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Summary

• Little is known about long-distance mesophyll-driven signals that regulate stomatal 

conductance. Soluble and/or vapor-phase molecules have been proposed. In this 

study, the involvement of the gaseous signal ethylene in the modulation of stomatal 

conductance in Arabidopsis thaliana by CO2/ABA was examined.

• We present a diffusion model which indicates that gaseous signaling-molecule/s 

with a shorter/direct diffusion pathway to guard cells are more probable for rapid 
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septuple mutants.
Fig. S3 Leaves of the ethylene overproducer, eto1-1, show intact CO2-induced stomatal conductance responses.
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mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different 

Arabidopsis ethylene signaling and biosynthesis mutants for their ethylene production 

and kinetics of stomatal responses to ABA/[CO2]-shifts.

• According to our research, higher [CO2] causes Arabidopsis rosettes to produce 

more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis 

exhibits dysfunctional CO2-induced stomatal movements. Ethylene-insensitive 

receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, 
mutants showed intact stomatal responses to [CO2]-shifts. Whereas loss-of-function 

ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, 

showed markedly accelerated stomatal responses to [CO2]-shifts. Further investigation 

revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple 

mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in 

the etr2-3;ein4-4;ers2-3 mutants.

• These findings suggest essential functions of ethylene biosynthesis and signaling 

components in tuning/accelerating stomatal conductance responses to CO2 and ABA.

Keywords
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Introduction

Stomata regulate gas-exchange between the atmosphere and the interior of the leaf by 

guard cell turgor regulation. Stomatal movements allow the controlled uptake of CO2 

for photosynthesis while limiting water-loss through transpiration. Physiological and 

environmental stimuli, including CO2 concentration [CO2], abscisic acid (ABA), ozone, 

humidity, light, and pathogens, affect stomatal movements (Kim et al., 2010; Kollist et al., 
2014; Murata et al., 2015; Assmann & Jegla, 2016).

Leaf mesophyll is the main photosynthetic and carbon-fixing tissue in C3 plants. The 

intercellular CO2 concentration (Ci) in leaves is determined by the rates of mesophyll 

photosynthesis (Lawson et al., 2008; Mott, 2009), mesophyll respiration (Hanstein & Felle, 

2002; Busch et al., 2020), stomatal conductance, and the atmospheric CO2 concentration 

(Farquhar et al., 1980). Elevated Ci concentrations induce stomatal closure, whereas reduced 

Ci levels cause stomatal opening (Mott, 1988; Hetherington & Woodward, 2003; Zhang et 
al., 2018). Several studies have supported the existence of mesophyll-driven signals that 

travels from the mesophyll to the epidermal layer, thus contributing to the regulation of 

stomatal conductance (Wong et al., 1979; Lee & Bowling, 1995; Mott, 2009; Fujita et al., 
2013). Mesophyll-derived signals have been proposed to include an aqueous signal, which 

is transferred through the apoplast (Else et al., 1996; Fujita et al., 2013), as well as a vapor-

phase signal (Sibbernsen & Mott, 2010; Mott et al., 2014). Various low-molecular-weight 

compounds function as inducers of stomatal movements and as mediators of signaling in 

guard cells, including sugars (Flütsch et al., 2020) and plant hormones (Daszkowska-Golec 

& Szarejko, 2013).
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H2O2 is a low-molecular-weight molecule which has been suggested to play a role as a 

secondary messenger during bicarbonate-induced stomatal closure. Chater et al. (2015) and 

Kolla et al. (2007) showed that NADPH oxidases AtRBOHD and AtRBOHF can affect 

high CO2-induced stomatal closing thus implicating reactive oxygen species as diffusible 

molecules in CO2 signaling. However, recent studies using two approaches have shown 

wild-type-like CO2-induced stomatal closing kinetics in intact leaves of atrbohd/f double 

mutants (Hsu et al., 2018). Together these studies indicate a conditional role of NADPH 

oxidases in the stomatal CO2 response.

Recent research has suggested that the phytoactive volatile methyl-jasmonate (MeJA) could 

also be involved in high [CO2]-mediated stomatal closure (Geng et al., 2016). Yet, recent 

independent studies showed largely wild-type-like stomatal movement responses in intact 

leaves and in intact rosettes of plants of JA synthesis-, JA-receptor and JA-signaling mutant 

plants in response to environmental factors, including [CO2] and ozone (Zamora et al., 
2021), indicating that an additional gaseous signal may be required for CO2 signaling.

Based on stomatal aperture imaging, the gaseous hormone ethylene was reported to be 

involved in the regulation of stomatal movements in response to ozone, drought and ABA 

(Dodd, 2003; Pospíšilová, 2003; Tanaka et al., 2005; Tanaka et al., 2006; Wilkinson 

& Davies, 2009). Yet, the effect of ethylene on stomatal movements is ambiguous. 

In some investigations, ethylene has been shown to induce stomatal opening, while in 

others it induced stomatal closure (Levitt et al., 1987; Desikan et al., 2006; Iqbal et 
al., 2011). Moreover, ethylene have been proposed to inhibit the effect of ABA-induced 

stomatal closure (Tanaka et al., 2005). A role for ethylene has not been demonstrated in 

stomatal conductance responses to CO2 concentration changes. To address this question, 

we investigated the possible roles of ethylene in CO2-regulated stomatal movements in the 

present study.

Ethylene originates from the amino acid methionine, which is converted to S-adenosyl-

methionine (AdoMet) by AdoMet synthetase. The rate-limiting ACC synthase enzymes 

(ACS) convert AdoMet to 1-aminocyclopropane-1-carboxylic acid (ACC) (Wang et al., 
2002; Pattyn et al., 2021). ACC is then oxidized by ACC oxidases (ACO) into ethylene, 

CO2, and cyanide. The Arabidopsis genome encodes twelve annotated ACS isoforms, nine 

of them shown to be enzymatically active (Yamagami et al., 2003).

CO2 regulates ethylene biosynthesis via a complex regulatory system. CO2 may act as 

both an inducer and a suppressor of ethylene production, depending on the tissue and the 

prevailing environmental conditions (Mathooko, 1996). In some cases, it has been suggested 

that high concentrations of CO2 inhibit ethylene biosynthesis (Chaves & Tomas, 1984; 

Oetiker & Yang, 1995); whereas in others induces production (Philosoph-Hadas et al., 1986; 

Mathooko et al., 1999). CO2-mediate ethylene production involves various mechanisms, 

including the transcriptional, translational, and post-translational regulation of ACS (Gorny 

& Kader, 1996; Mathooko et al., 2001) and ACO (Fernandez-Maculet et al., 1993; Zhou et 
al., 2002).
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Ethylene is perceived by binding to five receptors in Arabidopsis: ETHYLENE RESPONSE 

1 (ETR1), ETR2, ETHYLENE RESPONSE SENSOR 1 (ERS1), ERS2, and ETHYLENE 

INSENSITIVE 4 (EIN4) (Gallie, 2015). These receptors function as negative regulators 

suppressing ethylene signaling. Thus, dominant gain-of-function ethylene receptor mutants 

cause ethylene-insensitivity, whereas recessive loss-of-function ethylene receptor mutants 

cause constitutive ethylene signaling (Hua & Meyerowitz, 1998; Binder et al., 2006; Gao et 
al., 2008; Kim et al., 2011). Downstream, the ethylene receptors associate with and signal 

to the Raf-like CONSTITUTIVE TRIPLE RESPONSE1 serine/threonine kinase (CTR1) 

(Kieber et al., 1993; Gao et al., 2003). In the absence of ethylene, CTR1 phosphorylates and 

inactivates EIN2 (Kieber et al., 1993; Clark et al., 1998). EIN2 encodes for the N-ramp like 

protein ethylene insensitive 2 protein, which mediates ethylene signaling by the activation 

of downstream transcriptional ethylene responses (Alonso et al., 1999; Ju et al., 2012; Qiao 

et al., 2012). Ethylene inhibits its receptors, leading to lowered activity of CTR1, which 

results in active EIN2 and the transcriptional activation of ethylene-responsive genes (such 

as ETHYLENE RESPONSE FACTORs, the ERF family) via EIN3/EIN3-like transcription 

factors (Ju et al., 2012; Qiao et al., 2012; Wen et al., 2012).

In the present study, diffusion modeling analyses support the hypothesis that diffusible 

gaseous signals from the mesophyll could be involved in regulating stomatal conductance. 

Hence, we pursued a detailed, comprehensive investigation to explore the role of ethylene 

in CO2-induced stomatal movements. Our data show that elevated [CO2] leads to increased 

ethylene production in Arabidopsis rosette leaves. Leaves of acs (ACC synthesis) octuple 

mutant plants (Tsuchisaka et al., 2009) were defective in both high CO2-mediated stomatal 

closing and low CO2-induced stomatal opening. The ethylene-insensitive receptor mutants, 

etr1-1 and etr2-1, and the ethylene-insensitive signaling mutants, ein2-5 and ein2-1, 
showed intact CO2-induced stomatal conductance responses. On the other hand, ethylene 

receptor hypersensitive mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, 

showed enhanced and accelerated stomatal conductance changes in response to [CO2]-shifts. 

Positive correlation was found between the impaired or accelerated/enhanced stomatal 

conductance responses to [CO2]-shifts and ABA in the acs octuple mutant and the loss-

of-function receptor mutants etr1-6;etr2-3, respectively. The role of ethylene in stomatal 

conductance responses is discussed.

Materials and Methods

Mesophyll-epidermis diffusion model construction

The diffusion of a molecule C in the domain 0 ≤ x ≤ L , where 0 corresponds to the 

mesophyll site of production, is described by the one-dimensional diffusion equation dC/dt 
= D d2C/dx2. Here, L is the distance between mesophyll and epidermis, and D is the 

diffusion constant. This equation needs to be supplemented with boundary conditions at x 
= 0 (mesophyll) and x = L (epidermis): DdC/dx = −F and DdC/dx = −αC(L), respectively 

(Chen et al., 2009). In these equations, F represents the constant production of C at the 

source (mesophyll), and α is the absorption rate at the epidermis. Finally, as the initial 

condition, we take C(x,0)=0. This problem can be solved exactly, with the following solution
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C x, t = Ceq x − 2FL
D ∑

n = 1

∞ An cos βnx
L e− Dβn2t

L2
βn2

where Ceq x = F
α + F L − x

D  is the steady-state solution, valid for long times. In this formula, 

βn are the roots of the equation β tan(β) = αL/D ≡ B and the coefficients An are given by 

An = (βn2 + B2)/ βn2 + B2 + B . The solution shows that the dynamics of the molecule C does 

not depend on F and its value is irrelevant for a comparison of its time dependence as a 

function of the diffusion constant D. For this reason, we present our computational results in 

terms of the normalized solution C/Ceq.

For large values of D, such that B ≪ 1, the first root is very small while each subsequent root 

is increased by approximately π:β1 ≈ B ≪ 1, βn = β1 + nπ for n > 2. Then, only the first 

term in the sum of the solution is important and A1 ≈ 1 2. In this case, the concentration is 

approximately uniform within the entire domain, independent of D, and given by

C t ≈ F
α 1 − e− α

Lt

Plant materials and mutant lines

Experiments in this study used the Arabidopsis thaliana (L.) Heynh. accession 

Columbia (Col-0). The following mutants were investigated and ordered from 

ABRC unless stated otherwise: three different higher-order ACC synthase (ACS) 

mutants, acs sextuple (cs16649:acs2-1;acs4-1;acs5-2;acs6-1;acs7-1;acs9-1), acs septuple 

(cs16650:acs1-1;acs2-1;acs4-1;acs5-2;acs6-1;acs7-1;acs9-1) and acs octuple (cs16651: acs 
sextuple mutant silenced in acs8 and acs11 (amiR)) mutants (Tsuchisaka et al., 2009). 

Gain-of-function mutants etr1-1 (CS237, AT1G66340), etr2-1 (CS67924, AT3G23150) 

(Hua & Meyerowitz, 1998). Loss-of-function mutants, the single mutant etr1-6 (CS72570, 

AT1G66340) the double mutant etr1-6;etr2-3 (Hua & Meyerowitz, 1998) and the triple 

mutant etr1-6;ein4-4;ers2-3 (CS71770) were kindly provided by B. Binder (University of 

Tennessee, USA). Mutant lines in ein2-1 (AT5G03280), and ein2-5 (Alonso et al., 1999), 

were kindly provided by J. Alonso (NC State University, USA). ein2-1 (CS3071) and the 

ethylene overproducing mutant eto1-1 (CS3072, AT3G51770) (Chae et al., 2003) were also 

analyzed.

Plant growth conditions

Arabidopsis thaliana seeds were surface sterilized (Au - Lindsey Iii et al., 2017). Seeds 

were stratified for two days at 4°C and germinated under sterile conditions on 1/2 strength 

MS medium dissolved in 0.8% (w/v) agar, 0.8% (w/v) sucrose (pH 5.8 with 1 N KOH). 10-

day-old seedlings were transferred to soil (Sunshine Professional Blending, UC San Diego, 

USA) / (Even Ari Green 7611 Arabidopsis-Blending, Volcani Center, Israel), including 

Osmocote fertilizer. All plants were grown in controlled Conviron growth chambers under a 

12h photoperiod, ~150μmol m−2 s−1 light intensity, 21°C and relative humidity of 50–60% 
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(UC San Diego, USA) or Percival (Volcani Center, Israel) growth chambers under a uniform 

temperature of 19°C during the dark period and 21°C during the light period, relative 

humidity of 60–80% under ~150–180μmol m−2 s−1 photon flux density. The Arabidopsis 

plants for gas exchange experiments in Tartu were grown as described in (Zamora et al., 
2021)

Ethylene production quantification

Ethylene production was quantified in four- to five-week-old plants grown under ambient 

CO2 conditions. On the day of experiments, intact potted plants were incubated in a CO2-

controlled growth chamber for 90 min under low (150 ppm) or high (900 ppm) [CO2]. 

Aerial plant parts were excised, placed in 15ml falcon tubes that was immediately plugged 

with a rubber cap. 90 min later, ethylene was measured by gas-chromatography (5890A 

HEWLETT PACKARD GAS Chromatograph, CA) using a short 1-m column (13018-U, 

80/100μm Hayesep Q; Supelco) with flame ionization detection and calculated curve 

reading using a standard to Schmelz et al. (2003).

Time-resolved stomatal conductance measurements

Time-resolved stomatal conductance measurements on five- to six-week-old Arabidopsis 

plants were performed on the 5th/6th fully expended true leaf using the infrared (IRGA)-

based gas-exchange analyzer systems LI-6400, LI-6400XT, and LI-6800 with a leaf 

fluorometer chamber (LI-COR Biosciences, Lincoln, NE, USA), under constant conditions: 

photon flux density of 150 mol m−2 s−1 (10% blue), temperature of 21°C, and 60–65% 

relative humidity. In all experimental setups, wild-type and mutant plants were cultivated 

side by side under identical growth conditions. Stomatal responses to [CO2]-shifts were 

investigated as follows: Stomatal conductance was first stabilized at ambient [CO2], as 

indicated in each figure (i.e., 360/400 ppm) for ≥30 min. Then [CO2] was adjusted to high 

(800 ppm) or low (100 ppm) levels, followed by another shift to 100 or 800 ppm. Data 

presented show the means of n≥3 intact leaves from individual plants ± SEM. Relative 

stomatal conductance was calculated by normalizing each stomatal conductance to the 

steady-state stomatal conductance under ambient [CO2].

Whole-plant stomatal conductance responses were measured in an eight-chamber 

gas-exchange device (Kollist et al., 2007) developed by PlantInvent Ltd (https://

www.plantinvent.com/). Arabidopsis plants at the age of 3–4 weeks were inserted into the 

gas-exchange cuvettes, incubated for 1 h for stabilization of stomatal conductance. The 

standard conditions in the chambers were as follows: ambient [CO2] (400 ppm), 250μmol 

m−2 s−1 light intensity, ~65% relative air humidity, 24°C.

ABA treatment

ABA-induced stomatal closure was tested using the following two protocols as indicated 

in the legends of Figures 9 and 10). 1) Experiments conducted at UCSD (CA, USA) and 

at ARO (Newe Ya’ar, Israel) used a petiole-feeding protocol (Ceciliato et al., 2019). 2) 

Experiments conducted at the University of Tartu (Estonia) were conducted as described in 

(Zamora et al., 2021).
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Results

Diffusion modeling of small molecules inside leaves

Previous research has shown that an unknown diffusible molecule from the mesophyll 

amplifies the stomatal CO2 response (Lee & Bowling, 1992; Lee & Bowling, 1995; Fujita et 
al., 2013; Mott et al., 2014; Fujita et al., 2019). Therefore, we investigated whether soluble 

or gaseous signals may have theoretical advantage over soluble molecules in mediating the 

mesophyll to guard cell component of the stomatal movement response. To this end, we 

studied a diffusion model that simplifies the detailed geometry of the leaf and describes 

diffusion between the mesophyll and the epidermis along a line connecting the two surfaces. 

This reduction in complexity allowed us to derive an exact solution for the resulting one-

dimensional diffusion problem. This solution is expressed as an infinite sum and enabled 

us to compute the concentration C as a function of time and parameters at any location 

between the mesophyll and guard cells at the leaf epidermis. Furthermore, it enabled us to 

determine limitations on the size, diffusion constants, and distances to stomata in possible 

rapid regulation of stomatal movements by signals emanating from the mesophyll.

The steady-state solution of the diffusion problem depends on four parameters, the diffusion 

coefficient D, the absorption rate of the small molecule in guard cells α, the distance from 

the mesophyll to the guard cells L, and the production rate of the small molecule at the 

mesophyll F. The dynamics of the solution depends only on the first three parameters and 

determine how fast the concentration changes at the guard cells/epidermal surface. The 

diffusion coefficient in liquids depends on the size of the molecule and decreases for larger 

molecular weight M. For spherical molecules, this is approximated by the Stokes-Einstein 

equation with D~M−1/3 (Chandrasekhar, 1943) and is more complex for proteins (Young et 
al., 1980), as the signal may conceivably be a peptide. The diffusion coefficient is orders 

of magnitude larger for gases in air than molecules in water (Haynes, 2016). The diffusion 

rate in plant cell walls has been shown to be relatively slow, with diffusion coefficients for 

carboxylic acids to be ~1–2 orders of magnitude smaller than in water (Kramer et al., 2007).

Absorption at the epidermal surface corresponds to the flux of molecules into the epidermis/

guard cells. Thus, it describes how many molecules enter the cells per unit time and per 

area by multiplying the concentration at the epidermal surface with the absorption rate α. 

This rate α can vary over a wide range and depends on the size, hydrophobicity, transport 

activities and charge of the molecule (Wheeler & Levreault, 1985).

For example, for the epidermal cell plasma membrane of barley leaves, the absorption 

rate α was quantified for a variety of solutes and was found to be in the range of 0.1–

1000μm/min (Daeter & Hartung, 1993). Based on three-dimensional imaging, the total 

thickness of Arabidopsis leaves (~22 day-old) is ~175μm, where the thickness of the 

spongy mesophyll is ~40μm, palisade mesophyll is ~110μm, and the abaxial and adaxial 

epidermis thicknesses are ~12μm and ~14μm respectively. Based on these values, the 

mesophyll-epidermis distance L can be as small as ~40μm, which would be an appropriate 

value for gaseous diffusion from spongy mesophyll cells to abaxial epidermis guard cells. 

However, L can be significantly larger for soluble molecules that diffuse via a complex cell 

wall pathway and can be >100μm or more (Wuyts et al., 2010). Note that this distance 
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may be even larger, particularly for the diffusion of soluble molecules through the cell wall, 

as the cell-wall diffusion path is determined by the complex structure and arrangement of 

the spongy and palisade mesophyll cells within the tissue. Furthermore, signals may be 

emanating from the upper palisades to the lower epidermis.

We first investigated the dynamics of the epidermal (guard cell) surface concentration C(L,t) 
for a fixed value D=450μm2/s, typical for small molecules in solution, including abscisic 

acid (264 g/mol) or malate (134g/mol), with molecular weights up to 500 g/mol (Haynes, 

2016). In Fig. 1a, we plot the concentration of the small molecule C(L,t), normalized by its 

steady-state value Ceq, as a function of time after a change in [CO2] for different mesophyll 

to epidermis distances L. Here, the absorption rate at the epidermis was set to α=5μm/min. 

Note that since we rescaled by Ceq the solution is independent of the value of F. As 

expected, the concentration C reaches a steady-state at the guard cell surface much faster for 

a smaller than for a larger mesophyll to epidermis distance L (Fig. 1a).

The analytical solution for the concentration of the molecule at the epidermis C(L,t) (guard 

cells) also allowed us to investigate the dependence of the concentration on the diffusion 

constant. The analytical solution revealed that if the diffusion constant is much larger than 

the product of the absorption rate (α) and the diffusion distance (L), i.e., D>> αL, the 

concentration within the space between the mesophyll and epidermis is almost spatially 

uniform. In other words, diffusion is so fast that any spatial non-uniformities will be 

quickly reduced. In this case, a solution for the concentration as a function of time C(t) 
is independent of the diffusion constant D and depends primarily on the absorption rate 

and distance between the epidermis and mesophyll. This is illustrated in Fig. 1b, where we 

have plotted the dynamics of C/Ceq for a range of values for D and for fixed L=100μm. 

For the largest value of D (D=450 μm2/s), the dynamics of C is indistinguishable from 

the approximate analytical solution derived in Methods. Thus, even larger values of D, 

including values consistent with gaseous molecules more rapidly diffusing in air, such 

as CO2 (D=1.09×107 μm2/s) (Winn, 1950) or ethylene (D=1.37×107 μm2/s) (Pritchard & 

Currie, 1982), do not result in a predicted faster increase in C. The same conclusion can 

be drawn if one would consider gaseous diffusion in water vapor with high humidity as 

found inside leaves, as humidity would not sufficiently affect gaseous diffusion constants 

(Astrath et al., 2009). In Fig. 1b, we have also plotted the dynamics of C for D=1μm2/s, 

D=5 μm2/s, and D=50μm2/s (black, red, and blue curves). These values were motivated by 

experimental studies that showed that diffusion of a soluble molecule through the cell wall 

is 1 to 2 orders of magnitude smaller than in water (Kramer et al., 2007). For these smaller 

values (D=1μm2/s, D=5μm2/s), the increase in the concentration of the small molecule C 
at the epidermal surface is clearly much slower than for the larger values corresponding 

to diffusion in water or air (Fig. 1b). Taken together, these results suggest that for values 

of D corresponding to small molecules in solute or gaseous molecules, the diffusive path 

length L is the most critical parameter for the time-dependence of the epidermal surface 

concentration (Fig. 1a). Furthermore, the difference in path lengths for a gaseous molecule 

in the intercellular spaces of leaves and for a soluble molecule diffusing via complex cell 

walls, together with the much smaller diffusion constant for soluble molecules in cell walls, 

may allow us to distinguish between these two possible types of signaling molecules, based 

on the biological time course of the CO2 response, which shows measurable turgor-driven 
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stomatal conductance changes within 1–2 minutes of [CO2]-shifts. CO2 signal transduction 

events need to significantly precede such measurable stomatal conductance responses.

Ambient CO2 concentration affects ethylene production in Arabidopsis leaves

To investigate whether ambient CO2 concentrations affect ethylene 

production in Arabidopsis leaves, we exposed wild-type (Col-0), the 

ethylene synthesis mutants acs sextuple (acs2-1;acs4-1;acs5-2;acs6-1;acs7-1;acs9-1), 

acs septuple (acs1-1;acs2-1;acs4-1;acs5-2;acs6-1;acs7-1;acs9-1) and acs octuple 

(acs2-1;acs4-1;acs5-2;acs6-1;acs7-1;acs9-1;amiR-acs8/acs11) mutant plants to high (900 

ppm) or low (150 ppm) [CO2] for 90 min and quantified ethylene levels via gas-

chromatography. Interestingly, ethylene levels in wild-type plants clearly and reproducibly 

increased upon exposure to 900 ppm [CO2] compared to 150 ppm [CO2] in more than 

three independent experimental sets, with slight variations between experiments (Figs 2, 

S1). Steady-state ethylene production was reduced in acs sextuple, septuple, and octuple 

mutant plants compared to wild-type (Figs 2, S1), similar to previous studies (Tsuchisaka 

et al., 2009). Interestingly, ethylene levels were also elevated in response to high [CO2] in 

sextuple and octuple mutant rosettes (Figs 2, S1). Yet, high [CO2]-mediated ethylene levels 

in acs sextuple, septuple and octuple mutants reached only 51, 31, and 26% of WT levels, 

respectively (Fig. 2).

CO2-mediated stomatal opening and closure are defective in acs octuple mutant plants

We measured stomatal conductance in response to [CO2]-shifts in intact leaves of acs 
sextuple, septuple and octuple mutant plants to test whether defective ACC synthesis affects 

stomatal movements. Our results show intact stomatal conductance responses in leaves of 

acs sextuple and septuple mutant plants (Figs 3a–f, S2a–f). Interestingly, both high [CO2]-

induced stomatal closure and low [CO2]-mediated stomatal opening were impaired in the 

leaves of acs octuple mutant plants compared to wild-type plants in independent sets of 

experiments (Figs 3g–i, S2g–i).

Leaves of the ethylene overproducer, eto1-1, show intact CO2-induced stomatal 
conductance responses

To further investigate the involvement of ethylene in CO2-mediated stomatal movements, 

we analyzed mutants in ethylene-signaling components for their CO2-induced stomatal 

conductance responses. ETO1 is a negative regulator of ethylene biosynthesis. eto1-1 
mutant plants show constitutively activated ethylene signaling, increased ACS5 stability, 

and elevated ethylene production (Guzman & Ecker, 1990; Kieber et al., 1993; Chae et 
al., 2003). Analysis of ethylene production in eto1-1 mutant plants showed a significant 

increase in response to high [CO2] compared to low [CO2] (Fig. 4a). Furthermore, at both 

CO2 concentrations, eto1-1 produced more ethylene than wild-type plants (P<0.05) in three 

independent experimental sets, yet its CO2-mediated stomatal conductance responses to 

[CO2]-shifts were robust and intact, comparable to wild-type (Figs 4b–d, S3).
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Leaves of the ethylene-insensitive signaling mutants, ein2-5 and ein2-1, show intact CO2-
induced stomatal conductance responses

EIN2 gene encodes a protein from the NRAMP family, a central positive regulator in the 

ethylene signaling pathway, which acts downstream to CTR1 (Alonso et al., 1999; Ju et al., 
2012). To determine whether EIN2 is involved in CO2-controlled stomatal movements, we 

analyzed two independent mutant alleles, ein2-5 and ein2-1 (Alonso et al., 1999). Results 

showed robust and intact responses to [CO2]-shifts of ein2-5 mutant plants leaves, similar 

to wild-type (Fig 5a–c), in two independent labs (TAS and HK). However, in some of the 

experiments, the amplitudes of the stomatal responses of ein2-1 mutant plants were slightly 

reduced compared to the wild-type (Figs 5d–f, S4).

CO2-mediated stomatal movements are enhanced in leaves of ethylene receptor loss-of-
function mutant plants

All five ethylene receptors function as negative regulators of ethylene signaling (Hua & 

Meyerowitz, 1998). The nature of mutations in these receptors can result in either a 

dominant gain-of-function (Bleecker et al., 1988; Guzman & Ecker, 1990; Chang et al., 
1993; Wilkinson et al., 1995), or a recessive loss-of-function receptor (Hua & Meyerowitz, 

1998; Shakeel et al., 2013). Combinatorial higher-order mutants of two or three recessive 

(loss-of-function) ethylene receptors results in a constitutive ethylene response phenotypes 

(Hua & Meyerowitz, 1998). First, we investigated whether a dominant gain-of-function 

mutation in ETR1 (Chang et al., 1993) or ETR2 receptor (Sakai et al., 1998) affects stomatal 

conductance in response to [CO2]-shifts. Our investigation revealed intact CO2-induced 

stomatal conductance responses in both the etr1-1 and etr2-1 (etr1-1 Figs 6a–c, S5a–c; 

etr2-1 Figs 6d–f, S5d–f).

Since gain-of-function mutants did not show an impaired phenotype, we analyzed stomatal 

movement responses of recessive loss-of-function single and higher-order ethylene receptor 

mutants. Interestingly, all loss-of-function mutant lines investigated here, including the 

triple mutant etr2-3;ein4-4;ers2-3, the double mutant etr1-6;etr2-3 and the single mutants 

etr1-6 showed enhanced stomatal opening in response to low [CO2] (Figs 7, S6). The most 

pronounced phenotypes were observed in leaves of the triple mutant etr2-3;ein4-4;ers2-3 and 

the double mutant etr1-6;etr2-3.

etr2-3;ein4-4;ers2-3 showed accelerated/enhanced stomatal opening in response to low 

[CO2] (Fig. 7c (t4-t3) P=0.1), while the double mutant etr1-6;etr2-3 and the single mutant, 

etr1-6, show both accelerated/enhanced stomatal opening (etr1-6;etr2-3: Fig. 7f (t4-t3) 

P=0.06, (t5-t3) P=0.02 ; etr1-6: Fig. 7l (t4-t3) P=0.02) in response to low [CO2] and stomatal 

closing in response to high [CO2] (etr1-6;etr2-3: Fig. 7f (t2-t1) P=0.02, (t3-t1) P=0.05 ; 

etr1-6: Fig. 7l (t2-t1) P=0.01). A prolonged gas-exchange analysis of the etr1-6;etr2-3 to 

ambient, high, low, and then again high [CO2] even further supports this dramatically 

enhanced stomatal response phenotype (Fig. S6c (t2-t1) P=0.001, (t6-t5) P=0.08). The 

accelerated/enhanced CO2 responses shown here were obtained in three independent 

laboratories (UCSD USA, Newe Ya’ar Israel & Tartu Estonia) using either intact leaf or 

whole-plant gas-exchange systems, indicating the robustness of these CO2 responses.
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Impairment of ABA-induced stomatal movement responses in acs and ethylene receptor 
mutants.

Studies using stomatal aperture measurements in Arabidopsis have reported that ethylene 

either inhibits ABA-induced stomatal closing or stimulates stomatal closure (Tanaka et al., 
2005; Desikan et al., 2006; She & Song, 2012; Chen et al., 2013). To test whether a 

lack in ethylene biosynthesis or reception affects stomatal responses to ABA, we tested 

stomatal conductance responses to ABA in the ethylene biosynthesis acs octuple mutant 

and the above loss-of-function ethylene receptor mutants (triple mutant etr2-3;ein4-4;ers2-3, 

double mutant etr1-6;etr2-3 and the single mutant etr1-6), which showed alternation in their 

stomatal conductance responses to CO2.

We have used two different experimental settings in three different labs, where ABA was 

applied by xylem-sap feeding (Fig. 8) or by spraying intact plant rosettes (Fig. 9). In 

both types of experiments, wild-type leaves treated with ABA showed stomatal closure 

responses (Figs 8, 9). Treatment of acs octuple mutant leaves with ABA showed impaired 

stomatal closure responses (Fig. 8a–c, 8c (t3-t1) P=0.01; Fig. 9a–c, 9c (t3-t1) P=0.015). 

On the other hand, the ethylene-hypersensitive etr1-6;etr2-3 showed an enhanced (rapid and 

stronger) stomatal closure in response to ABA (Fig. 8d–f, 8f (t2-t1) P=0.05, (t3-t1) P=0.09). 

Interestingly, while the triple mutant etr2-3;ein4-4;ers2-3 showed wild-type stomatal closure 

(Fig. 9d–f), the double mutant etr1-6;etr2-3 and the single mutant etr1-6 showed an 

enhanced stomatal closure in response to ABA (etr1-6;etr2-3 Fig. 8d–f, 8f (t2-t1) P=0.05, 

etr1-6 Fig. 9g–i, 9i (t2-t1) P=0.016).

Discussion

In the present study, we pursued diffusion modeling to estimate whether a soluble or a 

gaseous molecule is more likely to diffuse from the mesophyll to guard cells as a rapid 

response to [CO2]-shifts in intact plant leaves. Our model suggests that a gaseous signaling 

molecule with a shorter and more direct diffusion pathway to guard cells is more likely 

to be responsible for signaling rapid changes in stomatal conductance (Fig. 1). Previous 

research suggested that diffusion constants of soluble molecules through the cell wall space 

are 1–2 orders of magnitude smaller than in water (Kramer et al., 2007). This indicates 

that a CO2-triggered production of a soluble signal from mesophyll cells could result in 

considerable non-physiological delays in stomatal responses to changes in [CO2]. The model 

presented here assumes that a mesophyll signal is not a steady-state amplifier of the response 

but that [CO2] shifts trigger the production of the signal at the mesophyll cells (Sibbernsen 

& Mott, 2010; Fujita et al., 2013; Mott et al., 2014). These simulations and previous 

research on other candidate gaseous molecules led us to investigate any potential effects of 

the gaseous phytohormone ethylene on CO2-induced stomatal conductance regulation.

Our study reveals that ethylene biosynthesis is upregulated by elevated [CO2] in wild-type 

A. thaliana leaves (Figs 2, S1), and is impaired in the higher-order acs mutants (sextuple, 

septuple, and octuple). The mechanism by which CO2 mediates ethylene production has 

been previously studied (Abeles et al., 1992; Mathooko, 1996) and found to include 

transcriptional, translational, and post-translational regulation of ACC synthase (ACS) 

(Mathooko et al., 2001). Furthermore, the distinctive expression patterns and a combinatorial 
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interplay among the different ACS isoforms in A. thaliana, further increase the complexity 

and the role these genes play in regulating diverse developmental and physiological 

processes (Tsuchisaka & Theologis, 2004; Tsuchisaka et al., 2009). The finding that 

exposure to elevated CO2 caused clearly measurable macroscopic increases in ethylene 

production in intact rosettes indicates that one or more of the different cell types in leaves 

may contribute to the CO2-induced ethylene increases. With the distinctive temporal and 

spatial expression patterns of the ACS genes (Tsuchisaka & Theologis, 2004; Datta et al., 
2015), further investigation is needed to determine the specific tissue/cells which produce 

and perceive ethylene in response to changes in [CO2] and which of these tissues/cells are 

involved in CO2-induced stomatal movements.

Many studies have provided evidence supporting a role for ethylene in stomatal aperture 

regulation in response to stimuli other than CO2. However, the role of ethylene in these 

stomatal aperture responses were conducted in epidermal peels and showed ambiguous 

results. In some studies, ethylene was suggested to mediate stomatal opening (Levitt et 
al., 1987; Iqbal et al., 2011) via inhibition of ABA-induced stomatal closure (Tanaka 

et al., 2005; Tanaka et al., 2006; Wilkinson & Davies, 2009), and in others to induce 

stomatal closure (Desikan et al., 2006; Zhang et al., 2021). The experimental approaches 

using epidermal peels investigate signals that may depend on the state of guard cells and 

render time-resolved analyses more difficult. Notably, time-resolved stomatal conductance 

studies of intact leaves attached to intact plants and whole rosettes of intact plants have 

proven to aid in resolving the physiological responses of plants (McAusland et al., 2016; 

Hiyama et al., 2017; Ceciliato et al., 2019), and circumvent limitations from the small sizes 

and the wide distribution of stomatal sizes in Arabidopsis. We, therefore, have based our 

experimental system on measurements of stomatal conductance kinetics in intact leaves. 

Combined measurements of ethylene production and time-resolved stomatal conductance 

recordings in response to [CO2]-shifts of the different higher-order acs mutants revealed 

that only leaves of acs octuple mutant plants were significantly impaired in both high [CO2]-

induced stomatal closure and low [CO2]-mediated stomatal opening (Figs 3g–i, S2g–i), 

while intact steady state and stomatal conductance responses to [CO2]-shifts were observed 

in the ethylene over producer mutant eto1-1 (Fig. 4). The significantly elevated ethylene 

levels in eto1-1 plants in response to elevated [CO2] indicate that additional ACC/ethylene 

production does not further enhance the stomatal response. This result, together with the 

observed impaired stomatal conductance response of the acs octuple mutant (Figs 3g–I, 

S2g–i), suggests that ethylene (above a minimum threshold) is a pre-requisite signal for 

intact stomatal conductance responses to [CO2]. In this context, recent studies have shown 

direct roles of the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) as a 

signal molecule rather than just the precursor for ethylene (Yoon & Kieber, 2013; Van de 

Poel & Van Der Straeten, 2014; Mou et al., 2020). Further research is needed to determine 

whether ACC participates as a signal in the stomatal CO2 response.

To further investigate ethylene’s role in stomatal conductance regulation, we conducted 

gas-exchange measurements of different ethylene signaling and reception mutants. EIN2 

encodes the NRAMP-like protein ethylene insensitive 2, an early positive transducer of 

ethylene signaling that activates downstream transcriptional ethylene responses (Alonso et 
al., 1999; Ju et al., 2012; Qiao et al., 2012). Interestingly, leaves of ein2-5 and ein2-1 
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mutant plants showed robust and intact responses to [CO2]-shifts (Figs 5, S4). We therefore 

chose to conduct our investigation on upstream components in the ethylene signaling 

pathway and analyzed different ethylene receptor mutants. Ethylene receptors function as 

negative regulators that suppress ethylene signaling. The dominant gain-of-function ethylene 

receptor etr1-1 and etr2-1 mutants have been shown to lead to ethylene-insensitivity (Chang 

et al., 1993; Hua et al., 1995). Remarkably, our data show that CO2-mediated stomatal 

conductance responses in intact plant leaves of these mutants were wildtype-like (Fig. 

6). On the other hand, ETR1, ETR2, EIN4, and ERS ethylene receptor loss-of-function 

mutants are characterized by constitutive/hypersensitive ethylene responses, which found 

to be more pronounced in higher-order mutant lines (Hua & Meyerowitz, 1998; Cancel & 

Larsen, 2002; Qu et al., 2007). This observation underline the partial over-lapping redundant 

function of the different ethylene receptors in ethylene signaling (Theologis, 1998). Indeed, 

in our investigation, all studied loss-of-function receptor mutants, etr2-3;ein4-4;ers2-3, 
etr1-6;etr2-3 and etr1-6 showed enhanced/accelerated stomatal conductance responses to 

[CO2], while the higher-order etr2-3;ein4-4;ers2-3 triple mutant, and etr1-6;etr2-3 double 

mutant showed the most pronounced enhanced CO2 response phenotypes. Interestingly, 

lines that included the loss-of-function mutation in ETR1 (i.e., etr1-6;etr2-3 and etr1-6) 

showed a distinctive phenotype of an enhanced/accelerated response to both low [CO2] 

induce stomatal opening and high [CO2] induced stomatal closure (Figs 7d–f, g–i, S6). 

The observed intact stomatal conductance responses to [CO2] in the ethylene insensitive 

single mutants and enhanced/accelerated responses of the ethylene hypersensitive loss-of-

function receptor mutants, can be explained by the high redundancy of ethylene receptors in 

Arabidopsis. On the other hand, different studies have suggested that ethylene receptors may 

have ethylene-independent roles (Beaudoin et al., 2000; Desikan et al., 2005; Binder et al., 
2006; Wilson et al., 2014; Bakshi et al., 2015; Bakshi et al., 2018), which may be involved 

in the accelerated stomatal responses revealed here. In the last few years, in-depth research 

into ethylene receptor functions has revealed their roles in non-canonical signal transduction 

pathways, which do not signal via the well-known CTR1/EIN2 signaling cascade (Kieber 

et al., 1993; Binder, 2020). The present findings that loss-of-function etr1-6;etr2-3 mutant 

plants significantly accelerate stomatal responses to [CO2], while stomatal conductance 

responses in ein2-1 and ein2-5 are intact, may be explained by the recently recognized 

additional roles of the ETR1 and ETR2 in non-canonical plant signaling (Wilson et al., 
2014; Bakshi et al., 2018; Piya et al., 2019; Binder, 2020). Further research is needed 

to distinguish and dissect between this canonical/non-canonical and ethylene dependent/

independent signaling pathways.

Abscisic acid (ABA) is one of the key hormones involved in stomatal conductance 

regulation. A crosstalk between ABA and ethylene signaling has been previously suggested, 

yet the outcome of ABA and ethylene interaction in regulating stomatal apertures has 

remained controversial (see references above). The present study reveals a correlation 

between altered stomatal conductance phenotypes in acs octuple and etr1-6 mutants to 

[CO2] and ABA. acs octuple mutant plants showed an impaired stomatal opening and 

closure to low/high CO2 and a significantly impaired stomatal closure to ABA. On the other 

hand, a significant enhanced/accelerated stomatal opening and closure in response to low/

high CO2 was found in both the etr1-6;etr2-3 double mutant, and etr1-6 single mutant plants, 

Azoulay-Shemer et al. Page 13

New Phytol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which also showed an enhanced response to ABA. These contrasting phenotypes between 

the ethylene biosynthesis mutant and the hypersensitive loss-of-function receptor mutant 

further support a model in which CO2 and ABA signaling pathways merge downstream of 

early sensing and signaling mechanisms and influence one another (Raschke, 1975; Chater 

et al., 2015; Hsu et al., 2018)

Ethylene receptors involve in various signaling and developmental processes (Iqbal et al., 
2017; Khan et al., 2017). The etr1-6 loss-of-function ethylene receptor mutant showed 

hypersensitive response to ABA induced-stomatal closure in this study. On the other hand, 

in seed germination studies, the etr1-6 mutant showed an insensitive response to ABA and 

germinated faster (Bakshi et al., 2018). Ethylene reception and signaling are substantially 

more complex than assumed. The different ethylene receptors form homodimers (Schaller 

& Bleecker, 1995; Schaller et al., 1995) and heterodimers (Gao et al., 2008; Grefen et al., 
2008; Gao & Schaller, 2009). In addition, the different ethylene receptors were expressed 

differently in various plant tissues and at diverse developmental stages (Grefen et al., 2008). 

The regulation of ethylene biosynthesis also differs between tissues (Mathooko, 1996). For 

example, high [CO2] induces ethylene biosynthesis in leaves (Grodzinski et al., 1982; Kao 

& Yang, 1982; Philosoph-Hadas et al., 1986), while in fruit, high [CO2] inhibits ethylene 

production (Cheverry et al., 1988; Oetiker & Yang, 1995). Together, these features add 

complexity to ethylene perception and signal transduction and to the role each of the 

ethylene receptors plays in the different tissues (for example, seeds/guard cells).

Different studies have investigated crosstalk between ethylene and ABA in stomatal 

conductance regulation (Wilkinson & Davies, 2010; Muller, 2021). Ethylene has been 

found to induce components of the ABA biosynthesis pathway, as ABA levels were 

altered in response to impairment in ethylene reception (etr1-2) (Chiwocha et al., 2005) 

or biosynthesis (acs7) (Dong et al., 2011). Furthermore, Bakshi et al. (2018) suggested 

the involvement of the ETR1 receiver domain in the induction of ABA signaling genes 

by ABA. This finding supports a role for ETR1 in ABA signaling via a non-canonical 

signaling pathway (independent of CTR1). Thus, effects of ethylene receptor mutants on 

ABA responses in different tissues are of interest.

Enhancing the rate (“speed”) of stomatal responses has been suggested as an avenue for 

increasing plant photosynthetic and water-use-efficiency during fluctuating light conditions, 

with stomatal responses in part being driven by CO2 concentration changes in leaves (Taylor 

& Long, 2017; Lawson & Vialet-Chabrand, 2019). The present study has identified a role 

of ethylene receptors in modulating the rate of stomatal conductance changes to [CO2] and 

abscisic acid. Further insights into the mechanisms mediating accelerated stomatal responses 

in ethylene receptor loss-of-function mutants could provide an avenue for engineering 

improved water-use-efficiency and stomatal performance of plants.

In summary, we show that elevated [CO2] induces an increase in ethylene production 

in intact wild-type A. thaliana rosettes. Furthermore, higher-order ethylene biosynthesis 

acs octuple mutant plants show impaired stomatal conductance responses to high and 

low [CO2]. Consistent with a role for ethylene component signaling, loss-of-function 

ethylene receptor mutant plants in the negatively regulating ethylene receptors amplify/
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accelerate CO2-regulated stomatal movements. Furthermore, the loss-of-function receptor 

mutant etr1-6 enhances/accelerates [CO2] and ABA-controlled stomatal movements, further 

supporting a model in which CO2 and ABA signaling pathways merge downstream of 

receptors and sensing mechanisms and influence one-another. The accelerated stomatal 

responses in ethylene receptor mutants found here are of interest for efforts aimed at 

increasing the rate of stomata movement kinetics for enhanced plant performance. Whether 

the presently described CO2 responses are due to functions of the mutated ACC synthase 

and ethylene receptor genes in leaf mesophyll, guard cells, or other tissues requires future 

investigations.
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Fig. 1: Analytical model determines concentrations of signaling molecules at the guard cell 
surface.
(a) Analytical solution for the concentration, C, of a small molecule diffusing from a source 

(mesophyll) to the epidermis (guard cells) as a function of time following stimulation of 

the mesophyll and changing the model parameter representing the mesophyll-epidermis 

distance, L. The solution is rescaled by its steady state value, Ceq. Other model parameters 

are fixed (D=450 μm2/s and α=5μm/min) (see Results for details). (b) Analytical solution 

for the concentration C, rescaled by Ceq, for a fixed length L=100 μm and a range of values 

for the diffusion constant D, demonstrating that for large values of the diffusion coefficient 

D (here D ≥ 50 μm2/s) the dynamics of the concentration at the epidermal/guard cell surface 

C is not determined by the diffusion coefficient D (see Results for details). The remaining 

parameters are the same as in (a). However, for smaller diffusion coefficients, as have been 

measured in plant cell walls, the time of a small molecule to reach the epidermis/guard cells 

is considerably slowed (here D ≤ 50 μm2/s). The symbols (dots in panel b) correspond to the 

“approximate” analytical solution, valid for large diffusion constants, such as for gases in air 

and small soluble molecules in solution (see Methods and Results).
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Fig. 2: CO2-dependent ethylene production is impaired in higher-order acs mutant in response to 
elevated and low [CO2].
Five-week-old A. thaliana wild-type (WT), ACC synthase (acs) sextuple, septuple and 

octuple mutant plants were incubated for 90 min under low (150 ppm) or high (900 ppm) 

[CO2]. Ethylene production in A. thaliana rosettes was quantified using gas chromatography 

(n=6 replicates per each line and each treatment, where 2 whole A. thaliana rosettes were 

measured in each replicate). Different letters above bars indicate statistical differences 

between lines and treatments (P < 0.05, Two-way ANOVA). Similar results were found 

in 3 independent experiments. See Fig. S1 for additional independent experiments.
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Fig. 3: CO2-induced stomatal movements are severely affected in acs octuple mutant plant leaves 
but not in the acs sextuple and acs septuple mutants.
The graphs show average stomatal conductance of wild-type (WT, Col-0), (a-c) acs sextuple 

(n=3), (d-f) acs septuple (n=4), and (g-i) acs octuple (n=3) A. thaliana mutant leaves from 

intact plants in response to shifts in imposed [CO2] as indicated at the bottom (ppm). (a, 
d and g) show stomatal conductance means (±SEM) of intact leaves from individual plants 

per genotype. (b, e, and h) Stomatal conductance (in panels a, d and g) were normalized to 

the stomatal conductance at 360 ppm [CO2] before shifting to 800 ppm [CO2]). (c, f and i) 
Changes in absolute stomatal conductance (mean ± SEM) were calculated at the indicated 

time points based on the data presented on panels a, d and g (t1=stomatal conductance at 

360 ppm [CO2], t2=15 min after shifting to 800 ppm [CO2], t3=30 min after shifting to 800 

ppm [CO2], t4=40 min after shifting to 100 ppm [CO2], t5=80 min after shifting to 100 ppm 

[CO2]). Statistical analyses were done using unpaired Student’s t tests between the wild-type 

and the mutant line, P-value is presented above/under columns. Note, wild-type control gas 

exchange data presented in panels g-i are the same as shown in Fig. S2 a–c and d–f, as these 

mutants were investigated within the same experimental set. Comparable results were found 

in 3 experiments. (See also Fig. S2).
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Fig. 4: Leaves of the ethylene overproducer, eto1-1, show intact CO2-induced stomatal 
conductance responses.
A. thaliana wild-type (WT, Col-0) and the eto1-1 mutant plants were grown under ambient 

CO2 (400 ppm) for five-weeks and then measured for their (a) Ethylene levels using gas 

chromatography and (b) stomatal conductance responses to [CO2]-shifts. (a) Potted plants 

were split into two groups and incubated at either low CO2 (150 ppm) or high CO2 (900 

ppm) for 100 min. Ethylene production was then quantified using gas chromatography. Data 

present the mean of three independent experiments (n=8 plants in each experiment, for each 

line and condition). Letters indicate statistical differences between lines and treatment (P 
< 0.05, Two-way ANOVA). (b, c, d) Stomatal conductance of wild-type (WT, Col-0) and 

eto1-1 A. thaliana mutant leaves from intact plants in response to shifts in imposed [CO2] as 

indicated at the bottom (ppm). (b) Shown are mean (±SEM) of n=4 leaves from individual 

plants per genotype. (c) Stomatal conductance (in panel b) was normalized to the stomatal 

conductance at 360 ppm [CO2] before shifting to 800 ppm [CO2]. (d) Changes in absolute 

stomatal conductance (mean ± SEM) were calculated at the indicated time points based 

on the data presented in panel b (t1=stomatal conductance at 360 ppm [CO2], t2=10 min 

following exposure to 800 ppm [CO2], t3=20 min following exposure to 800 ppm [CO2], 

t4=25 min following exposure to 100 ppm [CO2], t5=50 min following exposure to 100 ppm 

[CO2]). Statistical analyses were done using unpaired Student’s t tests between the wild-type 

and the mutant line, P-value is presented above/under columns. Comparable findings were 

made in additional independent experiments, using a different [CO2]-shift protocol, where 

the gas exchanged leaf was exposed to ambient, low and then high CO2 (Fig. S3).
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Fig. 5: Leaves of the ethylene insensitive signaling mutants, ein2-5 and ein2-1, show CO2-induced 
stomatal conductance responses.
The graphs show average leaf stomatal conductance from intact plants of wild-type (WT, 

Col-0), (a-c) ein2-5 or (d-f) ein2-1 A. thaliana mutant plants in response to [CO2]-shifts, 

as indicated at the bottom (ppm). (a, d) Stomatal conductance means (±SEM) of (a) intact 

leaves (n=3) from individual plants or (d) whole intact plants (n=4) per genotype. (b, e) 
Stomatal conductance (in panels a and c) were normalized to the stomatal conductance 

at 400 ppm [CO2] before shifting to 800 ppm [CO2]. (c, f) Changes in absolute stomatal 

conductance (mean ± SEM). (c) Changes in absolute stomatal conductance (mean ± SEM) 

were calculated at the indicated time points based on the data presented in panel a 
(t1=stomatal conductance at 400 ppm [CO2], t2=20 min following exposure to 800 ppm 

[CO2], t3=40 min following exposure to 800 ppm [CO2], t4=25 min following exposure to 

100 ppm [CO2], t5=50 min following exposure to 100 ppm [CO2]) and d (t1 at 400 ppm 

[CO2], t2=32 min following exposure to 800 ppm [CO2], t3=last data point measured at 

400 ppm [CO2]). Statistical analyses were done using unpaired Student’s t tests between 

the wild-type and the mutant line, P-value is presented above/under columns. Comparable 

results were found in additional independent experiments (e.g., Fig. S4).
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Fig. 6: Leaves of the ethylene insensitive receptor mutants, etr1-1 and etr2-1, show intact CO2-
induced stomatal conductance responses.
The graphs show average leaf stomatal conductance from intact plants of wild-type (WT, 

Col-0), (a-c) etr1-1 and (d-f) etr2-1 A. thaliana mutant plants in response to [CO2]-shifts, 

as indicated at the bottom (ppm). (a, d) Stomatal conductance means (±SEM) of n=4 leaves 

from individual plants per genotype. (b, e) Stomatal conductances (in panel a and d) was 

normalized to the stomatal conductance at 360 ppm [CO2] before shifting to 800 ppm 

[CO2]. (c, f) Changes in absolute stomatal conductance (mean ± SEM) were calculated at 

the indicated time points based on the data presented in panel a (t1=stomatal conductance 

at 360 ppm [CO2], t2=15 min following exposure to 800 ppm [CO2], t3=30 min following 

exposure to 800 ppm [CO2], t4=40 min in a / 30 min in b, following exposure to 100 

ppm [CO2], t5= last data point ~80 min following exposure to 100 ppm [CO2]). Statistical 

analyses were done using unpaired Student’s t tests between the wild-type and the mutant 

line, P-value is presented above/under columns. Similar findings were made in additional 

independent experiments (e.g., Fig. S5).
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Fig. 7: Leaves of the ethylene receptor hypersensitive mutants, etr2-3;ein4-4;ers2-3 triple mutant, 
etr1-6;etr2-3 double mutant and the etr1-6 single mutant plants, show accelerated CO2-induced 
stomatal conductance responses.
The graphs show average leaf stomatal conductance from intact plants of wild-type (WT, 

Col-0), (a-c) etr2-3;ein4-4;ers2-3 triple mutant, (d-f) etr1-6;etr2-3 double mutant, (g-i) 
etr1-6 single mutant of A. thaliana in response to [CO2]-shifts as indicated at the bottom 

(ppm). (a, d and g) Stomatal conductance means (±SEM) of (a-c) n=4 (WT), and n=3 

(etr2-3;ein4-4;ers2-3), (d-f) n=3, (g-i) n=3 leaves from individual plants per genotype. (b, 
e and h) Stomatal conductance (in panels a, d and g) were normalized to the stomatal 

conductance at 400 ppm [CO2] before shifting to 800 ppm [CO2]). (c, f, and i) Changes in 

absolute stomatal conductance (mean ± SEM) were calculated at the indicated time points 

based on the data presented on panels a, d and g (t1 = stomatal conductance at 400 ppm 

[CO2], t2=15 min following exposure to 800 ppm [CO2], t3=30 min following exposure to 

800 ppm [CO2], t4=40 min following exposure to 100 ppm [CO2], t5=80 min following 

exposure to 100 ppm [CO2]). Statistical analyses were done using unpaired Student’s t 
tests between the wild-type and the mutant line, P-value is presented above/under columns. 
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Similar findings for the etr1-6;etr2-3 double mutant were found in additional independent 

experiments (see Fig. S6).
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Fig. 8: ABA-induced stomatal closure is impaired in acs octuple mutant plant leaves, whereas 
ethylene receptor hypersensitive double mutant, etr1-6;etr2-3 plants, show enhanced and 
accelerated ABA-induced stomatal closure.
Time-resolved stomatal conductance in response to 2 uM ABA petiole-fed leaves in wild-

type (WT, Col-0), (a-c) acs octuple and (d-f) etr1-6;etr2-3 double mutant leaves. Stomatal 

conductance means (±SEM) of (a-c) n=5 (d-f) n=4 leaves from individual plants per 

genotype. (b, e) Stomatal conductance (in panels a and d) were normalized to the steady-

state stomatal conductance before ABA was applied. (c and f) Changes in absolute stomatal 

conductance (mean ± SEM) were calculated at the indicated time points based on the data in 

panels a and d (t1 = steady-state stomatal conductance, t2=20 min and t3=50 min following 

application of ABA). Statistical analyses were done using unpaired Student’s t tests between 

the wild-type and the mutant line, P-value is presented under columns. Experimental sets 

were repeated three times showing similar results.
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Fig. 9: ABA-induced stomatal closure is intact in the ethylene receptor hypersensitive triple 
mutant, etr2-3; ein4-4;ers2-3, while etr1-6 mutant plants show enhanced ABA-induced stomatal 
closure.
Time-resolved stomatal-conductance in response to 5 uM ABA sprayed leaves in wild-type 

(WT, Col-0), (a-c) acs octuple (d-f) etr2-3;ein4-4;ers2-3 triple mutant and (g-i) etr1-6. (a, 
d and g) Stomatal conductance means (±SEM) of n=4 leaves from individual plants per 

genotype. (b, e and h). Stomatal conductances (in panels a, d and g) were normalized to 

the steady-state stomatal conductance before ABA was applied). (c, f and i) Changes in 

absolute stomatal conductance (mean ± SEM) were calculated at the indicated time points 

based on the data presented in panels a, d and g (t1 = steady-state stomatal conductance, 

t2=20 min following ABA spray). Statistical analyses were done using unpaired Student’s 

t tests between the wild-type and the mutant line, P-value is presented above columns. 

Experimental sets were repeated three times showing similar results.
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