy AUC

Effic.Net 3D ✗ ✗ 75 0.9489 69 0.8841

Med.Net34 [7] ✓ ✗ 73.21 0.9238 73 0.9009

ours(3D)
✓ ✗ 82.14 0.9524 74 0.9055

✗ ✗ 83.93 0.9298 80 0.912

PT: Pretraining, PS: Projection Supervision.
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Table 5.

Ablation experiments w.r.t the choice of channel axis and the loss weight ratio. The accuracy here pertains to 

the performance of individual classifier trained on the first validation fold, instead of the outcome of ensemble.

Settings
Accuracy (%)

Channel axis Pretrain Proj. Supervision Weight ratio

y axis 54

y axis ✓ 69

y axis ✓ ✓ 1:10 64

z axis 50

z axis ✓ 64

z axis ✓ ✓ 1:10−1 69

z axis ✓ ✓ 1:10 72

z axis ✓ ✓ 1:103 74

z axis ✓ ✓ 1:104 67
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