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TOPICAL REVIEW
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Abstract
Mitochondria serve a wide range of functions within cells, most notably via their production of
ATP. Although their morphology is commonly described as bean-like, mitochondria often form
interconnected networks within cells that exhibit dynamic restructuring through a variety of
physical changes. Further, though relationships between form and function in biology are well
established, the extant toolkit for understanding mitochondrial morphology is limited. Here, we
emphasize new and established methods for quantitatively describing mitochondrial networks,
ranging from unweighted graph-theoretic representations to multi-scale approaches from applied
topology, in particular persistent homology. We also show fundamental relationships between
mitochondrial networks, mathematics, and physics, using ideas of graph planarity and statistical
mechanics to better understand the full possible morphological space of mitochondrial network
structures. Lastly, we provide suggestions for how examination of mitochondrial network form
through the language of mathematics can inform biological understanding, and vice versa.

1. Introduction

Cells are highly complex structures that exhibit a
wide range of geometrical features on scales ranging
from symmetric protein complexes to entire organ-
elles. Although relationships between form and func-
tion in biology have been appreciated at a conceptual
level for centuries, it was only with the advent ofmod-
ern mathematics and systematic measurement meth-
ods that cell biological systems could begin to be con-
sidered as quantitatively-describable entities within
a framework that might mechanistically relate their
forms and functions. While biology in the twenty-
first century has advanced by leaps and bounds in
its ability to identify and describe the components
that comprise cell biological systems across multiple
scales, our understanding of the origins of structures
comprising these systems is still in its infancy.

During the scant hundred years since the pub-
lication of D’Arcy Thompson’s seminal On Growth
and Form, humankind’s ability to observe, cap-
ture, and measure biological form has undergone
a series of improvements spanning multiple orders

of magnitude in both spatial and temporal resolu-
tion [1]. From the continued development of every
facet of light microscopy, to our rapidly improving
capacity to engineer fluorescent labels into living sys-
tems, to the creation of computational systems and
structures enabling collection of enormous quantities
of data, we are presently bombarded on a near-daily
basis with new observations of living phenomena. In
parallel, mathematics and physics have grown to such
a point that the simulation of fluids in three dimen-
sions is routinely possibly using a reasonably inex-
pensive desktop computer. Recent trends in artificial
intelligence, particularly within the development of
neural networks, have demonstrated the creation of
new tools to measure, evaluate, and compare images
at a heretofore-unseen pace in an automated manner.

Yet, for all of the discovery and innovation that
has occurred over the past century, there seems to
exist a gap between the studies of mathematics and
biological form. This is due in large part to a focus
of effort on discovering the molecules responsible for
biological phenomena, which has proven to be highly
productive. We have reached the point now that we
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are drowning in data, and it becomesmore important
than ever to start to reach a conceptual understand-
ing of how biological form arises, a question that is
inherently mathematical in nature. In line with this
reflection should be an awareness that there exists
an enormous variety of biological phenomena whose
associated forms present rich opportunities for dis-
covery. Here, we focus on one such form and oppor-
tunity: the study of mitochondrial networks.

The presence of mitochondria, the ‘power-
houses of our cells,’ is a near-unifying hallmark
of eukaryotes—only in 2016 was the first euka-
ryotic organism (Monocercomonoides) discovered
that lacked mitochondria [2]. Although there exist
subsets and subtypes of eukaryotic cells that lack
mitochondria, such as red blood cells, these are by
and large exceptions [3]. Indeed, mitochondria are
critical for a wider range of cellular functions than
just generating ATP as fuel: they enable the critical
self-destructive cell apoptosis response, help regulate
calcium ion levels in conjunction with the endo-
plasmic reticulum (ER), generate energy from lipids
through fatty-acid metabolism, as well as modulate
the reactive oxygen species required by a range of
physiological processes including pancreatic function
and aging [4–11]. Given the pervasiveness of mito-
chondrial function in biological regulatory processes,
it should not be surprising that mitochondrial dys-
function is associated with a wide range of human
diseases, including Alzheimer’s and Parkinson’s
disease [12].

Unlike most other organelles, mitochondria can-
not be created de novo, but instead are derived from
growing extant mitochondria. As a result, proper
cycles of cellular division typically require the replic-
ation of mitochondrial DNA (mtDNA), which inde-
pendently encodes a small number of proteins crit-
ical for mitochondrial function and may also serve
other roles, such as innate immune signaling [13–15].
Copies of mtDNA are distributed across the set of
all mitochondria in the cell and range in per-cell
copy number from≈5 in human sperm cells to≈105

in human oocytes, though they are typically present
on the order of 102–103 copies in many human cell
types [16–18]. Although not yet fully understood,
mtDNA seem to be associated with sites and specific
types of mitochondrial fission in combination with
ER contacts [19–23].

Although mitochondria are often depicted as
bean-shaped objects, in fact in most cells they form
ramifying networks of tubules (figure 1(A)). These
tubular networks undergo constant rearrangement,
both in structure and position, sometimes in con-
cert with or as a result of interactions with other
organelles [19–21, 24–26]. Much is known about the
molecular and cellular processes that sculpt these net-
works [27–37]. However, the biological impacts of
mitochondrial network form are notwell understood,

nor is it clear what determines the specific form of the
network in any given cell type.

Why should we care about the structure of mito-
chondrial networks? A prominent hypothesis for the
function of mitochondrial networks is that the com-
bination of membrane potential-dependent fusion
and nonspecific fission enables the cell to retain
productive and degrade dysfunctional mitochon-
dria [38], suggesting that network structure might
reflect overall mitochondrial function. A variety of
work has shown that a cell’s mitochondrial net-
work changes structure and dynamics in response to
cell cycle progression, environmental perturbations,
and cell state [39–41]. The extremes of eliminating
mitochondrial fission and fusion lead to substan-
tial changes in cellular physiology and fetal develop-
ment [42]. Apoptosis is associated with mitochon-
drial fragmentation and swelling, while increased
mitochondrial fusion in budding yeast may increase
their replicative lifespan [43, 44]. Diffusive trans-
port within networks is more efficient when loops
are present, as is typically the case for wild-type
mitochondria [45, 46]. Broadly speaking, it seems
that major changes to mitochondrial morphology are
associated with an enormous variety of altered cellu-
lar states.

To date, it remains unknown how mitochondrial
dynamics induce or reflect changes in cellular state;
by and large, only extreme and irreversible endpoints
have been studied [47–50]. As a result, it seems that a
better understanding of howmitochondrial dynamics
are associated with transitions through cellular state
space would at least provide a non-terminal imaging-
based means of tracking such transitions and may
even inform their nature. In order to describe the
mitochondrial dynamics, we must have a way to
quantitatively describe mitochondrial structure and
morphological changes; additionally, such a quant-
itative description may provide a useful state space
in which to track changes in cellular state. Using
graph theory, topology, and mass-action-like kinet-
ics, we provide a range of approaches to quantitatively
describing mitochondrial structure and morpholo-
gical changes.

In this article, we will focus on mitochon-
dria of the budding yeast, Saccharomyces cerevisiae
(S. cerevisiae). We focus on this organism for sev-
eral reasons. First, yeast mitochondria are best under-
stood in terms of genetics and molecular biology,
with a host of known mutations that alter mitochon-
dria morphology and function [51–60]. Second, the
small size of yeast cells has enabled the completemito-
chondrial network structure to be determined in indi-
vidual cells, something that is far more difficult for
larger mammalian cells [47, 48, 61–63]. Finally, and
most importantly for our present purposes, the mito-
chondria of budding yeast are confined to the surface
of the cell, which allows important constraints on the
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Figure 1. After 3D imaging (A), data from the mitochondrial marker channel is run through MitoGraph, which segments the
mitochondria and establishes the graphical skeleton (B), leading to the weighted graphical structure (C). In (C), edges are not
drawn to scale—instead, edge thickness denotes the relative mitochondrial tubule length.

Figure 2. (A) Graphs are mathematical objects made up of points (nodes, vertices) and lines (edges) connecting none, some, or all
possible pairs of nodes. (B) The degree of a node in an unweighted graph is the number of edges emanating from that node: teal
nodes are degree-1 (nodes A, D, and F) while magenta nodes are degree-3 (nodes B, C, and E). (C) Nodes and edges can have
weights that correspond to useful quantities, such as edge weights representing the cost to travel between two city-nodes and node
weights representing the cost of staying in that city. Edges can be undirected (no arrow) or directed (arrow), with travel from one
node to another allowed if and only if there is an edge beginning at the first node and ending (arrowhead) at the second node.
Cycles are paths through a graph that start and end at the same node (e.g. the loop formed by the magenta nodes and their edges
to one another). The number of connected components of a graph is the number of disconnected islands of the entire graph: a
graph consisting of two copies of the graph in (B) would have two connected components.

mathematical representation of their structure [64,
65].

Generally, the shape of an isolated mitochon-
drion exists on a spectrum ranging from nearly-
spheres to tubules. These forms reflect the physical
structures comprising and associated withmitochon-
dria. As organelles bound by a lipid bilayer and con-
taining fluid, small and isolated mitochondria typic-
ally revert to a minimal-energy spherical shape [42].
However, when bound to the ER, the plasma mem-
brane, and/or the rigid rod-like structural proteins
within a cell, individual mitochondria often take on
a tubular form. The movement of bound molecular
motors or other bound proteins can induce structural
and corresponding morphological changes in mito-
chondria: this can take the form of either a change
in tubule length or the drawing-out of a branching
tubule from an existing mitochondrion (termed here
as ‘outgrowth’).

Although mitochondria can be quantitatively
characterized by a number of possible morphological

descriptors, the fact that mitochondria are so often
present in the formof interconnected tubules suggests
that networks are natural descriptors of their over-
all shape and structure [66, 67]. In fact, the struc-
ture of such a network is mandated by a combination
of physics (via membrane strain minimization) and
mathematics (via graph theory).

If we represent the backbone of themitochondrial
network as a mathematical graph (figure 2), where
we assign nodes (points, vertices) at the centers of
Y-junctions and the ends of tubules, then join those
nodes by edges (lines) if they are connected by a con-
tinuous tubule, we can immediately learn some net-
work constraints.

Nodes of degree 1, corresponding to ends
of tubules, are permitted. Two-way tubule junc-
tions do not have a clear biological interpreta-
tion; Sukhorukov et al describe them abstractly as
regularly-spaced locations alongmitochondria where
fusion can occur [68]. We see three-way Y-junctions
in nearly every experiment, corresponding to nodes of
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degree 3. Four-way X-junctions, however, are rarely
encountered in budding yeast mitochondrial net-
works (as opposed to e.g. 3D networks in cardiomyo-
cytes). This may be due to the configuration being
topologically unstable, such that a small perturba-
tion at the four-way X junction can quickly resolve to
two stable Y-junctions (a ‘T1 elementary topological
transition’), or due to differences in theHelfrich ener-
gies of the configures favoring two Y-junctions [69,
70]. Following the same reasoning, we suggest that
junctions defined where mitochondrial tubules are
fused will only transiently have a degree greater
than 3.

Mathematics provides additional constraints. The
handshaking lemma states that, if we add up the num-
ber of edges emanating from each vertex (the degree
of each vertex), it equals twice the total number of
edges in the graph,∑

vi∈V(G)

deg(vi) = 2|E|, (1)

where V(G) is the set of nodes of our graph G and |E|
is the total number of edges in G [71]. Since 2|E| is
an even number, and deg(vi) is always odd (the end
of a tubule has a single edge emanating from it, and a
three-way junction has three), there must necessarily
be an even number of nodes in the graph.

We can go a step further: the Euler character-
istic of a surface χ, a topological property of sur-
faces that depends on the number of holes or handles

on the surface, is equal to the number of vertices

(|V|), minus the number of edges (|E|), plus the num-
ber of faces (|F|), minus the number of connected
components (C⩾ 1) for a graph embedded on that
surface [71, 72]. Because the network incompletely
covers the sphere, the space it occupies is equival-
ent to a standard 2D plane, inducing a planar graph
restriction on mitochondrial networks. In budding
yeast, the mitochondrial network sits underneath the
surface of a spheroid, and for such a closed sur-
face, χ= 2. This leads to a relationship between |F|,
|E|, and |V| for the mitochondrial networks. Each
face of our graph consists of at least three edges,
and each edge can be shared by at most two faces.
Therefore,

3F⩽ 2|E|
|V| − |E|+ |F| −C= 1.

Combining these inequalities leads to (2), providing
an upper bound for the number of edges in a mito-
chondrial network in terms of the number of vertices
and connected components:

|E|⩽ 3|V| − 3− 3C⩽ 3|V| − 6. (2)

This result, which follows from Euler’s formula
for planar graphs, gives us yet another constraint
on the structure of the mitochondrial network. By
representing the network with a mathematical struc-
ture, we can rapidly limit the space of possible
mitochondrial network structures that we have to
consider inside budding yeast. The Universe of net-
works is further constrained via Kuratowski’s the-
orem, which describes particular structures prohib-
ited in the planar networks we consider here [71].

In many organisms, proteins exist and function
to induce physical alteration of mitochondrial struc-
ture, both within a single tubule and across mul-
tiple tubules. The most well-known of these pro-
cesses are fission, fusion, and mitophagy. Fission
describes the division of a mitochondrial tubule,
though not necessarily into two isolated mitochon-
dria. Fusion describes the opposite process: the join-
ing of two mitochondrial tubules to become a single
unit. Mitophagy, or the autophagy of mitochon-
dria, is a cellular process for degrading mitochon-
dria, likely to remove dysfunctional entities from the
cell. In addition to the processes described above,
mitochondrial morphology may also be altered
through ‘resorption’ (the absorption of a terminal
or pendant mitochondrial branch into its adjoining
tubule), though this process is poorly characterized;
its inverse process is ‘outgrowth,’ described above
[64].

Through a combination of the mitochondrial
structural processes described so far, an enormous
range of mitochondrial superstructures can be con-
structed, and indeed found, within cells. Such mito-
chondrial networks are readily visible through a high-
power light microscope; under observation, these
networks can be seen to undergo both large-scale
motion and reconfiguration, demonstrating that the
mitochondrial network of a cell is a dynamic sys-
tem. This knowledge is not new; indeed, there are
reports of mitochondrial networks published in the
late 1800s [73, 74]. What remains unclear is what
determines network morphology for mitochondria,
in particular, are local processes like fission and
fusion, taking place at random, sufficient to explain
the networks that we see, or does the cell need to
actively monitor and adjust its mitochondrial net-
works? Answering this type of question requires a way
to predict the types of networks that a given set of
morphological processes should produce, their stat-
istical distribution, and the effect of mutations on
the network organization. This, in turn, requires a
conceptual framework for thinking about mitochon-
drial structures and dynamics that can bridge the gap
between small scale local processes like fission/fusion
and large scale properties like network connectiv-
ity. Graph theory provides such a framework, and
our goal here is to explore the implications of graph
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theory results for mitochondrial structure, and vice
versa.

2. Motivation for this work

2.1. How can studying mathematics and physics
inform our understanding of mitochondrial
networks?
In order to understand the relationship between
mitochondrial network form and function, we must
have a way of quantifying each aspect. As networks,
mathematics and physics provide tools and represent-
ations that can and have been used for the quanti-
fication of mitochondrial network form. These tools
and representations provide more than just a means
of describing the networks, however; prior work in
physics andmathematics can informour understand-
ing of physiological steady states (via the Perron–
Frobenius theorem), ergodicity (through state-space
representation of networks), and variation (using
global and local spatiotemporal measures) in mito-
chondrial networks [75, 76].

Graph theory and topology offer some of themost
useful tools and representations for quantifying and
comparing mitochondrial networks.

Using graph theory, we can represent mitochon-
drial networks at increasing levels of complexity, from
unitless geometric representations at one end to spa-
tially embedded and constrained tubules at the other.
It also provides tools for deriving unique represent-
ations of individual networks, as well as local and
global metrics for describing different features of
those networks [71].

Tools from applied topology, while not typic-
ally used in the consideration of mitochondrial net-
works, provide representations for describing net-
works and their essential properties across multiple
length scales [77]. Of these representations, we will
in this work focus on the application of ‘persistent
homology’ and its associated metrics, which provide
broadly applicable and easily computable ‘barcodes’
that themselves can be compared with their distances
measured in an informative manner [78, 79].

Additionally, following up on questions raised in
the previous subsection, a better understanding of
the mathematical structure underlying the space of
‘mitochondrial’ graphs may give additional insight
into what we see under the microscope. How much
do mitochondrial networks vary across a population
of cells? How similarly do networks evolve in differ-
ent cells? Are there steady-state distributions of mito-
chondrial network structures we expect to see in large
populations of cells, and if so, how do they compare
to networks seen over time in a single cell (i.e. is net-
work evolution an ergodic process)?

The remainder of this work is organized as fol-
lows. Firstly, we will review some of the extant lit-
erature, give an overview of outstanding questions

regarding mitochondrial network morphology and
dynamics, and briefly describe relevant experimental
methods. Secondly, we will exploremathematical and
physical questions raised by the study of mitochon-
drial networks, emphasizing methods of represent-
ation and measurement, as well as provide a link
to state spaces and their associated statistical mech-
anics. Lastly, we will describe some biological ques-
tions raised by the study of mitochondrial networks
through the lenses of mathematics and physics, with
an aim of describing potential links between network
morphology and cellular function.

2.2. Why is it now an opportune time to heavily
study the intersection betweenmathematics and
mitochondrial networks?
Firstly, advances in experimental techniques, in par-
ticular wider-spread adoption of microscopy with
high spatiotemporal resolution (e.g. iSIM and lat-
tice light-sheet), enable us to capture mitochondrial
network dynamics on an event-by-event basis for
longer periods of time than ever before [63, 80–85].
Secondly, the low cost of computational infrastruc-
ture makes storage, processing, and analysis of such
data not just possible but reasonable; addition-
ally, the same infrastructure can be used to sim-
ulate mitochondrial networks in silico, accelerating
the experiment-theory feedback cycle and allow-
ing it to be implemented within a single labor-
atory [86–91]. Lastly, recent widespread adoption
of so-called ‘black box’ machine learning tech-
niques have catalyzed a corresponding movement for
understanding biological systems using interpretable
theory-based approaches, and the intersection of
mathematics and mitochondrial networks provides
opportunities for study using both classes of tech-
niques, along with the potential to build bridges
between them.

2.3. How can studying mitochondrial networks
benefit mathematics and physics?
Networks that change over time are the subject of
study across a wide range of fields, from the study
of social interactions networks in sociology, to neur-
onal rewiring within brains in neuroscience, and bey-
ond [92–94]. However, our understanding of the
‘rules’ guiding the evolution of those networks is still
quite narrow.

How can we develop better theory and tools
for the investigation of complex, evolving networks?
Ideally, we would test new hypotheses on real-world
datasets of an addressable size that change in limited,
understandable ways. Mitochondrial networks satisfy
both of these criteria: the number of nodes and edges
is computationally addressable (on the order of hun-
dreds or fewer in S. cerevisiae) and there exist fewer
than ten types of structural modifications that can
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occur within the network [48]. Also, the morpholo-
gical changes that take place on mitochondrial net-
works, in combination with the rules limiting net-
work structure, form a heretofore uncharacterized
class of graphs: planar graphs exclusively of degrees
1 and 3. Having a biologically-inspired generative
mechanism for these graphs complements the tradi-
tional combinatorics-based approaches to character-
izing graph classes.

These considerations immediately lead to fur-
ther questions, What is the space or range of net-
work structures, i.e. graphs, that mitochondria take
on inside living cells? How does the space and variety
of mitochondrial network structures differ from that
ofmitochondrial-like networks?What is the structure
of mitochondrial network space under the restriction
of ‘biological’ graph modifications?

2.4. What is the current state of the field?
Although a great deal of research has been done
on mitochondrial structure and function, we will
limit our brief review of the literature to prior work
that has included efforts at quantitatively modeling
the mitochondrial network. These studies are not
large in number. Susanne Rafelski and collaborat-
ors developed the segmentation and analysis soft-
ware MitoGraph (figure 1), which has enabled them
to show (among other results) that mitochondrial
network volume scales linearly with cellular volume,
that mitochondrial networks resemble ‘geographical
networks,’ and the fission–fusion double knockouts
exhibit quantitatively distinct network properties
from those in wild-type yeast [47, 48, 61]. Meyer-
Hermann et al developed a graph-theoretic algeb-
raic framework for describing mitochondrial net-
works and their relationship with the mammalian
cytoskeleton [68, 95]. Shirihai et al have conducted
studies on the relationship between mitochondrial
dynamics and quality control, as well as how those
concepts might be related to network structure [96,
97]. Johnston et al have published many papers
pertaining to mtDNA population dynamics; some
of their more recent publications examine possible
benefits of mitochondrial network structure from the
perspectives of both cellular physiology and mito-
chondrial mutational burdens [38, 98–101]. Chialvo
et al combine the theoretical framework fromMeyer-
Hermann’s group and progressive coarse-graining of
mitochondrial images to study mitochondrial net-
work structures through the lenses of criticality
and percolation theory [49, 50]. Quinn et al use a
range of representations of mitochondrial networks,
such as dynamic social networks and embeddings
derived from graph convolutional neural networks,
to evaluate changes in mitochondrial morphology
over time [102–105]. The Mitometer algorithm from
Lefebvre et al uses graph features to help track the
motion of mitochondria [91].

3. Mathematical questions raised by the
study of mitochondrial networks

We begin with some definitions.
Networks are often represented as graphs

(figure 2): mathematical structures consisting of
points (nodes, vertices) that may be connected to one
another by lines (edges) (figure 2(A)). The degree
of a node counts the number of edges emanating
from that node (figure 2(B)). Edges may be assigned
weights (numerical values) describing some char-
acteristic of that edge (e.g. tubule length, distance
between rail hubs, pipe diameters, etc) (figure 2(C)).
Graphs with weighted edges are known as ‘weighted
graphs’ and those lacking weights as ‘unweighted
graphs.’ Weighted graphs may be embedded into
spaces whose axes have the same units as the edge
weights; we call these ‘spatially embedded graphs.’
Increasing the information associated with the rep-
resentation of a network (e.g. weights, locations)
correspondingly increases the complexity of ana-
lysis. For that reason, we focus here mainly on
unweighted graphs, though we do not mean to imply
that weighted or spatially-embedded graph repres-
entations have no role in representing further aspects
of mitochondrial networks [71].

3.1. Mitochondrial networks as unweighted graphs
In wild-type S. cerevisiae, mitochondria are located
beneath the spheroidal cell cortex, inducing mito-
chondrial networks to be planar (due to the concord-
ance between the surface of a two-dimensional sphere
and the two-dimensional Euclidean plane joined with
a point at infinity) [48]. We note that the planar-
ity claim above may not hold in some cell types due
to substantial differences in cytoskeletal structures,
mitochondrial tethering, and other biological fea-
tures, but in budding yeast it is physically enforced by
the tethering of mitochondria to the cell cortex [65].

Graph representations ofmitochondrial networks
by both Sukhorukov and Rafelski involve assigning
nodes to three-way junctions of tubules and ends of
tubules, then inserting an edge between two nodes
when they are physically connected by a continuous
membrane [47, 48, 68, 95]. As a result, we can classify
mitochondrial networks as undirected, unweighted,
simple (no edges from a node to itself) planar graphs
with nodes of degrees 1 or 3 that are not necessarily
connected. To our knowledge, there does not exist a
specific classification in mathematics corresponding
to this set of graphs, and we therefore refer to it here
as the set of ‘mitochondria-like graphs.’ However, a
well-studied class of graphs forming a subset of the
mitochondria-like networks are cubic graphs, which
are constructed exclusively from degree-3 nodes.
Although much is known about cubic graphs, the
incorporation of pendant (degree-1) nodes into such
graphs allows for the possibility of boron tree-like
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mitochondrial networkswhose structures correspond
to boron tree graphs (unrooted binary trees with
nodes of degrees 1 and/or 3) [106]. These struc-
tures may also emanate from edges of cubic graphs
or serve as bridges between them, though not all
such constructions are allowed. As a result, the space
of possible mitochondrial graph structures is sub-
stantially greater in size than the numbers of cubic
graphs and boron trees for a given number of nodes.
Another related structure is the Bethe lattice, con-
sisting of single loop-free component with infinite
nodes all of which are degree three, which can be
seen as an infinite limit of the boron tree. Viana et al
showed that Bethe lattices exhibit features similar to
fission-fusion double-knockout mitochondrial net-
works, likely due to those mutants’ typically tree-
like mitochondrial networks [48]. At the other end
of the spectrum, Brown et almodeled particle search
times for intact and ‘decimated’ honeycomb net-
works, demonstrating that increasing the number of
loops in such networks lead to continual improve-
ments in efficiency [45].

Given this set, we can construct a correspond-
ing state space (‘mitochondrial network state space’)
by assigning different (non-isomorphic) graphs as
unique states and allowing transitions between two
states if a single morphological change (fission,
fusion, etc) performed on the first graph induces
an isomorphism between the modified and second
states. Our choices of an unweighted-graph repres-
entation and isomorphism-based difference are not
unique; we discuss additional representations later in
the article.

Having selected a quantitative representation of
mitochondrial network structures, we are now con-
fronted with the problem of how to compare those
structures. The binary evaluation of whether two
mitochondrial network structures are identical is
known in mathematics as the graph isomorphism
problem. Although in general the time complexity
of evaluating whether two graphs are isomorphic
is now believed to be quasi-polynomial, planarity
reduces the time to the square of the number of ver-
tices or less [107, 108]. Planar graphs can be given
unique identifiers (canonized) that have length in
the order of the logarithm of the number of ver-
tices and efficient software exists to generate these
canonizations [109]. The ability to index all possible
mitochondria-like graphs also provides a framework
for counting the distribution of graphs in real data-
sets. Although great progress has been made in the
development of planar graph algorithms, many basic
questions are still unanswered.

Given these definitions and background, we can
now ask deeper-reaching questions. Some of these
questions are primarily mathematical in nature. For
example, how many mitochondria-like graphs are
there, for a given number of nodes? As with the gen-
eral case of enumerating unlabeled planar graphs, an

analytical expression to calculate this number has not
yet been reported. Upper and lower bounds can be
established, however.

The planarity of mitochondria-like graphs
enables us to use extant results from the full fam-
ily of planar graphs to set a loose upper bound
of 30.061N, which was derived using information-
theoretic methods [110].

For a lower bound, we can consider the sum of
two classes of graphs. The first is the set of unlabeled
cubic outerplanar graphs, which only have nodes of
degree 3 and can always be drawn in a 2D plane
such that all nodes are adjacent to the outermost face
of the graph. For example, a pyramid or tetrahed-
ron with nodes assigned to its corners is not out-
erplanar when flattened onto the plane because it
must always contain a node drawn within the bound-
ary of that drawing. We use the size of this set as a
lower bound because there does not presently exist an
asymptotic scaling relation for unlabeled cubic planar
graphs [111]. The second component of the lower
limit is the set of ‘boron trees,’ which are trees with
nodes of degree either one or three [112, 113].

Combining these bounds gives the following
expression:

1.255 ∗ (2.48)|V|

|V|2.5
+

0.009099 ∗ (7.5036)|V|

|V|2.5

⩽ |MG(|V|)|< 30.061|V|,

where |MG(|V|)| is the number of mitochondria-like
graphs with |V| vertices. These bounds are loose,
as they were obtained for simple connected graphs,
while mitochondria-like graphs may be composed of
multiple connected components that may not belong
to the classes of cubic outerplanar graphs or boron
trees.

It is possible to outline a recursive procedure
for determining the number of mitochondria-like
graphs for a given number of nodes. We reiterate
that mitochondrial-like networks are not necessar-
ily connected in a single component: at any given
point in time, there is no guarantee that every node
or edge is accessible to all of the others. Therefore,
to calculate the number of unique (non-isomorphic)
mitochondria-like graphs, we can use the following
relation:

|MG(|V|)|=
∑

K∈p(|V|)

∏
k∈K

(
|MG(k)|+m(k,K)− 1

m(k,K)

)
,

(3)

where p(|V|) is the number of partitions of |V|, which
enumerates the unique ways to generate the positive
integer |V| from positive integers; K is a partition of
|V| unique up to permutation; k is a member of that
partitioning; and m(k,K) is the multiplicity of k in K
(that is, how many times k appears in K).
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Figure 3. Theoretical fusion event leading to non-planar graph. Mitochondrial-like networks must be planar, so the depicted
fusion event is not biologically permitted, but is still mathematically possible, requiring additional constraints on fusion
processes. Nodes represent physical three-way junctions and ends of mitochondrial tubules; edges signify a mitochondrial tubule
connecting the two nodes. Yellow nodes from the planar graph on the left undergo fusion to form the non-planar graph on the
right due to an unresolvable edge crossing. It is not possible to draw the resulting graph in a plane such that each red node has
edges to each blue node.

Conceptually, we can interpret (3) as follows. A
mitochondria-like graph with |V| nodes may con-
sist of a single connected component containing |V|
nodes, two connected components (separated net-
works) containing |V| − k and k nodes, three connec-
ted components containing |V| − j − k and j and k
nodes, etc. If we add up the number of mitochondria-
like graphs that contain each of the smaller number of
nodes and add that to the number of mitochondria-
like graphs that consist of a single connected compon-
ent containing N nodes, we should end up with the
total number of possible mitochondria-like graphs.
However, some partitions may include multiples of
the same number (e.g. 4= 1+ 1+ 2, with 1 showing
up twice), and so we must account for identical smal-
ler networks appearing in duplicate (requiring calcu-
lation of combinations with replacement).

Carrying out this computation is non-trivial:
although the recursive definition allows previously
stored results to be re-used, the process of generat-
ing all connected and non-isomorphicmitochondria-
like graphs for a given number of nodes must be done
exhaustively. Although we would like to take inspir-
ation from the underlying biological processes, any
strategy for doing so must take into account the con-
straints on morphology of mitochondria-like graphs
in terms of planarity and degree. For example, it must
be noted that a theoretical ‘fusion’ event can lead to
the generation of a non-planar graph from an origin-
ally planar mitochondria-like graph (figure 3).

This observation immediately leads to addi-
tional mathematical questions. Under what morpho-
logical operations (e.g. fission, fusion, etc) do graphs
form closed sets? Can we define a fusion opera-
tion that is guaranteed to result in a mitochondria-
like graph, and if so, how? One possible solution
for defining a fusion process that respects biolo-
gical constraints such as planarity is to represent
graphs embedded in space, replacing operations on

graphs with operations on projections. Some con-
siderations related to embedding mitochondria-like
graphs in space will be discussed below. Does such a
fusion function, in combination with the other mor-
phological operations, enable the generation of all
mitochondrial-like networks? What features, meas-
ures, or heuristics of these graphs exhibit the most
variance or are most informative?

Before moving on, we believe it worth noting that
the graph-based description of mitochondria, while
generally effective, is not necessarily comprehensive.
For instance, donut-shaped mitochondria with tor-
oidal skeletons have been reported in the literature
as a result of cellular stress (e.g. hypoxia) and can be
generated through the fusion of the two ends of an
isolated rod-like mitochondrion or the fusion of two
rod-like mitochondria, but our formulation does not
permit such a structure [41, 114–117]. Using more
generalized representations, such as pseudographs
that allows loops and multiple edges between the
same pair of nodes or hypergraphs, may more effect-
ively and completely describe mitochondrial network
structure [118–122]. At the time of writing, however,
relatively few computational tools exist to conduct
analyses using those representations.

3.2. Statistical mechanics of mitochondrial
network space
In the preceding section we described how to enu-
merate the possible mitochondria-like networks that
could exist subject to the constraints on graph struc-
ture. This enumeration leads to the question of which
mitochondria-like graphs can actually be produced
by known physical processes that operate on real
mitochondria. Given the processes that sculpt the
mitochondrial network, can one reach any network
in the space of possible networks, starting from any
other network? Is the answer to the prior question dif-
ferent if those processes occur randomly in space and
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Figure 4.Morphological operations in mitochondrial
networks.

time? In otherwords, are allmitochondria-like graphs
reachable starting from any particular graph? Second,
can we predict the distribution of mitochondria-like
graphs that should be observed at steady-state? The
first question falls into the realm of evolutionary
graph theory while the second represents statistical
mechanics.

Given the unweighted graph representation of
mitochondrial networks, we can explicitly construct
and define mitochondrial network state space.

We first define the states. Here, mitochondrial
networks will be designated as different states if
their unweighted graph representations are non-
isomorphic. Two states are accessible (adjacent) if
there is a single morphological change that can con-
vert one state into the other.

Mitochondrial networks are known to undergo
seven types of morphological changes, with the res-
ults of changes to minimal relevant structural ele-
ments (e.g. a single edge, component, etc) illustrated
in figure 4. In depicting these local operations, we
assume that in a single step only the shown nodes and
edges can undergo a change. The possible operations
are:

(i) Fission
(a) Type 1: Fissionmaintains the number of con-

nected components
(b) Type 2: Fission breaks a component into two

new connected components
(ii) Tip-tip Fusion (TT-fusion)

(a) Type 1: Fusionmaintains the number of con-
nected components

(b) Type 2: Fusion joins two connected compon-
ents into one new connected component

(iii) Tip-side Fusion (TS-fusion)

(a) Type 1: Fusionmaintains the number of con-
nected components

(b) Type 2: Fusion joins two connected compon-
ents into one new connected component

(iv) Outgrowth: a new tubule emerges from the side
of an existing tubule

(v) Resorption: an extant tubule is absorbed into one
of its adjacent tubules

(vi) Mitophagy: a network component is degraded
(vii) Vertex Flip: two adjacent degree-3 nodes tran-

siently merge and re-equilibrate in a flipped
orientation.

How do these changes relate to one another? Firstly,
we note that fission and TT-fusion are inverse oper-
ations, as are outgrowth and resorption. Mitophagy
does not have a single-operation inverse, as there is
no de novomitochondrial biogenesis in the absence of
extant mitochondria, though fission on isolated two-
node components may serve as a functional inverse.
Additionally, we assume that only isolated mitochon-
drial tubules, consisting of two degree-1 nodes con-
nected by an edge, are subject to mitophagy and
thereby destroyed. In order to account for this, we
introduce the dispersion parameter α, defined as the
fraction of degree-1 nodes that are adjacent to other
degree-1 nodes. It is unclear whether TS-fusion has
a single-operation inverse: it is possible that fission
could take place at a three-way junction, but there is
not yet biological evidence to support this as a suffi-
ciently common occurrence; alternatively, in the case
of pendant edges, resorption could serve as a spe-
cialized inverse operation. Vertex flips alter the local
configuration of a mitochondrial network but do not
change the number of each type of node, enabling
more rapid exploration of graph structures.

Equipped with states and permissible transitions,
we can represent mitochondrial network state space
itself as a graph: the nodes are non-isomorphic
mitochondrial-like networks and an edge is con-
structed between a pair of nodes if one of the
above morphological operations converts one node
into the other. A standard unweighted graph may
not be the best representation of this space, how-
ever: it is reasonable to associate directionality with
state transitions, as morphological operations are not
their own inverses, suggesting a directed-graph state
space representation. Similarly, there may be mul-
tiple morphological operations that convert one state
into another, in which case a choice must be made
whether to aggregate equivalent operations together,
or to allow multiple (potentially directed) edges in
the structure (enabled via a hypergraph, multigraph,
or pseudograph structure). Lastly, assigning edge
weights in state space can be useful: these could cor-
respond to the multiplicity of morphological opera-
tions (i.e. fission on distinct edges leading to the same
resultant graph), experimentally measured transition
rates, and/or other relevant properties.
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Construction of this state space leads to fur-
ther questions, some of which are more biological
in nature. What are the fundamental properties of
mitochondrial network state space? Does the state
space exhibit some form of detailed balance? Are
the dynamics of mitochondrial network morphology
ergodic? How does the set or space of mitochondrial
networks that cells ‘sample’ compare to the space of
mitochondria-like graphs? If two ormore cells exhibit
the samemitochondrial network ‘state’ at some point
in time, how do the future trajectories of those cells
through mitochondrial network state-space differ? If
the observed distribution of graphs is substantially
different from that predicted by the model, it would
suggest that the model is missing one or more addi-
tional processes or else is missing regulatory linkages
governing the processes: for example, a dependence
of one or more of the rates on one or more structural
features of the graph.

We can begin to address these questions through
the development of mass-action-like equations
describing the change in the number of different node
types over time, with n1 and n3 corresponding to the
number of nodes of degrees 1 and 3 in the network,
respectively. Although the number of each node type
is a non-negative integer, we can formulate equations
in the continuum limit using a chemical-reaction-
theory-like approach for the purposes of steady-state
analysis.

We make two sets of assumptions. First, that
TT- and TS-fusion are both second order processes,
as nodes require other nodes or edges for fusion.
Second, that fission, mitophagy, outgrowth, and
retraction are all at most first-order, as these events
do not seem to require interaction between multiple
nodes but may depend on the overall size of the net-
work. These lead to rate equations of the following
form (though the exact terms may differ):

Fission βfis,1 = 2kfis|E|= kfis (n1 + 3n3) . (4)

TT-Fusion βttf,1

=−1

2
kfus,tt

[
αn1 (αn1 − 2)+ 2α(1−α)n21

+
1

2

∑
vi∈L(G)

[
2(1−α)n1 − 2

−
∑

vj∈{N2(vi)∪N3(vi)}

(
3− deg(vj)

)]]
. (5)

TS-Fusion βtsf,1

=−kfus,ts

[
αn1

(
|E| − 1

)
+
(
1−α

)
n1

(
|E| − 3

)]

=−1
2
kfus,tsn1 [n1 + 3n3 + 4α− 6] . (6)

βtsf,3 =−βtsf,1

Outgrowth βout,1 = βout,3 = kout|E|

=
1

2
kout (n1 + 3n3) . (7)

Resorption βres,1 = βres,3 =−kres(1−α)n1. (8)

Mitophagy βaut,1 =−2kautα. (9)

Here, α is the dispersion fraction defined above
and βX,Y represents the rate of process X acting on
nodes of degree Y. In the formula for TT-Fusion
(5), L(G) refers to the leaves (degree-1 nodes) of
the graph G and Nk(vi) is the set of nodes in the
k-neighborhood of vi (the set of nodes accessible
after k hops). The sum over neighborhoods is per-
formed in order to avoid prohibited fusion events
within each connected component, which lead to self-
loops or multiple edges between the same pair of
nodes. We describe mitophagy as occurring at a con-
stant rate, though it can only affect the relevant sub-
population of degree-1 nodes. The rate constants ki
are experimentally determined. We must note that
these equations are unlikely to describe the full beha-
vior of geometrically-constrainedmitochondrial net-
works, as the breadth of fusion events permitted by
this theoretical framework can allow tubules to fuse
that would not be able to do so in situ, leading a
prohibited network structure due to a loss of graph
planarity.

Combining rates for n1 and n3 enables us to cap-
ture the net rate of creation and destruction of those
node types, leading to rate equations of the following
form:

dn1
dt

= βfis,1 +βttf,1 +βtsf,1 +βout,1 +βres,1 +βaut,1

(10)

and

dn3
dt

= βtsf,3 +βout,3 +βres,3. (11)

Taking the steady-state limit of dn1
dt = dn3

dt = 0
for (10) and (11) leads to:

βfis,1 +βaut,1 = 2βtsf,3 −βttf,1. (12)

By invoking our prior assumptions about the reac-
tion orders of mitochondrial reconfiguration pro-
cesses, we can rewrite (12) in terms of n1 and n3
to form the most general model describing those
processes:

a0n1 + a1n3 + a2 = b0n
2
1 + b1n1n3 + b2n1 (13)

Here, the parameters ai and bj are linear combina-
tions of rate constants from (4)–(9).We exclude a first
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Figure 5.Mitochondrial networks of budding yeast (strain SRY123, mitochondria labeled with mRuby2, generous gift of S.
Rafelski lab) grown in synthetic complete media with a carbon source of either glucose (A) or glycerol (B) were captured at 20
time points spaced 30 seconds apart using spinning disk confocal microscopy. Networks were converted into graphs using
MitoGraph, processed using pynauty, analyzed via linear regression using statsmodels, and plotted using matplotlib and
seaborn [61, 109, 123–126]. Data (magenta X’s) from a previous study [48] is shown for data subject to the mitochondria-like
network (‘MLN’) definitions (section 3.1) from this work (C) as well as in its totality (D). Black boxes and error bars designate
means and one standard deviation of n3 for individual values of n1. Curves of best fit are shown by thicker black dashed lines,
with 95% confidence intervals in thin black lines.

order term in n3 on the right-hand side (RHS) of (13)
as it would require tip-to-side fusion to increase in
probability if the number of edges increases, regard-
less of the number of degree-1 nodes, while both types

of nodes are required to execute the fusion operation.
Similarly, we also exclude a constant term from the
RHS of (13) as tip-to-side fusion is impossible for
the many states lacking degree-1 nodes, prohibiting
a constant baseline probability of fusion.

Rearranging (13) leads to an expression for n3 in

terms of n1 at steady state:

n3 =
−b0n21 +(a0 − b2)n1 + a2

b1n1 − a1
. (14)

Examination of n3 vs. n1 for mitochondrial
networks measured in live yeast (figure 5) reveals
generally positive scaling of n3 as n1 increases, imply-
ing that the leading term of a suitable model will have
a positive coefficient as n1 →∞. The leading term
of (14) implies that n3 ≈ −b0

b1
n1 as n1 →∞. To sat-

isfy the positivity requirement, either: (1) exactly one
of b0 and b1 is negative and the other non-zero, or (2)
at at least one of b0 and b1 is 0. If b0 is negative, fusion
must be less likely as n1 increases. Alternatively, if b1 is
negative, then at least one of TT- and TS-fusion must
decrease in probability as both n1 and the number of
edges increase. We do not believe either of these con-
clusions to be likely and therefore reject the model
described by (14).
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Therefore, we must consider the cases in which at
least one of b0 and b1 is 0, and in doing so obtain the
following expressions:

n3 =
b0
a1
n21 +

b2 − a0
a1

n1 −
a2
a1

b0 ̸= b1 = 0

(15)

n3 =−a0 − b2
a1

n1 −
a2
a1

b0 = b1 = 0. (16)

We note that, as any product of n1 and E= n1 +
3n3 must contain nonzero n21 and n1n3 terms, b0 = 0
implies b1 = 0.

Following a similar approach as before for
model (15), we find that a1 > 0, implying that fis-
sion and possibly mitophagy increase in probability
in first-order as E increases. Conversely, inmodel (16)
we must have either a1 < 0 or a0 < b2. Both of these
scenarios are permissible, so both models are poten-
tially consistent with the data. However, fitting the
data to a quadratic model with its associated con-
straint failed to converge, with the quadratic coef-
ficient tending towards zero. We therefore reject the
quadratic model (15) and conclude that, in this study,
b1 = 0, indicating that a mass-action approach to
modeling the data does not describe a mechanism of
fusion that is second-order in n1 and n3. Biologically,
this implies (through the lens of amass-action frame-
work) that TT-fusion should occur broadly while
TS-fusion is either rare, slow, or (more likely) a pre-
dominantly local process. If TS-fusion is either rare
or slow, outgrowth should be the primary generator
of three-way junctions.

In contrast, a linear model fits each of the evalu-
ated datasets with high significance but lowR2, imply-
ing that this model can explain only a small propor-
tion of the data. Indeed, this model fails to capture
the relatively highmean value of n3 at the lowest value
of n1 as shown in figure 5(B). However, based on our
assumptions, the linearmodel can be used to describe
fission and mitophagy. This may be because fission
andmitophagy are carried out using components that
are not embedded in the mitochondrial membrane,
potentially satisfying the well-mixed assumptions of
mass-action kinetics, unlike a local fusion process.
However,

We leave to a further study the exact determ-
ination and interpretation of the coefficients ai,bj.
However, using this approach, it may be possible to
obtain values for kfis and kfis from the values of ai and
bj based on network structures alone. If so, the res-
ults could be compared to directly measured exper-
imental values of those rate constants obtained with
microscopy.

3.3. Integration of physical properties into
mitochondrial network representations
Representing mitochondria as graphs allows the
powerful apparatus of graph theory to be brought

to bear on this organelle, but doing so comes at the
price of ignoring some aspects of shape that are likely
important for real mitochondria. Two key features
ignored by the graph representation are the physical
lengths of the edges and the embedding of the graph
in 3D space. Integrating tubule lengths or volumes
into a mitochondrial network state space is likely
quite useful, as doing so should introduce a con-
servation law on total mitochondrial volume within
a cell on short timescales (i.e. before a mitophagy
event) [47]. However, because length and volume are
continuously varying quantities (as opposed to the
discrete number of nodes and edges), state spaces
integrating these quantities should also be continu-
ously varying. Sukhorukov et al address this through
the introduction of a minimal mitochondrial unit,
which has a length of approximately 0.5 µm (cor-
responding to the diameter at which mitochondria
convert from tubules to spheroids) [68]. While this
approach enables effective analysis and predictions, it
also restricts mitochondrial fusion to a discrete set of
positions along tubules.What other approaches could
be used to combine tubule lengths and network struc-
ture into a single, cohesive framework?

One appealing candidate, persistent homology,
comes from the field of applied topology. Persistent
homology describes the persistence of topological
features of a network, such as the number of connec-
ted components or cycles, as the scale of resolution
of the representation changes [78, 127, 128]. The key
idea is that ‘noisy’ features will rapidly emerge and
disappear as the length scale changes, while funda-
mental topological features of the data should per-
sist for much longer. To compute persistent homo-
logy, both a topological representation of the net-
work and an associated means of describing dis-
tances within the network are selected, then a filtra-
tion parameter is varied across the range of possible
distances. The output of this analysis is a set of bar-
codes describing the distances scales over which n-
dimensional holes (a hole in two dimensions, a void
in three dimensions, etc) in the graph are present;
these barcodes can be converted into a wide range of
representations with well-established associated dis-
tance metrics for the study of unweighted, weighted,
and directed networks [78]. We propose here the use
of persistence diagrams to summarize mitochondrial
network structures at a moderate level of complex-
ity (ignoring spatial positioning but retaining length
information) and then constructing a minimal state
space that captures variation within and across cells
over time.

We perform persistent homology analysis on
mitochondrial networks as follows. As input, we take
in either the unweighted or weighted graph rep-
resentations of individual mitochondrial networks
(figure 6(A)). From these graphs, we construct
Vietoris–Rips complexes [127, 129]. Considering
each node of the weighted graph as the center of a
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Figure 6. Processing the graphical structure of mitochondrial networks through a persistent homology pipeline reveals differences
between the mitochondrial networks of wild-type and fission-fusion double knockout yeast. A graph extracted from a
mitochondrial network (A) can be processed into PDs using measured tubule lengths (B, top, ‘weighted’) or assigning each edge a
unit length (B, middle and bottom). If length is ignored, the graph can be considered either in its native unweighted form
(B, middle) or converted into a fully-connected weighted graph using the graph geodesic distance (B, bottom), whose value is the
shortest path between a specified pair of nodes. Single points on a persistence diagram may have multiplicity greater than 1. Once
all graphs are processed, pairwise distances between PDs of different mitochondrial networks can be computed via the Bottleneck
metric, leading to the generation of heatmaps (C). Data in (C) are separated into wild-type (top half of each heatmap) and
double-knockout (bottom half), showing increased similarity of pairwise distances within a single strain as compared to different
strains. H0, H1, and H2 refer to homology groups in 0, 1, and 2 dimensions, respectively.

sphere, we take a parameter ϵ= 0 as the radius of the
spheres and temporarily remove all of the edges from
the graph.Next, we increase ϵ and reintroduce an edge
to the graph once the value of ϵ reaches half the weight
of that edge, i.e. when the circles of radius ϵ centered
at each of the bounding nodes become tangent. Each
time an edge is re-introduced, we compute the size
of the homology groups of the modified graph struc-
ture. The process is equivalent for unweighted graphs,
though methods for choosing how and when to rein-
troduce edges vary from all at once to with a delay
based on some feature(s) of the nodes and edges (e.g.
the presence of cycles, cliques, etc). The size of the 0th
dimensional homology group counts the number of
connected components of the graph. The size of the
1st homology group counts the number of cycles with
at least four edges, because a three-edge loop forms
the boundary of a 2-dimensional triangular simplex,
which is considered to be a fundamental component
for constructing simplicial complexes, rather than a
void or hole. Similarly, higher dimensional homology
groups have sizes corresponding to the number of
higher-dimensional holes that are present [128, 130].

With this in mind, we can consider the relation-
ship ϵ and the size of the homology group. When ϵ

reaches a value at which a new member of a homo-
logy group is introduced (e.g. a 4-cycle is formed),
that construct is considered to have a ‘birth’ value
equal to ε. As ϵ increases further, previously generated
simplicesmay disappear, such as when two connected
components re-join into a single component, or the
splitting of a cycle into two via the re-introduction
of an edge. The value of ε at which a component
disappears occurs is known as the ‘death’ value for
that component. Once ϵ reaches the maximum edge
weight of the graph, the final edge is re-introduced,
and the graphical structure no longer changes. By
plotting the ‘birth’ and ‘death’ values for simplices
across multiple homological dimensions, known as
a persistence diagram (PD), we can get a sense of
how the structure of the mitochondrial network var-
ies over its associated length scales (figure 6(B)).

It is worth noting that this analysis is not neces-
sarily very informative for an isolated unweighted
graph, as all edges are re-introduced at a single step.
However, by computing the shortest path between
all pairs of nodes, then constructing a graph with
the original nodes and new edges between all pairs
of nodes with weights corresponding to the shortest
path lengths (which may be infinite), we can perform
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a much more informative persistent homology ana-
lysis using this shortest-path graph (figure 6(B), bot-
tom). Once the persistence diagram is obtained, it can
be used to compare two graphs and quantify their dif-
ference. Here, we use the ‘bottleneck’ distance, which
is the shortest euclidean distance d required for a per-
fect matching between points on two different dia-
grams such that the maximum distance between any
matched pair of points is d [131]. Thismethod of ana-
lysis can distinguish between wild-type mitochon-
drial networks and those in fission/fusion double
knockout yeast strains, and also suggests that mor-
phological differences within the analyzed popula-
tions are much smaller for double knockouts than for
wild-type yeast (figure 6(C)).

Although the proposed state space is approxim-
ate, it captures network features acrossmultiple scales
and may provide insight into the full, latent mito-
chondrial state space. Persistent homology can also
be extended to study the evolution of networks over
time, enabling the detection of nodemovement along
a tubule without changes to the underlying network
structure [129, 132]. Although persistent homology
is not commonly used in the analysis of biological
datasets, there are examples of its success in the neur-
oscience and protein structure literatures, as well as
introductions to its practical usage and implementa-
tions in multiple programming languages.

In deciding what mathematical features to use
to describe graphs, it may be important to consider
what aspects of structure are biologically important
so as to be sure to preserve them in the representa-
tion. Although we have chosen one way to define the
placement of nodes and edges in the construction of a
mitochondria-like graph, other representations (such
as placing nodes at the locations of mitochondrial
nucleoids and edges between nucleoids in the same
connected component) may prove fruitful. Also, the
embedding of a graph in three dimensional spacemay
be extremely important in terms of how the mito-
chondria are able to distribute biochemical products
through the cell, etc. Topology provides additional
tools for comparing networks embedded into sur-
faces. The graph-theoretic notion of isomorphism
provides a necessary but insufficient condition for
evaluating the equivalence of two embedded mito-
chondrial network structures, as a connected com-
ponent may be contained with a face of a larger
and different component, which would be considered
identical under isomorphism to a scenario in which
the smaller connected component is on the opposite
side of a cell from the larger component.

To remedy this, we canuse the topological concept
of isotopy with fixed vertices, which (loosely) is a con-
tinuous deformation of one graph to another that
preserves the relative connectivity of the edges and
vertices while not introducing new loops or edge
crossings [133]. Determining whether two embed-
ded graphs are isotopic can likely be accomplished

with a linear-time algorithm based on established
work [108, 134–136]. Related and likely informative
approaches also include homotopy groups, persist-
ent homotopy, and analysis of polynomial invariants
of mitochondrial-like networks [137–143]. Beyond
topology and persistent homology, recent advances
in the study of spanning trees could be applied to
any graph representation of mitochondrial networks,
particularly in the study of structural differences bey-
ond isomorphism and isotopy, as well as for the
deeper study of local structural features across net-
works [144–148].

4. Biological questions raised by the study
of mitochondrial networks

It is hopefully clear at this point that mitochondrial
networks are interesting and fruitful targets of study
formathematicians and physicists.Why should biolo-
gists care about mitochondrial networks through the
lens of mathematics?

We believe that such an approach has already
proven its value, through the study of the
fission-fusion double knockout in S. cerevisiae
(∆dnm1∆fzo1). Earlier studies of this mutant
demonstrated fitness defects but did not show dif-
ferences in mitochondrial network structure; indeed,
networks in such mutants were often referred to as
indistinguishable from wild-type yeast [149, 150].
However, in recently published work, it was shown
that mitochondrial networks in the double knock-
out strain had both altered structure and corres-
pondingly different graph-theoretic properties as
compared to the wild-type strain [48]. This is sup-
ported by our persistent homology comparisons in
figure 6, which suggest that mitochondrial networks
in double knockout yeast are not only distinct from
wild-type but also potentially show less diversity of
structures. Beyond providing a way to identify dis-
criminate between cells with similar appearances
and different fitness, graph theory also raises bio-
logical questions about the mechanism by which
features of the graphs are created. These questions
thus require a combined biological andmathematical
approach.

For example, as the experimental biology toolkit
has grown, it has become increasingly clear that mito-
chondrial networks serve as integrators of cellular
information, changing dynamics and structure in
response to both externally and internally induced
changes in cellular state [40, 41]. How is the inform-
ation integrated and then translated into changes in
mitochondrial morphology? Which small molecules,
proteins, post-translational modifications, and path-
ways are involved, and how do they communicate
this information? How does inter-organelle interac-
tion impact mitochondrial function, structure, and
dynamics (and vice versa)[19, 21, 151]?
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Figure 7. Linear scaling of edges with nodes in mitochondrial networks. The dashed lines in each panel demarcate the theoretical
edge-node scaling limits of slope 1

2
(lower) and 3

2
(upper).

In S. cerevisiae, a daughter bud inherits its mito-
chondria from the mother cell. How do the mito-
chondrial network structures sampled by the bud
compare to those of the mother? Extrapolating fur-
ther, how do the mitochondrial networks sampled
by a single cell in an isogenic population compare
to those seen across the entire population? These
questions are of more than just academic interest:
population heterogeneity, especially of a non-genetic
nature, is relevant to biological systems ranging
from embryogenesis to tumor proliferation, in addi-
tion to the much more specific case of mtDNA
heteroplasmy (which is itself associated with det-
rimental health conditions) [152, 153]. Dissecting
the basis of cellular heterogeneity can be done via
comparison of trajectories in state space, through
evaluation of both state sampling probability (how
often do we find cells in state X?) and transition
rate (how often does a cell move from state X to
state Y?). Mathematics and physics provide a means
of constructing cellular state spaces via a poten-
tial landscape from experimental data, from which

‘force’ fields can be constructed, and these landscapes
then raise the question of what molecular pathways
determine their shape. This approach has proven
useful in studies ranging from stem cell differenti-
ation (where the analogous concept of Waddington’s
landscape is often discussed), to flagellar beating,
to cellular motility [154–160]. We believe that the
examination of mitochondrial networks over time in
large populations of cells can provide insight into
the general principles guiding cellular heterogeneity:
data collection is non-terminal, state spaces can be
defined in reasonable ways (graph theoretic or oth-
erwise), and the features being measured are deeply
and intrinsically linked to cellular state.

Another notable feature of mitochondrial net-
works is that the processes of mitochondrial fis-
sion and fusion appear reciprocally regulate one
another [161]. This, too, is worthy of deeper invest-
igation: in figure 7, we show that, for mitochondrial
networks of isogenic S. cerevisiae grown in synthetic
complete media with either glucose or glycerol, the
number of edges scales linearly with the number of

15



Phys. Biol. 20 (2023) 051001 G R Lewis and W F Marshall

nodes. For the majority of the (hundreds of) data
points shown in each subpanel, the regression inter-
cepts are negligible, providing another mathematical
result: the slope of the regression can be understood
as half the average degree of a ‘typical’ mitochondrial
network (or collection of networks) in the popula-
tion, a result obtained by dividing both sides of (1)
by 2|N|. We can thereby establish boundaries for the
permissible region of mitochondrial edge-node state
space by setting all of the node degrees to either 1 or 3,
resulting in slopes of 1

2 and
3
2 , respectively (lower and

upper dashed lines in all panels of figure 7). Were we
to consider all planar graphs, combining (1) with (2)
would loosen the upper bound for the slope to 3.

That the linear relation shows a constant slope
for all N indicates the average degree of the graph
is maintained as the graph grows. This finding, in
combination with the reciprocal regulation refer-
enced above, strongly hints at some sort of homeo-
static mechanism for keeping some feature or fea-
tures of the network (in this case, the average degree)
close to some set point. One way to detect and study
this mechanism is to compare the observed distribu-
tion of graphs with the distribution predicted from
the morphological operations—if cells only display a
small subset of the possible mitochondria-like graphs
expected from the known morphological processes,
this would be a clear hallmark of homeostasis. What
are the molecular players and relevant pathways in
this regulatory mechanism, and what function does
it serve?

Finally, the approach discussed above of relat-
ing graph distributions to the rates of mitochon-
drial morphological processes raises the possibility
that it might be the morphological processes them-
selves, rather than the resulting graph structures, that
are biologically significant. For example, fission and
fusion might have as their primary roles the parti-
tioning of mitochondrial genomes, with the resulting
graph just a byproduct of this role.

Mitochondrial networks can be considered as
fundamental demonstrations of graph theory and
topology in living systems. This link is neither trivial
nor unidirectional: the structure of the network
is heavily regulated by both mathematics and the
cell. Morphological dynamics modify the structure
of mitochondrial networks, but seemingly do so
in a restricted way that possibly maintains some
homeostatic principle that remains unknown. A
greater understanding of both the mathematical
characteristics of mitochondrial-like networks and
the biological regulatory mechanisms that guide
mitochondrial network structure evolution will
provide insight into this cellular information integ-
rator, its responses to changes in cellular state, and
the relationships between network function and
physiology.
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