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ABSTRACT OF THE DISSERTATION 

Simultaneous Quantitative Multiparametric MRI for  

In Vivo Tissue Characterization using Magnetic Resonance Multitasking:  

 Methodology and Clinical Experience 

 

 by 

 

 Sen Ma 

 Doctor of Philosophy in Department of Bioengnieering 

 University of California, Los Angeles, 2020 

 Professor Debiao Li, Chair  

 

 In current clinical systems, magnetic resonance imaging scans for disease diagnosis and 

prognosis are dominated by qualitative contrast-weighted imaging. These qualitative MR images 

reveal regional differences in signal intensities between tissues with focal structural or functional 

abnormalities and tissues that are supposedly in healthy states, facilitating subjective determination 

for disease diagnosis. The administration of gadolinium-based contrast agents is prevalent in 

clinical MRI exams, which alternates the relaxation time of neighboring water protons and creates 

enhanced signal intensities from damaged tissues with high vascular density and thin vessel wall 

for better visualization. Nowadays, nearly 50% of the MRI studies were conducted with contrast 

agents. However, patients with renal insufficiency are at risk of developing nephrogenic system 

fibrosis if exposed to gadolinium-based contrast agents, and chronic toxic effects of possible 

gadolinium retention have been reported. In the meantime, qualitative contrast-weighted images 

have limited sensitivity to subtle alteration in tissue states, lack of biological specificity and multi-

center reproducibility, and limited predictive values. 
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 One promising alternative is quantitative multiparametric MRI, which contains various 

methods to quantify multiple parameters with interpretable physical units that are intrinsic to tissue 

properties. Most of these quantitative approaches do not involve the administration of contrast 

agents, therefore ensuring the safety of the application to a wide range of patients and reducing the 

costs of MRI. These quantitative parameters are highly reproducible, sensitive to subtle 

physiological tissue changes, and specific for disease pathologies. More importantly, each of these 

parameters reveal tissue properties in different aspects, having the potential to offer 

complementary information for comprehensive tissue characterization, and acting as biomarkers 

that are directly associated with diseases states. Despite the benefits to clinical studies, quantitative 

multiparametric MRI has yet to be widely adopted in routine clinical practices because of several 

major technical limitations including (i) long scan times that compromises image resolution and/or 

spatial coverage, (ii) motion artifacts, (iii) misaligned parametric maps due to separate acquisitions, 

and (iv) complicated clinical workflow. This dissertation aims to address some of these challenges 

by proposing a simultaneous quantitative multiparametric MRI approach with Magnetic 

Resonance Multitasking and focus on the quantification of T1, T2, T1r, and ADC, which serves 

as the start of the ultimate goal to provide a clinically translatable, multiparametric whole-body 

quantitative tissue characterization technique. 

 A novel approach to simultaneously quantifying T1, T2, and ADC in the brain was first 

developed using MR Multitasking in conjunction with a time-resolved phase correction strategy 

to compensate for the inter-shot phase inconsistencies introduced by physiological motion. It was 

implemented as a push-button, continuous acquisition that simplified the workflow. This technique 

was initially demonstrated in healthy subjects to efficiently produce distortion-free, co-registered 

T1, T2, and ADC maps with 3D brain coverage (100mm) in 9.3min. The resulting T1, T2, and 
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ADC measurements in the brain were comparable to reference quantitative approaches. Abrupt 

motion was manually identified and removed to yield T1, T2, and ADC maps that were free from 

motion artifacts and with accurate quantitative measurements. Clinical feasibility was 

demonstrated on post-surgery glioblastoma patients. 

 A motion-resolved, simultaneous T1, T2, and T1r quantification technique was then 

developed using MR Multitasking in a push-button 9min acquisition. Rigid intra-scan head motion 

was captured and simultaneously resolved along with the relaxation processes. This technique was 

first validated in healthy subjects to produce high quality, whole-brain (140mm) T1, T2, and T1r 

maps and repeatable T1, T2, and T1r measurements that were in excellent agreement with gold 

standard methods. Motion-resolved, artifact-free maps were generated under either in-plane or 

through-plane motion, which provided a novel avenue for handling rigid motion in brain MRI. 

Synthetic contrast-weighted qualitative images comparable to clinical images were generated 

using the parameter maps, demonstrating the significant potential to replace conventional MRI 

scans with a single Multitasking scan for clinical purposes. This technique was applied in a pilot 

clinical setting to perform tissue characterization in relapsing-remitting multiple sclerosis patients. 

The combination of T1, T2, and T1r significantly improved the accuracy of the differentiation of 

multiple sclerosis patients from healthy controls, compared to either single parameter alone, 

indicating the clinical utility of T1, T2, and T1r as quantitative biomarkers. 

 Lastly, the above two quantitative techniques were extended to other body organs for a 

preliminary demonstration of potential applications, where we 1) simultaneously quantified T1, 

T2, and ADC in the breast with whole-breast coverage (160mm) in 8min, incorporating a B1+-

compensated multiparametric fitting approach to address the notable B1+ inhomogeneity across 

the bilateral breast FOV, and to provide distortion-free, co-registered whole-breast T1, T2, and 
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ADC maps with good in vivo repeatability; and 2) simultaneously quantified myocardial T1 and 

T1r in a single non-ECG, free-breathing acquisition, where cardiac motion and respiratory motion 

were retrospectively identified and simultaneously resolved to produce dynamic myocardial T1 

and T1r maps of 20 cardiac phases with high temporal resolution (15ms) in a single, continuous 

acquisition of 1.5min per slice. Multitasking T1 and T1r measurements in the heart were 

comparable with gold standard techniques. 
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Chapter I Introduction 

1.1 Significance 

 For the past few decades, magnetic resonance imaging (MRI) has becoming a promising 

imaging technique in the clinical world to evaluate the structural and functional abnormalities of 

organs, tissues, and the skeletal system by producing three-dimensional, high resolution cross-

sectional images. Compared to other popular imaging techniques such as computerized 

tomography, X-ray, or ultrasound, MRI has three major advantages: i) it is non-invasive; ii) it does 

not use ionizing radiation; and iii) it offers excellent soft tissue contrasts for the visualization of 

organ/tissue damages.  

Currently, consensus MRI protocols for disease diagnosis almost solely rely on qualitative 

contrast-weighted imaging protocols with the assistance of contrast agent administration. 

Although the diagnostic utility of these conventional MRI protocols is indisputable, the limitations 

of qualitative MRI has been aware of to the clinical world, including the sensitivity to subtle 

physiological tissue changes, the biological specificity of different pathological substrates, and the 

multi-center reproducibility1. Furthermore, patients with renal insufficiency are unable to filter 

gadolinium-based contrast agents, facilitating the need for seeking non-contrast MRI protocols.  

Quantitative MRI protocols that provide parameters with physical MR property and 

intrinsic to tissue information have long been a hot topic in MRI research. Unlike qualitative 

contrast-weighted images, quantitative parametric maps have potential to be more sensitive to 

alteration of tissue properties2-4 and reproducible for multi-center studies5,6. Meanwhile, a lot of 

these parameters can be quantified without the need of contrast agent administration. If multiple 

parameters of interest are quantified and combined together, each of them will offer 
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complementary tissue information, allowing comprehensive tissue characterization highly 

promising for risk stratification, early detection, staging, and treatment monitoring of diseases. 

What’s more, with the development of advanced quantitative MRI techniques, multiple 

quantitative parameters can be acquired simultaneously, which significantly accelerates the MR 

exams, thus widely broadening the potential clinical application and pushing quantitative MRI 

towards routine clinical use. 

1.2 Conventional Clinical MRI Practices 

1.2.1 Pre-contrast MRI Protocols  

 MRI protocols implemented before contrast agent administration are referred to as pre-

contrast MRI protocols. They include but are not limited to: T1-weighted (T1w) imaging, T2-

weighted (T2w) imaging, fluid attenuated inversion recovery (FLAIR) imaging, diffusion-

weighted imaging (DWI), and susceptibility-weighted imaging (SWI). Each of the protocol can 

reveal pathological abnormalities through relative signal intensity differences of different tissues, 

and several image protocols can be combined for diagnosis depending on the clinical 

recommendations for different disease types. 

1.2.2 Post-contrast MRI Protocols  

 MRI protocols implemented after contrast agent administration are referred to as post-

contrast MRI protocols. Nowadays, nearly half of the MRI studies are contrast-enhanced studies7. 

The most popular MRI contrast agent is paramagnetic gadolinium ion complexes which 

significantly shorten the T1 and/or T2 relaxation time of neighboring water protons, creating 

hyperintense T1w signals and /or hypointense T2w signals on abnormal or damaged tissues with 

high vascular density and thin vessel wall such as a majority of tumors8,9. Contrast-enhanced 

tumors usually appear significantly brighter on post-contrast T1w compared to pre-contrast T1w, 
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allowing easy identification and diagnosis. Common post-contrast MRI protocols include but are 

not limited to T1w imaging, T2w imaging, and dynamic contrast enhanced (DCE) imaging. 

However, despite the ability of these conventional MRI protocols to reveal pathological tissue 

abnormalities, their sensitivity, specificity, reproducibility, and predictive values are rather 

limited10,11. 

1.3 Potential Risks of Contrast Agents 

 Despite proven greatly useful in clinical practices, the debate over the safety of gadolinium-

based MRI contrast agents never ceases. The association between the exposure of gadolinium-

based contrast agents during MRI and the development of nephrogenic system fibrosis (NSF) in 

renal insufficiency patients was first established in 200612. The gadolinium deposition in body 

tissues has been a big concern in radiology. It has been reported that in vivo clinical exposure to 

gadolinium chelates may result in gadolinium deposition not only in kidney, but also in bone 

matrix and neuronal tissues for an extended period, even in patients with normal renal functions13-

16. In addition, chronic toxic effects of possibly retained gadolinium were reported, including 

numbness, tingling, muscle twitching, skin conditions, and cognitive impairments17. Although the 

clinical evidence linking these post-MRI symptoms to gadolinium retention is limited, the 

administration of gadolinium-based contrast agents should proceed with caution, and sometimes 

it would raise patients’ concern and unwillingness for contrast agent injection. 

1.4 Non-contrast Quantitative Multiparametric MRI in Clinical Practices 

 Recent technological advances in both hardware and software has allowed the use of 

quantitative MRI in clinical research or even routine diagnosis. Most of the quantitative MRI 

approaches do not require the injection of contrast agents, making the MRI exams safer and 

reducing costs. As part of routine clinical practices, T1 and T2 mapping have been widely adopted 
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in clinical cardiac MRI scans to image patients with various cardiovascular diseases such as 

cardiomyopathies, ischemic heart diseases, and more, for the evaluation of disease progression and 

treatment monitoring18-20. Apparent diffusion coefficient (ADC) mapping, which is available 

through DWI, has also been routinely implemented in clinical practices for early detection, 

diagnosis, and prognosis of almost all types of cancer including brain, breast, pancreas, prostate, 

and more21-25.  

 A combination of multiple quantitative parameters can allow comprehensive assessment 

of tissue states. Table 1 shows some common diseases and their clinically associated quantitative 

tissue biomarkers.  
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In recent years’ clinical research and studies, quantitative multiparametric MRI has 

becoming a growing trend for risk assessment, improving diagnostic accuracy, and prediction of 

treatment response. It has significant potential to improve image guided patient care through better 

diagnostic decision making. For example, T1 and T2 mapping documented much earlier signs (8 

Table 1. Common diseases and their clinically associated quantitative tissue 
parameters 
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weeks before progression) of brain tumor progression before any obvious changes in conventional 

qualitative images26,27. T1, T2, and ADC mapping demonstrated the ability of differentiation and 

categorization of various brain tumor types25,28. In the pancreas, the combination of T1, T2, and 

ADC mapping yielded the best sensitivity, specificity, and diagnostic accuracy of pancreatic 

cancer compared to any single measurement29. In the prostate, the combination of T1, T2, and 

ADC produced the best differentiation between normal appearing and cancerous peripheral zone30. 

T1, T2*, and proton density fat fraction (PDFF) demonstrated good diagnostic performance of 

hepatic steatosis, hepatic inflammation and liver fibrosis across a range of disease severity and 

etiology31-33. Combining T1, T2, T2*, and magnetization transfer rate (MTR) increased the 

pathological specificity to white matter (WM) damage at early stage of multiple sclerosis (MS) 

and showed predictive power of patient motor and cognitive function at longitudinal follow-up34. 

T2, and T1r mapping allowed the detection and assessment of the degenerative pathological 

progression including inflammation, demyelination, and axonal damage in MS35. 

1.5 Technical Challenges of Quantitative Multiparametric MRI  

 Despite all the potential benefits of quantitative multiparametric MRI in clinical practices, 

a lot of quantitative parameters are not widely acquired in a clinical setting because of some major 

technical limitations.  

First, quantitative MRI requires prolonged acquisition time because usually multiple set of 

images with specific timings or sequence parameters need to be collected to quantify one single 

tissue parameter. And because these image sets usually cannot be shared between different 

parameters, quantification of multiple tissue parameters will substantially increase the scan time 

and reduces the scan efficiency, which is not acceptable in most clinical MR exams due to patient 
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care and cost issues. As a result, image resolution or spatial coverage will usually be traded for 

scan time reduction.  

The second technical challenge is patient motion. Unexpected bulk motion typically 

requires reacquisition which further compromises scan efficiency and increases costs. 

Physiological motion can be eliminated or compensated with breath holds or synchronized 

acquisition with motion rhythms using electrocardiogram (ECG) or gating methods, but those may 

not work well on patients with specific diseases. Failure to compensate motion will cause image 

artifacts, leading to inaccurate quantification and loss of valuable diagnostic information. 

Finally, multiparametric MRI is usually performed in separate scans, which leads to 

misaligned parametric maps due to inter-scan misplacement, complicating clinical image 

interpretation and the joint analysis of multiple parameters. Meanwhile, separate quantitative scans 

also complicate the workflow for technicians due to the manual settings of acquisition volumes, 

shimming, etc. As a result, a novel strategy that enables simultaneous quantitative multiparametric 

acquisitions with high imaging efficiency would be vastly desirable in clinical practices. 

1.6 Specific Aims 

 The long-term objective of this dissertation will focus on whole-body tissue 

characterization with a novel contrast agent-free, simultaneous quantitative multiparametric MRI 

technique named as “Magnetic Resonance Multitasking”. As a starting point of the long-term goal, 

we present in this dissertation technical developments for i) simultaneous T1, T2, and ADC 

quantification, and ii) simultaneous T1, T2, and/or T1r quantification with potential application 

in the brain, breast, and heart, in an accelerated, push-button MR exam that simplifies acquisition 
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workflow. Different motion handling strategies including motion-removed imaging and motion-

resolved imaging will be introduced as part of the technical developments.  

Chapter 2 provides basic contexts and background information of qualitative and 

quantitative MRI, basic MR physics of some common tissue parameters, and general introduction 

of MR Multitasking. Chapters 3-4 introduces the simultaneous T1, T2, and ADC quantification 

technique and the simultaneous T1, T2, and T1r quantification technique, respectively, with 

application in the brain. Chapter 5 introduces the extension of the developed techniques to the 

breast and heart as other potential applications. The two specific aims are as follows: 

1.6.1 Aim 1: To develop an approach for 3D simultaneous T1, T2, and ADC quantification 

with in a clinically feasible scan time using MR Multitasking  

 Chapter 3 presents a novel technique for simultaneous T1, T2, and ADC quantification in 

the brain with 3D coverage in 9.3min. High quality, co-registered brain T1, T2, and ADC maps 

are generated. MR Multitasking conceptualizes different image contrasts to be quantified as 

different time dimensions. Substantial acceleration can be achieved by exploiting the strong 

spatiotemporal signal correlation along and across different dimensions using a low-rank tensor 

(LRT) image model. A time-resolved phase correction is incorporated to compensate for the inter-

shot phase inconsistencies induced by physiological motion. A motion-removal strategy is 

employed to discard the data corrupted by bulk motion, producing clean quantitative maps without 

blurring and ghosting artifacts.  
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1.6.2 Aim 2: To develop a rigid motion-resolved, 3D simultaneous T1, T2, and T1r mapping 

technique using MR Multitasking with initial clinical study on a relapsing remitting multiple 

sclerosis patient cohort 

 Chapter 4 describes another application of MR Multitasking which produces 

simultaneously acquired, co-registered T1, T2, and T1r maps with 3D whole-brain coverage in 

9min. We present a novel idea for handling rigid motion in brain MRI, where different motion 

states are simultaneously captured and resolved in an extra time dimension in the framework. 

Motion-resolved multiparametric maps are efficiently generated by jointly exploring the signal 

correlation along different parameter and motion dimensions. Thorough motion experiments are 

designed to investigate different types of rigid motion. Clinical validation is performed on a 

relapsing remitting multiple sclerosis patient cohort where the combination of T1, T2, and T1r 

demonstrates superior performance of tissue characterization in multiple sclerosis compared to 

using either single parameter alone. 
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Chapter II Backgrounds 

2.1 Qualitative MRI 

 In current clinical systems, clinical MRI is mostly dominated by qualitative exams which 

measures different signal intensities with arbitrary units. On the collected MRI images, these signal 

intensities are represented as bright or dark contrasts which are a combination of multiple factors 

– parameters intrinsic to tissue properties and/or external experimental conditions. The relative 

signal contrasts between tissues can be sensitive to scanners, coils, image protocols, and times of 

the scan, posing challenges on multi-center studies and longitudinal evaluation of disease 

progression. Clinical diagnosis is made with visual examination of the regional differences in 

signal intensities between areas with gross morphological or focal abnormalities and areas that are 

“supposedly” normal, which relies on subjective determination as it lacks physiological evidence 

to confirm healthy tissues. Qualitative MRI may be insensitive to mild disease states or subtle 

tissue changes that affect an organ globally. It also inevitably lacks biological specificity, as 

different pathological conditions can produce similar signal intensities on the images. Clinical 

qualitative images of an MS patient are shown in Figure 1A where only relative signal intensities 

are available.  
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2.2 Quantitative MRI 

 The concept of quantitative MRI was first established in 1980’s when the nuclear magnetic 

resonance (NMR) properties (proton density (PD), T1, T2, etc.) of tissues were quantified to 

differentiate biological tissues according to the exact values of these parameters. Nowadays, an 

MRI study is considered quantitative if parametric maps are obtained with meaningful physical or 

chemical variable that can be measured with interpretable physical units and can be compared 

between tissues and among subjects1. Quantitative measurement of tissue parameters has four 

Figure 1. (A) Example clinical qualitative T1w and T2w-FLAIR images with 
unitless pixel values. (B) Corresponding quantitative T1 and T2 maps 

whose pixel values are with meaningful physical variables. 
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major advantages over qualitative interpretation such that: i) quantitative measurements are highly 

reproducible5,6, which allows direct comparisons of tissue properties across different sites, subjects, 

and times; ii) quantitative measurements can establish a normative range for healthy tissue states 

from a healthy control group, which provides the foundations for disease assessments29,34,36; iii) 

quantitative measurements are more sensitive to subtle physiological changes in tissue states and 

more specific for tissue characterization and disease diagnosis2-4,37,38; and (iv) quantitative MRI 

tissue parameters can act as candidate imaging biomarkers that are directly associated with disease 

states. Figure 1B demonstrates quantitative MRI with T1 and T2 maps of the same patient, where 

specific T1 and T2 values are available for each voxel within different tissues. 

2.3 MR Physics of Tissue Parameters and Quantitative Methods 

 This section will review the concepts and physics of several commonly used tissue 

parameters and the typical methods to quantify these parameters. Among these parameters, T1, T2, 

T1r, and ADC will be the main focus in this dissertation. Other parameters can also be quantified 

with the proposed method described in this dissertation, as has been demonstrated in a few 

preliminary works from our group (which will be introduced in Chapter 7). 

2.3.1 T1 relaxation time 

 T1 relaxation time, which is also known as spin-lattice relaxation time or longitudinal 

relaxation time, describes the recovery rate of the longitudinal magnetization (Mz) toward the 

thermal equilibrium (M0) parallel to the main magnetic field (B0)39. The value of T1 is associated 

with the transfer rate of the energy flow between the spin system and the external environment 

such as nearby atoms, nuclei, and molecules. T1 is mathematically characterized as the time 

required for Mz to reach (1-1/e) or ~63% of M0. Figure 2 describes the T1 relaxation process. 
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 T1 relaxation time is usually quantified with a saturation recovery (SR) or inversion 

recovery (IR) sequence40-42. By sampling the MR signals at several saturation times (TS) or 

inversion times (TI), T1 can be obtained through a three-parameter nonlinear fitting of a recovery 

model (we use IR as an example here): 

𝑀"(𝑛) = 𝐴 ∙ (1 − (1 − 𝐵)𝑒#
!"($)
!& ),                                            (2.1) 

where 𝑀"(𝑛) is the signal at the 𝑛th inversion time 𝑇𝐼(𝑛), 𝐴 absorbs proton density and coil 

receive sensitivity, and 𝐵 denotes the inversion efficiency factor. Figure 3 illustrates the T1 fitting 

process with an IR example. 

Figure 2. Demonstration of the T1 relaxation process. 
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2.3.2 T2 relaxation time 

 T2 relaxation time, which is also known as spin-spin relaxation time or transverse 

relaxation time, describes the dephasing rate of the transverse magnetization (Mxy) toward zero 

after an excitation RF field (B1)39. The value of T2 is associated with the loss of phase coherence 

in the spin system. T2 is mathematically characterized as the time required for Mxy to fall to 1/e or 

~37% of its initial value immediately after the RF excitation. Figure 4 describes the T2 relaxation 

process. 

 

  

 

 

Figure 3. Demonstration of a typical T1 fitting process using IR, where multiple 
inversion recovery images are required for a voxel-wise T1 exponential fitting. 
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T2 relaxation time is usually quantified with a spin echo (SE)-based or T2-preparation (T2-

prep)-based sequence43,44. By sampling the MR signals at several echo times (TE) or using several 

T2-prep with different preparation durations, T2 can be obtained through a two-parameter 

nonlinear fitting of a decay model: 

𝑀$%(𝑛) = 𝐴 ∙ 𝑒#
!'($)
!( ,                                                         (2.2) 

where 𝑀$%(𝑛) is the signal at the 𝑛th echo time 𝑇𝐸(𝑛), and 𝐴 absorbs proton density and coil 

receive sensitivity. Figure 5 illustrates the T2 fitting process with a turbo spin echo (TSE) example. 

Figure 4. Demonstration of the T2 relaxation process. 



16 
 

 

2.3.3 T2* relaxation time 

 T2* relaxation comes from the additive effect of spin-spin relaxation and local field 

inhomogeneities which includes the B0 inhomogeneity, the differences in magnetic susceptibility 

among various tissues, chemical shift, and spatial encoding gradients45. The presence of local field 

inhomogeneities causes additional dephasing in the spin system, resulting in a faster decay rate of 

Mxy characterized by T2* relaxation time. The relationship between T2* and T2 is represented as: 

&
'(∗

= &
'(
+ 𝛾∆𝐵,                                                             (2.3) 

where ∆𝐵  is the magnetic field inhomogeneity across a voxel. Figure 6 describes the T2* 

relaxation process. 

 

Figure 5. Demonstration of a typical T2 fitting process using TSE, where 
multiple T2W images corresponding to different TE are required for a voxel-wise 

T2 exponential fitting. 
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 T2* relaxation time can be quantified with a gradient echo (GRE)-based sequence19,45. A 

multi-echo structure with gradient rephasing is usually implemented to sample signals at several 

TEs. T2* can be fitted similarly as T2 with the same decay model (i.e., Eq. (2.2)). Figure 7 

illustrates the T2* fitting process with a simple GRE example. 

Figure 6. Demonstration of the T2* relaxation process. Note that T2* decay is 
faster compared to T2 decay as demonstrated in Figure 4, because of the 

extra dephasing induced by field inhomogeneities. 
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2.3.4 Quantitative Susceptibility Mapping (QSM) 

 QSM is a novel technique that aims to map the spatial susceptibility distribution of tissues 

from the MRI phase and local field data, which quantifies the magnetic susceptibility and produces 

a unique susceptibility-weighted contrast to describe the change of magnetization within tissues in 

response to magnetic field inhomogeneities46. QSM has great promise for evaluating chemical and 

molecular composition of tissues such as water, myelin, iron, and calcium, and has been proven 

useful in traumatic injury assessment47, differentiation between blood deposits and calcifications48, 

and disease characterization of neurodegenerative pathologies49,50.  

 Magnetic susceptibility can be quantified with a ME-GRE sequence which simultaneously 

allows the calculation of T2*. As a result, T2* imaging and QSM are usually performed in 

combination. Conversion from GRE images to QSM requires complicated processing, including 

sensitivity reconstruction, field map estimation, background field removal, and solving a field-to-

susceptibility inverse problem46. Detailed QSM computation is beyond the scope of this section. 

Figure 7. Demonstration of a typical T2* fitting process using multi-echo GRE, 
where multiple T2*-weighted images corresponding to different TE are required 

for a voxel-wise T2* exponential fitting. T2*-weighted images and T2* map 
courtesy to Tianle Cao. 
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2.3.5 T1r relaxation time 

 T1r relaxation is also referred to as spin-lattice relaxation in the rotating frame51. T1r 

relaxation time describes the dephasing rate of Mxy in the presence of an external spin-lock RF 

pulse (BSL) after B1 excitation. BSL forces the spins to process around its direction in the rotating 

frame at the frequency of the spin-lock pulse denoted as spin-lock frequency (FSL). FSL is usually 

at the range of kilohertz which is far lower than the Larmor frequency at the range of megahertz, 

making T1r suitable to detect low frequency biochemical motional processes such as protein 

exchange between macromolecules and extracellular water. Note that the only difference between 

T2 and T1r relaxation is the existence of BSL. As a result, T2 is a special case of T1r when BSL=0. 

Figure 8. Demonstration of the T1r relaxation process. Note that T1r decay 
is usually slower compared to T2 decay as demonstrated in Figure 4, 

because of the spin-lock pulse along which the spins are forced to process. 
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Figure 8 describes the T1r relaxation process. 

T1r relaxation time can be quantified with a T1r-preparation (T1r-prep)-based sequence51. 

Similar to T2 quantification with T2-prep, different T1r weightings can be generated using several 

T1r-prep with different preparation durations which is also known as spin-lock times (TSL). T1r 

can be obtained through a two-parameter nonlinear fitting of a similar decay model as in T2: 

𝑀$%(𝑛) = 𝐴 ∙ 𝑒#
!*+($)
!&, ,                                                      (2.4) 

where 𝑀$%(𝑛) is the signal sampled after the 𝑛th spin-lock time 𝑇𝑆𝐿(𝑛), and 𝐴 absorbs proton 

density and coil receive sensitivity. Figure 9 illustrates the T1r fitting process with a single spin-

lock pulse T1r-prep example. 

 

Figure 9. Demonstration of a typical T1r fitting process using a T1r-prep-based 
sequence, where multiple T1r-weighted images corresponding to different TSL 

are required for a voxel-wise T1r exponential fitting. 
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2.3.6 ADC 

 Diffusion MRI allows the measurement of molecular diffusion of water molecules in 

tissues, providing a unique solution to probe the microscopic tissue architecture in a non-contrast, 

non-invasive manner52. By applying a pair of diffusion-sensitizing gradients along one or more 

gradient axes which specifies a diffusion direction, the diffusion contrast can be generated with 

unique sensitivity to this direction: 

𝑆 = 𝑆)𝑒#*+,                                                                (2.5) 

where 𝑆 represents the diffusion-weighted signal, 𝑆) represents the non-diffusion signal acquired 

without diffusion gradients, 𝑏 is the “b-value” that describes how much “diffusion weighting” was 

imparted, and 𝐷 is the diffusion coefficient measuring the diffusing ability along this specific 

diffusion direction. 

 ADC measures the overall diffusing ability within the voxel. The common practice for 

quantifying ADC requires the acquisition of diffusion-weighted images along three orthogonal 

diffusion directions (without loss of generality, we assume x, y, z axes) using a diffusion-weighted 

single-shot echo planar imaging (DW-SSEPI) sequence53, a diffusion-weighted readout-

segmented echo planar imaging (DW-RSEPI) sequence54, or a diffusion-preparation (D-prep)-

based sequence55,56. ADC is then calculated as the average of the diffusion coefficients along those 

three orthogonal directions, and can be obtained with the geometric average of the three images: 

𝑆$%" = A𝑆$𝑆%𝑆"- = 𝑆)𝑒
#*∙

./0.10.2
- = 𝑆)𝑒#*∙-+. ,                              (2.6) 
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where 𝑆$, 𝑆%, 𝑆" are diffusion-weighted images sensitized to x, y, and z directions respectively, 

and 𝐷$, 𝐷%, and 𝐷" are diffusion coefficients along x, y, and z directions respectively. Figure 10 

illustrates the ADC fitting process with a DW-SSEPI example. 

2.3.7 Proton Density Fat Fraction (PDFF) 

 PDFF is defined as the density of hydrogen protons attributable to fat, and is a meaningful 

tissue biomarker that is capable of revealing excessive intracellular fat accumulation in 

hepatocytes33. Therefore, PDFF has significant potential for the assessment of hepatic steatosis in 

nonalcoholic fatty liver disease patients for clinical care. PDFF is known for its high accuracy in 

the detection of hepatic steatosis, and is highly reproducible across readers, MR manufacturers, 

and field strengths57. 

 To calculate PDFF, it is important to acquire both water signal 𝑊 and fat signal 𝐹, so that: 

Figure 10. Demonstration of a typical ADC fitting process using a DW-SSEPI 
sequence with three diffusion-weightings — b=0 indicating no diffusion-

weighting, b=400s/mm2, and b=800s/mm2. 
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𝑃𝐷𝐹𝐹 = /
01/

.                                                                (2.7) 

In practice, this can be achieved by sampling signals at different TEs where the water and fat are 

in-phase and out-of-phase. Therefore, we can rewrite Eq. (2.7) as: 

𝑃𝐷𝐹𝐹 = 23#43
(23

,                                                              (2.8) 

where 𝐼𝑃 = 𝑊 + 𝐹  denotes in-phase signal, and 𝑂𝑃 = 𝑊 − 𝐹  denotes out-of-phase signal33. 

PDFF is usually quantified with ME-GRE-based sequences with low flip angle to reduce the effect 

of T1 bias33. Figure 11 demonstrates typical water image, fat image, and PDFF map. 

 

2.4 Simultaneous Quantitative Multiparametric MRI Overview 

 Over recent years, various novel techniques have been proposed to simultaneously quantify 

multiple tissue biomarkers for the purpose of comprehensive tissue characterization without the 

injection of contrast agents. These techniques simplify clinical workflows and provide co-

registered multiparametric maps that are convenient for joint analysis. 

 Several parameter-specific quantitative methods are invented for a few target biomarkers. 

Deoni et al. proposed a hybrid T1/T2 quantification method named DESPOT1/DESPOT2, which 

Figure 11. Example water image, fat image, and fat fraction map. Images courtesy to 
Nan Wang. 
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consisted of a spoiled gradient echo sequence for T1 quantification followed by a subsequent 

steady state free precession (SSFP) sequence for T2 quantification, with prior knowledge of T158. 

Metere et al. proposed a multi-echo magnetization-prepared 2 rapid gradient echoes sequence for 

joint T1, T2* and QSM quantification, where T1 was obtained with the overall IR structure and 

T2* and QSM were obtained with multiple gradient echoes embedded in each readout block6. Li 

et al. concatenated multiple T1r-prep and T2-prep in a single sequence structure for joint 

estimation of T2 and T1r59. Zhang et al. proposed a stimulated echo-based mapping approach for 

simultaneous T1, T2, and ADC mapping where various combinations of mixing time (TM), TE, 

and b-values were collected to densely sample the sequence parameter TM-TE-b space60. Marty 

et al. employed a bi-component extended phase graph fitting for joint T2 and FF quantification 

with a multi-slice multi-echo approach61.  

 In 2013, a new imaging paradigm named magnetic resonance fingerprinting (MRF) was 

proposed for the purpose of simultaneous quantification of multiple parameters62. The key idea is 

that analogous to the biological traits of human where each person possesses a unique set of 

fingerprints, MR signals generated from tissues with varying tissue properties (i.e., T1, T2, etc.) 

also have unique signal evolutions (i.e., “fingerprints”), as long as multiple sequence parameters 

(i.e., TI, TR, TE, etc.) are simultaneously varying throughout the entire scan. A dictionary of 

anticipated signal courses is generated in advance following a signal model using the same 

sequence parameters as in the scan, as well as a range of feasible tissue properties. Pattern 

recognition is performed to compare the measured signal course with the simulated ones in the 

dictionary. For each voxel, the set of tissue properties corresponding to the signal course in the 

dictionary that resembles closest to the measured signal course is assigned to this voxel. It has been 

shown that the pattern recognition process is robust to undersampling artifacts, allowing 
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significantly accelerated MRF scans with high signal-to-noise ratio (SNR) efficiency. Moreover, 

no additional constraints on sequence structures are posed to the MRF framework besides the 

pseudo-randomized sequence parameters, which enables flexible experiment design to target 

different combinations of tissue properties depending on specific clinical applications. 

Quantification of various tissue properties are demonstrated feasible with numerous attempts in 

the brain28,62, breast36, heart63,64, abdomen65, and prostate30. However, MRF is not inherently robust 

to motion. It has been shown that motion happening towards the end of the scan has less impact 

on the quantification62. Although multiple attempts have been made for different motion correction 

approaches, most of them are based on 2D imaging and show limitation in dealing with through-

plane motion66-68. So far, most cardiac MRF studies are performed with ECG triggering to target 

specific cardiac phases63,64. 

2.5 Magnetic Resonance Multitasking 

 In 2018, our group developed a novel technique for simultaneous quantitative 

multiparametric MRI–MR Multitasking–which allows us to simultaneously resolve multiple 

overlapping image dynamics including varying contrasts induced by different tissue properties and 

different types of motion69. MR Multitasking establishes a multidimensional imaging framework 

where each image dynamic, which is also referred to as “task”, is assigned to a time dimension, 

and multiple time dimensions can be simultaneously and efficiently resolved using a low-rank 

tensor (LRT) image model which explores the spatiotemporal multidimensional signal correlation. 

MR Multitasking has high scanning efficiency, as the LRT image model significantly reduces the 

degrees of freedom of the underlying multidimensional image, thus also reducing the sampling 

requirements. It allows flexible implementation of different sequences so long as they fulfill 

certain sampling strategies to leverage low-rankness and compressed sensing. It simplifies clinical 
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workflows by integrating multiple capabilities into a single scan, providing co-registered 

multiparametric maps to benefit comprehensive tissue characterization. Most importantly, MR 

Multitasking has inherent advantages over MRF to deal with motion, as it “embraces” motion, 

rather than avoiding them, by capturing different types of motion in one or more time dimensions, 

allowing motion-resolved imaging in a continuous acquisition without the use of external 

devices/algorithms for gating and/or triggering69,70. Other motion handling strategies such as 

motion compensation and motion rejection are also easily compatible with MR Multitasking71-73. 

2.5.1 Low-Rank Tensor Image Model 

 MR Multitasking conceptualizes overlapping image dynamics to be quantified in a 

multidimensional image function 𝑥(𝐫, 𝑡&, 𝑡(, … , 𝑡5)  with 𝐫  indexing the spatial dimension and 

𝑡&, 𝑡(, … , 𝑡5 indexing 𝑁 time dimensions. Example time dimensions include but are not limited to 

cardiac motion, respiratory motion, rigid head motion, temporal evolution within one recovery 

period characterizing T1 relaxation, magnetization preparation index characterizing T2 relaxation, 

T1r relaxation, or diffusion process, and multi-echo index within one TR characterizing T2* 

relaxation. 𝑥  is partially separable in space and time due to strong multidimensional 

spatiotemporal correlation69,74, resulting in: 

𝑥(𝐫, 𝑡&, 𝑡(, … , 𝑡5) = ∑ 𝑢6(𝐫)𝜑6(𝑡&, 𝑡(, … , 𝑡5)
7
68& ,                                  (2.9) 

𝜑6(𝑡&, 𝑡(, … , 𝑡5) = ∑ ∑ …∑ 𝑐69&…93𝑣&,9&(𝑡&)…𝑣5,93(𝑡5)
<3
938&

<&
9&8&

7
68& ,               (2.10) 

where {𝑢6(𝐫)68&
7  are spatial basis functions spanning the spatial subspace, {𝑣=,94(𝑡=)}948&

<4  are 

temporal basis functions spanning the 𝑁 individual temporal subspaces, 𝑐69&…93 are the elements 

of a small core tensor 𝒞 ∈ ℂ7×<&×…×<3 that governs the interaction between different dimensions, 
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and T𝜑6(𝑡&, 𝑡(, … , 𝑡5)U68&
7  are multidimensional temporal basis functions spanning the 

multidimensional temporal subspace modeling all the temporal dynamic processes. 

 Furthermore, 𝑥 can be rearranged into an (𝑁+1)-way tensor 𝒳 with elements 𝑋69&…93 =

𝑥(𝑟6 , 𝑡&,9& , … , 𝑡5,93). 𝒳 is therefore an LRT due to the spatiotemporal correlation in 𝑥.75 The LRT 

structure of 𝒳 can be expressed via the Tucker form76 of tensor decomposition: 

𝒳 = 𝒞 ×& 𝐔 ×( 𝐕& ×? 𝐕( ×@ …×51& 𝐕5,                                     (2.11) 

where the ×= operator denotes the 𝑖th mode product77, 𝐔 is the spatial factor matrix containing 

spatial basis functions {𝑢6(𝐫)68&
7 , and 𝐕= are the temporal factor matrices of the 𝑖th time dimension 

containing temporal basis functions {𝑣=,94(𝑡=)948&
<4 . In practice, the tensor decomposition form in Eq. 

(2.11) can be explicitly expressed in the corresponding matrix factorization form following Eqs. 

(2.9) and (2.10): 

𝐗(&) = 𝐔𝚽,                                                               (2.12) 

𝚽 = 𝐂(&)(𝐕5 ⊗…⊗𝐕&)',                                                 (2.13) 
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where the subscript (1) denotes mode-1 unfolding or flattening of of the tensor into a matrix77, ⊗ 

denotes the Kronecker product, and 𝚽 is the multidimensional temporal factor matrix containing 

multidimensional temporal basis functions T𝜑6(𝑡&, 𝑡(, … , 𝑡5)U68&
7 . Figure 12 illustrates a typical 3-

way myocardial image tensor formulation that consists of one spatial dimension and two time 

dimensions modeling the T1 recovery process and the cardiac motion process respectively, which 

can be decomposed into 3 factor matrices that are weighted by a core tensor. 

The LRT image model allows MR Multitasking to bypass a common phenomenon in 

multidimensional imaging known as “curse of dimensionality”, where the scan time and data 

storage memory grow exponentially with higher dimensions. Modeling 𝒳 as an LRT drastically 

reduces the degrees of freedom in 𝒳, as there are far fewer elements in the factor matrices and the 

core tensor than in the full image tensor 𝒳, which significantly reduces the sampling requirements 

and allows sampling rate far beyond the Nyquist rate69. Under the LRT image model, the scan time 

Figure 12. Illustration of multiple time dimensions and the tensor 
decomposition using the LRT image model. Here the 3-way tensor 𝓧 with one 

spatial dimension and two time dimensions — one representing the T1 
recovery and the other representing cardiac motion — can be factorized into 
three factor matrices containing respective basis functions that are weighted 

by a core tensor 𝓒. 
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and data memory grow linearly with higher dimensions as opposed to exponentially, which heavily 

reduces the overall scan time.  

2.5.2 Sampling Strategies and Image Reconstruction  

 Despite that the LRT image model removes the burden of curse of dimensionality, the size 

of 𝐗(&) still grows exponentially with the number of dimensions. As a result, both the memory 

required to store 𝐗(&) and the computational resource required to solve 𝐗(&) are impractical. As an 

alternative, MR Multitasking proposes to solve 𝐔 and 𝚽 serially instead of directly solving 𝐗(&) 

with an explicit tensor subspace strategy69: 

𝐔 = argmin
𝐔
‖𝐝 − Ω(𝐅𝐒𝐔𝚽)]‖( + 𝑅D(𝐔),                                    (2.14) 

where 𝐝  denotes the collected k-space data, Ω  is the sampling operator corresponding to the 

sampled k-space locations, 𝐅 applies spatial Fourier encoding, 𝐒 contains sensitivity information 

that applies multichannel encoding, and 𝑅D(∙) is an optional spatial regularization function that 

also leverages compressed sensing. 

 Image reconstruction according to Eq. (2.14) requires explicit knowledge of 𝚽. Because 

𝚽 combines multiple temporal factor matrices that are weighted by the core tensor, it solely 

characterizes the temporal dynamic processes with little spatial knowledge. Therefore theoretically, 

𝚽 can be extracted from a subset of k-space data with wealthy temporal information and limited 

spatial information. This subset of k-space data, which we refer to as “subspace training data” (𝐝EF), 

are frequently and periodically collected only at the center k-space line which contains the 

strongest energy of k-space to capture the varying image dynamics throughout the entire scan to 

resolve the time dimensions.  
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 The remaining part of k-space data, which we refer to as “imaging data”, are used to recover 

the spatial information in 𝐔. Therefore, the sampling pattern should have appropriate spatial 

coverage of the k-space to resolve the prescribed spatial resolution and the field of view (FOV). It 

is also important that the sampling pattern ensures incoherence between the sampling operator and 

the temporal factor matrices69. Therefore, any uniform or periodic sampling strategies that are 

synchronized with physiological dynamics (i.e., cardiac or respiratory motion) and the periodic 

repetition of magnetization preparations should be avoided. In practice, radial sampling with 

golden angle spoke reordering or randomized Cartesian sampling are preferred to guarantee 

incoherence. 

2.5.3 Multidimensional Tensor Subspace Estimation 

 The periodically collected 𝐝EF are used to estimate 𝚽. To do so, the temporal indexes for 

each time dimension must first be determined for each data entry of 𝐝EF. Physiological motion and 

bulk motion states can be determined from motion identification algorithms69. Temporal stamps 

within one recovery period, magnetization preparation indexes and multi-echo indexes can be 

determined according to the specific sequence structure. With the knowledge of these temporal 

indexes, 𝐝EF can be reshaped into an (𝑁+1)-way tensor 𝒟EF in the (𝐤, 𝑡&, 𝑡(, … , 𝑡5)-space, where 𝐤 

indexes the k-space locations (i.e., in this case, only the center k-space line). The nonzero entries 

in 𝒟EF cover various combinations of different image dynamics experienced throughout the scan. 

However, it is likely that not all such combinations are covered in 𝒟EF . For example, a T1 

relaxation index does not necessarily experience all cardiac phases and all respiratory positions in 

a cardiac MR exam. As a result, 𝒟EF contains zeros entries indicating the missing combinations. 

However, as 𝒟EF only consists of the most frequently sampled k-space lines with very limited 
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spatial information, it has far fewer size and much more densely sampled than the entire imaging 

data, allowing it to be completed via a small-scale LRT completion problem69: 

𝒟EF = argmin‖𝐝EF − ΩEF(𝒟EF)‖( ++𝜆∑ p𝐃EF,(=)p∗
51&
=8& + 𝑅(𝒟EF),                   (2.15) 

where ΩEF retains only the sampled combinations in 𝒟EF, 𝜆 is the rank regularization parameter, 

‖∙‖∗ denotes the nuclear norm, and 𝑅(∙) is an optional regularization function that enforces other 

properties of 𝒟EF (for example, temporal smoothness). Once 𝒟EF is determined, the core tensor and 

the temporal factor matrices 𝐕&, …, 𝐕5 can be extracted from 𝒟EF via high-order SVD (HOSVD)78. 
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Chapter III Three-Dimensional Simultaneous Brain T1, T2, and 

ADC Mapping with MR Multitasking 

3.1 Introduction 

 Quantitative multi-parametric mapping of relaxation and diffusion has the potential for 

comprehensive tissue characterization, which is clinically promising for the identification, 

diagnosis, and follow-up assessment of various neurological diseases, and more. For example, 

mapping the relaxation parameters T1 and T2 is promising for monitoring tumors in glioblastoma 

patients and brain tumor characterization27,28,79,80. The quantification of diffusion parameters, e.g., 

ADC, not only differentiates normal brain tissue and brain tumors81, but also contributes to brain 

tumor characterization and may also be useful in grading astrocytic tumors82,83.  

Although there are significant clinical benefits of quantifying multiple relaxation and 

diffusion parameters, T1/T2/ADC mapping are typically performed in separate scans which are 

not only time-consuming, but also subject to intra-scan mis-registrations due to subject motion. 

Additionally, the clinical DWI scans used to map ADC mostly adopt single-shot multi-slice EPI 

acquisition, leading to image distortion and additional challenges in image registration. 

Simultaneous T1/T2/ADC mapping approaches that produce distortion-free, co-registered maps 

would be vastly desirable in the clinic. 

Joint T1/T2 mapping has recently been achieved using MR Fingerprinting62, which has 

been validated in many clinical applications28,30. Our group has recently developed a quantitative 

imaging framework, MR Multitasking, which allows motion-resolved or motion-robust 

quantitative imaging, including joint T1/T2 mapping, but has yet to be used to quantify ADC69,70. 

Joint T1/T2/ADC mapping methods have also been proposed, such as the dual-echo-steady-state 
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(DESS) protocol84. However, DESS can be significantly sensitive to physiological motion because 

it relies on the gradients that are placed within each TR to generate diffusion contrast. MR-

Fingerprinting-based85 and stimulated-echo-based (STEM)60 approaches are also proposed. 

However, these methods do not provide a comprehensive quantification of ADC because they only 

measure diffusion along a single direction. Hutter et al. proposed an integrated approach 

(ZEBRA)86 to quantify T1/T2*/ADC simultaneously which demonstrated the efficiency and 

sampling flexibility but employed single-shot EPI readout that may suffer from B0-inhomogeneity 

which compromises high resolution image quality and leads to image distortion. 

In this work we extend the MR Multitasking framework to achieve a 3D simultaneous brain 

T1/T2/ADC mapping in <10min which is a feasible duration for clinical practice. This 

augmentation of the MR Multitasking framework conceptualizes the overlapping image dynamics 

to be quantified as different temporal dimensions69 and uses a low-rank tensor (LRT) model75 to 

accelerate imaging by exploiting the high spatiotemporal correlation of images corresponding to 

different T1 weightings, T2-prep durations, b-values and diffusion directions. A time-resolved 

phase correction technique, which is allowed by the high temporal resolution of the Multitasking 

framework, is applied along with a separate “real-time” low-rank matrix imaging model to 

compensate for the inter-shot phase inconsistencies resulting from physiological motion and/or 

eddy currents, by modeling the phase inconsistencies in a time-resolved phase map87,88. We 

demonstrate that the proposed method enables fully quantitative T1/T2/ADC mapping of the brain 

with clinically acceptable image resolution (1.5x1.5x5mm3) and scan time (<10min). 
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3.2 Methods 

3.2.1 Sequence Design 

 In this work, we generate multiple T1-T2-diffusion weighting by concatenating a series of 

T2-prep with different durations 𝜏 and a series of D-prep with a fixed duration but different b-

values 𝑏 and diffusion directions 𝑑 (Figure 13A). The duration of one of the T2-prep matches the 

duration of the D-prep, so that this T2-prep also serves as a b=0 D-prep. For all the D-prep, two 

unipolar diffusion-weighted gradients are placed on each side of the 180° adiabatic refocusing 

pulse. A 3D segmented fast low angle shot (FLASH) readout is used to sample the k-space data. 

The magnetization preparation module uses a 90° tip-up pulse to store the prepared signal 

in the longitudinal magnetization. The accumulated phase generated by the preparation will also 

be tipped onto z-axis, adding a cosine term to the magnitude. In practice, even two identical 

preparations may generate different phase patterns because of physiological motion and bulk 

motion, which is especially common for diffusion-preparations89. Consequently, such inconsistent 

phase patterns would convert to magnitude inconsistency that can never be recovered89,90. We 

employ a crusher gradient scheme that has been proposed to address this issue55,56,89-91. An 8𝜋 

crusher gradient is placed immediately before the 90° tip-up pulse to completely dephase the 

transverse magnetization, creating a uniform phase dispersion. The same crusher gradient with 

opposite polarity is placed immediately after each FLASH pulse to rephase the transverse 

magnetization that was stored in the z-axis and encoded with the phase of the preparation, and to 

remove the longitudinal magnetization that arises from free relaxation, thus forming the echo that 

retains the phase of the preparation and maintains the magnitude consistency90. However, the 

penalty of using the crusher gradient scheme is a loss of SNR because the spoiler gradient removes 

half of the overall signal (those remaining in the transverse plane), and the longitudinal 
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magnetization that contributes to the echo formulation (those encoded with the phase of the 

preparation) follows a monotonic T1 decay91. To counteract this loss in SNR, we add a gap in 

acquisition immediately prior to each preparation, to allow sufficient signal recovery of long-T1 

tissues towards thermal equilibrium. The resulting signal equations after T2-prep and D-

preparation are: 

                               𝑆H =
&
(
∙ 𝐴 ∙ 𝑒#

!5
!& ∙ s𝑒#

!5
!& cos(𝛼)x

H#&
∙ 𝑒#

6
!( ∙ sin	(𝛼),                                (3.1) 

and 

                           𝑆H =
&
(
∙ 𝐴 ∙ 𝑒#

!5
!& ∙ s𝑒#

!5
!& cos(𝛼)x

H#&
∙ 𝑒#

6
!( ∙ 𝑒#*+ ∙ sin	(𝛼),                         (3.2) 

respectively, where 𝐴 absorbs overall coil sensitivity, proton density and T2* weighting, 𝑛 is the 

readout index (resetting with each preparation pulse) indicating different T1 weightings, 𝛼 is the 

FLASH flip angle, 𝐷 represents the diffusion coefficient associated with 𝑑. By employing the 

crusher gradient scheme, the magnitude consistency is guaranteed. Some shot-to-shot phase 

inconsistency still remains, which we address in our proposed imaging model. 
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3.2.2 Image Model 

 The underlying image can be represented as a 5-way tensor 𝒳 with the first dimension 

concatenating all voxel locations 𝐫 = [𝑥, 𝑦, 𝑧]) , and the other four dimensions indexing the four 

timing/parameter variables 𝑛, 𝜏, 𝑏, and 𝑑 respectively. The illustration of the multidimensional 

low-rank tensor is shown in Figure 14. This LRT structure of 𝒳  can be explicitly expressed 

through matrix factorization as: 

                                                                  𝐗(&) = 𝐔𝚽,                                                               (3.3) 

Figure 13. (A) The sequence diagram of the Multitasking framework. A series of 
T2preps with different durations are concatenated with a series of diffusion-

preparations with different b-values and directions. The duration of one of the T2prep 
matches the duration of the diffusion prep, so that this T2prep also serves as a b=0 
diffusion prep. The crusher gradient scheme is used to avoid tipping inconsistent 

phase errors onto the longitudinal magnetization and maintain the magnitude 
consistency by complete dephasing before the tip-up pulse and subsequent 

rephasing immediately before each readout. A 3D segmented FLASH readout is used 
for data acquisition. A gap is placed immediately prior to each preparation to allow 
sufficient signal recovery. (B) The k-space sampling illustration. Imaging data are 

collected using 3D random Cartesian trajectory with Gaussian variable density along 
phase encoding (ky) and partition encoding (kz) direction. Subspace training data are 

collected every 8 readouts for temporal subspace estimation. 
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                                                   𝚽 = 𝐂(&)(𝐇⊗ 𝐆⊗𝐖⊗𝐕)',                                              (3.4) 

where the columns of 𝐔, 𝐕, 𝐖, 𝐆, 𝐇 are factor matrices containing basis functions spanning the 

spatial, T1, T2, b-value and diffusion direction subspaces, respectively, and the 𝐽 rows of 𝚽 span 

the multi-dynamic subspace.  

 

In practice, (𝐤, 𝑡)-space data are collected with a single “real-time” dimension 𝑡 from an 

underlying image 𝑥FE(𝐫, 𝑡) = 𝑝(𝐫, 𝑡)𝑥�𝐫, 𝑛(𝑡), 𝜏(𝑡), 𝑏(𝑡), 𝑑(𝑡)� , which experiences phase 

inconsistencies over time, as modeled by a unit-magnitude phase map 𝑝(𝒓, 𝑡). Note that the 

functions 𝑛(𝑡) , 𝜏(𝑡) , 𝑏(𝑡) , and 𝑑(𝑡)  describe the timing/parameter schedule throughout the 

Figure 14. Illustration of multiple temporal dimensions of the 5-way low-rank tensor 
for simultaneous T1, T2, and ADC mapping. The 5-way image tensor contains spatial, 
T1-weighting, T2-prep duration, b-value and diffusion direction dimensions. The low-

rank tensor structure can be explicitly expressed through tensor factorization 
between 5 sets of basis functions assigned to each dimension and the 5-way core 
tensor governing the interaction between different basis functions. Here only the 

three most significant basis functions describing each dimension of the tensor are 
provided. 
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experiment. Low-rank structure of 𝑥FE in the so-called “real-time” domain can also be expressed, 

as: 

                                                              𝐗FE = 𝐔FE𝚽FE,                                                               (3.5) 

where 𝐗FE is the image matrix corresponding to 𝑥FE(𝐫, 𝑡); where the 𝐽I rows of 𝚽FE span the real-

time subspace (as they describe the continuous dynamic processes of the measured signals); and 

where the 𝐽I columns of 𝐔FE span the spatial subspace containing the real-time image. We note that 

because 𝐗FE includes the contribution of phase inconsistencies over time, whereas 𝒳 and 𝐗(&) do 

not, Eqs. (3.3) and (3.5) represent two different image models, both of which will be useful during 

different stages of image reconstruction. 

Phase inconsistencies reduce image correlation and increase image rank88, so the real-time 

subspace is generally higher-dimensional than the multi-dynamic subspace, i.e., 𝐽I > 𝐽. Here, the 

time-resolved, unit-magnitude phase map 𝑝(𝐫, 𝑡)  is represented in matrix form as 𝐏 ∈

{ℂ57×58: �𝑃6J� = 1, ∀𝑗, 𝑘}, where 𝑁K  and 𝑁L  denote the number of voxels and number of time 

stamps respectively, similarly to what we previously proposed for cardiac diffusion tensor 

imaging88. The approximation connecting the real-time subspace model and the multi-dynamic 

subspace model is therefore: 

                                              𝐔FE𝚽FE ≈ 𝐏 ∘ �𝐗(&)𝐑� = 𝐏 ∘ (𝐔(𝚽𝐑)),                                      (3.6)  

where ∘  denotes Hadamard (elementwise) multiplication. The multi-dynamic to real-time 

reordering matrix is 𝐑 ∈ ℝ(5$56595:)×58  where 𝑁H, 𝑁M, 𝑁* , 𝑁N  denotes the total number of T1-

weightings, T2-prep durations, b-values and diffusion directions, respectively. 𝑅6J is equal to 1 if 
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the (𝑛, 𝜏, 𝑏, 𝑑) sequence parameter combination corresponding to the 𝑗-th column of 𝐗(&)  was 

collected by the 𝑘-th readout and equal to 0 otherwise. 

3.2.3 K-Space Sampling 

 In this work, the imaging data (𝐝OPQ) are collected using a 3D Cartesian trajectory with 

Gaussian random variable density along the phase encoding direction (𝐤%) and partition encoding 

direction (𝐤") to increase sampling incoherence. The subspace training data (𝐝EF) are frequently 

collected at the k-space center line (i.e., 𝐤% = 𝐤" = 0) every 8 readouts to capture the overlapping 

image dynamics containing T1 weightings, T2-prep durations, b-values and diffusion directions 

(Figure 13B). 

3.2.4 Image Reconstruction 

 In this work we augment the reconstruction strategy described in the original MR 

Multitasking framework69 with an additional time-resolved phase correction component. We 

propose to serially estimate 𝐏,  𝚽 and 𝐔 following four steps:  

1) Estimate a heuristic 𝐏 : The time-resolved phase map 𝐏  is estimated from 𝐈) , a 

preliminary least-squares reconstruction enforcing the real-time subspace model (i.e., Eq. (3.5)): 

          𝐏 = ∠𝐈) with 𝐈) = 𝐔FE,)𝚽FE,) and 𝐔FE,) = argmin𝐔;<,>p𝐝OPQ − Ω(𝐅𝐒𝐔FE,)𝚽FE,))p
(,     (3.7) 

where the real-time temporal basis functions 𝚽FE,)  are estimated from the singular value 

decomposition (SVD) of the subspace training data 𝐝EF, Ω denotes the undersampling operator, 𝐅 

performs Fourier encoding, and 𝐒 represents the coil sensitivity matrix. 

2) Pre-determine T1 factor matrix 𝐕: Because the T1 relaxation is physically governed by 

the Bloch equations, a set of feasible signal curves following a T1 decay pattern can be pre-
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determined ahead of time to generate a T1 relaxation training dictionary92-94 using a range of T1 

values and flip angles. Specifically, we use 101 T1 values logarithmically spaced from 100ms to 

3000ms, and 15 FLASH flip angles equally spaced from 0.5 °  to 7.5 °  representing 90% 

underestimation to 50% overestimation of the prescribed flip angle covering a possible range of 

B1 inhomogeneities. A total of 1515 T1 decay signal curves are generated to construct a training 

dictionary, the SVD of which produces the T1 decay basis functions in 𝐕. 

3) Estimate a heuristic multi-dynamic 𝚽: In the original MR Multitasking framework, the 

subspace training data 𝐝EF are binned (i.e., mapped from the real-time domain to the multi-dynamic 

domain) to form a training tensor 𝒟EF69. However, in this work, naively mapping 𝐝EF from the real-

time (𝐤, 𝑡)-space to the multi-dynamic (𝐤, 𝑛, 𝜏, 𝑏, 𝑑)-space without accounting for the inconsistent 

phase patterns would result in signal cancellation in 𝒟EF . As an alternative, we use features 

extracted from the real-time magnitude images |𝐈)| as the new subspace training data, i.e., we 

define a matrix of training data 𝐓 ∈ ℂ7?×58 from the 𝐽I > 𝐽 most significant right singular vectors 

of |𝐈)|. The training tensor 𝒟EF can be solved via a Bloch-constrained small-scale LRT completion 

problem: 

        𝒟�EF = arg min
𝐃<;,(()∈FTUQV(𝐕)

p𝐓 − 𝐃EF,(&)𝐑p
( + 𝜆 sp𝐃EF,(&)p∗ + ∑ p𝐃EF,(H)p∗

X
H8? x + 𝑅(𝒟EF), (3.8) 

where 𝑅(∙) penalizes total variation (TV) along the diffusion direction dimension. Once 𝒟�EF is 

completed, 𝚽 = 𝐂(&)(𝐇⊗ 𝐆⊗𝐖⊗𝐕)' can be quickly extracted from 𝒟�EF via HOSVD78. 

 4) Obtain the spatial factor matrix 𝐔. With the heuristic 𝐏 and 𝚽 , the remaining unknown 

𝐔 could in principle be directly recovered by incorporating the phase correction into the multi-

dynamic imaging model (i.e., Eq. (3.6)): 
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                                  𝐔� = argmin
𝐔
p𝐝OPQ − Ω(𝐅𝐒[𝐏 ∘ (𝐔[𝚽𝐑]))p

( + 𝑅D(𝐔),                          (3.9) 

where 𝑅D(∙) is an optional additional spatial constraint, e.g., which also leverages compressed 

sensing. However, solving this iterative optimization problem directly as posed above would 

involve storing and manipulating many real-time 𝑁K × 𝑁L matrices—not just 𝐏 but also auxiliary 

variables used during optimization—and can therefore require large amounts of memory.  

In practice, rather than solving Eq. (3.9), we instead solve an alternative optimization 

problem that additionally relies on the memory-efficient image model in Eq. (3.5). We first enforce 

the real-time subspace model to obtain a phase-varying 𝚽FE  (which incorporates some phase 

variation from 𝐏) and 𝐔FE, then we obtain 𝐔 by mapping the result back to the multi-dynamic 

subspace model according to Eq. (3.6). This is achieved via three sub-steps:  

 4.1) Map 𝚽  back to the phase-varying real-time subspace by incorporating phase 

information from  𝐏 into a heuristic 𝚽FE . Note that as is, 𝚽 lies in the phase-corrected multi-

dynamic domain, which is free from phase inconsistencies. We first map 𝚽  onto the phase-

corrected real-time subspace as 𝚽𝐑, then we project the phase-free |𝐈)| onto this subspace. This 

provides the best approximation of the initial magnitude image in the phase-corrected real-time 

subspace:  

                                                               𝐈FE = |𝐈)|(𝚽𝐑)1(𝚽𝐑),                                                               (3.10) 

where + denotes the pseudoinverse. We then apply the time-resolved phase map 𝐏 to include the 

phase-varying information, and finally calculate the SVD of the resulting phase-varying real-time 

image, i.e., 

                                                          𝚽FE ← SVD(𝐏 ∘ 𝐈FE),                                                       (3.11) 
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This new basis 𝚽FE reflects the phase inconsistencies in the real-time subspace as well as the multi-

dynamic modeling performed in step (3). 

 4.2) Recover 𝐔FE using the real-time subspace model (i.e., Eq. (3.5)). With heuristic 𝚽FE, 

the coordinates in the phase-varying real-time subspace, 𝐔FE, can be recovered as: 

                                       𝐔FE = argmin
𝐔;<

p𝐝OPQ − Ω(𝐅𝐒𝐔FE𝚽FE))p
( + 𝑅D(𝐔FE),                       (3.12) 

which without the explicit phase map can be entirely solved in the 𝐽′-dimensional real-time 

subspace rather than the much more memory-intensive (𝐫, 𝑡)-space, due to the block diagonal 

structure of 𝐴(⋅) = Ω∗Ω�(⋅)𝚽FE�𝚽FE
Y95,96. Here 𝑅D(∙) is chosen as a spatial TV penalty. 

 4.3) Obtain 𝐔. We map the spatial coefficients from the 𝐽′-dimensional phase-varying real-

time subspace to the 𝐽-dimensional phase-corrected multi-dynamic subspace, i.e., 𝐔FE → 𝐔. This 

mapping is based on Eq. (3.6), and is performed as: 

                                                            𝐔 ≈ [𝐏∗ ∘ (𝐔FE𝚽FE)](𝚽𝐑)1.                                        (3.13) 

Note that Eq. (3.13) relies on both image models described in Eq. (3.3) and Eq. (3.5), 

whereas Eq. (3.9) only uses the multi-dynamic image model described in Eq. (3.3). Eq. (3.13) 

therefore does not directly approximate Eq. (3.9), but rather finds alternative coordinates in the 

phase-corrected multi-dynamic subspace by a mapping from coordinates in the phase-varying real-

time subspace. The operations in Eqs. (3.10) and (3.13) map between two distinct image models: 

the multi-dynamic subspace model and the phase-varying real-time subspace model. A solution 

satisfying both models typically only exists when 𝐽′ is selected high enough to fully represent the 

phase variation in 𝑝(𝐫, 𝑡); however, for lower values of 𝐽′ as used in practice, a solution exactly 
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satisfying both models may not exist, and the mappings in Eqs. (3.10) and (3.13) modify the 

solution.  

3.2.5 Phantom Study 

 To evaluate the T1/T2/ADC mapping accuracy of the proposed method, an ISMRM/NIST 

T1/T2 phantom (Model 130, High Precision Devices) and a diffusion phantom (Model 128, High 

Precision Devices) were scanned on a 3T scanner (MAGNETOM Vida, Siemens Healthineers) 

using a 64-channel head coil. Because the T1/T2 phantom lacked ADC variety, we performed 

ADC mapping on the diffusion phantom as well. Reference T1/T2/ADC maps were obtained via 

an inversion recovery turbo spin echo (IR-TSE) sequence, a multi-echo spin echo (ME-SE) 

sequence and a DW-SSEPI sequence, respectively. The Multitasking sequence was implemented 

with 7 T2-prep and 6 D-prep. Each preparation is repeated 10 times before the next preparation is 

implemented. The detailed imaging protocol is in Table 2. 
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3.2.6 In Vivo Study 
 The in vivo study was approved by the institutional review board (IRB) of our institute. 

All volunteers/patients gave written informed consent before the study. Sixteen healthy volunteers 

were recruited and were scanned also on Vida scanner. Localizers were implemented to locate the 

volume of interest which covered from the top of the brain to the pons. Reference T1/T2/ADC 

maps were obtained via IR-TSE, ME-SE, and DW-SSEPI respectively. The total scan time of 

references was 19min. The Multitasking sequence was implemented with 4 T2-prep and 6 D-prep. 

Each preparation is repeated 20 times before the next preparation is implemented, resulting in a 

total scan time of 9.3min. The approximately maximum diffusion encoding gradient amplitude 

(55mT/m) was turned on to shorten the diffusion-preparation duration (31.4ms) for SNR purposes. 

The slice positions of all scans matched exactly. The detailed imaging protocol is in Table 3. 

Phantom Imaging Protocols 

IR-TSE 
(17.5min) 

FOV=280x280mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
slices=10, TR=3500ms, TE=8.3ms, 

TIs=[50,100,200,275,350,500,650,800,950,1200,1500,1800,2100,2500,3000,3500]ms 

ME-SE 
(5.0min) 

FOV=240x240mm2, in-plane resolution=1.7x1.7mm2, slice thickness=5mm, number of 
slices=10, TR=3050ms, TEs=[20,40,60,80,100,120,140]ms 

SS-EPI 
(1.7min) 

FOV=240x240mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
slices=10, TR=5800ms, TE=88ms, b-values=[0,400,800]s/mm2, averages=[2,2,2] 

Multitasking 
(6.1min) 

FOV=240x240mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
partitions=10, FLASH TR/TE=5.78/2.8ms, flip angle=5°, readout lines per shot=320,     
TR per shot=2800ms, gap=1s, T2prep durations=[13.62,31.4,45,64,80,100,120]ms,            

b-values =[400,800]s/mm2, 3 diffusion directions: [1 1 -1], [1 -1 1], [-1 1 1] 

Table 2. Phantom imaging protocols and scan parameters for simultaneous brain 
T1/T2/ADC mapping. 
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s 

 

In addition, 3 post-surgery patients who were previously diagnosed with a brain tumor and 

were likely to possess residual/recurrent tumor were scanned on a 3T scanner (MAGNETOM 

Skyra, Siemens Healthineers) using a 20-channel head coil. The Multitasking scan was 

incorporated in a clinical brain MRI scan aimed for follow-up assessment before the administration 

of contrast agents. The clinical protocols included pre-contrast T1w-magnetization prepared rapid 

gradient echo (MPRAGE), pre-contrast T2w-FLAIR, DW-RSEPI with Siemens’ RESOLVE 

protocol, post-contrast T2w-TSE, and post-contrast T1w-MPRAGE. A relaxed diffusion gradient 

amplitude (35mT/m) was used to protect the gradient system, resulting in a 39.6ms diffusion-

preparation duration. 

In Vivo Imaging Protocols 

IR-TSE 
(12.5min) 

FOV=280x280mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
slices=20, TR=3500ms, TE=8.3ms, 

TI=[50,100,200,275,350,425,500,1200,1500,1800,2100,2500]ms 

ME-SE 
(5.0min) 

FOV=240x240mm2, in-plane resolution=1.7x1.7mm2, slice thickness=5mm, number of 
slices=20, TR=3050ms, TE=[20,40,60,80,100,120,140]ms 

SS-EPI 
(1.7min) 

FOV=240x240mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
slices=20, TR=5800ms, TE=88ms, b-value=[0,400,800]s/mm2, averages=[2,2,2] 

Multitasking 
(9.3min) 

FOV=240x240mm2, in-plane resolution=1.5x1.5mm2, slice thickness=5mm, number of 
partitions=20, FLASH TR/TE=5.78/2.8ms, flip angle=5°, readout lines per shot=320,     

TR per shot =2800ms, gap=1s, T2prep durations for healthy volunteer 
study=[13.62,31.4,80,110]ms, T2prep durations for patient 

study=[13.62,39.6,80,110]ms, b-values =[400,800]s/mm2, 3 diffusion directions: [1 1 -
1], [1 -1 1], [-1 1 1] 

Table 3. In vivo imaging protocols and scan parameters for simultaneous brain 
T1/T2/ADC mapping. 
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3.2.7 Exploration of Motion Effects 

 Head movement is commonly seen during clinical scans because of patient discomfort, 

which will lead to mis-registration or image artifacts if not properly addressed. Furthermore, the 

bulk motion will not only affect the magnetization preparation, but also damage the refocusing 

crusher gradients, resulting in uncorrelated signal or significant signal loss.  

We explored the motion effects on our method in four healthy volunteers. For each 

volunteer, a motion-free scan was performed followed by a motion-corrupted scan. A sticker was 

placed on the inside of the coil right on top of the subject’s nose to fix the initial position. The 

motion-free scan contained one Multitasking protocol (9.3min), during which the subject was 

clearly instructed not to move their head. The motion-corrupted scan contained two consecutive 

Multitasking protocols (18.6min) to span the scan duration so that the subject was likely to move 

multiple times. The subject was instructed beforehand that he/she could move at will during the 

motion-corrupted scan, meaning that he/she could perform any type of motion (e.g., itching face, 

adjusting head position, deep breath, etc.) at any time, instead of being instructed to perform only 

certain types of motion at certain times explored in Fingerprinting studies67,68. This aimed to mimic 

realistic motion scenario in an actual clinical scan. There are many options for motion handling in 

the Multitasking framework, including motion-removed imaging, motion-resolved imaging, and 

motion-compensated imaging. In this study, we performed motion removal to simplify data 

processing, so the subjects were asked to return to the initial position after each movement. 

The motion-free data were reconstructed as a reference. For each of the two motion-

corrupted datasets, we identified the amount of corrupted data based on the real-time image series 

𝐈) via manual inspection. Specifically, within each motion-corrupted dataset, all the shots that were 
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observed with the occurrence of motion artifacts were considered motion-corrupted. The 

percentage of the corrupted data was thus: 

                                                                    𝑝= =
5@,4
())

,			𝑖 = 1,2,                                              (3.14) 

where 𝑁Z,= is the number of motion-corrupted shots in the 𝑖-th motion-corrupted dataset. We only 

reconstruct the 𝚤̂-th dataset, where 𝚤̂ = arg	max
=
𝑝=  (i.e., the worse of the two motion-corrupted 

datasets). Motion removal was performed by removing all 𝑁Z,[̂ shots in the 𝚤̂-th dataset from 𝐝EF 

and 𝐝OPQ along with the corresponding sampling locations from Ω and 𝐑.  

3.2.8 Image Analysis 

 All the reconstructions were performed on a Linux workstation with a 2.70GHz dual 12-

core Intel Xeon processor equipped with 256GB RAM and running MATLAB 2017a. 

Reconstruction parameters (rank of respective dimensions, 𝜆, etc.) are in Table 4.  

 

Reconstruction Parameters Phantom Study In vivo Study 
Number of voxels 𝑁K 256000 512000 

Number of time points 𝑁L 41600 64000 
Rank of spatial dimension 𝐽 (for multi-

dynamic subspace modeling) 
4 14-16 

Rank of spatial dimension 𝐽I (for real-time 
subspace modeling) 

5 22-26 

Rank of T1-weighting dimension 𝐾 5 5 
Rank of T2prep duration dimension 𝐿 7 4 

Rank of b-value dimension 𝑀 3 3 
Rank of diffusion direction dimension 𝑁 3 3 

Nuclear norm penalty 𝜆 5x10-5 1x10-4 
 

Table 4. Reconstruction parameters for simultaneous brain T1/T2/ADC mapping. 
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In this work, the 𝜆 used to weight the nuclear norm penalties was chosen based on the 

discrepancy principle97 for one dataset and then used for all datasets. The ranks of the spatial and 

T1 weighting dimensions were determined from the -40dB threshold on the normalized singular 

value curves of the training dictionary and the full training data respectively. The ranks of the T2-

prep duration, b-value, and diffusion direction dimensions were not truncated, as the nuclear norm 

low-rank constraint implemented for the training tensor completion already performed a soft 

constraint on the tensor ranks for those dimensions. 

For each healthy subject, 3 slices located in the upper, mid, and lower regions of the 

acquired 3D volume were chosen for voxel-by-voxel multi-parametric fitting of 𝐴, 𝛼, T1, T2, and 

the diffusion coefficients of 3 directions 𝐷&, 𝐷( and 𝐷? based on Eqs. (3.1) and (3.2). ADC is then 

derived by: 

                                                              ADC = (𝐷& + 𝐷( + 𝐷?)/3.                                        (3.15) 

For qualitative analysis, the following comparisons were made:  

1) The proposed method versus no phase correction (i.e., assuming 𝐏 = 𝐈  and using 𝐝EF 

directly for tensor subspace estimation) to evaluate the effectiveness of the proposed phase 

correction strategy. 

2) The proposed method versus reference protocols to evaluate quantification. 

3) Motion-free maps, motion-corrupted maps and motion-removed maps to evaluate the 

motion effect and the behavior of motion removal. 

For quantitative analysis in the phantoms, the regions of interest (ROI) were drawn for 

each vial, and the mean and standard deviation for T1/T2/ADC values in each vial were calculated 

and compared between Multitasking and the references. In addition, the SNR of each measurement 
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of each vial is assessed as the respective mean value over standard deviation in the vial. The multi-

parametric SNR efficiency for Multitasking is assessed as SNR per (𝑇P]^EOET!_OUQ/3)1/2, where 

𝑇P]^EOET!_OUQ represents the Multitasking scan time. The multi-parametric SNR efficiency for one 

reference method is assessed as SNR per (𝑇FV`VFVUaV)1/2, where 𝑇FV`VFVUaV represents the specific 

reference scan time. The √3 factor for the multitasking SNR efficiency accounts for all three 

parameters being of interest but acquired in one single scan. 

For quantitative analysis in healthy subjects, 12 regions of interest (ROI) were drawn on 

the frontal, parietal, and occipital regions of the gray matter (GM) and WM of both left and right 

hemispheres of the mid slice98. ROI of the reference protocols and the Multitasking protocol were 

drawn at the same locations. 

For each patient, the surgery/tumor region was manually identified on the standard clinical 

protocols. Three slices surrounding the surgery/tumor region were chosen for the multi-parametric 

fitting and were compared with the standard clinical protocols on approximately matched slice 

positions. 

3.2.9 Statistical Analysis 

 T1/T2/ADC values of the GM and WM of frontal, parietal, and occipital regions were 

calculated as the mean values of the corresponding ROIs of the left and right lobes. A three-way 

repeated measures ANOVA was performed using IBM SPSS Statistics. Specifically, the two tissue 

types, the three regions and the two methods are all set as within subject variables. The significance 

level was set as 𝑃<0.05. Intra-class correlation coefficient (ICC) was calculated using IBM SPSS 

Statistics with a two-way mixed model and a confidence level of 95% to demonstrate the 
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consistency between Multitasking and the references. Bland-Altman analysis was performed 

between Multitasking and the references to demonstrate the bias. 

3.3 Results 

3.3.1 Phantom Study 

 The proposed Multitasking approach provides good phantom image quality (Figure 15). 

Multitasking quantitative maps are free from the image distortion present in the DW-SSEPI ADC 

reference. The measured T1/T2/ADC are in substantial quantitative agreement with references, 

with 𝑅( = 0.999  and ICC>0.998 for T1/T2/ADC. On average, simultaneous acquisition of 

T1/T2/ADC using Multitasking provides 2.41x, 1.59x, and 0.72x the multi-parametric SNR 

efficiency compared to separate acquisition using the respective reference methods (Figure 16). 

We note that the reference methods were chosen for their accepted accuracy but may not have the 

optimal SNR efficiency58. 
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Figure 15. Comparison of T1/T2/ADC mapping between Multitasking and the 
references. Multitasking provides good image quality with substantial correlation 

with references and is free from image distortion present in SS-EPI ADC 
references (white arrows). The solid line represents identity while the dotted line 

represents the linear fitting. ICC between Multitasking and the references 
indicates substantial consistency. 

Figure 16. The comparison of the multi-parametric SNR efficiency of T1, T2, and ADC 
measurements between the reference and Multitasking for each vial. On average, 

simultaneous acquisition of T1/T2/ADC using Multitasking provides 2.41x, 1.59x, and 
0.72x multi-parametric SNR efficiency compared to separate acquisition using the 

respective reference methods. 
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3.3.2 In Vivo Study 

 Figure 17 shows the multidimensional image tensor formulation with respect to each time 

dimension, which individually demonstrates the dynamic processes of T1 decay, T2 decay, 

diffusion decay following different b-values, and the change between diffusion directions. When 

showing image dynamics along one time dimension, the other three time dimensions were at fixed 

temporal indexes. 

Figure 17. Demonstration of the multidimensional tensor formulation for simultaneous 
T1, T2, and ADC mapping in the brain. Green color represents different T1 weightings. 

Yellow color represents different T2 weightings. Blue color represents different 
diffusion weightings (b-values). Orange color represents different diffusion directions. 

Solid dots represent the locations of the displayed images in the tensor. 
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The phase measured at the first time point after each preparation (i.e., 𝑛 = 1) can be 

extracted from the full time-resolved phase map as a good representation for the phase resulting 

from the preparation. The phase resulting from the 1st, 10th, and 20th preparation of each type of 

T2-prep and D-prep demonstrates very little shot-to-shot phase inconsistency between T2-prep 

and substantial shot-to-shot phase inconsistency between D-prep (Figure 18). The reconstructed 

T1 and T2 maps using Multitasking with and without phase correction agree with the references. 

Multitasking ADC maps only agree with the reference when phase correction is used; the ADC 

maps without phase correction show elevated ADC values across all slices (Figure 19). 

 

 

Figure 18. Phase maps at 𝒏=1 of the 1st, 10th, and 20th shot of the 4 T2-prep and 6 D-
prep extracted from the full time-resolved phase map. For T2-prep, little phase 

inconsistency can be observed between shots or between different T2-prep. For D-
prep, substantial phase inconsistency can be observed between shots or between 

different D-prep. 
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Multitasking produces perfectly co-registered and distortion-free T1/T2/ADC maps that 

qualitatively agree with the references (Figure 20) and produces similar distributions of 

T1/T2/ADC measurements of GM and WM (Table 5). Some T1 values appear higher compared 

to IR-TSE, particularly very long T1 species around the brain sulci and fissures.  For T2 maps, 

GM, WM, and cerebrospinal fluid (CSF) are distinguishable but appear slightly lower than ME-

SE. ADC values of CSF and around the brain sulci and fissures are also slightly lower than DW-

SSEPI. Despite these differences, all the measurements are within the literature range (GM T1: 

Figure 19. Representative T1/T2/ADC mapping with references, Multitasking with the 
proposed time-resolved phase correction (PC), and Multitasking without phase 

correction (No PC). White arrows point to regions with substantial elevation of ADC 
without phase correction. 
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968-1820ms; WM T1: 750-1110ms; GM T2: 71-132ms; WM T2: 56-84ms; GM ADC: 0.78-

1.09x10-3mm2/s; WM ADC: 0.60-1.05x10-3mm2/s)98-101. 

Table 6 shows the complete three-way ANOVA table, indicating nonsignificant differences 

between regions for T1 (𝑝=0.248), T2 (𝑃=0.097), and ADC (𝑃=0.328), significant differences 

between tissues for all parameters (𝑃<0.001), and significant differences of T1 (𝑃=0.03), T2 

(𝑃<0.001), and ADC (𝑃=0.001) biases between Multitasking and the respective references. 

Despite the statistical significance of these biases, the Bland-Altman plots show that the mean bias 

estimates are small (∆T1% < 5% , ∆T2% < 7% , ∆ADC% < 5% ) (Figure 21), and all ICC 

measurements are >0.82, well within the established “excellent” range (ICC>0.75)102 (Table 7).  

 

Figure 20. Representative in vivo T1/T2/ADC mapping of 3 slices using Multitasking 
and the respective reference protocols for a healthy volunteer. Multitasking provides 

T1/T2/ADC maps with good qualitative agreement with the references, and without 
image distortion (white arrows) which can be observed on SS-EPI ADC maps. 
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Identifying motion from 𝐈) is straightforward, as motion-corrupted images are subject to 

significant signal loss and image artifacts. After motion removal, artifacts and signal voids are 

removed (Figure 22). T1/T2/ADC mapping from two subjects are shown. For the first subject, 20% 

of the measured data are corrupted by motion. Specifically, 39% T2-prep are corrupted, and 8% 

D-prep are corrupted. With motion-corrupted data left in for reconstruction, the T1 map exhibits 

blurring artifacts, the T2 map and the ADC map show elevated T2 and ADC values, resulting in 

root-mean-squared-error (RMSE) of 140.40ms, 14.85ms, and 0.17x10-3mm2/s respectively. After  

Gray Matter Measurements (n=16) 
 

Frontal Parietal Occipital 

Multitasking Reference Multitasking Reference Multitasking Reference 
T1(ms) 1250.6±52.

5 
1225.9±40.

9 
1231.8±40.

5 
1223.9±39.

8 
1205.8±43.

1 
1205.4±40.

4 

T2(ms) 97.8±5.7 105.8±5.7 96.9±5.5 104.8±5.2 98.7±6.1 104.1±5.0 

ADC(x10
-3mm2/s) 

0.95±0.05 0.92±0.04 0.92±0.08 0.91±0.06 0.95±0.08 0.93±0.07 

White Matter Measurements (n=16) 
 

Frontal Parietal Occipital 

Multitasking Reference Multitasking Reference Multitasking Reference 
T1(ms) 807.4±39.1 792.9±45.1 811.9±40.6 811.3±40.4 820.2±41.0 814.5±38.7 

T2(ms) 71.3±4.8 78.5±4.6 78.2±4.2 82.1±4.9 74.4±4.5 80.3±3.4 

ADC(x10
-3mm2/s) 

0.80±0.03 0.77±0.03 0.80±0.04 0.77±0.04 0.78±0.04 0.75±0.04 

Table 5. Frontal, parietal, and occipital gray matter and white matter T1/T2/ADC 
measurements of 16 healthy volunteers using Multitasking and the references. 
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Region: Frontal, parietal, occipital; Tissue: Gray matter, white matter; Method: Multitasking and the 
reference  

motion removal, T1 features are restored and motion artifacts are removed. Abnormal T2 and ADC 

values on most regions are restored. RMSE drop to 92.83ms, 7.60ms, and 0.13x10-3mm2/s 

respectively (Figure 23). For the second subject, 33% of data are corrupted by motion. Specifically, 

21% T2-prep are corrupted, and 40% D-prep are corrupted. T1 and T2 maps with motion do not 

exhibit substantial differences compared against the motion-free case. However, significantly 

elevated ADC values result from motion. RMSE are 97.07ms, 8.58ms, and 0.23x10-3mm2/s  

 
Source Sum of 

Squares 
Degrees 

of 
Freedom 

Mean 
Square 

F P 

T1 Region 2659.042 2 1329.521 1.462 0.248 

Tissue 8229492.188 1 8229492.188 2592.094 <0.001 

Method 3745.333 1 3745.333 5.707 0.030 

T2 Region 69.064 2 34.532 3.140 0.097 

Tissue 28643.198 1 28643.198 456.974 <0.001 

Method 2074.413 1 2074.413 491.658 <0.001 

ADC Region 0.006 2 0.003 1.159 0.328 

Tissue 1.049 1 1.049 126.833 <0.001 

Method 0.035 1 0.035 50.133 0.001 

Table 6. Three-way repeated measures ANOVA table for T1, T2, and ADC indicating 
nonsignificant differences between regions and significant differences between 

tissues and acquisition methods. 
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Gray Matter Intra-Class Correlation Coefficients 
 

Frontal Parietal Occipital 

T1 0.88 0.93 0.86 

T2 0.98 0.97 0.88 

ADC 0.89 0.93 0.95 

White Matter Intra-Class Correlation Coefficients 
 

Frontal Parietal Occipital 

T1 0.92 0.95 0.93 

T2 0.88 0.82 0.87 

ADC 0.94 0.91 0.87 

Figure 21. (A) Gray matter and (B) white matter Bland-Altman plots of frontal, parietal, 
and occipital T1/T2/ADC. 

Table 7. Intra-class correlation coefficients of frontal, parietal, occipital gray matter 
and white matter T1/T2/ADC between Multitasking and the references. 
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respectively under motion.  After motion removal, ADC values in most regions are again 

restored and RMSE drop to 89.51ms, 7.11ms, 0.10x10-3mm2/s respectively (Figure 24). 

One patient example is shown in Figure 25. The patient was diagnosed with glioblastoma 

and underwent chemoradiation and surgery for tumor resection prior to this imaging session. A 

surgical cavity is present in the right anterior frontal lobe. A nodular enhancement area is present 

at the inferior lateral margin of the cavity, which was confirmed to represent recurrent tumor by 

MR spectroscopy. The recurrent tumor, the surgical cavity and the surrounding edema appear dark 

on pre-contrast T1w-MPRAGE, indicating long T1, in agreement with the Multitasking T1 map. 

The tumor and surgical cavity appear dark on T2w-FLAIR, indicating that such regions are 

occupied by fluid with less tissue structures and more unrestricted diffusion, confirmed by the 

clinical ADC map using DW-RSEPI. The surrounding edema shows higher ADC. The 

Multitasking ADC map is consistent with the clinical ADC map. The tumor, the surgical cavity 

and the edema appear bright on T2w-TSE, indicating long T2. Specifically, the fluid in the tumor 

and cavity shows even longer T2 compared to the edema. 

Figure 22. Example clean motion-free image with clear brain tissue, motion-corrupted 
image with blurring artifacts and significant signal loss, and clean motion-removed 

image with restored tissue structures corresponding to the sequence parameter 
combination (𝒏, 𝝉, 𝒃, 𝒅) = (𝟓𝟎, 𝟏, 𝟏, 𝟏). 
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Figure 24. M
otion effect exploration for subject 2, w

here 21%
 T2preps and 40%

 diffusion-preparations (33%
 data in total) 

are corrupted and rem
oved. C
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Figure 25. Clinical images and Multitasking T1/T2/ADC maps of a patient who was 
previously diagnosed with glioblastoma and underwent chemoradiation and surgery 
for tumor resection. (A) T2 FLAIR. (B) Pre-contrast T1 MPRAGE. (C) Clinical ADC map 

using RESOLVE. (D) T2 TSE. (E) Post-contrast T1 MPRAGE. (F-H) T1/T2/ADC maps 
obtained from Multitasking. White arrows point to the nodular enhancement area 
identified on post-contrast T1 MPRAGE. Purple arrows point to the surrounding 

edema. Multitasking T1/T2 maps reflect the tissue characteristics indicated by the 
clinical qualitative images. Multitasking ADC map is consistent with the clinical ADC 

map. 
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3.4 Discussion 

 We propose a novel approach to achieve 3D simultaneous brain T1/T2/ADC mapping by 

incorporating diffusion-preparation and phase correction into the MR Multitasking framework. 

This method enables full quantification of T1/T2/ADC in a single 9.3min scan for 100mm brain 

coverage. Phantom experiments and healthy volunteer experiments were performed for validation, 

showing substantial consistency and “excellent” agreement of T1/T2/ADC measurements between 

the proposed method and reference protocols by ICC. Multitasking produced co-registered 

T1/T2/ADC maps free from image distortion. Motion robustness was demonstrated via simple 

motion removal. Three post-surgery patients who were previously diagnosed with brain tumor and 

were likely to possess residual/recurrent tumor were scanned to demonstrate clinical feasibility. 

The Multitasking T1/T2/ADC maps were consistent with the clinical protocols and were able to 

reflect the tissue characteristics and contrasts indicated by the qualitative clinical images. 

Since the emergence of MRF, simultaneous multi-parametric quantification has drawn 

substantial interest due to its great promise for clinical applications28,30,36. The Multitasking 

framework has several advantages over previous methods in simultaneous T1/T2/ADC mapping. 

We generate T1-T2-diffusion contrast using a concatenation of separate T2preps and diffusion-

preparations, which because only the preparation modules are sensitive to physiological motion 

(as opposed to each readout), mitigating physiological motion sensitivity in comparison to DESS84. 

In addition, compared to MRF85 and STEM60, we achieve a comprehensive T1/T2/ADC 

quantification in three noncolinear diffusion directions, which matches the clinical DWI protocol. 

The proposed method achieves 100mm coverage (20 slices) in 9.3min, which outperforms DESS 

(32slices, 32mm coverage in 23min), Fingerprinting (1 slice in 60s) and STEM (2slices with 5mm 

thickness in 13min20s) in terms of acquisition efficiency. ZEBRA has higher acquisition 
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efficiency (28slices with 2.6mm thickness in 2min42s) but it quantifies T2* rather than T2 and is 

limited to 2D acquisition86. Furthermore, we use a 3D segmented FLASH readout which produces 

co-registered quantitative maps free from image distortion, as compared to the SS-EPI readout 

employed in STEM and ZEBRA. 

The proposed method yields consistent GM and WM T1/T2/ADC measurements with 

substantial agreement compared to the references, with all ICC in the range of 0.82 to 0.98, 

considered “excellent”. T1 and ADC were accurately measured with <5% bias. T2 is 

underestimated with <7% bias which is far less than the difference of T2 values between normal 

tissue and brain tumors (>50%)26 and therefore should not affect differentiation in clinical studies. 

Possible sources of differences in measurements between Multitasking and the references are the 

difference in T1 signal evolution (i.e., the T1-decay model in Multitasking vs the inversion-

recovery model in IR-TSE), insufficient removal of phase inconsistencies resulting in a reduced 

diffusion-weighted signal (and therefore ADC overestimation), and the effect of B1 

inhomogeneities on T2-prep (incomplete refocusing or reduced tip-down/tip-up efficiency) that 

results in a reduced signal (and therefore T2 underestimation)103.  

The existence of shot-to-shot (inter-shot) phase variation88,104-106 in diffusion-prepared 

MRI is well-known and has previously been addressed by approaches such as navigator-based 

phase estimation104,107-109 and navigator-free phase correction110-112. Here, our time-resolved phase 

correction compensates for the inter-shot phase inconsistencies by performing model-based phase 

correction87,88 at each timepoint. We observed that the diffusion-preparations may produce 

completely different phase patterns; T2-prep, however, consistently produce approximately the 

same phase pattern. As a result, the phase inconsistencies will lead to severe cancellation of signals 

mostly in diffusion-weighted signals, resulting in significantly increased ADC measurements if 
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uncorrected. T1 and T2 are less affected because i) the T1 fitting is primarily dominated by the 

signal evolution following the shortest T2-prep, and ii) the signals encoded with different T2 

weightings do not experience these phase inconsistencies.  

Motion effects were explored by identifying corrupted shots on the preliminary real-time 

images and performing data removal. Advanced motion compensation approaches will be included 

in future work to make sure no re-acquisition is necessary in clinical settings. Compared to MRF 

studies where the quantitative mapping accuracy is affected by exactly when the motion occurs 

during the scan67,68, our Multitasking framework appears less sensitive to the timing of motion. 

The sensitivity to the timing of motion can potentially be further reduced by interleaving the T2-

prep and D-prep (i.e., one acquisition block contains 4 T2-prep and 6 D-prep, and the whole 

acquisition block repeats). For this evaluation, manual inspection identified motion-corrupted 

images, as the image artifacts and signal loss are significant. An automatic data removal algorithm 

may be included in future work, similar to a method which successfully identified the abnormal 

segments of data using the real-time temporal basis functions72. Here, Multitasking T1/T2/ADC 

mapping was robust to motion when up to 39% T2preps are corrupted or up to 40% diffusion-

preparations are corrupted. The effectiveness of simple data removal indicates that even shorter 

scan times may be achievable by cutting down the number of repetitions for each preparation. 

Separate ADC acquisition using SS-EPI showed higher SNR efficiency than the ADC from 

Multitasking; however, Multitasking has the additional benefit of producing distortion-free ADC 

maps which are co-registered with T1 and T2 maps, which could potentially benefit machine-

learning-based radiomic algorithms to provide predictive biomarkers for diagnosis and 

prognosis113,114. In scenarios where ADC SNR efficiency is preferred, an alternative approach to 

achieve efficient T1/T2/ADC mapping could be simultaneous T1/T2 mapping with 



66 
 

Multitasking69,115 followed by a separate fast, distorted DWI acquisition116. The best acquisition 

strategy remains an open question, and it can be for the clinicians to determine which strategy to 

adopt in a specific clinical practice.  

In general, a major limitation of this simultaneous T1, T2, ADC mapping technique is the 

long reconstruction time which is primarily contributed from the inclusion of the time-resolved 

phase correction. Although the LRT image model reduces the memory and accelerates 

computation of the image tensor, it has no effect on the full-size time-resolved phase map because 

the phase function cannot be modeled as a partially separable spatiotemporal function. Successive 

generation of workstations and computational hardware improvements may also speed up the 

computation. Another limitation is the inherent low SNR determined by the sequence structure, 

where the crusher gradients remove half of the signal and lead to an exponential T1 decay signal 

course. For organs with deeper penetration distance from the receive coils such as prostate, other 

readouts (i.e., SSFP) or sequence structures (i.e., EPI) with higher SNR are also worth exploring. 

3.5 Conclusion 

 We have proposed a novel MR Multitasking framework to achieve 3D simultaneous brain 

T1/T2/ADC mapping in <10min. The proposed method provides co-registered images without 

distortion, quantifies T1/T2/ADC measurements with substantial agreement with reference 

protocols, and demonstrates clinical feasibility. Extending this work to leverage the established 

ability of the Multitasking framework to obtain motion-resolved quantitative mapping is a 

potential avenue to achieve simultaneous T1/T2/ADC mapping of the abdomen and heart. 
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Chapter IV Motion-Resolved, 3D Whole-Brain Simultaneous T1, 

T2, and T1r Quantification with MR Multitasking: Method and 

Initial Clinical Experience 

4.1 Introduction 

MRI relaxometry reveals biological tissue properties by characterizing the excited spin 

dynamics in the presence of external magnetic fields. For example, quantifying T1/T2 in the brain 

is clinically promising for tissue characterization, early detection, staging, and treatment 

monitoring of various brain tumors26-28,80 and neurologic pathologies such as MS117-121, 

Alzheimer’s disease122-124, Parkinson’s disease125-127, and more. T1r is an emerging relaxometry 

mechanism described as the spin-lattice relaxation in the rotating frame, which measures the decay 

of the transverse magnetization in the presence of an external “spin-locking” B1 field, and is most 

commonly used in articular cartilage imaging so far, showing promise for early detection of subtle 

cartilage matrix degeneration of osteoarthritis patients due to its high sensitivity to the collagen-

proteoglycan matrix damage128-131. A few studies have also explored the value of T1r in 

pathological activities of degenerative neurologic diseases and provided useful image biomarkers 

for the evaluation and early diagnosis of Alzheimer’s disease132,133, Parkinson’s disease134,135, 

stroke136, and MS35,137. 

Despite the great potential of quantitative MR relaxometry to allow comprehensive 

evaluation of tissue states, multiparametric mapping of T1/T2/T1r is time-consuming and may be 

impractical in clinical settings. This is especially true for T1r imaging, which can be slow and 

inefficient due to the necessary delay time for magnetization restoration, the multiple spin-lock 

times, and the multiple spin-lock frequencies required. Moreover, if measured in separate 
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acquisitions, these parameter maps may be subject to misalignment due to patient movement. 

Consequently, efficient and simultaneous quantification of multiple relaxation parameters is 

highly desirable for clinical practice. 

 Motion is one of the most challenging issue in clinical brain MR exams especially for the 

elderly or those with specific types of diseases (i.e., Parkinson’s disease). Nearly 30% inpatient 

MR scans suffered from motion artifacts138. Intra-scan motion causes ghosting artifacts that may 

lead to a loss of valuable diagnostic information, while inter-scan motion produces misaligned 

images that poses difficulty for clinical interpretation. The most common strategy to deal with 

motion is reacquisition but it greatly lengthens the scan time, costing approximately $115,000 per 

scanner per year for hospitals138. Other approaches to handling motion include navigator- and 

image-based motion tracking139-141, prospective motion correction139,142, and retrospective motion 

correction139,143. However, despite all these efforts, it seems to note that there doesn’t exist a single 

method generalizable enough to tackle all the motion issues, but rather a toolbox of partial 

solutions depending on specific imaging experiments and motion types144. As a novel imaging 

framework, MR Multitasking handles motion in various ways, allowing either motion-resolved 

imaging by modeling motion as an extra dimension and leveraging the correlation between motion 

states69,70 or motion-removed imaging by motion detection and rejection of motion-corrupted 

data71,72. 

 In this work, we demonstrate simultaneous quantification of T1/T2/T1r with whole-brain 

coverage in 9 minutes, which is accomplished by extending the original Multitasking framework 

to also incorporate novel hybrid T1r-preparation/inversion recovery (T1r-IR) pulses. Our 

framework conceptualizes the multiple relaxation processes (e.g., T1, T2, and T1r) as multiple 

time dimensions to establish a multidimensional image tensor. We design motion experiments to 
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demonstrate the effectiveness of the proposed imaging framework under both in-plane “shaking” 

motion and through-plan “nodding” motion. In addition to mapping, we also demonstrate the 

feasibility of generating six synthetic contrast-weightings from the T1/T2/T1r maps. Repeatability 

of quantitative measurements and the agreement with reference approaches are evaluated on a 

phantom and in healthy controls. Clinical validation is performed on a relapsing-remitting MS 

(RRMS) patient cohort, hypothesizing that each relaxometry mapping offers complementary tissue 

information and the integration of three parameters allows better detection and assessment of the 

degenerative pathologic progression in multiple sclerosis. 

4.2 Methods 

4.2.1 Pulse Sequence Design 

 Our pulse sequence generates T1/T2/T1r contrasts by cycling through several B0- and B1-

insensitive hybrid T2-preparation/inversion recovery (T2-IR) pulses with different durations 𝜏 and 

several B0- and B1-insensitive T1r-IR pulses with different spin-lock times 𝜏bc. This structure 

builds upon our previously developed Multitasking pulse sequences69 by introducing novel T1r-

IR pulses. The T2-IR pulse is modified from an adiabatic T2-prep module with 180° BIREF1 

refocusing pulses in an MLEV phase pair scheme145, replacing the 90° tip-up pulse by a 90° tip-

down pulse after refocusing to achieve the inversion effect146. The T1r-IR pulse follows a similar 

scheme: it is modified from a paired self-compensated adiabatic T1r-preparation module147, also 

replacing the 90° tip-up pulse by a 90° tip-down pulse after refocusing to achieve the inversion 

effect. 3D FLASH excitations fill the entire recovery period between preparation pulses for data 

readouts. Detailed illustration of the pulse sequence and signal evolution is shown in Figure 26A-

26C. 
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4.2.2 k-Space Sampling 

 The entire k-space data collection can be divided into two sets (Figure 26D). Firstly, 

imaging data (𝐝OPQ) are collected with a 3D Gaussian-density random Cartesian trajectory along 

both phase-encoding (𝐤%) and partition-encoding (𝐤") directions. Secondly, subspace training data 

(𝐝EF) are periodically embedded into the imaging data collection at the k-space center location (i.e., 

𝐤% = 𝐤" = 0) every 8 readouts. The subspace training data will serve dual purposes: i) for motion 

Figure 26. (A) General sequence structure with interleaved T2-IR pulses and T1r-IR 
pulses. 3D FLASH readouts fill the entire recovery period. (B) Demonstration of signal 

evolution. The signal follows an exponential decay during the preparations and 
follows a look-locker inversion recovery during FLASH readouts. (C) Construction of 

T2-IR preparation pulses and T1r-IR preparation pulses, where T2-IR uses BIREF 
adiabatic refocusing pulses in an MLEV phase pair scheme and T1r-IR uses a paired 

self-compensated scheme. (D) K-space sampling demonstration. Imaging data are 
sampled from the entire k-space with Gaussian density. Training data periodically 

samples the center k-space line every 8 readouts. 
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identification clustering, and ii) for estimating the temporal basis functions of motion and other 

image contrasts dimensions that will be used in the LRT image model. 

 

4.2.3 Image Model 

 We model the underlying image sequence as a 7-dimensional function 𝑥(𝐫, 𝑛, 𝜏, 𝜏bc, 𝑠) 

with 𝐫 = [𝑥, 𝑦, 𝑧]  indexing three spatial dimensions, while 𝑛 , 𝜏 , 𝜏bc , and 𝑠  index four time 

dimensions characterizing the dynamic processes of T1 recovery, T2 decay, T1r decay, and bulk 

motion respectively. The image function 𝑥 can be further represented in discretized form as a 5-

way tensor 𝒳 with elements 𝑋=6J9 = 𝑥(𝑟= , 𝑛6 , 𝜏J , 𝜏bc,9 , 𝑠Z), which can be explicitly expressed as: 

Figure 27. Illustration of multiple temporal dimensions of the 5-way low-rank tensor 
for simultaneous T1, T2, and T1r mapping in the brain. The 5-way image tensor 

contains spatial, T1 relaxation, T2 relaxation, T1r relaxation and rigid motion 
dimensions. The low-rank tensor structure can be explicitly expressed through tensor 
factorization between 5 sets of basis functions assigned to each dimension and the 5-

way core tensor governing the interaction between different basis functions. Here 
only the three most significant basis functions describing each dimension of the 

tensor are provided. 
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𝐗(&) = 𝐔𝚽,                                                            (4.1) 

𝚽 = 𝐂(&)(𝐒 ⊗ 𝐐⊗𝐏⊗𝐕)',                                               (4.2) 

where the factor matrix 𝐔 contains spatial basis functions, the factor matrices 𝐕, 𝐏, 𝐐, 𝐒 contain 

temporal basis functions spanning the four temporal subspaces corresponding to T1, T2, T1r, and 

bulk motion, and the rows of 𝚽 span the multidimensional temporal subspace. An illustration of 

different time dimensions is shown in Figure 27.  

4.2.4 Image Reconstruction 

 MR Multitasking allows accelerated imaging as well as rapid and memory-efficient 

reconstruction by serially recover the tensor factor matrices composing 𝒳. A schematic flowchart 

is shown in Figure 28. Specifically, this can be achieved in four stages: 
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4.2.4.1 Single-time 3D navigator (3DNAV) Reconstruction  

Considering the situation where 𝒳  is a matrix with only two dimensions: one spatial 

dimension and one elapsed, single time dimension 𝑡 indexing the total sampled time points with a 

mixture of all the image dynamics (i.e., T1, T2, T1r, and motion), the LRT model described in 

Eqs. (4.1)-(4.2) is reduced to a simplified matrix factorization form 

𝐗FE = 𝐔FE𝚽FE,                                                              (4.3) 

where 𝚽FE  contains the temporal basis functions for the single-time dimension, and 𝐔FE  is the 

single-time spatial factor matrix. 𝐗FE will be used as a 3DNAV for rigid motion clustering, and can 

be reconstructed in a two-step process: i) extract 𝚽FE via the singular value decomposition (SVD) 

of 𝐝EF, and ii) recover 𝐔FE by fitting 𝚽FE to the imaging data: 

𝐔FE = argmin
𝐔;<

p𝐝OPQ − Ω(𝐅𝐒𝐔FE𝚽FE))p
(,                                   (4.4) 

where Ω(∙) is the undersampling operator, 𝐅 applies spatial encoding, and 𝐒 applies multichannel 

encoding. 

4.2.4.2 Rigid Motion State Clustering 

 A subset of 𝐗FE, denoted as 𝐗!, corresponding to the last time point of each recovery period 

will be used to identify motion and cluster motion states, assuming that all the images within the 

same recovery period belong to the same motion state which can be represented by the motion 

state of the last time point of this recovery period. 𝐗! is chosen to minimize the effect of the 

changing image contrast (i.e., T1 recovery, T2 decay, T1r decay) on the subsequent motion 

clustering, as the signals approach to the FLASH steady state immediately before the next 

preparation pulse is played. Image features 𝐓 = (𝐭&, 𝐭(, … , 𝐭5A) are extracted from 𝐗! via SVD, 

where 𝑁D denotes the number of  recovery periods, and a k-means algorithm will be performed on 
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𝐓 for motion state clustering. To select the number of motion states/clusters 𝐾, the algorithm is 

performed for 𝐾=1,2,…,10, and for each 𝐾  we calculate the total Euclidean distance to the 

centroids: 

𝑑d = ∑ ∑ ‖𝐭9 − 𝐜J‖(𝐭A∈.B
d
J8& , 𝑙 ∈ {1,2, … , 𝑁D},                               (4.5) 

where 𝐜J is the centroid of the 𝑘th cluster 𝐶J. We choose the final 𝐾 at the elbow of the (𝐾, 𝑑J) 

plot. 

4.2.4.3 Multidimensional Tensor Subspace Estimation 

 In this stage, we propose to estimate the factor matrices 𝐕, 𝐏, 𝐐, 𝐒 as well as the unfolded 

core tensor 𝐂(&). This can be achieved in a two-step process: 

 1) Predetermine the temporal factor matrix 𝐕 for the T1 relaxation dimension. We generate 

a training dictionary of physically feasible IR-FLASH signal curves governed by the Bloch 

equations, with a range of feasible T1 values and B1 inhomogeneities, as demonstrated in our 

previous work69. Specifically, we use 101 T1 values logarithmically spaced between 100ms and 

4000ms, 15 FLASH flip angles equally spaced between 0.5° to 7.5°, and 21 efficiency factors 

controlling the B1 inhomogeneities of the preparation pulses and the incomplete approach to the 

FLASH steady state, equally spaced between -1 to -0.5. Therefore, the dictionary comprises 31815 

feasible signal curves. The T1 relaxation basis functions in 𝐕 are estimated from the SVD of this 

training dictionary. Basis functions for the T2 and T1r relaxation dimensions are not 

predetermined due to the complexity of modeling B0 inhomogeneities and will instead be 

calculated from the training data in the second step.  

2) Determine 𝐏, 𝐐, 𝐒, 𝐂(&), and the multidimensional factor matrix 𝚽. With the identified 

motion states, 𝐝EF can be reshaped into a small scale training tensor 𝒟EF in the (𝐤, 𝑛, 𝜏, 𝜏bc, 𝑠)-
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space, where 𝐤 indexes the k-space location. This training tensor can be further completed via a 

Bloch-constrained small-scale LRT completion problem: 

𝒟�EF = arg min
𝐃<;,(()∈FTUQV(𝐕)

‖𝐖[𝐝EF − ΩEF(𝒟EF)]‖( + 𝜆∑ p𝐃EF,(=)p∗=8&,?,@ + 𝑅(𝒟EF),     (4.6) 

where 𝑅(∙) applies total variation (TV) regularization along the motion dimension, and 𝐖 is a 

diagonal weighting matrix that reweights each auxiliary k-space line to reduce the effect of 

misidentified or outlier motion from the transient motion states. Here 𝐖 is calculated from the 

single-time auxiliary data residual 𝐑: 

𝐑 = 𝐝EF − 𝐝EF𝚽FE
f𝚽FE,                                                        (4.7) 

and 

𝑊66 = (∑ �𝑅=6�
(57×5C

=8& )#&/(,                                                  (4.8) 

where 𝑁K, 𝑁h represent the number of voxels and coils. The core tensor 𝐂(&) and the remaining 

temporal factor matrices can be quickly extract from the completed 𝒟�EF via HOSVD78, yielding 

𝚽 = 𝐂(&)(𝐒 ⊗ 𝐐⊗𝐏⊗𝐕)'. 

4.2.4.4 Spatial Factor Estimation 

 The final stage estimates the spatial factor matrix 𝐔  by fitting the multidimensional 

temporal factor matrix 𝚽 to the imaging data, with a similar motion-weighting scheme: 

𝐔� = argmin
𝐔
p𝐖OUEVFi[𝐝OPQ − Ω(𝐅𝐒𝐔𝚽)]p

( + 𝑅D(𝐔),                           (4.9) 
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where 𝑅D(∙) applies spatial TV regularization that leverages compressed sensing, and 𝐖OUEVFi is 

the diagonal motion-weighting matrix linearly interpolated from 𝐖 , which reweights each 

imaging readouts to also tackle the misidentified or outlier motion. 

 The reconstructed image tensor is thus expressed as 𝐗�(&) = 𝐔�𝚽 in the unfolded matrix 

form, which can be further reshaped back into a 5-way tensor 𝒳� that can individually show the 

process of T1 recovery, T2 decay, T1r decay, and different motion states along the respective time 

dimensions. An illustration of the multidimensional image tensor is shown in Figure 29. 

Figure 29. Demonstration of the multidimensional tensor formulation for simultaneous 
T1, T2, and T1r mapping in the brain. Green color represents different T1 weightings. 
Yellow color represents different T2 weightings. Blue color represents different T1r 

weightings. Orange color represents different rigid motion states. Solid dots represent 
the locations of the displayed images in the tensor. 
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4.2.5 Multiparametric Mapping 

After reconstructing the image tensor, voxel-wise multiparametric mapping can be 

performed following the signal equation: 

𝑆H = 𝐴 ∙ &#jD
!5
!&

&#jD
!5
!& ak!(l)

[1 + ²𝐵𝑒#
6
!(𝑒#

6EF
G&, − 1³ s𝑒#

!5
!& cos(𝛼)x

H
]sin	(𝛼),           (4.10) 

where 𝐴 absorbs proton density, overall B1 receive field, and T2* weighting, 𝑛 is the readout 

index counting from 1 to the number of readouts per preparation pulse, 𝛼 denotes the FLASH flip 

angle, and 𝐵  represents the efficiency factor controlling the mixed effect of the B1 transmit 

inhomogeneity for the preparation pulse and the incomplete approach to the FLASH steady state.  

4.2.6 Imaging Experiments 

 All imaging experiments were conducted on a 3T clinical scanner (Biograph mMR, 

Siemens Healthineers, Erlangen, Germany) using a 20-channel head coil.  

4.2.6.1 Phantom study 

 An ISMRM/NIST phantom (model 130, High Precision Devices, Boulder, Colorado) was 

scanned. Reference protocols for phantom study included IR-SE for T1 mapping, SE for T2 

mapping, and 3D T1r-prepared FLASH (T1r-FLASH) for T1r mapping. Scan parameters for 

Multitasking were: FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice thickness=3.5mm. 

The detailed imaging protocol is in Table 8. 
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4.2.6.2 In vivo study 

 Healthy control and patient studies were approved by the IRB of Cedars-Sinai Medical 

Center. All subjects gave written informed consent before MRI. N=15 age-matched healthy 

volunteers (6 male, 9 female, age 44.7±15.1) without any brain diseases were recruited. Reference 

protocols included IR-TSE for T1 mapping, ME-SE for T2 mapping, and 3D T1r-FLASH for T1r 

mapping, with a total scan time of 25min. The whole-brain Multitasking sequence was applied 

twice to test the scan-rescan repeatability, with a scan time of 9min per scan. All scans used 

FOV=240 mm x 240 mm, in-plane resolution=1.0 mm x 1.0 mm, slice thickness=3.5 mm. The 

Phantom Study 

Imaging 
Protocol 

Scan Parameters 

IR-SE 

(140min) 

FOV=210x210mm2, in-plane resolution=1.6x1.6mm2, slice 
thickness=5mm, 

TIs=[21,100,200,400,800,1600,3200]ms 

T2-SE 

(140min) 

FOV=210x210mm2, in-plane resolution=1.6x1.6mm2, slice 
thickness=5mm, TEs=[12,22,42,62,102,152,202]ms 

T1𝜌-FLASH 

(3min) 

FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice 
thickness=3.5mm, 

TSLs=[15,23,31,51,91,131,171]ms, spin-lock frequency=500Hz 

Multitasking 

(5.5min) 

FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice 
thickness=3.5mm, 

𝜏=[15,40,65,90,115,140,165]ms, 𝜏bc=[15,23,31,51,91,131,171]ms, 

spin-lock frequency=500Hz, FLASH TR/TE=9.4/4.9ms, flip angle=5° 

Table 8. Phantom imaging protocols and scan parameters for simultaneous T1/T2/T1r 
mapping. 
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detailed imaging protocol is in Table 10. In addition, N=8 RRMS patients (1 male, 7 females, age 

46.8±8.0, disease duration 11.5±7.9 years) who were referred by an MS specialist were enrolled 

for clinical validation. The Multitasking sequence was incorporated in a clinical MRI study and 

was run before any contrast agent administered as part of the clinical protocol. The detailed 

imaging protocol is in Table 9. 

In vivo Study 

Imaging 
Protocol 

Scan Parameters 

IR-TSE 

(12min) 

FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice 
thickness=3.5mm, 

TIs=[50,200,350,500,1000,1500,2400,3000]ms, GRAPPA factor=2 

ME-SE 

(5min) 

FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice 
thickness=3.5mm, TEs=[14,28,42,56,70,84]ms, GRAPPA factor=2 

T1𝜌-FLASH 

(8min) 

FOV=240x240mm2, in-plane resolution=1.0x1.5mm2, slice 
thickness=3.5mm, 

TSLs=[15,41,65,91]ms, spin-lock frequency=500Hz, 2 shots, GRAPPA 
factor=2 

Multitasking 

(9min) 

FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice 
thickness=3.5mm, 

𝜏=[14,36,60,80]ms, 𝜏bc=[15,41,65,91]ms, 

spin-lock frequency=500Hz, FLASH TR/TE=9.4/4.9ms, flip angle=5° 

 

Table 9. In vivo imaging protocols and scan parameters for simultaneous T1/T2/T1r 
mapping. 
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4.2.7 Motion Experiments Design 

 Motion experiments were performed on one volunteer among the 15. First, a motion-free 

Multitasking scan was performed as a reference. Two rigid motion patterns were investigated – in-

plane “shaking” motion that happens in the transverse plane, and through-plane “nodding” motion 

than happens along the longitudinal direction. Both types may involve translational and rotational 

head movement. Four Multitasking sessions with motion were implemented: 1) in-plane motion 

performed once at half of the scan (4.5min, Figure 30A); 2) in-plane motion performed three times 

at a quarter (2.25min), half (4.5min), and three quarters (6.75min) of the scan (Figure 30B); 3) 

through-plane motion performed once at half of the scan (4.5min, Figure 30C); 4) through-plane 

motion performed three times at a quarter (2.25min), half (4.5min), and three quarters (6.75min) 

of the scan (Figure 30D). Instructions to move were given during the scans. For each motion 

pattern, once hearing the instruction, the volunteer moved straightly from one position (i.e., motion 

state) to another position (i.e., motion state) without coming back, and the transition time was 

determined by the volunteer but should be less than 10s (~4 recovery periods), mimicking the real 

case in clinical scans when patients feel uncomfortable and want to adjust their position. The 

volunteer could choose to move either direction (i.e., left or right, up or down) depending on the 

motion pattern, but each motion should be restricted to an angle < 30° also mimicking the real 

clinical case, which was achieved by placing stickers inside the head coil indicating the furthest 

position (nose aligning to the sticker) to reach. After each session, the volunteer was instructed to 

return to the initial position. The volunteer was trained to perform all types of motion before the 

scan started. 
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4.2.8 Image Analysis 

 All Multitasking image reconstructions were performed on a Linux workstation with a 

2.70GHz dual 12-core Intel Xeon processor equipped with 256GB RAM and running MATLAB 

2016b (MathWorks, Natick, Massachusetts). The reconstruction time was 0.8–1.5h for each 

subject. The penalty factor 𝜆 for weighting the nuclear norm in the tensor completion step was 

chosen based on the discrepancy principle97. The convex optimizations Eqs. (4.4) and (4.9) were 

solved via the alternating direction method of multipliers (ADMM) algorithm148. The ranks for the 

spatial dimension and for the T1 relaxation dimension were determined from the –40dB threshold 

of the normalized singular value curves obtained from the SVD of the completed subspace training 

data and the training dictionary, respectively. The ranks for the T2 relaxation, T1r relaxation, and 

motion dimensions were not truncated, as these dimensions were already penalized by the nuclear 

norm constraint in Eq. (4.6). 

Figure 30. Illustration of the motion patterns for the four different motion experiments. 
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 Voxel-wise quantitative T1/T2/T1r maps for all phantom and in vivo cases were obtained 

by fitting the reconstructed image tensor with Eq. (4.10). For all in vivo studies, image 

segmentation was performed by manual thresholding of the corresponding reference or 

Multitasking images. Example regions of interest are shown in Figure 31. Six synthetic qualitative 

contrast-weighted images were generated using the quantitative maps, where five of them are 

clinically adopted contrasts including T1w MPRAGE, T2w, proton-density-weighted (PDw), 

T2w-FLAIR, and double-inversion-recovery (DIR). We also synthesize a novel contrast, T1rw-

FLAIR, which is created by substituting T2 with T1r in the standard FLAIR signal model. 

 

 For each motion session, three comparisons with the reference were made: i) motion-

resolved (where the motion state closest to the reference state was picked out); ii) motion-corrupted 

(where 𝐾=1); iii) we retrospectively truncated the k-space data that belonged only to a single 

motion state at the beginning of the reconstruction, which was feasible with known motion timing, 

and therefore used 𝐾=1 for the following reconstruction (i.e., we used half of the k-space data for 

Figure 31. Demonstration of the example thresholding-based four regions of interest. 
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the two sessions where the volunteer moved once, and used a quarter of the k-space data for the 

two sessions where the volunteer moved three times). 

4.2.9 Quantitative Analysis 

 For the phantom study, T1/T2/T1r values for each vial were calculated. Linear regression 

analysis was performed, and ICCs were calculated using IBM SPSS Statistics (Armonk, New York) 

with a two-way mixed model and 95% confidence level to evaluate the quantitative agreement 

between Multitasking and the reference. 

 For the healthy control study, measurement populations of T1/T2/T1r for WM, GM, 

putamen, and thalamus were compared between Multitasking and the references. ICCs between 

Multitasking and the reference measurements were derived the same way as in the phantom study. 

Paired t-tests were performed to evaluate the significance between Multitasking and the reference 

measurements for each parameter in each tissue compartment. The significance level was set as 

p=0.05. Scan-rescan repeatability was evaluated from the Bland-Altman and ICC analyses of the 

1st and 2nd Multitasking scans.  

 For each comparison in the motion investigation, we evaluated the structural similarity 

index (SSIM) and mean absolute difference (MAD) against the motion-free reference. Note that 

the slice position might be different between scans due to inter-scan misplacement, so all images 

were registered to the reference position before calculating quantitative metrics. 

 For the patient study, T1/T2/T1r measurements of the same four normal appearing (NA) 

tissue compartments were derived at similar slice locations as in the healthy controls. For each 

measurement of each tissue, a one-way analysis of variance (ANOVA) was performed to evaluate 

the statistical significance between patients and healthy controls. The significance level was set as 

p=0.05. Receiver operating characteristic (ROC) curve analysis with binary logistic regression was 
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performed using IBM SPSS Statistics to evaluate the accuracy in differentiating MS from healthy 

control based on either a single parameter (i.e., T1, T2, T1r) or the combination of three 

parameters (denoted as T1+T2+T1r), as measured by the area under the curve (AUC). A 

confidence interval (CI) of 95% was used. Measurements for all four tissue compartments were 

combined to calculate ROC curves. 

4.3 Results 

4.3.1 Phantom Study 

 Multitasking T1/T2/T1r maps were generated with good image quality and SNR (Figure 

32). Multitasking measurements and reference measurements showed excellent correlation with 

𝑅(=0.996, 0.999, and 0.998 for T1/T2/T1r respectively, as well as excellent agreement with 

ICC=0.998, 0.996, and 0.998 for T1/T2/T1r, respectively. 



86 
 

 

4.3.2 Healthy Volunteer Study 

Simultaneously acquired Multitasking T1/T2/T1r maps were of high quality and 

comparable with reference maps, with well-preserved brain tissue structure and contrasts (Figure 

33). Multitasking measurement distributions in each tissue compartment were: WM 

(T1:843.6 ± 18.3; T2:75.9 ± 2.8; T1r:82.7 ± 3.2), GM (T1:1319.8 ± 28.9; T2:83.9 ± 3.6; 

Figure 32. Phantom results of Multitasking and the references. Multitasking produces 
co-registered T1/T2/T1r maps with good image quality. Multitasking T1/T2/T1r 

measurements are in substantial quantitative agreement with reference 
measurements, as demonstrated by the high R2 and ICC. The solid line represents 

identity (y=x) and the dotted line represents linear regression fitting. 
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T1r:90.9± 3.0), putamen (T1:1110.3± 43.3; T2:72.0± 3.6; T1r:77.6± 2.7), and thalamus 

(T1:1041.5±34.1; T2:76.0±3.5; T1r:83.7±3.8); Table 10 lists these in comparison to the 

references. Substantial quantitative agreement between Multitasking and the references was seen 

for T1/T2/T1r in all tissue compartments, with all ICC>0.81 within the “excellent” definition 

range102 (Table 11).  

 

 

 

 

 

 

 

 

 

Figure 33. Example T1/T2/T1r maps generated by Multitasking and the reference 
methods in a healthy control. Multitasking maps show good image quality and are 

comparable with reference maps. 
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Healthy Control 
Measurements (N=14) 

White Matter Gray 
Matter 

Putamen Thalamus 

 

Reference 
Measurements 

T1 (ms) 789.6±22.6 1210.8±31.0 1051.8±46.5 987.2±32.7 

T2 (ms) 78.5±3.5 85.3±3.9 74.3±3.8 78.6±3.8 

T1𝜌 
(ms) 

80.4±3.3 88.9±3.4 76.1±3.8 81.4±3.6 

 

Multitasking 
Measurements 

T1 (ms) 843.6±18.3 1319.8±28.9 1110.3±43.3 1041.5±34.1 

T2 (ms) 75.9±2.8 83.9±3.6 72.0±3.6 76.0±3.5 

T1𝜌 
(ms) 

82.7±3.2 90.9±3.0 77.6±2.7 83.7±3.8 

 

 

 
White 
Matter 

Gray 
Matter 

Putamen Thalamus 

ICC 

(Reference vs 
Multitasking) 

T1 0.86 0.90 0.92 0.92 

T2 0.88 0.87 0.85 0.84 

T1𝜌 0.87 0.83 0.86 0.81 

 

Small but statistically significant biases were seen between Multitasking and reference 

measurements: Multitasking T1 and T1r values were higher in all compartments (1.1%~9.0% 

higher for T1, and 2.0%~4.3% higher for T1r), while T2 values lower in all compartments 

Table 10. T1/T2/T1r measurements of N=14 healthy controls. 

Table 11. Intraclass correlation coefficients between reference and Multitasking 
T1/T2/T1r measurements in four tissue compartments. 
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(1.6%~3.3% lower). Despite the measurement biases, values of all tissue compartments were 

within the literature range35,98,101,133,149-152 where available. No T1r literature values of putamen 

and thalamus were found. 

Bland-Altman plots demonstrated good scan-rescan repeatability of Multitasking 

experiments for T1/T2/T1r measurements on all tissue compartments (Figure 34). For all subjects 

and tissue compartments, maximum T1, T2 and T1r variations were all less than 5%. All ICCs 

between the 1st and 2nd Multitasking sessions were >0.91, also indicating “excellent” agreement 

(Table 12). 

 

 

 

 

Figure 34. Bland-Altman analysis for the evaluation of scan-rescan repeatability of the 
1st and 2nd Multitasking scans. Left to right: T1, T2, and T1r. Each tissue compartment 
corresponds to a single color. The dotted lines represent 95% confidence level. The 

solid lines represent mean percentage differences. 
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White 
Matter 

Gray 
Matter 

Putamen Thalamus 

ICC 

(Multitasking 
1st  vs 2nd) 

T1 0.91 0.96 0.93 0.95 

T2 0.94 0.93 0.90 0.92 

T1𝜌 0.93 0.94 0.94 0.96 

 

Table 12. Intraclass correlation coefficients between the 1st and 2nd Multitasking scans 
in four tissue compartments. 

Figure 35. Demonstration of motion session 1 – in-plane “shaking” motion with two 
motion states. (A) Example frames of Multitasking images for two motion states. (B) 

Motion-free (reference), motion-corrupted, motion-resolved, and retrospectively 
truncated (i.e., using half of the k-space data belonging to a single motion state) 
T1/T2/T1𝝆 maps. With two in-plane motion states, motion-corrupted maps show 

substantial blurring and ghosting artifacts, while motion-resolved and retrospectively 
truncated maps show very good image quality. 
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4.3.3 Motion Investigation 

 For all motion experiments, different motion states are demonstrated (Figure 35A-38A) 

and example motion-free, motion-corrupted, motion-resolved, and retrospectively truncated 

T1/T2/T1r maps are provided (Figure 35B-38B).  

 

For both in-plane and through-plane sessions with two motion states, motion-corrupted 

T1/T2/T1r maps are suffered from substantial ghosting artifacts, lower SSIM (session #1: 0.6615, 

0.6259, 0.6458; session #3: 0.6447, 0.6256, 0.6154), and higher MAD (session #1: 239.6ms, 

Figure 36. Demonstration of motion session 2 – in-plane “shaking” motion with four 
motion states. (A) Example frames of Multitasking images for four motion states. (B) 

Motion-free (reference), motion-corrupted, motion-resolved, and retrospectively 
truncated (i.e., using a quarter of the k-space data belonging to a single motion state) 

T1/T2/T1𝝆 maps. With four in-plane motion states, both motion-corrupted and 
retrospectively truncated maps show substantial deviation from the reference, as well 

as blurring and ghosting artifacts, while motion-resolved maps show decent image 
quality with very mild blurring at tissue boundaries. 
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12.6ms, 11.3ms; session #3: 264.6ms, 16.4ms, 17.7ms). The standard deviation (SD) of all 

measurements are substantially higher. Motion-resolved and retrospectively truncated T1/T2/T1r 

maps are clean and comparable to the reference, with similar measurement distributions, higher 

SSIM (session #1 motion-resolved: 0.7714, 0.7352, 0.7461; session #1 retrospectively truncated: 

0.7670, 0.7262, 0.7415; session #3 motion-resolved: 0.7040, 0.6879, 0.6870; session #3 

retrospectively truncated: 0.6840, 0.6867, 0.6859), and lower MAD (session #1 motion-resolved: 

139.1ms, 5.8ms, 6.1ms; session #1 retrospectively truncated: 146.9ms, 6.2ms, 6.8ms; session #3 

Figure 37. Demonstration of motion session 3 – through-plane “nodding” motion with 
two motion states. (A) Example frames of Multitasking images for two motion states. 
(B) Motion-free (reference), motion-corrupted, motion-resolved, and retrospectively 

truncated (i.e., using half of the k-space data belonging to a single motion state) 
T1/T2/T1𝝆 maps. Similar to motion session 1, motion-corrupted maps show 

substantial blurring and ghosting artifacts, while motion-resolved and retrospectively 
truncated maps show good image quality. 
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motion-resolved: 163.3ms, 8.1ms, 9.3ms; session #3 retrospectively truncated: 172.8ms, 8.4ms, 

9.6ms). 

For both in-plane and through-plane sessions with four motion states, both motion-

corrupted and retrospectively truncated T1/T2/T1r maps exhibit substantial ghosting or 

undersampling artifacts, lower SSIM (session #2 motion-corrupted: 0.6509, 0.6423, 0.6444; 

session #2 retrospectively truncated: 0.6202, 0.6379, 0.6435; session #4 motion-corrupted: 0.6642, 

0.6256, 0.6293; session #4 retrospectively truncated: 0.7199, 0.6459, 0.6480), and higher MAD 

(session #2 motion-corrupted: 192.3ms, 14.6ms, 13.0ms; session #2 retrospectively truncated: 

281.9ms, 49.9ms, 45.7ms; session #4 motion-corrupted: 187.5ms, 13.9ms, 21.3ms; session #4 

Figure 38. Demonstration of motion session 4 – through-plane “nodding” motion with 
four motion states. (A) Example frames of Multitasking images for four motion states. 
(B) Motion-free (reference), motion-corrupted, motion-resolved, and retrospectively 

truncated (i.e., using a quarter of the k-space data belonging to a single motion state) 
T1/T2/T1𝝆 maps. Similar to motion session 2, both motion-corrupted and 

retrospectively truncated maps show substantial deviation from the reference, as well 
as blurring and ghosting artifacts, while motion-resolved maps show decent image 

quality with mild blurring at tissue boundaries. 
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retrospectively truncated: 177.7ms, 12.2, 19.5ms). The SD of all measurements are substantially 

higher. Motion-resolved T1/T2/T1r maps are clean with values comparable to reference values. 

SSIM is much higher (session #2: 0.7348, 0.7052, 0.7095; session #4: 0.7315, 0.6992, 0.7015) and 

MAD is much lower (session #2: 157.2ms, 8.6ms, 9.2ms; session #4: 152.3ms, 8.0ms, 8.9ms). 

However, compared to two motion states, four motion states lead to less sharp and more blurring 

WM boundaries for both motion types. 

 

Figure 39. Clinical demonstration of a 56-year-old female RRMS patient with 20 years 
disease duration. (A) Multitasking T1/T2/T1r maps. (B) Synthetic T1w, T2w, PDw, T2w-
FLAIR, T1rw-FLAIR, and DIR images. (C) Clinical T1w and T2w-FLAIR images (the only 
clinical images available) which are comparable with the synthetic images. One white 
matter lesion (red arrow) is clearly delineated on both quantitative maps and synthetic 

images, among which T1r shows better lesion contrast than T2. T2w-FLAIR, T1rw-
FLAIR, and DIR show better lesion contrast with nulled CSF than T1w, T2w, and PDw. 
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4.3.4 Patient Study 

Figure 39 showed example quantitative maps as well as synthetic and clinical weighted 

images of a 56-year-old female RRMS patient who had 20 years disease duration. The WM lesion 

was clearly delineated on Multitasking T1/T2/T1r maps (Figure 39A). Also note that the T1r map 

showed better lesion contrast against NAWM than the T2 map. Figure 39B demonstrated synthetic 

weighted images, where the lesion was clearly shown on T2w, T2w-FLAIR, T1rw-FLAIR, and 

DIR. CSF was nulled on T2w-FLAIR, T1rw-FLAIR, and DIR, yielding better delineation of 

lesion than other synthetic contrast-weighted images. It seemed that the lesion is most conspicuous 

on T1rw-FLAIR and DIR. T1w and T2w-FLAIR were the only available corresponding clinical 

images with which the corresponding synthetic ones were comparable (Figure 39C). 

 

RRMS Patients 
Measurements (N=8) 

White Matter Gray Matter Putamen Thalamus 

T1 (ms) 900.1±13.0 1333.9±28.1 1095.7±36.9 1017.3±22.2 

P-value vs. HC 3.9x10-7* 0.179 0.498 0.102 

T2 (ms) 78.7±1.9 86.5±1.3 73.2±1.7 77.8±2.4 

P-value vs. HC 0.019* 0.063 0.409 0.850 

T1𝜌 (ms) 86.9±2.5 95.8±3.0 80.5±2.1 86.5±2.5 

P-value vs. HC 0.005* 0.001* 0.016* 0.024* 

 

Table 13. Patient T1/T2/T1r measurements in four tissue compartments. Statistical 
significance against healthy controls (HC) is evaluated. Asterisk (*) indicates 

significant difference (p<0.05). 
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Table 13 showed population statistics for Multitasking measurements in RRMS patients 

and the results of comparisons against healthy controls. We found significant differences for T1 in 

NAWM (900.1±13.0, p=3.9x10-7) compared to healthy controls. T2 was also significantly higher 

in NAWM of patients (78.7±1.9, p=0.019). Significantly higher T1r was observed in all four 

compartments: NAWM (86.9±2.5, p=0.005), NAGM (95.8±3.0, p=0.001), putamen (80.5±2.1, 

p=0.016), and thalamus (86.5±2.5, p=0.024).  

 

ROC analysis (Figure 40) showed that when using a single parameter, T1r had the highest 

AUC point estimate for discriminating MS with healthy control with AUC=0.831 (95%CI: 0.744-

Figure 40. Receiver operation characteristic (ROC) curves in differentiating RRMS 
patients with healthy controls, using either single parameter or the combination of 

three parameters. The area under the curve (AUC) are: T1: AUC=0.807 (95%CI: 0.714-
0.900), T2: AUC=0.686 (95%CI: 0.574-0.797), T1r: AUC=0.831 (95%CI: 0.744-0.918), 
T1+T2+T1r: AUC=0.972 (95%CI: 0.944-0.999). The dotted line represents identity 

reference line. 
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0.918), followed by T1 with AUC=0.807 (95%CI: 0.714-0.900) and T2 with AUC=0.686 (95%CI: 

0.574-0.797). The combination of all three parameters had significantly higher accuracy than any 

individual parameter, with AUC=0.972 (95%CI: 0.944-0.999). 

4.4 Discussion 

 We extended the existing MR Multitasking technique to achieve simultaneous 

quantification of T1/T2/T1r with whole-brain coverage in a clinically feasible scan time. By 

modeling the underlying image as a multidimensional tensor, characterizing each relaxation 

process as a different time dimension, and exploiting the strong spatiotemporal correlations along 

and across dimensions, this framework is capable of accelerating the imaging session, thus 

producing an efficient MR exam in clinical settings. 

 Simultaneous multiparametric mapping approaches have been widely explored in recent 

years, as they have several significant merits: i) production of quantitative information rarely 

available in conventional clinical MR exams, which has the potential to have higher sensitivity, 

specificity, and reproducibility beneficial to inter-subject or inter-site comparison, longitudinal 

follow-up, and detection of biological tissue changes; ii) production of quantitative biomarkers 

that allow comprehensive measurement of tissue properties under various diseases; and iii) 

substantial acceleration compared to conventional quantitative MRI methods which are usually 

performed in separate scans, leading to shortened MR sessions, co-registered measurements, and 

significantly reduced motion artifacts. Popular approaches that quantify proton density, T1, T2, 

T2*, ADC, and perfusion and vascular permeability parameters have been proposed and drawn 

extensive interests, using MR fingerprinting, MR Multitasking, and more58,62,69,71,72,84,86,153. As an 

emerging contrast mechanism specially characterizing low-frequency biochemical motional 

process, T1r has yet to be fully explored, while the acquisition can be extremely inefficient (10-
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20min) especially when whole anatomical coverage is desired154-157. Furthermore, with such a long 

scan time, clinical scans could be prone to motion artifacts. This work for the first time quantifies 

whole-brain T1r along with T1 and T2 simultaneously in 9min which is significantly shorter than 

separate reference T1/T2/T1r acquisition performed in 25min in this study, thus being promising 

for clinical research. 

 The proposed method produced high quality and co-registered multiparametric maps and 

T1/T2/T1r measurements; phantom vials and brain tissue compartments showed substantial 

quantitative agreement with reference measurements. Significantly different measurement biases 

were seen between Multitasking and the reference methods, which may be due to several factors. 

Firstly, the T1 differences could be related to both preparation scheme differences (IR vs. T2-

IR/T1r-IR) and readout differences (TSE vs. FLASH). Furthermore, it has been shown that IR-

TSE could lead to T1 underestimation in the brain compared to the traditional “gold standard” IR-

SE58. Secondly, T2-preparations might lead to T2 underestimation due to B1 inhomogeneities as 

previously reported71,103, while ME-SE was likely to cause T2 overestimation due to stimulated 

echo contamination158. Lastly, reference T1r mapping was subject to T1 contamination during the 

FLASH readouts, despite the implementation of multi-shot acquisition with 2x GRAPPA 

acceleration to allow fewer phase encoding lines per shot. 

 In this work, we investigated two commonly occurred types of motion — in-plane “shaking” 

motion and through-plane “nodding” motion, as well as motion timings during the scan. The 

results indicated that in-plane and through-plane motion did not make a difference in terms of the 

motion-resolved image quality, and thus could be treated equally in the imaging framework which 

was probably because of the 3D acquisition. However, the number of identified motion states 

mattered, as it was clear that when the subject moved three times, the resulting motion-resolved 
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maps showed more blurring of the WM boundaries, compared against when the subject moved 

only once. This was probably because the head motion pattern was discrete rather than continuous 

or periodical, thus with the complicated brain tissue structure, if there were more motion states, 

more voxels close to tissue boundaries could belong to different tissues under different motion 

states, and the image tensor would have less correlation to be exploited along the motion dimension. 

For similar reason, the motion-resolved mapping quality could have also been degraded if the 

rotation angle was too large. Luckily, patients’ head would be stabilized with cushions during 

clinical settings, preventing substantial motion from happening. On the other hand, we noted that 

by exploring the signal correlation between motion states, the proposed framework better 

recovered T1/T2/T1r maps than retrospectively truncating one motion state for image 

reconstruction, indicating that the signal correlation was exploited to help recover useful 

information. However, it seemed that the differences would be small if one motion state took up 

more than half of the scan duration.  

 It is reasonable to assume that the motion-resolved results would be improved if all the 

images were registered to one motion state before tensor subspace estimation as demonstrated in 

our abdominal work73, as it would greatly restore the signal correlation. However, in the presence 

of rotational motion, image registration with affine transform would create non-Cartesian 

coordinates not inherently compatible with our Cartesian trajectory, leading to a much longer 

reconstruction time. Future works may investigate image registration with radial- or spiral-based 

trajectories which are more compatible with translational and rotational image registration in the 

k-space. Besides, future works will also include more subjects for statistical comparisons and other 

simultaneous multiparametric mapping techniques. 
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 In our study, we generated six synthetic contrast-weighted images along with three 

quantitative maps, which in the future have the potential to replace conventional qualitative scans 

in the clinical workflow. Future work will compare the diagnostic accuracy of the synthetic and 

clinical images as further validation. In the results of this study, the MS lesion was conspicuous 

on all three parametric maps, among which T1r seemed to provide better lesion contrast than T2. 

As a result, the lesion on synthetic T1rw-FLAIR appeared more prominent than in synthetic T2w-

FLAIR. This was consistent to previous findings where T1r demonstrated 25% increased lesion 

CNR compared to T235. T1-based synthetic DIR also showed excellent lesion contrast. However, 

whether T1 or T1r is better in terms of lesion characterization and diagnostic values needs further 

investigation. T1w, T2w, and PDw appeared to have less diagnostic value compared to the other 

three synthetic images due to reduced lesion contrast, but could still be important in other 

neurological diseases. 

 Consistent with previous findings, the significant differences for T1/T2/T1r in NAWM 

could indicate WM damage caused by demyelination, axonal degeneration, and 

inflammation35,121,159,160. Cortical and deep GM pathologies are also prominent but are less 

detected with conventional MRI techniques due to low myelin densities and reduced number of 

axons in GM cellular matrices161,162. Inflammation of GM is less pronounced than WM during 

progressive stages of MS, and GM damages could involve more subtle tissue changes161,162. In our 

study, only T1r showed significant differences in NA cortical and deep GM, suggesting the 

presence of GM damage could possibly be associated with low-frequency pathological processes 

and chemical exchanges. However, the intrinsic mechanism of increased T1r in NAGM remains 

unknown. These results indicated the potential of T1r for the evaluation of MS, especially cortical 

and deep gray matter pathologies since accurate detection of lesions in these brain regions still 



101 
 

remains an unmet need currently in MS. Furthermore, ROC analysis suggested that T1r may better 

discriminate RRMS patients from healthy controls than T1 and T2, and showed that the 

combination of T1/T2/T1r was better than using either a single parameter alone. This indicates 

that T1/T2/T1r offer complementary tissue information and could serve as potential tissue 

biomarkers for diagnosis and treatment monitoring of MS. Future works will focus on a more 

comprehensive clinical validation on a larger cohort with other MS phenotypes. 

 One major limitation of this work is that we have yet to achieve ≤1.0mm slice resolution 

in a reasonable scan time, which is a common practice in clinical brain MRI, especially targeting 

MS. Whole-brain coverage cannot be sacrificed because MS lesions are likely to occur throughout 

the brain and down to the spinal cord. The current 3.5mm slice thickness may lead to missed 

detection of small lesions, or inaccurate lesion characterization due to partial volume effects. 

Future technical improvement will focus on shortening the scan time for higher-resolution imaging, 

for example by deep-learning super-resolution in the slice direction163,164. 

4.5 Conclusion 

 Three-dimensional, motion-resolved, whole-brain simultaneous T1/T2/T1r quantification 

is achieved in 9min with MR Multitasking. This novel technique produces T1/T2/T1r values in 

substantial quantitative agreement with reference methods, demonstrates excellent scan-rescan 

repeatability, and provides synthetic contrast-weighted images in addition to the three quantitative 

maps. Multitasking produces artifact-free multiparametric maps under in-plane and through-plane 

motion, which offers novel insights to handle motion in brain MRI exams. The combination of 

T1/T2/T1r better discriminates MS patients from healthy controls as compared to using a single 
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measurement alone. Future work will focus on achieving higher slice resolution, dealing with 

motion, and more comprehensive clinical studies with larger cohorts. 
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Chapter V Translation of the Proposed Quantitative 

Multiparametric MRI Techniques to Potential Applications in 

Other Body Organs 

5.1 B1+-Compensated, 3D Whole-Breast T1, T2, and ADC Mapping with MR 

Multitasking 

5.1.1 Introduction 

Currently clinical breast MRI mostly adopt qualitative imaging techniques such as T1w 

dynamic contrast enhanced (DCE) imaging and T2w imaging. Qualitative T1w DCE and T2w 

imaging have shown promise for clinical breast tumor diagnosis. For example, T1W DCE enables 

the detection and assessment of morphological and kinetic patterns of benign and malignant breast 

tumors with high sensitivity (over 90%)165. T2w imaging provides information that contributes to 

benign and malignant lesion characterization166. However, qualitative imaging is subject to major 

limitations. T1w DCE has low to moderate specificity (72%) for lesion characterization167, and 

T2w imaging is challenging to discriminate benign lesions, mucinous carcinoma and necrotic 

tumors that all produce high signal intensity on T2w images168. On the other hand, quantitative 

MRI that measures T1, T2, and ADC has significant clinical benefits in breast MRI. For instance, 

dynamic T1 mapping would contribute to direct quantification of contrast agent concentration 

curves in clinical DCE MRI72. T2 mapping has the potential for characterizing breast lesion stages 

and monitoring cancer progression after chemotherapy169,170. ADC mapping has been used for 

prediction of pathologic response in breast cancer171, tumor detection with higher accuracy than 

mammography and comparable sensitivity and specificity than contrast-enhanced MRI172,173, and 

non-contrast screening on regular basis24.. 



104 
 

 Despite the significant potential of T1, T2, and ADC quantification in clinical breast MRI, 

there are two major challenges. First, conventional quantitative T1, T2, and ADC mapping are 

typically acquired in separate 2D scans which have the disadvantages of inefficient acquisition, 

mis-registration due to intra-scan misplacement, and image distortion. Second, the presence of 

notable nonuniformity of the B1+ field in breast coils causes the actual flip angle to be deviated 

from the nominal flip angle174-176. This B1+ field inhomogeneity is mostly caused by large FOV in 

bilateral breast MRI, as well as the off-center breast positions in the coils. At 3T, ~40% flip angle 

variation across the breast and 30%-50% flip angle variation across the chest can be expected 

which results in inaccurate T1 measurements177,178.  

 In this section, we extend the simultaneous T1/T2/ADC quantification technique proposed 

in Chapter 3 to the breast, which allows co-registered and distortion-free T1, T2, and ADC maps 

with whole-breast coverage in a single 8min scan. We especially incorporate a separately acquired 

B1+ map into the multiparametric fitting process to compensate for the nonuniform B1+ variation, 

and thus improve T1 quantification accuracy.  
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5.1.2 Methods 

5.1.2.1 Pulse Sequence Design 

 The design of the pulse sequence extends from Chapter 3, except that all preparation pulses 

are implemented in an interleaved manner throughout the entire scan to make the acquisition more 

motion robust (Figure 41). Data acquisition follows the strategy introduced in Chapter 3. 

 

5.1.2.2 B1+ Field Inhomogeneity Compensation 

 B1+ information will be separately obtained using a turbo FLASH sequence preceded by 

a target pre-saturation pulse with a nominal flip angle 𝛼m&1179. The actual flip angle of this pulse 

can be calculated voxel-by-voxel as: 

                                                                𝛼¶m&1 = arccos(2H
2>
),                                                    (5.1)  

where 𝐼l  and 𝐼)  represent the signal intensities of the two images with and without the pre-

saturation pulse. A spatial variation map can be derived by normalizing the actual flip angle with 

the nominal flip angle 𝛼m&1 of the pre-saturation pulse: 

Figure 41. The pulse sequence diagram for whole-breast T1/T2/ADC Multitasking. Four 
T2-preparation modules and three diffusion-preparation modules are interleaved to 

form one acquisition block which repeats multiple times so that all preparations cycle 
throughout the entire scan for data acquisition. 
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                                                                      𝑐 = lnI&0
lI&0

,                                                               (5.2)  

which is then applied to the nominal FLASH flip angle 𝛼 used in the Multitasking sequence (i.e., 

𝑐 ∙ 𝛼) as an initial guess for the multiparametric fitting process described in Eqs. (3.1) and (3.2). 

5.1.2.3 Phantom Study 

 Data were collected on a 3T clinical scanner (MAGNETOM Vida, Siemens Heathineers, 

Erlangen, Germany) equipped with a 16-channel breast coil on a homemade T1 phantom70 to 

evaluate the B1+-compensated T1 mapping accuracy. The reference T1 map was collected using 

an IR-TSE sequence with FOV=320x240mm2, in-plane resolution=1.6x1.6mm2, slice 

thickness=5mm, 9 inversion times TI=[50, 200, 275, 350, 500, 1000, 1500, 2400, 3000]ms. The 

reference B1+ map was collected with nominal flip angle 𝛼m&1 = 80° with the same FOV and in-

plane resolution as the reference T1 map. The Multitasking imaging protocol was: 

FOV=320x240x50mm3, voxel size=1.6x1.6x5mm2, 4 T2-prep with durations 𝜏=[14, 31, 50, 68]ms, 

3 D-prep with one b-value 𝑏=800s/mm2 and 3 noncolinear diffusion directions 𝑑=[1 1 -1], [1 -1 

1], [-1 1 1], the duration of the D-prep was 31ms with a 55mT/m gradient amplitude on each axis, 

FLASH TR/TE=11.1/5.8ms, nominal FLASH flip angle 𝛼 = 5°, and repetition time (the time 

between two preparation pulses)=2600ms with an 1000ms gap. 

5.1.2.4 In vivo Study 

 The in vivo study was approved by the IRB of our institute. All volunteers gave written 

informed consent before the study. N=13 healthy volunteers were recruited and were scanned on 

the MAGNETOM Vida scanner. In vivo protocols included a 3-view localizer, a fat-saturated T1-

weighted sequence, a fat-saturated T2-STIR sequence, an ME-SE sequence with 6 echo times 

TE=[14, 28, 42, 56, 70, 84]ms for reference T2 mapping, a DW-RSEPI sequence with b-
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values=[50, 800]s/mm2 and 3 noncolinear directions for reference ADC mapping, and reference 

B1+ maps that were collected with nominal flip angle 𝛼m&1 = 80°. There is no widely accepted 

T1 mapping method in breast MRI as a reference. ME-SE, DW-RSEPI, and B1+ maps were all 

acquired with FOV=320x240mm2, in-plane resolution=1.6x1.6mm2, slice thickness=5mm. The 

Multitasking imaging protocol was: FOV=320x240x160mm3, voxel size=1.6x1.6x5mm2, 4 T2-

prep with durations 𝜏=[14, 31, 50, 68]ms, 3 D-prep with one b-value 𝑏=800s/mm2 and 3 

noncolinear diffusion directions 𝑑=[1 1 -1], [1 -1 1], [-1 1 1], the duration of the D-prep was 31ms 

with a 55mT/m gradient amplitude on each axis, FLASH TR/TE=11.1/5.8ms, nominal FLASH 

flip angle 𝛼 = 5°, and repetition time (the time between two preparation pulses)=2600ms with an 

1000ms gap. The Multitasking sequence was run twice on each volunteer to test the in vivo 

repeatability, with a scan time of 8min each. 

5.1.2.5 Image Analysis 

All the reconstructions were performed on a Linux workstation with a 2.70GHz dual 12-

core Intel Xeon processor equipped with 256GB RAM and running MATLAB 2017a. The spatial 

factor matrix 𝐔 was solved by directly incorporating the model-based phase correction into the 

optimization problem described in Eq. (3.9) and using a 16GB GPU to improve the reconstruction 

speed. Voxel-wise multiparametric fitting of 𝐴, 𝛼, T1, T2, and the diffusion coefficients of 3 

directions 𝐷&, 𝐷( and 𝐷? was performed based on Eqs. (3.1)-(3.2), both with B1+ compensation 

(i.e., using the B1+-modulated flip angle as the initial guess of 𝛼) and without B1+ compensation 

(i.e., using the nominal 5° flip angle as the initial guess of 𝛼).  

5.1.2.6 Quantitative Analysis 

 For phantom study, T1 values for each vial were calculated both with and without B1+ 

compensation. Linear regression was performed to evaluate the correlation between Multitasking 
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T1 mapping and reference T1 mapping. ICCs were calculated using IBM SPSS Statistics (Armonk, 

New York) with a two-way mixed model and a confidence level of 95% to evaluate the quantitative 

agreement between Multitasking T1 mapping and reference T1 mapping. 

 For in vivo study, the ROI was selected as the breast tissues in three slices located at the 

upper, mid, and lower regions of the acquired 3D volume. Measurement populations of 

T1/T2/ADC within the breast tissue were compared between Multitasking and the references. ICC 

was computed also using IBM SPSS Statistics to evaluate the quantitative agreement between 

Multitasking and reference T1/T2/ADC measurements. Bland-Altman analysis was performed to 

evaluate the in vivo repeatability between the two Multitasking scans. 

5.1.3 Results 

5.1.3.1 Phantom Study 

 Figure 42 shows the normalized B1+ map of the phantom over the nominal 80° flip angle 

of the pre-saturation pulse. Substantial B1+ variation was observed across the FOV, where the 

actual flip angle had a ~10% increase over the left vials and a ~10% decrease on average over the 

right vials, compared to the nominal flip angle. As a result, without B1+ compensation, 

Multitasking T1 values on both sides substantially deviated from the reference T1 values, with 

very poor correlation (R2=0.503) and moderate quantitative agreement102 (ICC=0.72). With B1+ 

compensation, Multitasking T1 values were comparable with reference T1 values on both sides, 

with very good correlation (R2=0.973) and excellent quantitative agreement102 (ICC=0.99). T2 

maps and ADC maps were identical with or without B1+ compensation (results not shown here). 
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Figure 42. Demonstration of B1+ compensation in the phantom. Left top: The 
normalized B1+ map demonstrates the nonuniform B1+ field across the FOV. Left 

bottom: T1 maps generated from IR-TSE, Multitasking without B1+ compensation, and 
Multitasking with B1+ compensation. With B1+ compensation, the estimated T1 map 
is comparable with the reference. Right: regression analysis between reference and 

Multitasking T1 measurements with and without B1+ compensation. With B1+ 
compensation, T1 measurements show better correlation and agreement with the 
reference than without B1+ compensation with substantially higher R2 and ICC. 
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5.1.3.2 In vivo Study 

 Figure 43 shows example in vivo T1W and T2-STIR images, normalized B1+ maps over 

the nominal 80° flip angle of the pre-saturation pulse, as well as Multitasking and reference 

quantitative maps overlaid on T2-STIR in one healthy volunteer. Notable B1+ variation was 

observed in vivo across the FOV, with ~15% increase in the flip angle over the left breast, and 

~10% decrease over the right breast. Multitasking T1/T2/ADC maps were co-registered. T2/ADC 

maps were consistent with the references. Without B1+ compensation, Multitasking T1 map was 

Figure 43. In vivo demonstration on a healthy volunteer for simultaneous T1/T2/ADC 
mapping of three slices. For each slice, the first row shows the clinically adopted fat 
saturated T1-weighted image and STIR image. The second row shows the separately 
acquired B1+ map (normalized with the prescribed 5° flip angle) which demonstrates 

the nonuniform B1+ field across the FOV. The third and fourth rows show the 
T1/T2/ADC maps generated from the Multitasking framework, where specifically, the 
third row shows the fitted T1 maps without and with B1+ compensation. Uniform T1 
maps are produced with B1+ compensation, while substantial T1 variation is present 

without B1+ compensation. The T2/ADC maps are the same with or without B1+ 
compensation, as the flip angle term only interact with T1. The fifth row shows the 

reference T2 and ADC maps. Multitasking T2/ADC maps are consistent with the 
reference T2/ADC maps. 
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subject to B1+ inhomogeneity, leading to nonuniform T1 values on each side of the breast with a 

mean difference ~700ms. B1+ compensation produced uniform T1 values on both sides, which 

was reasonable for a healthy person. Bland-Altman plots demonstrated excellent in vivo 

repeatability between the 1st and 2nd Multitasking sessions, with maximum variations <5% for 

T1/T2/ADC measurements (Figure 44). Multitasking T1/T2/ADC measurements (T1: 

1432.6 ± 63.2ms; T2: 55.0 ± 8.3ms; ADC: 1.76 ± 0.15x10-3mm2/s) and reference T2/ADC 

measurements (T2: 58.1 ± 7.9ms; ADC: 1.70 ± 0.15x10-3mm2/s) were all within literature 

range24,36,174,180. Multitasking T2/ADC were in excellent quantitative agreement with reference 

values, with ICC>0.94102 (Table 14). 

Figure 44. Bland-Altman plots showing the in vivo repeatability of T1/T2/ADC 
measurements between the first and second Multitasking experiments. All three 

parameters demonstrate good repeatability. 

Table 14. T1/T2/ADC values of literature range, measurement population of T1/T2/ADC 
from B1+-compensated Multitasking, and T2/ADC from reference approaches on n=13 

healthy volunteers. 
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5.1.4 Discussion and Conclusion 

 The proposed simultaneous T1, T2, and ADC mapping technique was translated to the 

breast. Multiparametric fitting was performed with prior knowledge of B1+ field information 

across the bilateral breast FOV, which compensated for the substantial B1+ inhomogeneity in the 

breast coil, leading to accurate, repeatable, and co-registered T1/T2/ADC measurements consistent 

with reference methods where available. 

 The most efficient approach clinically to achieve T1/T2/ADC mapping of the breast so far 

is to combine a 3D MR Fingerprinting approach which has been proposed for breast lesion 

characterization with a 6min scan time36, and a separate DWI acquisition which uses the 

RESOLVE technique to conquer the image distortion54 with another 6min scan time, adding up to 

12min scan in total. The proposed method enabled the quantification of T1/T2/ADC with who-

breast coverage in only 8min. 

 The substantial B1+ field inhomogeneity across the entire FOV has been a long standing 

problem in breast MRI. Pineda et al. calculated a partial B1+ map from the fat in the breast as a 

reference tissue, as fat is an ideal reference tissue with spatially homogeneous T1 and low 

interpatient variability, which was subsequently interpolated over the breast tissue regions to 

acquire the entire B1+ map across the whole FOV174. Sung et al. systematically evaluated the 

impact of B1+ correction on the T1 mapping accuracy, and found 52% T1 estimation bias in fat 

between breasts using variable flip angle T1 mapping without proper B1+ correction, while the T1 

variation reduced to 7% with B1+ correction175. In this work, we found notable B1+ variation with 

~10%-15% increase over the left breast and ~10%-15% decrease over the right breast. Our 

solution was simple and convenient, which used a separately acquired B1+ map to modulate the 

nominal flip angle as the initial guess of the multiparametric fitting, reducing T1 bias substantially. 
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This also indicated that our nonlinear fitting was sensitive to the choice of initial guess, as different 

T1 and flip angle combinations might give the same results. In the future, other B1+ robust T1 

mapping methods will be explored, such as double flip angle configuration181. 

 We extended the simultaneous T1/T2/ADC mapping technique to the breast with 3D 

whole-breast coverage. The substantial transmit field inhomogeneity in the breast coil was 

compensated by incorporating the prior knowledge of a separately acquired B1+ map, which 

substantially improved the T1 mapping accuracy. High quality, co-registered T1/T2/ADC maps 

were generated without image distortion. Future work will focus on clinical validation on tissue 

characterization of breast cancer patients. 
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5.2 Non-ECG, Free-Breathing Simultaneous Myocardial T1 and T1r mapping 

with MR Multitasking 

5.2.1 Introduction 

 Quantitative cardiovascular magnetic resonance imaging techniques have been widely 

adopted in clinical research and diagnosis of various cardiovascular diseases. For example, 

myocardial T1 and T2 mapping allow quantitative assessment of myocardial abnormalities such 

as focal or diffusion fibrosis, myocarditis, ischemic diseases, and non-ischemic 

cardiomyopathies18. T1r is sensitive to tissue composition of fibrosis and normal cardiomyocytes, 

allowing enhanced scar contrast at high spin-lock frequency compared to T2182. T1r also shows 

promise as a non-contrast alternative for the detection and clinical evaluation of acute and chronic 

myocardial infarction183. 

 One major technical challenge for quantitative cardiovascular MRI is to handle multiple 

overlapping dynamic processes during data acquisition. Physical image contrasts to be quantified 

(i.e., T1, T2, T1r) are mixed with physiological motion (i.e., cardiac and respiratory motion). 

Established solutions to address this issue would be to freeze cardiac and respiratory motion using 

ECG, breath-hold short sequences, or respiratory navigator techniques. Clinical T1, T2, and T1r 

maps are typically obtained separately with these freezing mechanisms using modified look-locker 

inversion recovery (MOLLI)41, T2-prepared FLASH/bSSFP184, or T1r-prepared FLASH/bSSFP 

sequences182,183, which may lead to inefficient imaging sessions, complicated clinical workflows, 

and misaligned images due to multiple breath holds. Furthermore, it would be especially 

challenging on patients with cardiac arrhythmias or irregular breathing patterns. 
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 In this section, we propose to simultaneously resolve four overlapping image dynamics, 

namely, T1, T1r, cardiac motion, and respiratory motion, in a single continuously acquired, free-

breathing MR exam with no reliance on ECG triggering, by extending the technique introduced in 

Chapter 4 to especially take care of cardiac and respiratory motion, which enables a “push-button” 

cardiac MR exam that simplifies the clinical workflow, eliminating the need for multiple inter-

scan set-ups. 

5.2.2 Methods 

5.2.2.1 Pulse Sequence and Data Acquisition 

T1 and T1r weightings are generated by cycling through multiple B0- and B1-insensitive 

T1r-IR preparations with different spin-lock times at one spin-lock frequency. Imaging data 𝐝OPQ 

are collected with a golden-angle radial trajectory (𝜃=111.2467°). Subspace training data 𝐝EF are 

collected periodically for every three readouts at the center k-space line (𝜃=0°) which serves dual 

purposes: i) for multidimensional temporal subspace modeling in the LRT image model; and ii) 

for cardiac and respiratory binning. Figure 45 shows the sequence diagram and sampling strategy. 
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5.2.2.2 Image Model 

 The underlying image can be represented as a 5-way tensor 𝒳 with the first dimension 

concatenating three spatial dimensions 𝐫 = [𝑥, 𝑦, 𝑧] , and four time dimensions indexing T1 

relaxation (𝑡o&), T1r relaxation (𝑡o&p), cardiac phase (𝑡a), and respiratory phase (𝑡F). 𝒳 is an LRT 

due to the strong spatiotemporal correlation along and across each dimension, resulting in the 

explicit LRT decomposition as: 

                                                             𝐗(&) = 𝐔𝚽,                                                              (5.3) 

                                              𝚽 = 𝐂(&)(𝐇⊗ 𝐆⊗ 𝐙⊗𝐕)',                                             (5.4)  

Figure 45. Pulse sequence and data acquisition for myocardial T1/T1r mapping. (A) 
T1r-IR preparations with different spin-lock times are cycled through to generate 

different T1r weightings. (B) Specific structure of the paired self-compensated T1r-IR 
preparation. (C) Data acquisition scheme, where the training data are sampled every 3 

readouts with a constant 0° spoke, and the imaging data are sampled with a golden 
angle radial trajectory. 
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where 𝐔 is the spatial factor matrix whose columns are the spatial basis functions, 𝐕, 𝐙, 𝐆, and 𝐇 

are the temporal factor matrices for the four time dimensions whose columns are the corresponding 

temporal basis functions. Figure 46 demonstrates multiple time dimensions of the LRT image 

model for non-ECG, free-breathing myocardial T1 and T1r mapping. 

 

5.2.2.3 Cardiac and Respiratory Motion Binning 

 Cardiac and respiratory binning (i.e., determine respiratory positions and cardiac phases) 

are performed in order to construct the multidimensional tensor. As reported in previous studies69, 

we use an unsupervised machine learning approach to automatically cluster cardiac and respiratory 

Figure 46. Illustration of multiple temporal dimensions of the 5-way low-rank tensor 
for myocardial T1/T1r mapping. The 5-way image tensor contains spatial, T1 

relaxation, T1r relaxation, cardiac motion, and respiratory motion dimensions. The 
low-rank tensor structure can be explicitly expressed through tensor factorization 
between 5 sets of basis functions assigned to each dimension and the 5-way core 
tensor governing the interaction between different basis functions. Here only the 

three most significant basis functions describing each dimension of the tensor are 
provided. 
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motion states. This method employs a modified k-means algorithm incorporating a low-rank 

relaxation model to correct for the dynamic contrast weightings caused by T1 and T1r relaxation. 

For in vivo experiments, we choose 20 cardiac bins comparable to typical CINE images which 

allows for functional analysis, and 6 respiratory bins based on a with-in cluster sum of squares 

analysis69,70. Cardiac bins and respiratory bins are set to 1 for phantom experiments. 

5.2.2.4 Phantom Study 

 An ISMRM/NIST phantom (model 130, High Precision Devices, Boulder, Colorado) was 

scanned on a 3T clinical scanner (Biograph mMR, Siemens Healthineers, Erlangen, Germany) 

using a 20-channel body coil. A reference T1 map was obtained using an IR-SE sequence with 

FOV=210x210mm2, in-plane resolution=1.6x1.6mm2, slice thickness=5mm, 

TIs=[21,100,200,400,800,1600,3200]ms. A reference T1�map was obtained using T1r-FLASH 

sequence with FOV=240x240mm2, in-plane resolution=1.0x1.0mm2, slice thickness=3.5mm, 

TSL=[15,23,31,51,91,131,171]ms, spin-lock frequency=500Hz. The Multitasking sequence 

consisted of 7 T1r-IR preparation pulses with TSL=[15,23,31,51,91,131,171]ms and spin-lock 

frequency=500Hz, and each preparation pulse was followed by 492 FLASH pulses, spanning an 

inversion recovery period of 2.5s. Other Multitasking parameters were: FOV=240x240mm2, in-

plane resolution=1.5x1.5mm2, slice thickness=3.5mm, echo spacing=5.0ms, nominal FLASH flip 

angle=5°, scan time=120s. 

5.2.2.5 In vivo Study 

 The in vivo study was approved by the IRB of our institute. All volunteers gave written 

informed consent before the study. As a preliminary study, N=3 healthy volunteers were recruited 

and were scanned on the Biograph mMR scanner. For each subject, reference T1 maps of one mid 

left ventricle slice at two cardiac phases (end-systole and end-diastole) were obtained using a 
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MOLLI sequence with a 9s breath hold each. MOLLI in-plane resolution=1.4x1.4mm2, slice 

thickness=8mm; reference T1r maps of the same slice at end-systole and end-diastole phases were 

obtained using a T1r-FLASH sequence with a 7.2s breath hold each. T1r-FLASH in-plane 

resolution=1.9x1.9mm2, slice thickness=8mm; the Multitasking sequence consisted of 5 T1r-IR 

preparation pulses with TSL=[4.1,18.1,30.1,42.1,58.1]ms and spin-lock frequency=500Hz, and 

each preparation pulse was followed by 492 FLASH pulses, spanning an inversion recovery period 

of 2.5s. Other Multitasking parameters were: FOV=270x270mm2, in-plane 

resolution=1.7x1.7mm2, slice thickness=8mm, echo spacing=5ms, nominal FLASH flip angle=5°, 

scan time=87s. 

5.2.2.6 Image Analysis 

 All the reconstructions were performed on a Linux workstation with a 2.70GHz dual 12-

core Intel Xeon processor equipped with 256GB RAM and running MATLAB 2018a (Mathworks, 

Natick, Massachusetts). The reconstruction time was 30min per subject using a 12GB memory 

GPU. T1 and T1r were obtained by a nonlinear least-squares multiparametric fitting according to 

Eq. (4.10) with the T2 component removed. For in vivo cases, we picked the end-expiration 

position and performed the fitting 20 times to obtain cardiac-resolved T1 and T1r maps. For 

phantom study, ROI were drawn for each vial. For in vivo study, T1 and T1r maps of end-systole 

and end-diastole phases were picked out for analysis. The global ROI was drawn for the entire 

myocardium, while the regional ROI corresponded to the 6 segments according to the American 

Heart Association’s 17‐segment model in the mid left ventricular short axis slice (Figure 47). 
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5.2.2.7 Quantitative Analysis 

 For phantom study, the mean and standard deviation of T1 and T1r for each vial were 

calculated. Linear regression analysis was performed, and ICCs were calculated using IBM SPSS 

Statistics (Armonk, New York) with a two-way mixed model and 95% confidence level to evaluate 

the quantitative agreement between Multitasking and the reference methods. 

 For in vivo study, both global and regional T1 and T1r values were calculated and 

compared between Multitasking and the reference methods for end-systole and end-diastole 

cardiac phases for each subject. 

 

Figure 47. Demonstration of the regional ROI, which is drawn based on the 
AHA 17-segment model in the mid short-axis slice. 
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5.2.3 Results 

5.2.3.1 Phantom Study 

 Figure 48 shows the phantom results. Multitasking T1 and T1r maps were comparable 

with corresponding reference maps. Multitasking T1 and T1r measurements were in substantial 

correlation (R2=0.999) with reference measurements and demonstrated excellent quantitative 

agreement (ICC=0.999) with reference measurements.  

 

 

 

Figure 48. Phantom results. Multitasking produces co-registered T1/T1r maps with 
good image quality. Multitasking T1/T1r measurements are in substantial quantitative 

agreement with reference measurements, as demonstrated by the high R2 and ICC. 
The solid line represents identity (y=x) and the dotted line represents linear regression 

fitting. 
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5.2.3.2 In vivo Study 

Figure 49 illustrates the multidimensional image formulation with respect to each time 

dimension. When showing image dynamics along one time dimension, the other three time 

dimensions were at fixed temporal indexes. The temporal evolution for each time dimension was 

displayed only for the horizontal or vertical profile marked in yellow dash lines. Clear temporal 

profiles of inversion recovery, T1r decay, respiratory motion, and cardiac motion were observed, 

as demonstrated in Figure 49A – 49D. 

 

 Figure 50 shows example MOLLI T1 maps and T1r-FLASH T1r maps at end-systole and 

end-diastole, as well as cardiac-resolved Multitasking T1 and T1r maps at 20 cardiac phases 

Figure 49. Multidimensional tensor illustration for the myocardial T1/T1r mapping. (A) 
Images at 6 different Tis, as well as the T1 relaxation process of a horizontal profile. 
(B) Images at 5 different TSLs, as well as the T1r relaxation process of a horizontal 

profile. (C) Images at the end-expiration and end-inspiration positions, as well as the 
respiratory motion of a vertical profile across the liver. (D) Images at end-systole and 

end-diastole, as well as the cardiac motion of a horizontal profile. 
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during end-expiration. Multitasking maps were generated with good image quality. Multitasking 

T1 maps showed elevated T1 values in the blood pool compared to MOLLI T1 maps. Multitasking 

T1r maps were comparable with T1r-FLASH T1r maps. 

 

 Table 15 shows both global and regional T1 measurement populations of MOLLI and 

Multitasking. Systole T1 values were 1200.7±42.5ms and 1279.8±30.8ms with MOLLI and 

Multitasking, respectively. Diastole T1 values were 1205.1±67.3ms and 1300.6±14.6ms with 

MOLLI and Multitasking, respectively. Table 16 shows both global and regional T1r 

measurement populations of T1r-FLASH and Multitasking. Systole T1r values were 61.7±4.7ms 

and 62.0±4.0ms with T1r-FLASH and Multitasking, respectively. Diastole T1r values were 

Figure 50. Top: MOLLI T1 maps at end-systole and end-diastole, as well as cardiac-
resolved Multitasking T1 maps of 20 cardiac phases. Bottom: T1r-FLASH T1r maps at 
end-systole and end-diastole, as well as cardiac-resolved Multitasking T1r maps of 20 

cardiac phases. 
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59.6±6.9ms and 61.8±6.9ms with T1r-FLASH and Multitasking, respectively. All T1 and T1r 

measurements were within literature ranges40,41,69,70,154,185-188. 

 

 

 

5.2.4 Discussion and Conclusion 

 In this section, the technique introduced in Chapter 4 was translated to the heart for 

simultaneous myocardial T1 and T1r mapping in a single, continuous acquisition that did not rely 

Table 15. Global and regional MOLLI and Multitasking myocardial T1 values. 

Table 16. Global and regional T1r-FLASH and Multitasking myocardial T1r values 
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on external ECG triggering, breath-holds, or respiratory navigators. Phantom study showed good 

accuracy of Multitasking T1 and T1r maps compared to gold standard IR-SE and T1r-FLASH, 

as well as excellent correlation with the reference maps. Cardiac-resolved Multitasking T1 and 

T1r maps were generated with good image quality. Myocardial T1 and T1r measurements were 

comparable with reference measurements obtained with MOLLI and T1r-FLASH respectively. 

 Commonly adopted T1 mapping techniques in clinical studies, such as MOLLI41, 

shortened MOLLI (shMOLLI)187, saturation recovery single shot acquisition (SASHA)40, attempt 

to “freeze” cardiac motion by acquiring one single shot image per cardiac cycle at a fixed cardiac 

phase targeted by the ECG signal, and mitigate respiratory motion with breath-holds, respiratory 

navigators or gating methods. Myocardial T1r mapping is usually performed in a similar manner. 

Although free-breathing T1r mapping techniques has been proposed with respiratory motion 

correction or compensation, the use of ECG is still crucial in these studies154,185,188. Previously 

proposed advanced myocardial mapping techniques, such as cardiac MRF, also use ECG to target 

one cardiac phase in a breath-holding scan63. Recently a free-running cardiac MRF technique was 

proposed using a transient bSSFP acquisition that retrospectively gated the acquired data into 

multiple cardiac phases189. However, it suffered from low temporal resolution (between 125ms to 

270 ms for a heartbeat of 60bpm). 

The major advantage of the proposed method is the ability to perform cardiac and 

respiratory motion-resolved quantitative mapping in the heart without “freezing” these 

physiological motion using devices and techniques such as ECG, breath-holds, and respiratory 

navigators, which provides a potential avenue for conveniently imaging patients with cardiac 

arrhythmia and/or difficulties holding their breaths with improved efficiency and success rate. 

Another advantage of the proposed method is the high temporal resolution. Compared to existing 
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SR- or IR-based methods that have limited samples along the recovery curve (i.e., 4 samples for 

3D-QALAS186, 11 samples for MOLLI41), we have 492 samples equally spaced by 5ms in a 2.5s 

recovery period. Subspace training data were periodically collected every 3 readouts, resulting in 

a temporal resolution of 15ms which is higher than conventional CINE functional imaging 

(~50ms). The cardiac-resolved, CINE-like dynamic myocardial T1 and T1r maps with high 

temporal resolution will be applied for functional analysis in future work. 

In vivo Multitasking T1r values were comparable to T1r-FLASH. However, difference 

will be expected under a larger sample size primarily due to the difference in the preparation 

modules (T1r-IR in Multitasking vs. T1r-prep in T1r-FLASH). Multitasking T1 values in the 

myocardium showed a higher trend compared to MOLLI. While it would require a larger sample 

size to test the statistical significance, it has been widely reported that MOLLI would lead to T1 

underestimation in the myocardium due to T2-dependence, magnetization transfer effect, and the 

inversion efficiency190,191. On the other hand, the spatiotemporal B1+ inhomogeneity in flowing 

blood may have a confounding influence on Multitasking T1 accuracy of the myocardium. This 

can be mitigated by introducing a second flip angle that cycles for every inversion recovery period, 

which aims at B1+-robust T1 mapping181. This option will be investigated in future work. On the 

other hand, Multitasking T1 values in the blood pool were notably higher than MOLLI, which was 

probably because the 2D acquisition was sensitive to the blood inflow effect which primarily 

affected the T1 accuracy of the blood. We could extend to 3D acquisition to mitigate this effect 

and reduce the T1 bias for blood, which will also be explored in future work. 

 In conclusion, we presented a non-ECG, free-breathing method to simultaneously quantify 

myocardial T1 and T1r using MR Multitasking. Cardiac-resolved, CINE-like myocardial T1 and 

T1r maps were generated with good image quality and high temporal resolution. Functional 
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analysis and the ability for myocardial disease characterization will be investigated in future work. 

The proposed method provides a potential avenue for imaging patients with arrhythmia and/or 

difficulties for breath-holds. 
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Chapter VI Conclusions and Future Innovation 

6.1 Dissertation Summary 

 Quantitative MRI has advantages over conventional qualitative MRI that is currently 

widely adopted in clinical systems in several aspects: i) quantitative MRI produces meaningful 

variables with physical units that are more reproducible across sites, vendors, and subjects; ii) 

quantitative physical variables are more sensitive to subtle alternation of tissues that may indicate 

the occurrence or progression of diseases; iii) quantitative physical variables can produce higher 

specificity in terms of disease characterization; iv) quantitative MRI can establish a normal range 

of tissue parameters on healthy conditions, which provides foundations for disease diagnosis and 

reveals physiological abnormalities not available on qualitative images; and v) quantitative 

variables are directly associated with tissue states and can serve as candidate tissue biomarkers for 

early detection, diagnosis, prognosis, and treatment monitoring. In addition, the quantification of 

most tissue parameters does not require gadolinium-based contrast agent administration, which 

better suits patients with renal insufficiency and relieves concern for contrast agent deposition and 

toxicity. Different quantitative parameters can offer complementary information about tissue 

properties, and the combination of multiple quantitative parameters allows comprehensive tissue 

characterization and may improve diagnosis accuracy. However, several technical challenges 

prevent the wide adaptation of quantitative MRI in clinical practices: i) multiparametric 

quantification leads to lengthy and impractical scan time which can cause patient discomfort and 

increase costs; ii) it is difficult to handle patient movement during the scan which can cause image 

artifacts and loss of diagnostic information; and iii) multiparametric MRI are usually performed in 

separate acquisitions, which produces misaligned parametric maps that complicate the joint 

analysis. This dissertation aimed at tacking these technical challenges with a novel quantitative 
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MRI imaging framework named as Magnetic Resonance Multitasking which incorporates multiple 

capabilities in a single continuous acquisition, producing co-registered parametric maps while 

handling potential physiological and physical motion patterns with various solutions. Because MR 

Multitasking employs an LRT image model that explores multidimensional signal correlations to 

reduce sampling requirements, it successfully bypasses the curve of dimensionality, allowing 

efficient acquisition while simplifying clinical workflows. Furthermore, MR Multitasking has 

intrinsic advantages to handle different kinds of motion–either pseudo-periodic motion (cardiac 

motion and respiratory motion) or random and discrete motion (bulk motion in the brain)–by 

capturing them in different time dimensions, making it more suitable in clinical practices when 

scanning aging patients who are unable to stay still for a long time, or patients with certain 

physiological abnormalities such as dyspnea, arrhythmia, or Parkinson’s disease that may cause 

irregular or uncontrolled motion. 

 Chapters 3 introduces a simultaneous T1, T2, ADC mapping approach with MR 

Multitasking that is applied to the brain. Technical validation was performed, where Multitasking 

T1, T2, and ADC measurements were comparable and in substantial quantitative agreement with 

those collected with reference methods where available. Multitasking T1, T2, and ADC maps were 

co-registered and were all free from image distortion which was conspicuous on DW-SSEPI ADC 

maps. For this technique, we chose an easy strategy to handle motion, where the motion-corrupted 

data were simply discarded from the image reconstruction, which improved the quantification 

accuracy of all three measurements. Clinical feasibility was demonstrated in the brain on post-

surgery brain tumor patients where Multitasking T1, T2, and ADC maps reflected tissue 

characteristics of the recurrent tumor, edema, and non-tumoral WM. Comprehensive clinical 

validation in the brain will be carried out in the future. 
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 Chapter 4 introduces a simultaneous T1, T2, T1r mapping approach with MR Multitasking 

that is applied to the brain with 3D whole-brain coverage. We demonstrated the in vivo 

repeatability of this technique, as well as the quantitative agreement between Multitasking and the 

reference methods. One major technical advancement of this technique is that we have made a 

fresh attempt for motion-resolved imaging in the brain, where different motion states (i.e., head 

positions during the scan) are also captured in the LRT image model. By exploiting the correlation 

not only across contrast-weighting time dimensions but also between different motion states, we 

were able to recover clean motion-resolved parametric maps no matter the motion occurred as in-

plane or through-plane. This strategy offers novel insight and potential to tackle brain motion 

without reacquisition or data rejection in a clinical scan. Another technical advancement is that 

synthetic contrast-weighted images that are comparable to clinical images can be generated using 

the quantitative maps, which has great potential to replace all conventional MRI scans with a single 

Multitasking scan in the future for disease assessment. The clinical benefit of simultaneous T1, T2, 

T1r mapping has been demonstrated in an RRMS patient cohort, as the combination of three 

parameters had the best discriminating accuracy between healthy control and MS with 

significantly higher AUC than using either single parameter alone. This suggested that T1, T2, 

T1r can act as tissue biomarkers in characterizing MS. 

 Chapter 5 introduces potential applications in other body organs with two preliminary 

studies. First, we translated the simultaneous T1, T2, and ADC mapping technique to the breast 

with 3D whole-breast coverage with a clinically acceptable scan time. The notable nonuniform 

B1+ inhomogeneity across the bilateral breast FOV was addressed with a B1+-compensated 

multiparametric fitting approach that incorporated prior knowledge of B1+ field information. High 

quality, co-registered whole-breast T1, T2, and ADC maps were produced with repeatable 
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quantitative measurements that showed substantial agreement with reference measurements. 

Second, we translated the simultaneous T1, T2, and T1r mapping technique to the heart to achieve 

a non-ECG, free-breathing acquisition of myocardial T1 and T1r. The different frequency range 

of cardiac motion (0.6Hz to 3Hz) and respiratory motion (0.1Hz to 0.5Hz) allows them to be 

separated and simultaneously captured in two time dimensions in the LRT image model. Unlike 

the random and discrete head motion pattern, both cardiac and respiratory motion patterns are 

continuous and pseudo-random, making it more suitable to regularize the temporal continuity. MR 

Multitasking enables cardiac- and respiratory-resolved T1 and T1r mapping with high temporal 

resolution in a single scan, which not only simplifies the workflow by removing ECG and the set-

ups for running multiple separate sequences, but also shows a potential avenue for scanning 

patients who have difficulties holding their breaths or suffer from cardiac arrhythmias. These 

ongoing, preliminary studies will be continuously carried out for further technical advancement 

and clinical validation. 

6.2 Potential Avenues for Future Innovation 

6.2.1 Whole-Body Non-Contrast Quantitative Tissue Characterization with MR 

Multitasking 

 The projects in this dissertation will serve as a stepping stone to the long-term objective of 

whole-body non-contrast quantitative tissue characterization using MRI, which has significant 

clinical potential for risk assessment, early detection, diagnosis, outcome prediction, and treatment 

monitoring in all body organs and structures including head, neck, breast, heart, abdominal organs, 

prostate, muscles, and spines. MR Multitasking is well-suited for this purpose, as it provides co-

registered multiparametric maps for comprehensive assessment of tissue properties with unique 

abilities to handle motion in an efficient, push-button MR exam. Besides, this framework allows 
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the scan time and data storage memory to scale approximately linearly, making it practical to 

quantify many parameters all at once with the use of high number of dimensions. The parameters 

to be quantified will be specifically organ-dependent and will be based on corresponding clinical 

recommendations. Example architectures of the whole-body quantitative tissue characterization 

protocols may include: 

• Head: T1, T2, T1r, ADC, T2*, QSM – 15min; 

• Neck (carotid): T1, T2, ADC – 5min; 

• Breast: T1, T2, ADC – 6min; 

• Heart: T1, T2, T2*, QSM, T1r, and separate ADC – 15min; 

• Abdomen (liver, pancreas): T1, T2, T1r, T2*, PDFF, and separate ADC – 15min; 

• Prostate: T1, T2, ADC – 6min; 

which add up to 56min for both male subjects (excluding breast) and female subjects (excluding 

prostate) in terms of whole-body quantitative tissue characterization. All these protocols are 

available with MR Multitasking, and many of them are under active development56,69-71,115,192-196. 

The scan time estimation is based on the current scan time with reasonable acceleration using 

techniques that will be introduced in section 7.2.2. 

6.2.2 Further Scan Time Reduction with Advanced MRI and Computer Science Techniques  

 Despite that MR Multitasking employs the LRT image model to accelerate the scan time 

and reduce the memory usage, for certain applications however, in order to meet the clinical 

imaging requirements such as whole anatomical coverage and high resolution, the scan time still 

turns out impractical to be accepted for clinical practices. For example, according to Chapter 5, we 

can achieve simultaneous T1, T2, T1r mapping with spatial resolution 1.0x1.0x3.5mm3 for whole 
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brain coverage (~140mm) in 9min. If we were to meet the clinical requirements for imaging MS 

patients, the spatial resolution should be at least 1.0x1.0x1.0mm3 with even slightly larger 

coverage (e.g., ~176mm) to include the brain stem because MS lesions are likely to occur 

throughout the brain and down to the spinal cord. In this case, we are facing a scan time of 

9x(176/1.0)/(140/3.5)=39.6min! Even if it can be done in 4.5min for 3.5mm thickness and 140mm 

coverage, as demonstrated in Figure 35 – Figure 38 in Chapter 4 as a reasonable lower bound, 

achieving 1mm thickness and 176mm coverage still would take 19.8min. As a result, other 

technical advancements would be desired to further shorten the scan time. 

 One possible way to go is to further enforce 2D parallel imaging along phase and partition 

encoding directions in 3D volumetric imaging. In Multitasking image reconstruction, the 

sensitivity encoding is mainly used for SNR purposes rather than explicit spatial modeling. 

However, vast amounts of previous works have demonstrated the effectiveness of parallel imaging 

in scan time acceleration, provided special sampling patterns are designed to allow the separation 

of aliased slices by efficiently exploiting the sensitivity variation produced by the receiver coil 

distribution197-204. A good example is demonstrated in 2D CAIPIRINHA for volumetric imaging, 

where aliasing is controlled by shifting sampling positions along phase or partition encoding 

directions in a well-directed manner198. Following the sampling strategy in 2D CAIPIRINHA, the 

Multitasking sampling can be adjusted such that the phase and partition encoding directions are 

still sampled with Gaussian variable density but the sampling positions in k-space can only belong 

to the CAIPIRINHA-type lattices. It also needs to be ensured that an auto-calibrated center k-space 

region is densely sampled for the purpose of sensitivity estimation. Such sampling pattern can be 

retrospectively simulated with our existing datasets, by manually setting all the non-CAIPIRINHA 

k-space locations to 0. Furthermore, currently we are implementing a constrained blind 
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deconvolution (CBD) algorithm for calculating the sensitivity map, but other methods are also 

worth investigating, such as ESPIRiT204, as we would lean towards better sensitivity encoding to 

resolve aliasing voxels. A preliminary test of the effectiveness of ESPIRiT and CAIPIRINHA is 

demonstrated in Figure 51, where ESPIRiT reconstruction using data of 7min scan time (Figure 

51A) produces T1/T2/T1r maps with no visible differences compared to the original 

reconstruction using data of 9.8min scan time (Figure 51C). Using data of 2.5min scan time, the 

original reconstruction (Figure 51B) yields notably degraded maps, while ESPIRiT reconstruction 

maintains relatively good image quality (Figure 51D). What’s more exciting, combining ESPIRiT 

and CAIPIRINHA for image reconstruction allows us to use only a small portion of the data of 

only 1.5min with acceptable image quality (Figure 51F)! 
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 Another possible approach is deep learning image reconstruction. Consider in general the 

conventional Multitasking image reconstruction, as described in Eq. (2.14), from the k-space data 

acquired with a scan (assuming scan time=𝑇) long enough to recover a clean spatial factor matrix 

(we ignore the spatial regularization function 𝑅D(∙) for simplicity): 

𝐔' = argmin
𝐔
‖𝐝' − Ω(𝐅𝐒𝐔𝚽')]‖(,                                       (7.1) 

where 𝐝' is the k-space data collected with scan time 𝑇, and 𝚽' is the multidimensional temporal 

factor matrix corresponding to scan time 𝑇. The recovered 𝐔'  may be noisy without sparsity 

Figure 51. Comparison between the original reconstruction using CBD, ESPIRiT 
reconstruction, and ESPIRiT reconstruction with retrospective 2D CAIPIRINHA 

sampling pattern. (A) CBD reconstruction using a 9.8min data. (B) CBD reconstruction 
using a 2.5min data. (C) ESPIRiT reconstruction using a 7min data. (D) ESPIRiT 

reconstruction using a 2.5min data. (E) ESPIRiT reconstruction using a 1.5min data. 
(F) ESPIRiT reconstruction with a retrospective 2D CAIPIRINHA sampling using a 

1.5min data. 
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regularization, but it should be free from artifacts with enough data to explore the multidimensional 

correlation. The pulse sequence introduced in Chapters 4 and 5 with interleaved magnetization 

preparations allow the truncation of the first 1/𝑅 k-space data which is equivalent to an 𝑅-fold 

prospectively accelerated scan with scan time 𝑇/𝑅. Using only this subset of k-space data, the 

image reconstruction problem is: 

𝐔'/q = argmin
𝐔
p𝐝'/q − Ω(𝐅𝐒𝐔𝚽'/q)]p

(,                               (7.2) 

where 𝐝'/q is the first 1/𝑅 k-space data, and 𝚽'/q is the multidimensional temporal factor matrix 

corresponding to scan time 𝑇/𝑅. Because the amount of k-space data is drastically reduced, Eq. 

(7.2) is thus an undersampled image reconstruction problem, and the resulting 𝐔'/q  could be 

corrupted by extra noise and artifacts. Deep learning image reconstruction techniques are trying to 

find a mapping function 𝑓: 𝐔'/q → 𝐔' that effectively removes the noise and artifacts to output a 

high quality spatial factor matrix. Once the network is established, a simple forward pass through 

the network will suffice. Deep learning undersampled MRI reconstruction with various learning 

methods and network structures has been widely explored in recent years205-209. We plan to 

implement a multi-level densely connected network (mDCN) that we recently developed for patch-

based image-to-image processing164. The patch-based nature of this network allows high quality 

training with fewer images. This network structure reduces the length of network paths and number 

of weights, which reduces the training time and the amount of training data. To expand the training 

data size, the 3D datasets that we possess will be broken down in 2D slice by slice, and the network 

input will be the noisy, artifact-corrupted 𝐔'/q while the network output will be the clean 𝐔'. We 

also make sure that the 2D slices from the same 3D dataset will either all go on training side or all 

go on testing side during cross validation. 
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6.2.3 Comprehensive Motion Handling Solution in Brain MRI 

 Unlike the continuous, periodical physiological motion patterns such as cardiac motion and 

respiratory motion in the heart and abdomen region that can be addressed with motion-freezing 

mechanisms, head motion usually happens in a random, abrupt, and uncontrolled manner which 

almost solely relies on reacquisition in routine clinical practices. In Chapters 3 and 4, we have 

introduced two potential solutions – motion-removed imaging and motion-resolved imaging – to 

handle different types of motion in brain MRI. In future works, we will aim at developing a 

comprehensive solution to automatically handle various types of head motion. For example, a 

possible motion handling streamline would consist of three stages: i) abrupt motion detection, 

where the sudden, abrupt motion (e.g., itching, coughing, sudden tremoring) can be automatically 

detected from the single-time temporal basis functions as abnormal peaks and spikes72; ii) motion 

states identification, where the shaking and/or nodding patterns involving a large shift of the 

volume position that creates different motion states are automatically identified according the 

algorithms proposed in Chapter 4; and iii) motion registration, where different motion states are 

registered to a single target motion state to increase the correlation between different states, which 

further facilitates the low-rankness of the image tensor73. With the different potential strategies 

provided by the Multitasking framework, we anticipate a comprehensive solution to address the 

motion issue in future brain MRI. 

6.2.4 One-For-All: Replacing Conventional Clinical MRI Scans with a Single Quantitative 

Protocol 

 In Chapter 4, we have demonstrated that some commonly used qualitative contrast-

weighted images for clinical practices could be generated with the quantitative parameter maps. 

Moreover, other novel image contrasts could also be synthesized which may have the potential to 
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provide better visualization of the tissue abnormalities compared to existing image contrasts, thus 

improving the diagnostic utility for better image-guided patient care. With various quantitative 

parameters (e.g., T1, T2, T1r, T2*, QSM, ADC, etc.) that could potentially be quantified all in 

one scan, not only could all the conventional qualitative images (i.e., T1w, T2w, PDw, FLAIR, 

DIR, SWI, DWI, etc.) be generated offline, but it also allows the adjustment of the tissue contrast 

for each image by manually selecting the sequence parameters (i.e., TR, TE, TI, b-value, etc.) that 

are used to create the images, providing significant flexibility for the clinicians to adjust the image 

contrast for better visualization, assessment, and decision-making. Therefore, comprehensive 

clinical diagnosis and evaluation could possibly be achieved with only a single quantitative 

protocol. To achieve this goal, our future work will focus on specializing potential patient cohorts 

(e.g., brain tumor, MS, or Parkinson’s disease) and validate the diagnostic utility of the synthetic 

images against current clinical images. 

6.3 Peek into The Future 

 It has been nearly 40 years since the notion of quantitative MRI was first introduced to 

medical practices that used NMR relaxation times to differentiate tissue states around mid-1980s. 

With the radical technological advancement of hardware and software in recent years, it has come 

to an exciting era when this powerful tool can be finally brought into routine clinical use to aid 

diagnosis and improve patient care. The invention of MR Multitasking has successfully tackled 

many technical challenges that have been troubled scientists and physicians for years, paving a 

bright avenue for the simultaneous acquisition of multiple quantitative tissue parameters in a single 

push-button MRI exam. In the near future, it can be expected that these quantitative parameters 

are available for clinicians to achieve comprehensive tissue assessment and whole-body 

quantitative screening, and can be used to replace all the conventional MRI scans with a single 
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quantitative protocol, thus fundamentally improving the clinical management and patient outcome 

with better diagnostic decision-making, as well as greatly reducing the scan time and imaging costs. 

In the meantime, technicians can look forward to eventually being relieved from complex 

workflows in regular MRI exams with minimal interactions with the MRI scanner. 
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