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Abstract: Bulk quantum fields are often said to contribute to the generalized en-

tropy A
4GN

`Sbulk only at Op1q. Nonetheless, in the context of evaporating black holes,

Op1{GNq gradients in Sbulk can arise due to large boosts, introducing a quantum ex-

tremal surface far from any classical extremal surface. We examine the effect of such

bulk quantum effects on quantum extremal surfaces (QESs) and the resulting entan-

glement wedge in a simple two-boundary 2d bulk system defined by Jackiw-Teitelboim

gravity coupled to a 1+1 CFT. Turning on a coupling between one boundary and a

further external auxiliary system which functions as a heat sink allows a two-sided

otherwise-eternal black hole to evaporate on one side. We find the generalized en-

tropy of the QES to behave as expected from general considerations of unitarity, and

in particular that ingoing information disappears from the entanglement wedge after

a scambling time β
2π

log ∆S ` Op1q in accord with expectations for holographic imple-

mentations of the Hayden-Preskill protocol. We also find an interesting QES phase

transition at what one might call the Page time for our process.ar
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1 Introduction

A key concept in our current understanding of holographic dualities is the entangle-

ment wedge WA of a bulk spacetime associated with a given region A in the dual

holographic field theory [1–3]. At the level of classical bulk physics, WA is obtained

by first constructing the associated Hubeny-Rangamani-Takayanagi (HRT) surface [4],

which is the minimal-area codimension-2 bulk extremal surface homologous to A in an
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appropriate sense [5]. The physics in the wedge WA can then be reconstructed from

field theory degrees of freedom in A [6–9].

Key steps in the above arguments rely on identifying the area A of the HRT surface

as 4GN times the von Neumann entropy of the field theory degrees of freedom in A

[4, 10–13]. Here GN is the bulk Newton constant and the bulk is treated classically.

But at the quantum level the von Neumann entropy of the field theory degrees of

freedom in A is instead the so-called generalized entropy of a bulk surface X [14],

which for Einstein-Hilbert gravity coupled to Op1q bulk quantum fields may be written

Sgen “
ApXq
4GN

` SbulkpXq, where SbulkpXq is a von Neumann entropy of bulk quantum

fields on one side of X. As explained in [15] and partially verified in [13], this means

that bulk quantum effects should move the boundary of WA to a so-called quantum

extremal surface X extremizing Sgen as defined by ArXs and by the von Neumann

entropy of bulk quantum fields between X and A. As before, X should satisfy the

homology constraint and, when there is more than one such quantum extremal surface,

we should choose the one minimizing Sgen.

One often thinks of such quantum corrections as being small. In many contexts

Sbulk is indeed Op1q and the relevant quantum and classical extremal surfaces nearly

coincide. In such contexts one should also consider corrections to the classical formula
A

4GN
associated with higher derivative corrections to the gravitational effective action

[16–20]. But in contexts involving long times and/or long distances, secular effects

can cause Sbulk to grow and in some cases to become of order 1{GN , and large boosts

can cause sharp gradients even when Sbulk remains Op1q. The last of these, which we

investigate here, is particularly natural in the context of black hole evaporation, where

the semi-classical Hawking effect leads to bulk entropy comparable to the Bekenstein-

Hawking entropy of the original black hole [21, 22] and large boosts arise naturally

from time evolution.

We study a simple model where such Op1{GNq gradients of bulk entropy can be

calculated in detail and the ensuing effects on quantum extremal surfaces (QESs) and

entanglement wedges can be studied. We consider a standard two-sided AdS2 black

hole in Jackiw-Teitelboim (JT) gravity coupled to a 1+1 CFT in the Hartle-Hawking

state. With reflecting boundary conditions at AdS infinity, the state is independent of

time. But at a finite time we couple the right boundary of our system to an auxiliary

system B, which functions as a bath, or heat sink. We take B to (1) be a copy of

the same 1+1 CFT on the right half of Minkowski space and (2) begin in its own

vacuum. The coupling is such that, after a short transition, the right boundary is fully

transparent. In effect, the coupling simply glues the origin of the auxiliary Minkowski

space to the right AdS2 boundary; see figure 1. This leads to evaporation on the right

of the two-sided AdS2 black hole.
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Figure 1. Our two-sided AdS2 system initially has reflecting boundary conditions (solid

vertical lines) on its right boundary. An independent copy B of our CFT on the right half

of Minkowski space which will play the role of the bath also begins with reflecting boundary

conditions. At some finite time (orange dot), the right-AdS2 boundary conditions become

transparent, coupling the AdS2 CFT to the Bath CFT.

Because the AdS2 system is no longer isolated, bulk von Neumann entropies depend

on a choice of Cauchy slice, or at least a choice of where such slices meet the right AdS2

boundary. In this sense, the QES of the right boundary becomes time-dependent. The

time-dependent QESs may be viewed as a proxy for what one would find if one turned

off the coupling at the given time, used the data on the stated Cauchy surface as initial

data for a new AdS2 bulk, and computed the QES in the resulting isolated spacetime.

The isolated QES and the proxy QES in the coupled spacetime will coincide up to

corrections associated with the details of how the coupling is switched off. This setting

and aspects of JT gravity are reviewed in section 2, while section 3 presents initial

studies of the matter sector.

The proxy QESs are studied in section 4. Although we consider only standard

perturbative semiclassical bulk physics, tracking the proxy QES and computing Sgen as

a function of boundary time reproduces features one would expect from general consid-

erations of fully unitary evolution. In particular, the Page time, when the fine-grained

von Neumann entropy of the black hole saturates at the coarse-grained thermodynamic

entropy, is marked by a phase transition where the quantum extremal surface jumps.

Thereafter, the location of the quantum extremal surface gives a quantum geometric

realization of the Hayden-Preskill protocol [23], as described holographically in [24].

For the convenience of the reader, the technical results are then summarized in section

4.6.

An important part of the above description is the gap between the QESs XL and

XR associated with the left and right boundaries of AdS2, and this gap is discussed

further in section 5. We close with further discussion in section 6, which in particular
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describes analogous effects in cases where black holes evaporate more completely. The

final interpretation of such results is unclear, but will clearly fuel further discussion of

black hole information puzzles, firewalls, state-dependence, and related issues; see e.g.

[25, 26] for recent reviews and [24] for further recent discussion.

Note to reader: While this work was underway we learned that related results were

independently found in the work [27] which will appear on the arxiv simultaneously.

1.1 Holographic Hayden-Preskill

Before proceeding with the main paper in section 2, we pause to give a brief review of the

Hayden-Preskill protocol [23], and expectations for its holographic realization [24]. The

protocol considers an old black hole past the Page time which is maximally entangled

with its early radiation. Assuming the black hole is governed by a sufficiently scrambling

internal Hamiltonian, abstract quantum information reasoning is used to show that

information thrown into this black hole would be recoverable from the radiation in a

relatively short time compared to the black hole lifetime.

The protocol can be described as follows: Consider throwing some information m

in the state |iym into an old black hole B maximally entangled with the early radiation

E in the state |ψyBE . After allowing for the black hole interior to scramble via its own

internal unitary dynamics governed by some unitary UmB, the black hole is allowed to

evaporate into some new radiation L with the remaining black hole given by B1. This

process is described by

|iym|ψyBE Ñ UmB|iym|ψyBE ” |ΨiymBE “ |ΨiyB1LE . (1.1)

The last equality just comes from the identification of mB and B1L. The result of [23]

is that it is sufficient that UmB to be drawn from a unitary 2-design1 for the message

to be recoverable from the radiation subsystem LE , in the sense that

@i, DVLE s.t. VLE |ΨiyB1LE “ |iyl1 b |χyB1l2 , (1.2)

for some fixed |χy, and where l1, 2 are some Hilbert space factors of LE .

This protocol predicts an interesting time scale for when the message appears in

the Hawking radiation, which stems from the assumption that the black hole internal

unitary dynamics is given by a unitary 2-design. These circuits have logarithmic depth

in the number of qubits of the black hole and thus naturally suggest the time scale

tHP „
1

T
logSBH , (1.3)

1It is defined as that which coincides with the Harr measure up to second moments in UijU
:

kl.
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Figure 2. After the evaporation of the right CFT R into the left L, the quantum extremal

surface moves in a spacelike direction towards the right boundary from Xold to Xnew. A

message sent into R in the past will escape the new entanglement wedge of R and enter that

of L.

where T and SBH are the temperature and entropy of the black hole respectively. This

time, called the scrambling time, places a lower bound on the time needed before the

message appears in the radiation. We will see in section 4 how this timescale naturally

arises in a precise form from the evolution of the QES of an evaporating black hole.

As stated, the Hayden-Preskill protocol is a general statement about scrambling

systems and would therefore naturally apply to the case of two entangled holographic

CFTs. The setup of this protocol in the holographic context was recently discussed

in [24], where the analogue of flat space post-Page time black hole is two entangled

holographic CFTs, L b R, in the thermofield double dual to the eternal black hole in

AdS.

One obvious objection at this point is that the eternal black hole does not evaporate,

so any information injected on one side will remain there eternally. We can mimic black

hole evaporation by extracting energy from R and dumping it into L; the right and left

play the role of an old black hole and its early radiation respectively. Our goal is to

study the evolution of the quantum extremal surface in the evaporating spacetime as

a proxy for understanding, at each time, properties that the bulk-boundary dictionary

would have if the coupling were turned off. Applying the Hayden-Preskill reasoning in

this case would say that information sent into R should become reconstructable in L

after a few scrambling times.

The general evaporation protocol will be as follows:

1. Start with two entangled CFTs in the thermofield double state with temperature

above the Hawking-Page transition dual to the eternal black hole.
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2. Introduce an auxiliary bath system B, taken to be a large system in the vacuum,

which we couple to R and allow the Hawking radiation to be extracted from R to

B. This is provided in AdS by imposing absorbing boundary conditions on the

asymptotic boundary of R.

3. This Hawking radiation is then transferred into L. One can imagine transferring

this information into any of the many low occupation modes on the left. This

will excite the state of the quantum fields on the left exterior.

The end result will be a new pure state of Lb R where the ADM energy on the right

is lower than that on the left (and lower than the initial energy on the right), with

smaller entanglement between the two.

We will explain in detail in this paper how this protocol achieves Hayden-Preskill

by inducing a motion of the QES surface away from the bifurcate horizon, causing the

information injected into R at early times to escape the entanglement wedge of that

side. The rough idea is shown in figure 2. Since we expect that the modified state of

LR still exhibits complementary recovery, the inserted message enters the entanglement

wedge of L, and can therefore be decoded from it, in the sense of (1.2).

The scrambling time for near extremal black holes found in [28] is controlled by the

ADM energy E above the ground state and the energy of the perturbation δE thrown

into the black hole, assumed to be much smaller than E, as

tscr “ αS
β

2π
log

E

δE
, (1.4)

for some constant αS. This result indicates the Hayden-Preskill time should be

tHP “ αHP
β

2π
logpS ´ S0q, (1.5)

for a small message with δE „ E{pS ´ S0q, and for some constant αHP which a priori

could be distinct from αS. The realization of the Hayden-Preskill protocol in our

context will be exhibited by the lag of the QES of the state at time t by an amount

tHP in null ingoing time; this would ensure that messages thrown in prior to t ´ tHP
would escape the entanglement wedge. We confirm this expectation and determine the

values of αHP and αS for systems dual to JT gravity.

We wish to emphasize the difference between this described protocol and the re-

cent story of making a wormhole traversable via a double trace deformation [29, 30].

Traversability is achieved by violating the Averaged Null Energy Condition (ANEC)

on the horizon, which provides a message falling into the horizon sufficent time advance

that it emerges into the other asymptotic region of the eternal black hole. This is in
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contrast with the proposal of this paper where it is the evolution of the dictionary

under the evaporation protocol that renders the message recoverable from the other

boundary CFT.

Second, the traversable wormhole protocol takes advantage of the careful local

correlations in the TFD between the two CFTs at t “ 0 (or by boost invariance -

opposite times) and picks a deformation with large connected expectation value. This

sensitivity to the state implies a sensitivity to the time at which message is thrown in.

In particular, it works best for messages thrown in at around the scrambling time prior

to turning on the interaction. A message sent in too early would spoil the delicate

correlations in the TFD, thereby ruining the efficacy of the deformation. In the bulk,

this is interpreted as the failure of the eikonal approximation of scattering between the

message and the negative stress tensor, which precludes the necessary time advance for

traverability [30]. Sent in late, the message simply doesn’t get enough of a time advance

to make it through. The evaporation protocol in this paper does not suffer from this

issue, and as we will see, all messages thrown into the black hole will eventually appear

in the entanglement wedge of the complement after a scrambling time.

2 Evaporating Near-Extremal Black Holes in JT Gravity

2.1 Review of JT Gravity

We will study the evolution of the minimal quantum extremal surface (QES) in an

evaporating black hole in JT gravity coupled to conformal matter. The dynamics of

this theory are governed by the Lorentzian action I “ I0 ` IG ` IM with

I0 “
φ0

16πGN

„
ż

M
d2x
?
´g R ` 2

ż

BM

K



, (2.1)

IG “
1

16πGN

„
ż

M
d2x
?
´g φpR ` 2q ` 2

ż

BM

φbK



, (2.2)

IM “ ICFT rgs. (2.3)

The dynamics of this model are especially simple. The gravitational action can be

thought of as the dimensional reduction of a higher dimensional theory describing the

s-wave sector of the near horizon limit of near extremal black holes [31–34]. From this

perspective, the area of the transverse space in the higher dimensional theory becomes

the dilaton φ0` φ, thereby implicitly imposing the restriction φ0 " φ. The action I0 is

a purely topological term and provides the extremal entropy of the black hole φ0{4GN .

The remaining gravitational dynamics are governed by the action IG, which is not

topological because φ is dynamical. This action is easily solved by integrating out the
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dilaton along an imaginary contour which imposes the constraint on the spacetime to

have constant negative curvature via the delta function

δpR ` 2q, (2.4)

which requires that the two dimensional metric is locally AdS2. In Poincaré coordinates

this is

ds2
“
´dt2 ` dz2

z2
“ ´

4dx`dx´

px` ´ x´q2
, x˘ “ t˘ z. (2.5)

As we review below, this AdS2 space should be thought of as an ‘ambient’ rigid space

of which the actual physical spacetime is a patch [31, 32, 35, 36]. Varying the action

with respect to the metric g yields the constraints and equation of motion that couple

the bulk CFT to the dilaton:

2Bx`Bx´φ`
4

px` ´ x´q2
φ “ 16πGNTx`x´ , (2.6a)

´
1

px` ´ x´q2
Bx`

`

px` ´ x´q2Bx`φ
˘

“ 8πGNTx`x` , (2.6b)

´
1

px` ´ x´q2
Bx´

`

px` ´ x´q2Bx´φ
˘

“ 8πGNTx´x´ . (2.6c)

We work in the limit where the gravitational sector can be treated semiclassically, so

we may replace the stress tensors with their expectation values, Tab “ xTaby.

It is often convenient to express JT gravity as the dynamics of the so-called ‘bound-

ary particle’ [31, 32, 36]. This is simply a reparametrization between the bulk Poincaré

time near the boundary t and the physical boundary time u. The location of this

physical boundary is specified by the boundary condition on the bulk fields

guu
ˇ

ˇ

bdy
“

1

ε2
“
´t12 ` z12

z2
, φ “ φb “

φ̄r
ε
, (2.7)

where guu is the time-time component of the metric near the boundary along the phys-

ical boundary time u. The last equality in (2.7) indicates that we are interested in

large φb (φb „ 1{ε) with fixed constant coefficient φ̄r. With this choice, the JT action

reduces to a boundary term given by

SG “
1

8πGN

ż

BM

φbK Ñ
φ̄r

8πGN

ż

dutfpuq, uu, (2.8)

where t “ fpuq is a diffeomorphism giving Poincaré time t in terms of boundary proper

time u. This is the Schwarzian action, which is invariant under SL2pRq transformations
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of the trajectory of the ‘boundary particle’ t “ fpuq, as required by the isometries of the

rigid AdS2 spacetime. From this description it is easy to compute the ADM energy of

the spacetime [31, 32], defined as the Noether charge under physical time translations

uÑ u` δu

Epuq “ ´
φ̄r

8πGN

tfpuq, uu. (2.9)

Using this diffeormophism, we can construct natural coordinates y˘ defined by

x˘ “ fpy˘q, in which the metric becomes more complicated,

ds2
“ ´

4f 1py`qf 1py´qdy`dy´

pfpy`q ´ fpy´qq2
, (2.10)

but the cutoff is simpler, at constant y`´y´

2
“ ε.

The vacuum solutions, with vanishing stress-tensor expectation value2, have dilaton

profile

φ “ 2φ̄r
1´ pπT0q

2x`x´

x` ´ x´
(2.11)

up to gauge transformations, which represents an eternal black hole with two asymp-

totic boundaries and temperature T0 [35]. The associated reparameterization is

fpuq “
1

πT0

tanhpπT0uq, (2.12)

and using this to transform to y coordinates (which cover the exterior of the black hole)

the metric and dilaton take the manifestly static form

ds2
“

´4dy`dy´

1
pπT0q2

sinh2
rπT0py` ´ y´qs

, φ “ 2φ̄rπT0 coth
“

πT0py
`
´ y´q

‰

. (2.13)

The boundary particle meets the AdS2 boundary at two locations:

for uÑ 8, x` “ t “
1

πT0

, (2.14a)

for uÑ ´8, x´ “ t “ ´
1

πT0

. (2.14b)

2For the case of conformal matter we are considering, the trace of the stress tensor is a constant

determined by the conformal anomaly Tµµ “
c

24πR, which can be absorbed into the extremal value of

the dilaton: φ0 Ñ φRen0 “ φ0 `
cGN

3 .
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Plugging the reparameterization (2.12) into the formula for the energy we find

Epuq “ ´
φ̄r

8πGN

"

1

πT0

tanh pπT0uq , u

*

“
πφ̄r
4GN

T 2
0 ” E0 (2.15)

which is the expected leading scaling with temperature of the energy of a near extremal

black hole3.

2.2 Evaporation

Starting with the static solution above, we will couple the right boundary to a large

external heat bath B at zero temperature, thereby extracting the Hawking radiation

and evaporating the right side of wormhole. We describe an explicit model for this

coupled evolution in section 3, here discussing the consequences which are pertinent

to the bulk dynamics, namely the resulting energy-momentum transfer into the black

hole.

First, an important transient effect occurs when coupling the right boundary to

this external system, namely an initial injection of positive energy into the black hole.

This is required to satisfy the ANEC along its horizon, and to prevent the wormhole

from becoming traversable. While the presence of this positive energy is required by

consistency, its precise value depends on the details of the system and bath and the

precise coupling between the two. We will denote this initial positive energy increase

as ES, and find a lower bound on its value.

After this initial ‘shock’ of energy, the energy of the black hole begins to be trans-

ferred into the bath via the Hawking radiation. In section 3 we give a very explicit

model for coupling, in which we compute the resulting stress-tensor expectation value.

This relies on choosing conformally invariant matter and boundary conditions, so that

the stress tensor expectation value is determined by the conformal anomaly. For the

energy-momentum expectation value, it gives the same result as the analysis of [32],

which used a model of perfect absorption of outgoing Hawking quanta at the boundary.

The result (derived in (3.23)) is that after the shock, the ingoing stress-tensor expecta-

tion value vanishes in the flat metric ´dy`dy´, which via the conformal anomaly gives

a flux of negative energy in the physical metric (2.10):

xTx´x´px
´
qy “ ES δpx

´
q ´

c

24π
ty´, x´uΘpx´q (2.16)

This is valid after scaling the Poincaré coordinates to set f 1p0q “ 1, and we recall that

x´ “ fpy´q. We can alternatively rewrite the last term using the inversion identity for

the Schwarzan, ty´, x´u “ ´f 1px´q´2tfpx´q, x´u.

3This follows if we assume that the entropy of a near extremal black hole is analytic near T “ 0.

Using the first law of thermodynamics implies that energy must be quadratic in T .
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As discussed in [32], this result can be used to solve for the energy of the black

hole as a function of boundary time. Varying IG ` ICFT rgs with respect to boundary

time yields the energy balance equation

BuEpuq “ f 1puq2 pTx´x´ ´ Tx`x`q , (2.17)

equating the change in energy to the ingoing flux minus outgoing flux. Using this and

the expression for energy in terms of the Schwarzian (2.9), for positive times we find

the differential equation

´
φ̄r

8πGN

Butfpuq, uu “
c

24π
tfpuq, uu, ùñ ttpuq, uu 9 e´ku (2.18)

where

k “
c

12

4GN

φ̄r
! 1. (2.19)

Putting in the initial energy and the perturbation due to turning on the interaction,

the energy as a function of time is found to be

Epuq “ Θp´uqE0 `ΘpuqE1e
´ku, (2.20)

where E1 ” E0 ` ES, and ES is the positive energy due to turning on the coupling

between the system and bath. For small positive time, we have a black hole with new

temperature T1 satisfying

E1 ”
πφ̄r
4GN

T 2
1 . (2.21)

We can put a bound on the magnitude of ES by requiring that the new event hori-

zon lies outside the original horizon, so the wormhole does not become traversable.

Since there is no interaction between the left and right boundaries, a traversable worm-

hole would violate boundary causality. Moreover, in JT gravity traversable wormholes

would require violations of the ANEC [37, 38] which, in our context, are forbidden by

extending the results of [39] to Killing horizons in curved space as described in that

reference. The new horizon is at x` “ t8, where t8 “ limuÑ8 fpuq is the Poincaré

time at which the boundary particle reaches the boundary, so we require t8 ă
1
πT0

.

For u ă 0, the reparameterization f is given by the black hole solution (2.12). For

u ą 0, we must solve the differential equation

tfpuq, uu “ 2pπT1q
2e´ku, fp0q “ 0, f 1p0q “ 1, f 2p0q “ 0, (2.22)
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where the initial conditions come from matching to the u ă 0 solution at u “ 0.

Explicitly, the solution is

fpuq “
1

πT1

´K0

“

2πT1
k

‰

I0

“

2πT1
k
e´ku{2

‰

` I0

“

2πT1
k

‰

K0

“

2πT1
k
e´ku{2

‰

K1

“

2πT1
k

‰

I0

“

2πT1
k
e´ku{2

‰

` I1

“

2πT1
k

‰

K0

“

2πT1
k
e´ku{2

‰ , (2.23)

which gives

t8 “
1

πT1

I0

“

2πT1
k

‰

I1

“

2πT1
k

‰ “
1

πT1

`
k

4pπT1q
2
`Opk2

q, (2.24)

where we have expanded for k „ GN ! 1. Our causality requirement t8 ă
1
πT0

then

gives a lower bound on ES, which we solve or at leading order in k:

pπT1q
2
“ pπT0q

2
`

4πGN

φ̄r
ES ùñ ES ą

c

24
T0 `Opkq (2.25)

An injection of positive energy on the thermal scale is required to maintain boundary

causality.

The complicated Bessel function expression for the reparameterization is only really

necessary at very late times, u „ k´1 log k, by which time the black hole is so close

to extremality that the semiclassical description breaks down, since we no longer have

a parametrically large non-extremal entropy. At times of order k´1, when the black

hole has evaporated an order one fraction of its mass but remains sufficiently far from

extremality, we can approximate f by a simpler form. For this, we use the asymptotic

formula
Knpzq

πInpzq
„ e´2z

ˆ

1`
4n2 ´ 1

4z
`Opz´2

q

˙

, (2.26)

expanding at small k with fixed uk. The result is

log

ˆ

t8 ´ fpuq

2t8

˙

„ ´
4πT1

k

´

1´ e´
k
2
u
¯

`Opke
k
2
u
q, (2.27)

where we have included the correction term relevant at late times; a different correction

becomes important at early times, when u is of order one.

Differentiating, we find

1

t8 ´ t
f 1puq „ 2πT1e

´ k
2
u
`Opk2e

k
2
u
q. (2.28)

Taking further derivatives, we can verify that this approximation solves the required

equation for the Schwarzian to the specified order. Using these estimates along with

the inversion formula for the Schwarzian, we can estimate the stress tensor at these

times via

tu, tu „
1

2pt8 ´ tq2
`

1`Opk2e´kuq
˘

, (2.29)
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where t “ fpuq.

With a given stress tensor, the constraints and equation of motion for the metric

can be solved in terms of an integral of the stress tensor [35]. To the future of the shock

x´ ą 0, this solution can be written as

φ “ 2φr
1´ pπT1q

2x`x´ ` 1
2
kIpx`, x´q

x` ´ x´
, (2.30)

where I is the integral

Ipx`, x´q “

ż x´

0

dtpx` ´ tqpx´ ´ tqtu, tu. (2.31)

Here, we have used the form (2.16) to write the ingoing stress tensor in terms of the

Schwarzian, and u “ f´1ptq. To find quantum extremal surfaces, we will be interested

in the variation of the dilaton. For this, we can use the integral expressions

px` ´ x´q2B˘

ˆ

I

x` ´ x´

˙

“ ¯

ż x´

0

dtpx¯ ´ tq2tu, tu. (2.32)

For early times, using the approximation fpuq „ 1
πT1

tanhpπT1uq, we have

tu, tu „
2pπT1q

2

p1´ pπT1tq2q2
, (2.33)

which can be used, along with the integral expressions to obtain simple explicit expres-

sions for I and derivatives of the dilaton.

For later times, we can use (2.29), which can be seen to match with (2.33) at

intermediate times; at later times, it will prove vitally important that the double pole

is shifted to t8, which is corrected from 1
πT1

by a power series (2.24) in k. We will

follow through these calculations as required in section 4.

3 The matter sector

In our model, the matter sector is independent of the dilaton, coupling to it only

through the constraints. We can therefore treat it as a quantum field theory on a

fixed AdS2 background. In this section we describe our model for the matter and its

coupling to the auxiliary system collecting the Hawking radiation. We then compute

the quantities relevant for our purposes, namely the stress tensor expectation value,

which determines the dynamics of the dilaton, and the entropies of subsystems.

Explicit calculations are made possible by choosing a conformally invariant matter

theory, with conformally invariant boundary conditions at the asymptotics of AdS2
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before turning on the coupling to the bath. For example, we could choose free massless

fields with reflecting boundary conditions.

We will use Poincaré coordinates for AdS2:

ds2
“
´dt2 ` dz2

z2
“ ´

4dx`dx´

px` ´ x´q2
“

4dxdx̄

px` x̄q2
,

#

x` “ t` z “ x̄

x´ “ t´ z “ ´x.
(3.1)

The coordinates x, x̄ are useful for describing the preparation of our state by a path

integral in a Euclidean spacetime with Euclidean time τ “ it, so x “ z ` iτ and x̄

is its complex conjugate. After conformal transformation, the Hartle-Hawking state

on AdS2 is given by the vacuum on the half-line z ą 0, where we choose conformally

invariant boundary conditions at z “ 0.

3.1 Coupling to the bath

Starting with the matter in this state at time t “ 0, we want to allow the black hole

to evaporate via a coupling to an auxiliary system which acts as a bath to collect the

Hawking radiation. Here, we simply choose the bath to be another half-line supporting

the same CFT as the bulk matter theory, also initially in the vacuum with the same

conformally invariant boundary condition. At t “ 0, we remove the boundary between

AdS2 and the heat bath, allowing matter to move freely between the two.

However, we must be slightly careful when we couple the systems, because we

want to match the time evolution in the bath with the physical time evolution of the

gravitational system. The physical time u does not match the Poincaré time t; rather

they are related by a diffeomorphism t “ fpuq, where may choose fp0q “ 0. We must

couple the bath at time u to the same physical time at the boundary of AdS2, which

corresponds to Poincaré time t “ fpuq.

We can simplify the time evolution by using local conformal symmetry. Namely,

we change to coordinates y, ȳ such that x “ fpyq, and x̄ “ fpȳq on AdS2, in which the

metric is more complicated but the boundary coordinate time corresponds to physical

time u:

ds2
“

4f 1pyqf 1pȳqdydȳ

pfpyq ` fpȳqq2
“ Ω´2

y dydȳ (3.2)

For the AdS boundary to lie at y` ȳ “ 0, and for ȳ´y
2

to correspond to the physical time

u there, we define f for y ă 0 by extending it as an odd function, fp´yq “ ´fpyq. We

should regard this as preparing a time-reversal invariant state at t “ 0, which we can

evolve symmetrically in either direction with the coupled Hamiltonian; this is different

from the physical time evolution, which has a decoupled Hamiltonian and different

function f in the past.
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Figure 3. Left: we prepare the state at t “ 0 (dashed line) in both AdS2 and bath in the

half-line vacuum, given by the Euclidean path integral in the lower half, but for subsequent

time evolution must identify boundary times with the function u “ fptq. Right: after making

a diffeomorphism in the AdS half, the state is prepared by a path integral with deformed

boundary, but time evolution of the coupled system is given simply by the Hamiltonian of

the CFT on the line. The lower and upper parts of the right diagram represent the Euclidean

and Lorentzian pieces of the path integral in the y coordinates.

We can now make a Weyl transformation using Ωy to the flat metric dydȳ, compute

in that metric, and transform back at the end. We take the bath to live in the left half-

line y` ȳ ă 0, with the state prepared by Euclidean path integral on the left half-plane

Re y ă 0. The combined evolution of this coupled system and bath is then implemented

by the usual CFT Hamiltonian on the line, and identifies times in the desired way. The

price we pay is that the state on the right half-line y ą 0 is a complicated Virasoro

descendant of the half-line vacuum, which we can think of as prepared by a path integral

in the Euclidean section with a boundary of some complicated shape, as illustrated in

figure 3.

We note here that the y coordinate will not cover the entire Poincaré patch, but

only a Rindler patch x, x̄ ă fp8q, since fpyq remains finite as y Ñ 8. The Euclidean

path integral preparing the state on the half-line y P R` will have the topology of a

cylinder. A simple example is for fpuq “ 1
πT

tanhpπTuq, which identifies u with Rindler

time; the preparation of the state on AdS2 is then by Euclidean path integral on a half-

cylinder, with y periodically identified in imaginary time with period T´1, giving a

thermal state of matter fields as expected.

3.2 Mapping to the half-plane

We now have a description of our initial state on the coupled system and bath, which is

characterised by a few simple properties. It is time-reflection symmetric, and a descen-
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dant of the vacuum state on the half-line. This follows because it is prepared by the

Euclidean path integral on the right of figure 3, over a simply connected space with a

single boundary. Consequently, there is a diffeomorphism taking the initial Cauchy sur-

face (including both the t “ 0 slice of AdS2 and the bath) to the half-line parameterised

by a coordinate w P r0,8q, which can be used to map our state to the half-line vacuum.

Specifically, our state becomes the vacuum in the half Minkowski space w` w̄ ą 0 with

lightcone coordinates w, w̄ (where we apply the same diffeomorphism to define left- and

right-moving coordinates), after applying a Weyl transformation so that the metric be-

comes dwdw̄. Calculation of correlation functions and entropies is then reduced to a

calculation in the half-space vacuum, along with a Weyl transformation to the physical

metric ds2 “ Ω´2
w dwdw̄.

To identify the diffeomorphism to the new w coordinate, we can use the one-

point function of the stress tensor, noting that it vanishes in the half-line vacuum, so

xTwwpwqy “ 0 (the subscripts denoting the metric we are working in as well as the

coordinates, as is conventional in two-dimensional CFT). In AdS2 at t “ 0, the one-

point function is zero in the physical metric, and also in the metric dxdx̄ since the Weyl

anomaly between AdS2 and flat space in Poincaré coordinates vanishes; in the bath,

the one-point function is zero in the metric dydȳ:

xTxxpxqy “ 0 px ą 0q, xTyypyqy “ 0 py ă 0q (3.3)

Now, under most diffeomorphisms the stress tensor picks up an anomaly from the

associated Weyl transformation:
ˆ

dw

dx

˙2

xTwwy “ xTxxy `
c

24π
tw, xu (3.4)

Note that we use a standard normalization of the stress tensor, which differs from the

common convention in the two dimensional CFT literature by a factor of ´2π. The

only diffeomorphisms for which the anomaly is absent, and hence which preserve the

vanishing of the stress tensor one-point function, are the Möbius maps. We therefore

find that for the part of the initial data slice in AdS2, w is a Möbius map of x “ fpyq,

and for the part in the bath, w is a Möbius map of y “ f´1pxq. We can now choose the

AdS2 region x ą 0 to map to w P p0, w0q and the bath region y ă 0 to map to pw0,8q,

from which we can write the full diffeomorphism as

wpxq “

#

w2
0

w0`x
x ą 0

w0 ` f
´1p´xq x ă 0

(3.5)

for some w0 ą 0, where we have scaled the Poincaré coordinates x, x̄ to set f 1p0q “ 1. In

writing this, we have required that w and its first derivative are continuous at x “ y “ 0,
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Figure 4. Penrose diagrams of the identification for the time-symmetric coupled system.

Only the future-half of the diagram is relevant to the physical system in which the coupling is

switched on only at t “ 0. At t “ 0 the bath is prepared in the Minkowski half-line vacuum.

Dash-dotted lines denote future and past null infinity in the relevant Minkowski space. The

remaining bath boundary (dotted) is identified with the right boundary of AdS2 using the

diffeomorphism f . We describe the state of the matter fields in the patch of AdS2 shown,

bounded by the dash-dotted lines denoting future and past Cauchy horizons. The dashed lines

denote the event horizons of the right boundary. The resulting state is the half-line vacuum

in the Minkowski half-space with auxiliary metric dwdw̄, for which the Penrose diagram is

shown on the right. In the physically relevant limit w0 Ñ 0, the worldline of the joined

boundaries is pushed to the left in the w coordinates, becoming nearly null.

which ensures that correlation functions of primary operators are continuous and that

the stress tensor one-point function is physically sensible, as we will see in a moment.

We have also made use of the symmetry under rescaling w to fix a free coefficient, and

the extension of f to negative values as an odd function.

This map suffices for the piece of AdS2 bounded by the Cauchy horizons at w or

w̄ Ñ 8 (x or x̄ Ñ t8 :“ limuÑ8 fpuq), and by the Poincaré horizons w “ 0 (x Ñ 8)

and w̄ “ 0 (x̄ Ñ 8). The map to w coordinates can be straightforwardly extended

past the Poincaré horizons by using coordinates on AdS2 that cover a larger patch.

We can now use this map and the anomaly (3.4) to compute the stress tensor
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one-point function in the x and y frames (recalling that we have set f 1p0q “ 1):

xTxxpxqy “ ´
c

24π
tw, xu “ ESδpxq ´

c

24π
Θp´xqty, xu (3.6)

xTyypyqy “ ´
c

24π
tw, yu “ ESδpyq `

c

24π
Θpyqtfpyq, yu (3.7)

ES “
c

24π

ˆ

2

w0

´ f2p0q

˙

(3.8)

The δ-function contributions arise from the discontinuous second derivative of w, and

at this point we are free to tune its coefficient ES by choice of w0.

However, if we use this result for finite ES, the answers we will find are not com-

patible with the physics we are trying to capture. In particular, this will give nonzero

connected two-point functions for an operator in AdS2 and an operator in the bath,

both spacelike separated from the point at which the coupling is turned on, though

the states should be uncorrelated at such points. The resolution is that we must take

ES Ñ 8. This is to be expected since there is of no finite energy state in a quantum

field theory that is uncorrelated at finite separation. Without using an explicitly regu-

lated model we must accept either acausal correlations or infinite energy. For example,

using a lattice regulated theory where we join a pair of spin chains at time t “ 0, energy

will be introduced on the scale of the cutoff, ES „ ε´1, and typically there will be faster

than light propagation (since the relativistic theory only emerges in the infrared) that

is negligible only on scales far longer than the cutoff. In the end, we will take ES as

some intermediate scale between AdS and Planck, the former to avoid dependence on

details of the regularization, and the latter for validity of effective field theory, which

we presume has a subPlanckian cutoff.

Taking ES Ñ 8 (w0 Ñ 0), we find a simple limiting map to the upper half-plane:

wpxq „

#

`

12π
c
ES

˘´2 1
x

x ą 0

f´1p´xq x ă 0
(3.9)

We have precisely the same map for right-moving coordinates w̄px̄q.

This approach gives an alternative route to previous results on local quantum

quenches [40–42]. These analyses use an explicit regulating prescription, by offsetting

the removal of the boundary slightly in Euclidean time. The results are equivalent after

identifying ES with the regulator.

To calculate correlation functions and entropies, we now only need to compute

the half-plane correlators in the metric dwdw̄, using the maps wpxq, w̄px̄q, and then

transform to the physical metric with the appropriate Weyl factor:

ds2
“ Ω´2

w dwdw̄, Ωw “
x` x̄

2

a

w1pxqw̄1px̄q (3.10)

– 18 –



3.3 Entropy in the half-plane

Since we have mapped the state of the system to the half-plane, we now need to compute

the relevant quantities there, which for us is the entropy of a single interval. We here

fix a definition for a renormalized entropy, and then review its computation for a single

interval in the half-plane.

A convenient way to compute entropies of intervals in CFT2 is to use the replica

trick to compute the Rényi entropies Spnq “ ´ 1
1´n

Tr ρn for integer n, as path integrals

on n copies of the geometry glued appropriately along the region in question, and take

a formal nÑ 1 limit to recover von Neumann entropy S “ ´Tr ρ log ρ. This is partic-

ularly powerful for two-dimensional CFTs [41] because the n copies of the geometry in

the theory C can be described on a single copy of the geometry by correlation functions

in an orbifold theory Cn{Zn, where we take n copies of the original theory and quotient

by the symmetry of cyclic permutation4. In this description, the boundary conditions

for the replica manifold are implemented by inserting twist operators σ, σ̃ at the left

and right endpoints of the interval in question:

Spnq “ ´
1

n´ 1
logxσpx1, x̄2qσ̃px2, x̄2qyCn{Zn (3.11)

We now use the powerful fact that the twist operators are local, primary operators in

the orbifold theory, with dimension

∆n “
c

12

pn´ 1qpn` 1q

n
. (3.12)

Since it will be important for us to work on curved manifolds, we emphasize that this

property determines correlation functions on a manifold with Weyl rescaled metric

Ω´2g in terms of those with metric g (the expectation values here are normalized by

the partition function without operator insertions, so the conformal anomaly cancels):

xσpx1, x̄2qσ̃px2, x̄2qyΩ´2g “ Ωpx1, x̄1q
∆nΩpx2, x̄2q

∆nxσpx1, x̄2qσ̃px2, x̄2qyg (3.13)

The replica manifold is singular at the endpoints of the interval, which leads to a

divergent Rényi entropy; any local regulator of this divergence can be simply absorbed

into the normalization of the twist operators. We can theorefore define renormalized

Rényi entropies, and hence von Neumann entropies, by choosing a canonical normaliza-

tion (which implicitly introduces an infrared length scale, for us the AdS scale) where

the identity appears in the OPE with coefficient one:

σpx1qσ̃px2q „ |x1 ´ x2|
´2∆n as x2 Ñ x1 (3.14)

4This is not strictly true in all states, since the orbifold theory correlators may involve an unwanted

sum over twisted sectors, but it will hold for all the examples we use.

– 19 –



Due to the primary transformation property, this normalization holds independently of

the metric, when |x1´x2| denotes the proper distance between the operator insertions.

In particular, with this normalization, the renormalized entropy of a single interval of

length ` on the line in vacuum is S “ c
3

log `.

Taking the n Ñ 1 limit of (3.13), we find how the von Neumann entropy behaves

under Weyl transformations:

SΩ´2g “ Sg ´
c

6

ÿ

endpoints

log Ω (3.15)

This can be thought of as arising from a local rescaling of the cutoff scale at each

endpoint of the interval.

We can now address the pertinent example of the entropy of a single interval on

the half-plane. We begin with the case when the interval contains the boundary, which

will be used to compute the entropy in AdS before turning on the coupling, and also

for the total entropy of system and bath combined. For this, we insert only one twist

operator in the bulk, so we need only write down the most general conformally invariant

one-point function on the half-plane:

xσpw, w̄qyUHP “
gn

pw ` w̄q∆n
(3.16)

We could think of there being also a twist operator inserted on the boundary, but

boundary twist operators are topological: they have zero scaling dimension, and the

insertion point can be freely deformed without changing the correlation functions. We

note also that the interval of interest could lie on either side of σ and give the same

result, reproducing the expectation from purity of the total state.

Taking the nÑ 1 limit, we find

S “
c

6
logpw ` w̄q ` log g, (3.17)

where log g “ ´Bn log gn|n“1 is the Affleck-Ludwig boundary entropy [43].

Next, we take the interval to have both endpoints in the bulk of the system, away

from the boundary. Now, since we are on the half-plane, for two points we can construct

a conformally invariant cross ratio (invariant under the PSLp2,Rq which fixes the

boundary on the imaginary axis):

η “
pw1 ` w̄1qpw2 ` w̄2q

pw1 ` w̄2qpw2 ` w̄1q
(3.18)

The two-point function of twist-operators does not have a fixed functional form, but

contains an undetermined function Gnpηq, which can depend on the theory and bound-
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ary conditions:

xσpw1, w̄1qσ̃pw2, w̄2qyUHP “
Gnpηq

ppw1 ´ w2qpw̄1 ´ w̄2qηq
∆n

(3.19)

In the kinematics relevant for entropy, where the endpoints of the interval remain

spacelike separated, the cross-ratio η varies between one and zero. Approaching either

of these limits, Gn is determined by either a bulk OPE or boundary operator expansion:

η Ñ 1, Gnpηq Ñ 1 (σσ̃ OPE limit) (3.20)

η Ñ 0, Gnpηq Ñ g2
n (boundary limit) (3.21)

Taking the nÑ 1 limit, we find the von Neumann entropy

S “
c

6
log rpw1 ´ w2qpw̄1 ´ w̄2qηs ` logGpηq, (3.22)

where logGpηq “ ´Bn logGnpηq|n“1, satisfying Gp1q “ 1, Gp0q “ g2.

3.4 Mapping to AdS2

With all the ingredients in place, it remains only to put them together and compute

various quantities of interest in AdS.

First, we compute the expectation value of the stress tensor in AdS2. In the x

coordinate in the flat dxdx̄ metric this is given by (3.6), and there is no anomaly from

the Weyl factor to transform to the physical Poincaré AdS metric (3.1):

xT´´px
´
qyAdS2 “ ESδpx

´
q ´

c

24π
ty´, x´uΘpx´q, (3.23)

where y´ “ f´1px´q. Note that ty´, x´u will typically be positive, so this represents

an injection of negative energy into AdS (in the Hartle-Hawking state on AdS, by slp2q

invariance the stress tensor expectation value vanishes, aside from the trace which is

identically a constant determined by the curvature and anomaly). We can similarly

construct xT``y by time-reversal invariance, but for the positive times we are interested

in it vanishes. This result is used to determine the dynamics of the reparameterization

mode f in section 2.2.

Next, we compute the entropies of an interval in AdS2, along with the bath. This is

equal to the entropy of the purifying system, so can be used to verify that the quantum

extremal surface of the purifier remains at the bifurcate horizon for all times.

For this, we use the result (3.17), along with the transformation (3.15). The result

is simplest when the boundary of the interval is spacelike separated from the coupling,
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x` ą 0 and x´ ă 0. In that case, we get the same answer as in pure AdS as required

by causality, which is a constant by SLp2,Rq invariance of the spacetime and state:

S “
c

6
log 2` log g px` ą 0, x´ ă 0q (3.24)

For a more nontrivial result, we take the endpoint to lie in the future of the shock,

x` ą x´ ą 0:

S “
c

6
log

˜

24πES
c

x`y´
a

f 1py´q

x` ´ x´

¸

` log g, x` ą x´ “ fpy´q ą 0 (3.25)

An example of this is to compute the total entropy of the bath at physical time u or

Poincaré time t “ fpuq “ x``x´

2
, where we cutoff AdS2 at z “ x`´x´

2
“ εf 1puq:

S “
c

6
log

˜

12πES
εc

ufpuq
a

f 1puq

¸

` log g (3.26)

Finally, we compute the entropy of an interval in AdS2 using (3.22). There are two

main cases of interest, with either one or both endpoints to the future of the shock.

We begin with the case with one endpoint to the future, x˘1 ą 0, and one endpoint to

the past, x`2 ą 0, x´2 ă 0. In this case, the cross-ratio is nontrivial,

η “
x`1 px

`
2 ´ x

´
2 q

x`2 px
`
1 ´ x

´
2 q

(3.27)

and the entropy is

S “
c

6
log

«

48πES
c

´y´1 x
`
1 x

´
2 px

`
2 ´ x

`
1 q
a

f 1py´1 q

x`2 px
`
1 ´ x

´
1 qpx

`
1 ´ x

´
2 q

ff

` logGpηq. (3.28)

If we take the whole interval to lie to the future of the shock, x
p1,2q
˘ ą 0, the cross ratio

goes to η “ 1, and we have

S “
c

6
log

«

4py´1 ´ y
´
2 qpx

`
2 ´ x

`
1 q
a

f 1py´1 qf
1py´2 q

px`1 ´ x
´
1 qpx

`
2 ´ x

´
2 q

ff

. (3.29)

As a consistency check, we note that all entropies are invariant under the residual

symmetries of AdS2, namely the PSLp2,Rq transformations x ÞÑ ax
cx`d

that fix zero.

This means that we act on all coordinates labelled by x, and on f , but not on y.

– 22 –



Finally, take the limit of the above answers where one endpoint goes to the AdS

boundary at physical time u, Poincaré time t “ fpuq, regulated to lie on the cutoff

surface z “ εf 1puq:

S “

$

’

’

&

’

’

%

c
6

log

„

24πES

εc
´utx´px`´tq

x`pt´x´q
?
f 1puq



` logG
´

tpx`´x´q
x`pt´x´q

¯

x´ă 0 ă t ă x`

c
6

log
”

2pu´y´qpx`´tq
εpx`´x´q

b

f 1py´q
f 1puq

ı

0 ă x´ă t ă x`

(3.30)

This will be our main result required for finding quantum extremal surfaces.

3.5 Interpretation of entropies

Our formulas for the entropies admit simple quasiparticle interpretations in terms of

freely propagating independent left- and right-moving degrees of freedom.

In (3.29), factor px`2 ´ x`1 q gives the entropy of outgoing modes in the Poincaré

vacuum. The factor py´1 ´ y´2 q computes the entropy of modes moving in from the

bath, which are in the vacuum associated to the flat metric of the y coordinates.

The remaining terms are conformal factors to transform to the physical AdS2 metric,

quantifying short-distance correlations. This can be thought of as adapting the cutoff

to correspond to a local proper distance.

The case (3.28) when the interval straddles the shock allows for a similar interpre-

tation. The outgoing modes are the same as for the previous case of (3.29). The factor

y´1 gives the entropy of the infalling state from the bath, starting only at time zero once

the coupling to the bath is turned on. For the rest of the interval, the ingoing modes

have been reflected off the boundary, so their entropy includes contributions from en-

tanglement with outgoing modes, which is quantified using (3.22). The constant factor,

proportional to logES, represents the entropy of the shock itself, which is entangled

with the corresponding shock propagating into the bath.

4 The quantum extremal surfaces

Now that we have computed the entropy of matter fields and solved the gravitational

dynamics, we have all the required ingredients to locate the quantum extremal surface,

and hence the entanglement wedge as the black hole evaporates.

4.1 The generalized entropy

A quantum extremal surface is defined to extremize the generalized entropy, which is

the sum of area in Planck units and the entropy of bulk matter. However, on first
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sight this is ambiguous, because both ingredients depend on choices of regulator, or

the energy scale of the bulk effective field theory we choose to use. The resolution is

that the generalized entropy is in fact better defined than its constituents (see [44] for

a recent discussion), which can be seen very explicitly in our model.

First, we can define the generalized entropy in terms of renormalized, or infrared

quantities:

Sgen “
φ

(Ren.)
0 ` φ(Ren.)

4GN

` S(Ren.) (4.1)

For example, we can define the renormalized entropy S(Ren.) as a finite quantity using

the scheme of section 3. This implicitly involved introducing a finite, infrared scale, in

our case the AdS scale.

For an alternative definition, we can use the ‘bare’ quantities, explicitly cutting

off the bulk matter theory at some UV scale ε. For our calculations, we treat the

gravitational sector classically, but integrating out the matter sector will nonetheless

renormalize the gravitational parameters.

Even though our matter sector is conformal, regularization must introduce a length

scale. Explicitly, the CFT partition function on some space with Euler character χ

depends on the typical length scale L (for us, L is the AdS scale):

ZCFTrLs9

ˆ

L

ε

˙
c
6
χ

(4.2)

The functional dependence on L is determined by the trace anomaly, but it necessi-

tates the introduction of the length scale ε. Note that this has the same form as the

topological term in the action:

´
φ0

16πGN

„
ż

R` 2

ż

B

K



“ ´
φ0

4GN

χ (4.3)

We can therefore absorb this scale dependent normalization of the partition function

by an additive renormalization of the dilaton.

´
φ

(Bare)
0

4GN

χ´ logZCFT “ ´
φ

(Ren.)
0

4GN

χ, φ
(Ren.)
0 “ φ

(Bare)
0 ´

2

3
cGN log ε (4.4)

If we use the same cutoff scale for the entropies, the bare and renormalized quantities

are related by a similar shift

S(Bare)
“ S(Ren.)

´N
c

6
log ε, (4.5)

where N is the number of endpoints of an interval in question. Combining these

two results, we see explicitly that we can use bare quantities in the definition of the

generalized entropy, and find a finite, regulator independent result that matches the

one obtained using renormalized, infrared quantities.
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4.2 Early times

Before we have disturbed the black hole by coupling to an external system, the quantum

extremal surface coincides with the classical extremal surface, at the bifurcation point

of the original black hole horizon. For a time after the coupling is turned on, the QES

does not stray far; we begin by finding its location at these early times.

The bifurcation surface is of course causally disconnected from the process of cou-

pling to the auxiliary system, so the nearby geometry is unaffected, but the quantum

extremal surface can nonetheless begin to move as soon as the evaporation process

begins. The relevant effect is that the fields near the bifurcation surface are entan-

gled with the first few Hawking quanta to escape; an entangling surface closer to the

boundary captures less of this entanglement, and hence has lower entropy. Moreover,

this entanglement changes linearly with distance, whereas the classical area term varies

quadratically, with the result that the quantum extremal surface moves out towards the

boundary in a spacelike direction, of order a Planck distance if evaporation proceeds

for a thermal time.

We now show this quantitatively in our model. For a surface located in the x´ ă 0

region before the shock, the area is simply that of the original black hole, while the

entropy is computed from the first case in (3.30).

Sgen “
φ

4GN

` S, φ “ φ0 ` 2φ̄r
1´ pπT0q

2x`x´

x` ´ x´
,

S “ 2k
φ̄r

4GN

«

log

˜

24πES
εc

´x´px` ´ tqtu

x`pt´ x´q
a

f 1puq

¸

` G
ˆ

tpx` ´ x´q

x`pt´ x´q

˙

ff (4.6)

We have here defined Gpηq “ 6
c

logGpηq for brevity of notation; in particular Gp1q “ 0.

We now simply make the ansatz that the deviation from the horizon is small, taking

x˘ ¯ 1
πT0

of order k, and solve for stationarity of Sgen in the k Ñ 0 limit.

1

πT0

´ x` „
k

pπT0q
2
pη ´ ηp1´ ηqG 1pηqq (4.7)

x´ `
1

πT0

„
k

pπT0q
2

ˆ

η

1´ η
´ ηG 1pηq

˙

(4.8)

η “
2πT0t

1` πT0t
(4.9)

This solution describes a QES that starts at the bifurcation surface at t “ 0, moves

outwards in a spacelike direction towards the boundary, before bending to an almost

null path that runs along the horizon, approaching constant outgoing coordinate x`.

When parameterized in terms of the Poincaré time t on the boundary, this family

of surfaces moves steadily along the horizon, and can be continued far away from the
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bifurcation surface, beyond the point where our approximation breaks down. However,

in terms of the physical time u, they end up settling at final location, because as uÑ 8,

t approaches a finite limit t8 „
1
πT1

ă 1
πT0

. In the limit where the shock from turning on

the coupling adds much more than a thermal unit of energy (ES " T0, or equivalently

T1 ´ T0 " k), this location is sufficiently close to the bifurcation surface to be within

the regime of our approximation:

1´ η Á
T1 ´ T0

T1 ` T0

(4.10)

For sufficiently early times, we have 1´η „ e´2πT1u, until η settles down to its maximum

for u Á ´ 1
T1

log
´

T1´T0
T1`T0

¯

.

We can now evaluate the generalized entropy on the extremal surface, to track the

fine-grained entropy of the black hole (this equation valid for times u ! k´1):

Sgen „
φ0 ` 2πT0φ̄r

4GN

`
c

6
log

ˆ

24πES
εc

u sinhpπT1uq

πT1

p1´ ηq

˙

`
c

6
Gpηq (4.11)

At vey early times, we have a large logarithmic increase in the entropy, due to produc-

tion of short-distance entanglement with the bath; we should take this seriously only

for times larger than the regulator scales ε and E´1
S , so the entropy here increases from

the equilibrium value. Next, the logp1 ´ ηq term takes over, giving a linear decrease

in entropy as thermal Hawking radiation escapes into the bath. Eventually, after a

scrambling time

tmin S “
1

2πT1

log

ˆ

T1

T1 ´ T0

˙

“
β1

2π
log

ˆ

EpT1q

ES

˙

(4.12)

for EpT1q the energy of a black hole at temperature T1 and T1´T0 ! T0, η settles down

to its maximum, entropy reaches a local minimum, and then entropy begins to increase

linearly. The system begins to access all the extra states opened up by the addition

of energy, so we have an increase in thermal entropy purified by the outgoing Hawking

radiation, at rate c
6
πT1. The black hole is now ‘young’, in the sense that its fine grained

entropy is less than the thermodynamic entropy at same energy. This linear increase

is the first part of the familiar Page curve [45], though for an old black hole after a

perturbation rather than for a hole formed recently from collapse. We note that the

time (4.12) is precisely of the form anticipated in section 1.1 with coefficient αS “ 1.

The surfaces described here are the only relevant solutions to the quantum extrem-

ization equations for x´ ă 0. There exists another family of surfaces at small negative

x´ which extremize Sgen, but these always have much larger generalized entropy.

– 26 –
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u

S

Figure 5. The von Neumann entropy of the black hole, as computed from the generalized

entropy on the quantum extremal surface, at early times after coupling to the bath. In this

plot, we have T0 “
1

2π and T1´T0
T0

“ 10´10.

4.3 A QES inside the shock

The next place for a quantum extremal surface to exist is inside the shock itself, at x´

very close to zero. While we do not have a microscopic model for the entropy within the

shock itself, these details will not matter, and we can focus on the generalized entropy

for small negative or positive x´, just before or after the shock falls in.

Expanding the entropy near the shock, we have the following:

S „
c

6
log

«

2upx` ´ tq

εx`
a

f 1puq

ff

`
c

6

$

&

%

log
´

12πES

c
´x´

1

¯

x´ ă 0
`

1
x`
´ 1

u

˘

x´ x´ ą 0
(4.13)

We should take the first line seriously only for x´ " E´1
S (which can be very close to the

shock because we are taking ES " 1). For an interval that straddles the shock, there

is a large, logES contribution to the entropy, from entanglement between the shock

falling into the black hole and its counterpart propagating into the auxiliary system.

The entropy drops off rapidly as we approach x´ “ 0, since the initial product state

between system and bath carries no short-distance entanglement.

To look for a quantum extremal surface, we first extremize the generalized entropy

in the B` direction, using the dilaton φ´ φ0 “
2φ̄r
x`

:

B`Sgen “ 0 ùñ x` “
t

1´ kt
(4.14)

Since the dilaton is decreasing as a function of x`, we need to balance this against

a rapid increase from the entropy. This comes from the lightcone singularity as x`
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approaches t, a phenomenon we will revisit later. At this location, the generalized

entropy is maximal for variations parallel to the shock.

For a quantum extremal surface to exist on the shock, we will also require that the

generalized entropy is locally minimal under variations in the outgoing, x´ direction:

4GN

φ̄r
B´Sgen „

#

2 1
px`q2

´ 2pπT0q
2 ` 2k

x´
x´ ă 0

2 1
px`q2

´ 2pπT1q
2 ` 2k

x`
´ 2k

u
x´ ą 0

(4.15)

It appears that the singularity in the entropy will cause this to be decreasing just before

the shock, but generically this will only be large enough to overcome the large dilaton

increase within the microscopic scale of the shock E´1
S , so the result should not be

trusted. However, this is no longer true very close to the horizon, for 1
πT0
´ x` ! kES

T 3
0

,

in which case we can have a quantum extremal surface on the condition that the entropy

begins to increase again for x´ ą 0. This is satisfied as long as

x` ´
1

πT1

À
k

2pπT1q
2
ùñ t´

1

πT1

À ´
k

2pπT1q
2

(4.16)

Translating this into the boundary proper time, using the expression (2.27) for t ex-

panded to first order in small ku, and the expression (2.24) for t8, we find that there

is a candidate quantum extremal surface supported on the shock for times

u ă
1

2πT1

log

ˆ

8πT1

3k

˙

. (4.17)

The generalised entropy for these surfaces is larger at any given boundary time

than the corresponding entropy (4.11) for the extremal surface we found in the previous

section. This is simply because the area has been increased by the energy from the

shock, and the additional entropy is far too small to make up for it. These surfaces can

never have minimal Sgen, so are not relevant for determining the entanglement wedge.

4.4 Soon after the shock

We now look for quantum extremal surfaces in the region x´ ą 0, to the future of the

coupling to the bath, and the resulting shock of energy. At this point, if one thinks of

a quantum extremal surface as a small perturbation to a classical extremal surface, it

may seem that none should exist in this regime. In particular, for any x´ ą 0, the area

is never close to being stationary under variations in the ` direction.

Nonetheless, the bulk entropy can compete with the area to introduce an extremum

of the generalized entropy which is far from any classical extremal surface. The nec-

essary enhancement of the variation of entropy comes from the large amount of en-

tanglement in the bulk fields at short distances, in particular in the outgoing Hawking
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radiation. Consider the generalized entropy of a surface at some fixed x´ as we decrease

x`, moving the surface out towards the boundary in a past null direction. The area

steadily increases all the way, but the entropy at some fixed boundary time decreases,

from the loss of entanglement with the previous Hawking radiation. When the surface

approaches null separation from the boundary time of interest, the rate of decrease of

entropy is sufficient to overcome the increase in area, so the generalized entropy has a

maximum in this direction. This will typically happen close to the apparent horizon,

in which case the variation of area along the horizon is in any case small. It is then un-

surprising that the area can also be extremized in the direction parallel to the horizon,

leading to our quantum extremal surface.

To see this more quantitatively, take first the case when x´ is of order one. At this

early time, for many purposes we can ignore the backreaction resulting from the slow

leakage of energy into the bath, so can take the dilaton profile of the static black hole

solution with temperature T1 (including the effect of the shock). For extremizing in the

x` direction, the only relevant piece of the bulk entropy is proportional to logpx`´ tq,

quantifying the entanglement of outgoing modes. Keeping only these terms, we find

4GN

φr
B`Sgen „ ´2

1´ pπT1x
´q2

px` ´ x´q2
`

2k

x` ´ t

ùñ x` ´ t „
k

pπT1q
2

1´ πT1x
´

1` πT1x´
, (4.18)

where in the last equation we have also approximated t, x` „ 1
πT1

, which is required

for the quantum extremal surface to exist in the x´ ą 0 region.

Now it remains only to extremize in the x´ direction, along the horizon. Close

to the horizon, the variation of the background dilaton is suppressed (proportional to

x` ´ 1
πT1

), so we must also include the backreaction:

px` ´ x´q2B´

ˆ

I

x` ´ x´

˙

„

ż x´

0

dtpx` ´ tq2
"

tanh´1
pπtT q

πT
, t

*

„
2x´

1` πT1x´

(4.19)

Combining this with the unbackreacted term, where we use (4.18) to determine the

deviation of x` from the horizon, we find

B´φ „ φ̄r

ˆ

p2πT1q
2p1´ πT1x

`q

p1´ πT1x´q2
`

2pπT1q
2kx´

p1` πT1x´qp1´ πT1x´q2

˙

(4.20)

Finally, we need the variation of the entropy. We use the early time, unbackreacted

solution of the reparameterization, fpuq „ 1
πT1

tanhpπT1uq, so in particular we have
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f 1py´q „ 1 ´ pπT1x
´q2. For times u " 1, the variation of the logpu ´ y´q term is

negligible.

B´S “
c

6

πT1

1´ pπT1x´q2
(4.21)

Putting this together we find

4GN

φ̄r
B´Sgen „

p2πT1q
2

p1´ πT1x´q2

„

p1´ πT1x
`
q `

k

2πT1

1

1` πT1x´



, (4.22)

which gives us our condition for quantum extremality in the ´ direction:

B´Sgen “ 0 ùñ x` ´
1

πT1

„
k

2pπT1q
2

1

πT1x´ ` 1
(4.23)

This locates our quantum extremal surface, which we now write in terms of proper

time u. In the relevant regime, with ke2πT1u of order one, this is related to Poincaré

time by t´ 1
πT1

„ k
p2πT1q2

´ 2
πT1

e´2πT1u (using (2.27), and requiring the expansion (2.24)

of t8).

x´ „
1

πT1

3ke2πT1u ´ 8πT1

3ke2πT1u ` 8πT1

(4.24)

t8 ´ x
`
„ ´

2

3
t8e

´2πT1u (4.25)

For this to be valid, we require that the extremum lies to the future of the shock in

the x´ ą 0 region, so u ą 1
2πT1

log
`

8πT1
3k

˘

. Before this time, this family of surfaces joins

continuously onto those of the previous section, which live somewhere inside the shock.

4.5 Later times

The quantum extremal surfaces found so far have relied on approximations to the

dilaton profile which are valid only at early times, and our result holds only when

e´2πTu " k2. Going to higher orders in the small parameter k does not help much:

it would extend validity to times when e´2πTu scales as a higher power in k, which

accesses only a few scrambling times. To go to times of order k´1, when a significant

fraction of the black hole has evaporated, we require a different approach to treat the

dilaton. The idea is to determine the dilaton by working backwards from very late

times, and using the fact that it vanishes on the boundary at the Poincaré time t “ t8,

corresponding to uÑ 8 in proper time. This prevents the exponential growth of errors

in the approximations we make.

We continue the same intuition that the lightcone singularity balances the area in

the ingoing direction, making the ansatz t8 ´ x` ! t8 ´ x´ to put the surface close
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to the horizon. Begin with the variation of the dilaton in the plus direction, using the

integral expression (2.32) for the effect of backreaction:

px` ´ x´q2B`φ “ φ̄r

«

2pπT1x
´
q
2
´ 2´ k

ż x´

0

dtpx´ ´ tq2tu, tu

ff

(4.26)

The right hand side is a function of x´ only, which must be negative for any x´ ă t8,

since φ goes to infinity at the boundary. At x´ “ t8, it vanishes, so in that limit the

integral must give

I8 “

ż t8

0

dtpt8 ´ tq
2
tu, tu “

2

k
ppπT1t8q

2
´ 1q. (4.27)

We can now work backwards from this result to estimate the integral fo x´ in the

range of interest, corresponding to ingoing time y´ of order k´1:

B´

ż x´

0

dtpx´ ´ tq2tu, tu “ 2

ż x´

0

dtpx´ ´ tqtu, tu

„

ż x´ x´ ´ t

pt8 ´ tq2
dt

„ ´ log

ˆ

t8 ´ x
´

t8

˙

`Op1q

ùñ

ż x´

0

dtpx´ ´ tq2tu, tu „ 2
k
ppπT1t8q

2
´ 1q ` pt8 ´ x

´
q log

ˆ

t8 ´ x
´

t8

˙

Here we use a late time approximation for tu, tu, for which the peak of the integrand

at t8 ´ t “ 2pt8 ´ x
´q gives the logarithm.

We can now assemble the pieces to give the desired variation of the dilaton:

B`φ „ ´φ̄r

„

p2πT1q
2 t8
t8 ´ x´

´
k

t8 ´ x´
log

ˆ

t8
t8 ´ x´

˙

(4.28)

„ ´4πT1φ̄r
e´

k
2
y´

t8 ´ x´
(4.29)

In the second line, we have used the approximate form (2.27) for the reparameterization

to substitute x´ “ fpy´q.

To extremize the generalized entropy, we balance this against the lightcone singu-

larity in the entropy as before:

4πT1
e´

k
2
y´

t8 ´ x´
„

2k

x` ´ t
(4.30)
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Now look at the variation of the dilaton parallel to the horizon:

px` ´ x´q2B´φ “ φ̄r

«

2´ 2pπT1x
`
q
2
` k

ż x´

0

dtpx` ´ tq2tu, tu

ff

(4.31)

To analyse the integral, we expand in powers of t8´x
` and use the same approximation

for tu, tu as before:

ż x´

0

dtpx` ´ tq2tu, tu ´ I8

“ pt8 ´ x
`
q
2

ż x´

0

dttu, tu ´ 2pt8 ´ x
`
q

ż x´

0

dtpt8 ´ tqtu, tu

´

ż t8

x´
dtpt8 ´ tq

2
tu, tu

„
pt8 ´ x

`q2

2pt8 ´ x´q
` pt8 ´ x

`
q log

ˆ

t8 ´ x
´

t8

˙

´ 1
2
pt8 ´ x

´
q

This matches a result from early times. We can neglect the term quadratic in t8´ x
`,

but the others can be relevant, as seen in the variation of the dilaton:

B´φ „
φ̄r

pt8 ´ x´q2

„

4πT1pt8 ´ x
`
q ` kpt8 ´ x

`
q log

ˆ

t8 ´ x
´

t8

˙

´ k
2
pt8 ´ x

´
q



„
φ̄r

pt8 ´ x´q2

”

4πT1pt8 ´ x
`
qe´ky

´{2
´ k

2
pt8 ´ x

´
q

ı

Finally, we compute the variation of the entropy. The u´ y´ term is unimportant,

but we must include the
a

f 1py´q term:

Bx´ log f 1py´q „ ´
1

t8 ´ x´
(4.32)

From this, we get the variation of the bulk entropy,

B´S „
c

12

1

t8 ´ x´
, (4.33)

to find

4GN

φ̄r
B´Sgen “

1

pt8 ´ x´q2

”

4πT1pt8 ´ x
`
qe´ky

´{2
` k

2
pt8 ´ x

´
q

ı

, (4.34)

and hence

x` ´ t8 „
k

8πT1

pt8 ´ x
´
qeky

´{2. (4.35)
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The important term in the variation of the bulk entropy appearing here has a sim-

ple interpretation that becomes clearer when rewritten in terms of the variation with

respect to y´:
BS

By´
„ ´

c

12
2πT1e

´ky´{2

Over periods of time small compared to k´1, for which the black hole can be regarded

as almost static, this variation is approximately constant, and in fact equal to minus

the (left-moving half of the) entropy density of the matter CFT at the temperature

2πT1e
´ky´{2 of the black hole at the relevant time. This entropy can be thought of as

arising from the absence of the ingoing thermal matter that would be present in the

Hartle-Hawking state (for which the entropy is constant by SLp2q invariance), but has

instead escaped into the bath.

Putting this together with extremization in the x` direction, we can locate the

quantum extremal surface:

x` ´ t8 „
t8 ´ t

3
(4.36)

t8 ´ t „
3k

8
t8e

k
2
y´
pt8 ´ x

´
q (4.37)

At this ingoing time x´, we have

t8 ´ x
`
„

$

’

’

&

’

’

%

´1
3
pt8 ´ tq (QES)

0 (event horizon)
1
3
pt8 ´ tq (apparent horizon B´φ “ 0)

(4.38)

so the QES is the same distance inside the event horizon as the apparent horizon is

outside.

Expressing this entirely in terms of the boundary proper time u and corresponding

ingoing coordinate y´, we have our final location for the quantum extremal surface:

u „ y´ `
e

k
2
y´

2πT1

log

˜

8πT1e
´ k

2
y´

3k

¸

(4.39)

In the case that this is the quantum extremal surface of minimal generalized entropy

(of which more in a moment), this gives a beautiful quantum geometric realization of

the Hayden-Preskill experiment. The quantum extremal surface demarks the region of

spacetime to which the system has access. This region is bounded to the future by the
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event horizon5, and to the past by the ingoing time y´ solving (4.39). If we throw in

a message which falls behind the horizon before this time its information is lost to the

system, and obversely, is retrievable from the Hawking radiation in the bath, combined

with the purifying system (the other side of the black hole). The time delay apparent

in (4.39) is precisely the scrambling time, with β “ e
k
2 y´

T1
being the thermal scale at

that time. Indeed, this delay may be written

tHP “
β

2π
log

„

16

c
pS ´ S0q



, (4.40)

with S the density of states at time u on the boundary. This result is precisely of the

form (1.5) with coefficient αHP “ 1 up to the interesting-but-tiny correction β
2π

log
`

8
c

˘

.

We find that the scrambling time is slightly reduced large c, because more bulk degrees

of freedom encode proportionally more information in the Hawking radiation. One is

tempted to associate this correction with a c-dependent minimal δE in (1.4), but this

remains to be understood in detail.

We now compute the generalized entropy associated to these surfaces. Since the

QES is very close to the event horizon, to leading order it suffices to evaluate the dilaton

on the horizon x` “ t8 by the integral (2.31):

Ipx` “ t8, x
´
q “

ż x´

0

dtpx´ ´ tqpt8 ´ tqtu, tu (4.41)

To do this, we use the same approach as before, using the fact that it approaches I8
as x´ Ñ t8, and estimate the derivative at late times:

B´Ipt8, x
´
q “

ż x´

0

dtpt8 ´ tqtu, tu

„

ż x´ dt

2pt8 ´ tq

„ ´1
2

logpt8 ´ x
´
q

ùñ Ipt8, x
´
q „ I8 `

1
2
pt8 ´ x

´
q log

ˆ

t8 ´ x
´

t8

˙

5This is the outside of the horizon in the event that evaporation continues to very late times.

However, if we stop evaporation at some earlier time, the event horizon will be further out, due both

to the necessary positive energy shock from turning off the coupling and the Hawking radiation that

no longer is allowed to escape. Indeed, from (4.39) we see that the QES lags a scrambling time behind

the boundary time so that an ingoing Op1q positive energy pulse from switching off the coupling has

a large effect on its location relative to the final future event horizon.
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Figure 6. The location of quantum extremal surfaces as boundary time evolves (solid blue

curves). The dashed lines indicate the original horizon before coupling to the bath, and the

final event horizon. The red line indicates the shock at x´ “ 0. The dotted blue line is the

non-minimal quantum extremal surface before the Page time phase transition.

This gives us the dilaton value on the horizon, where the quantum extremal surface is

located:

φ „ φ̄r

„

2πT1 `
k
2

log

ˆ

t8 ´ x
´

t8

˙

(4.42)

„ φ̄r2πT1e
´ k

2
y´ (4.43)

This gives the unsurprising result that the dilaton at the horizon matches the thermo-

dynamic entropy associated with the energy at the corresponding ingoing time. As a

further check, it is also consistent with the earlier result for the B´ variation of the dila-

ton. The bulk entropy gives a subleading contribution to Sgen; its gradient competes

with the area term, but the quantity itself does not.

We note that an alternative way to perform the analysis at late times is to use the

AdS isometries to change to a set of coordinates adapted to the time in question, which

we discuss briefly in section 6.

The quantum extremal surface of section 4.2, which dominates at early times, gives

a linearly increasing generalized entropy starting close to the entropy of the original

black hole, with temperature T0. The new surface we have found has genralized entropy

which decreases linearly, but starting close to the thermodynamic entropy associated

to the perturbed black hole after the shock, of temperature T1. The latter is initially
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larger, but at a time of order tP „ k´1 T1´T0
T0

they exchange dominance, and our new

surface becomes the quantum extremal surface. We interpret this phase transition with

the Page time6, when the black hole once again becomes old; see figure 6.

With these two families of quantum extremal surfaces, the generalized entropy

perfectly reproduces the Page curve, indicative of unitary evaporation. The entropy

increases at early times, since the outgoing Hawking radiation is entangled with the

remainder of the system. This continues until the entropy of the black hole is close to

its maximum at the given energy, at which point the entropy can only reduce, implying

that the radiation is purified by early radiation (here including the left side black hole).

It is striking, and perhaps surprising, that we have recovered the Page curve from

a semiclassical calculation. However, we emphasize that this does not resolve the

information paradox, since it supposes that the generalized entropy of the quantum

extremal surface correctly captures the fine-grained entropy of the black hole, without

explaining the required correlations between early and late Hawking radiation. Indeed,

the state of the matter in the bath at late times does not contain such correlations, and

calculating the entropy of the bath from (3.26) points towards this loss of unitarity:

Sbath „
φ̄

4GN

4πT1p1´ e
´ k

2
u
q (4.44)

This increases for all time, at the rate given by the current temperature, approaching

the entropy of a black hole at temperature 2T1.

Due to the large ground state entropy of R, there is no immediate contradiction

between (3.26) and unitarity. In particular, the Araki-Lieb inequality is always satis-

fied. However, Sbath can be made arbitrarily large by successive iterations of injecting

additional pulses of low-entropy energy into the black hole and further evaporation into

the bath. In this way one demonstrate information loss as a violation of the Araki-Lieb

inequality while remaining in the near-extremal regime throughout the evaporation.

We will discuss such issues further in section 6.

4.6 Summary

Since the final discussion in section 6 will focus on more conceptual issues, we now

pause to summarize the above technical results. In doing so, it is useful to take the

viewpoint that begins with 3 systems L,R,B which at first do not interact. Here L,R

are both AdS2 black holes, and the black holes are highly entangled. The bath B

begins in its ground state. This initial state is then perturbed by turning on a coupling

between R and B, localized at the boundary of both systems. The coupling is then left

on and becomes time-independent after a short initial transient.

6A.A. thanks G. Penington for discussion of this point.
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The primary object of our study was the location of quantum extremal surfaces

defined by the bulk entropy between an interior point and a point on the cut-off bound-

ary at physical time u. Adding this entropy to φ0`φ
4G

gives the generalized entropy, and

for each u any QES are identified by extremizing the result with respect to the internal

point. Our results then concern the evolution of such QES with u.

Before the coupling is turned on, there is a unique QES that (due to symmetry)

agrees precisely with the classical extremal surface at the bifurcation surface of the

original black hole horizon. After the coupling is turned on, this QES moves out

toward the boundary in a spacelike direction. Several transient effects then occur

whose effects on the entropy of the system were shown in figure 5. These effects are

easily understood in terms of bulk quantum field theory with perturbative gravitational

back-reaction. Switching on the coupling causes an initial sharp increase in entropy

due to the production of short-distance entanglement between R and L. This is then

followed by a decrease in entropy due to the escape of thermal radiation from R into

the bath B. However, after a scrambling time β1
2π

log
´

EpT1q
ES

¯

(4.12) one finds that the

effective horizon of the black hole (say, the apparent horizon) has moved even further

outward. As a result, the entropy defined by this QES begins to increase again as

Hawking particles are emitted into the bath and their partners traveling inward add

entropy to R. The resulting linear increase in entropy corresponds to the rising early

entropy in the familiar Page curve of [45].

The entropy associated with this QES in fact continues to rise for all time. The

corresponding entropy thus tracks precisely what one would expect if information were

lost in evaporating black holes. However, since the actual entropy is described by the

QES with the smallest Sgen, this same increase means that the dominant QES is likely

to experience a phase transition at late times if we can identify another QES with

smaller time derivative of Sgen.

Such a new QES can indeed be found emerging from the positive-energy shock

that was produced at the AdS2 boundary by turning on the coupling between R and

B and which then falls into the black hole. The shock heats the black hole to a higher

temperature T1, associated with a higher energy E1 and a higher Bekenstein-Hawking

entropy S1. The new QES is not a small perturbation to a classical extremal surface,

but instead arises because there are surfaces in the classical geometry with sufficiently

small expansions that they can be turned into a QES by quantum effects. Since it sits

close to the new apparent horizon associated with the increased energy of the black

hole, its entropy begins close to S1, which at first significantly exceeds that of the first

QES described above. This means that at the early times shown in figure (4.12), the

new QES has larger entropy and thus is not relevant to determining the entanglement
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wedge.

However, as the back hole continues to radiate and lose energy to B, the new

QES remains close to the apparent horizon and thus slowly decreases in entropy. In

particular, the actual value of Sgen at the new QES remains very close to that of

the classical term φ0`φ
4G

, and thus close to the Bekenstein-Hawking density of states

associated with the (time-dependent and now decreasing) energy of R. In other words,

the Sgen of this QES agrees well with the entropy one would expect if one began with

a maximally-entangled black hole and then watched it slowly evaporate via a unitary

process. It is thus clear that at the relevant notion of the Page time the Sgen of this new

surface will become less that of the other QES described above (whose Sgen continues

to increase). This gives the stated phase transition of the dominant QES and then

reproduces the decreasing part of the Page curve of [45].

It is also useful to note that the 2nd QES moves outward in a spacelike direction as

time passes, though its motion becomes asymptotically null as the black hole reaches

its final extremal equilibrium. The motion of both QES was shown above in figure

6. The worldline of the novel QES is marked as dotted in the region where it fails to

dominate, and then solid where it dominates after the phase transition. This figure

also shows the novel QES approaching the final event horizon from the interior at late

times.

What is not shown in figure 6 is the relation between the physical boundary time

u and the location of the corresponding QES on the solid blue curve. However, as

discussed around equation (4.40) this relation becomes quite simple at late times. In

that limit, the dominant QES for boundary time u lies on the ingoing null geodesic

that was emitted from the boundary at a time u´ tHP with

tHP “
β

2π
log

„

16

c
pS ´ S0q



. (4.45)

This is a holographic manifestation of the Hayden-Preskill effect, where an ingoing

signal disappears from the entanglement wedge of R after the time (4.45) and enters

the entanglement wedge that would be defined by merging L and R; i.e., the signal can

be recovered from the part of the system that describes the complement of the black

hole into which the signal has fallen.

5 Left and Right Quantum Extremal Surfaces

For bulk matter in a pure state, a QES of a boundary region is identical to the QES of

its complement. In particular, in a two-boundary geometry, the QES of the complete
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Figure 7. A Cauchy slice Σ containing the right quantum extremal surface XR. By assump-

tion, XR splits Σ into two sides, labeled ΣR and ΣL. ΣR is a Cauchy slice of the entanglement

wedge of the right side, while ΣR is not necessarily a Cauchy slice of the left entanglement

wedge. The null vectors `a and ka are normal to XR. While this cartoon is two-dimensional,

this setup is not restricted to any particular number of dimensions.

left boundary is identical to the QES of the complete right boundary whenever the full

bulk state is pure.

In our situation, where the two-sided black hole in question has emitted some

radiation into the bath, however, the bulk state is mixed: the right and left QESs are no

longer required to coincide. Put differently, complementary recovery is not guaranteed

when the bulk state is not pure [46]. This discrepancy between left and right QESs,

which in turn corresponds to the gap between the left and right entanglement wedges,

is an important aspect of our holographic realization of the Hayden-Preskill protocol.

Let us therefore investigate the left quantum expansion of the right QES in a

general setting. We consider a generic bulk state in a two-sided (or in principle multi-

boundary) geometry. We will temporarily work in general bulk dimension d ě 2 and

with bulk matter described by any local (not necessarily conformal) quantum field

theory. Assuming, as we have thus far in this paper, that the right (minimal entropy)

QES XR lies in a globally hyperbolic region 7 which is well-described by an approximate

geometry, we consider a Cauchy slice Σ of the bulk spacetime containing XR. The right

QES XR splits Σ into two components: ΣL, the left of XR on Σ, and ΣR, the right of

XR on Σ; see Fig. 7. This allows us to define the right and left reduced density matrices

for bulk quantum fields: ρΣR
“ trΣL

ρ and ρΣL
“ trΣR

ρ, which in turn define the right-

and left- bulk von Neumann entropies of XR: SRrXRs and SLrXRs.

Because XR is a right QES, it is by definition a stationary point of the generalized

entropy functional: the variation of SRrXRs due to shape deformations of XR vanishes

to first order in the deformation. Equivalently, the right quantum expansion of XR in

7Here we mean the appropriate generalization to global hyperbolicity for asymptotically AdS space-

times [47].
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Figure 8. Here ΣR “ C and ΣL “ δAYD. The infinitesimal deformation along `a is labeled

δA and is parametrized by a choice of affine parameter λ` along the `a congruence. The `a

congruence defines a similar split of the future Cauchy slice Σ1 into the right side, δA Y C

and the left side D.

any null direction vanishes. If `a and ka are linearly independent null normals to XR (in

our d “ 2 setup above, these may be chosen to be e.g. along x˘) with affine parameters

λ` and λk respectively, we may schematically write this in the following way:

δS
pRq
gen rXRs

δ`a
“ 0 (5.1a)

δS
pRq
gen rXRs

δka
“ 0, (5.1b)

where S
pRq
gen rXRs is the right generalized entropy of XR. Thus the right generalized

entropy of XR does not change to first order when XR is infinitesimally deformed in a

null direction (or, as noted above, any direction; it will simply turn out to be useful to

work with null vectors).

To compare the left- and right- quantum expansions of XR (and thus ascertain

whether XR is a left QES, and if not, by how much it fails to be one), consider deforming

XR along the ka or `a directions. Since the change in area or in the dilaton for d “ 2 is

independent of whether we evaluate it on the left or right side, the difference between

the left and right quantum expansions is entirely due to the evolution of SRrXRs and

SLrXRs along the null directions.

To track this evolution, we evolve to a new Cauchy slice Σ1 to the future of Σ, and

divide Σ1 into left and right components using `a or ka This is illustrated in Fig. 8 for

`a.

Using the decomposition labeled in Fig. 8 in the `a direction as well as the fact that

XR is a right quantum extremal, we know that as we take δA to zero, parametrized by

the affine parameter λ` along `a, we get:

δSRrXRs “ SrCs ´ SrC Y δAs “ Opλ2
q. (5.2)
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To relate the change along λ` of SL with that of SR, we would like to compare SrD Y

δAs ´ SrDs with SrCs ´ SrC Y δAs. This can be done with a judicious application of

strong subadditivity (SSA) [48] to the system consisting of tδA,C,Hu, where H is the

emitted radiation:

SrC YHs ` SrC Y δAs ´ SrδAY C YHs ´ SrCs ě 0. (5.3)

Using the fact that ρδAYCYHYD is pure, this immediately yields the desired comparison:

SrD Y δAs ´ SrDs ě SrCs ´ SrC Y δAs “ Opλ2
q. (5.4)

So we find that
δS

pLq
genrXRs

δ`a
ě
δS

pRq
gen rXRs

δ`a
“ 0, (5.5)

with the opposite inequality for deformations along the ka direction:

δS
pLq
genrXRs

δka
ď
δS

pRq
gen rXRs

δka
“ 0. (5.6)

That is, XR is, from the perspective of the left side, a quantum “untrapped” (also

called “normal”) surface unless the SSA (5.3) is saturated.

When is SSA saturated? It is saturated strictly when ρδAYCYH is a so-called Markov

state: then the full state can be recovered completely from either of its marginals ρδAYC
or ρCYH . In particular, there exists a (state-dependent) recovery map IA bRC , where

IA is the identity on A and RC is a map from states on C to states on C Y H, such

that [49]:

IA bRCrρδAYCs “ ρδAYCYH . (5.7)

That is, the right QES is a left QES whenever the radiation is sufficiently entangled with

the right entanglement wedge that we can fully reconstruct (in the sense of the recovery

map above) the state of the radiation by just knowing the state of the entanglement

wedge. This is precisely the case e.g. when we throw the radiation back into the left

CFT so that the full bulk state is pure: the two QESs coincide; there is no gap between

the left and right entanglement wedges.

It thus seems reasonable to anticipate that when the right QES is very close to also

being a left QES – such as might be the case when the two surfaces in question are

close to one another 8 – that ρδAYCYH would be very close to a Markov state by some

measure. That is, we may expect that the radiation is sufficiently entangled with the

8Note that approximate extremality does not guarantee proximity of extremal surfaces: the left

quantum expansions of XR being close to zero is not enough to guarantee that there is a neaby left

quantum extremal surface.
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right entanglement wedge that we may approximate its state using the state-dependent

maps above.

In the context of type I von Neumann algebras, this can be made precise. The

failure of saturation of strong subadditivity is bounded from below [50, 51]:

SrCYHs`SrCYδAs´SrδAYCYHs´SrCs ě ´2 log

ˆ

sup
RC

F rρδAYCYH |IA bRCpρδAYCqs

˙

.

(5.8)

Here F is the fidelity between the state ρδAYCYH and a state we obtain from a recovery

map acting on ρδAYC , IA bRCpρδAYCq; the supremum is taken over all recovery maps

(this is sometimes termed “fidelity of recovery” [52, 53]). This suggests that if our

right QES is close to being a left QES, then our state is very well approximated by a

Markov state, the radiation H is entangled mostly with the right entanglement wedge,

and there exists a state-dependent recovery map giving a good approximation of H

from C. More precisely, ρδAYH is close (as measured by the fidelity) to a product state.

Thus far our discussion in this section has been for general holographic systems.

Let us now carry out the explicit calculation comparing the left and right quantum

expansions of the right QES for our D “ 2 black hole with conformal matter (we

will see that SSA is very far from saturation in our system). For simplicity, we focus

on the late (but not very late) time region where the (minimal entropy) right QES

XR lies entirely to the future of the shock (as illustrated in Fig. 9). To evaluate the

left quantum expansions in the x` and y´ directions, consider a partial Cauchy slice

extending from XR to the left boundary. Unitarity of the bulk theory allows us to

wiggle the Cauchy slice in any way we want, and for convenience we break it up into

a null, constant x` component to the future of the shell and a component to the past

of the shell. By Eq. 3.24, the renormalized entropy of intervals to the past of the shell

in the Poincaré vacuum is independent of the interval, so it does not contribute to the

derivative of SLrXRs in either the x` or y´ directions.

We first consider the left- and right- quantum expansions in the y´ direction,

which in the discussion above corresponds to the ka direction. This calculation is

particularly simple, since the the right interval can be broken into two null intervals:

from xb “ fpybq to px`, ybq and from px`, ybq to px`, y´q, the coordinates of XR. The

interval of interest in for the left quantum expansion, which we shall call D, extends

from px`, 0q to px`, yq. This is illustrated in Fig. 9. Using (3.29), we immediately

obtain the following expressions for the difference in the expansion along y´ is:

By´S
pRq
gen rXRs ´ By´S

pLq
genrXRs “

cyb
12ypy´ ´ ybq

ă 0, (5.9)

where the inequality follows from the fact the by assumption the right QES lies to the

future of the shock, and 0 ă y´ ă yb (as a sanity check, this is consistent with the
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C

D
XR

Figure 9. Breaking up the right interval and left intervals into null components for the

calculation of the change in the entropy of XR with variations along y´. The red line is the

shell.

sign expected from strong subadditivity). We note that as desired, the inequality is

not saturated: the right QES fails to be a left QES (in fact, the difference is large). As

explained above, we may interpret this as a manifestation of the fact that the radiation

is far less entangled with the right half of the black hole than what would be necessary

for us to recover even approximately the state of the radiation purely from knowing

the state on this side of the black hole.

For completeness, we will also compute the difference in left- and right- quantum

expansions in the x` direction, which in the above conventions corresponds to the `a

direction. Using the same decomposition of the left interval as above, we obtain:

Bx`S
pRq
gen rXRs ´ Bx`S

pLq
genrXRs “

c

12px´ xbq
ą 0. (5.10)

Again the inequality (which has the correct sign dictated by strong subadditivity) fails

to saturate by a large amount, as expected by the considerations above.

Finally, we have here used the fact that the failure of the right QES to achieve left

quantum extremality is parametrized by the failure of a state to be Markovian; this is

bounded from below by the failure of recovery maps on the right entanglement wedge to

approximate the state of the radiation (where this failure is measured by the fidelity).

It is tempting to use this non-saturation of strong subadditivity for generic states to

attempt to prove that in general right and left QESs do not coincide. However, this

is where we must be careful with the discreteness of the bound in (5.8). To prove

that (5.3) is not saturated, we must show that the failure of SSA to saturate scales

no faster with λ than Opλq as we shrink δA to zero. If it goes to zero any faster,

the first derivative – i.e. the quantum expansion – will not be sensitive to it. The

bound (5.8) applies to discrete systems and thus contains no immediate information
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on a continuously shrinking region. It is only indicative of the statement that the

inequality is not, generically, saturated to all orders in λ. Even in the discrete model,

it is unclear to us whether the nonsaturation will be linear in λ (though the fact that

the sign of the inequality flips when λ Ñ ´λ does suggest that the a linear scaling is

consistent). It may be possible to use different techniques to find the scaling order; we

leave this to future work.

6 Discussion

The main outcome of our work was to show that Quantum Extremal Surfaces (QES)

accurately described the expected unitary evaporation of black holes. While we focused

on a particular model in low dimensions, we will shortly describe why a similar story

must occur in much more general contexts. Crucially, we identified a novel QES that

cannot be described as a small quantum correction to a classical extremal surface.

Instead, this QES arises only due to quantum effects. We will return to the apparent

tension in this statement below, but for the moment comment only that this new QES

begins to dominate at the Page time, and that the corresponding quantum-HRT phase

transition is directly responsible for the fact that our entropy decreases after the Page

time as predicted by unitarity. See also section 4.6 for a succinct summary of our

technical results.

We now reiterate these results with an eye toward interesting conceptual issues and

future directions. The objective of sections 2-4 was to track the QES under one-sided

evaporation of a two-sided thermofield-double-like black hole with initial temperature

T0. At some finite time we turned on a coupling that allowed the right side R of our

system to freely radiate into a bath B. Although we worked only at the level of pertur-

bative quantum corrections to classical solutions, the QES behaved in ways consistent

with general expections from non-perturbative unitary evolution. In particular, the ini-

tial switching on of the coupling induces correlations between R and B which increase

the entropy of R and also Sgen of the right QES by an amount SS. The switching

operation also injects energy ES into our black hole, with ES " T0 so that the density

of states of R now significantly exceeds Sgen of the QES. But this new energy takes

some time to scramble, so as shown in figure 5 for a scrambling time (with coefficient

αS “ 1 the system proceeds as if this new phase space had not opened up. In particu-

lar, Sgen at the QES decreases for a time β0
2π

log E
ES

(4.12) as expected from (1.4) with

coefficient αS “ 1), and then increases again as the emission of Hawking radiation after

this scrambling time creates more entanglement between R and B.

Further emission of Hawking radiation continues to cause the generalized entropy

of the QES to increase while the energy of R and thus its density of states decreases.
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Unitarity would require this behavior to change at what we may call the Page time for

this setup when the two become equal. Thus far the QES itself has moved continuously

in a spacelike but nearly-null direction9. But at this Page time there is a phase tran-

sition such that continuous deformations of the original QES no longer have minimal

Sgen.

Instead, another family of QESs becomes minimal after the Page time. The new

family lies closer to the boundary than the ingoing pulse of energy ES; see figure 6. In

this new family of QESs, Sgen is a decreasing function of time that largely tracks the

density of states of R as determined by its energy. Indeed, in the asymptotic future,

Sgen becomes equal to the ground-state entropy of R up to a term associated with the

coupling to B. Furthermore, this QES lies close to the future event horizon of R, and

has an ingoing null coordinate that at late time lags that of the time-evolving boundary

by precisely tHP “
β
2π

log
“

16
c
pS ´ S0q

‰

(4.40), where S is the density of states of R at

the given time and S0 is the ground state entropy. As described in section 1.1, such

a lag is to be expected from the holographic description in [24] of the Hayden-Preskill

protocol [23]. Note that the above scrambling time is not just as a rough timescale in

our calculation, but as a sharp threshold. In particular, we find the coefficient to be

αHP “ 1 in (1.5). We may thus say that it gives the Hayden-Preskill delay time for

our system in the limit of small messages.

It is tempting to associate the correction β0
2π

log 16
c

to (1.5) with a c-dependent

minimum δE in (1.4), but this remains to be understood in detail. It would also be

very interesting to reproduce both this term and the coefficients αHP “ 1 and αS “ 1

from a calculation in an SYK model [54–56] or the like. It would also be interesting

to compare our results with analogous calculations for higher dimensional black holes.

On general grounds one expects similar behavior, but one would like to understand the

extent to which the coefficients αSmin “ αHP “ 1 and 16
c

found here are universal and

the extent to which they depend on properties of the black hole.

The fact that bulk entropy, which for us generally does not exceed OplogGNq, could

significantly affect the location of the QES was due to the presence of large gradients

in this entropy. Such large gradients arise naturally in the context of evaporating black

holes from the well-known large boosts. It would be interesting to understand if such

large gradients in entropy might somehow invalidate the semiclassical approximation

used here, though we see no immediate reason for this to be the case10. Indeed, the size

9The fact that the QES moves in a spacelike or nearly-null direction towards the boundary R

provides an important consistency condition for the case at hand where the extracted energy from

R is immediately deposited in L as it precludes any bulk causal signaling from the left entanglement

wedge to the right entanglement wedge.
10We thank D. Harlow for discussion on this point.
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of such gradients is coordinate dependent, and with an appropriate choice of outgoing

coordinate, the gradient of the entropy is of order one, and the gradient of the dilaton

is suppressed by a factor of GN .

This occurs naturally if we choose coordinates adapted to the boundary time of

interest, in which case gradients of the dilaton a scrambling time in the past are sup-

pressed by the familiar exponential divergence of trajectories near the horizon. One

such set of coordinates is obtained by applying an AdS2 isometry (an SLp2,Rq trans-

formation γ, defining t̃ “ γptq, x̃˘ “ γpx˘q), a Rindler boost chosen such that t̃ “ 0

corresponds to a proper time u0 of order k´1. In the new x̃˘ coordinates11, the metric

retains the same form (3.1), and the dilaton profile is approximately given by the static

black hole solution (2.11) with temperature T̃ “ e´ku0{2T , reflecting the fact that black

hole is evolving adiabatically. This approximation to the dilaton profile is valid for a

range of ingoing times of order k´1, so in particular remains a good approximation a

scrambling time („ log k´1) in the past, where the QES resides. In such coordinates,

the QES lies near the would-be classical bifurcation surface at x̃` “ 1
πT̃

, x̃´ “ ´ 1
πT̃

of

the comparison static spacetime, though the actual evolving spacetime lacks a classical

extremal surface in this region since the approximation for the dilaton breaks down

for sufficiently small x̃´ ` 1
πT̃

. This perspective makes it particularly clear that the

existence of the QES is rather universal, being insensitive to the history of the black

hole after a few scrambling times.

The transition of the QES after the Page time is directly related to the growing

gap between the left and right QESs, which we expect is a consequence of the grow-

ing entropy of the bath. Indeed, this expectation can be sharpened in the situation

where our system can be well-approximated by a type I von Neumann algebra, the

amount by which the right QES fails to be a left QES is related to the failure of any

(state-dependent) map acting purely on the right CFT to approximate the state of

the radiation. This failure can be directly attributed to the entanglement of the bath

with the left CFT: the inaccuracy of the approximation is a consequence of the density

matrix ρLB not factorizing. One may speculate that the spacetime in between the two

entanglement wedges may (in some appropriate sense) be emergent from entanglement

with the bath.

Let us now discuss similar considerations in more general evaporating black holes.

A model of this type closely related to our calculations above is given by starting with

11Explicitly, we can choose du
dt̃
“ 1 and d2u

dt̃2
“ 0 at the time t “ t0, u “ u0, in which case we find

t̃ “ γptq „
1

πT̃

t´ t0
2t8 ´ t0 ´ t
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our thermofield double state and and some time turning on couplings to a pair of

auxiliary baths BL, BR. Both BL, BR begin in their ground state. The coupling to

BR is precisely as above and involves only our right system R, but we also introduce a

corresponding coupling of BL to R. Bulk causality then requires that the computation

of the right quantum extremal surface is as before, and that the left quantum extremal

surface behaves similarly. The joint system LR is a black hole that begins in a pure

state (the thermofield double), radiates into BL and BR, and initially increases in

entropy. In the semiclassical description of the bulk dual to LR we see this increase in

entropy through the increase of entropy of bulk quantum fields. Indeed, the boundaries

are homologous to the empty set, for which the generalized entropy at order 1{GN is

precisely the bulk entropy on a complete Cauchy slice through the bulk spacetime.

However, an interesting transition occurs if such radiation continues past the Page

time, where the bulk entropy Sbulk on our Cauchy slice becomes greater than the density

of states SLR of LR. As this requires the original Bekenstein-Hawking entropy to exceed

the ground state entropy by more than a factor of 2, remaining in the near-extremal

limit where our JT model is a controlled approximation to known dualities requires that

this be achieved by repeatedly injecting a large number of low-entropy pulses of energy

into the bulk and then waiting for the bulk to Hawking radiate this into the bath before

sending in the next pulse, though one may alternatively study higher-dimensional AdS

models where controlled dualities describe far-from-extremal black holes. In either

case, at late times we will find a new QES close to each horizon, since the relevant

regions of the spacetime become adiabatically close stationary black holes so that we

may again apply our earlier considerations.12. Since energetic considerations will force
A

4GN
« SLR, beyond the Page time one finds Sbulk ą

A
4GN

, so the quantum extremal

surface with minimal generalized entropy is then near the horizon and is no longer

the empty surface. In this way the quantum extremal surface undergoes a first-order

12One may also give an alternative argument using a maximin definition of the quantum extremal

surface analogous to the classical HRT surface discussion in [2]; the arguments of [2] also apply to 1+1

quantum extremal surfaces so long as one assumes the quantum focusing conjecture of [44] (though

there are some subtleties in the choice of Cauchy slice used to define the entropy in the quantum

focusing conjecture when the black hole is an open system). Suppose that one turns off the coupling

at some late time, constructs a new spacetime from the appropriate late-time Cauchy data in the

original spacetime, and studies Sgen for surfaces in the resulting new spacetime. The new spacetime

is essentially AdS-Schwarzschild outside the horizon, but has a long one-sided wormhole (with a large

causal shadow) inside. On any Cauchy surface, there will be some surface not too far inside the black

hole and satisfying the homology constraint with area less than 4GNSXL, and thus with generalized

entropy also close to or smaller than 4GNSXL. In contrast, as above the empty set is associated with

greater generalized entropy and so cannot be the maximim surface. Instead, the maximin surface will

must have generalized entropy bounded above by 4GNSXL up to logarithmic corrections.
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phase transition at the Page time. Because the vast majority of the bulk entropy will

be localized inside the black hole and local effects from quantum fields are small, the

entropy of this second QES will be given by the horizon area A
4GN

up to logarithmic

corrections

Similar comments clearly apply to one-parameter families of so-called ‘bag-of-gold’

spacetimes with large regions of spacetime behind a black hole horizon in which the

bulk quantum fields are placed in a mixed state of large entropy. For Sbulk ă
A

4GN
,

the minimal quantum extremal surface is the empty set, but for Sbulk ą
A

4GN
it jumps

to near the black hole horizon; see [24] for recent examples of this phenomenon in the

context of the SYK model. In this context, both quantum extremal surfaces are in fact

near classical extremal surfaces. In both the small and large Sbulk regimes, the dominant

quantum extremal surface indicates that the entanglement wedge is associated with an

entropy less than or equal to the density of states of the system to which it is dual.

Returning to the evaporating black hole, we see that tracking the quantum extremal

surface using only perturbative semiclassical dynamics in the bulk fully reproduces the

expected Page curve, including in particular the decay to zero of the entropy if the

system decays to a non-degenerate ground state. And it is also interesting that it does

so by terminating the entanglement wedge within a short distance of the horizon of the

remaining late-time black hole.

This observation will surely fan the flames of black hole information debates and

on the possible role of firewalls [57–59] in particular. On one hand, the termination

of the entanglement wedge at the edge of the black hole may indicate that no mean-

ingful spacetime exists farther in. On the other, the fact that a purely perturbative

semi-classical model of the bulk defines quantum extremal surfaces that reproduce the

expected Page curve may indicate that the interior spacetime is meaningful, that no

firewall is needed, and that the interior is somehow dual to the (arbitrary!) bath system

(see e.g. [60, 61] for related ideas). Indeed, if the bath were holographic and described

by a bulk that connected to this interior by even a very small wormhole, this would

be the natural conclusion of studying the QES for the bath. While under normal cir-

cumstances the minimal QES would lie at the small wormhole (effectively the trivial

surface discussed above), beyond the Page time the large bulk entropy in the bath

system would move the QES out to the horizon. In this context, for each boundary

time the setting would be much like that of the original ER=EPR discussion [61] with

similar potential implications for black hole information.

However, such an interpretation would return us to the familiar problem that a

perturbative semi-classical bulk description of the radiation does not provide the corre-

lations between Hawking quanta necessary to purify the emitted radiation. In particu-

lar, in the model described above one can use perturbative semi-classical bulk physics
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Figure 10. (Left) For an eternal black hole dual to the thermofield double state, the segments

of the horizons to the past of the bifurcation surface (solid lines) join to form a mostly-null

Cauchy surface. Data in this quantum state then propagates outward to the right and left.

(Right) Turning on a coupling allows some modes from the above Cauchy surface to escape.

But those that reach the boundary before the coupling is turned on are reflected back into

the singularity, and modes close to the original bifurcation surface are focused by an incoming

pulse of positive energy (red lines without arrows) associated with turning the coupling on.

As a result of this focussing, semiclassical physics sates that such modes also fail to escape.

to track precisely the flow of entropy and information into BLBR as was done for BR in

section 4. But since the modes on both right and left that escape into BL, BR remain en-

tangled with both modes that are reflected back into the black hole before the coupling

is turned on and those that lie to the future of all modes that escape, doing so would

find BLBR to end in a highly mixed state; see figure 10. This is directly analogous to

the Araki-Leib violation found for our one-sided evaporation at the end of section 4 in

the context where one executes repeated cycles of exciting the near-extremal JT-bulk

by a small amount and then letting it Hawking radiate into the bath.

In both cases, unitarity thus requires that bulk semi-classical physics fails to cor-

rectly compute the late-time entropy of the bath. A similar failure to correctly compute

the entropy of bulk quantum fields themselves is suggested by noting that in the full

bulk spacetime the predicted entropy of such fields exceeds the density of states in the

dual CFT. Indeed, since this is precisely the feature that led to the QES phase tran-

sition at the Page time, it is interesting to ask if such a phase transition really occurs

in a full non-perturbative treatment. A plausible alternative speculation might be that

the non-perturbative system instead evolves so as to become extremely close to this

phase transition at late times – perhaps even close enough that the concept of a definite

entanglement wedge ceases to be well-defined. On a positive note, however, since the

entropy of semi-classical bulk fields within the entanglement wedge associated with the
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QES after the Page time appears consistent with the dual CFT density of states, it is

at least self-consistent to use semi-classical physics within this wedge and to suppose

that non-perturbative corrections become large only when one probes more deeply into

the bulk.

We thus find that any perspective continues to lead to many open questions. In or-

der to make real progress in such debates it seems critical to understand more precisely

what is meant by duality between field theory degrees of freedom and an entanglement

wedge in the bulk. Thinking of the entanglement wedge as defining the bulk region

that can be reconstructed from the stated degrees of freedom suggests this be done by

further investigating the role of quantum error correction and recovery maps in gravi-

tational holography. We thus look forward to further progress on this front, or on other

related aspects of holographic duality.
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