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ABSTRACT OF THE DISSERTATION 

 

Machine Learning Techniques for Personalized Health Monitoring 

and Interventions using Wearable Device Data 

 

by 

 

Jared Leitner 

 

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control) 

 

University of California San Diego, 2024 

 

Professor Sujit Dey, Chair 

Professor Ramesh Rao, Co-Chair 
 

To provide more optimal care at scale, health systems are changing the way in which 

healthcare is delivered. At the center of this changing landscape is a shift towards remote, 

continuous, and automated delivery of healthcare. This shift can lead to significant improvement 

in and scalability of at-home patient care for chronic diseases like hypertension and viral illnesses 

like COVID-19, while at the same time enabling significant savings in human and equipment 

resources. Wearable devices are an enabling technology making this shift in healthcare delivery 
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possible due to the substantial amount of lifestyle and vitals data they can remotely collect. There 

is great opportunity for machine learning (ML) to assist in the remote and personalized delivery 

of care due to the large amount of data that is collected. 

In this dissertation, we present three applications of ML to enable personalized, remote 

health monitoring and care delivery. Chapter 1 presents a personalized deep learning approach to 

estimate blood pressure (BP) using the photoplethysmogram signal. Our approach enables 

continuous, noninvasive BP monitoring as compared to traditional methods which are either 

intermittent or invasive. To address the problem of limited personal data for individuals, we 

propose a transfer learning technique that achieves a mean absolute error of 3.52 and 2.20 mmHg 

for systolic and diastolic BP estimation, respectively.  Chapter 2 describes a ML-based remote 

monitoring method to estimate patient recovery from COVID-19 symptoms using automatically 

collected wearable device data, instead of relying on manually collected symptom data. Our 

method achieves an F1-score of 0.88 when applying our Random Forest-based model 

personalization technique using weighted bootstrap aggregation. Chapter 3 presents the results of 

a single-arm nonrandomized trial which assessed the effectiveness of a fully digital, autonomous, 

and ML–based lifestyle coaching program on achieving BP control among adults with 

hypertension. 141 participants were monitored over 24 weeks and achieved an average systolic 

and diastolic BP decrease of 8.1 mmHg and 5.1 mmHg, respectively. Our research demonstrates 

the successful application of ML across various healthcare contexts. By harnessing wearable 

device data, we can facilitate more personalized and effective monitoring and interventions.



1 

INTRODUCTION 
 

Healthcare systems are transitioning towards more remote, continuous, and automated 

healthcare delivery methods to provide more optimal care on a broader scale. This shift holds the 

promise of substantial improvements and scalability in at-home patient care, including chronic 

conditions like hypertension and infectious diseases such as COVID-19. Simultaneously, it offers 

the potential for significant savings in both human resources and equipment expenses. Wearable 

devices are a key technology enabling this shift in healthcare delivery, due to their ability to 

remotely gather a wealth of lifestyle and vital sign data. This influx of data presents a unique 

opportunity for machine learning (ML) to play a pivotal role in enabling remote and personalized 

care delivery. By harnessing the vast quantities of collected data, ML algorithms can enhance 

diagnostic accuracy, predict disease progression, and tailor interventions to individual patient 

contexts. In this dissertation, we present three applications of machine learning to enable enhanced 

personalized health monitoring and care delivery. 

Chapter 1 presents a personalized deep learning approach to estimate blood pressure (BP) 

using the photoplethysmogram (PPG) signal. Our approach enables continuous, noninvasive BP 

monitoring as compared to traditional methods which are either intermittent or invasive. We 

propose a hybrid neural network architecture consisting of convolutional, recurrent, and fully 

connected layers that operates directly on the raw PPG time series and provides BP estimation 

every 5 seconds. To address the problem of limited personal PPG and BP data for individuals, we 

propose a transfer learning technique that personalizes specific layers of a network pre-trained 

with abundant data from other patients. We use the MIMIC III database which contains PPG and 

continuous BP data measured invasively via an arterial catheter to develop and analyze our 

approach. Our transfer learning technique, namely BP-CRNN-Transfer, achieves a mean absolute 
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error (MAE) of 3.52 and 2.20 mmHg for SBP and DBP estimation, respectively, outperforming 

existing methods. Our approach satisfies both the BHS and AAMI blood pressure measurement 

standards for SBP and DBP. Moreover, our results demonstrate that as little as 50 data samples 

per person are required to train accurate personalized models. We carry out Bland-Altman and 

correlation analysis to compare our method to the invasive arterial catheter, which is the gold-

standard BP measurement method. 

Chapter 2 discusses the limitations of current remote monitoring practices for COVID-19 

patients, predominantly reliant on manual symptom reporting and patient compliance. Our 

contribution lies in proposing a machine learning (ML)-based remote monitoring approach that 

uses automatically gathered data from wearable devices. Our proposed method estimates patient 

recovery from COVID-19 symptoms, mitigating the dependence on manual symptom collection. 

We deploy our remote monitoring system, namely eCOVID, in two COVID-19 telemedicine 

clinics. Our system utilizes a Garmin wearable and symptom tracker mobile app for data 

collection. The data consists of vitals, lifestyle, and symptom information which is fused into an 

online report for clinicians to review. Symptom data collected via our mobile app is used to label 

the recovery status of each patient daily. We propose a ML-based binary patient recovery classifier 

which uses wearable data to estimate whether a patient has recovered from COVID-19 symptoms. 

We evaluate our method using leave-one-subject-out (LOSO) cross-validation, and find that 

Random Forest (RF) is the top performing model. Our method achieves an F1-score of 0.88 when 

applying our RF-based model personalization technique using weighted bootstrap aggregation. 

Our results demonstrate that ML-assisted remote COVID-19 monitoring using automatically 

collected wearable data can supplement or be used in place of manual daily symptom tracking 

which relies on patient compliance. 
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Chapter 3 presents the results of a single-arm nonrandomized trial which assessed the 

effectiveness of a fully digital, autonomous, and ML–based lifestyle coaching program on 

achieving BP control among adults with hypertension. Home BP monitoring with lifestyle 

coaching is effective in managing hypertension and reducing cardiovascular risk. However, 

traditional manual lifestyle coaching models significantly limit availability due to high operating 

costs and personnel requirements. Furthermore, the lack of patient lifestyle monitoring and 

clinician time constraints can prevent personalized coaching on lifestyle modifications. To address 

these challenges, we propose a ML-driven, autonomous, precise lifestyle coaching program for 

patients with hypertension. Participants who enrolled in the trial received a BP monitor and 

wearable activity tracker. Data were collected from these devices and a questionnaire mobile app 

and were used to train personalized ML models that enabled precision lifestyle coaching delivered 

to participants via SMS text messaging and a mobile app. The primary outcomes included (1) the 

changes in systolic and diastolic BP from baseline to 12 and 24 weeks and (2) the percentage 

change of participants in the controlled, stage 1, and stage 2 hypertension categories from baseline 

to 12 and 24 weeks. Secondary outcomes included (1) the participant engagement rate as measured 

by data collection consistency and (2) the number of manual clinician outreaches. In total, 141 

participants were monitored over 24 weeks. At 12 weeks, systolic and diastolic BP decreased by 

5.6 mm Hg (P<.001; 95% CI −7.1 to −4.2) and 3.8 mm Hg (P<.001; 95% CI −4.7 to −2.8), 

respectively. Particularly, for participants starting with stage 2 hypertension, systolic and diastolic 

BP decreased by 9.6 mm Hg (P<.001; 95% CI −12.2 to −6.9) and 5.7 mm Hg (P<.001; 95% CI 

−7.6 to −3.9), respectively. At 24 weeks, systolic and diastolic BP decreased by 8.1 mm Hg 

(P<.001; 95% CI −10.1 to −6.1) and 5.1 mm Hg (P<.001; 95% CI −6.2 to −3.9), respectively. For 

participants starting with stage 2 hypertension, systolic and diastolic BP decreased by 14.2 mm Hg 
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(P<.001; 95% CI −17.7 to −10.7) and 8.1 mm Hg (P<.001; 95% CI −10.4 to −5.7), respectively, 

at 24 weeks. The percentage of participants with controlled BP increased by 17.2% (22/128; 

P<.001) and 26.5% (27/102; P<.001) from baseline to 12 and 24 weeks, respectively. The 

percentage of participants with stage 2 hypertension decreased by 25% (32/128; P<.001) and 

26.5% (27/102; P<.001) from baseline to 12 and 24 weeks, respectively. The average weekly 

participant engagement rate was 92% (SD 3.9%), and only 5.9% (6/102) of the participants 

required manual outreach over 24 weeks. The study demonstrates the potential of fully digital, 

autonomous, and ML–based lifestyle coaching to achieve meaningful BP improvements and high 

engagement for patients with hypertension, while substantially reducing clinician workloads. 
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Chapter 1 Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer 

Learning Approach 

1.1 Introduction 

Blood pressure (BP) is the most important indicator of cardiovascular health. High blood 

pressure, or hypertension, affects 30% of American adults and contributes to over 410,000 deaths 

per year [1,2]. This condition has been called “the silent killer,” as typically no symptoms are 

recognized before significant damage has already been done to the heart and arteries [3]. BP is 

defined as the pressure exerted on the arteries as blood is pumped throughout the body and is 

measured in millimeters of mercury (mmHg). Systolic (SBP) and diastolic blood pressure (DBP) 

are the primary metrics used to measure BP, which are defined as the maximum and minimum 

blood pressure, respectively, during a pulse. 

For accurate diagnosis and treatment of hypertension, regular BP measurement is 

necessary. According to the American College of Cardiology, increased at-home BP monitoring 

is essential for recognizing inconsistencies in measurements taken in a medical setting [4]. 

Currently, the predominant device for measuring BP is a mercury sphygmomanometer which 

involves attaching an inflatable cuff around the upper arm [5]. This process requires significant 

user effort, which limits the frequency of BP measurements and increases the chance of 

measurement error. The use of an arterial catheter can provide continuous BP measurement; 

however, it is highly invasive and impractical for daily life. On the other hand, wearable devices 

are widely used for non-invasive, continuous monitoring of biological information [6]. Continuous 

and automated blood pressure estimation could be incorporated into one’s daily routine to obtain 

better insight and detect abnormal BP fluctuation. 
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One prominent approach is to estimate BP with the photoplethysmogram (PPG) sensor, 

which is available in most wrist wearables. The principle of the PPG sensor is to optically measure 

the dilation and constriction of blood vessels. The resulting PPG signal is a fusion of heart activity, 

vascular relaxation processes, and microcirculation system status, making its time-frequency 

domain information rich and diverse [7]. In this paper, we propose a deep learning approach to 

personalized BP estimation based on the PPG signal.  

Traditional machine learning approaches to PPG-based BP estimation focus on pulse wave 

analysis (PWA) methods. PWA involves extracting both time and frequency domain features from 

the PPG series and using these hand-crafted features as inputs to the BP estimation model. [8] 

extracts nineteen features from each PPG cycle based on its morphology. They use these features 

and the corresponding SBP and DBP values to train different regression models. Their approach 

lacks personalization, which may be the reason for higher estimation errors since these features 

have a person-specific response to BP [9]. [10] and [11] both use a random forest as their BP 

estimation model. [10] uses a feature selection algorithm to determine which morphological 

features are most useful for BP estimation and found that many features are irrelevant. Since the 

PPG signal is highly sensitive to different sources of noise [12] and its morphology can range from 

person to person, it is difficult to detect the key points in the signal required for feature engineering. 

In addition, manually engineered features can prove to be redundant or irrelevant in the PPG-BP 

modeling process. As a result, the information contained in the PPG signal may not be fully 

utilized. 

In our previous work [13], we propose a method for personalized BP estimation using 

wavelet decomposition to extract time-frequency domain features from the PPG signal. These 

features are then used to train a random forest model for SBP and DBP estimation. Unlike previous 



7 

approaches which extract features from the PPG signal on a per cycle basis, wavelet decomposition 

captures dependencies between cycles in the time-frequency domain. While this approach 

produced accurate estimations, 10 hours of continuous BP and PPG data are required per person 

for training. Although PPG data can be continuously measured, large amounts of BP data are 

difficult to acquire outside a hospital setting.  

In order to address the limitations of these previous methods, we propose a deep learning 

approach that utilizes a novel transfer learning technique that requires as little as 50 samples to 

train accurate personalized models. Deep learning models are widely used to model nonlinear 

relationships and have been applied to various tasks involving physiological signals [14-16]. Deep 

learning addresses the challenges of manual feature engineering and information loss by directly 

learning from the raw PPG data. [17-19] build deep learning models for PPG-based BP estimation 

and utilize personalization techniques to improve performance. [17] uses a spectro-temporal neural 

network that takes a 5 second PPG segment and its corresponding spectrogram as inputs to their 

model. When personalizing their model, the SBP and DBP MAE decrease by 39% and 44%, 

respectively, indicating that the relationship between BP and PPG is subject-dependent. [18] 

utilizes a Siamese neural network to estimate the offset from a calibration PPG-BP sample. The 

network uses a series of convolutional layers to derive an effective representation of the PPG series 

and achieves high estimation performance. [19] proposes a convolutional neural network (CNN) 

for BP estimation and utilizes transfer learning to personalize their model to each patient. Their 

proposed model requires 4000 personal BP samples for transfer learning to achieve high 

performance. Such a large number of personal BP samples is not possible to collect outside a 

hospital setting.  
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Transfer learning focuses on storing knowledge gained from solving one problem (i.e., 

source domain) and applying it to a different but related problem (i.e., target domain), which 

usually contains a small number of data samples to train a model [20]. We propose to use a pre-

trained model with abundant PPG and BP data from a large pool of source patients to drastically 

reduce the required data for new patients, as illustrated in Figure 1.1. 

Deep learning models are conducive to transfer learning due to the modularity of their 

architectures. In this work, we develop our architecture, namely Blood Pressure – Convolutional 

Recurrent Neural Network (BP-CRNN), based on the Convolutional, Long Short-Term Memory, 

fully connected Deep Neural Network (CLDNN) [21], one of the popular hybrid artificial neural 

network (ANN) architectures. Our proposed method, namely BP-CRNN-Transfer, personalizes 

specific network layers during transfer learning to reduce the number of required training samples. 

Our contributions are as follows:  

• We propose a hybrid neural network consisting of convolutional and recurrent layers which 

operate directly on the raw PPG time series to reduce information loss and effectively 

model the PPG-BP relationship. 

Figure 1.1 Transfer learning overview for PPG-based BP estimation. 
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• We propose a novel transfer learning technique that personalizes specific layers of a pre-

trained network to improve the performance of PPG-based BP estimation, demonstrating 

that PPG-BP data of other patients can be used to enhance the modeling of a new patient’s 

PPG-BP relationship. 

• We demonstrate that the proposed transfer learning technique improves BP estimation 

performance by 23.3% for SBP and 19.1% for DBP. We verify our approach is consistent 

with the gold-standard BP measurement method through Bland-Altman and correlation 

analysis. 

• We show that our proposed transfer learning method requires 10x less personal PPG-BP 

data to achieve performance equivalent to that of a new personalized model trained with 

abundant data. 

The rest of the paper is organized as follows. In Section II, data acquisition and our network 

architecture are presented. We then detail the proposed transfer learning technique. In Section III, 

the performance of the proposed method is evaluated. We compare how model performance 

changes for different numbers of training samples, with and without using transfer learning. 

Finally, we conclude the paper in Section IV. 

1.2 Method 

In this section, we first describe the MIMIC III Matched Subset database and the PPG and 

BP preprocessing steps. We then present the network architecture and transfer learning technique. 

1.2.1 Data Acquisition and Preprocessing 

Data was obtained from the Multiparameter Intelligent Monitoring in Intensive Care III 

(MIMIC III) Matched Subset database [22,23]. This database contains records for thousands of 

intensive care unit patients. Records in this database have been matched to records from the 
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MIMIC III Clinical database [24], which includes de-identified demographic data. The waveforms 

collected include ECG, respiration, continuous blood pressure, and PPG signals each sampled at 

125 Hz. The arterial blood pressure (ABP) was directly measured from a radial artery using an 

invasive catheter. A fingertip sensor was used to measure the PPG data. Only patients with 

sufficient PPG and blood pressure data were considered for this study. We trained and tested our 

PPG-based BP estimation method on 100 randomly selected patients who had at least 10 hours of 

high-quality data after preprocessing. Out of these 100 patients, 56 are male and 44 are female. 

The age of the patients ranges from 21 to 82 with a mean age of 58.  

Our objective is to operate directly on the raw PPG data and estimate SBP and DBP 

simultaneously. The first stage of data preprocessing involves splitting the raw PPG signal into 5-

second segments and down sampling from 125 Hz to 25 Hz as this covers the important frequency 

components [25]. Next, each PPG segment is labeled with the mean SBP and DBP during that 

segment. SBP and DBP values are obtained from the raw ABP series using a peak detection 

algorithm as illustrated in Figure 1.2. Figure 1.3 describes the distribution of SBP and DBP 

samples. Some sections of the PPG series are corrupted due to motion artefacts or because the 

Figure 1.2 Output of peak detection algorithm – SBP and DBP vs. raw ABP time series. 
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patient was not properly wearing the sensor. In order to discard these corrupted sections, an 

autocorrelation filter is implemented. Since an uncorrupted PPG segment should maintain a high 

degree of periodicity, it is expected that the signal’s autocorrelation is high when the segment is 

offset by multiples of the cycle length. Figure 1.4 displays both an uncorrupted and corrupted PPG 

segment and the corresponding autocorrelation signals. The peaks in the autocorrelation signal are 

used to determine the quality of each PPG segment. An empirical threshold of 0.7 was set on the 

maximum autocorrelation. The filtered PPG segments are then normalized to zero mean and unit 

variance. Using this labeled dataset, we train our proposed personalized deep neural networks for 

BP estimation.  

1.2.2 Network Architecture 

We propose a hybrid network architecture, namely BP-CRNN, that makes use of 

convolutional layers, a gated recurrent unit (GRU), and fully connected (FC) layers. This is an 

adaptation of the CLDNN network presented in [21]. Instead of a LSTM, we use a GRU which 

behaves nearly identically with one fewer equation. In addition, we pass the outputs of both the 

first and third convolutional layers to the GRU. Figure 1.5 displays our architecture. The rationale 

is as follows: The convolutional layers serve as feature extractors for the raw PPG input, while the 

Figure 1.3 Distribution of SBP and DBP samples among the 100 patients. 

The blue dashed lines indicate the mean SBP/DBP and the red dashed lines 

correspond to 1 standard deviation above and below the mean SBP/DBP. 
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GRU models the temporal dependencies between these features. The GRU’s outputs are then fed 

to the fully connected layers which transform the features into a space that makes the BP easier to 

estimate. 

The input PPG segment is convolved with 50 different filters to generate 50 outputs in the 

temporal-feature domain. The following two convolutional layers also contain 50 filters, which 

are convolved with these features to generate the final features from the PPG segment. Each layer 

is followed by a rectified linear unit (ReLU) activation function. The output feature maps of each 

convolutional layer are calculated using the equation: 

𝑥𝑗
𝑙 = 𝑅𝑒𝑙𝑢 ((∑ 𝑥𝑖

𝑙−1 ∗  𝑘𝑖𝑗𝑖 ) + 𝑏𝑗
𝑖)                                              (1) 

where 𝑥𝑗
𝑙 is the 𝑗𝑡ℎ map generated by the convolutional layer l, 𝑥𝑖

𝑙−1
 is the 𝑖𝑡ℎ feature map of the 

previous convolutional layer l−1, 𝑘𝑖𝑗  represents the 𝑖𝑡ℎ trained convolution kernel, 𝑏𝑗
𝑖
 is the additive 

bias, while ∗ represents the convolution operation and Relu is the activation function. 

Stacking convolutional layers results in a learned feature hierarchy, where initial layers 

extract lower-level features and deeper layers extract higher-level features [26]. We varied the 

Figure 1.4 Comparison of (a) an uncorrupted PPG segment and (b) its 

corresponding autocorrelation signal to (c) a corrupted PPG segment and (d) its 

corresponding autocorrelation signal. 
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number of convolutional layers from 1 to 5 and found that 3 convolutional layers resulted in the 

best performance. In order to provide both low and high-level features to the GRU to process 

simultaneously, the outputs of the first and third convolutional layers are concatenated. Since each 

convolutional layer contains 50 filters, 100 extracted feature series are passed to the GRU. The 

extracted features at each level are padded such that they have the same length as the input PPG 

sequence. As a result, the input to the GRU has a shape of 100 ∗ 𝑡𝑛 where 𝑡𝑛 is the length of the 

input PPG segment. The GRU is able to learn the temporal relationship between these multiple 

feature channels. A GRU consists of gating units that control the flow of information within the 

module [27]. The following equations describe the operation of the GRU: 

             𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 + 𝑈(𝑧)ℎ𝑡−1)                                                     (2) 

Figure 1.5 Proposed BP-CRNN architecture– Convolutional layers serve 

as feature extractors, GRU models temporal relationship between features, 

and fully connected layers transform GRU outputs to SBP and DBP. 
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                        𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 + 𝑈(𝑟)ℎ𝑡−1)                                                     (3) 

ℎ𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊(ℎ)𝑥𝑡 + 𝑈(ℎ)(𝑟𝑡 ⊙ ℎ𝑡−1))                                         (4) 

                   ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡
′                                            (5) 

In Eq. (5), the final GRU activation ℎ𝑡 is a linear interpolation between the previous 

activation ℎ𝑡−1 and candidate activation ℎ𝑡
′  where the update gate 𝑧𝑡 determines how much the unit 

updates its activation. ⊙ represents element-wise multiplication. Eq. (2) describes the update gate 

𝑧𝑡 calculation, where 𝑊(𝑧) and 𝑈(𝑧) are each a set of trainable weights that process the input 𝑥𝑡 

and the previous activation ℎ𝑡−1, respectively. σ represents the sigmoid function. The candidate 

activation ℎ𝑡
′  is calculated in Eq. (4), where 𝑟𝑡 represents the reset gate, 𝑊(ℎ) and 𝑈(ℎ) represent 

trainable sets of weights, and 𝑡𝑎𝑛ℎ represents the hyperbolic tangent function. When 𝑟𝑡 is close to 

0, the reset gate enables the unit to forget the previous activation ℎ𝑡−1 when calculating the 

candidate activation ℎ𝑡
′  [27]. In Eq. (3), the reset gate 𝑟𝑡 is calculated similarly to the update gate. 

𝑊(𝑟) and 𝑈(𝑟) represent the reset gate’s trainable weights that process the input 𝑥𝑡 and the previous 

activation ℎ𝑡−1, respectively. At each time step, a 100-element vector is processed by the GRU, 

where each element corresponds to a feature value. A GRU activation size of 25 was 

experimentally determined to produce high performance, resulting in an output of shape 25 ∗ 𝑡𝑛. 

The last two network layers are fully connected layers that carry out the final BP estimation. 

FC layers are effective at mapping features into a more separable space [26]. The activations of 

the GRU at each time step are flattened into a single vector for the first FC layer to the process. 

The output of the network is a 2-dimensional vector corresponding to the estimated SBP and DBP 

values. A ReLU activation function is again used after each FC layer. Batch normalization [28] is 

utilized to stabilize the input distribution of each layer during training. This reduces internal 

covariate shifts and results in faster training. Overall, this architecture realizes the high level of 

complementarity these individual neural network layers exhibit.   
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1.2.3 Transfer Learning                  

To train deep neural networks, a large amount of training data is required to learn effective 

feature representations. Since our goal is to train personalized PPG-based BP estimation models, 

this means many data samples from a single individual are required. While PPG data can 

continuously be collected via a noninvasive wearable, BP data is more difficult to collect. In order 

to address this, we propose a transfer learning technique that results in high performance even 

when limited data from the target patient is available.  

Transfer learning has most notably been applied to computer vision (CV) and natural 

language processing (NLP) tasks. [29] argues that physiological signals share two important 

commonalities with CV and NLP: consistency and complexity. Physiological patterns are 

consistent across individuals but complex enough that learning effective feature representations is 

nontrivial. [30] describes how initial convolutional layers extract lower-level features, which can 

be shared across tasks, while deeper layers generate higher-level features which are task-specific. 

In addition, training with different tasks (patients in our case), can result in a more powerful 

representation of the data that could not be learned from a single task (patient). Inspired by [29,30], 

Figure 1.6 Proposed transfer learning method, namely BP-CRNN-Transfer. A BP-CRNN 

model is first pretrained using abundant source patient data. The final convolutional layer 

and fully connected layer are finetuned with the target patient’s data. 
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we first train our model with PPG-BP data from a variety of individuals to learn robust feature 

extractors that can be transferred between patients. 

Figure 1.6 illustrates our proposed transfer learning process, namely BP-CRNN-Transfer. 

PPG and BP data from n source patients is used to pre-train a BP-CRNN model. This network is 

then used as an initialization for finetuning. In order to personalize the model, data from the target 

patient is used to finetune specific layers in the network. The last convolutional layer (Conv3) and 

last fully connected layer (FC2) are retrained using the target patient’s data. In addition, the batch 

normalization parameters are updated to account for the different data distribution of the target 

patient. It was experimentally determined that retraining these two specific layers resulted in the 

most robust transfer learning performance. Table III in Sec. III (B) describes the transfer learning 

performance for different combinations of personalized layers. By retraining the final 

convolutional layer, the network can learn high-level PPG feature representations specific to the 

individual. Finetuning the last FC layer allows the model to learn the relationship between the 

extracted features and BP for the patient of interest. Our BP-CRNN model consists of 

approximately 250,000 trainable parameters, where 18,000 of these parameters are within the two 

layers we finetune. This indicates that we only need to update 7.2% of the network parameters 

learned from the source dataset. By retraining a small percentage of parameters, we prevent the 

network from overfitting to the limited target training data. 

1.3 Results and Discussion 

In this section, we describe the experiment settings and compare our personalized BP 

estimation results with and without transfer learning to previous methods. We examine how 

performance is affected by the number of personal data samples used during training and 

demonstrate that our transfer learning approach can achieve high performance with limited data. 
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We verify our approach is consistent with the gold-standard BP measurement method through 

Bland-Altman and correlation analysis. 

1.3.1 Experiment Setting 

We implement and evaluate our deep learning model using the Pytorch library [31] in the 

python environment on an Intel i5 3.2GHz quad-core and 16GB RAM computer. Nvidia GeForce 

GPUs are utilized to carry out network training. 1-dimensional filters of size 7 were implemented 

for each convolutional layer and zero padding was used to maintain the input PPG dimension. 

Based on the results from [32], a large range in the number of filters will result in similar 

performance before overfitting occurs. We chose to use 50 filters at each layer. All networks are 

trained using the Adam optimizer [33]. 10 hours of PPG and BP data are selected from each patient 

to be used in our experiments. 5-fold cross-validation is carried out for each patient separately. 

This involves shuffling each patient’s data and using 5 different train, validation, and test splits for 

each experiment. Each validation and test set comprises of 1 hour of PPG-BP data. The number of 

samples included in the training sets is varied from 50 to 3600 samples in order to assess how 

performance is affected by training set size, which is detailed in Sec. III (C). Data separation 

between patients is maintained to ensure that no personal data from the target patient is used in 

pretraining for transfer learning. Mean absolute error (MAE) is calculated and used as our 

evaluation metric. For each experiment, we provide the average of MAEs over all patients. MAE 

is defined as follows:   

𝑀𝐴𝐸 =  
∑ |𝐵𝑃𝑝𝑟𝑒𝑑

𝑖 −𝐵𝑃𝑎𝑐𝑡𝑢𝑎𝑙
𝑖 |𝑛

𝑖=1

𝑛
                                                     (6) 

For our non-transfer method, namely BP-CRNN, separate personalized models are trained 

for each of the 100 patients. Each model is trained only using data from the individual patient. 

Since we do not use transfer learning, the parameters of the initial model are randomly initialized 
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and all layers are updated during training. To train these models, we use 0.01 as the learning rate 

and 32 as the batch size.  

     For testing our transfer learning technique, namely BP-CRNN-Transfer, the initial 

model for the first 50 patients is trained with the data of the last 50 patients, and vice versa. This 

ensures that no data from the target patient is used during pretraining. When training the initial 

model for transfer learning, the learning rate and batch size are set to 0.001 and 256, respectively. 

In this case, the learning rate can be decreased and the batch size increased because there is much 

more training data, resulting in a greater number of update steps per epoch. When fine-tuning the 

pre-trained model to the target patient, the learning rate and batch size are set back to 0.01 and 32, 

respectively, and only the specific layers mentioned in Sec. II (C) are updated. Early stopping [34] 

is implemented for every training session to save the learned network weights once the error on 

the validation set begins to increase. Each network is trained 5 times and the results averaged in 

order to account for differences in model convergence. Our model’s inference time is 0.32 ± 0.09 

(mean ± std) seconds. This time is based on implementation on a Nvidia GPU. In our future work, 

we plan to investigate a lightweight model that can be directly implemented on a wearable device 

and research the tradeoffs between model accuracy, inference time, and memory requirements. 

1.3.2 BP Estimation Results 

We compare the BP estimation performance of our personalized models without and with 

transfer learning to that of an aggregate model and previous methods in Table 1.1. BP-CRNN and 

BP-CRNN-Transfer correspond to our personalized approach without and with transfer learning, 

respectively. The aggregate model, namely Aggregate BP-CRNN, is trained in the same fashion 

as the pre-trained models for transfer learning as described in the previous section. However, no 

personalization or transfer learning is applied. The high estimation error of Aggregate BP-CRNN 



19 

demonstrates the requirement for personalization in order to effectively model the PPG-BP 

relationship. 

Next, we compare our proposed approach against a dummy regressor, namely Mean 

Regressor, which always predicts the mean SBP and DBP from the target patient’s training set. 

This is an important comparison to make as there may be a subject with relatively constant BP, in 

which case the BP-CRNN’s estimation errors will be low [17]. This comparison is drawn to ensure 

that our model has learned more than simply estimating the patient’s mean BP. In addition, we 

compare our approach to our previous work and to the latest deep learning approaches that propose 

personalized BP estimation methods. In our previous work, we apply wavelet decomposition to 

the PPG series for feature engineering and train a random forest (RF) as our BP estimation model 

[13]. As mentioned in the introduction section, [17] trains a spectro-temporal neural network using 

personal data samples from each patient. [18] uses a Siamese neural network that takes a raw PPG 

segment as input and estimates the BP offset from a calibration PPG-BP sample. [19] trains a 

convolutional neural network for BP estimation and utilizes transfer learning to personalize their 

model to each patient. 

Table 1.1 Comparison of BP estimation methods. 

Method SBP MAE (mmHg) DBP MAE (mmHg) 

Aggregate BP-CRNN 16.3 8.46 

Mean Regressor 9.07 4.58 

RF - Wavelet [13] 4.88 2.61 

Spectro-Temporal NN [17] 9.43 6.88 

Siamese NN [18] 5.95 3.41 

CNN-Transfer [19] 4.06 2.20 

BP-CRNN 4.59 2.72 

BP-CRNN-Transfer 3.52 2.20 
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In our current approach, a model is trained for each patient using both a non-transfer 

learning and transfer learning approach, as described in the experiment setting. Without transfer 

learning, namely BP-CRNN, we achieve an average MAE of 4.59 and 2.72 mmHg for SBP and 

DBP, respectively. As shown in Table I, even without using transfer learning, our proposed model 

achieves improvement in SBP performance compared to the methods presented in [13,17,18]. We 

attribute this improvement to the complementarity of our network architecture and its ability to 

reduce information loss by operating directly on the raw PPG series. With the transfer learning 

approach, namely BP-CRNN-Transfer, the MAEs decrease to 3.52 and 2.20 mmHg corresponding 

to a 23.3% and 19.1% increase in performance for SBP and DBP estimation as compared to our 

non-transfer method. The performance achieved by our BP-CRNN-Transfer method is also better 

than our previous approach RF-wavelet [13] as well as previous deep learning methods [17-19]. 

We achieve a 27.9% and 15.7% improvement from [13], 62.7% and 68% improvement from [17], 

and 40.8% and 35.5% improvement from [18] for SBP and DBP, respectively. We achieve a 13.3% 

improvement for SBP MAE and the same DBP MAE as compared to [19]. We attribute this 

increase in performance to the specific layers we finetune during transfer learning and our 

network’s ability to effectively store information contained in source patients’ data. The BP-

CRNN-Transfer MAE is well under the Mean Regressor MAE, which is 9.07 mmHg for SBP and 

4.58 mmHg for DBP, indicating that the model can learn a meaningful relationship between PPG 

and BP. Since [19] achieves the closest performance to our proposed method, we reimplement 

their approach in order to perform statistical tests. We carry out a Paired Student’s t-Test separately 

for each patient to assess the statistical significance of the difference in estimation errors between 

our method and [19]. For 84 out of the 100 patients, the difference in performance is statistically 

significant at the level 0.05 for both SBP and DBP. 
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We evaluate our proposed method according to the British Hypertension Society (BHS) 

and the Association for the Advancement of Medical Instrumentation (AAMI) standards for BP 

measurement. The BHS standard assigns a performance grade based on the percentage of 

estimated BP samples that fall within 5, 10, and 15 mmHg of the corresponding reference BPs. To 

achieve Grade A accuracy, at least 60/85/95% of the estimated BP samples must have an absolute 

difference of ≤ 5/10/15 mmHg from the reference BPs, respectively [35]. Table 1.2 describes the 

results of our non-transfer and transfer learning approaches according to the BHS standards. For 

our non-transfer approach, 72/92/97% of estimated SBP samples have an absolute difference ≤ 

5/10/15 mmHg, respectively. When using our transfer learning approach, these percentages 

increase to 80/95/98% of estimated SBP samples. For our non-transfer approach, 89/98/99% of 

estimated DBP samples have an absolute difference ≤ 5/10/15 mmHg, respectively. When using 

our transfer learning approach, these percentages increase to 93/99/100% of estimated DBP 

samples. Both approaches achieve Grade A performance according to the BHS standard for SBP 

and DBP. 

The AAMI standard for accurate BP measurement requires that the mean error between 

estimated and reference BPs is ≤ 5 mmHg and the standard deviation (SD) of errors is ≤ 8 mmHg 

[36]. Figure 1.7 displays the error distribution for SBP and DBP using both our non-transfer and 

Table 1.2 Comparison of proposed method to BHS Standards. Both our non-transfer (BP-

CRNN) and transfer learning (BP-CRNN-Transfer) approaches achieve Grade A performance 

for SBP and DBP. 

 SBP DBP 

Method 
≤ 5 

mmHg 

≤ 10 

mmHg 

≤ 15 

mmHg 
Grade 

≤ 5 

mmHg 

≤ 10 

mmHg 

≤ 15 

mmHg 
Grade 

BP-CRNN 72% 92% 97% A 89% 98% 99% A 

BP-

CRNN-

Transfer 

80% 95% 98% A 93% 99% 100% A 
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transfer learning approach over all patients. Our BP-CRNN (non-transfer) approach achieves a 

mean error and standard deviation of -0.07 ± 5.49 mmHg and -0.05 ± 3.24 mmHg for SBP and 

DBP, respectively. Our BP-CRNN-Transfer approach achieves a mean error and standard 

deviation of 0.11 ± 4.56 mmHg and 0.05 ± 2.82 mmHg for SBP and DBP, respectively. The mean 

error for each approach is approximately 0 mmHg. When using our transfer learning approach, the 

SD of errors decreases from 5.49 to 4.56 mmHg and 3.24 to 2.82 mmHg for SBP and DBP, 

respectively. While both approaches satisfy the AAMI standard, our transfer learning approach 

achieves the requirement by a larger margin. 

Table 1.3 compares the transfer learning performance when different sets of network layers 

are finetuned using target patient data. We use the first 10 patients in our dataset as target patients 

for this experiment. The source model is pre-trained with the last 50 patients’ data. These results 

Figure 1.7 Distributions of (a) SBP and (b) DBP errors using our non-transfer approach 

compared to distributions of (c) SBP and (d) DBP errors using our transfer learning approach. 

The blue dashed lines indicate the mean error and the red dashed lines correspond to 1 standard 

deviation above and below the mean error. 
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are averaged over the 10 target patients. Evidently, retraining only the final convolution layer 

(Conv3) and fully connected layer (FC2) results in the best transfer learning performance. If the 

Conv3 layer is not personalized, the SBP MAE increases from 3.84 to 4.41 mmHg and the DBP 

MAE increases from 2.24 to 2.63 mmHg. This demonstrates the importance of personalizing the 

last convolutional layer in order to learn higher level features specific to the individual. One 

interesting observation is that, on average, it is better not to retrain the GRU with the target data. 

The average SBP and DBP MAEs when finetuning the GRU layer with the Conv3 and FC2 layer 

are 3.90 and 2.28 mmHg, respectively. If the GRU is not personalized, the average SBP and DBP 

MAEs are 3.84 and 2.24 mmHg, respectively. This may be because the GRU is modeling the 

temporal relationship between features, and not the features themselves. This indicates that the 

temporal modeling of PPG features is transferable across individuals in addition to the lower-level 

convolutional filters. 

Table 1.4 compares the transfer learning performance when different numbers of source 

patients are used for pretraining the initial model. Like the previous experiment, we use the first 

10 patients in our dataset as target patients for this experiment and the results are averaged over 

Table 1.3 Comparison of transfer learning performance when finetuning different network 

layers. 

BP-CRNN Layers Personalized SBP MAE (mmHg) DBP MAE (mmHg) 

FC1, FC2 5.16 2.87 

FC2 4.41 2.63 

Conv1, Conv2, Conv3, GRU, FC1, FC2 4.37 2.41 

Conv3, FC1, FC2 4.32 2.46 

Conv2, Conv3, GRU, FC1, FC2 4.28 2.38 

Conv3, GRU, FC1, FC2 4.25 2.37 

Conv3, GRU, FC2 3.90 2.28 

Conv3, FC2 3.84 2.24 
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these patients. We compare the transfer performance when using 10, 30, 50, 70, and 90 source 

patients for pretraining. We finetune the “Conv3, FC2” layer set during the transfer learning step. 

We observe that the MAEs for SBP and DBP decrease as more source patients are included but 

level off at 50 patients. The MAEs for SBP estimation when using 50, 70, and 90 source patients 

are 3.84, 3.85, and 3.85 mmHg, respectively. The MAEs for DBP estimation when using 50, 70, 

and 90 source patients are 2.24, 2.24, and 2.23 mmHg, respectively. These results demonstrate that 

including more than 50 source patients does not enhance the transfer learning performance. This 

indicates that there is sufficient variability and information among 50 patients to learn effective 

transferable features for PPG-BP estimation. 

1.3.3 Effect of Training Set Size 

Next, we discuss how our non-transfer and transfer learning performances change based 

on the number of target patient training samples. We test the model performance using 5 different 

amounts of personal training data: 3600, 1800, 360, 100, and 50 data samples. Since each input 

PPG segment is 5 seconds, 3600 samples correspond to 5 hours of data. For each case, the 

validation and test sets are kept the same in order to ensure a fair comparison.  Figure 1.8 displays 

the relationship between the number of training samples and SBP (left) and DBP (right) estimation 

performance. The blue curves correspond to our non-transfer approach, namely BP-CRNN, while 

Table 1.4 Comparison of transfer learning performance when 

pretraining with different number of source patients. 

# Source Patients SBP MAE (mmHg) DBP MAE (mmHg) 

10 4.07 2.36 

30 3.96 2.28 

50 3.84 2.24 

70 3.85 2.24 

90 3.85 2.23 
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the red curves correspond to our transfer method, namely BP-CRNN-Transfer. Each point is 

labeled with the number of training samples and corresponding MAE. The black lines represent 

the performance of the dummy Mean Regressor, which always predicts the mean SBP and DBP 

of the target patient’s training set. Again, we use the Mean Regressor’s performance as a reference 

to ensure our model is learning more than simply estimating with the patient’s mean SBP and 

DBP. 

Evidently, using transfer learning improves performance for each number of training 

samples. As the number of training samples is reduced, the MAE increases for both approaches, 

but at a lower rate when utilizing transfer learning. When training with 100 data samples using the 

non-transfer approach, the MAE increases to 8.15 mmHg for SBP and 4.48 mmHg for DBP. In 

this case, the error is approaching that of the Mean Regressor, meaning the model has difficulty 

learning the PPG-BP relationship. If further reduced to 50 training samples, the model is unable to 

converge. This is why there is no point plotted for 50 samples when using our non-transfer 

approach. On the other hand, when using 100 training samples, the performance of our transfer 

learning approach for SBP and DBP is 5.52 and 3.38 mmHg, respectively. This corresponds to a 

32.3% and 24.6% performance improvement for SBP and DBP estimation when using our transfer 

Figure 1.8 BP estimation performance for different training set sizes. The labeled points for 360 

and 3600 training samples indicate that our BP-CRNN-Transfer method can achieve equivalent 

performance to the non-transfer BP-CRNN method with 10x less data. 
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learning technique. By comparing the non-transfer approach using 3600 samples to the transfer 

approach using 360 samples, we can see that the MAE is similar for SBP (4.59 vs. 4.56 mmHg) 

and DBP (2.72 vs. 2.80 mmHg) estimation. This indicates that 10x less personal PPG-BP data is 

required by our proposed transfer learning approach to achieve performance equivalent to that of 

a new personalized model trained with abundant data. For 50 training samples the model is able to 

converge using transfer learning, resulting in a MAE of 5.86 mmHg for SBP and 3.59 mmHg for 

DBP. The cuff-based standard is a MAE of ≤5 mmHg for both SBP and DBP [37]. Hence, our 

transfer learning technique satisfies this requirement for DBP and misses this requirement by 0.86 

mmHg for SBP, when using 50 training samples. These results demonstrate that accurate 

personalized models can be trained even with limited personal PPG and BP data.    

1.3.4 Bland-Altman and Correlation Analysis 

Bland-Altman analysis is a technique for comparing a new measurement device or 

procedure to an approved method [38]. The goal is to assess the extent to which two methods 

designed to measure the same parameter are in agreement. Here, the two methods for BP 

measurement being compared include the invasive arterial catheter and our BP-CRNN-Transfer 

model. The difference in measurements between these two methods is plotted against the average 

measurement of the two devices. The difference between methods and mean of methods are 

calculated for each data sample using equations 7 and 8, respectively. 

𝐵𝑃𝑑𝑖𝑓𝑓 = 𝐵𝑃𝑐𝑎𝑡ℎ𝑒𝑡𝑒𝑟 − 𝐵𝑃𝐵𝑃−𝐶𝑅𝑁𝑁                                         (7) 

𝐵𝑃𝑚𝑒𝑎𝑛 =
𝐵𝑃𝑐𝑎𝑡ℎ𝑒𝑡𝑒𝑟+𝐵𝑃𝐵𝑃−𝐶𝑅𝑁𝑁

2
                                             (8) 

It is common to compute the 95% limits of agreement between measurement methods. 

These limits are defined as the average difference between measurement methods (blue dashed 

line in Figure 9) ± 1.96*standard deviation of the differences between measurement methods (red-
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dashed lines in Figure 1.9). For two methods to be considered comparable, Bland-Altman 

recommends that 95% of the samples should fall within these limits (red dashed lines). Among all 

100 patients, 86% and 93% achieve this agreement for SBP and DBP measurement, respectively. 

We also carry out Pearson correlation analysis [39] separately for each of the 100 patients 

to compare our method’s estimated BP to the reference BP. The Pearson-R correlation coefficient 

is a measure of how linearly correlated two sets of data are. When using our non-transfer approach, 

the average and standard deviation of the Pearson-R coefficient is 0.83 ± 0.10 and 0.73 ± 0.17 for 

SBP and DBP, respectively. When using our transfer learning approach, the average and standard 

Figure 1.9 Bland-Altman and Pearson correlation analysis for one patient used to assess 

agreement between BP measurement methods. Plots (a) and (b) display Bland-Altman analysis 

for SBP and DBP, respectively. Plots (c) and (d) display the correlation between estimated and 

reference SBPs and DBPs, respectively. 
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deviation of the Pearson-R coefficient is 0.90 ± 0.06 and 0.82 ± 0.12 for SBP and DBP, 

respectively. This increase in correlation again shows the ability of transfer learning to improve 

estimation performance. 

Since it is not possible to show individual plots for each patient, we provide plots for one 

patient whose Pearson correlation is similar to the average correlation across all patients. Figure 9 

displays both the Bland-Altman and correlation plots for SBP and DBP for this patient. 95.1% of 

the SBP differences and 95.6% of the DBP differences fall within the Bland-Altman limits of 

agreement. The correlation between estimated and reference BPs is 0.9 and 0.85 for SBP and DBP, 

respectively. These results demonstrate a high level of agreement between our model’s estimated 

BP and the invasively measured BP from the arterial catheter. 

1.3.5 Investigating Source Patient Selection 

In this section, we discuss findings regarding source patient selection for individual target 

patients. Table IV compares results when using different numbers of source patients, however, 

these results represent an average and do not capture performance variations at the individual 

patient level. The goal of this experiment is to determine whether there are optimal smaller sets of 

source patients for individual target patients. 

In order to determine the effect of using different source patients for individual target 

patients, multiple models are pre-trained. Table V displays the results for 3 different target patients, 

using 3 different pre-trained models for transfer learning. Model 1 represents the same initial 

model used in the previous experiments pre-trained with 50 source patients. Models 2 and 3 were 

pre-trained using different random sets of 10 source patients. For this experiment, 50 samples from 

the target patient are used to finetune each model. 
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On average, pretraining with 50 source patients (shown in Table 1.4) is better than 

pretraining with 10 source patients. However, for individual target patients, there may be certain 

smaller sets of source patients that result in better transfer learning performance, as shown in Table 

1.5. This performance increase can be significant, especially seen for Patient 2. Model 3 (pre-

trained with 10 source patients) performs 13.9% and 11.6% better for SBP and DBP estimation 

compared to Model 1 (pre-trained with 50 source patients) for this target patient. These results 

indicate that transfer learning performance can be further improved by selecting a specific subset 

of source patients for individual target patients. In future work, we plan to investigate this idea of 

intelligent source patient selection for improving transfer learning performance. 

1.4 Conclusion 

In this chapter, we present an effective hybrid network architecture for personalized BP 

estimation using the PPG signal. In order to reduce the number of personal PPG-BP samples 

required for training, we provide a novel transfer learning approach that personalizes specific 

layers of the network. Our method is tested over a demographically diverse set of patients, and our 

estimation performance achieves the BHS and AAMI standards. 

In this study, the training and inference are implemented on a personal computer. For future 

work, we will investigate a light-weight BP estimation model which can be implemented directly 

on a wearable device that collects PPG data while providing comparable performance to our 

Table 1.5 Transfer performance of different pretrained models. 

 SBP MAE / DBP MAE (mmHg) 

 Patient 1 Patient 2 Patient 3 

Model 1 4.73 / 3.27 7.96 / 4.99 4.79 / 2.47 

Model 2 4.47 / 3.18 7.06 / 4.58 5.46 / 3.29 

Model 3 4.76 / 3.20 6.85 / 4.41 5.05 / 3.12 
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current work. This will provide more real-time measurements and address concerns regarding data 

transmission and data privacy. BP measurement based on the PPG signal will enable a deeper 

understanding of how BP changes throughout the day, allowing the user to make adjustments in 

order to reach and maintain a healthy BP. 

In the next chapter, we discuss the limitations of current remote monitoring practices for 

COVID-19 patients, predominantly reliant on manual symptom reporting and patient compliance. 

We present a ML-based remote monitoring method to estimate patient recovery from COVID-19 

symptoms using automatically collected wearable device data, instead of relying on manually 

collected symptom data. 

Chapter 1, in part, is from the material as it appears in the IEEE Journal of Biomedical and 

Health Informatics, 2022, Leitner, Jared; Chiang, Po-Han; Dey, Sujit. The dissertation author was 

the primary investigator and author of this paper. 
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Chapter 2 Classification of Patient Recovery from COVID-19 Symptoms using Consumer 

Wearables and Machine Learning 

 

2.1 Introduction 

Around the world, healthcare systems have been overwhelmed by the high numbers of 

COVID-19 cases, which has surpassed 437 million as of March 2, 2022 according to the World 

Health Organization (WHO) [40]. In the US, there were approximately 4.5 million COVID-19 

hospitalizations between August 1, 2020 and February 28, 2022, according to the Center for 

Disease Control and Prevention (CDC) [41]. While this is a daunting number of hospitalizations, 

there have been approximately 80 million cases in the US [42], meaning most cases involve 

ambulatory patients being treated from home. This is an unprecedented number of patients needing 

care in their home and many are not being monitored in any way by medical personnel. 

In order to combat this pandemic and provide more optimal care at scale, hospitals are 

changing the way in which healthcare is delivered. At the center of this changing landscape is a 

shift towards remote, continuous, and automated delivery of healthcare. This shift can lead to 

significant improvement in and scalability of at-home patient care for COVID-19, while at the 

same time enabling significant savings in human and equipment resources. Current remote 

monitoring for COVID-19 patients relies on manual symptom reporting, which is highly dependent 

on patient compliance. In this study, we demonstrate that data automatically collected from 

wearable devices together with machine learning (ML)-assisted diagnosis can enhance the 

efficiency and increase the scalability of remote monitoring for COVID-19 patients. 

Wearable devices are one of the enabling technologies making this shift in healthcare 

delivery possible [43-46]. Consumer wearables, such as Apple Watch, Fitbit, and Samsung Galaxy 

Watch, remotely collect a great amount of lifestyle and vitals data in high granularity and 
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continuity. There is great opportunity for ML to assist in remote monitoring due to the large 

amount of data that is collected. Since it is not possible for doctors to manually review all remotely 

collected data [47], ML has the potential to provide automated insights into the health status of 

patients and significantly increase the scalability of remote patient care. This is especially helpful 

during a pandemic, where in-person interaction and monitoring may pose risks to healthcare 

workers and other patients. In addition, ML-assisted monitoring can provide patients with insights 

regarding their own progression, helping to keep them engaged and informed about their health. 

Current research on using wearables and machine learning to combat COVID-19 is 

primarily focused on early detection of infection. The authors in [51-55] have demonstrated that it 

is possible to detect deviations in health data before significant symptoms arise. Using Fitbit 

devices, the researchers in [51] found that 26 out of 32 (81%) infected patients in their cohort had 

alterations in their heart rate, number of daily steps, or time asleep before becoming symptomatic. 

The authors in [54] used respiration rate, heart rate, and heart rate variability data collected from 

their wearable devices and proposed a deep learning method to estimate infection before the onset 

of symptoms. Early detection will enable individuals to quarantine earlier, helping reduce the 

spread of the virus. These studies demonstrate that wearable device data can provide actionable 

insights into the conditions of patients.  

In this research, we propose a novel approach to estimate patient recovery from COVID-

19 symptoms using automatically collected device data and machine learning. We partnered with 

the UCSD Health and Neighborhood Healthcare COVID-19 telemedicine clinics in order to carry 

out this research. Our remote monitoring system utilizes a Garmin wearable and symptom tracker 

mobile app for data collection and fuses this data into an online report for clinicians to review. We 

propose a novel labelling logic for patient recovery from COVID-19 symptoms using the symptom 
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tracker data. The labelling logic was developed in collaboration with UCSD Health doctors and 

the details are defined in Sec. III (B). Using this data, we train a patient recovery classifier which 

uses wearable data to estimate whether a patient has recovered from COVID-19 symptoms. We 

evaluate our method according to leave-one-subject-out (LOSO) CV to replicate the clinically 

relevant use case scenario in which a newly infected patient will not have data for model training. 

We compare the performance of different ML models and find that Random Forest (RF) is the top 

performing model. We propose a RF-based personalization technique in order to improve model 

performance. This technique utilizes the RF’s weighted bootstrap aggregation algorithm in order 

to tune the model to each patient. The details are presented in Sec. III (D). Finally, we conduct 

Shapley Value analysis to inspect which device features have the greatest impact on classification. 

This analysis provides an interpretation of what the model has learned, which is especially 

important for medical applications. Our contributions are as follows: 

• We deploy a remote patient monitoring system in two COVID-19 telemedicine clinics. The 

system consists of a wearable device, symptom tracker mobile app, and online dashboard 

which collects and analyzes vitals, lifestyle, and symptoms data. The estimated recovery 

status of each patient using our ML approach is displayed on the dashboard for clinicians 

to review. 

• We propose a patient recovery classifier which uses wearable data to estimate whether a 

patient has recovered from COVID-19 symptoms. This ML tool can provide doctors with 

automated insights into the recovery status of their infected patients and bypass the need 

for manual daily symptom tracking.   
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• We carry out LOSO CV to mirror the clinically relevant use-case scenario and propose a 

RF-based personalization technique that improves model performance by tuning the model 

to each patient via weighted bootstrap aggregation. 

The rest of the paper is organized as follows. In Section II, we investigate related works 

that utilize machine learning for COVID-19 diagnosis. In Section III, our remote monitoring 

system and data acquisition are presented. We then detail the proposed labelling logic and RF-

based personalization technique for patient recovery classification. In Section IV, the performance 

of our proposed ML method is evaluated. In addition, we carry out top feature analysis based on 

Shapley Values and provide a discussion on research challenges. Finally, we conclude the paper 

in Section V. 

2.2 Related Work 

In this section, we present related research which is grouped into the follow categories: 

COVID-19 symptom tracking, early diagnosis, and recovery detection. 

2.2.1 COVID-19 Symptom Tracking 

The researchers in [48] utilize a smartphone-based app to collect symptom data from 

patients. In the app, patients also recorded when they had tested either negative or positive for 

COVID-19 infection. They propose a logistic regression model that combines the reported 

symptoms in order to predict COVID-19 infection. A combination of loss of smell and taste, 

fatigue, persistent cough, and loss of appetite resulted in the best model, which achieved a 

sensitivity and specificity of 0.65 and 0.78, respectively. The authors in [49] also used a mobile 

app for collecting symptoms data and COVID-19 test results. They trained a logistic regression 

model to predict COVID-19 infection based on self-reported symptoms, and calculated the odds 

ratio for each symptom in order to understand which symptoms were the strongest predictors. 
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Chills, fever, loss of smell, nausea, and shortness of breath were the top five strongest predictors 

of COVID-19 infection. Participants in their cohort with a positive test result experienced 5.6 

symptoms on average. In [50], the researchers trained a gradient-boosting machine to predict 

COVID-19 infection based on 8 features: cough, fever, sore throat, shortness of breath, headache, 

age, sex, and known contact with an individual confirmed to have COVID-19.  Their approach 

achieved a sensitivity and specificity of 0.86 and 0.79, respectively. Fever and cough were the top 

2 features with the greatest impact on the model’s prediction. These past works demonstrate that 

self-reported symptoms can be effectively used to predict COVID-19 infection. However, these 

approaches rely on patient compliance with manual symptom tracking. In contrast, wearable 

devices can passively collect data that is relevant to COVID-19 infection. In addition, wearable 

data can be predictive of COVID-19 infection prior to symptom onset. 

2.2.2 Early Diagnosis of COVID-19 

The authors in [51] use data collected from wearable devices for the early detection of 

COVID-19 infection. They propose an anomaly detection technique based on two parameters: 1. 

Resting heart rate (RHR), 2. Heart rate over steps (HROS). HROS was calculated by dividing heart 

rate by steps data at each hourly interval. They report that significant deviations in these parameters 

relative to the individual baseline can indicate COVID-19 infection. They utilize Gaussian density 

estimation to classify anomalies in the dataset. Their results show that 63% of COVID-19 cases in 

their cohort could have been detected before symptom onset. The researchers in [52] also utilize 

deviations from RHR to classify a patient as infected. They propose a deterministic finite state 

machine which triggers an alert when a patient’s overnight RHR increases above the median of 

previous overnight RHRs by an empirically determined threshold. Their system generated alerts 

for 80% of the infected individuals prior to symptoms, however, many of the alert-generating 
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events were not associated with COVID-19 and instead attributed to other events, such as poor 

sleep, stress, alcohol consumption, intense exercise, or travel. While these studies demonstrate that 

deviations in physiological and activity data measured by wearable devices can be used for early 

detection of COVID-19, they only utilize a subset of possible device features (RHR and steps) and 

do not investigate ML-based approaches which are well suited to handle larger feature sets. 

Furthermore, they do not investigate if wearable device data can be used to monitor patient 

recovery from COVID-19.     

The researchers in [53] trained a logistic regression model to differentiate COVID-19 

positive vs. negative cases in symptomatic individuals based on symptoms and wearable device 

data. Baseline device data was calculated as the median of the data from 21 to 7 days before the 

onset of symptoms. They show an increase in model performance when including device data 

(RHR, sleep duration and step count) in addition to symptoms data as part of the feature set. The 

authors in [54] trained a convolutional neural network to predict illness given health metrics for 

that day and the preceding 4 days. These metrics included the mean respiration rate (RR) during 

sleep, mean heart rate during sleep, the root mean square of successive differences (RMSSD) of 

the nocturnal RR series and the Shannon entropy of the nocturnal RR series. They organize each 

data sample into 5x4 matrix and resize each matrix into a 28x28 image as the input to the network. 

Their method achieved a sensitivity and specificity of 51% and 90%, respectively. In [55], the 

researchers presented a gradient-boosting model based on decision trees to detect COVID-19 

infection. Their approach achieved a sensitivity and specificity of 71% and 67%, respectively, 

when only using device features as input to the model. They grouped the device features into 

activity, sleep, and heart rate categories, and found that activity related features had the greatest 

impact on the model’s prediction, followed by sleep and heart rate-related features. These works 
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demonstrate the ability of ML models to learn meaningful relationships between wearable device 

features and the onset of COVID-19 infection. 

2.2.3 Recovery Detection from COVID-19 

The research presented in [48-55] focused on predicting COVID-19 infection using self-

reported symptoms or wearable device data. In contrast to these works, the objective of our 

research is to estimate recovery from COVID-19 symptoms using wearable device data. The 

researchers in [56, 57] present different approaches to estimate recovery from COVID-19 infection 

based on symptoms and demographic data. The authors train a support vector machine [56] and 

decision tree classifier [57] to estimate patient recovery based on symptoms, demographic, and 

travel-related features. In [56], the authors found that most of the patients who could not recover 

experienced a fever, cough, and fatigue. In [57], the authors extended their model to predict the 

number of days needed to recover from infection. Their model predicted a minimum of 5 days and 

a maximum of 35 days for COVID-19 patients to recover. Both approaches presented in [56, 57] 

rely on symptoms data and do not investigate the use of wearable device data for patient recovery 

estimation. We did not find any previous research that investigates whether wearable device data 

can be used to estimate patient recovery from COVID-19. This aligns with the observations of the 

authors in [58] who provide a review on the rise of wearables during the COVID-19 pandemic. 

None of the works presented in their review are focused on estimating patient recovery from 

COVID-19 symptoms. This motivates us to develop our own labeling logic for patient recovery in 

direct consultation with UCSD Health COVID-19 telemedicine doctors. In addition, the dataset 

we collect consists of a rich feature set spanning activity, sleep, stress, heart rate and SpO2 data. 

Our paper provides novel insights into which lifestyle and physiological signals are associated 

with patient recovery from COVID-19 symptoms. 
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2.3 Method 

In this section, we first detail our study cohort and the proposed remote patient monitoring 

and reporting system. We then present the ML task of patient recovery classification and discuss 

its application. Finally, we describe the data preprocessing, the RF model, and our proposed 

personalization technique. 

2.3.1 Clinical Study Cohort and eCOVID System 

Our IRB-approved clinical study (protocol #181405) was in collaboration with UC San 

Diego Health and Neighborhood Healthcare, with patient enrollment, onboarding and management 

conducted by the Altman Clinical & Translational Research Institute at UC San Diego. The study 

was conducted starting in May 2020. Patients who tested positive for COVID-19 at each location 

were referred to our study coordinator. Eligible patients were required to be over 18 years old and 

stable for monitoring in an ambulatory setting, as determined by healthcare personnel at the point 

of care when testing was initially ordered. The characteristics of the included cohort are shown in 

Table 2.1. Subjects digitally consented using our symptom tracker mobile app, and those who did 

were provided a Garmin Vivosmart4 wearable device [59] to collect their lifestyle and vitals data 

for the study duration of up to 3 months. One of the deciding factors in using this device for this 

study is its ability to measure blood oxygen saturation (SpO2). Based on the findings of [60] and 

our discussion with UCSD Health doctors, SpO2 is a critical metric in determining the condition 

Table 2.1 Cohort Statistics (n = 30). 

 
UCSD Health Neighborhood Health 

Total 23 7 

# Men 11 3 

# Women 12 4 

Age (years, mean ± SD) 44.5 ± 13.1 31.6 ± 13.5 
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of a COVID-19 infected patient. Figure 2.1 displays the overall architecture of our remote 

monitoring system, namely eCOVID. The system consists of a symptom tracker mobile app, 

developed using the Touchwork platform, and the Garmin device. The daily questions in the 

symptom tracker app were developed in collaboration with doctors at the UCSD Health COVID-

19 telemedicine clinic and are detailed in Table 2.2. The vitals and lifestyle data collected by the 

Vivosmart4 wearable are detailed in Sec. III (C). Data was collected remotely through Garmin’s 

application programming interface (API) [61].  

Figure 2.1 eCOVID remote monitoring and reporting system architecture. 

Table 2.2 Daily Questions in Symptom Tracker App. 

Questions (Answers) 

1. How do you feel compared to yesterday? (Better, Same, Worse) 

2. Have you had any of the following symptoms? (Headache, Chills, Night sweats, Sore throat, 

Nasal/sinus congestion, Anosmia, Ageusia, Chest pain, Subjective fevers) 

3. How would you rate your fatigue? (0-5) 

4. How would you rate your cough? (0-5) 

5. How would you rate any shortness of breath? (0-5) 

6. Are you able to drink & eat? (Yes, Somewhat, Little, Minimal) 

7. What fever/pain medications have you taken? 

8. What cough/breathing medications have you taken? 
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Figure 2.2 details the distribution of symptoms among patients and describes how long 

each symptom lasted. For fatigue, shortness of breath and cough, we marked the symptom as 

present if the patient reported a severity score of 2 or greater. The bar graph in Figure 2.2 displays 

the number of patients that experienced each symptom. Fatigue, shortness of breath and headache 

were the 3 most common symptoms with 23 (77%), 19 (63%) and 17 (57%) patients reporting 

these symptoms, respectively. Chills, ageusia and subjective fevers were the 3 least common 

symptoms with 8 (27%), 7 (23%) and 5 (17%) patients reporting these symptoms, respectively. 

The box plot in Figure 2.2 details how long each symptom was reported by patients. Only patients 

who reported the symptom are included in this analysis. Based on the median number of days, 

nasal/sinus congestion lingered the longest with a median of 15 days followed by ageusia with a 

median of 11 days. Although ageusia was only reported by 7 patients, the symptom lingered for a 

longer time compared to other symptoms. Subjective fevers, chills and chest pain were reported 

for the shortest period each having a median of 1 day. Patients completed the daily symptom 

tracker an average of 73% of days enrolled in the study. They wore the Garmin device an average 

of 90% of days enrolled in the study. This indicates that patient compliance with wearing the 

device was 17% greater than compliance with answering the daily symptom tracker. This statistic 

demonstrates the higher efficiency of wearable device data for remote monitoring and helps 

outliers 

max 

3rd quartile 

median 

1st quartile 

min 

Figure 2.2 The left plot displays the number of patients who reported at least 1 day of the 

symptom. The right plot displays the distribution of the number of days each symptom was 

reported per patient. Only patients who reported the symptom are included in this distribution. 
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motivate our proposed ML task for patient recovery classification based on automatedly collected 

device data, as opposed to relying on manually entered symptom data. 

2.3.2 Patient Recovery Classification 

The objective of this ML task is to classify whether a patient has recovered from COVID-

19 symptoms based on their device data. This binary classification model can provide healthcare 

workers with automated insights into the recovery status of their infected patients and bypass the 

need for manual daily symptom tracking which relies on patient compliance. To the best of our 

knowledge, there is no clear definition for full recovery from COVID-19. The US CDC 

recommends removal of isolation for COVID-19 infection when a patient’s symptoms have 

significantly improved, they have been afebrile for at least 24 hours in the absence of fever-

reducing medications, and it has been at least 10 days since symptom onset [62]. However, it is 

now understood some patients can suffer from ongoing symptoms from COVID-19 for weeks and 

even months [63]. Unlike symptom severity which can be identified by patients themselves, 

recovery is a gradual, subtle, and implicit process. In this task, we classify whether a patient has 

recovered from the COVID-19 symptoms collected by our symptom tracker app. Most patients 

Figure 2.3 Symptom severity progression for two COVID-19 patients. Patient 2’s symptom 

severities decrease by day 7 and then sharply increase again after day 10. The shortness of breath 

(SOB), fatigue, and cough severities correspond to questions 3-5 of the symptom tracker. 
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experienced a steady decline in symptom severities, however, some patients initially appeared to 

recover and then had symptoms re-appear. Figure 2.3 displays the symptom severity progression 

for the first 30 days for two different COVID-19 patients in terms of shortness of breath (SOB), 

fatigue, and cough. Patient 1 is an example of a patient who experienced a steady recovery. Patient 

2, however, demonstrates a complicated symptom progression. The symptom severities for this 

patient declined by day 7 and then sharply worsened after day 10, especially for SOB and fatigue. 

All three symptoms linger for this patient for over a month.  

A binary label is generated on a daily basis for each patient: recovered (0) or not recovered 

(1). The labelling logic for patient recovery was developed in collaboration with UCSD Health 

doctors and is displayed in Figure 2.4. If symptoms are present besides loss of taste/smell 

(Question 2), label as not recovered (1). We do not consider loss of smell/taste because these 

symptoms have been shown to linger after a patient has recovered from COVID-19 [64]. If no 

symptoms are marked for Question 2 and fatigue/cough/shortness of breath severity is ≤ 2 

(Questions 3-5), label as recovered (0). If fatigue/cough/shortness of breath severity is > 2 but 

there is an improvement over 3 consecutive days in severity scores, label as recovered (0). In order 

to accommodate for complex cases such as Patient 2 in Figure 2.3, in which there may be a day 

labeled as recovered (0) between days labeled as not recovered (1), we apply the following logic. 

If a patient is labeled as recovered (0) for 7 consecutive days, all the following labels are also 

Figure 2.4 Labeling logic for patient recovery classification based on symptom 

tracker questionnaire responses. 
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marked as recovered (0). Otherwise, the recovered (0) days shorter than 7 days are reverted to non-

recovered (1) days. This ensures there are no “recovered” days between “not recovered” days and 

vice versa. The statistics of the symptom tracker labels are shown in Table 2.3. The average 

number of “not recovered” and “recovered” samples per patient is 24 and 21, respectively. The 

median number of “not recovered” and “recovered” samples per patient is 16 for both. This 

difference in mean and median is the result of outlier patients who have a high amount of one 

label. There are 10 patients for which 90% of their labels are either “not recovered” or “recovered”. 

Patients with few “not recovered” labels may be a result of being asymptomatic or a delay in 

joining the study after being infected and testing positive. Patients with few “recovered” labels 

remained symptomatic for the study duration. These labels are used for the patient recovery 

classification task. Note that the recovery classification technique proposed here can be used with 

any other labeling logic developed by other health care providers. 

2.3.3 Device Data and Preprocessing 

The Garmin vivosmart4 includes a heart rate monitor, accelerometer, ambient light sensor, 

and blood oxygen saturation (SpO2) monitor. The device uses these sensors in order to calculate 

various health parameters, including lifestyle and vitals information. The device data is presented 

in Table IV. The Garmin API documentation provides a description of these parameters [61]. 

Lifestyle features include activity (steps, distance, floors, active time, etc.), stress (average stress, 

Table 2.3 Statistics for label count per patient. 

 
Mean Std. Max Min Median 

Not Recovered 24 29 85 0 16 

Recovered 21 26 76 0 16 
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max stress, stress duration, etc.), sleep timing (duration, bed time, up time), and sleep stages (deep, 

light, REM, awake). Stress-related features are derived based on heart rate variability [61]. The 

variable length of time in between each heartbeat is regulated by the body's autonomic nervous 

system. The less variability between beats equals higher stress levels, whereas the increase in 

variability indicates less stress. As mentioned in the introduction, the researchers in [51] found that 

COVID-19 affected the number of daily steps and time asleep for patients in their study. This result 

motivates us to include all lifestyle features when training our patient recovery classification 

model. In addition to lifestyle factors, the vivosmart4 measures vitals data including heart rate and 

SpO2. The device is capable of manual SpO2 spot checks during the day and 4 hours of continuous 

measurement during sleep. Since the symptoms data and patient recovery classification labels are 

generated daily, we aggregate the device data features for each day. The Garmin Health API 

provides summarized activity, sleep, stress, and heart rate features daily. The features in Table 2.4 

marked with a * require additional processing after receiving the data from Garmin. These include 

BedTime, UpTime, MaxSpO2, MinSpO2, and MeanSpO2. The BedTime and UpTime features 

are encoded as the number of seconds before or after midnight (e.g., 11:30 PM bed time is encoded 

as -1800 seconds, 8:00 AM wake time is encoded as 28800 seconds). Since only the continuous 

SpO2 data is available through the Garmin API, we transform the SpO2 time series each day into 

Table 2.4 List of Garmin device features that our approach uses. Features marked with * 

require additional processing after receiving the data from Garmin. Features marked with ^ 

are available in the dataset from [51] which we discuss in Sec. 2.4.2. 

Features 

Steps^, Distance, ActiveTime, ModerateIntensityDuration, VigorousIntensityDuration, 

FloorsClimbed, AverageStressLevel, MaxStressLevel, StressDuration, RestStressDuration, 

ActivityStressDuration, LowStressDuration, MediumStressDuration, HighStressDuration, 

SleepDuration^, BedTime*^, UpTime*^, DeepSleepDuration^, LightSleepDuration^, 

REMSleepDuration^, AwakeDuration^, MinHeartRate^, MaxHeartRate^, MeanHeartRate^, 

RestingHeartRate^, MinSpO2*, MaxSpO2*, MeanSpO2* 
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the MaxSpO2, MinSpO2, and MeanSpO2 features displayed in Table 2.4. Note that a subset of 

the features is marked with ^ in Table 2.4 indicating they are available in the dataset from [51] 

which we discuss in Sec. IV (B). Once the device data is aggregated for each day, we match it with 

the corresponding patient recovery label to form patient-day samples. Each patient-day sample 

consists of the recovery label and the summarized lifestyle and vitals features for one patient’s day 

in the study. Note that symptoms data are not directly used as part of the training data, but rather 

to generate the daily patient recovery labels. 

Figure 2.5 Spearman correlation between lifestyle/vitals 

and symptoms. Notable correlations are circled in yellow. 
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Figure 2.5 displays a heatmap of the correlation between the aggregated daily 

lifestyle/vitals features and symptoms data for our study cohort. We use Spearman correlation 

because the symptom variables are not continuous. Spearman evaluates the monotonic relationship 

between two continuous or ordinal variables [65]. The color of each heatmap square describes the 

magnitude and directionality of the correlation. Darker red squares correspond to a stronger 

positive correlation while darker blue squares correspond to a stronger negative correlation. Table 

2.5 displays the top 10 most significant correlations between symptoms and device features and in 

Figure 2.5 we circle notable correlations in yellow. These include distance and steps vs. fatigue 

and shortness of breath (SOB) severity, and deep and REM sleep vs. cough and fatigue severity. 

The correlations for distance vs. SOB and fatigue are -0.38 and -0.37, respectively. The 

correlations for steps vs. SOB and fatigue are -0.32 and -0.33, respectively. It is sensible that 

distance and steps are negatively correlated with cough and SOB severity. A patient is less likely 

to be active if their symptom severities are higher. Deep and REM sleep duration are positively 

Table 2.5 Top 10 correlations between symptoms and device 

features. 

Symptom Device Feature Spearman Correlation 

Cough DeepSleepDuration 0.47 

Fatigue DeepSleepDuration 0.46 

SOB DeepSleepDuration 0.38 

SOB DistanceInMeters -0.38 

Fatigue DistanceInMeters -0.37 

Fatigue REMSleepDuration -0.34 

Cough TotalSleepDuration 0.33 

Fatigue Steps -0.33 

SOB Steps -0.32 

Nasal Congestion FloorsClimbed -0.32 
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and negatively correlated, respectively, with cough, fatigue and SOB severity. The most significant 

correlation is deep sleep vs. cough, which has a correlation of 0.47. REM sleep is most correlated 

with fatigue, with a correlation of -0.34. According the American Academy of Sleep Medicine, as 

the immune system fights infection, the amount of time spent in REM sleep is decreased while 

deep sleep is increased [66]. This is because it is during deep sleep that many reparative bodily 

processes occur. This validates the directionality of the correlations between REM/deep sleep and 

symptom severities. While the individual correlations between other lifestyle/vitals features and 

symptoms are not as prominent, the heatmap in Figure 2.5 indicates that a combination of these 

features can provide useful information about symptom severity when training the ML model. 

Overall, these correlation observations help motivate our ML approach to patient recovery 

classification based on device data. 

2.3.4 Random Forest and Personalization 

We train multiple ML classifiers in order to determine which is most effective at modelling 

the patient recovery task, as described in Sec. IV (A). As indicated in Table 2.6, the Random Forest 

(RF) model results in the best performance during LOSO CV. In this section, we discuss the 

operation of the RF model and our personalization technique. 

RF is an ensemble model that aggregates a collection of decision trees in order to reduce 

overfitting and the resulting high variance in prediction [67]. To do this, RF utilizes bootstrap 

aggregation (bagging) and feature bagging. RF produces bootstrap datasets that are randomly and 

independently drawn with replacement from the training dataset. Each bootstrap dataset has the 

same size as the original training set and is used to train a decision tree. Bootstrap aggregation in 

RF averages the prediction of all decision trees which greatly reduces the variance compared to a 

single decision tree. Moreover, since individual trees generated in the bagging process are 
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identically distributed, the expected prediction of RF is the same as the expected prediction of 

individual trees. Combining the above facts, RF has a lower variance than individual trees, while 

its bias remains the same [68]. RF further reduces the correlation between its member decision 

trees by introducing feature bagging, which randomly selects a subset of features when 

constructing each tree. In addition, RF is known to perform well even when using redundant or 

irrelevant features. Since we utilize multiple lifestyle and vitals features for model training, it is 

possible that some features do not provide useful information. Since RF is more robust to noisy 

features as compared to the other models [69], redundant or irrelevant features will not greatly 

impact performance. 

Multiple studies that focus on ML for health applications have shown that model 

personalization is a key step in improving performance due to the physiological differences 

between patients [70-73]. In this study, we observe that vitals and lifestyle factors vary among 

patients and propose a RF-based personalization technique to tune the model to each patient. Our 

technique involves including the first k days of labeled data from the test patient in the training set. 

In the traditional RF bootstrapping process, each training sample has uniform weight, which means 

each data sample is resampled with the same probability. To emphasize the test patient’s 

calibration samples during model training, we assign a greater weight to these k samples using the 

Weighted Bootstrapping algorithm [74]. In order to implement this algorithm, a vector of sample 

weights 𝑾 = 𝒘𝟏, 𝒘𝟐, … , 𝒘𝑵 is maintained where N is the total number of training samples. 

Weights 𝒘𝟏, … , 𝒘𝒌 correspond to the k personalization samples from the test patient and are given 

larger values. Weights 𝒘𝒌+𝟏, … , 𝒘𝑵 correspond to the data samples from the remaining patients 

used for training and are assigned lower values. The operation of the Weighted Bootstrapping 

algorithm is as follows [74]: First, a new bootstrap dataset for one decision tree is initialized. Then, 
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the weights in 𝑾 are mapped into the interval [𝟎, ∑ 𝒘𝒋,𝑵
𝒋=𝟏 ] with subintervals 𝑰𝟏, 𝑰𝟐, … 𝑰𝑵. The 

length of each subinterval is proportional to the value of its weight. Next, each data sample is 

drawn using subintervals 𝑰𝟏, 𝑰𝟐, … 𝑰𝑵 and the uniform distribution function. The process repeats 

N times such that the size of all bootstrap datasets equals that of the original dataset. Consequently, 

the samples with higher weights are more likely to appear in each bootstrap dataset. In Sec. IV 

(B), we compare the performance for different values of k and different values of 𝒘𝟏, … , 𝒘𝒌. 

Figure 2.6 displays a block diagram of our proposed RF personalization technique. After 

preprocessing each patient’s data, Hybrid-CV is carried out in which the training and test sets are 

split on a per patient basis and the first k days of test patient data are added to the training set as 

personalization samples, as shown in Figure 2.6. These k samples are assigned greater weights, 

which are bolded in the figure, during weighted bootstrapping. After training, the model is 

evaluated on the remaining, future data samples of the test patient. 

Figure 2.6 Block diagram of our proposed RF personalization approach. After data 

preprocessing, the first k samples from the test patient are included in the training set during 

Hybrid-CV. These samples are assigned larger weights, which are bolded in the figure, during 

weighted bootstrap aggregation. 
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2.4 Results and Discussion 

In this section, we describe the experiment settings and present patient recovery 

classification results. We discuss the effects of our RF model personalization technique on 

performance and carry out feature analysis using Shapley Values in order to interpret what the 

model has learned. Finally, we provide a discussion on the challenges encountered during this 

study. 

2.4.1 Experiment Setting 

We implement and evaluate our machine learning models using the Scikit-learn library in 

the python environment on an Intel i5 3.2GHz quad-core and 16GB RAM computer. Accuracy, 

sensitivity, specificity, and F1-score are calculated and used as our evaluation metrics for the 

patient recovery classification task. For this task, a negative and positive sample correspond to a 

“recovered” and “not recovered” patient-day sample, respectively. Accuracy returns an overall 

measure of how much the model is correctly predicting on the entire set of test data. Sensitivity 

and specificity measure the true positive and true negative rate, respectively. F1 score is calculated 

as the harmonic mean of precision and recall (sensitivity) and is used to find the best trade-off 

between the two quantities [75]. As a result, we use F1 score for deciding the top performing 

model. 

We carry out LOSO CV to mirror the clinically relevant use-case scenario of diagnosis for 

newly infected subjects [82]. LOSO CV separates the data into train and test sets on a per patient 

basis in order to simulate the practical application. This data split ensures that data from the same 

patient does not appear in both the training and testing sets. We use LOSO CV to compare the 

performance of different ML models. We then carry out Hybrid-CV, in which a specified number 

of samples from the test patient are included in the training set. These personalization samples are 
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not included in the test set to ensure there is no overlap between train and test sets at the sample 

level. We compare how performance is affected by applying varying levels of personalization 

using our RF-based personalization technique described in Sec. III (D). Since the number of 

samples for each patient is different based on their participation in the study, the training and 

testing sets will vary in size for both CV experiments. Instead of averaging the results over each 

data split, we save the model predictions for each data split and calculate metrics over all 

predictions. This ensures that each patient-day contributes equal weight to the final result. 

In the LOSO CV experiment, we compare RF with the following ML models: logistic 

regression (LR) [76], k-nearest neighbors (KNN) [77], support vector machine (SVM) [78], 

artificial neural network (ANN) [79], and long short-term memory (LSTM) neural network [80]. 

Model hyperparameter tuning is performed with each training set using a randomized search over 

a predefined hyperparameter grid for each model. Since LSTM models take sequential data as 

input, we organize the lifestyle and vitals features into sequential data samples using a window 

length of 7 days and a step size of 1 day. A step size of 1 day is used to extract the maximum 

number of samples. As a result, each input sample has a dimension of (7, Nfeatures) where 

Nfeatures represents the number of lifestyle and vitals features. The patient recovery label for the 

last day of each window is assigned to each input sample. We train the LSTM as a many-to-one 

model, as opposed to a many-to-many model, since the application of this method is only 

concerned with estimating whether the patient is recovered or not for the current day. In addition, 

training the LSTM to estimate one label at a time matches the process for the other ML models, 

resulting in a fairer comparison. We carry out two LSTM experiments using 16 and 32 hidden 

units for the LSTM layer followed by a fully connected layer with 1 output unit. For these 

experiments, we train the models using the Adam optimizer [81] and a dropout rate of 50% to 
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reduce overfitting. For the LSTM layers, we use a sigmoid activation function for the input, forget 

and output gates, and a hyperbolic tangent (tanh) activation function for the cell state and hidden 

state. The fully connected layers use a sigmoid activation function and we use binary cross entropy 

loss as the loss function. We experimented with different numbers of training epochs and batch 

sizes and found that 25 epochs and a batch size of 32 resulted in the best performance. 

2.4.2 Patient Recovery Classification Results 

Accuracy, sensitivity, specificity, and F1-score for each ML model during LOSO CV are 

presented in Table 2.6. The LSTM-32 model achieves the highest accuracy and sensitivity, both 

equal to 0.64, while the RF model achieves the highest specificity and F1 score equal to 0.78 and 

0.66, respectively. As described in the experiment setting, we use F1 score for deciding the top 

performing model since this metric calculates the tradeoff between precision and sensitivity. Since 

RF achieves the highest F1 score, we conclude that RF is the best performing model for patient 

recovery classification. We attribute the RF’s top performance to its ability to reduce the variance 

in prediction via the bagging process and its robustness to redundant or irrelevant features. The 

LSTM-32 model is the second-best performing model, indicating that meaningful temporal 

information exists in the data for estimating recovery from COVID-19. Since RF is the top 

Table 2.6 Comparison of ML model performance for LOSO CV. 

Model Acc Sens Spec F1 

LR 0.60 0.61 0.52 0.61 

ANN 0.59 0.62 0.62 0.63 

SVM 0.54 0.61 0.59 0.62 

KNN 0.55 0.51 0.68 0.60 

LSTM-16 0.63 0.56 0.71 0.61 

LSTM-32 0.64 0.64 0.60 0.64 

RF 0.59 0.52 0.78 0.66 

 



53 

performer, we use this model in the next experiment to understand how the number of 

personalization samples impacts RF performance. 

Next, we discuss the results of the Hybrid-CV experiment. As mentioned in the experiment 

settings, LOSO CV separates the data into train and test sets on a per patient basis. Since 

physiology and lifestyle differ between patients, we apply varying levels of personalization during 

the Hybrid-CV experiment. We implement our RF-based personalization technique by including 

the first 1-5 days of test patient data in the training set. These personalization samples are assigned 

a larger weight so that they are sampled more frequently during the bootstrap aggregation step. 

Table 2.7 displays the results for different amounts of personalization. Evidently, the classification 

results are worse when no personalization is applied. The accuracy, sensitivity, specificity, and F1-

score are 0.59, 0.52, 0.78, and 0.66, respectively, when no personalization is applied. As 

personalization samples are included in the training set, accuracy, sensitivity, and F1-score 

increase, while specificity decreases. When using 5 personalization samples, the accuracy, 

sensitivity, specificity, and F1-score are 0.82, 0.89, 0.63, and 0.88, respectively. Since the 

personalization samples for each patient correspond to their first 1-5 days in the study, these 

samples are primarily labeled 1 or “not recovered”. This means that as more personalization 

samples are included in the training set, the model can increasingly learn the infected baseline of 

Table 2.7 Hybrid-CV results using different levels of personalization. 

Personalization Samples Acc Sens Spec F1 

0 0.59 0.52 0.78 0.66 

1 0.63 0.59 0.75 0.70 

2 0.67 0.66 0.71 0.75 

3 0.72 0.73 0.68 0.79 

4 0.80 0.86 0.64 0.86 

5 0.82 0.89 0.63 0.88 
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the patient based on their vitals and lifestyle data. This causes the sensitivity to increase since the 

model will be able to increasingly correctly classify a patient who has not recovered. This 

corresponds to increasing true positives (classifying a patient as not recovered when they are 

indeed not recovered) while minimizing false negatives (classifying a patient as recovered when 

they are not recovered). As the sensitivity increases, the specificity decreases. Since the model is 

increasingly tuned to classify a patient as not recovered, this will result in more false positives and 

a lower specificity. For this ML task, false positives are more acceptable than false negatives. 

Classifying a patient as not recovered when they are recovered is less harmful than classifying a 

patient as recovered when they are not recovered. Overall, adding personalization samples 

increases the model performance. When applying this personalization technique to a new patient, 

the first few days will involve data collection without any classifications from the ML model. After 

this initial data collection, the personalized model will provide estimations with improved 

accuracy, sensitivity, and F1-score. The results demonstrate the potential for ML-assisted remote 

patient monitoring to supplement traditional manual monitoring tools, like daily manual symptom 

tracking. 

The results presented in Table 2.7 are generated by setting the bootstrap aggregation 

weights for the personalization samples to 10. This means these samples are 10 times more likely 

to be sampled during the RF weighted bagging process. In Table 2.8, we compare how 

Table 2.8 Performance comparison when applying different RF 

bootstrap aggregation weights to 5 personalization samples. 

Bootstrap Aggregation 

Weights 

Acc Sens Spec F1 

1 0.70 0.69 0.73 0.77 

10 0.82 0.89 0.63 0.88 

100 0.81 0.88 0.62 0.87 
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classification performance is affected by applying different bagging weights to 5 personalization 

samples. We set the weights to 1, 10 and 100. Using a bagging weight of 1 means the 

personalization samples have the same probability of being sampled as the training data from other 

patients. Evidently, a bagging weight of 1 produces worse performance with an accuracy, 

sensitivity, specificity, and F1-score of 0.7, 0.69, 0.73, and 0.77, respectively. In this case, the 

personalization samples are not emphasized and the model is not effectively calibrated. Increasing 

the bagging weight from 10 to 100 does not improve model performance. This indicates that at a 

certain weight, the personalization samples are sampled frequently enough during bagging to 

effectively calibrate the model. Further increasing the bagging weight does not provide additional 

utility in model personalization. 

In order to extend the evaluation of our proposed method, we applied our approach to the 

dataset collected in [51]. This dataset includes sleep, heart rate and steps data collected from a 

wearable device, and the date of first symptoms and date of recovery which are manually recorded 

by each patient. Since this dataset does not include SpO2, stress or activity (besides steps) data, 

the number of features is significantly less than our own dataset (12 vs. 28). In Table 2.4, features 

marked with ^ are available in the dataset in [51]. We labelled all days between the start of 

symptoms and recovery dates as “not recovered” and all days after the recovery date as 

“recovered.” We then combined these labels with the corresponding device features to create the 

dataset in the same manner as our experiment setting. After these data processing steps, 15 patients 

Table 2.9 Evaluation of proposed method on open dataset from [51]. 

 
Acc Sens Spec F1 

W/O Personalization 0.49 0.33 0.73 0.44 

W/ Personalization 

(5 samples) 

0.61 0.55 0.67 0.61 
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had sufficient data to be included in this experiment. Table 2.9 displays the results when applying 

our method to this dataset. We train a Random Forest model with and without personalization and 

calculate the accuracy, sensitivity, specificity, and F1-score. We use 5 samples when applying our 

personalization technique and observe that the performance significantly improves compared to 

the non-personalized results. With personalization, our approach achieves an accuracy, sensitivity, 

specificity, and F1-score of 0.61, 0.55, 0.67, and 0.61, respectively.  Evidently, the performance 

metrics are not as good for this dataset. This may be due to the limited feature set and inaccurate 

recovery dates recorded by patients. We observe similar patterns in the results compared with our 

own dataset which include that there is a performance enhancement when applying our 

personalization technique. Overall, these consistent observations between our dataset and the 

dataset in [51] indicate that our proposed approach is not only applicable to our dataset, but can 

potentially be applied to different datasets collected in clinical practice. 

Figure 2.7 Summary of Shapley top features where each point corresponds to a 

data sample. The x-axis represents a feature’s impact on model output. Positive 

SHAP values push the model to output 1 or “not recovered”. 
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2.4.3 Model Interpretability via Shapley Value Analysis 

Next, we utilize Shapley Values [83, 84] in order to determine which lifestyle and vitals 

features have the most significant effect on model classification for our dataset. Shapley Value 

analysis is a model-agnostic interpretation method derived from game theory. Given a set of 

feature values and a trained machine learning model, the estimated Shapley value indicates how 

each feature contributes to the model’s classification. We use the tree SHAP (SHapley Additive 

exPlanations) framework [85, 86], which is optimized for tree-based models, to interpret the output 

of the RF model for patient recovery classification. Figure 2.7 displays the Shapley results where 

the features are ranked from the top to bottom based on their impact on the model’s output. Each 

point on the plot corresponds to an individual data sample and represents the contribution from the 

feature listed on the Y-axis to the RF’s classification. The placement on the X-axis represents the 

amount of positive/negative contribution to the classification. Positive contribution corresponds to 

pushing the model to estimate that a patient is not recovered. The color of each point represents 

the actual value of the feature (red is high while blue is low). The top two features based on Shapley 

analysis include deep sleep duration and resting heart rate. Higher values of deep sleep duration 

(colored in red) contribute to a positive, or not recovered, classification. This observation aligns 

with the correlation analysis presented in Sec. 2.3.3. As mentioned earlier, deep sleep increases 

when a patient is sick since this is when many reparative bodily processes occur. Increased resting 

heart rate also contributes to a positive classification by the RF model. This relationship makes 

sense since resting heart rate will decrease as a patient recovers. Additional observations include 

that a lower number of floors climbed contributes to a positive classification while an increased 

mean SpO2 contributes to a negative, or recovered, classification. Both relationships are sensible, 
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as a patient who has not recovered will be less active and a patient who has recovered will have a 

higher SpO2. 

In addition to analyzing the impact of individual features, we grouped the features into 5 

categories (Activity, Sleep, Stress, Heart Rate and SpO2) and investigated their impact on model 

output. A SHAP score for each category was calculated as the average of the absolute SHAP values 

for the features in that category. Figure 2.8 displays the ranking of feature categories based on their 

categorical SHAP score. We also examined whether, on average, an increase in the feature values 

for each category pushed the model to estimate “recovered” or “not recovered.” In Figure 2.8, a 

red colored bar indicates that an increase in the category’s feature values pushed the model to 

output “not recovered.” A green colored bar indicates that an increase in the category’s feature 

values pushed the model to output “recovered.” Evidently, the sleep category had the most 

significant impact on model output. An increase in feature values in the sleep and heart rate 

categories pushed the model to estimate “not recovered” (red bars) while an increase in feature 

values in the stress, activity and SpO2 categories pushed the model to estimate “recovered” (green 

bars). Overall, the individual feature and feature category Shapley analysis demonstrates that our 

Figure 2.8 Impact of feature categories on model output. Features are grouped into 

5 categories and a categorical SHAP score is calculated. Red or green bars indicate 

that an increase in the category’s feature values pushed the model to output “not 

recovered” or “recovered,” respectively. 
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model can learn clinically relevant relationships between device data and the status of patients. 

The interpretability of a ML model is necessary for humans to understand what the model has 

learned, especially in medical applications. 

2.4.4 Limitations and Research Challenges Encountered 

In this section, we discuss limitations to our proposed approach and challenges faced while 

implementing this study. One limitation in our approach is that patients were only enrolled and 

provided devices for data collection after testing positive for COVID-19. It is likely that some 

patients started experiencing symptoms before going for a COVID-19 test. This meant we were 

not able to collect symptoms and wearable data during the initial days of the infection. In order to 

ensure that data can be collected before and during the onset of COVID-19 infection, participation 

could be made available to a larger number of patients that already own a wearable device. After 

testing positive for COVID-19, a patient could immediately enroll and begin sharing both past and 

current data. Another limitation to our approach is that the RF model does not process data 

sequentially while the progress of COVID-19 is sequential. In this work, we experimented with 

LSTM, a popular temporal model, however, found its performance to be worse than RF. Training 

an LSTM requires significantly more data since neural networks are highly prone to overfitting 

when the underlying dataset size is small [87, 88]. In order to fully utilize temporal relationships 

in the data, we plan to further investigate sequence modeling with additional data in our future 

work. This will include implementing many-to-many sequence models using different time 

windows to learn temporal progression along with the label. In addition, a larger dataset can enable 

the use of additional features such as patient demographic information. The model may learn 

relationships between COVID-19 recovery and demographic data such as age, gender, and 

ethnicity. 
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Concern over privacy was an issue encountered during recruitment for this study. As 

mentioned in Sec. III (A), we recruited patients from both the UCSD Health and Neighborhood 

Healthcare (NH) COVID-19 telemedicine clinics. NH is a community clinic that primarily 

provides care to underserved populations. In order to increase accessibility to our study, we 

developed a Spanish version of our symptom tracker app with assistance from NH. Overall, we 

experienced more difficulty recruiting from NH. One reoccurring reason why NH patients did not 

want to partake in our study included a concern over privacy. Certain patients expressed discomfort 

over wearing the device 24/7 due to concerns of being tracked. Our recruitment personnel would 

highlight that the device does not collect any location data, however, certain patients still declined 

participation. The above challenge encountered during our study showed that privacy concerns 

and lack of trust in wearables may further limit access and use of digital technologies by 

underserved populations, contributing to an increased digital divide in healthcare. As healthcare 

begins to rely more on digital technologies, these concerns must be addressed in order to ensure 

equal access to high quality healthcare [89]. 

2.5 Conclusion 

In this chapter, we propose an intelligent remote monitoring platform, namely eCOVID, 

for enhanced COVID-19 ambulatory care. Based on data collected from our study with the UCSD 

Health and Neighborhood Healthcare COVID-19 telemedicine clinics in San Diego County, we 

demonstrate correlations between automatically collected wearable data and manually entered 

symptom data. We propose a novel ML approach to estimate whether a patient has recovered from 

COVID-19 symptoms based on the automatically collected wearable data. Our results demonstrate 

that ML-assisted remote monitoring using wearable data can supplement or be used in place of 

manual daily symptom tracking which relies on patient compliance. 
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By developing and demonstrating the ability to track patient recovery status remotely, our 

approach can enable more optimal care of COVID-19 ambulatory patients at scale.  Care teams 

will be able to track patient recovery efficiently through automatically generated and updated 

dashboards instead of the current practice of manual symptom tracking and phone calls, the latter 

becoming ineffective when there is a surge in cases. This shift can lead to significant improvement 

in the efficiency and scalability of ambulatory patient care, while at the same time enabling savings 

in human and equipment resources. Moreover, the approach can be used for providing scalable 

and efficient care for future pandemic and epidemic challenges. 

In the next chapter, we present the results of a single-arm nonrandomized trial which 

assessed the effectiveness of a fully digital, autonomous, and ML–based lifestyle coaching 

program on achieving BP control among adults with hypertension. The study demonstrates that 

the ML–based lifestyle intervention helped hypertension patients achieve meaningful BP 

improvements and high engagement, while substantially reducing clinician workloads. 

Chapter 2, in part, is from the material as it appears in the IEEE Journal of Biomedical and 

Health Informatics, 2023, Leitner, Jared; Alexander, Behnke; Chiang, Po-Han; Ritter, Michele; 

Millen, Marlene; Dey, Sujit. The dissertation author was the primary investigator and author of 

this paper. 
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Chapter 3 The Effect of an AI-Based, Autonomous, Digital Health Intervention Using Precise 

Lifestyle Guidance on Blood Pressure in Adults with Hypertension: Single-Arm Nonrandomized 

Trial 

 

3.1 Introduction 

3.1.1 Background 

High blood pressure (BP), or hypertension, is one of the most prevalent chronic diseases 

in the world [90]. Hypertension affects 48% (approximately 120 million) of adults in the United 

States, and 78% (approximately 93 million) of the cases are uncontrolled (ie, BP≥130/80 mm Hg) 

[92]. Hypertension is a major risk factor for stroke and acute myocardial infarction [93] and 

remains a large public health challenge with an extra cost of US $2000 per year per hypertension 

patient, resulting in an additional US $131 billion in annual health care costs in the United States 

[94]. The American College of Cardiology and American Heart Association’s clinical practice 

guidelines define hypertension as systolic BP (SBP)≥130 mm Hg or diastolic BP (DBP)≥80 mm 

Hg, consistently over time [91]. A large-scale analysis of 48 randomized clinical trials showed that 

a 5 mm Hg reduction in SBP lowered the risk of major cardiovascular events by 10% [95], 

highlighting the importance of developing new strategies to achieve hypertension control at scale. 

Hypertension management typically begins with home monitoring of BP to gain a more 

accurate estimate of a patient’s BP within their usual, daily routine [96]. However, self-monitoring 

without additional support is not associated with lower BP or better control [97-99]. Lifestyle 

management in conjunction with self-monitoring is effective in controlling BP as lifestyle factors 

(eg, activity, sleep, diet, and stress) have a substantial impact on BP [100-103]. Even for patients 

taking antihypertensive medication, lifestyle management can enhance medication efficacy, 

leading to better BP control [104]. Traditionally, lifestyle management involves patients with 

hypertension visiting their primary care physician (PCP) and receiving guidance on lifestyle 
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modifications that are generally known to improve BP. However, due to time constraints related 

to workload, physicians are often unable to optimally counsel patients on lifestyle modifications 

or personalize their guidance [105,106]. Due to insufficient guidance and the lack of feedback in 

between clinic visits, patients may implement some of these changes; however, patient 

engagement and compliance are generally suboptimal for achieving control. To improve patient 

engagement, new digital health technologies and remote patient monitoring programs have been 

developed for hypertension care [107-110]. These programs typically provide patients with remote 

monitoring devices (eg, BP cuffs and activity trackers) and match patients with health coaches. BP 

and lifestyle data collected from remote monitoring devices allow health coaches to view trends 

and make personalized recommendations to patients. However, these approaches do not consider 

the individual impact of lifestyle factors on BP, which may vary across individuals due to 

physiological differences. Furthermore, the reliance on health coaches is highly time and resource 

intensive, resulting in a high operating cost, which significantly limits scalability [111]. 

3.1.2 Objectives 

To address the challenges of poor patient engagement due to generic, insufficient guidance 

and limited scalability of care due to human coaching models, we propose an artificial intelligence 

(AI)–driven, autonomous, precise lifestyle coaching program for patients with hypertension. The 

intervention platform consists of a monitoring system that ingests lifestyle and BP data and builds 

personalized machine learning (ML) models to determine the individual impact of different 

lifestyle factors on BP. On the basis of the lifestyle impact analysis, the system autonomously 

provides precise lifestyle recommendations delivered to a patient’s smartphone that enable patients 

to focus on specific aspects of their lifestyle that have the greatest associations with their BP. While 

the platform autonomously engages patients, it is clinician supervised and notifies clinicians of 
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critical BP readings. In our previous study [112], we enrolled 38 participants who were 

prehypertensive or had stage 1 hypertension (SBP between 120 and 139 mm Hg or DBP between 

80 and 89 mm Hg) and demonstrated that 75% of the participants receiving the intervention were 

able to achieve a controlled BP (<130/80 mm Hg) after 16 weeks of engagement. However, the 

limitations of the previous study [112] are as follows: (1) the participants were not provided with 

an interactive mobile app for the delivery of our precise lifestyle recommendations, (2) the small 

number of participants did not enable rigorous evaluation, and (3) the study did not consider 

patients with stage 2 hypertension who can potentially benefit more from lifestyle management. 

This study aims to evaluate the effectiveness of our AI-based, precise lifestyle guidance 

coaching program in helping patients with stage 2 hypertension achieve BP control and 

demonstrate the platform’s scalability. The primary study objectives are to evaluate the change in 

BP and the percentage change of participants in different BP categories (controlled, stage 1 

hypertension, and stage 2 hypertension) over time (baseline, 12 weeks, and 24 weeks). Secondary 

objectives include assessing participant engagement as measured by consistency of data collection 

and interactions with our mobile app and determining the number of manual clinician 

interventions, as defined by the escalation rules set for the study, to assess the potential scalability 

of our approach. 

3.2 Methods 

3.2.1 Recruitment 

This study was performed in collaboration with the University of California, San Diego 

Health’s Population Health Services Organization (PHSO). Participants were enrolled on a rolling 

basis from November 2021 to February 2023. The inclusion criteria required participants to have 

stage 2 hypertension (SBP≥140 mm Hg or DBP≥90 mm Hg per the American College of 
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Cardiology and American Heart Association’s 2017 guidelines [91]) based on their most recent 

clinical measurements and to be fully ambulatory (ie, not requiring an assistive device such as a 

cane, wheelchair, or walker). In addition, participants were required to be aged ≥18 years at 

enrollment, English speaking, and own an Android or iPhone (Apple Inc) smartphone. The trial 

was designed in a fully remote manner so that participants could participate entirely from home. 

The PHSO care team aggregated a list of patients who met the inclusion criteria and sent a 

recruitment flyer via bulk message using the Epic MyChart (Epic Systems Corporation) 

messenger. The flyer introduced the study and instructed patients to email the study team if they 

were interested in participating. After contacting the study team, eligible patients were asked to 

complete an electronic informed consent form. Patients who consented were sent a Fitbit Inspire 

2 (Fitbit Inc) and a Bluetooth-enabled Omron Silver (Omron Corporation) BP monitor to collect 

their lifestyle and BP data for up to 6 months. Each shipment included instructions for self-

onboarding, which described the steps to set up and connect the devices to the patient’s mobile 

phone. Patients who already owned a Fitbit or Apple Watch (Apple Inc) had the option to use their 

device instead of receiving one from the study team. Patients who required an extra-large cuff were 

provided an iHealth Ease (iHealth Labs Inc) BP monitor instead of an Omron Silver. 

3.2.2 Ethical Considerations 

This study (protocol #181405) was reviewed and approved by UC San Diego’s Human Research 

Protections Program, which operates Institutional Review Boards. All participants in this study 

provided informed consent, which included the collection of their data and the provision of study 

results derived from their individual data. The confidentiality and privacy of participants were 

ensured by assigning a deidentified code to each patient. While participants were not offered 
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monetary compensation, those without a BP monitor or wearable device were provided with these 

devices. The study was registered at ClinicalTrials.gov (NCT06337734). 

3.2.3 Study Design and Data Collection 

We collected data from each participant using a Fitbit or Apple Watch, Omron or iHealth 

wireless BP monitor, and the study’s questionnaire mobile app. Participants were asked to wear 

their Fitbit or Apple Watch as often as possible, including during sleep, and take 1 to 2 BP 

measurements per day, in the morning (8 AM-10 AM) or evening (7 PM-9 PM). We provided 

participants with instructions on how to take accurate resting BP readings [113] and asked that 

they take 3 consecutive readings during each morning and evening session. This resulted in 1 to 2 

sets of 3 measurements per day, and the average of the 3 measurements was used as the final value 

for each session. Participants synced their BP data to the Omron or iHealth mobile app and their 

Fitbit data to the Fitbit mobile app; subsequently, the data were automatically uploaded to the 

Omron, iHealth, or Fitbit clouds. These data were retrieved remotely through the application 

programming interfaces (APIs) provided by Omron, iHealth, and Fitbit. Data from the Apple 

Watch were synced with the study mobile appl and uploaded via a custom API to our server. In 

addition, participants completed a daily questionnaire using our study mobile app that asked about 

their stress, mood, and dietary choices over the past 24 hours. These questions were developed in 

collaboration with physicians on our team. The diet questions are tailored to measure information 

relevant to hypertension, including alcohol, red meat, fruits or vegetables, and salt consumption 

[118]. The details of the questionnaire are described in our previous study [112]. In addition, we 

asked participants to complete a study experience survey that asked them to rate the difficulty level 

of completing the study tasks, how useful they found the recommendations, and their experience 
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using the app. These responses were collected through the mobile app and used to assess 

participant experience. Figure 3.1 describes the system architecture and data transmission. 

Wrist-worn activity and sleep trackers have been widely used in health-related research 

studies [119], and devices such as Fitbits and Apple Watches have been shown to accurately 

measure parameters such as step count, heart rate, and sleep duration [120,121]. Fitbits and Apple 

Watches include an optical heart rate monitor and a 3-axis accelerometer. The devices use these 

sensors to calculate various health parameters, including lifestyle and vitals measurements. 

Lifestyle factors include activity (eg, steps, walking and running speed, and active time), sleep 

timing (eg, sleep duration, bedtime, and uptime), and sleep stages (ie, deep, light, rapid eye 

movement, and awake). These lifestyle factors are used as part of the intervention, in which we 

use ML techniques to determine which of the factors have the greatest association with a 

participant’s BP and base our guidance on this analysis. 

Figure 3.1 Architecture of data transmission. Participant data were collected from Bluetooth-

enabled blood pressure (BP) monitors, wearable devices, and a mobile app–based questionnaire. 

Data were uploaded through the respective application programming interfaces (APIs) to our app 

server, where the individualized analysis was carried out before delivering recommendations. 
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3.2.4 Description of the Intervention 

The intervention is intended to support participants’ daily efforts to improve BP and overall 

cardiometabolic function by facilitating behavioral changes that target physical activity, sleep 

hygiene, stress management, and dietary choices most relevant to their BP. The intervention 

platform uses remotely collected lifestyle and BP data to provide personalized, precise, and 

proactive lifestyle coaching using AI to participants with hypertension. The system integrates the 

data described in the previous section into a combined data set for each participant. Each 

participant’s personal data set consists of lifestyle features (eg, step count, sleep duration, and salt 

consumption) that are time aligned with their BP measurements, which serve as the labels for 

training the ML model. Therefore, each participant’s data set is used to train a personal ML model 

that can predict BP using the participant’s lifestyle data as input. With this trained model, the 

intervention system can determine how different aspects of lifestyle affect the participant’s BP. 

On the basis of the model’s determination of the lifestyle factors’ impact, the system generates 

precise lifestyle recommendations. Each lifestyle factor is mapped to a corresponding lifestyle 

recommendation that was designed with physicians on our team to be consistent with evidence-

based clinical guidelines. Furthermore, prior studies have demonstrated that these 

recommendations, such as increasing step count [123,124], improving sleep quality [125,126], 

managing stress [127], and reducing salt consumption [128,129], can result in BP reduction. The 

objective of these precise lifestyle recommendations is to encourage participants to concentrate on 

1 aspect of their lifestyle at a time, focusing on the factor that has the greatest association with 

their BP based on the underlying relationship between their BP and lifestyle factors. We describe 

the AI-based intervention platform in more detail in our previous study [112]. 
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Participants received weekly lifestyle recommendations based on their data and 

personalized analytics, which continuously evolved over time. These recommendations were 

delivered to participants via programmable text messages using the Twilio API (Twilio Inc) 

service [114] and were displayed in the study mobile app. Each text message included a summary 

of the participant’s BP progression for the current week in addition to the lifestyle 

recommendation. Figure 3.2 displays examples of these weekly lifestyle recommendations 

provided in the study app. In addition, patients completed a midweek check-in on the app, which 

asked whether they could follow each recommendation (yes or no) and to rate the recommendation 

difficulty on a scale from 1 to 5. 

The system includes a safety mechanism to involve clinician intervention in the case of 

critically high or low BP readings. Critically high BP was defined as SBP>180 mm Hg or 

DBP>110 mm Hg, and critically low BP was defined as SBP<90 mm Hg or DBP<60 mm Hg [91]. 

Figure 3.2 Lifestyle recommendations delivered in the mobile app. Participants received weekly 

lifestyle recommendations based on their data and personalized analytics. The recommendations 

encouraged participants to prioritize a single lifestyle modification at a time, focusing on the 

factor that had the greatest impact on their blood pressure (BP). 
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After a critical reading, participants received a text message asking them to remeasure their BP 

and prompting them to seek assistance or call their medical provider if they were experiencing 

certain symptoms (eg, chest pain and severe headache). After 2 critical readings in a row, an 

escalation notification was sent to the PHSO care team via email for manual outreach. To avoid 

notification fatigue, we limited the number of critically high or low BP notifications sent to the 

care team to 1 notification per week for a patient. 

3.2.5 Primary Outcomes: BP Change and Population Hypertension Control 

The first primary outcome was the change in SBP and DBP from baseline to 12 weeks and 

24 weeks. A participant’s baseline BP was calculated as the average of their readings during the 

first week of the study. The 12th- and 24th-week BPs were a participant’s average reading during 

that week of the study plus 1 week and minus 1 week. We included BP measurements from 1 week 

before and after to get a more representative result. For example, the 12-week value was the 

average of all readings from weeks 11 to 13. As previously mentioned, a 5 mm Hg reduction in 

SBP can lower the risk of major cardiovascular events by 10% [95]. This motivated us to determine 

the percentage of participants who experienced >5 mm Hg reduction in SBP at 12 weeks and 24 

weeks. To understand the effect on participants with different baseline BPs, we carried out 

subgroup analysis in which participants were sorted into 3 groups based on their baseline BP: (1) 

controlled (SBP<130 mm Hg and DBP<80 mm Hg), (2) stage 1 hypertension (SBP 130-139 mm 

Hg or DBP 80-89 mm Hg), and (3) stage 2 hypertension (SBP≥140 mm Hg or DBP≥90 mm Hg). 

Another primary outcome was the percentage change of participants in different BP 

categories from baseline to 12 weeks and 24 weeks. To assess this, we calculated the percentage 

of participants who were in the controlled, stage 1 hypertension, and stage 2 hypertension 
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categories at baseline, 12 weeks, and 24 weeks. Using these percentages, we determined the 

percentage change from baseline to 12 weeks and 24 weeks. 

3.2.6 Secondary Outcomes: Participant Engagement and Clinician Intervention 

A secondary outcome measured participant engagement as determined by the consistency 

of data collection and interactions with our mobile app. The 3 main tasks participants were asked 

to complete included measuring BP, syncing their wearable device, and answering the mobile app 

questionnaire. As a result, we used these 3 tasks as our measure of engagement and calculated the 

percentage of participants completing each of these tasks each week. A participant was marked as 

engaged for a given week if they provided a BP reading, synced their wearable device data, and 

answered the questionnaire at least once during the week. 

Another secondary outcome was the number of times participants were escalated to the 

PHSO care team for manual follow-up. The objective of this outcome was to determine the care 

team’s time and resource requirements to implement the intervention and assess the scalability of 

our approach. The condition for care team intervention was 2 critical BP readings in a row, as 

previously described. 

3.2.7 Statistical Analysis 

Descriptive statistics (eg, mean, SD, and percentage) were calculated to describe the 

demographic and baseline clinical characteristics of the enrolled study population. We compared 

the characteristics between subgroups based on their baseline BP classification. Change in SBP 

and DBP from baseline to 12 weeks and 24 weeks was analyzed using a 2-tailed paired Student t 

test with the level of statistical significance set to P<.05. Furthermore, 95% CIs were calculated 

for these changes. Baseline and follow-up BP data were normally distributed. The McNemar 

nonparametric test was used to examine the change in the proportion of participants in the 
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controlled, stage 1, and stage 2 BP range from baseline to 12 weeks and 24 weeks. The McNemar 

test is used to determine if there is a statistically significant difference in proportions between 

paired data. We conducted all statistical analyses with Python 3.9 (Python Software Foundation) 

using the NumPy, Pandas, and SciPy libraries. 

3.3 Results 

3.3.1 Feasibility Outcomes: Recruitment, Adherence, and Participant Experience 

Participants were enrolled on a rolling basis from November 2021 to February 2023. Figure 

3.3 details the recruitment numbers and participant flow through the study. A total of 274 patients 

responded to the Epic MyChart recruitment message by contacting our team and expressing 

interest. In total, 164 patients consented to join the study out of which 141 (86%) were onboarded 

and started collecting data. There was a 9.2% drop rate from the start of the study to 12 weeks and 

Figure 3.3 Flow of participants through the study. Adults with hypertension were 

enrolled from the University of California, San Diego Health between November 

2021 and February 2023 into a single-arm nonrandomized trial. 
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a 20.3% drop rate from 12 weeks to 24 weeks. Reasons for participants withdrawing from the 

study included receiving new medical diagnoses (eg, cancer diagnosis), achieving a healthy BP, 

family emergencies, and other personal reasons. For the 141 participants who onboarded, Table 

3.1 compares the characteristics between subgroups based on baseline BP classifications. The 

average age of participants was 57.5 (SD 13.9) years, and 44% (62/141) of the participants were 

female. For participants who had stage 2 hypertension at baseline, the average baseline BP was 

141.9/89.4 mm Hg. In total, 83.7% (118/141) of the participants reported that they were taking 

antihypertensive medication at the beginning of the study. 

As previously described, we asked participants each week to rate the difficulty of the 

recommendations they received on a scale from 1 to 5 and indicate whether they could follow each 

recommendation. This was done to assess compliance and the perceived difficulty of the 

Table 3.1 Participant demographics and characteristics grouped by baseline BP (N=141). 

 Baseline BP Category 

 All Controlled Stage 1 Stage 2 

Participants, n 141 38 48 55 

Age (y), mean 

(SD) 
57.5 (13.9) 57.8 (16.0) 57.6 (12.6) 57.3 (13.5) 

Female, n (%) 62 (44) 14 (37) 24 (50) 24 (44) 

Weight (lb), mean 

(SD) 
175.8 (48.4) 170.0 (41.6) 164.5 (52.3) 189.7 (45.7) 

Baseline SBP 

(mmHg), mean 

(SD) 

131.9 (11.5) 121.4 (6.1) 128.8 (7.1) 141.9 (9.3) 

Baseline DBP 

(mmHg), mean 

(SD) 

82.9 (9.0) 74.2 (4.4) 82.2 (6.4) 89.4 (8.0) 

Taking 

hypertension 

medication, n (%) 

118 (83.7) 32 (84) 39 (81) 47 (85) 
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recommendations. The histogram of difficulty ratings, divided into Yes and No responses, is 

shown in Figure 3.4. Recommendations were followed 63.64% (721/1133) of the time and not 

followed 36.36% (412/1133) of the time. The average difficulty rating for recommendations that 

were followed was 1.97, indicating lower difficulty, whereas the average for those not followed 

was 3.67, indicating higher difficulty. Evidently, there is a negative correlation between the 

perceived difficulty of a recommendation and its likelihood of being followed. We also tracked 

the number of unique recommendations each patient was sent. Out of the 37 unique 

recommendations, patients received an average of 9.4 (25%) unique recommendations each. The 

distribution of the number of unique recommendations is shown in Figure 3.5. The median (IQR) 

suggest a distribution close to normal. The maximum number of unique recommendations received 

by a single patient was as high as 21. These statistics demonstrate a broad range of 

recommendations given to the patients, covering various aspects of lifestyle. 

An additional feasibility outcome we evaluated was participant experience as measured by 

responses to a study experience survey. As previously mentioned, this survey asked patients to rate 

the difficulty level of completing the study tasks, how useful they found the recommendations, 

Figure 3.4 Histogram showing the number of recommendations adhered to based on their 

difficulty rating. The average difficulty rating for recommendations that were followed was 1.97, 

indicating lower difficulty, whereas the average for those not followed was 3.67, indicating 

higher difficulty. 
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and their experience using the app. In total, 70 participants responded to the survey. In total, 61% 

(43/70) of the participants responded that the study tasks were “easy” or “very easy” to incorporate 

into their daily routine, 51% (36/70) of the participants found the personalized recommendations 

to be “useful” or “very useful” compared to generic recommendations, and 86% (60/70) of the 

participants rated the app experience as “good” or “great.” 

3.3.2 BP Outcomes 

For assessing BP outcomes, we used data from the 128 and 102 participants who completed 

12 and 24 weeks in the study, respectively. Table 3.2 details the change in BP from baseline to 12 

weeks. Across all participants, there was a statistically significant change of −5.6 mm Hg in SBP 

(t127=7.6; P<.001; 95% CI −7.1 to −4.2) and −3.8 mm Hg in DBP (t127=7.7; P<.001; 95% CI −4.7 

to −2.8) after 12 weeks. Notably, 45.3% (58/128) of the participants achieved a clinically 

meaningful SBP drop of ≥5 mm Hg after 12 weeks. Table 3.3 details the change in BP from 

baseline to 24 weeks. For the participants who completed 24 weeks in the study, there was a 

statistically significant change of −8.1 mm Hg in SBP (t101=8.1; P<.001; 95% CI −10.1 to −6.1) 

Figure 3.5 Distribution showing the number of unique recommendations sent to 

each patient. Patients received an average of 9.4 unique recommendations each. 
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and −5.1 mm Hg in DBP (t101=8.4; P<.001; 95% CI −6.2 to −3.9). In total, 58.8% (60/102) of the 

participants achieved a clinically meaningful SBP drop of ≥5 mm Hg after 24 weeks. 

Participants with a baseline BP classified as stage 2 hypertension had the greatest change 

in BP and the greatest percentage of participants achieving a clinically meaningful SBP drop after 

12 and 24 weeks. For these participants, SBP and DBP improved by −9.6 mm Hg (t50=7.3; P<.001; 

95% CI −12.2 to −6.9) and −5.7 mm Hg (t50=6.2; P<.001; 95% CI −7.6 to −3.9) after 12 weeks, 

respectively, and −14.2 mm Hg (t36=8.2; P<.001; 95% CI −17.7 to −10.7) and −8.1 mm Hg 

(t36=7.0; P<.001; 95% CI −10.4 to −5.7) after 24 weeks, respectively. In total, 65% (33/51) and 

78% (29/37) of the participants achieved a clinically meaningful SBP drop of ≥5 mm Hg after 12 

and 24 weeks, respectively. 

Table 3.2 Comparison of average BP change at 12 weeks for different participant subgroups 

based on baseline BP (N=128). 

 Participants, 

n 

Change in BP at 12 

weeks, Δmean (95% CI) 
t test (df) P value 

≥ 5 mmHg 

reduction in SBP 

at 12 weeks, n (%) 

SBP 

Overall 128 −5.6 (−7.1 to −4.2) 7.6 (127) <.001 58 (45.3) 

Controlled 31 −3.6 (−5.5 to −1.6) 3.7 (30) .001 11 (35) 

Stage 1 46 −2.6 (−4.8 to −0.5) 2.5 (45) .02 14 (30) 

Stage 2 51 −9.6 (−12.2 to −6.9) 7.3 (50) <.001 33 (65) 

DBP 

Overall 128 −3.8 (−4.7 to −2.8) 7.7 (127) <.001 N/A 

Controlled 31 −1.6 (−3.0 to −0.2) 2.3 (30) .03 N/A 

Stage 1 46 −3.1 (−4.4 to −1.7) 4.7 (45) <.001 N/A 

Stage 2 51 −5.7 (−7.6 to −3.9) 6.2 (50) <.001 N/A 
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Another primary outcome we assessed was the percentage change of participants in 

different BP categories from baseline to 12 weeks and 24 weeks. Tables 3.4 and 3.5 detail this 

analysis. For participants completing 12 weeks in the study, the percentage of participants in the 

controlled range increased by 17.2% from 24.2% (31/128) to 41.4% (53/128; McNemar χ2
1=3.0; 

P<.001). The percentage of participants with stage 2 hypertension decreased by 25% from 39.8% 

(51/128) to 14.8% (19/128; McNemar χ2
1=4.0; P<.001) after 12 weeks. This means that 63% 

(32/51) of the patients with stage 2 hypertension at baseline moved into lower BP categories after 

12 weeks. For those who completed 24 weeks in the study, the percentage in the controlled range 

increased by 26.5% from 27.5% (28/102) to 53.9% (55/102; McNemar χ2
1=2.0; P<.001), and the 

stage 2 percentage decreased by 26.5% from 36.3% (37/102) to 9.8% (10/102; McNemar χ2
1=3.0; 

P<.001). This means that 73% (27/37) of the patients with stage 2 hypertension at baseline moved 

Table 3.3 Comparison of average BP change at 24 weeks for different participant subgroups 

based on baseline BP (N=102). 

 Participants, 

n 

Change in BP at 24 

weeks, Δmean (95% CI) 
t test (df) P value 

≥ 5 mmHg 

reduction in SBP 

at 24 weeks, n (%) 

SBP 

Overall 102 −8.1 (−10.1 to −6.1) 8.1 (101) <.001 60 (58.8) 

Controlled 28 −3.9 (−7.1 to −0.8) 2.6 (27) .02 14 (50) 

Stage 1 37 −5.2 (−7.9 to −2.5) 3.9 (36) <.001 17 (46) 

Stage 2 37 −14.2 (−17.7 to −10.7) 8.2 (36) <.001 29 (78) 

DBP 

Overall 102 −5.1 (−6.2 to −3.9) 8.4 (101) <.001 N/A 

Controlled 28 −1.9 (−3.6 to −0.2) 2.3 (27) .03 N/A 

Stage 1 37 −4.4 (−6.0 to −2.8) 5.7 (36) <.001 N/A 

Stage 2 37 −8.1 (−10.4 to −5.7) 7.0 (36) <.001 N/A 
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into lower BP categories after 24 weeks. Note that the percentage changes for the stage 1 

hypertension category from baseline to 12 weeks and 24 weeks were not statistically significant at 

the P=.05 level. The smaller change in the stage 1 hypertension population is due to a cascading 

effect where the number of participants moving from stage 2 into stage 1 was offset by the number 

of patients moving out of stage 1 and into the controlled BP category. For example, from baseline 

to 24 weeks, 18 participants moved from stage 2 to stage 1, and 17 participants moved from stage 

1 to the controlled category. 

3.3.3 Participant Engagement 

We assessed participant engagement based on the percentage of active participants 

completing the program tasks each week. Figure 3.6 shows the weekly percentage of active 

patients measuring their BP, syncing their wearable device, and answering the questionnaire 

during the 24 weeks, respectively. We set an engagement goal of 90% for the study, which is 

represented by the red dashed lines in the figures. The average BP measurement engagement rate 

was 93% (SD 4.3%), and this rate was >90% for 19 (79%) out of 24 weeks. The average wearable 

syncing engagement rate was 94% (SD 2.4%), and this rate was >90% for 21 (88%) out of 24 

Table 3.4 Change in the percentage of participants in different BP categories from baseline 

to 12 weeks (N=128). 

 
Population at 

baseline, n 

(%) 

Population at 

12 weeks, n 

(%) 

12-week 

difference, n 

(%) 

McNeymar χ2 

(df) 

P value 

Controlled 31 (24.2) 53 (41.4) 22 (17.2) 3.0 (1) <.001 

Stage 1 46 (35.9) 56 (43.8) 10 (7.8) 20.0 (1) .20 

Stage 2 51 (39.8) 19 (14.8) −32 (−25) 4.0 (1) <.001 

 



79 

weeks. The average questionnaire engagement rate was 88% (SD 4.9%), and this rate was >90% 

for 10 (42%) out of 24 weeks.  

Table 3.5 Change in the percentage of participants in different BP categories from baseline 

to 24 weeks (N=102). 

 
Population at 

baseline, n 

(%) 

Population at 

24 weeks, n 

(%) 

24-week 

difference, n 

(%) 

McNeymar χ2 

(df) 

P value 

Controlled 28 (27.5) 55 (53.9) 27 (26.5) 2.0 (1) <.001 

Stage 1 37 (36.3) 37 (36.3) 0 (0) N/A N/A 

Stage 2 37 (36.3) 10 (9.8) −27 (−26.5) 3.0 (1) <.001 

 

(a) (b) 

(c) 

Figure 3.6 Percentage of active participants (a) measuring their BP (b) syncing their wearable 

device and (c) answering the mobile app questionnaire during the 24 weeks. 
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3.3.4 Clinician Intervention 

Table 3.6 details the clinician intervention required during the program. For the 128 

participants completing 12 weeks in the study, an escalation notification was sent to the care team 

8 times. There were 3.9% (5/128) unique patients who required manual outreach during the first 

12 weeks. For the 102 patients completing 24 weeks in the study, an escalation notification was 

sent to the PHSO care team 11 times. There were 5.9% (6/102) unique patients who required 

manual outreach during the 24 weeks. 

3.4 Discussion 

3.4.1 Principal Findings 

This study aims to assess the effectiveness of a fully digital, autonomous, and AI-based 

lifestyle coaching program in achieving BP control and high engagement among adults with 

hypertension. The key components of this program included detailed lifestyle data collection via 

both wearables and questionnaires and weekly lifestyle recommendations based on personalized, 

AI-based analytics delivered via a mobile app. The guidance supported the participant’s daily 

efforts to improve BP through behavioral changes that targeted physical activity, sleep hygiene, 

stress management, and dietary choices. Specifically, the program provided weekly guidance 

based on associations between lifestyle data and BP uncovered using ML and asked the 

participants to focus on the lifestyle factor with the greatest association. The precise lifestyle 

Table 3.6 Participant escalations leading to manual care team 

outreaches for critical BP readings. 

 Participants, n Escalations, n 
Participants 

escalated, n (%) 

12 Weeks 128 8 5 (3.9) 

24 Weeks 102 11 6 (5.9) 
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recommendations enabled participants to focus on the most relevant aspect of their lifestyle as 

opposed to receiving general guidance. Our intervention approach aligns with the Fogg Behavioral 

Model, which states that 3 elements (ability, motivation, and prompts) are essential for behavior 

change [131]. By directing participants to focus on 1 lifestyle behavior at a time, the intervention 

simplified compliance and therefore increased the ability of the participants to adhere to the 

recommendations. This targeted strategy likely bolstered participants’ motivation, as they could 

clearly see how specific lifestyle modifications directly influenced their BP. Each recommendation 

was delivered via a text message and prompted the user to take specific action. Furthermore, each 

recommendation was sent with a motivational message regarding their BP progress. We believe 

that this combination of personalized advice, ease of compliance, and motivational reinforcement 

contributed to our high engagement and improved BP outcomes. 

We assessed multiple feasibility outcomes, including enrollment rate, adherence, and 

participant experience. In total, 59.9% (164/274) of the patients who initially expressed interest in 

joining the program ended up enrolling. Furthermore, although patients were recruited based on 

their last clinical BP reading, which required an SBP≥140 mm Hg or DBP≥90 mm Hg (stage 2 

hypertension), many participants were not in the stage 2 range at baseline. Possible reasons for this 

include white coat hypertension [115] or that between the time of their last clinical BP reading and 

their enrollment in the study, they may have started taking BP medication or changed their diet. 

To improve the enrollment rate and ensure that patients who enroll have stage 2 hypertension, a 

new recruitment strategy is required. This new strategy could involve recruiting patients through 

PCP referrals. We hypothesize that this will increase the take-up rate due to increased trust from 

the more personal nature of the referral [122]. Furthermore, for the patients who are referred to the 

study, their PCPs would be instructed not to start the patients on any new BP medication or lifestyle 
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intervention before the study, except in critical cases. This would help ensure patients joining the 

study are indeed in the stage 2 hypertension category. Another feasibility outcome we assessed 

was participant experience. While most participants (43/70, 61%) found the study tasks easy to 

incorporate into their daily routine, a few (3/70, 4%) found it difficult. These included difficulty 

in measuring BP due to work schedules and travel, caregiving responsibilities, and equipment and 

syncing issues. To address these challenges, the intervention should be more context aware and 

adapt the program tasks and recommendations based on patients’ circumstances. For example, a 

patient who works a night shift should not be asked to measure their BP at the same time or be 

given the same sleep recommendations as a patient who works during the day. Context-aware 

interventions would enhance the patient experience and increase the engagement rate. 

Participants experienced a statistically significant decrease of 8.1 mm Hg and 5.1 mm Hg 

in SBP and DBP, respectively, after 24 weeks. Furthermore, this improvement was more 

pronounced in participants who started the program with stage 2 hypertension, achieving a 14.2 

mm Hg and 8.1 mm Hg reduction in SBP and DBP, respectively. Reducing BP holds clinical 

significance not only for individuals with stage 2 hypertension but also for those with elevated BP 

or stage 1 hypertension. This is clinically meaningful as lower SBP values have been associated 

with progressively reduced risks of stroke, major cardiovascular events, and cardiovascular as well 

as all-cause mortalities [130]. In addition to BP improvement, the study demonstrates the 

intervention’s ability to maintain sustained engagement. However, the engagement rate dropped 

during the last 4 weeks potentially because the participants whose BP had improved through the 

program may have reduced their engagement as they did not feel the urgent need. In this study, 

the participant tasks remain consistent; however, participants may find it useful if the requirements 

are adaptive based on their health condition and preferences. It is worthwhile to design a dynamic 
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mechanism that can adjust the extent and frequency of patient requirements based on the 

intervention progress. Both the BP and engagement results are achieved with minimal clinician 

intervention, primarily due to the autonomous nature of the intervention, demonstrating the 

potential scalability of this approach for hypertension management. 

The observed BP improvement results from this study are comparable to those from 

clinician-led hypertension management programs [107-110]. The 3-month intervention program 

presented in the study by Wilson-Anumudu et al [107] combined lifestyle counseling with 

hypertension education, guided home BP monitoring, support for taking medications, and was led 

by either a registered nurse or certified diabetes care and education specialist. Patients with stage 

2 hypertension who participated in this program experienced a 10.3 mm Hg and 6.5 mm Hg 

reduction in SBP and DBP, respectively, after 3 months. In the study by Milani et al [109], the 3-

month digital intervention involved patients measuring their BP at least once per week and 

corresponding with pharmacists and health coaches to cocreate their treatment plan by choosing 

among various lifestyle modifications (eg, reducing dietary sodium) and medication options (eg, 

switching to generics or lower cost options). Patients with stage 2 hypertension participating in 

this program experienced a 14.0 mm Hg and 5.0 mm Hg reduction in SBP and DBP, respectively, 

after 3 months. Both interventions presented in the studies by Wilson-Anumudu et al [107] and 

Milani et al [109] assigned participants a designated hypertension coach who would provide 

lifestyle education and recommendations. These previous studies [107,109] primarily attribute 

their BP outcomes to the program’s support led by health professionals who interpreted BP data 

and supported lifestyle change. While health coach–based programs can produce meaningful BP 

improvements, the reliance on health coaches is highly time and resource intensive. Consequently, 

these approaches have limited scalability and accessibility as an individual health coach can only 
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engage and care for a limited number of patients at a time. In contrast, our results demonstrate that 

a fully digital, AI-based lifestyle coaching program can produce clinically meaningful BP 

improvements comparable to those of programs led by health professionals. There is also potential 

for our approach to be used in conjunction with health coach–based programs. Under such a 

framework, our AI-based interactions and learnings from the patients can extend the reach of 

health coaches and provide them with more detailed insights about lifestyle factors impacting 

patients. 

3.4.2 Study Limitations and Future Directions 

As this was a single-arm nonrandomized study, it was not possible to conduct a causal 

analysis due to the lack of a control group. In addition, regression to the mean is another limitation 

as participants with initially high BP values may naturally converge toward the average over time. 

Therefore, to conduct causal analysis and account for regression to the mean, a randomized 

controlled trial may be conducted to draw stronger conclusions in a future study. To gain additional 

insights into the effectiveness of the program, we can randomize patients into different treatment 

arms by providing different versions of the program. This could include varying the frequency or 

content of the lifestyle recommendations across the different treatment arms. Furthermore, we 

could investigate which lifestyle interventions, for example, increasing steps or improving sleep 

hygiene, result in greater BP improvements. With careful design, we can create a multiarm trial to 

investigate optimal engagement strategies and recommendations for different types of patients. 

Another limitation of this study is selection bias as the participants self-selected to enroll after 

receiving the recruitment flyer. To address this, we plan to recruit patients through PCP referrals. 

PCPs will refer their patients with high cardiovascular risk, who can benefit from our intervention. 

As previously mentioned, we hypothesize that this will increase the take-up rate due to increased 
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trust from the more personal nature of the referral [122]. In addition, there is a need for a longer 

follow-up period as behavioral interventions can show improved outcomes during the first 6 

months and then recidivism during the next 6 months. Finally, we did not collect socioeconomic 

data (eg, occupation, education, and income) from participants, preventing an analysis of how 

socioeconomic status impacts the program outcomes. In our future research, we will consider 

socioeconomic factors when analyzing the impact of the intervention. This analysis is imperative 

to ensure that the use of digital technologies does not contribute to an increased digital divide in 

health care and that all patients have equal access to high-quality health care [116,117]. 

3.4.3 Conclusions 

To address the challenges of poor patient engagement due to generic, nonpersonalized 

lifestyle guidance and limited scalability of care due to human coaching models, we propose an 

AI-driven, autonomous, precise lifestyle coaching program for patients with hypertension. Patients 

who enrolled in the program experienced a significant improvement in BP. The program 

maintained a high engagement rate with minimal intervention from the care team. As the burden 

of hypertension increases globally, the necessity to develop new strategies to achieve hypertension 

control at scale is greater than ever. An AI-based, autonomous approach to hypertension-related 

lifestyle coaching can increase scalability and accessibility to effective BP management, ultimately 

improving the cardiovascular health of our community. 

Chapter 3, in part, is from the material as it appears in the Journal of Medical Internet 

Research, Cardio, 2024, Leitner, Jared; Chiang, Po-Han; Agnihotri, Parag; Dey, Sujit. The 

dissertation author was the primary investigator and author of this paper. 
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CONCLUSION 

In this dissertation, we investigate three applications of ML to real patient data to enable 

personalized, remote health monitoring and care delivery. In chapter 1, we demonstrate that we 

can use transfer learning to train personalized deep learning models for PPG-based BP estimation 

with limited patient data and achieve clinically meaningful accuracy. Furthermore, our approach 

enables continuous, noninvasive BP estimation, as opposed to the current standards of inflatable 

cuff-based measurement, which significantly limits the frequency of BP measurements, and the 

arterial catheter which is highly invasive and not practical for at-home measurement. In chapter 2, 

we propose a novel ML approach to estimate whether a patient has recovered from COVID-19 

symptoms based on automatically collected wearable data. Our results demonstrate that ML-

assisted remote monitoring using wearable data can supplement or replace manual daily COVID-

19 symptom tracking, thereby enabling more optimal care of COVID-19 ambulatory patients at 

scale by remotely tracking patient recovery status. Finally, in chapter 3, we present the results of 

our trial with UCSD Health’s Population Health Services Organization in which hypertension 

patients received an AI-driven, autonomous, precise lifestyle coaching intervention. Patients who 

enrolled experienced a significant improvement in BP and maintained a high engagement rate, 

while requiring minimal manual intervention from the care team. The outcomes demonstrate the 

potential of AI-based lifestyle coaching to increase scalability and accessibility to effective BP 

management. 

In the future, we would like to extend our research in the following directions. Firstly, the 

training and inference for all ML models are implemented on a centralized server. For future work, 

we will investigate on-device model training either on a patient’s cell phone or wearable device. 

This shift not only promises to enhance user engagement by achieving more real-time and 
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localized data analysis but also significantly mitigates risks associated with data transmission and 

enhances data privacy. Additionally, we plan to explore additional methods of data collection that 

are more patient friendly and context aware. For example, nutrition data remains a challenge for 

patients to collect. We will investigate computer vision and conversational AI-based approaches 

to nutrition data collection that fit more seamlessly into the daily routines of patients. Furthermore, 

to conduct causal analysis for our AI-based lifestyle interventions, a randomized controlled trial 

can be conducted to draw stronger conclusions in a future study. This future study can examine 

how different subgroups, based on demographic, socioeconomic, and contextual factors, are 

impacted by the AI-based intervention to ensure patients of diverse backgrounds can benefit from 

healthcare technology advancements. Finally, leveraging large language models (LLMs) could be 

a transformative aspect of our research. LLMs can be utilized to generate personalized patient 

communication and support, analyze large volumes of unstructured data for insights, or even 

simulate patient interactions for better model training without compromising privacy. These 

applications of LLMs represent a frontier in medical AI research that holds potential for significant 

contributions to personalized and accessible healthcare solutions. 
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