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Abstract The aim of this study is to discuss the state of the art
with regard to established or promising bioelectric therapies
meant to alter or control neurologic function. We present re-
cent reports on bioelectric technologies that interface with the
nervous system at three potential sites—(1) the end organ, (2)
the peripheral nervous system, and (3) the central nervous
system—while exploring practical and clinical considerations.
A literature search was executed on PubMed, IEEE, and Web
of Science databases. A review of the current literature was
conducted to examine functional and histomorphological ef-
fects of neuroprosthetic interfaces with a focus on end-organ,
peripheral, and central nervous system interfaces. Innovations
in bioelectric technologies are providing increasing selectivity
in stimulating distinct nerve fiber populations in order to acti-
vate discrete muscles. Significant advances in electrode array
design focus on increasing selectivity, stability, and function-
ality of implantable neuroprosthetics. The application of
neuroprosthetics to paretic nerves or even directly stimulating
or recording from the central nervous system holds great po-
tential in advancing the field of nerve and tissue bioelectric
engineering and contributing to clinical care. Although current

physiotherapeutic and surgical treatments seek to restore
function, structure, or comfort, they bear significant lim-
itations in enabling cosmetic or functional recovery.
Instead, the introduction of bioelectric technology may
play a role in the restoration of function in patients with
neurologic deficits.

Keywords Neural electrode . Neuroprosthetic . Nerve
implant . Prosthetics . Nerve paresis . Bioelectric interface

Introduction

The application of bioelectric stimulation to the nervous sys-
tem has proven to be an effective option for restoring or aug-
menting some degree of function in patients with neurologic
dysfunction [98]. In particular, functional stimulation of paret-
ic nerves is a clinically vital and promising area of research
that warrants significant investigation. At present, a va-
riety of implantable nerve stimulators have been clini-
cally employed and demonstrated to be efficacious in
alleviating numerous pathologies. Several implantable
devices are already in routine use, including hypoglossal
nerve stimulation in patients with severe obstructive
sleep apnea [76, 137]; chronic spinal cord stimulation
in patients with severe neuropathic pain [153, 160]; di-
rect electrical stimulation of peripheral nerves in pa-
tients with bladder, bowel, and sexual dysfunction [30,
40]; and even transcutaneous stimulation of the trigem-
inal nerve in migraine patients [35, 36, 75, 107, 125,
136, 142]. Deep brain stimulation (DBS) is arguably the
most successful example of a bioelectric technology that
has transitioned into the clinical realm to treat a variety
of neurological disorders with an incredible degree of
efficacy [59, 108]. DBS and other neuroprosthetic

* Harrison W. Lin
harrison.lin@uci.edu

1 Division of Neurotology and Skull Base Surgery, Department of
Otolaryngology-Head &Neck Surgery, University of California, 108
Medical Sciences E, Irvine, CA 92697, USA

2 Department of Biomedical Engineering, University of California,
108 Medical Sciences E, Irvine, CA 92697, USA

3 Division of Neurotrauma, Department of Neurological Surgery,
University of California, 108 Medical Sciences E, Irvine, CA 92697,
USA

Neurosurg Rev
https://doi.org/10.1007/s10143-017-0920-2

mailto:harrison.lin@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s10143-017-0920-2&domain=pdf


technologies represent only one example of the rapidly
developing field of bioelectronic medicine, which broad-
ly seeks to diagnose and treat disease by integrating the
fields of neuroscience, bioengineering, and computer
science with medicine [102]. Bioelectronic medicine,
as a field, developed from work on modulation of neu-
ral networks to treat pathologies (e.g., vagus nerve stim-
ulation has been used to successfully activate the in-
flammatory reflex and improve rheumatoid arthritis
symptoms) [62]. Other examples of bioelectronic medi-
cine include implantation of electrodes on the cortex
itself to decode neural signals and drive movement of
prosthetic limbs [16, 17].

This manuscript reviews the state of the art with regard to
established or promising bioelectric therapies meant to alter or
control neurologic function. First, we address the three poten-
tial sites for bioelectric technologies to interface with the ner-
vous system—both peripheral and central—while exploring
practical and clinical considerations. The three sites include,
from distal to proximal, (1) the end organ, (2) the peripheral
nervous system, and (3) the central nervous system. At each of
these sites, electrodes can either record activity, deliver elec-
trical current, or both, allowing for a broad degree of modula-
tion of physiological activity to ideally mitigate dysfunction
from a variety of pathological processes. We also discuss the
emerging technologies that have potential in advancing the
field of nerve and tissue bioelectric engineering to address a
variety of clinical conditions. Lastly, we discuss the legal,
engineering, and biological hurdles limiting the translation
of bioelectric technologies to the clinical realm.

Materials and methods

A systematic search was executed on PubMed, IEEE, and
Web of Science databases from database creation to August
2017. PubMed, Ovid, and Cochrane databases were queried
using the following keywords: (Bbioelectric^ or Bstimulation^
or Btechnologies^ or Belectrode^ or Brecording^ or
Bneuroprosthetic^ or Bimplant^ or Binterface^) and (Bparesis^
or Bparalysis^ or Bneural^ or Bmuscle^ or Bend organ^ or
Bperipheral^ or Bnervous^ or Bsystem^ or Bcentral^ or Bbrain^
or Bcomputer interface^ or Bnerve^). References of each man-
uscript were checked for additional manuscripts that were of
potential relevance to our review. Three investigators indepen-
dently screened each article according to title and abstract and
included any article relating to the application of bioelectric
technologies or neuroprosthetics in the peripheral or central
nervous system. The full text of each selected article was
obtained and analyzed. Because no patient information
or animals were involved, Institutional Review Board
approval and Institutional Animal Care and Use
Committee approval were not required.

Results and discussion

Interfacing with the end organ

End-organ stimulation has gained recent prominence within
the field of bioelectric technology and aims to stimulate or
augment organ function (e.g., muscles, visceral organs)
through electrodes implanted in the organ itself. The end or-
gan can be a receptor organ that subsequently stimulates af-
ferent nerve fibers (e.g., cochlea of the auditory system) or an
effector organ (e.g., muscle). In both cases, an electrode can be
placed either directly on the end organ or placed on the nerve
associated with that organ (Fig. 1). In this section, the former
approach will be discussed, while the latter approach will be
explored in the section on peripheral nervous system stimula-
tion. One benefit of interfacing with the end organ is that
recorded signals are up to 100 times greater when compared
to signals from peripheral nerve axons, facilitating signal input
acquisition [63]. Further, the end organ is often better able to
structurally interface with the mechanical composition of an
electrode when compared to soft and delicate neural tissue
[63] and oftentimes is more readily accessible than the asso-
ciated nerve.

Muscle stimulation

Electrical stimulation of end organs, such as muscles, can be
non-invasive, as in the case of transcutaneous electrical stim-
ulation, or invasive, as in the case of implanted electrodes. For
example, McDonnall et al. used transcutaneous electrodes to
activate the orbicularis oculi muscle and restore blink func-
tion in patients with facial paralysis, while simultaneously
minimizing painful sensations associated with the stimulation

Fig. 1 A cartoon example of end-organ stimulation within the endplate,
exaggerated in size, of a neuromuscular junction (NMJ) is shown. Here,
the electrode is not in direct contact with the axonal nerve ending, which
is depolarized through current spread. Muscle-electrode interfaces have
proven more effective with sensory signal clarity due to an increased
biocompatibility of the hard metal electrode and the tough mesodermal
tissue [63]
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[81]. Similarly, others have implemented transcutaneous mus-
cle stimulation to treat post-surgical pain [24], disuse atrophy
[44], as well as chronic back pain [57]. However, transcuta-
neous muscle stimulation to manage pain has yielded conflict-
ing results, and the efficacy of this approach remains uncertain
[34, 112].

For decades, implantable cardiac pacemakers and defibrilla-
tors have been in widespread clinical use and have proven
efficacious in the long-term treatment of many cardiac disor-
ders [1, 50, 71]. Recently, this technology has been adapted by
Mueller et al. to serve as a laryngeal pacemaker system im-
planted directly into laryngeal muscles in patients with bilateral
vocal fold paralysis to improve breathing and swallowing,
without compromising vocalization [94]. In a rodent model,
electrodes implanted within the gastrocnemius muscle reduced
muscle atrophy without affecting motor reinnervation follow-
ing tibial nerve transection and repair [159]. Electrodes inserted
within muscles may also be able to record movements associ-
ated with limb tremors and stimulate themuscles tomitigate the
tremors. End-organ stimulation of effector organs offers tre-
mendous potential, but many of the advancements in the field
are still within the realm of clinical research and are not yet
routinely used in clinical practice. In contrast, end-organ bio-
electric interfaces of receptor organs are already in routine clin-
ical use, particularly within the auditory system. With the ad-
vent of miniature pacemakers, such as Medtronic’s® leadless
intracardiac transcatheter pacing system [119] or Nan et al.’s
wirelessly chargeable ferromagnetic-piezoelectric antenna [96],
we foresee increased versatility and wider application of such
technologies in the near future.

Cochlear, retinal, and vestibular implants

In recent decades, electrodes implanted directly in the cochlea
have restored hearing in patients with substantial sensorineu-
ral hearing loss, which is typically the result of irreversible
damage to the cochlear sensory epithelium and auditory nerve.
Cochlear implants (CIs) consist of a multi-channel electrode
array that is surgically inserted deep into the scala tympani
within the cochlea and connected to a receiver stimulator im-
planted beneath post-auricular soft tissue (Fig. 2). Electric
current is delivered from select platinum electrode contacts
to the spiral ganglion neurons within Rosenthal’s canal,
depolarizing these cells and generating a neural signal at the
desired frequency to be propagated along the auditory path-
way to the auditory cortex [109]. Approximately a half million
deaf or hard-of-hearing children and adults have undergone
cochlear implantation worldwide, leading to incredible per-
sonal, financial, and societal benefits [26, 56, 82, 139].

Retinal implants have also made their way into the clinical
realm, with three retinal implant approaches in clinical trials:
epiretinal, subretinal, and suprachoroidal implants, all of
which relay visual input to the retina to stimulate surviving

retinal neurons [99, 146]. Retinal implants are meant to treat
degenerative disorders such as retinitis pigmentosa and age-
related macular degeneration, which destroy photoreceptors in
the retina. Although the functional restoration of vision is
limited in resolution, these implants currently allow patients
to perceive light and provide some degree of object recogni-
tion. However, further refinements and innovations will likely
enhance the functional utility of retinal implants [23].

Bilateral vestibulopathy, or Dandy’s syndrome, is a debili-
tating condition characterized by oscillopsia and unsteadiness
during locomotion. Unsteadiness, due to a deficient vestibulo-
spinal reflex, and oscillopsia, caused by bilaterally impaired
vestibulo-ocular reflexes (VORs), both lead to severe impair-
ment of postural control and image stabilization during head
and body movement [60]. In recent years, cochlear implants
have been modified to be used as vestibular prosthetics to
restore inner ear balance and function in animal models [33,
83, 124]. Many of these experimental devices utilize inertial
sensors to detect accelerations of the head, data from which is
then used to provide specific electrical signals and patterns to
the vestibular system in a compensatory manner.

Pelizzone et al. have recently translated this work to human
trials in an effort to restore the VOR [106]. Using a modified
cochlear implant with a standard intracochlear array and three
additional electrode arrays, each of which to be implanted
within the ampullae of the three semicircular canals (lateral,
superior, and posterior), the authors electrically stimulated the
vestibular end organs based on acceleration forces of the head
detected by a gyroscope within the device. Electrical stimula-
tion with the prosthesis, at 1 Hz, provided a significant VOR
gain in three implanted patients with vestibular damage,
reaching up to 98% of the average VOR gain in healthy pa-
tients. A similar clinical study is underway at Johns Hopkins
University [19].

Interfacing with the peripheral nervous system

Both transcutaneous and invasive electrical interfaces with
peripheral nerves have been implemented into routine clinical
practice. From percutaneous cranial nerve stimulation to treat
chronic [35, 36, 75, 136, 142] and episodic [107, 125] mi-
graines and neuralgia, to epidural placement of leads in the
dorsal root ganglion (DRG) for treatment of neuropathic pain
[68], and to direct sacral anterior root stimulation to enhance
bowel function post-spinal injury [117], electrical stimulation
of nerves or nerve roots has been demonstrated to be a safe
and efficacious clinical intervention. Although long-term re-
percussions of implantable neurostimulators have yet to be
fully elucidated, the major shortcomings of implantable de-
vices arise from the fibrotic foreign body response that de-
velops following implantation, particularly following implan-
tation within the peripheral or central nervous system [10].
Restricting the neuroprosthetic device to the epineurium can
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mitigate any ensuing foreign body response; however, long-
term use with this approach can induce histological changes
(e.g., fibrosis, perineural thickening, decrease in axon
myelination) at the site of electrode lead placement [6]. The
safest approach would be the utilization of minimally invasive
transcutaneous devices, which at most cause minor irritation
or an allergic reaction on the skin [130]. We will now explore
several of these transcutaneous, epineural, and intraneural
interfaces.

Transcutaneous nerve stimulators

The most neurologically relevant transcutaneous devices are
Cefaly® Technology’s cranial transcutaneous nerve stimula-
tors (TNS) that treat two forms of neuralgia: episodic and
chronic migraine. All three of their devices, the external tri-
geminal nerve stimulator [107], supraorbital transcutaneous
nerve stimulator [35, 75], and the external occipital nerve
stimulator [142], have been demonstrated to be efficacious
in decreasing migraine intensity, frequency, and associat-
ed pain medication consumption [36]. The electrical stimula-
tion from these devices is thought to block ascending impulses
of trigeminal nerve nociceptors and may decrease metabolic
activity of the orbitofrontal and anterior cingulate cortices,
hence reducing pain signal generation and subsequent pain
sensation [74, 125]. Deep neuromodulation has also been used
to successfully treat primary headache. Although deep
neuromodulation utilizes invasive electrode implantation
(e.g., vagus nerve stimulation and sphenopalatine ganglion
stimulation), it nonetheless is another approach being used
to modulate autonomic pathways underlying the pathophysi-
ological headache mechanisms [88, 114].

Other forms of TNS have been employed by Frigerio and
colleagues in stimulating the distal facial nerve branches to
elicit blinking of the eye [23]. Similarly, Antonio et al. used
TNS to modulate activity within the auricular branch of the

vagus nerve and treat spontaneous cardiac baroreflex sensitiv-
ity [7]. Additionally, transcutaneous vagus nerve stimulation
has been demonstrated to reduce atrial fibrillation in humans
[144].

Cuff electrodes

Cuff electrodes are the most basic type of epineural recording
or stimulation device. The typical cuff electrode is comprised
of a self-coiling, double-layer silicone cuff embedded with
two to three platinum foil strips and is wrapped around the
outer surface of the nerve, thus providing a direct interface for
electrical stimulation (Fig. 3) [46, 73, 97, 128, 148, 149]. The
electrode can operate at low stimulus thresholds, thus reduc-
ing the likel ihood of detr imental nerve damage.
Unfortunately, the cuff electrode generally elicits all-or-none
neural activity and has a limited ability to target individual
fascicles within the nerve fiber [63]. Cuff electrodes have been
used safely for years, and although one study in rabbits found
that long-term use of cuff electrodes had damaged myelinated
axons, these axons were able to regenerate [64]. Furthermore,
impedance and stimulation thresholds of cuff electrodes are
stable over time, maintaining functionality for over 12 years in
peroneal nerve stimulation experiments in hemiplegic patients
[4, 149, 155, 158]. Peroneal nerve stimulation can also be
accomplished via functional electrical stimulation (i.e., trans-
cutaneous stimulation) of the peroneal nerve, which has been
demonstrated to improve gait quality following stroke to the
same degree as ankle foot orthotics [11, 135, 141].

The cuff electrode is routinely used in the clinical setting
for vagus nerve stimulation (VNS), which has been shown to
be effective in the management of epilepsy [31, 104], resistant
depression [127], blood pressure control [110], as well as pre-
vention of heart failure in patients with reduced ejection frac-
tions [32, 43, 113]. Additionally, the Inspire® hypoglossal
nerve stimulator, a Food and Drug Administration (FDA)-

Fig. 2 A typical cochlear implant system consists of (1) an external
sound processor, which accurately converts pressure changes in the air
(soundwaves) into electromagnetic signals, (2) an internal implant, which
converts the electromagnetic field into electrical current, and (3) an
intracochlear multi-electrode array, with delivers the current and

depolarizes the first-order auditory neurons. The current from the elec-
trode bypasses damaged cochlear hair cells and stimulates (4) the cochlear
nerve, leading to sound perception and hearing. Images provided by
Advanced Bionics, Inc. and modified
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approved device used for obstructive sleep apnea, utilizes a
cuff electrode wrapped around the hypoglossal nerve
(Fig. 4). This implant is under clinical trials to augment
the oropharyngeal airway by stimulating the motor
nerve and lowering the tongue in coordination with
the breathing cycle [54, 95]. Multiple mechanisms of
action have been proposed to explain the various thera-
peutic effects of VNS, from emission of diffuse energy
centrally towards the brain to disrupt the aberrant sig-
nals that contribute to uncontrolled epileptic seizures
[13] to sympathetic and parasympathetic modulation of
heart rate to prevent arrhythmia [32].

For purposes of sensory nerve stimulation, a tripolar or a
modified monopolar or bipolar electrode would likely be re-
quired. Such designs can facilitate unidirectional action poten-
tial propagation while mitigating undesired signals in the op-
posing direction, though this has been difficult to reliably in-
duce in practice. This contrasts with conventional monopolar
or bipolar electrodes, which are impractical for administration
of current to a single site (Fig. 5) [93]. Nonetheless, with
regard to motor stimulation, bidirectional action potential
propagation in stimulated efferent neurons can reliably elicit
muscle activation and is less of an issue than with sensory
nerve stimulation.

Flat interface nerve electrodes

The flat interface nerve electrode (FINE) is a modified version
of the cuff electrode. FINE can be designed in a multi-channel
configuration and, moreover, compresses and reshapes the
nerve into a flatter conformation, thereby allowing the central
fascicles to be closer to the surface and providing more selec-
tive axonal population activation (Fig. 3) [63, 66, 105, 151,
161]. Additionally, intraoperative studies in the human femo-
ral nerve showed that muscles innervated by the femoral nerve
could be independently and selectively stimulated with a
FINE device [133]. Surgical placement of FINE around the
femoral trunk leads to selective activation of leg muscles,
thereby aiding patients who suffer from lower trunk paralysis
to stand from a sitting position [134]. Furthermore, the US
Department of Defense has investigated the use of FINE in
controlling neural prostheses in amputees [90]. Although
FINEs have been used in several human studies without any
deleterious consequences, FINEs have the potential to com-
press the nerve, reduce blood flow, or even cause neural dam-
age [116].

Longitudinal and transverse intrafascicular electrode

In contrast to FINE, intrafascicular electrodes pierce the pro-
tective epineurium of the nerve and can stimulate or record
from peripheral nerves with higher sensitivity [89, 115].
Notably, a polymer-based, thin-fi lm longitudinal
intrafascicular electrode (tfLIFE/polyLIFE) demonstrated no
deleterious effects on nerve fiber count, diameter, or myelin
thickness while providing higher recording selectivity than
standard metal LIFE following 6 months of implantation in
rabbit sciatic nerves [65]. LIFE has also been used to detect
neural impulses from the median and ulnar nerves in an am-
putee to manipulate a robotic hand by the human patient [85,
122]. Transverse intrafascicular multi-channel electrodes
(TIMEs) provide superior spatial selectivity than LIFE by en-
abling contact beyond one fascicle (Fig. 3) [14]. Specifically,
TIME was developed to manage phantom limb pain in pa-
tients who required simultaneous excitation of multiple paral-
lel fascicles within a nerve. This feat previously required the
implantation of multiple LIFEs [14].

Penetrating multi-channel arrays

Penetrating intraneural multi-channel arrays offer researchers
vast access to diverse neural pathways (Fig. 3). Of note, in-
vestigators at the University of Utah have developed two types
of multi-array electrodes: the Utah electrode array (UEA) and
the Utah slanted electrode array (USEA) [25, 123]. Both are
designed with the capacity to contain up to 100 microneedles
which are implanted into neural tissue. Previous experiments
with the UEA have reported successful recording of volitional

Fig. 3 a Cuff electrodes and b flat interface nerve electrodes (FINEs) are
the most common epineural nerve-electrode interfaces: FINE compresses
the nerve and thus has a higher resolution to excite specific fascicles. c
Longitudinal intrafascicular electrodes (LIFEs) and d transverse
intrafascicular electrodes (TIMEs) are the most common intraneural
nerve-electrode interfaces. e Multi-channel electrodes have been used
by our group to selectively activate fascicles within cranial nerves. For
example, if implanted within the facial nerve, specific channels on the
electrode array can activate specific fascicles and corresponding facial
muscles
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motor commands from the central nervous system, among
other accomplishments [101]. However, because this tech-
nique is highly invasive, it carries the risk of permanent neural
damage [38]. Generally, the more invasive the neuroprosthetic
interface, the greater the degree of selectivity of neural fiber
activation at the sacrifice of potential injury to the nerve. As
previously discussed, cuff electrodes, which gently wrap the
nerve, generally activate the nerve in an Ball-or-none^ fashion
with limited selectivity, while intraneural multi-channel mi-
croelectrode arrays violate the perineurium and may induce
glial scarring, but offer exquisite selectivity of neural fiber
activation.

Using a penetrating multi-electrode array developed at the
University of Michigan, Middlebrooks et al. investigated
intraneural cochlear nerve stimulation while recording the

downstream auditory pathway output at the brainstem’s infe-
rior colliculus [86, 87]. The NeuroNexus (Ann Arbor, MI)
stimulating array consists of 16 iridium-plated electrode con-
tacts placed along a silicon shank, and in every critical audi-
tory electrophysiological measurement in anesthetized cats,
the penetrating intraneural array consistently outperformed a
conventional intracochlear array. Furthermore, our group re-
cently described the role of intraneural stimulation for facial
nerve reanimation in the feline model. In short-term experi-
ments, we achieved selective stimulation of facial muscles
with the NeuroNexus multi-electrode array implanted into
the main trunk of the facial nerve (Fig. 6) [129].
Electromyography (EMG) responses of four facial muscles
were recorded following stimulation through the 16-channel
penetrating array. Electrical pulses from each channel of the

Fig. 4 Diagram of the Inspire Upper Airway Stimulation (UAS) system.
This is an implantable system that stimulates the hypoglossal nerve to
treat obstructive sleep apnea (OSA). The components of the system in-
clude an implantable pulse generator (IPG), which is normally placed in
the chest and is connected to two leads. The first lead is the sensing lead

and is placed into the fourth intercostal space. This senses intercostal
muscle contraction and activates the stimulating lead, which is interfaced
with the hypoglossal nerve. Additionally, external components that in-
clude the physician and patient programmer (sleep remote) make up the
system. Image provided by Inspire Medical Systems, Inc.

Fig. 5 a Monopolar electrode configuration yields bidirectional action
potential propagation due to uncontrolled depolarization of the contact
point. b Bipolar electrode configuration aims to block one direction of
action potential propagation by hyperpolarization of the nerve at the
anode site. However, such magnitudes of anodic current induce a
virtual cathode and negate the cancellation effect, thus yielding a

bipolar action potential. c An important aspect of tripolar electrodes is
the platinum placements (d2 > d1). Due to a time-shifted hyperpolariza-
tion at the further anode (d2), a virtual cathode beyond the closer anode
(d1) will not form. However, a virtual cathode will be formed beyond the
further anode, which results in a unidirectional action potential
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array selectively activated discrete neural populations within
the facial nerve, resulting in independent activation of specific
facial muscles. Increases in stimulation current levels resulted
in corresponding increases in EMG voltage response.
Moreover, long-term presence of the microelectrode array in
the facial nerve confirmed the efficacy and stability of this
intraneural stimulation approach [131]. Intraneural stimula-
tion of restricted neural populations with one or more multi-
channel arrays may play a role in reanimating the face for
patients with permanent facial paralysis and may also help
rehabilitate other motor and sensory functions throughout
the central and peripheral nervous systems [129].

Interfacing with the central nervous system

Spinal cord stimulation

Spinal cord stimulation (SCS) is an established therapy that
has been readily investigated in the treatment of chronic se-
vere pain. The complexity of the neural circuitry at the level of
the spinal cord, however, has made it challenging to success-
fully achieve 50% or greater self-reported pain relief [163].
Beyond pain relief, SCS has been employed in the treatment
of movement disorders. Epidural SCS has been successfully
demonstrated to disrupt pathological circuit behavior and ulti-
mately mitigates the motor symptoms of Parkinson’s disease in
marmosets [132]. This approach is less invasive than deep brain
stimulation and may augment pharmacological dopamine re-
placement therapy in the treatment of Parkinson’s patients.
Furthermore, in human trials, restoration of voluntary movement
following epidural SCS was achieved in patients with complete
motor and sensory lesions [5]. Despite these successes, electrode
migration is a common complication of SCS, and if stimulator
reprogramming is insufficient in restoring function, surgical re-
positioning may be required [9]. Although SCS is a safe and
effective approach to bioelectric restoration of function, electrode
failure/fracture, cerebrospinal fluid leakage, spinal epidural

hematoma, and other complications may hinder the functional
performance and ultimate utility of SCS [9].

Brain computer interfaces

Brain computer interfaces (BCIs) have been investigated for
decades, leading to advancements in recording from various
parts of the brain to restore a variety of functions [100, 152]. In
essence, a variety of recording devices such as electroenceph-
alogram (EEG), magnetoencephalogram (MEG), electrocorti-
cography (ECoG), functional magnetic resonance imaging
(fMRI), and functional near infrared spectroscopy (fNIRS)
detect brain activity (e.g., electrical activity, magnetic activity,
blood flow, metabolism) that serves as an input signal to a
computer algorithmwhose output affects the external environ-
ment. The spatiotemporal resolution and therefore the clinical
applicability of such devices are dependent on invasive im-
plantation within neural tissue [103]. Currently, non-invasive
BCIs have been demonstrated to have therapeutic potential in
enabling software-aided communication [20] and robot-
assisted object manipulation (e.g., picking up a glass of water)
[143] in advanced amyotrophic lateral sclerosis (ALS) pa-
tients with locked-in syndrome. Additionally, BCIs have ex-
hibited great potential in aiding paraplegics with recovery
[120, 162]. Nenadic et al. successfully used an EEG exoskel-
eton coupled with an augmented reality training platform to
provide superior physical rehabilitation to a paraplegic spinal
cord injury patient that enabled him to regain some gait func-
tion [61, 157]. Furthermore, Nenadic and colleagues have
miniaturized their BCI system as well as decreased associated
costs of production [78, 79]. Their goal is to advance their BCI
into an implantable system for the complete recovery of gait
post-spinal injury or stroke [79, 80].

Non-clinically, BCIs have been used by able-bodied users
to control drones [58], smart homes [126], and augmented
reality gaming [53]. In theory, non-invasive BCIs hold tre-
mendous potential for human augmentation and alleviation

Fig. 6 Diagram depicting
intraneural stimulation of the
facial nerve with a multi-channel
electrode array that can selective-
ly activate discrete nerve fiber
populations within the facial
nerve and elicit selective stimula-
tion of facial muscle groups.
Image credit: Modified from
Patrick J. Lynch, medical illus-
trator; C. Carl Jaffe, MD
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of disability, specifically as battery and other hardware/
software technologies evolve; however, as of now, such de-
vices are heavily hindered by signal processing algorithms,
input signal differentiation and noise cancelation, and input-
output signal mapping that conforms to unique individuals
[103].

Intracranial brain computer interfaces (iBCIs) are invasive
BCIs that directly interface with neurons to decode motor
intent and elicit a response (e.g., artificial limb movement)
[51]. iBCIs utilize microelectrodes implanted into the cortical
surface, or ECoG grids to either bypass disrupted neural path-
ways and directly stimulate nerves and muscles or directly
control artificial limbs. For example, tetraplegic patients have
been able to volitionally control robotic arms [29, 49], while
other patients have been able to control their own limbs via
iBCI-based approaches [37, 91]. In addition to restoration of
motor movement, enhancing communication, as in the case of
ALS patients, for example, can also be achieved by iBCI [15,
42, 55].

Regardless of the higher spatiotemporal resolution of inva-
sive iBCIs, no current electrode system can read and interact
with individual neurons within the brain. Such a task, howev-
er, is anticipated with the introduction of a neural lace by Elon
Musk’s Neuralink (San Francisco, CA) [39], which is an ultra-
thin cortical mesh ultimately meant to enhance cognition by
fusing the human mind with the internet [147]. This feat is not
achievable with current technologies, and there is no clear
understanding of how this system would process enormous
bandwidths of neural activity, how it would be powered, and
how it would chronically interface with neurons without dam-
aging them; however, a proof of concept has been presented
by Lieber et al., who achieved over 8 months of neural record-
ing in a murine model via a syringe-injected nanoscopic self-
assembling intracranial mesh, without causing neurological
side effects [72]. Future research efforts directed at incorpo-
rating sensory feedback in iBCI setups and improving both
recording and stimulation parameters is expected, as it can
improve the efficacy of iBCI approaches in the clinical and
human augmentation realms.

Cortical stimulation

Additionally, intraparenchymal or subdural cortical electrodes
have proven to be stable and effective implants for the treat-
ment of chronic pain and long-term monitoring for seizure
identification [67]. Non-invasive cortical stimulation has been
repeatedly demonstrated to improve hand function following
chronic stroke and has been utilized to varying degrees of
success in neurorehabilitation regimens [52, 118]. More inva-
sive subdural cortical stimulation, with a responsive
neurostimulator connected to predetermined seizure foci, has
been demonstrated to reduce the frequency of debilitating par-
tial seizures in patients with medically intractable epilepsy

[92]. Furthermore, peri-infarct stimulation following cortical
ischemic stroke, combined with rehabilitation, has been dem-
onstrated to alleviate chronic motor deficits and enhance re-
covery in a primate model of ischemic stroke [111]. Recently,
cortical stimulation combined with brain-state detection and
haptic feedback has been demonstrated to augment iBCIs in
neurorehabilitation of stroke patients with minimal hand func-
tion [41]. Although numerous histological changes (e.g., non-
reactive, reactive, and toxic) at the brain implant boundary
occur following chronic implantation of cortical electrodes,
efforts to mitigate the fibrogliotic encapsulation of electrode
leads may expedite the implementation of cortical stimulation
technologies in the clinic [145].

Auditory nucleus and ganglion stimulation

For patients with trauma or deformations of the cochlea or
auditory nerve, the CI, which is designed to be placed in the
cochlea and electrically activate the auditory nerve, is not an
option for auditory rehabilitation. Most notably, patients with
neurofibromatosis type-2 (NF2) suffer from bilateral vestibular
schwannomas and as a result require more central activation of
the auditory pathway at the brainstem’s cochlear nucleus [84].
The auditory brainstem implant (ABI), again a modified co-
chlear implant with a flat array consisting of 12 (ABI by Med-
El) to 21 (ABI by Cochlear Ltd.) platinum electrodes on a
Dacron mesh backing, was created for NF2 patients [84]. To
date, however, ABIs have proven most beneficial for adults
without NF2 and in children with cochlear malformations
[22, 28, 140]. In one study involving 48 non-NF2 (non-
tumor) patients, a mean score of 59% was achieved on open-
set speech perception tests [27]. For children suffering from
bilateral, ossified cochlea secondary to meningitis, five out of
the nine patients experienced a meaningful benefit from ABI,
with access to conversational speech and sound field thresholds
varying from 25 to 50 dB [8]. Although historically NF2 pa-
tients have had exceedingly limited benefit from ABIs due to
the detrimental nature of the tumors, more recent studies from
Europe have reported considerable success in ABI performance
in NF2 patients, including a mean open-set speech perception
of 41% at 24 months post-ABI activation in 18 NF2 patients
[77]. Notably, a penetrating ABI and an auditory midbrain
implant inserted into the inferior colliculus did not lead to an
increased benefit over the ABI [69, 70, 138].

Deep brain stimulation

DBS involves the implantation of microelectrodes into specif-
ic regions of the brain. An electrical pulse generator is con-
nected to the multiple microelectrodes via microwires and, in
the treatment of Parkinson’s disease, will deliver biphasic cur-
rent pulses (up to 30 microC/cm2) to the subthalamic nucleus
(STN) or globus pallidus interna [47]. Surgical treatments for

Neurosurg Rev



Parkinson’s disease were first described in the 1940s, but it
was not until the 1990s that DBS was utilized to treat
Parkinson’s by targeting the STN [18]. Since the initial ap-
proval of DBS in 2002 by the Food and Drug Administration,
over 70,000 patients have been treated with DBS to augment
pharmacological dopamine replacement therapy [18].
Technical and surgical issues with DBS hardware are not un-
common, though a lack of standardized adverse event
reporting protocols makes it difficult to fully understand the
extent of DBS failure infection, lead migration, lead fracture,
or skin erosion [18]. Refinements in lead design, placement,
and stimulator programming may improve DBS efficacy, bat-
tery life, stimulation patterns, and electromagnetic field
interference.

DBS has also been successfully used in the management of
tremors, depression, obsessive-compulsive disorder, tinnitus,
and other conditions, depending on the location of electrode
implantation [21, 108, 156]. Developments in DBS technolo-
gy, such as closed-loop stimulation strategies, have resulted in
significantly enhanced management of Parkinson-related mo-
tor dysfunction [121]. Unlike traditional DBS approaches
which deliver electrical impulses independent of neural feed-
back, closed-loop approaches constantly monitor neuronal ac-
tivity to modulate the delivery of electrical stimulation [12].
Furthermore, coordinated reset of neural subpopulations (i.e.,
administering high-frequency pulse trains in a coordinated
way to abolish pathological synchronization) has also been
investigated to battle Parkinson’s disease and essential tremor
and may even be applicable in epilepsy [48, 150].

Hurdles and conclusions

Despite the promise of the previously discussed bioelectric
interfaces, a variety of biological and engineering hurdles
must be addressed to implement and improve their clinical
utility. Following implantation of any bioelectronic device,
the host foreign body response will result in rapid protein
adsorption onto the material surface, resulting in a cascade
of inf lammatory events media ted by cytokines ,
chemoattractants, and growth factors released by neutrophils,
monocytes, and lymphocytes [2, 45]. The acute polymorpho-
nuclear cell-mediated inflammatory phase transcends into a
chronic inflammatory phase mediated by monocytes and lym-
phocytes. Fibrous encapsulation of the implanted electrode
and the formation of a biofilm containing reactive oxygen
species and degradative enzymes result in a variety of func-
tional changes to electrical stimulation and recording, as well
as possible structural failures [3]. For a more in-depth over-
view of the biological effects of chronic implantation of bio-
electronic devices, we suggest a recent review by Sahyouni
et al. [130].

In addition to mitigating the chronic foreign body response
to implanted biomaterials, the development and optimization
of hardware/software with a user-friendly and programmable
interface remains an engineering challenge [154]. Developing
closed-loop devices that can record real-time neural or phys-
iological data and instantaneously modulate stimulation, or
recording parameters, will help optimize the functional utility
of bioelectronic devices. Ultimately, a multi-disciplinary ap-
proach between engineers, industry, andmedical professionals
will help expedite the translation of bioelectronic devices to
the clinic. Applying the lessons learned from successful tech-
nologies, such as DBS, that have been implemented into rou-
tine clinical practice, will help expedite future technologies
that target new pathologies. Although interfacing with the
central and peripheral nervous systems offers incredible reso-
lution and has tremendous potential in treating a wide variety
of neurological disorders, the complexity and sensitivity of the
brain, spinal cord, and nerves makes targeting the end organ
an attractive alternative.With successes in the field of cochlear
implantation, the extension of end-organ interfaces to effector
organs (e.g., muscles) may be fully realized in the near future.

In conclusion, the application of neuroprosthetics to paretic
nerves holds great potential in advancing the field of nerve and
tissue bioelectric engineering and contributing to clinical care.
Although current physiotherapeutic and surgical treatments
seek to restore function, structure, or comfort, they bear signif-
icant limitations in enabling full recovery. Instead, the introduc-
tion of bioelectric technology may play a role in the restoration
of volitional function in patients with nerve deficits.
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