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1 Introduction

In 1637 René Descartes published his treatise La Géométrie [5] — which first
systematically expounded the use of coordinates to permit the investigation
of geometrical problems by algebraic methods, and thereby launched the field
of analytic geometry. Descartes insisted that only loci specified by algebraic
equations (e.g., conics) are “geometrical curves” and those arising from, for
example, the rolling motion of a circle (e.g., cycloids) are “mechanical curves”
(we now call them algebraic and transcendental curves). Descartes’ insistence
that only those curves that admit algebraic equations are truly “geometrical”
was subsequently criticized by Leibniz and Newton, among others.

La Géométrie appeared, together with La Dioptrique and Les Météores,
as appendices to Descartes’ famous philosophical work Discours de la méthode
pour bien conduire sa raison, et chercher la vérité dans les sciences — which
contains his famous credo “I think, therefore I am.” Descartes’ keen interest
in both geometry and optics is exemplified by his introduction, in Book II of
La Géométrie, of a family of “oval” curves that arise from the refraction of
light at a smooth interface between two different media.

Although these Cartesian ovals are a natural generalization of the ellipse
and hyperbola, and have many fascinating properties and applications, they
have sadly settled into relative obscurity over the past century. They receive
cursory treatment (perhaps more from a desire for completeness than their
intrinsic merit) in “catalogs of plane curves” [19, 20] although others [26]
neglect to mention them. Several classic works, concerned with the geometry
of plane curves and theory of functions, discuss the Cartesian ovals in some
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depth — e.g., Harkness and Morley [14], Salmon [24], Steiner [29], Williamson
[31], and Zwikker [32] — but date mostly from the mid–19th to the mid–20th
centuries. The most comprehensive treatment from this era may be found in
Francisco Gomes Teixeira’s 1905 Tratado de las Curvas Especiales Notables
[12], which has been translated into French [13] but not English. The impetus
for this treatise was a prize, proposed by the Royal Academy of Sciences of
Madrid, for “An orderly list of all the curves of every kind to which definite
names have been assigned, accompanying each with a succinct exposition
of its form, equations and general properties, and with a statement of the
books in which, or the authors by whom, it was first made known” [27]. A
contemporary counterpart to Gomes Teixeira’s Tratado is the Encyclopedia of
Remarkable Mathematical Forms website [33] — recipient of the 2008 Anatole
Decerf Prize — which gives a comprehensive treatment of the properties of
Cartesian ovals, and illustrative animations of their morphology.

In this article, we attempt to revive interest in the Cartesian ovals among
modern readers through an easily–accessible introduction to their fascinating
geometry, their algebraic properties, and their connections and applications
— with particular focus on their intimate relationship to the algebra of point
sets in the complex plane and classical geometrical optics.

2 Descartes’ oval constructions

Figure 1, from Book II of La Géométrie, shows an example of Descartes’ oval
constructions, which he states are “very useful in the theory of catoptrics and
dioptrics” [5], i.e., in problems of reflection and refraction of light. Descartes
explains the construction shown in Figure 1 — in a style that, unfortunately,
is rather lacking in both clarity and motivation — as follows.

He considers a point A on the straight line FG, at which an inclined line is
drawn, such that the ratio of lengths FA:AG is a given value k (representing
a ratio of refractive indices). A circle C1 with center F is drawn, that meets
the line FG at the point labelled 5. The line 56 is then drawn such that the
ratio of lengths A6:A5 is also equal to k. Along the inclined line, the point R
is identified such the lengths AR and AG are equal, and a circle C2 is drawn
with center at G and radius equal to the length1 6R. The circles C1 and C2

intersect at two positions labelled 1 — above and below the line FG — which

1That is, from the point 6 to the point R in the diagram (Descartes confusingly employs
both letters and numbers to label points).
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Figure 1: Descartes’ geometrical construction of one of his ovals.

are points on the desired oval. By repeating this process for circles C1 with
centers at F and different radii (e.g, F7), the entire oval can be traced.

Figure 2: Descartes’ mechanism to construct one of his ovals.

Figure 2 shows a mechanism proposed by Descartes [5] to construct one
of his ovals, in the particular case FA=AG. Attaching one end of a length of
string to point K, it is wrapped around a pulley at C, around another pulley
at G, and the other end is attached to point C. The point C then traces out
the oval with extreme points A and V as the ruler FE rotates about point F.

Although bipolar coordinates are implicit in Descartes’ oval constructions,
his approach is difficult to follow and notably does not result in an explicitly
algebraic formulation. Boyer [3] observes that Newton, in his Artis analyticae
specimina vel geometria analytica (which was not published until 1779 — 52
years after Newton’s death) had criticized Descartes for describing the ovals

3



“in a very prolix manner” and he states that “Newton therefore seems to have
been the originator of bipolar coordinates in the strict sense of the word.”

3 Bipolar coordinates

A well–known simple mechanism — the “gardener’s method” — can be used
to accurately draw an ellipse. Two pins are pressed into a sheet of paper to
identify the foci p1,p2 of the ellipse, and a loop of string with total length
` > 2 |p2 − p1| is then wrapped around them. The point p of a pencil that
keeps the loop taut as it moves will then trace out an ellipse. In terms of the
distances r1, r2 of p from p1,p2 the equation of the ellipse can be written as

r1 + r2 = k , (1)

where k = `− |p2 − p1|. The values (r1, r2) are the bipolar coordinates of p
with respect to the poles p1,p2. Without loss of generality, we may choose
p1 = (+1, 0) and p2 = (−1, 0) — then (r1, r2) are non–negative values that
must (see Figure 3) satisfy

r1 + r2 ≥ 2 and |r1 − r2| ≤ 2 . (2)

The constraints (2) are satisfied with equality by points on the x–axis (the
former for −1 ≤ x ≤ +1, and the latter for x ≤ −1 or x ≥ +1).

p1p2

r1
r2

x

y

r1

r2

2

2

(r1,r2)

Figure 3: Bipolar coordinates (r1, r2) with respect to poles p1 = (+1, 0) and
p2 = (−1, 0): the region of valid (r1, r2) values is shown shaded on the right.
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Note that the bipolar coordinates (r1, r2) actually identify two points, that
are images of each other under a reflection in the x–axis. A curve specified in
bipolar coordinates is therefore symmetric about the x–axis, unless separate
equations are defined for the lower and upper half–planes. For a point p with
Cartesian coordinates (x, y) the bipolar coordinates are r1 =

√
(x− 1)2 + y2,

r2 =
√

(x+ 1)2 + y2. Conversely, the bipolar coordinates are given in terms
of the Cartesian coordinates by

(x, y) =
1

4

(
r2
2 − r2

1,±
√

8 (r2
1 + r2

2 − 2)− (r2
2 − r2

1)2

)
.

We can convert (1) into a polynomial equation in (x, y) by re–arranging terms
and squaring twice, to obtain

(r2
1 − r2

2)2 − 2 k2(r2
1 + r2

2) + k4 = 0 . (3)

This equation describes not only the ellipse (1), but all the loci defined (with
independent sign choices) by

r1 ± r2 = ± k . (4)

For k < |p2−p1|, the loci r1−r2 = ± k define the two branches of a hyperbola
with foci p1,p2. However, the equation r1 + r2 = − k defines a vacuous real
locus for any k > 0. Substituting r2

1 = (x− 1)2 + y2, r2
2 = (x+ 1)2 + y2 into

(3) and simplifying, we obtain

4x2

k2
+

4 y2

k2 − 4
= 1 . (5)

This defines an ellipse or a hyperbola, with semi–axis k/2 and
√
|(k/2)2 − 1|

according to whether k > 2 or k < 2 (with k = 2 being the degenerate case
of a doubly–traced line between p1 and p2) — see Figure 4.

4 The Cartesian ovals

A simple generalization of the bipolar ellipse equation (1) can be obtained by
multiplying r1, r2 with positive constants mk, nk (where m 6= n) and dividing
out k to obtain the equation

mr1 + n r2 = 1 , (6)
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Figure 4: The confocal family of conics (ellipses r1 + r2 = k with k > 2, and
hyperbolas r1 − r2 = ±k with k < 2) defined by the bipolar equations (4).

which defines a Cartesian oval. By squaring twice and simplifying, we can
formulate (6) as an equation involving only r2

1 and r2
2, namely

(m2r2
1 − n2r2

2)2 − 2 (m2r2
1 + n2r2

2) + 1 = 0 .

This equation describes not only the locus (6), but all the curves defined (for
independent sign choices) by

mr1 ± n r2 = ± 1 . (7)

In the (r1, r2) plane, equations (7) identify four lines that pass through the
points (±1/m, 0) and (0,±1/n). Since m and n are positive, mr1+n r2 = −1
obviously defines a vacuous locus. Of the remaining three lines, one can easily
see (Figure 5) that only two possess segments within the valid domain (2)
for bipolar coordinates. In general, the Cartesian oval comprises two nested
loops — depending upon m and n, the equations from (7) that individually
define these loops are identified in Table 1.

On substituting r1 =
√

(x+ 1)2 + y2 and r2 =
√

(x− 1)2 + y2 into (6)
and simplifying, we obtain the equation of the Cartesian oval as an irreducible
quartic algebraic curve,

(αx2 + αy2 − 2 βx+ α)2 − 2 (βx2 + βy2 − 2αx+ β) + 1 = 0 , (8)

where α = m2 − n2, β = m2 + n2. For α = 0 (i.e., m = ±n) this reduces to
the equation (5) with β = 2/k2 for an ellipse (β < 1

2
) or a hyperbola (β > 1

2
).

Figure 6 illustrates some examples of the quartic curves defined by (8).
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r1

r2

Figure 5: The four lines in the (r1, r2) plane defined by (7), of which only two
cross the valid domain (shaded region) for bipolar coordinates when m 6= n.
These two line segments determine the two nested loops of a Cartesian oval.

m and n Cartesian oval equations

m < n < 1
2

or m < 1
2
< n mr1 + n r2 = +1, mr1 − n r2 = −1

n < m < 1
2

or n < 1
2
< m mr1 + n r2 = +1, mr1 − n r2 = +1

m > 1
2

and n > 1
2

mr1 − n r2 = +1, mr1 − n r2 = −1

Table 1: The appropriate members from equations (7) defining the two loops
of a Cartesian oval for various m and n values (with m 6= n and m,n 6= 1

2
).

Figure 6: Examples of the Cartesian ovals defined by equation (8).
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Invoking homogeneous coordinates (W,X, Y ) with (x, y) = (X/W, Y/W )
equation (8) becomes

[α(X2 + Y 2 +W 2) + 2 β WX ]2

− 2W 2 [ β(X2 + Y 2 +W 2)− 2αWX ] +W 4 = 0 ,

and the behavior at infinity is identified by setting W = 0 to obtain

α (X2 + Y 2)2 = 0 .

Thus, a Cartesian oval with α = m2− n2 6= 0 is a “bicircular quartic” curve,
since the circular points at infinity (W,X, Y ) = (0, 1,±i ) are double points
on it. In general, it has no other singular points, and is therefore of genus 1.
However, if m = 1

2
or n = 1

2
, one of the poles is also a double point — this

special (rational) form is called a limaçon of Pascal.
There appears to be no consensus on whether to refer to the curve defined

by equation (8) in the singular or the plural. Although the equation defines a
single irreducible quartic curve, its generic real locus consists of two disjoint
nested loops. It seems unnecessary to be too pedantic on this point.

5 Minkowski geometric algebra

The Minkowski sum [21] of point sets A,B ⊂ Rn is the set of the vector sums
of all pairs of points a and b selected independently from A and B,

A⊕B = { a + b | a ∈ A and b ∈ B } . (9)

Now the vector sum in R2 is equivalent to complex number addition in C, and
since the complex–number product is commutative, we can also introduce a
Minkowski product of sets A,B ⊂ C as

A⊗B = { ab | a ∈ A and b ∈ B } . (10)

These operations define a Minkowski geometric algebra of complex sets [10].
It is also possible to define the difference and quotient sets A	B and A�B,
but it is important to note that 	 and � are not inverses to ⊕ and ⊗. Note
also that (9) and (10) obey the subdistributive rule

(A⊕ B)⊗ C ⊂ (A⊗ C)⊕ (B ⊗ C) .
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The operations (9)–(10) specify an algebra of point sets that yields rich
geometric structures. Consider, for example, A and B as circles with centers
at the point 1 on the real axis,2 as seen on the left in Figure 7. When we plot
the products of a large number of pairs of complex values randomly selected
from these circles, we obtain the distribution shown on the right in Figure 7,
and we immediately recognize that the set A⊗B of these products occupies
the region bounded by the inner and outer loops of a Caretsian oval! When
A and B are the disks bounded by the two circles, A⊗B occupies the entire
area bounded by the outer loop [10] — the inner loop is no longer empty.

Re

Im

Re

Im

Figure 7: The products of complex values sampled randomly from two circles
of different radii centered at the point 1 on the real axis in the complex plane
populate the region between the inner and outer loops of a Cartesian oval.

Now since complex number multiplication correponds to a scaling/rotation
operation — dubbed an amplitwist by Needham [23] — we can interpret the
Cartesian oval seen in Figure 7 as the envelope of a one–parameter family of
circles, specified by the instances of one circle scaled/rotated by the complex
points of the other circle, as illustrated in Figure 8. Hence, we can say that
“a Cartesian oval is the boundary of the Minkowski product of two circles,”
a more elegant and succinct characterization than the description by Gomes
Teixeira [13] in terms of real geometry:

“L’enveloppe d’un cercle variable dont le centre parcourt la
circonférence d’un autre cercle donné et dont le rayon varie

2We consider only circles or disks centered at the point 1, since the results for arbitrary
(non–zero) centers are simply scaled/rotated versions of the resulting Minkowski products.
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proportionnellement à la distance de son centre à un point fixe
est un couple d’ovales de Descartes.”

or “The envelope of a variable circle whose center lies on the circumference of
another circle and whose radius is proportional to the distance of its center
from a fixed point is a pair of ovals of Descartes.”

Re

Im

Re

Im

Figure 8: The Cartesian oval in Figure 7 as the envelopes of one–parameter
families of circles, generated by a sequence of scalings/rotations of the larger
circle by the complex points of the smaller circle (left), and vice–versa (right).

Degenerate forms of the Cartesian oval arise if either or both of the circles
in Figure 7 has radius equal to 1. As is evident in Figure 9, if only one circle
passes through the origin, the two loops merge into a single, self–intersecting
loop (the limaçon of Pascal). When both the circles pass through the origin,
we obtain a cusped single loop (the cardioid).

The Minkowski geometric algebra may be regarded as a generalization of
interval arithmetic [22] from real–number to complex–number sets. Although
circles and disks are perhaps the simplest operands, algorithms to compute
the Minkowski products of more general complex sets can be developed [9].
Other operations may also be formulated within this algebra. For example,
for fixed circular discs A and B, the generic solution X to the simple equation

A⊗X = B ,

(which exists if and only if the radius of A is less than that of B) is the region
bounded by the inner loop of a Cartesian oval [8]. The nth Minkowski power
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Figure 9: Two circles with centers at the point 1 in the complex plane will
generate a generic Cartesian oval, a limaçon of Pascal, or a cardioid according
to whether neither, one, or both of the circles pass through the origin.

⊗nA of a set A is simply the product of n instances of A, and correspondingly

one can define the nth root
⊗1/nA by the property

{ z1z2 · · · zn | zi ∈
⊗1/nA for i = 1, . . . , n } = A ,

for complex values z1, . . . , zn chosen independently from
⊗1/nA. Such roots

do not always exist, but for a circular disk A that does not contain the origin
it can be shown [7] that

⊗1/2A is the region bounded by a single loop of the
ovals of Cassini defined by a bipolar equation of the form r1r2 = b2, if a > b
where a is the distance between the poles (the situation is more complicated

when A contains the origin). This can be extended to the nth root
⊗1/nA by

an n–polar generalization of the Cassini ovals with equation r1r2 · · · rn = bn,
employing the nth roots of unity as poles [7].

It is also possible to obtain an exact description of the Minkowski product
A1 ⊗ · · · ⊗ AN of N complex disks as a generalized Cartesian oval [11]. The
key observation is that points on the disk boundaries ∂A1, . . . , ∂AN , whose
products may contribute to the product boundary ∂(A1 ⊗ · · · ⊗ AN), are
identified by the intersections of a system of coaxal circles, through the points
0 and 1 on the real axis, with the circles ∂A1, . . . , ∂AN — see Figure 11.

6 Inversion in circles

It is a remarkable fact [13] that any Cartesian oval, regarded as the Minkowski
product of two circles with center 1 and radii ρ1 and ρ2, may be described in
terms of bipolar coordinates with respect to three different pairs of poles. To
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Figure 10: Either loop of the ovals of Cassini (left) is a Minkowski square

root
⊕1/2A of a given circular disk A (right) not encompassing the origin.

Figure 11: The points on two circles (blue) with center 1 that may contribute
to the boundary of their Minkowski product correspond to their intersections
with a system of coaxal circles (red) that pass through the points 0 and 1 on
the real axis. This characterization generalizes to the product of N circles.
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see this, it is convenient to choose the three points 0, a1 = 1−ρ2
1, a2 = 1−ρ2

2

on the real axis as poles p0,p1,p2. Then, writing

r0 =
√
x2 + y2 , r1 =

√
(x− a1)2 + y2 , r2 =

√
(x− a2)2 + y2

as the distances of a point x+iy from these poles, the three bipolar equations

ρ1r0 ± r1 = ± a1ρ2 , ρ2r0 ± r2 = ± a2ρ1 , ρ2r1 ± ρ1r2 = ±(a1 − a2)

describe the same Cartesian oval. By squaring to eliminate radicals, one can
verify that these bipolar equations all define the same quartic curve,

(x2 + y2 − 2x+ a1a2)
2 − 4 ρ2

1ρ
2
2(x

2 + y2) = 0 . (11)

The limaçon of Pascal (ρ1 = 1 or ρ2 = 1) corresponds to the case where p1 or
p2 coincides with p0, and the cardioid with the case ρ1 = ρ2 = 1 where both
coincide with p0. Table 2 lists the appropriate signs in ρ2r1±ρ1r2 = ±(a1−a2)
that identify the inner and outer loops of the Cartesian oval.

inner loop outer loop

ρ1 < 1 ρ2r1 + ρ1r2 = a1 − a2 ρ2r1 − ρ1r2 = a1 − a2

ρ1 > 1 ρ2r1 − ρ1r2 = a2 − a1 ρ2r1 − ρ1r2 = a1 − a2

Table 2: Identification of Cartesian oval loops (for ρ1 < ρ2 and ρ1, ρ2 6= 1).

An inversion (or reflection) in a circle C with center c and radius ρ is a
mapping z→ z̃ of the extended complex plane3 into itself, defined by

z̃ = c ± ρ2

|z− c|2
(z− c) (12)

The + and − sign choices specify [25] “hyperbolic” and “elliptic” inversions.
The interior of C is mapped to its exterior, and vice–versa (circumferential
points are invariant, and the points c and∞ are images of each other). Each
point z and its image z̃ lie on a diametral line through c, with inversely
proportional distances from it, i.e., |z− c| |z̃− c| = ρ2, with z and z̃ on the
same side of c for the + sign in (12) and on opposite sides for the − sign.
Inversion maps lines/circles into lines/circles (see Figure 12), and preserves
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Figure 12: Inversion in a circle — lines that do not pass through the center
and circles that do pass through the center are images of each other (upper);
circles that do not pass through the center are images of each other (lower).

the magnitudes of angles (but reverses their sense). A complete treatment
may be found in standard texts on complex analysis [23, 25].

For a Cartesian oval generated by the Minkowski product of circles C1, C2

with center 1 and radii ρ1, ρ2, the poles a1 = 1− ρ2
1, a2 = 1− ρ2

2 are images
of the origin under inversion in C1, C2. Moreover, the Cartesian oval maps
onto itself under an inversion in any of the three circles with centers c and
radii ρ defined (see Figure 13) by

c = 0 , ρ2 = a1a2 ; c = a1 , ρ
2 = a1(ρ

2
2 − ρ2

1) ; c = a2 , ρ
2 = a2(ρ

2
1 − ρ2

2) .

Among the three poles 0, a1, a2 the one that is the center of inversion remains
fixed, and the other two are swapped. Note that, depending on ρ1, ρ2 and
the chosen circle of inversion, the inner and outer loops may be individually
mapped onto themselves, or onto each other.

Curves that map onto themselves by inversion in a circle are known [4] as
anallagmatic curves. Any circle that cuts the circle of inversion orthogonally
is anallagmatic. Furthermore, a family of circles, all of which meet the circle
of inversion orthogonally, has an anallagmatic envelope curve [4]. This is a

3The set of all finite complex values augmented by a single point “∞” at infinity.
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Figure 13: The Cartesian oval defined by ρ1 = 0.5 and ρ2 = 0.8, shown with
the three inversion circles (left to right) identified by (1) c = 0, ρ2 = | a1a2 |;
(2) c = a2, ρ

2 = | a2(ρ
2
1−ρ2

2) |; (3) c = a1, ρ
2 = | a1(ρ

2
2−ρ2

1) |, with respect to
which it maps onto itself. For circle (3) the inner and outer loops map on to
each other, but this is not true for (1) & (2) since they intersect both loops.

characteristic feature of the circles of inversion identified above — if we regard
the Cartesian oval ∂(C1⊗C2) as the envelope of the family of circles obtained
by scaling/rotating C1 by each point of C2, or vice–versa, these scaled/rotated
circles are all orthogonal to each of the three circles of inversion.

The anallagmatic nature of the Cartesian oval may be verified by setting
z = x+ iy and z̃ = x̃+ i ỹ in (12), and showing that (x̃, ỹ) satisfies equation
(11) if and only if (x, y) satisfies it. Note that the circles of inversion are real
circles — we use

√
|ρ2| for ρ in (12) and choose the + or − sign according to

whether ρ2 > 0 or ρ2 < 0. In the exceptional case ρ2 = 0, the inversion (12)
degenerates to the identity map (and the Cartesian oval becomes a limaçon).

7 Drawing the Cartesian ovals

Drawing a Cartesian oval based on the bipolar equation can be rather tricky.
Perhaps the simplest approach is to use “ordinary” polar coordinates about
one the three poles (0, 0), (a1, 0), (a2, 0). Consider the equation

ρ2r1 ± ρ1r2 = ±(a1 − a2) (13)

in terms of the poles (a1, 0) and (a2, 0). We assume ρ1 < 1 and ρ1 < ρ2, as in
the first row of Table 2, so that a1 > a2. For polar coordinates (r, θ) about
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(a1, 0) we then have r1 = r and

r2
2 = r2 + 2 (a1 − a2) cos θ r + (a1 − a2)

2 (14)

by the cosine rule. On squaring (13) twice, substituting (14), and simplifying
we obtain the quadratic equation

(ρ2
2 − ρ2

1) r
2 − 2 (a1 − a2)(ρ

2
1 cos θ + ρ2) r + (a1 − a2)

2(1− ρ2
1) = 0

for the polar distance r in terms of the polar angle θ with respect to (a1, 0).
Noting that a1 − a2 = ρ2

2 − ρ2
1 6= 0 for ρ1 6= ρ2, this equation simplifies to

r2 − 2 (ρ2
1 cos θ + ρ2) r + (ρ2

2 − ρ2
1)(1− ρ2

1) = 0 ,

with solutions

r±(θ) = ρ2
1 cos θ + ρ2 ±

√
(ρ2

1 cos θ + ρ2)2 − (ρ2
2 − ρ2

1)(1− ρ2
1) , (15)

where the − and + signs identify points on the inner and outer loops. Note
that the expression under the square–root sign in (15) can be re–formulated
as ρ2

1 [ (ρ2 +cos θ)2 +(1−ρ2
1) sin2 θ ], which is evidently non–negative if ρ1 < 1.

From (15) we obtain individual parameterizations for the inner and outer
Cartesian oval loops of the form

(xi(θ), yi(θ)) = (a1 + r−(θ) cos θ, r−(θ) sin θ) ,

(xo(θ), yo(θ)) = (a1 + r+(θ) cos θ, r+(θ) sin θ) . (16)

8 Cartesian ovals in geometrical optics

Descartes was interested in optics as much as in geometry, as already noted
in Section 1. His formulation of the eponymous ovals was, in fact, motivated
by the problem of discovering the shape of a refracting surface between two
different media that will cause a family of rays emanating from a point source
in one medium to converge to a point in another medium [17]. This shape
is, in fact, a Cartesian oval when the distances of the points from the surface
are inversely proportional to the refractive indices of the media [15].

A ray may be thought of as the trajectory of a “particle” of light. Within
a single homogeneous medium, it maintains a constant speed and direction,
but on encountering an interface with a different medium it is refracted and
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changes speed and direction. Snell’s law describes these changes in terms of
the refractive indices p and q of the different media:

sin θq

sin θp

=
vq

vp

=
p

q
, (17)

where θp, θq are the angles of incidence and refraction (relative to the interface
normal line), and vp, vq are the speeds in the two media. This can be viewed
as a consequence of Fermat’s principle — namely, a light ray follows the path
that requires the least time between points in the different media.

The ray theory of light, championed by Newton, is less sophisticated than
the wave theory proposed by Huygens in his Traité de la Lumière [16] since it
cannot accommodate important optical phenomena such as interference and
diffraction. Huygens characterized the propagation of a wavefront surface W
through a homogeneous medium with speed c by stating that, after a time
interval ∆t has elapsed, the new wavefront W ′ is the envelope of a family of
spherical “wavelets” of radius c∆t with centers on W . Hence, W ′ is parallel
to — or offset from — W at distance c∆t. W and W ′ have the same family
of normal lines, and also parallel tangent planes. See [1] for a more complete
treatment of the history of wavefront propagation.

index p index q

time = 0 time = t
propagate

"backward"

all index q

  time = 0

"anticaustic"

Figure 14: The anticaustic for refraction of a spherical light wave by a planar
interface between media with different refractive indices p and q is an ellipse.

If a wavefront propagates through an interface between different media,
it is refracted and changes shape. A simple example — a spherical wavefront
passing through a planar interface between two media with refractive indices
p and q (e.g., air and glass) — can be seen4 in Figure 14. An ingenious way to
describe the shape of refracted wavefronts was discovered by Jakob Bernoulli

4For brevity, we consider problems that are rotationally symmetric about a certain axis
— the wavefront surfaces are then completely characterized by planar sections.
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[2]. Suppose the spherical wavefront is emitted at time t = 0 in the medium
with index p, and at a later time t = τ has been refracted into the medium
with index q. We imagine removing the medium of index p, and propagating
the wavefront backward from time t = τ to t = 0 in a single medium of index
q. Then, at t = 0, it does not collapse back into the point from which the
spherical wave emanated, but rather assumes a certain non–trivial “initial”
shape, that Bernoulli called the anticaustic.

The shape of the refracted wavefront can be obtained from the anticaustic
through Huygens’ principle in a uniform medium of index p. For refraction
of a spherical wave by a planar surface, the anticaustic is an ellipse, and the
refracted wavefronts are therefore parallel or offset curves to an ellipse, which
are irreducible algebraic curves with an equation f(x, y) = 0 of degree 8 —
this equation actually describes both “forward” and “backward” propagating
wavefronts (which are not, individually, algebraic curves).

WAVEFRONTS = offsets(ANTICAUSTIC)

    RAYS       CAUSTIC  
tangents

envelope

no
rm

al
s

le
ve

l c
ur

ve
s evolute

involutes

Figure 15: Relationships between rays, wavefronts, caustic, and anticaustic.

To understand the origin of the term “anticaustic” we must review some
basic concepts from the differential geometry of plane curves [30]. A system
of rays and wavefronts are dual to each other, in the sense that the rays are
normal lines to the wavefronts, and the wavefronts are “level curves” for the
rays (identifying points corresponding to equal travel times along each ray).
The caustic5 is the envelope of a system of rays (i.e., the curve along which
light tends to concentrate — see Figure 16). The evolute of any given curve
is the locus of its centers of curvature, which is identical to the envelope of
its normal lines. Since wavefronts have common normal lines, they have the

5The name is due to Ehrenfried Walther von Tschirnhaus, a contemporary of Leibniz
and Newton, who investigated the use of mirrors to focus sunlight.
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same evolute — namely, the caustic. There are infinitely many curves, called
involutes, that possess the same evolute, e.g., the wavefronts corresponding
to a given caustic. Among these wavefronts, a distinguished “initial” member
exists, that is algebraically simpler than all the other wavefronts — this is
what Bernoulli calls the anticaustic. A more comprehensive treatment of the
geometry of rays, wavefronts, and caustics may be found in [28].

Figure 16: Typical caustic curves for reflection by a spherical surface of rays
from a point source that is located inside (left) and outside (right) the sphere.

The example in Figure 14 illustrates the simplest non–trivial instance of
an anticaustic. Lenses for cameras, telescopes, microscopes and other optical
devices typically involve refraction by spherical air/glass surfaces. When the
planar interface in Figure 14 is replaced by a spherical interface we obtain a
Cartesian oval as the anticaustic (for the generic case of a point source not
at the center of the sphere). Thus, a spherical wave refracted by a spherical
surface is, in general, a parallel/offset curve to the Cartesian oval — which is
[6] an irreducible algebraic curve of degree 14, that defines both the “forward”
and “backward” propagating wavefronts. Since modern camera lenses often
involve dozens of spherical refracting surfaces, the imaging process produces
wavefronts of daunting algebraic complexity.

Figure 17 shows examples of waves from a point source being refracted
by a spherical interface, for different positions of the source relative to the
sphere center (the Cartesian oval anticaustic is shown in green, the blue curve
is the refracted wave, and a sampling of rays is indicated in red).

The blue curves are interior offsets to the Cartesian oval — the exterior
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offsets do not contribute to the physical refracted wave. In the first example,
the refracted wave is continuous and amounts to the entire interior offset to
the inner Cartesian oval loop, which propagates inward and after “collapsing”
continues propagating outward. In this case, the interior offset to the outer
Cartesian oval loop does not contribute to the physical refracted wave.

The second example illustrates the phenomenon known as total internal
reflection. For incidence angles θp > sin−1 q/p in Snell’s law (17), there is no
refracted ray emerging into the medium of index q — it is entirely reflected
back into the medium of index p. This incurs a discontinuous refracted wave,
corresponding to a range of angles over which the wave is reflected back into
the sphere. In this case, the disjoint portions of the refracted wave are subsets
of the interior offsets to both the inner and outer Cartesian oval loops.

Figure 17: Waves from a point source being refracted by a spherical surface:
a continuous refracted wave (left), and a discontinuous refracted wave (right)
owing to total internal reflection. The anticaustic is the green Cartesian oval.

These examples illustrate how the remarkable algebraic complexity of an
apparently simple problem — the refraction of a spherical wave by a spherical
surface — manifests itself in subtle and unexpected geometrical behavior.

9 Closure

Notwithstanding its status as a natural generalization of the conics and its
many remarkable geometrical properties, the Cartesian oval has (with few
exceptions) not attracted much attention in recent decades. By elucidating
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its algebraic and geometrical properties, and describing its key role in two
areas — the Minkowski geometric algebra of complex sets, and the problem
of refraction of spherical waves by spherical surfaces — we hope that this
brief introduction may serve to spark renewed interest.

There are many other interesting aspects of Cartesian ovals that, in the
interests of brevity, we are unable to describe here. We mention, for example,
the interpretation of the Cartesian oval as the projection of the intersection
curve of two cones with parallel axes onto a plane orthogonal to those axes;
or as the boundary between two crystal domains or bacterial colonies that
grow from distinct point sources at different speeds [32]. Another fascinating
topic is the connection of Cartesian ovals to the theory of elliptic functions —
as illustrated, for example, by the fact that under the mapping w = u+iv →
z = x+ iy of the complex plane defined by the Weierstrass elliptic function,
z = ℘(w), the images of the coordinate lines u = constant, v = constant in
the w–plane are Cartesian ovals in the z–plane [18].
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René Descartes, with a Facsimile of the First Edition, Dover
Publications, New York.

[6] R. T. Farouki and J.–C. A. Chastang, Exact equations of “simple”
wavefronts, Optik 91, 109–121 (1992)

[7] R. T. Farouki, W. Gu, and H. P. Moon (2000), Minkowski roots of
complex sets, Geometric Modeling and Processing 2000, IEEE
Computer Society Press, 287–300.

21



[8] R. T. Farouki and C. Y. Han (2005), Solution of elementary equations
in the Minkowski geometric algebra of complex sets, Advances in
Computational Mathematics 22, 301–323.

[9] R. T. Farouki, H. P. Moon, and B. Ravani (2000), Algorithms for
Minkowski products and implicitly–defined complex sets, Advances in
Computational Mathematics 13, 199–229.

[10] R. T. Farouki, H. P. Moon, and B. Ravani (2001), Minkowski
geometric algebra of complex sets, Geometriae Dedicata 85, 283–315.

[11] R. T. Farouki and H. Pottmann (2002), Exact Minkowski products of
N complex disks, Reliable Computing 8, 43–66.

[12] F. Gomes Teixeira (1905), Tratado de las Curvas Especiales Notables,
Gaceta de Madrid, Madrid, Spain.

[13] F. Gomes Teixeira (1908), Traité des Courbes Spéciales Remarquables
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