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Application of bi-objective genetic programming for optimizing irrigation rules
using two reservoir performance criteria
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Technology, College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran; cDepartment of Geography, University of California,
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ABSTRACT
A bi-objective genetic programming (BO-GP) algorithm is developed and applied to optimize the
operating rules of the Aidoghmoush reservoir (East Azerbaijan in northeastern Iran). The two-
objective optimization problem maximizes reservoir reliability and minimizes the vulnerability index
associated with the supply of agricultural water. The developed BO-GP algorithm calculates Pareto
possibility frontiers representing loci of optimal operating policies. Any operation policy is
calculated by the BO-GP based on the inflow volume to reservoir, the storage volume, and the
water demand volume that minimize vulnerability and maximize reliability. The application results
show a successful performance of the BO-GP algorithm in solving the bi-objective water supply
problem with reservoir operation. This paper’s results establish that the system vulnerability and its
reliability range between 16–41% and 46–78%, respectively.
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Introduction

Many water allocation problems involve multiple objectives,
some of which are in conflict with each other or are valued
incommensurably. Therefore, several heterogeneous objective
functions (often measured in widely different units) must be
taken into account, and a multi-objective optimization pro-
blem must be solved. This implies finding a Pareto set (a
boundary or surface in two or more dimensions) of optimal
solutions defining tradeoffs between the objectives. Within
the Pareto set decision makers choose the most desirable sol-
ution. Multi-objective optimization methods can be applied
to find such Pareto sets. Evolutionary optimization methods
are particularly well suited to solve many types of multi-
objective optimization problems. Genetic programming
(GP) is a leading one among them (Poli et al. 2008). One of
the advantages of optimization methods with evolutionary
algorithms compared to other methods is that these algor-
ithms operate on a population of solutions at each iteration
(or generation), which means each iteration generates many
potential solutions that are improved upon from generation
to the next. A survey of multi-objective GP applications fol-
lows to exemplify its wide-ranging capabilities.

Rossi et al. (2002) applied multi-objective GP (MO-GP) to
design a digital system. The objectives were the suitability of
the filter transfer function and the transition activity of digital
blocks. Their results demonstrated the performance of MO-
GP was appropriate in the automation of electronic design.
Hinchliffe (2001) applied GP to steady-state model evolution.
Multiple-basis function GP (MBF-GP) was introduced and its
performance was compared with the standard GP algorithm.
Their results showed the performance of MBF-GP was suc-
cessful computationally relative to GP in solving multi-objec-
tive problems. Dimopoulos (2005) introduced a GP algorithm
for the solution of the multi-objective cell-formation pro-
blem. They employed MO-GP to identify the Pareto set for

a cell-formation problem related to the design of a cellular
manufacturing production system. Zhao (2007) proposed a
MO-GP approach for developing Pareto optimal decision
trees. The Proposed approach allowed the decision-maker
to specify partial preferences on the conflicting objectives.
A diabetes prediction problem and a credit card application
approval problem were used to demonstrate the applicability
of the proposed approach. You and Cai (2008a) developed a
conceptual two-period model for reservoir operation with
hedging. An extended analysis of the model properties was
presented with a general utility function, addressing (1) the
starting and ending water availability for hedging, (2) the
range of hedging that was related to water demand levels,
(3) inflow uncertainty, and (4) evaporation loss. Their
findings can be applied to improve numerical modelling for
reservoir operation. You and Cai (2008b) presented a method
that derived a hedging rule from theoretical analysis. Their
results show utility improvement with the hedging policy
compared to the standard operation policy (SOP). Celeste
and Billib (2009) assessed the performance of seven stochastic
models used to define for optimal reservoir operating policies
operation. The models were based on implicit simulation-
optimization (ISO) and explicit stochastic optimization
(ESO) as well as on the parameterization–simulation–optim-
ization (PSO) approach. The models were applied to the
operation of a single reservoir in northeastern Brazil. The
results indicate the ISO and PSO models performed better
than SDP and the SOP. Rani and Madalena Moreira (2010)
presented a simulation-optimization modelling approaches
for reservoir systems. Sreekanth and Datta (2010) conducted
multi-objective management of coastal aquifers with GP and
modular neural network (MNN) based on surrogate models.
The results from GP and MNN were compared with finite
element simulations of groundwater flow with the
FEMWATER model. Zafra et al. (2011) introduced a
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multi-objective optimization algorithm based on GP (i.e.
MOG3P-MI) for solving a mining problem based on multiple
instance learning. The GP-based algorithm performed well
when compared with alternative methods. Fallah-Mehdipour
et al. (2013) developed and extracted a fixed-length gene gen-
etic programming (FLGGP) rule based on GP. The FLGGP
rules were employed in an aquifer-dam system with two sub-
systems. Results demonstrated the FLGGP was more flexible
and effective in determining optimal rule curves for a con-
junctive aquifer-dam system. Arruda Pereira et al. (2014)
introduced a multi-objective algorithm based on GP to calcu-
late classification rules in databases composed of hybrid data.
A niche technique was employed in their algorithm. Li et al.
(2014) presented GP to derive the explicit nonlinear formu-
lation of operating rules for multi-reservoir systems in
China. The inflow and storage energy terms were selected
as input variables for total output of the aggregated reservoir
and for decomposition. Hakimzadeh et al. (2014) applied GP
to simulate outflow hydrograph from earthen dam breach.
The results demonstrated the results of the GP method
were in good agreement with the observed values. The
model was tested for a case study (Teton Dam).

Several studies dealing with reservoir operating rules are
reviewed next. Aboutalebi et al. (2015) proposed a novel
tool that coupled the non-dominated sorting genetic algor-
ithm (NSGAII) with support vector regression (SVR) and
nonlinear programming (NLP) to optimize monthly oper-
ation rules for hydropower generation. Najl et al. (2016)
introduced a simulation-optimization model for deriving an
operating policy for multi-reservoir systems with a self-adap-
tive genetic algorithm to maximize the system’s hydropower
production, subject to the system’s physical constraints. Yang
et al. (2017) used Pareto archived dynamically dimensioned
search (PA-DDS) to optimize reservoir operation rules with
the objectives of maximizing the power generation and
water supply.

The novelty of this paper consists in the development of a
bio-objective GP (i.e. BO-GP) to optimize reservoir operation
with dual objectives. Previous research has shown the number
of iterative solutions with evolutionary algorithms applied to
multi-objective problems may grow rapidly without any clear
improvement in the fitness function (Poli et al. 2008). This
anomaly has given impetus to the further development of GP
to solve complex multiobjective problems. In the present
study GPLAB is applied to solve bi-objective problems. The
GPLAB is a GP tool in the MATLAB programming environ-
ment (Silva 2007). The developed BO-GP algorithm is first
applied to solve a bi-objective problem in thefield ofmathemat-
ics, and its accuracy is demonstratedwith this test problem. BO-
GP is subsequently applied to calculate reservoir operating rules
that optimize the objectives of minimizing the vulnerability of
water supply for agriculture and tomaximize the reservoir oper-
ation’s reliability index. The BO-GP is exemplified with the
Aidoghmoush one-reservoir system (Iran).

The paper presents the following sections: (1) brief over-
view of the GP algorithm; (2) description of the BO-GP algor-
ithm for solving of bi-objective problems; (3) proving the
efficiency of the BO-GP algorithm in solving a bi-objective
mathematical problem; and (4) application of the BO-GP
algorithm to calculate reservoir operating rules with the
dual objectives of minimizing the vulnerability and maximiz-
ing the reservoir reliability. The flowchart of this paper’s pro-
posed methodology is portrayed in Figure 1.

Methodology

Development of the GP tool
The main goal of bi-objective optimization is to find a set of
solutions expressed as Pareto possibility frontiers. The pres-
entation of the BO-GP algorithm is preceded by a short sum-
mary of the single-objective-GP (SO-GP) algorithm.

(a)#The SO-GP algorithm. The steps of SO-GP are as follows:

(1) Generate the initial random population of solutions. This
population consists of mathematical equations (or
decision trees), which includes a set of functions (arith-
metic and mathematical operators) and terminals (con-
stant parameters and independent variables).

(2) Select parents (with selection operator), perform cross-
over (with crossover operator); and produce the offspring
population of solutions.

(3) Select parents (with selection operator), perform
mutation (with the mutation operator); and produce
the mutant population of solutions.

(4) Select members of new population from the population
of the parents, offspring, and mutants.

(5) If the stopping conditions are not met, go to step (2);
otherwise go to step (6).

(6) Stop

A flowchart of the SO-GP algorithm is depicted in Figure 2.

(b)#The BO-GP algorithm. The key difference between the
SO-GP and the BO-GP algorithm is in the fourth step of
the algorithm described in section ‘(a) the SO-GP algorithm’,
which has to do with sorting of the members of a new popu-
lation. Multi-objective optimization (MOO) performs sorting
based on the quality of the solutions and on the order of the
solutions.

The main idea in MOO is the theory of Pareto dominance.
A first solution dominates a second solution if and only if (1)
the first solution is not worse than the second solution with
respect to the objectives of a problem, and (2) the first

Figure 1. Flowchart of the research approach.

56 P.-S. ASHOFTEH ET AL.



solution is strictly better than the second solution with respect
to at least one objective. For example, in the Min-Max (mini-
mization of f1 and maximization of f2) problem illustrated in
Figure 3, solution A dominates solution B based on the max-
imizing objective function f2. On the other hand, solution B
dominates solution A based on minimizing objective function
f1. However, the solution ‘a’ (which lies on the Pareto front) is
absolutely better than solutions A and B relative to the two
objective functions.

Merging, sorting, and truncation scenarios are employed
to form a new population of solutions. Figure 4(a,b) illustrates
the performance of SO-GP and BO-GP, respectively. It is
clear from Figure 4(a,b) the only difference between multi-
objective structure relative to single-objective structure is
the sorting of solutions (or decision trees), which is a two-
state process described below. It is noteworthy in the SO-
GP each chromosome or solution represents a tree that is
composed of a set of functions and terminals.

Evolutionary algorithms select the best members of one
population of solutions to transfer them to the next gener-
ation. This selection is not simple given that there are several

objective functions in the multi-objective problems. There-
fore, the selection of the best solutions is based on the notion
of ranking, whereby the solutions are evaluated and ranked
based on non-domination. The ranking of the solutions pro-
ceeds by comparing the objective function values of each two
members of a population. The solutions that are found to be
non-dominated receive a rank of 1 (F1) and are placed on the
first front. Subsequently, regardless of the impact on mem-
bers located in the first front, a series of other non-dominate
solutions is determined and receive a rank of 2 (F2) and
placed on the second front. Thus, all solutions are ranked
based non-domination. This process is repeated until all the
current solutions are ranked and placed on Pareto fronts.

The BO-GP logic (see Figure 4(b)) indicates first creating
in iteration or step t the offspring tree population Q(t) (with a
number of trees nc) and then the mutants tree population R
(t) (with a number of trees nm) from the original tree popu-
lation P(t) (with a number of trees npop). The three tree
populations are merged and the tree population (of solutions)
P′(t) is created (with a number of trees npop + nc + nm). The
trees of population P′(t) are ranked based on non-domination
of the solutions after evaluating the objective functions. Sev-
eral classes of solutions are created based on the priority of
classes (as shown in Figure 4(b)). Next, the population of
the next trees is filled one-by-one with these classes of sol-
utions. Recall the number of original trees in population P
(t) equals npop. Therefore, not all the trees of the population
P′(t) could be placed in the population of new trees P(t + 1),
and those trees that do not have space are removed. The trees
belonging to the front F2 in Figure 4(b) are selected for trans-
fer to new population P(t + 1) based on the proper dispersion
of trees (F′

2 in Figure 4(b), see Deb et al. 2002).
The BO-GP selects parents based on the binary tourna-

ment method, whereby the first two members of the popu-
lation of solutions are selected randomly. If the ranks of the
two selected members are not equal, the higher-ranking
member wins the tournament. Otherwise, the member that
creates appropriate spread of solutions is selected (Deb
et al. 2002). These binary comparisons continue until all
the parents are selected.

Verification of the BO-GP algorithm with a bi-objective
mathematical problem
The BO-GP algorithm is tested by solving of a bi-objective
mathematical problem whose objective functions are mini-
mizing the root mean square error (RMSE) and minimizing
the inverse RMSE (1/RMSE) given by Equations (1) and
(2), respectively:

Minimize RMSE =
�����������������∑n

i=1 (yo − yc)
2

n

√
(1)

Minimize 1/RMSE =
�����������������

n∑n
i=1 (yo − yc)

2

√
(2)

in which the following relational formula holds:

yo = f (xo) = x3o − 2x2o + xo − 4 − 6 ≤ xo ≤ 8 (3)

and where RMSE and 1/RMSE = objective functions of the
problem; yo = observed data; yc = calculated data by the BO-
GP algorithm; and n = the number of observed data in the
desired range (for this problem the domain of the indepen-
dent variable x0 is −6 ≤ xo , 8).

Figure 2. Flowchart of the (single objective) SO-GP algorithm.

Figure 3. Schematic of the Pareto boundary and non-dominated solutions in a
Min-Max problem (minimize f1 and maximize f2). Note: the solutions on the
dotted line segment dominate A and B.
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Reservoir operation

Conservation of water is expressed by the continuity equation
according to Equation (4):

St+1 = St + Qt − Ret − Spt − LEt t = 1, 2, . . . , T (4)

in which St and St+1 = storage volume of reservoir at the
beginning and ending of period t (106 m3), respectively; Qt

= inflow volume to reservoir during period t (106 m3); Ret
= release volume of reservoir during period t (106 m3); Spt
= spill volume of reservoir during period t (106 m3); T =
total number of operating periods; and LEt = volume of evap-
oration from the reservoir surface during period t (106 m3).

The LEt is determined with Equation (5):

LEt = Et × At + At+1

2

( )
t = 1, 2, . . . , T (5)

in which Et = evaporation depth during period t; At and
At+1 = area of reservoir lake water surface at the start and
end of period t, respectively; At and At+1 are determined
according to Equations (6) and (7):

At = a0 + a1St t = 1, 2, . . . , T (6)

in which a0 and a1 = constants in surface-volume curve of
reservoir.

The Spt is subject to the following constraint:

Spt = St+1 − Smax St+1 ≥ Smax

0 St+1 , Smax

{
t = 1, 2, . . . , T

(7)

in which Smax =maximum volume (capacity) of the reservoir
(106 m3).

Other additional constraints related to the reservoir oper-
ation, are given by Equations (8) and (9):

St ≥ Smin t = 1, 2, . . . , T (8)

Ret ≥ 0 t = 1, 2, . . . , T (9)

in which Smin =minimum (dead) volume of reservoir
(106 m3).

Penalty functions are introduced to guarantee satisfaction of
constraints (8) and (9) by adding them to the objective functions:

Penalty1t = A′.
Smin − St
Smax − Smin

( )2

+B′

t = 1, 2, . . . , T

(10)

Penalty2t = C′ · Ret
Dmax

( )
+ D′ t = 1, 2, . . . , T (11)

in which Penalty1t = penalty function imposed on violations of
constraint (8); Penalty2t = penalty function imposed on viola-
tions of constraint (9); Dmax =maximum downstream demand
(by the irrigation network) in the operating interval; and A′,
B′, C′, D′ = positive constants of the penalty functions.

The first objective function is the minimization of the vul-
nerability index (Hashimoto et al. 1982, Ajami et al. 2008) of
water allocation to the agricultural sector. Thus, the pertinent
objective function is given by Equation (12):

(O.F.)1:Minimize

∑T
t=1

[max (Dt − Ret , 0)]

[Num(Dt − Ret|Ret , Dt)] · Dmax

t = 1, 2, . . . , T

(12)

inwhich (O.F.)1 = first objective function;Dt = demandvolume
induringperiod t; andNum(Dt − Ret|Ret , Dt) = thenumber
of deficiency months during period t. The vulnerability index
measures the magnitude of the water deficiency of supplying
water for irrigation downstream of the reservoir system.

The second objective function is the maximization of the
reliability index (Hashimoto et al. 1982, Ajami et al. 2008)
for supplying water demand. The pertinent objective function
is expressed by Equation (13):

(O.F.)2:Maximize
Num(Dt − Ret|Ret ≥ Dt)

T
t = 1, 2, . . . , T

(13)

in which (O.F.)2 = second objective function; and
Num(Dt − Ret|Ret ≥ Dt) = the number of supply months in
during period t.

Figure 4. Schematic of the algorithms for (a) SO-GP and (b) MO-GP.
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The penalty functions (Equations (10) and (11)) are added
to the first objective function according to Equation (14), and
subtracted from the second objective function according to
Equation (15):

(O.F.)1 = (O.F.)1 + Penalty1t + Penalty2t

t = 1, 2, . . . , T
(14)

(O.F.)2 = (O.F.)2 − Penalty1t − Penalty2t

t = 1, 2, . . . , T
(15)

The reliability index is a measure of the number of months
where the downstream irrigation water use is fully met scaled
by the total number of operating months.

The volume of water released from the reservoir is a
function of the inflow volume to the reservoir, the storage
volume, and the volume of water demand, according to
Equation (16). Any non-dominated solution (or point) on
the Pareto set corresponding to the stated optimization
objectives represents a viable strategy that can be obtained
with the BO-GP algorithm.

[�R(O.F.)1(O.F.)2 ]t = Ret = f (Qt , St , Dt)

t = 1, 2, . . . , T
(16)

in which [�R(O.F.)1(O.F.)2 ]t = a set of decision options or the
optimal solutions (a set of points on the Pareto set); and
f ( ) = rule curve calculated by the BO-GP.

Performance criteria
This study applies as performance criteria the correlation
coefficient (R) [or coefficient of determination (R2)], the
RMSE, and the Nash-Sutcliffe coefficient of efficiency
(NSE) that compare the BO-GP algorithm’ results for the
mathematical problem with the corresponding known
values (Ashofteh et al. 2013a). However, there are other per-
formance metrics for hydrosystems (see, for example, Gupta
et al. 2009).

Case study
The Aidoghmoush one-reservoir system and its down-
stream irrigation network of 13,500 ha (located in East
Azerbaijan, northeastern Iran) (Figure 5) were used to
evaluate the performance of the proposed BO-GP algorithm
in determining optimal reservoir operating policies to
supply agricultural water. It is noted that previous studies
have shown the GP model has performed successfully
(e.g. Fallah-Mehdipour et al. 2015, Akbari-Alashti et al.
2014).

The normal level of the Aidoghmoush reservoir is
1,341.5 m above sea level. The total capacity of the reser-
voir and its dead volume are 145.7 and 8.7 (106 m3),
respectively. The a0 and a1 constants of the reservoir sur-
face-volume curve are equal to 0.03 and 0.8, respectively.
The inflow, demand, and evaporation data correspond to
the 14-year interval 1987–2000 (Ashofteh et al. 2013a,
2013b).

The Aidoghmoush reservoir’s downstream irrigation
network is one of the largest pressurized irrigation net-
works in Iran. Several studies of this reservoir system
have been reported (see, e.g. Ashofteh et al. 2017). The
standard operation policy (SOP) is the current operating
rule for the Aighmoush reservoir to supply water for
irrigation.

Data pertinent to the parameters and termination
criteria of the BO-GP algorithm
GPLAB is the toolbox for the developed GP algorithm (BO-
GP) available in the MATLAB 11.0 software (Silva 2007).
The values of the parameters used in the BO-GP algorithm
for solving the mathematical problem and the reservoir pro-
blem are listed in Table 1.

The evolutionary search for optimal solutions is carried
out until new algorithmic iterations do not cause any
improvement in the objectives’ values. A computer with
Intel (R) Core (TM) I7, CPU 2.20 GHz and RAM 6.00 GB,
was employed in this study as the computational engine.

Figure 5. Map of the study area.
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Results

The mathematical problem

The results of the application of the BO-GP algorithm to the
mathematical problem stated by Equations (1)–(3) are
depicted in Figures 6 and 7. The values of the objective func-
tion are shown in Figure 6(a–c) calculated in three different
runs of the BO-GP algorithm.

Figure 6 shows there is minimal difference between the
graphs of the objective function obtained from the three
runs. However, due to appropriate spread of
solutions obtained with the first run, this run was chosen
for further analysis. Three optimal solutions were randomly
chosen from Pareto sets obtained from the first run. The
calculated results corresponding to the three optimal sol-
utions (Figure 6(a)) are graphed in Figure 7(a–f) for the
first run (the best run of the three runs).

It is shown in Figure 7(a) the first solution is desirable
from the perspective of the first objective function because
it minimizes the RMSE and maximizes the NSE. Figure 7
(e) shows the third solution is desirable form the view-
point of the second objective function because it mini-
mizes the inverse RMSE and the NSE.

The equations identified by the BO-GP algorithm for the
selected first, second, and third solutions are given by

Equations (17)–(19), respectively:

y0 =−x0 − cos (x0 − cos (x0)) · (x0 + cos (x0))

+ sin ( sin ( cos ( cos (x0)+ cos (x0 + cos (x0)))

+ cos ( sin ( cos (x0)))+ x20 − sin ( sin (x0))

+ cos ( cos (x0 + cos (x0)))− cos ( sin (x0)+ cos (x0))

+ x20 − (x0 − sin (x0)) · x0 − (x0 − cos (x0 · (x0+
sin ( sin ((x0 + cos (x0)− sin ( sin (x0))) · x0))
− x0/ cos ( cos (x0) · sin (x0))))) · x0 + cos (x0)

− x0 · (x0 + cos (x0))− cos (x0/ cos ( cos ( sin ( sin (x0))))

· cos (x0)+ cos (x0)+ sin (x0)/(x0 − sin (x0)))/x0 · cos (x0)
(17)

y0 =− cos ( sin (x0))− 1+ sin ( sin (x0))− cos (x0)− 4x0
+ cos ( sin (x0)+ cos (x0))− x20 − x0 · (x0 + cos (x0))

− (x0 − x0/(1− x0) · cos (x0)− (x0 − sin (x0)) · x0) · x0
+ (2x0 − x0/(1− x0) · cos (x0)− (x0 − sin (x0)) · x0)/ cos (x0)/
x0 − x20 · (x0 − sin ((x20 − sin (x0)+ cos (− sin (x0)

+ x20/ sin (x0)+ x0))/(x0 · ( sin ( sin ( sin (x0)+ x0))

+ x0 − sin (x0))/ cos (x0)/ sin (x0)− sin (x0)+ cos (x0)))

− cos ( cos (− 2x0 + x20 + 2x0/ sin (x0))) · x0)
(18)

Figure 6. Comparison of the Pareto fronts obtained from the application of the BO-GP algorithm to the mathematical Problems (1)–(3); (a) the first run; (b) the
second run; and (c) the third run.
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y0 =− cos ( sin (x0))− 5x0 + sin ( sin (x0))− cos ( cos (x0
+ cos (x0)))+ sin (x0)+ cos (1/2 · ( cos (x0)− sin ( sin (x0)

+ x0))/ cos ( sin (2x0))))− x20 − (1+ cos (x0)) · x0 − cos (x0)

· x0 + 1/ sin (x0)/x0 − x20 · (x0 − sin ((x20 − sin (x0)+ x0·
( sin ( sin ( sin (x0)+ x0))+ x0 − sin (x0))/ cos (x0)/ sin (x0)

+ sin (− 2x0/x
2
0 − cos (x0))+ 1+ cos (x0)+ x20)+ x0)/

(x0 · ( sin ( sin (2x0))+ x0 − sin (x0))/ cos (x0)/ sin (x0)

− sin (x0)+ x0))− cos ( cos (x0)) · x0)
(19)

Results for the Aidoghmoush reservoir

The results obtained by the application of the BO-GP algor-
ithm to calculate the operating rule of the Aidoghmoush
one-reservoir system are summarized in Figure 8, which
depicts the calculated Pareto front for the minimization of
vulnerability index and maximization of reliability index.
Each of the solutions that form the Pareto set represents

Figure 7. Comparison of the results: (a) y0 vs x0 for the first solution, (b) scattergram of calculated vs observed data for the first srun, (c) y0 vs x0 for the second
solution, (d) scattergram of calculated vs observed data for the second run, (e) y0 vs x0 for the third solution, (f) scattergram of calculated vs observed data for
the third run.

Figure 8. Pareto front calculated with the BO-GP algorithm for the operating
rule of the reservoir with two-objective (minimization of vulnerability and max-
imization of reliability).
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an optimal solution or optimal operating policy that
specifies the release volume from the reservoir as a function
of the inflow volume to the reservoir, the storage volume,

and the water demand volume. It is seen in Figure 8 that
changes of the system vulnerability range between 16%
and 41%, and changes of the system reliability range

Figure 9. Reservoir releases and water demand based on rule calculated with BO-GP for the three runs.

Figure 11. Reservoir spill and water demand based on rule calculated with BO-GP for the three runs.

Figure 10. Reservoir storage based on rule calculated with BO-GP for the three runs.

Figure 12. Deficit and demand volume based on rule calculated with BO-GP for the three runs.
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between 46% and 78%. Three solutions, named Solutions 1,
2, and 3 were chosen for further analysis and are shown in
Figure 8. Changes of the release volume, storage volume,
spill volume, and deficit volume corresponding to Solutions
1, 2, and 3 are depicted in Figures 9–11.

Comparison of Figures 9–11 establish the first, second,
and third solutions of operating policy feature reliabilities
of water supply for irrigation are equal to about 46%,
67%, and 78%, respectively, and their vulnerabilities to
water shortages equal 16%, 26%, and 41%, respectively. It
is noteworthy none of these solutions have advantages rela-
tive to each other. Instead, they are options for decision
making that might become more or less attractive with
changing conditions over time. For example, the first sol-
ution induces less shortage severity than the second and
third solutions. Also, the third solution is desirable in
terms of the second objective function (i.e. maximization
of the reliability). This means the third solution prescribes

releases that are larger and spills that are smaller than those
of the first and second solutions (Figure 12).

The operating developed rules by the BO-GP algorithm for
the selected first, second, and third solutions of reservoir
operation are listed in Equations (20)–(22), respectively.
Also, the rules developed by the BO-GP have been plotted
in Figure 13.

(Ret)1=1/cos(cos(Qt/Dt))/cos(cos(cos ((St+Dt/St)))/

cos(cos(cos ((St+Qt+Dt)/St)))/cos(cos(cos (Dt/

St)/sin(Dt)/Dt/sin(cos(1))/cos(Dt)))/(St · (St+Dt

+ (2St+Qt)/Dt)/Dt/(Dt/cos(cos(St · (St+Dt+Sin(Dt)−
cos(−St+Dt))/Dt/(Dt/cos(cos(Qt))+Dt)))+Dt)+Dt)·
St t=1, 2, · ·· , T

(20)

Figure 13. Surfaces of rules resulting from mathematical equations calculated with BO-GP for input variables St and Qt in (a) first run; (b) second run; (c) third run; and
for input variables St and Dt in (d) first run; (e) second run; (f) third run.
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(Ret)2=1/cos(cos((cos((St+2Dt+2sin(Dt))/Qt)−Q2
t −Qt)

/D2
t /cos(2Dt)))/cos(cos(cos((St+Dt+sin(Dt))/St)))/

cos (cos (cos ((St+Dt+ sin (sin (St))
2)/St)))/cos (cos

((cos (Dt)−Q2
t −Qt)/Dt/(Dt+Qt)/cos(St·

cos(Dt)+Dt)/Qt/cos(cos(cos((St+Dt+ sin (Dt))/St)))/

cos(Dt)))/(3St/Dt+Dt) ·St t=1, 2, ··· , T
(21)

(Ret)3=1/cos(cos(cos(cos(Qt)/Dt)−Dt ·Qt−Qt)/D
2
t /

cos((St+2Dt+ sin(cos(Qt/St)) ·Dt)/Dt/(2Dt+
sin (cos (Qt/St)) ·Qt))))/cos (cos (cos ((St+2Dt

+2sin (Dt))/St)))/cos (cos (cos ((St+2Dt)/St)))/

cos(cos(cos(sin((sin(Qt)+cos(St)) ·St))/
cos(cos(cos(Dt)))/sin(Dt)/Dt/sin(cos(St/

((Qt+Dt) ·Dt−Qt)))/cos(Dt)))/(2St/Dt+Dt)

·St t=1, 2, · ·· , T
(22)

Concluding remarks

This study developed a BO-GP algorithm for solving a
mathematical problem and for operating the Aidoghmoush
one-reservoir system (located in East Azerbaijan, northeast
of Iran). Results demonstrated the BO-GP algorithm was
successful in solving efficiently a bi-objective mathematical
problem, and that it performed satisfactorily in
calculating the optimal operating policy of the Aidogh-
moush reservoir. This work considered reservoir release
rules as a function of decision parameters such as the
inflow volume to the reservoir, the storage volume, and
the water-demand volume.

This paper’s results indicate the reservoir system vulner-
ability and reliability vary between 16–41% and 46–78%,
respectively. Three solutions were selected from set of Pareto
solutions and were employed to assess their corresponding
changes in reservoir releases, storage volume, volume of
spill, and volume of water deficits.

Vulnerability is a key index for measuring the failure
severity of water resources systems in supplying water
demand (the first objective). It is also useful to know the per-
centage of water demand supplied during an operating period
in terms of the timing of supply (the second objective). The
joint consideration of these criteria is necessary for correctly
solving water resources systems problems. Water systems’
objectives and policies related to reservoir operation are
best solved with multi-objective algorithms of the type pre-
sented in this work.
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