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ARTICLE

Pan-cancer analysis demonstrates that integrating
polygenic risk scores with modifiable risk factors
improves risk prediction
Linda Kachuri1, Rebecca E. Graff 1, Karl Smith-Byrne2, Travis J. Meyers1, Sara R. Rashkin 1, Elad Ziv3,4,5,

John S. Witte1,4,5,6,7✉ & Mattias Johansson 2,7✉

Cancer risk is determined by a complex interplay of environmental and heritable factors.

Polygenic risk scores (PRS) provide a personalized genetic susceptibility profile that may be

leveraged for disease prediction. Using data from the UK Biobank (413,753 individuals;

22,755 incident cancer cases), we quantify the added predictive value of integrating cancer-

specific PRS with family history and modifiable risk factors for 16 cancers. We show that

incorporating PRS measurably improves prediction accuracy for most cancers, but the

magnitude of this improvement varies substantially. We also demonstrate that stratifying on

levels of PRS identifies significantly divergent 5-year risk trajectories after accounting for

family history and modifiable risk factors. At the population level, the top 20% of the PRS

distribution accounts for 4.0% to 30.3% of incident cancer cases, exceeding the impact of

many lifestyle-related factors. In summary, this study illustrates the potential for improving

cancer risk assessment by integrating genetic risk scores.

https://doi.org/10.1038/s41467-020-19600-4 OPEN

1 Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. 2 Genetic Epidemiology Group, Section of
Genetics, International Agency for Research on Cancer, Lyon, France. 3 Department of Medicine, University of California, San Francisco, San Francisco, CA,
USA. 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. 5 Institute for Human Genetics,
University of California, San Francisco, San Francisco, CA, USA. 6 Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
7These authors jointly supervised this work: John S. Witte, Mattias Johansson. ✉email: jwitte@ucsf.edu; JohanssonM@iarc.fr

NATURE COMMUNICATIONS |         (2020) 11:6084 | https://doi.org/10.1038/s41467-020-19600-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19600-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19600-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19600-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19600-4&domain=pdf
http://orcid.org/0000-0003-0316-8303
http://orcid.org/0000-0003-0316-8303
http://orcid.org/0000-0003-0316-8303
http://orcid.org/0000-0003-0316-8303
http://orcid.org/0000-0003-0316-8303
http://orcid.org/0000-0001-5542-6891
http://orcid.org/0000-0001-5542-6891
http://orcid.org/0000-0001-5542-6891
http://orcid.org/0000-0001-5542-6891
http://orcid.org/0000-0001-5542-6891
http://orcid.org/0000-0002-3116-5081
http://orcid.org/0000-0002-3116-5081
http://orcid.org/0000-0002-3116-5081
http://orcid.org/0000-0002-3116-5081
http://orcid.org/0000-0002-3116-5081
mailto:jwitte@ucsf.edu
mailto:JohanssonM@iarc.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cancer susceptibility is inherently complex, but it is well
accepted that heritable genetic factors and modifiable
exposures contribute to cancer development. While our

knowledge of causal modifiable risk factors has gradually evolved
over the past decades, genome-wide association studies (GWAS)
have rapidly produced a wealth of germline genetic risk variants
for different cancers. These studies have shed light on genetic
mechanisms of cancer susceptibility; however, the public health
impact of GWAS findings has been modest. In response, GWAS
results have been leveraged to create polygenic risk scores (PRS)
by combining weighted genotypes for risk alleles into a single,
integrated measure of an individual’s genetic predisposition to a
specific phenotypic profile. Such genetic risk scores are not
designed to reflect the complexity of molecular susceptibility
mechanisms, but they are highly amenable to phenotypic
prediction.

Multiple studies have demonstrated that PRS can generate
informative predictions for heritable traits1,2 and diseases3,4,
prompting many to advocate for increased integration of genetic
risk scores into clinical practice5,6. An important step towards
realizing the promise of PRS in precision medicine lies in sys-
tematically assessing the added value of genetic information in
comparison to conventional risk factors and examining how it
affects lifetime risk trajectories6. The recent development of large,
prospective cohorts with both genome-wide genotyping and deep
phenotyping data, such as the UK Biobank7, provide an oppor-
tunity for integrative analyses of genetic variation and modifiable
risk factors. In addition to evaluating PRS predictive perfor-
mance, these data also provide a unique opportunity to answer
etiological questions about the relative contribution of genetic
and modifiable risk factors to cancer susceptibility.

In this study we assemble PRS for 16 cancer types, based on
previously published GWAS, and apply them to an external
population of 413,870 UK Biobank (UKB) participants, with the
aim of quantifying the potential for low-penetrance susceptibility
variants to improve cancer risk assessment at the population level.
First, we evaluate the degree to which PRS can improve risk
prediction and stratification based on established cancer risk
factors, such as family history and modifiable health-related
characteristics. Next, we estimate the proportion of incident
cancer cases that can be attributed to high genetic susceptibility,
captured by the PRS, and compare this to modifiable determi-
nants of cancer. Taken together, our results show that genetic risk
factors represented by the PRS account for a substantial pro-
portion of the overall cancer incidence and that for most cancers,
incorporating this genetic information improves risk prediction
based on conventional risk factors alone.

Results
Associations with known risk factors. Characteristics of the
UKB study population are presented in Supplementary Table 1.
Over the course of the follow-up period a total of 22,755 incident
cancers were diagnosed in 413,753 individuals, after excluding
participants outside of the age enrollment criteria and those who
withdrew consent after enrollment. Established cancer risk factors
(listed in Supplementary Table 2) exhibited associations of
expected magnitude and direction with each cancer (Supple-
mentary Table 3). Family history of cancer in first-degree rela-
tives, at the corresponding site, conferred a significantly higher
risk of prostate (hazard radio (HR)= 1.84, 95% confidence
interval (CI): 1.68–2.00, P= 9.1 × 10−46), breast (HR= 1.56,
1.44–1.69, P= 3.0 × 10−29), lung (HR= 1.61, 1.43–1.81, P=
7.4 × 10−15), and colorectal (HR= 1.26, 1.14–1.40, P= 1.2 × 10−5)
cancers. Metrics of tobacco use, such as smoking status,
intensity, and duration, were positively associated with risks of lung,

colorectal, bladder, kidney, pancreatic, and oral cavity/orophar-
yngeal cancers. Weekly alcohol intake was associated with higher
risks of breast (HR per 70 g= 1.04, P= 2.3 × 10−5), colorectal
(HR= 1.04, P= 5.9 × 10−9), and oral cavity/pharyngeal (HR=
1.05, P= 3.0 × 10−10) cancers. Adiposity was associated with cancer
risk at multiple sites, including endometrium (body mass index
(BMI): HR per 1-unit= 1.09, 1.08–1.10, P= 1.6 × 10−49), colon/
rectum (waist-to-hip ratio: HR per 10% increase= 1.17, 1.11–1.24,
P= 2.2 × 10−8), and kidney (BMI: HR= 1.04, 1.02–1.05, P= 1.7 ×
10−6). Particulate matter (PM2.5) was associated with lung cancer
risk8 (PM2.5: HR per 1 μg/m3= 1.10, 1.05–1.15, P= 1.9 × 10−5) in
the model that included smoking status and intensity.

All PRS associations with the target cancer reached at least
nominal statistical significance (Fig. 1 and Supplementary
Table 4). We considered three PRS approaches (see “Methods”
for details): standard weights corresponding to reported risk
allele effect sizes (PRSβ); unweighted sum of risk alleles
(PRSunw); inverse variance weights that incorporate the standard
error of the risk effect size (PRSIV). The latter approach resulted
in stronger or equivalent (HR ± 0.01) associations for most
cancers, except non-Hodgkin lymphoma (NHL). Compared to
standard PRSβ, substantial differences were observed for
prostate (PRSIV: HR= 1.77, P= 4.3 × 10−366 vs. PRSβ: HR=
1.39, P= 2.0 × 10−105), colon/rectum (PRSIV: HR= 1.48, P=
1.8 × 10−94 vs. PRSβ: HR= 1.32, P= 5.5 × 10−50), leukemia
(PRSIV: HR= 1.70, P= 6.3 × 10−23 vs. PRSβ: HR= 1.45, P=
8.0 × 10−13), and thyroid (PRSIV: HR= 1.75, P= 1.9 × 10−15 vs.
PRSβ: HR= 1.57, P= 5.7 × 10−10). All subsequent analyses use
PRSIV since this approach appears to improve PRS performance
by appropriately downweighing the contribution of variants
with less precisely estimated effects.

Improvement in risk prediction. The predictive performance of
each risk model was evaluated based on its ability to accurately
estimate risk (calibration) and distinguish cancer cases from
cancer-free individuals (discrimination). All cancer-specific risk
models were well-calibrated (goodness-of fit P > 0.05; Supple-
mentary Fig. 1). Model discrimination was assessed by Harrell’s
C-index, estimated as a weighted mean between 1 and 5 years of
follow-up time. For completeness, we also report the area under
the curve (AUC) at 5 years of follow-up time9. Proportionality
violations (P < 0.05) were detected for age in the breast cancer
model and PRSIV for cervical cancer. For breast cancer this was
resolved by incorporating an interaction term with follow-up
time. As a sensitivity analysis for cervical cancer we modeled a
time-varying PRS effect (Supplementary Fig. 2).

The C-index reached 0.60 with age and/or sex, for all cancers
except for breast and thyroid (Supplementary Table 5). For
cancers with available information on a family history of
cancer at the same site (prostate, breast, colon/rectum, and
lung), incorporating this had a modest impact on the C-index
(ΔC < 0.01). In fact, replacing family history with the PRS
resulted in an improvement in discrimination for prostate
(C= 0.763, ΔC= 0.047), breast (C= 0.620, ΔC= 0.061), and
colorectal (C= 0.708, ΔC= 0.029), but not lung (C= 0.711,
ΔC=−0.002) cancers.

Next, we assessed the change in the C-index (ΔC) after
incorporating the PRS into prediction models with all available
risk factors for each cancer (Fig. 2 and Supplementary Table 5).
The resulting improvement in prediction performance was
variable. The largest increases in the C-index were observed for
cancer sites with few available predictors, such as testes (CPRS=
0.766, ΔC= 0.138), thyroid (CPRS= 0.692, ΔC= 0.099), prostate
(CPRS= 0.768, ΔC= 0.051), and lymphocytic leukemia (CPRS=
0.756, ΔC= 0.061). Incorporating the PRS also improved
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prediction accuracy for melanoma (CPRS= 0.664, ΔC= 0.042),
breast (CPRS= 0.635, ΔC= 0.063), and colorectal (CPRS= 0.716,
ΔC= 0.030) cancers, which have multiple environmental risk
factors. The highest overall C-index was observed for lung (CPRS

= 0.849) and bladder (CPRS= 0.814) cancers, which was primar-
ily attributed to non-genetic predictors (C without PRS: lung=
0.846; bladder= 0.808). However, it is worthwhile noting that
despite having a large ΔC, the precision of the C-index estimates

was low for some rarer cancers, such as testicular (n= 52) and
thyroid (n= 191), as well as cancers with genetic risk scores based
on relatively few variants. Changes in the AUC at 5 years of
follow-up were of similar magnitude (Supplementary Table 5).

As a complementary metric of model performance, Royston’s
R2 was calculated to quantify the variation in the time-to-event
outcome captured by each risk model10. Across all 16 sites, the
median change in R2 (ΔR2) was 0.066. Large improvements,
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defined as ΔR2 > 0.10, were observed for cancers of the breast
(R2PRS= 0.146; ΔR2= 0.103), pancreas (R2PRS= 0.439; ΔR2=
0.103), leukemia (R2PRS= 0.415; ΔR2= 0.160), prostate (R2PRS=
0.510; ΔR2= 0.161), thyroid (R2PRS= 0.310; ΔR2= 0.230), and
testis (R2PRS= 0.605; ΔR2= 0.421). These results parallel the
trend in improvement observed based on C-index and AUC.

For 15 out of 16 cancers, incorporating the PRS resulted in
significant improvement in reclassification, as indicated by
positive percentile-based net reclassification index (NRI)11 values
with 95% bootstrapped confidence intervals excluding 0 (Supple-
mentary Table 6). The overall NRI was primarily driven by the
event NRI (NRIe), which is the increase in the proportion of
cancer cases reclassified to a higher risk group. Positive NRIe
values >0.25 were observed for prostate, thyroid, breast, testicular,
leukemia, melanoma, and colorectal cancers. The largest
reclassification improvement in non-event NRI (NRIne) observed
for the lung PRS (NRIne= 0.015) and breast PRS (NRIne=
0.014). Four cancers (testes, leukemia, kidney, and oral cavity/
pharynx) had significantly negative NRIne values indicating that
adding the PRS decreased classification accuracy in cancer-free
individuals.

Refinement of risk stratification. The ability of the PRS to refine
risk estimates was assessed by examining 5-year absolute risk
trajectories as a function of age, across strata defined by per-
centiles of PRS (high risk ≥80%, average: >20–<80%, low risk:
≤20%) and family history of cancer (Fig. 3; exact P values in
Supplementary Table 7). Significantly diverging risk trajectories,
overall and at age 60, were observed for prostate (P ≤ 4.5 × 10−25),
breast (P ≤ 4.6 × 10−32), colorectal (P ≤ 2.0 × 10−21), and lung
cancers (P ≤ 0.031). For all cancers except lung, risk stratification
was primarily driven by PRS. For instance, 60-year-old men with
a high PRS but no family history of prostate cancer had a higher
mean 5-year disease risk (4.74%) compared to men with a posi-
tive family history and an average PRS (3.66%). For lung cancer,
on the other hand, participants with a positive family history had
higher average 5-year risks, even with a low PRS (0.54%), com-
pared to those without (high PRS: 0.46%; low PRS: 0.29%). There
was evidence of interaction between the PRS and family history of
cancer for prostate (P= 9.0 × 10−128), breast (P= 1.2 × 10−98),
and colorectal (P= 8.7 × 10−14) cancers (Supplementary
Table 8). For lung cancer the interaction with family history was
limited to the high PRS group (P= 5.9 × 10−3).

We also compared 5-year risk projections across strata of
PRS and modifiable risk factors. Effects of multiple risk factors
were combined into a single score by generating summary
linear predictors for each cancer (see “Methods” for details).
For several common cancers, individuals with a high PRS were
predicted to have an overall risk above the median, and this
increased risk was observed even when high PRS individuals
also had modifiable risk factor scores that were below the
median modifiable risk factor score (Fig. 4 and Supplementary
Fig. 3). PRS achieved significant risk stratification for breast
cancer (pre-menopausal: P ≤ 7.9 × 10−20; post-menopausal: P ≤
1.7 × 10−40), colorectal cancer (P ≤ 1.8 × 10−42), and melanoma
(P ≤ 3.5 × 10−139) (Fig. 4; exact P values in Supplementary
Table 7). The same pattern of stratification was observed for
NHL, leukemia, pancreatic, thyroid, and testicular cancers
(Supplementary Figs. 3, 4). For other phenotypes, lifestyle-
related risk factors had a stronger overall influence on risk
trajectories than PRS (Fig. 5; exact P values in Supplementary
Table 7). However, stratifying by levels of PRS still resulted in
significantly diverging risk projections for several cancers (lung:
P ≤ 1.1 × 10−13; oral cavity/pharynx: P ≤ 1.2 × 10−12; kidney:
P ≤ 1.7 × 10−52). For bladder cancer, the risk trajectories for

high PRS/reduced modifiable risk and low PRS/high modifiable
risk were overlapping (P= 0.99).

There was evidence of larger than additive risk differences, at age
60 between elevated modifiable risk factor profiles and all ordinal
PRS categories for melanoma (P= 3.3 × 10−122), breast cancer
(post-menopausal: P= 6.9 × 10−24; pre-menopausal: P= 4.9 × 10−7,
colorectal (P= 1.3 × 10−208), lung (P= 1.1 × 10−37), bladder (P=
1.5 × 10−50), kidney (P= 5.5 × 10−29), and oral cavity/pharynx
cancers (P= 5.2 × 10−11) (Supplementary Table 8).

Quantifying population-level impact. Population attributable
fractions (PAF) were used to summarize the relative contribution
of genetic susceptibility and modifiable risk factors to cancer risk
at the population level. In order to allow comparisons between
PAF estimates, the PRS and modifiable risk score distributions
were both dichotomized at ≥80th percentile. All risk factors
nominally contributed (P < 0.05) to cancer incidence (Fig. 6 and
Supplementary Table 9), with the exception of the PRS for oral
cavity/pharynx cancer (P= 0.78) and PM2.5 for lung cancer in
never smokers (P= 0.44).

PAF for high genetic risk exceeded the contribution of modifiable
exposures for several cancers, such as thyroid (PAFPRS= 0.268, P=
1.7 × 10−9), prostate (PAFPRS= 0.232, P= 5.5 × 10−158), colon/
rectum (PAFPRS= 0.167, P= 9.2 × 10−50), breast (PAFPRS= 0.168,
P= 4.9 × 10−87), and melanoma (PAFPRS= 0.139, P= 1.3 × 10−23).
For testicular cancer (PAFPRS= 0.303, P= 4.5 × 10−4), leukemia
(PAFPRS= 0.269, P= 4.5 × 10−4), lung cancer in never smokers
(PAFPRS= 0.077, P= 0.045), and NHL (PAFPRS= 0.053, P= 1.9 ×
10−3), PRS was the only significant risk factor other than
demographic factors. Cancers for which modifiable risk factors had
a substantially larger impact on disease burden than PRS included
oral cavity/pharynx (PAFmod= 0.310 vs. PAFPRS= 0.006), lung
(AFmod= 0.636 vs. PAFPRS= 0.040), endometrium (PAFmod=
0.353 vs. PAFPRS= 0.043), kidney (PAFmod= 0.210 vs. PAFPRS=
0.046), and bladder cancers (PAFmod= 0.189 vs. PAFPRS= 0.085).
For other sites, such as pancreas (PAFmod= 0.118 vs. PAFPRS=
0.133) and ovary (PAFmod= 0.100 vs. PAFPRS= 0.082), the
contribution of PRS and modifiable risk factors were more balanced.

Discussion
Cancer is a multifactorial disease with a complex web of etiolo-
gical factors, from macro-level determinants, such as health
policy, to individual-level characteristics, such as health-related
behaviors and heritable genetic profiles. Heritable and modifiable
risk factors act in concert to influence cancer development, but
their relative contributions to disease risk are rarely compared
directly in the same population. In this study we provide insight
into the potential utility of PRS for cancer risk prediction and the
relative of contribution of genetic and modifiable risk factors to
cancer incidence at population level.

Our first major finding is that cancer-specific PRS comprised of
lead GWAS variants improve risk prediction for all 16 cancers
examined. However, the magnitude of the resulting improvement
in prediction varies substantially between sites. In evaluating the
added predictive value of the PRS it is important to keep in mind
that achieving the same incremental increase in the C-index/AUC
is more difficult when the baseline model already performs well12.
This was applicable to most cancers, where age and/or sex alone
achieved non-trivial risk discrimination (C-index/AUC > 0.60).
Expanding the set of predictors to include modifiable risk factors
further improved discrimination, as previously shown13. By
adding the PRS to the most comprehensive risk factor models
facilitated by our data, we adopted a conservative approach for
quantifying its added predictive value, which provides an
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informative benchmark for future efforts seeking to incorporate
genetic predisposition in cancer risk assessment.

Cancer sites for which the PRS resulted in the largest gains in
prediction performance included prostate, testicular, and thyroid
cancers, as well as leukemia, and melanoma. This is consistent
with high heritability estimates reported for these cancers in twin
studies14 and our analyses in the UK Biobank15. Modeling the
PRS in addition to established risk factors yielded very modest
improvements in risk discrimination for cancers of the lung,
endometrium, bladder, oral cavity/pharynx, and kidney. These
cancers have strong environmental risk factors, such as smoking,
alcohol consumption, obesity, and HPV infection, some of which
were captured in our analysis. Limited predictive ability for cer-
vical and endometrial cancers may also be due to a low number of
variants included in the PRS (9 and 10, respectively). The asso-
ciation of the lung cancer PRS with cigarettes per day16 may have

diminished its apparent predictive value when added to a model
with smoking status and intensity, which already achieved an
AUC > 0.80 making difficult to elicit further improvement. Fur-
thermore, PRS may be particularly relevant for assessing lung
cancer risk in never smokers, since other risk factors have a
limited impact in this population.

Few pan-cancer PRS studies have been conducted in pro-
spective cohorts and none have considered the breadth of mod-
ifiable risk factors that we evaluated. Shi et al.17 tested 11 cancer
PRS in cases from The Cancer Genome Atlas and controls from
the Electronic Medical Records and Genomics Network. This
analysis was limited by fewer risk variants in each PRS, as well as
potential for bias due to selection of cases and controls from
different populations. A phenome-wide analysis in the Michigan
Genomics Initiative cohort by Fritsche et al.18 examined PRS for
12 cancers and reported similar associations for the target
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phenotype. However, risk stratification was not formally eval-
uated. Considering cancer-specific studies, the PRS presented
here achieved superior prediction performance for some can-
cers19–22, but not others23,24. For pancreatic cancer25 and mela-
noma26, our results are consistent with previous analyses using
PRS of similar composition. Generally, comparison of prediction
performance is complicated by differences in PRS composition,
population characteristics, and inclusion of other predictors.
Outside the cancer literature, our conclusions align with a recent
study of ischemic stroke, which demonstrated that the PRS is
similarly or more predictive than multiple established risk factors,
including family history27.

Our second major finding advances the idea of using germline
genetic information to refine individual risk estimates. We show
that incorporating PRS improves risk stratification provided by

conventional risk factors alone, as illustrated by significantly
diverging 5-year risk projections within strata based on family
history or modifiable risk factors. For certain cancers, including
some with strong environmental risk factors, such as melanoma,
breast, colorectal, and pancreatic cancers, PRS was the primary
determinant of risk stratification. For others, such as lung and
bladder cancers, modifiable risk factors had a stronger impact on
5-year risk trajectories. A consistent finding for all cancers was
that individuals in the top 20% of the PRS distribution with an
unfavorable modifiable risk factor profile had the highest level of
risk, with evidence that the effects of PRS and modifiable risk
factors may be synergistic. Similar risk stratification results based
on genetic and modifiable risk factors have also been reported for
coronary disease28 and Alzheimer’s29. Taken together, our results
suggest that PRS can provide more accurate risk estimates for
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Fig. 4 Predicted 5-year absolute risk trajectories across strata defined by modifiable risk factors and percentiles of the polygenic risk score (PRS)
distribution. Low PRS corresponds to ≤20th percentile, average PRS is defined as >20th to <80th percentile, and high PRS includes individuals in the
≥80th percentile of the normalized genetic risk score distribution. Individuals below the median of the modifiable risk factor distribution were classified as
having reduced risk, whereas those above the median had elevated risk. P values for differences in mean absolute risk in each stratum at age 50 for a pre-
menopausal breast cancer and at age 60 for b post-menopausal breast cancer, c colon/rectal cancer, and d melanoma are based on t-tests (two sided).
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individuals with wide variation in cancer predisposition based on
lifestyle-related risk factors. Furthermore, as a risk factor that is
present and stable throughout the life course, PRS may be useful
for motivating targeted prevention efforts in high-risk individuals
before they accumulate a high burden of modifiable risk factors.

In addition to evaluating predictive performance and risk
stratification, our work demonstrates the relevance of common
genetic risk variants at the population level. High genetic risk
(PRS ≥ 80th percentile) explained between 4.0 and 30.3% of
incident cancer cases, and for many phenotypes this exceeded
PAF estimates for modifiable risk factors or family history. The
contribution of genetic variation to disease risk is typically con-
veyed by heritability, which is an informative metric, although
not easily translated into a measure of disease burden useful in a
public health context. Recent work on cancer PAF in the UK30

and a series of publications from the ComPARe initiative in

Canada31,32 examined a wide range of modifiable risk factors.
Despite providing useful data, these studies overlook the con-
tribution of genetic susceptibility. Our work addresses these
limitations by providing a more complete perspective on the
determinants of cancer and potential impact of future prevention
policies.

In evaluating the contributions of our study, several limitations
should be acknowledged. First, we did not account for the impact
of workplace exposures and socio-economic determinants of
health, thereby underestimating the role of non-genetic risk fac-
tors. We also lacked data on several known carcinogens, such as
ionizing radiation, and clinical biomarkers, such as prostate-
specific antigen, thus limiting the extent to which our results
inform risk classification for certain cancers. Information on
family history was also not available for all cancer types. Second,
since the UK Biobank cohort is unrepresentative of the general
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Fig. 5 Predicted 5-year absolute risk trajectories across strata defined by modifiable risk factors and percentiles of the polygenic risk score (PRS)
distribution. Low PRS corresponds to ≤20th percentile, average PRS is defined as >20th to <80th percentile, and high PRS includes individuals in the
≥80th percentile of the normalized genetic risk score distribution. Individuals below the median of the modifiable risk factor distribution were classified as
having reduced risk, whereas those above the median had elevated risk. P values for differences in mean absolute risk in each stratum at age 60 for a lung,
b bladder, c kidney, and d oral/pharynx cancers are based on t-tests (two sided).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19600-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6084 | https://doi.org/10.1038/s41467-020-19600-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


UK population due to low participation and resulting healthy
volunteer bias33, we may have underestimated PAFs for modifi-
able risk factors. Finally, the models presented here are calibrated
to the UKB population and we urge caution in extrapolating
prediction performance and absolute risk projections to other
populations. Since our analytic sample is restricted to individuals
of predominantly European ancestry, this limits the applicability
of our findings to diverse populations.

This work has several important strengths. Our study provides
a comprehensive description of the joint and relative influence of
genetic and modifiable risk factors in a population-based cohort
with uniform phenotyping and extensive data on a range of
relevant cancer risk factors. We established risk models based on
the current knowledge of genetic and modifiable risk factors and
report a series of metrics that comprehensively characterize dif-
ferent dimensions of PRS predictive performance in an inde-
pendent population. With the exception of limited overlap with
one colorectal cancer GWAS (see “Methods”), all of our risk
models were developed based on previously published associa-
tions from studies that did not include the UK Biobank. While
our results are promising, we anticipate that the PRS performance
reported here may be enhanced by adopting less stringent P value
thresholding, optimizing subtype-specific weights, and imple-
menting more sophisticated PRS models that incorporate linkage
disequilibrium structure, functional annotations, or single-
nucleotide polymorphism (SNP) interactions. Some of these
strategies are already being successfully implemented4,23. We also
provide insight into PRS modeling by showing that accounting
for the variance in risk allele effect sizes improves PRS perfor-
mance. This approach may be particularly advantageous for PRS
derived from multiple sources rather than a single GWAS.
Throughout this study we consider a relatively lenient definition

of high genetic risk, corresponding to the top 20% of the PRS
distribution. Exploring other cut-points will be informative;
however, our results are valuable for demonstrating that the
utility of PRS for stratification is not limited to the most extreme
ends of the genetic susceptibility spectrum. This threshold is also
compelling from a population-health perspective, as it allows us
to quantify the proportion of cases attributed to a risk factor with
a 20% prevalence.

Genetic risk scores have the potential to become a powerful
tool for precision health, but only if the resulting information can
be understood and acted on appropriately. One important con-
sideration is the accuracy and stability of PRS-based risk classi-
fications, especially at clinically actionable risk thresholds that
exist for certain cancers. For instance, there are established
screening programs for breast and colorectal cancers, and
increasing evidence supporting the effectiveness of low-dose
computed tomography for lung cancer screening34,35. For these
cancers PRS could be used to adjust the optimal age for screening
initiation and/or intensity. However, to justify this, studies are
needed to demonstrate the benefit of using PRS to supplement
conventional screening criteria. Such trials are already underway
for breast cancer, where genetic risk scores are being incorporated
to personalize risk-based screening36. For other cancers, such as
prostate, screening remains controversial and PRS may prove
useful in identifying a subset of high-risk individuals who may
benefit the most from screening.

Another area where PRS may prove useful is for prioritizing
individuals for targeted health and lifestyle-related interventions.
In support of this, our study demonstrates that those with the
highest levels of genetic risk, based on the PRS, may also
experience larger decreases in risk from shifting to a healthier
lifestyle. However, there is also accumulating evidence that simply
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Fig. 6 Population attributable fractions (PAF) estimated at 5 years of follow-up time. PAF estimates for the top 20% (≥80th percentile) of the
modifiable risk factor and polygenic risk score (PRS) distributions, respectively, and family history of cancer, were derived from Cox proportional hazard
regression models adjusted for age at enrollment, sex, genotyping array, and the top 15 genetic ancestry principal components.
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reporting genetic risk information to individuals does not induce
behavior change that could lead to meaningful reductions in
risk37. Therefore, progress in our ability to construct and apply
PRS to identify high-risk individuals must be also accompanied
by the development of effective behavioral interventions that can
be implemented in response to high disease risk, in addition to
early detection and screening protocols.

Ultimately, the impact of PRS on clinical decision-making
should be carefully evaluated in randomized trials prior to
deployment in healthcare settings. By demonstrating cancer-
specific improvements in risk prediction, as well as the substantial
proportion of cancer incidence that is captured by known genetic
susceptibility variants, we provide evidence that contextualizes
the potential for using genetic information to improve cancer
outcomes.

Methods
Study population. The UK Biobank (UKB) is a population-based prospective
cohort of individuals aged 40–69 years, enrolled between 2006 and 2010. All
participants completed extensive questionnaires, in-person physical assessments,
and provided blood samples for DNA extraction and genotyping7. Health-related
outcomes were ascertained via individual record linkage to national cancer and
mortality registries and hospital in-patient encounters7. Individuals with at least
one recorded incident diagnosis of a borderline, in situ, or malignant primary
cancer were defined as cases. Cancer diagnoses coded by International Classifica-
tion of Diseases (ICD)-9 or ICD-10 codes were converted into ICD-O-3 codes
using the SEER site recode paradigm in order to classify cancers by organ site.

Participants were genotyped on the UKB Affymetrix Axiom array (89%) or the
UK BiLEVE array (11%)7. Genotype imputation was performed using the
Haplotype Reference Consortium as the main reference panel, supplemented with
the UK10K and 1000 Genomes phase 3 reference panels7. Genetic ancestry
principal components (PCs) were computed using fastPCA38 based on a set of
407,219 unrelated samples and 147,604 genetic markers7. All analyses were
restricted to self-reported European ancestry individuals with concordant self-
reported and genetically inferred sex. To further minimize potential for population
stratification, we excluded individuals with values for either of the first two ancestry
PCs outside of five standard deviations of the population mean. Based on a subset
of genotyped autosomal variants with minor allele frequency (MAF) ≥ 0.01 and
genotype call rate ≥97%, we excluded samples with call rates <97% and/or
heterozygosity more than five standard deviations from the mean of the
population. With the same subset of SNPs, we used KING38 to estimate relatedness
among the samples. We excluded one individual from each pair of first-degree
relatives, preferentially retaining individuals to maximize the number of cancer
cases remaining, resulting in a total of 413,870 UKB participants.

Polygenic risk scores. In order to derive PRS for each of the 16 cancers, we
extracted previously associated variants by searching the National Human Genome
Research Institute (NHGRI)-European Bioinformatics Institute (EBI) Catalog of
published GWAS. For every eligible GWAS, both the original primary manuscript
and supplemental materials were reviewed. Additional relevant studies were
identified by examining the reference section of each article and via PubMed
searches of other studies in which each article had been cited. We abstracted all
autosomal variants with MAF ≥ 0.01 and P < 5 × 10−8 identified in populations of
at least 70% European ancestry and published by June 2018, with the exception of
one colorectal cancer GWAS39 (published in December 2018). Studies used to
identify cancer risk variants and obtain corresponding effect sizes for the PRS were
conducted in populations other than the UK Biobank. One exception is the col-
orectal cancer study by Huyghe et al.39, which included 5356 cases and 21,407
controls from the UK Biobank in the GWAS meta-analysis, comprising 9% of cases
and 21% of all participants.

Details of the PRS development approach, including a comprehensive list of
source studies, is described by Graff et al.16. For inclusion in the PRS we
preferentially selected independent SNPs (LD r2 < 0.3) with the highest imputation
score and we excluded SNPs with allele mismatches or MAF differences >0.10
relative to the 1000 Genomes reference population, and palindromic SNPs with
MAF ≥ 0.45. For associations reported in more than one study of the same ancestry
and phenotype, we selected the one with the most information (i.e., which reported
the risk allele and effect estimate) with the smallest P value. For breast cancer, the
PRS used in this analysis differs slightly from Graff et al.16. We looked up 187
candidate PRS variants in publicly meta-analysis summary statistics from the
Breast Cancer Association Consortium (BCAC) GWAS, as reported in Michalidou
et al.40. We retained SNPs with P < 5 × 10−8 in the BCAC meta-analysis (n= 162)
and constructed a standard PRS using risk allele weights from these summary
statistics.

Three approaches for combining risk variants in the PRS were considered. First,
we used standard PRS weights, corresponding to the log odds ratio (β) for each risk

allele:

PRSβ ¼ β1 ´ SNP1 þ β2 ´ SNP2 þ ¼ þ βn ´ SNPn: ð1Þ
We compared this to an unweighted score corresponding to the sum of the risk

alleles, which is equivalent to assigning all variants an equal weight of 1:

PRSunw ¼ SNP1 þ SNP2 þ ¼ þ SNPn: ð2Þ
Lastly, we applied inverse variance (IV) weights that incorporated the standard

error (SE) of the SNP log(OR) to account for uncertainty in risk allele effect sizes
and downweigh the contribution of variants with less precisely estimated
associations (weights provided in Supplementary Data 1):

PRSIV ¼ β1
SE β1

� � ´ SNP1 þ
β2

SE β2
� � ´ SNP2 þ ¼ þ βn

SE βn
� � ´ SNPn: ð3Þ

Each PRS was standardized with the entire cohort to have a mean of 0 and
standard deviation (SD) of 1.

Risk model development and evaluation. Cancer-specific prediction models
consisting of four classes of risk factors were developed: (i) demographic factors
(age and sex); (ii) family history of cancer in first-degree relatives; (iii) modifiable
risk factors; and (iv) genetic susceptibility, represented by the PRS. Family history
of cancer was derived based on self-reported illnesses in non-adopted first-degree
relatives, which only listed cancers of the prostate, breast, bowel, or lung. In
addition to these four cancer sites, family history of breast cancer was included as a
predictor for ovarian cancer41,42. Models for pancreatic cancer included a com-
posite variable for family history of cancer at any of these four sites43,44. Selection
of modifiable risk factors was informed by literature review and reports, such as the
European Code Against Cancer45, IARC Monographs, and evaluations from the
World Cancer Research Fund International, with an emphasis on risk factors that
are likely to have a causal role. Final models included established environmental
and lifestyle-related characteristics that were collected for the entire UK Biobank
cohort (Supplementary Table 1).

Cause-specific Cox proportional hazard models were used to estimate the HRs
and corresponding 95% CI for genetic and lifestyle factors associated with each
incident cancer. Death from any cause, other than cancer site-specific mortality,
was treated as a competing event. Information on primary and contributing causes
of death was used to identify cancer site-specific mortality. Follow-up time was
calculated from the date of enrollment to the date of cancer diagnosis, date of
death, or end of follow-up (1 January 2015). For each cancer, individuals with a
past or prevalent cancer diagnosis at that same site were excluded from the
analysis, while individuals diagnosed with cancers at other sites were retained in the
population. All models including the PRS were also adjusted for genotyping array
and the first 15 genetic ancestry PCs. For the PRS, HR estimates correspond to 1
SD increase in the standardized genetic score.

The predictive performance of each risk model was evaluated based on its
ability to accurately estimate risk (calibration) and distinguish cancer cases from
cancer-free individuals (discrimination). Calibration was assessed with a
Hosmer–Lemeshow goodness-of-fit statistic modified for time-to-event
outcomes46, and by plotting the expected event status against the observed event
probability47 across risk deciles (or quantiles to ensure a minimum of five cases per
group). Violation of the proportionality of hazards assumption was assessed by
examining the association between standardized Schoenfeld residuals and time.

We evaluated nested models starting with the most minimal set of predictors,
such as demographic factors, followed by models including family history of cancer
and modifiable risk factors, and finally models incorporating the PRS. Risk
discrimination was assessed based on Harrell’s C-index, calculated as a weighted
average between 1 and 5 years of follow-up time, and area under the curve (AUC)
at 5 years. We also report pseudo-R2 coefficients based on Royston’s measure of
explained variation for survival models10. Percentile-based net reclassification
(NRI) index11 was used to quantify improvements in reclassification. NRI
summarizes the proportion of appropriate directional changes in predicted risks.
Any upward movement in risk categories for cases indicates improved
classification, and any downward movement implies worse reclassification. The
opposite is expected for non-cases:

NRIe ¼
P eventjupð Þ ´ nU � PðeventjdownÞ ´ nD

n ´PðeventÞ ; ð4Þ

NRIne ¼
1� P eventjdownð Þð Þ ´ nD � 1� P eventjupð Þð Þ ´ nU

n ´ 1� P eventð Þð Þ ; ð5Þ

where nU is the number of individuals up-classified and nD is the number down-
classified. Overall NRI is the sum of the NRI in cases and non-cases: I=NRIe+
NRIne . Bootstrapped confidence intervals were obtained based on 1000 replicates.

Assessment of risk stratification. For each individual, we estimated the 5-year
absolute risk of being diagnosed with a specific cancer using the formula of
Benichou and Gail48, as implemented by Ozenne et al.49 in the RiskRegression
package. Briefly, for cause-specific Cox regression models the absolute risk accu-
mulates over time as the product between the event-free survival and the hazard of
experiencing the event of interest, both conditional to the baseline covariates. For
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models with one competing outcome, event-free survival is estimated from the
cause-specific hazards using the product integral estimator, where Λj;z tjxð Þ denotes
cause-specific hazard rates:

S tjx; zð Þ ¼
Y
s≤ t

1� dΛ1;z tjxð Þ � dΛ2;z tjxð Þ
� �

: ð6Þ
This is asymptotically equivalent to the product-limit estimator if the

distribution of the event times is continuous and the product integral estimator
ensures that the sum of transition probabilities over all possible transitions should
be one.

Absolute risk trajectories were examined as a function of age across strata
defined by genetic and modifiable risk profiles, as well as family history. Individuals
in the top 20% of the PRS distribution (PRS≥80th percentile) for a given cancer
were classified has having high genetic risk, those in the bottom 20% (PRS≤20th
percentile) were classified as low risk, and the middle category (>20th to <80th
percentile) classified as average genetic risk.

Modifiable risk factors were summarized by generating summary linear
predictors (predicted log-hazard ratios) based on risk factors in Supplementary
Table 1, excluding age, sex, and family history. Individuals above the median of this
risk score distribution were considered to have an unfavorable modifiable risk
profile. Risk trajectories in each stratum were visualized by fitting linear models
with smoothing splines to individual risk estimates as a function of age. Differences
in mean risk at age 60 were tested using a two-sample t-test. We also tested for
interaction between the three-level ordinal PRS variable and the modifiable risk
score (dichotomized at the median) in a linear model with the predicted absolute
risk as the outcome.

The relative contribution of genetic and modifiable cancer risk factors at the
population level was quantified with PAF using the method of Sjölander and
Vansteedlandt50,51 based on the counterfactual framework. To obtain comparable
AF estimates, thresholds for high genetic risk and high burden of modifiable risk
factors corresponded to the top 20% (≥80th percentile) of each risk score
distribution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UK Biobank in an open access resource, available at https://www.ukbiobank.ac.uk/
researchers/. This research was conducted with approved access to UK Biobank data
under application number 14105. All the other data supporting the findings of this study
are available within the article and its supplementary information files and from the
corresponding author upon reasonable request. Input data for the construction of
polygenic scores (PGS) is available from the PGS Catalog under accession: PGP000050. A
reporting summary for this article is available as a Supplementary Information file.
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