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Some aspects of real-world road networks seem to have an ap-
proximate scale-invariance property, motivating study of mathe-
matical models of random networks whose distributions are ex-
actly invariant under Euclidean scaling. This requires working in
the continuum plane, so making a precise definition is not triv-
ial. We introduce an axiomatization of a class of processes we
call scale-invariant random spatial networks, whose primitives are
routes between each pair of points in the plane. One concrete
model, based on minimum-time routes in a binary hierarchy of
roads with different speed limits, has been shown to satisfy the
axioms, and two other constructions (based on Poisson line pro-
cesses and on dynamic proximity graphs) are expected also to do
so. We initiate study of structure theory and summary statistics
for general processes in the class. Many questions arise in this
setting via analogies with diverse existing topics, from geodesics
in first passage percolation to transit node based route-finding
algorithms.
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Introduction

We introduce and study a mathematical structure inspired by road
networks. Though not intended as literally realistic, we do believe
it raises and illustrates several interesting conceptual points and po-
tential connections with other fields, summarized in the final section.
Details will appear in a long technical paper [2]. Here we seek to
explain in words rather than mathematical symbols.

Consider two differences between traditional paper maps and
modern online maps for roads, which will motivate two conceptual
features of our model. On paper, one needs different maps for dif-
ferent scales — for the inter-city network and for the street network in
one town. The usual simplified mathematical models involve dif-
ferent mathematical objects at the two scales, for instance repre-
senting cities as points for an inter-city network model [3]. Online
maps allow you to “zoom in” so that the window you see covers less
real-world area but shows more detail, specifically (for our purpose)
showing comparatively minor roads that are not shown when you
“zoom out” again. As a first conceptual feature, we seek a mathemat-
ical model that represents roads consistently over all scales. Next, a
paper map shows roads, and the user then chooses a route between
start and destination. In contrast, a typical use of an online map is to
enter the start and destination address and receive a suggested route.
As a second conceptual feature, our model will treat routes as the
basic objects. That is, somewhat paradoxically, in our model routes
determine roads.

Returning to the image of zooming in and out, the key assump-
tion in our models is that statistical features of what we see in the
map inside a window do not depend on the real-world width of the
region being shown — on whether it is 5 miles or 500 miles. We call
this property scale-invariance, in accord with the usual meaning of
that phrase within Physics. Of course our phrase “what we see" is
very vague; we mean quantifiable aspects of the road network, and
this is best understood via examples of quantifiable aspects described
below Fig. 1, then the mathematical definition below Fig. 2. Note
that scale-invariance is not “scale-free network™, a phrase which has
become attached [5] to the quite different notion of a (usually non-
spatial) network in which the proportion d; of vertices with 7 edges
scales for large i as d; = ¢~ 7 for some ~y. Our title reads true scale-
invariance to emphasize the distinction.

www.pnas.org/cgi/doi/10.1073/pnas.0709640104

More precisely, the property is statistical scale-invariance, and
two analogies with classical subjects may be helpful. Modeling
English text as random seems ridiculous at first sight — authors
are not monkeys on typewriters. But the Shannon theory of “in-
formation” [7] (better described as data compression) does assume
randomness in a certain sense, called stationarity or translation-
invariance. Roughly, the assumption is that the frequency of any
particular word such as “the” does not vary in different parts of a
text. Such an assumption is intuitively plausible, and is very different
from any sort of explicit dice-throwing model of pure randomness.
Analogously, roads are designed rather than arising from some ex-
plicit random mechanism, but this does not contradict the possibility
that statistical properties of road networks are similar in different lo-
cations and on different scales. So, just as information theory imag-
ines the actual text of Pride and Prejudice as if it were a realization
from some translation-invariant random process, we will imagine the
actual road network of the U.S. as if it were a realization from some
random process with certain invariance properties.

A second analogy is with the Wiener process, a mathemati-
cal model in topics as diverse as physical Brownian motion, stock
prices and heavily-loaded queues. The mathematical model is ex-
actly scale-invariant (as explained and illustrated in a dynamic sim-
ulation at [15]) even though the real-world entities it models cannot
be scale-invariant at very small scales. Analogously the exact scale-
invariance of our models is unrealistic at very small scales — we do not
really have an arbitrarily dense collection of arbitrarily minor roads
— but this is not an obstacle to interpreting the models over realistic
distances.

Understanding scale-invariance

To what extent is scale-invariance observed in the real road network?
Here we briefly compare some real data with two predictions based
on scale-invariance. Consider two city centers. The distance by road
will be somewhat longer — maybe 10% or 30% longer — than straight
line distance. Fig. 1 shows, for each pair of cities from the largest 200
U.S. cities, this “relative excess” R (vertical axis) and the normalized
distance between cities (horizontal axis).

This data shows that the average excess is about 18% through-
out the range of distances, while the spread of this excess decreases
noticeably as distance increases. This is consistent with previous
related published data surveyed in [9] and with many possible the-
oretical models for inter-city networks [4]. Now the prediction of
scale-invariance is that, for the road distance D, between two “typi-
cal" points at (straight line) distance r, the probability distribution of
D, /r does not depend on . In other words, in a scatter diagram like
Fig. 1 for typical points one would see a similar distribution in each
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vertical strip. What does “typical" mean? Within our mathematical
models, the assumed translation- and rotation-invariance imply that
the statistical properties of the random network are the same relative
to each pair of prespecified points at distance . For real data for
the U.S. network, we just pick uniformly at random two points at
distance 7 to define D,; the randomness arises from this sampling,
analogous to the randomness in opinion polls arising from random
sampling of voters. But of course the centers of large cities are not
typical points relative to the road network, which is designed to have
fairly direct links between large cities. We suspect that data for truly
random points would show a pattern somewhat more similar to that
predicted by scale-invariance, but we leave this for future study.
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Fig. 1. Scatter diagram of relative excess route lengths R between each pair
from the 200 largest U.S. cities. The horizontal scale is distance, normalized so
that there is on average one city per unit area. The two lines show unweighted
and population-weighted average excess, as a function of normalized distance.
Each average is around 18% at all distances.

Most recent studies of road networks in the physics literature
(e.g. [11] on urban networks) have sought to work within the scale-
free paradigm by studying numbers of intersections of a given road
with other roads (interpretable as degree in a dual graph), rather than
directly formalizing spatial scale-invariance as we do. The only di-
rectly relevant published data we know, in [12], studies proportions
of route-length, within distance-r routes, spent on the ¢’th longest
road segment in the route (identifying roads by their highway num-
ber designation). In the U.S. the averages of these ordered propor-
tions are found to be around (0.40, 0.20, 0.13, 0.08, 0.05) as r varies
over a range of medium to large distances. That these proportions do
not vary with r is another prediction of scale-invariance, as observed
in [12] section 4.

The class of SIRSN models

Here we outline the mathematical definition of a class of models we
call scale-invariant random spatial networks (SIRSNs). See [2] for
details.
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Fig. 2. Schematic for the subnetwork of a SIRSN on 7 points e.

We need to work in the continuum plane (in order for exact scale-
invariance to be possible; cf. the Wiener process). For a realization
of a SIRSN, imagine an idealization of an online mapping service
which, for each pair of points (2, z’) in the plane, will specify a route
r(z,2") between z and z’. These routes, for different points, are re-
quired to satisfy several intuitively obvious consistency conditions
(e.g.: if y is in the route r(z, z’) then that route is the concatenation
of routes r(z,y) and r(y, ")) which we will not list here. So given a
finite number of points (z1,...,2x) We get a spanning subnetwork
span(zi,..., zx), consisting of the union of the routes r(z;, z;).
Fig. 2 shows a schematic. The full network itself is hard to envis-
age — there are routes specified between (almost) every pair of points
— but we envisage it as a limit of subnetworks on increasingly dense
collections of points.

We study random such networks, and the statistical properties we

impose are
(i) translation and rotation invariance
(ii) scale-invariance.
To elaborate the latter, consider the “scale by ¢” map z = (z,y) —
cz = (cx, cy) on the plane. Scale-invariance of routes is the property
that the distribution of the subnetwork span(cz1, . . ., cz)) on scaled
points is the same as that obtained after scaling by c the original sub-
network span(z1,...,z2;). Because the model is defined entirely
in terms of routes, one can immediately deduce scaling relations for
other quantities we shall consider.

It is important to note that these are the only assumptions (aside
from assuming finiteness of the three statistics described below) we
make for a SIRSN. In particular we do not assume that a notion of
a major road - minor road spectrum is given, though such a notion
will soon be derived from our assumptions. Also, real-world routes
are typically chosen as the optimal route under some criterion (e.g.
estimated journey time) but we do not assume any such optimality.

We next define three numerical statistics (ED1, ¢, p(1)) associ-
ated with a SISRN model, and our final technical assumption is that
all three are finite. As before, write D; for the length of the route
between two random points at (straight line) distance 1. We require
that its expectation [ED; is finite; this prevents fractal-like routes.
Second, take a set of points of density 1 per unit area in the infinite
plane (one could take the vertices of a unit-spaced square grid, but
for technical reasons it is more convenient to take a Poisson point
process of density 1). Write ¢ for the average length-per-unit-area
of the subnetwork spanning these points. We require that { < oo;
this disallows the “complete” network in which each route r(z1, z2)
is the straight line segment between those endpoints. Finally, take
0 < r < oo. For each route r(z1, 22), imagine deleting the parts
of the route that are within distance r of either 21 or z2, leaving a
sub-route r,(z1, 22); then take the union of r..(z1, z2) over all pairs
(#1, 22). Call the union £(r) and let p(r) be its length-per-unit-area.
Scale-invariance implies a scaling relation p(r) = p(1)/r and we
require p(1) < oo.
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This last fact provides a first glimpse of how structure emerges
from the assumption of scale-invariance. There are several possible
real-world measures of “size” of a road segment, quantifying the mi-
nor road to major road spectrum — e.g. number of lanes; level in a
highway classification system; traffic volume. We do not specify any
such notion of size in specifying a SIRSN model, but then within a
specified model we can define “size” of a short road segment as the
largest r such that the segment is in £(r), that is the largest  such that
the segment is in the route between some two points at distance > r
from the segment. So we can interpret £(r) as the network of roads
of “size” at least r. This provides another interpretation of the whole
network as the » — 0 limit of £(r). It also makes a quantitative con-
nection with the “zoom in” image for online maps. Explicitly, if the
real-world network were scale-invariant, then a map of a real-world
square region of side L, presented in a unit square on your screen,
could be drawn to show roads of size > aL, and the average length
(of lines indicating roads on the map) you would see on the screen
would be L?*p(aL)/L = p(1)/a, independent of the scale L.

Three examples of SIRSNs

It is important to remember that SIRSN does not refer to a particular
model but to the class of models satisfying the conditions specified
above. Analogous to the class of stationary processes featuring in
classical information theory, one expects there to be many different
SIRSN models, and we indicate three constructions below. These in-
volve defining routes as the optimal route in some sense. Because we
must work in the continuum there are great technical difficulties in
proving rigorously that optimal routes are unique, and in fact this has
only been proved [2] for the first construction.

1. A lattice-based model. Start with a square grid of roads, but
impose a “binary hierarchy of speeds”: on a road meeting an axis at
(214 1)2° one can travel at speed v~ ° for a parameter 1/2 < v < 1.
Define the route between grid points to be a shortest-time path.

0

Fig. 3. Firststage of the construction in Model 1. Line thickness indicates speed.

The key point of this construction is that given a minimum cost
path from z1 = (x1,y1) to 22 = (x2,y2), scaling by 2 gives a
minimum cost path from 2z; to 2z2. So we are starting with a deter-
ministic construction that is invariant under scaling by 2. Aside from
the (technically hard) issue of uniqueness of routes, “soft” arguments

Footline Author

extend this construction to a scale-invariant network on the plane, via
the following steps.

(i) The construction is consistent under binary refinement of the lat-
tice, so taking limits defines routes between points in the continuum.
(i1) One can force translation-invariance by applying a large-spread
random translation.

(iii) One can force rotation invariance by applying a random rotation.
(iv) Because the construction is invariant under scaling by 2, applying
a suitable random scaling gives full scaling invariance.

Intuitively this construction seems like cheating, because in a re-
alization one sees the lattice structure, but it does satisfy the formal
conditions. Fig. 4 shows a realization of routes within this model (be-
fore the rotation step is applied). Fig. 6 shows simulation estimates
of the three statistics (ED1, ¢, p(1)) as functions of the model pa-
rameter . Qualitatively, when + is near 1 routes tend to stay within
the rectangle defined by starting and ending points as corners; as =y
decreases, routes exploit faster roads outside the rectangle, resulting
in longer routes but a less dense network.

268 ; L_1' =) i ;
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279 342
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Fig. 4. The spanning subnetwork (within a rectangular window) on sampled
points M in a discrete approximation to Model 1.
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Fig. 6. Simulation estimates of the three statistics ED; and £ and p(1) as functions of the Model 1 parameter . See supplemental information for details, and an
explanation of why p(1) is particularly difficult to estimate from discrete approximations, so our results in that case may not be accurate.

2. Using randomly-oriented lines. A variant of the first construc-
tion is to start with a Poisson line process [14] of roads and assign
speeds to these roads in the appropriate scale-invariant way. Con-
tinue with denser and denser lines with lower and lower speeds, and
as before define routes as shortest-time paths. This is more elegant in
that it automatically has the desired invariance properties which had
to be “forced” in the first construction.

3. Dynamic proximity graphs. Create random points in the plane
sequentially; for each new point £, create new edges as line segments
from ¢ to each existing point & for which the disc with diameter
(&,&') contains no third existing point. Continue with denser and
denser points, and define routes as shortest-length paths. From the
property that the rule for creating edges depends only on relative
distances to nearby points, one can deduce scale-invariance for the
limiting network. Fig. 5 shows the first stage of the construction, the
“main roads” analogous to those in Fig. 3.

Fig. 5. First stage of a dynamic proximity graph construction.

Future work: connections and analogies

This article introduces a new mathematical structure, and let us con-
clude by indicating what aspects we find interesting for future de-
velopment. As already mentioned, at the technical level the most
pressing issue is to make rigorous proofs of the (intuitively rather ob-
vious) uniqueness of optimal routes in the second and third construc-
tions above, and it would be interesting to find conceptually different
constructions. Also as technical mathematics, a start is made in [2]
on developing some theory of SIRSNs from the axiomatic setup.
One aspect of this involves infinite geodesics, paths containing ar-
bitrarily long routes. In somewhat analogous continuum models of
first-passage percolation [13] it is an open problem to prove that no
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doubly-infinite geodesics exists, but for SIRSNs this is an easy con-
sequence of scale-invariance.

There is substantial mathematical literature over the last decade
concerning infinite discrete random networks in the plane arising as
limits of finite graphs chosen uniformly over isomorphism classes of
triangulations or quadrangulations on n vertices. The recent paper
[8] studies scaling limits in that context, giving a model of “contin-
uum network" with very different properties from the models in the
paper.

A question with more applied flavor (discussed for inter-city net-
works in [3]) concerns networks which make an optimal trade-off
between notions of cost and benefit. For SIRSNs a broad question is
what values of the triple (ED1, ¢, p(1)) are possible; more specif-
ically, what is the optimal trade-off between ED; (benefit) and ¢
(cost), both of which we wish to make small. Lower bounds on
what is possible, obtained via stochastic geometry methods, are given
in [2].

Our work has indirect connections with some actual algorithms
used by automobile GPS devices to find routes. One key idea [6] is
that there is a set of about 10,000 major road intersections (they write
transit nodes) with the property that, unless the start and destination
points are close, the shortest route goes via some transit node near the
start and some transit node near the destination. Given such a set, one
can pre-compute shortest routes and route-lengths between each pair
of transit nodes; then answer a query by using the classical algorithm
to calculate route lengths from starting (and from destination) point
to each nearby transit node, and finally minimize over pairs of such
transit nodes. In a “worst-case” analysis of such schemes, [1] define
highway dimension h™ as max, h(r), where h(r) is the smallest in-
teger such that for every ball of radius 4r, there exists a set of h(r)
vertices such that every shortest route of length > r within the ball
passes through some vertex in the set. They analyse algorithms ex-
ploiting transit nodes and other structure, giving performance bounds
involving h and number of vertices and network diameter. But note
that, in order for h* to be usefully small, we would need h(r) not
to vary greatly with 7, and this is an aspect of approximate scale-
invariance. How one might repeat such analyses in terms of SIRSN
models of the road network is outlined in [2], and here it is the statis-
tic p(1) that is relevant to algorithm performance. Indeed, the way
we defined the network £(r) in terms of routes is closely related to
the notion of reach in the algorithmic literature [10].

Relevant data on the statistics of real road networks is scattered
through the literature of transportation economics and urban eco-
nomics. In the latter setting our ED; is called circuity. See [9] for
an introduction to this literature, and for data on circuity of commute
distances in different metropolitan areas showing that circuity tends
to decrease with commute distance.

ACKNOWLEDGMENTS. We thank Wilfrid Kendall for ongoing discussions about
this topic, and Lily Wang for Fig. 5.

Footline Author



. |. Abraham, A.Fiat, A.V. Goldberg, and R. F. Werneck. Highway dimension, short-
est paths, and provably efficient algorithms. In Proc. ACM-SIAM Symposium on
Discrete Algorithms (SODA10). SIAM, 2010.

. D. J. Aldous. Scale-Invariant Random Spatial Networks. arXiv:1204.0817, 2012.

. D. J. Aldous and J. Shun. Connected spatial networks over random points and a
route-length statistic. Statist. Sci., 25(3):275-288, 2010.

. D.J. Aldous. The shape theorem for route-lengths in connected spatial networks
on random points. arXiv:0911.5301v1, 2009.

. A. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509-512, 1999.

. H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road networks with
transit nodes. Science, 316:566, 2007.

. T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ, second edition, 2006.

8. N. Curien and J.-F. Le Gall. The Brownian plane. arXiv:1204.5921v1, 2012.
9. D. J. Giacomin, L. S. James, and D. M. Levinson. Trends in metropolitan network

circuity. http://nexus.umn.edu/Papers/CircuityTrends.pdf, 2012.

Footline Author

10.

1.

12

13.

14.

15.

R. J. Gutman. Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In Proceedings of the Sixth Workshop on Algorithm
Engineering and Experiments and the First Workshop on Analytic Algorithmics and
Combinatorics, New Orleans, LA, USA, January 10, 2004, pages 100-111. SIAM,
2004.

B. Jiang. A topological pattern of urban street networks: Universality and pecu-
liarity. Physica A: Statistical Mechanics and its Applications, 384(2):647 — 655,
2007.

V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore. Scale invariance in road net-
works. Phys. Rev. E, 73(2):026130, Feb 2006.

C. Licea and C. M. Newman. Geodesics in two-dimensional first-passage percola-
tion. Ann. Probab., 24(1):399-410, 1996.

D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and its Applications.
Wiley Series in Probability and Mathematical Statistics: Applied Probability and
Statistics. John Wiley & Sons Ltd., Chichester, 1987. With a foreword by D. G.
Kendall.

Wikipedia. Wiener process — wikipedia, the free encyclopedia, 2012.
accessed 24-October-2012].

[Online;

PNAS | Issue Date | Volume | Issue Number | 5





