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Summary

The role of enhancers, a key class of non-coding regulatory DNA elements, in cancer development 

has increasingly been appreciated. Here, we present the detection and characterization of a large 

number of expressed enhancers in a genome-wide analysis of 8928 tumor samples across 33 

cancer types using TCGA RNA-seq data. Compared with matched normal tissues, global enhancer 

activation was observed in most cancers. Across cancer types, global enhancer activity was 

positively associated with aneuploidy, but not mutation load, suggesting a hypothesis centered on 

“chromatin-state” to explain their interplay. Integrating eQTL, mRNA co-expression, and Hi-C 

data analyses, we developed a computational method to infer causal enhancer-gene interactions, 

revealing enhancers of clinically actionable genes. Having identified an enhancer ~140 kb 

downstream of PD-L1, a major immunotherapy target, we validated it experimentally. This study 

provides a systematic view of enhancer activity in diverse tumor contexts and suggests the clinical 

implications of enhancers.

ETOC

*Corresponding author: H.L. hliang1@mdanderson.org (Lead Contact).
4These authors contributed equally to this study

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author Contributions
H.C. and H.L. conceived and designed the study; H.C., C.L., X.P., and H.L. performed data analysis; C.L. and Z.Z. performed 
experiments; H.C., C.L., J.N.W. and H.L. wrote the manuscript with inputs from other authors; and H.L. supervised the whole project.

HHS Public Access
Author manuscript
Cell. Author manuscript; available in PMC 2019 April 05.

Published in final edited form as:
Cell. 2018 April 05; 173(2): 386–399.e12. doi:10.1016/j.cell.2018.03.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Causal enhancer-target-gene relationships are inferred from a systematic analysis of 33 cancer 

types

Introduction

The biological functions of each cell component are controlled by a Russian-nesting-doll-

like, multilevel gene-regulatory hierarchy that includes transcription-factor-promoter 

interaction, enhancer activation, DNA methylation, microRNA-mediated regulation, 

translation, and post-translational modification (He and Hannon, 2004; Jaenisch and Bird, 

2003; Murakawa et al., 2016). In cancer cells, such regulatory networks are often rewired by 

molecular aberrations that collectively lead to the cancer phenotype (Chen et al., 2015; 

Kolch et al., 2015). For example, somatic mutations can modify the functions of both trans 
and cis elements in a regulatory network, thereby conferring cell behaviors related to 

tumorigenesis (Garraway and Lander, 2013; Hanahan and Weinberg, 2011). Using high-

throughput molecular profiling techniques over large patient cohorts, The Cancer Genome 

Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013) has systematically 

characterized key molecular alterations at different levels in a broad range of cancer types, 

providing unprecedented insight into oncogenic mechanisms and potential therapeutic 

approaches.

However, our information on the rewiring of gene regulatory networks in cancer is far from 

complete, and enhancers represent a missing piece of the jigsaw puzzle (Aran and Hellman, 

2013). Enhancers are important non-coding DNA elements that interact spatially with their 

target promoters to regulate downstream genes (Schmitt et al., 2016). As a major category of 

regulatory elements in cell development, enhancers also play critical roles in the oncogenic 

process (Murakawa et al., 2016). Despite recent systematic efforts, including genome-wide 

profiling of tissue and cell line collections (Encode Project Consortium, 2012; Hnisz et al., 

2013; Roadmap Epigenomics et al., 2015) and a pan-cancer analysis of some super-

enhancers (Zhang et al., 2016), a global view of enhancer activity in cancer is still lacking. 

That hole in our understanding is due in part to the technical difficulty of applying high-
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throughput techniques (e.g., ChIP-seq) to investigate enhancer activity using large patient 

sample cohorts.

The Functional Annotation of the Mammalian Genome (FANTOM) Project has generated 

large-scale, high-quality annotation of ~65000 enhancers expressed in the human genome 

across multiple tissues (Andersson et al., 2014). FANTOM thus provides an alternative 

solution for studying enhancer activities in cancer. An inactive enhancer is usually well 

organized by unmodified nucleosomes so it cannot be accessed by either transcription 

factors or polymerase. When an enhancer is primed for activation in response to signaling, 

its local chromatin is first modified (often by H3K4Me1) and becomes loose, rendering the 

motifs on the enhancer available to transcription factors and RNA polymerase. When the 

bound transcription factors fully activate the enhancer, usually with re-marked by H3K27Ac, 

the local chromatin is completely open, recruiting RNA polymerase to initiate transcription 

in both directions (Figure 1A) (Heinz et al., 2015; Li et al., 2016; Murakawa et al., 2016). 

Thus, the expression level of enhancer RNA molecules represents an essential signature of 

enhancer activation (Murakawa et al., 2016; Ren, 2010). Indeed, the expression of a 

substantial proportion of enhancers can be detected by RNA-seq (Andersson et al., 2014; De 

Santa et al., 2010; Djebali et al., 2012; Murakawa et al., 2016). Using the high-quality 

expressed enhancer annotations in the FANTOM project, we performed a pan-cancer 

analysis of enhancer expression using TCGA RNA-seq data on the premise that the 

expression of an enhancer approximately reflects its activity. We aimed (i) to describe the 

global pattern of enhancer expression in cancers; (ii) to understand how enhancer activation 

relates to other genomic aberrations and to the relevant underlying mechanisms; and (iii) to 

identify key enhancers and explore their potential clinical implications.

Results

Overview of enhancer expression in human cancers

An enhancer’s expression level has been used as an index of its activity (Cheng et al., 2015; 

Natoli and Andrau, 2012). The FANTOM Project annotated enhancers based on integration 

of chromatin modification, transcription factor binding, cap analysis of gene expression 

(CAGE)-seq data (Andersson et al., 2014), and TCGA generated gene expression data using 

RNA-seq. To ensure the quality of our analysis, we first assessed whether TCGA’s RNA-seq 

platform could effectively capture the transcriptional signals from the FANTOM enhancers. 

Through a series of filters, we identified 15808 detectable enhancers out of ~65000 

FANTOM-annotated enhancers with a typical length of ~200 bp that do not overlap with 

other known transcribed elements, thereby avoiding potential signal contamination (Figure 

S1A, Table S1, STAR Methods). We examined the chromatin status of the flanking 1-kb 

sequences of those enhancers using several well-established factors, including DNase 

hypersensitivity, p300 binding, CTCF binding, H3K27Ac, and H3K4Me1 (Heintzman et al., 

2007). That analysis revealed chromatin signatures similar to those identified by classical 

enhancers but in sharp contrast to those of the transcriptional start sites (TSSs) of protein-

coding genes or lncRNAs. For example, H3K4Me1, a key marker that distinguishes 

enhancers from any other TSSs, was substantially enriched in our enhancer set, but showed a 

clear depletion in the TSSs of protein-coding genes (Figure 1B). The observed chromatin 
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signatures were not affected by genomic annotation (Figure S1B). Those results confirm that 

our set consists principally of genuine enhancers, rather than other transcribed units or 

transcriptional noise.

In the TCGA RNA-seq data on 8928 cancer samples of 33 cancer types (Table S2), we 

observed a substantial number of RNA-seq reads uniquely assigned to the 15808 enhancers. 

Those mapped reads showed clear peaks centered on the enhancers identified (Figure 1C). 

That clear pattern confirmed the biological significance of our cross-platform integration and 

distinguished the signals from transcriptional noise. Another potential issue in our analysis 

of enhancers arose from the relatively low depth of RNA-seq data (Li et al., 2016). To 

evaluate the general utility of TCGA RNA-seq data for enhancer expression, we determined 

the numbers of enhancers with detectable expression in different cancer types. On average, 

4591 enhancers were detected in >10% of the samples in a given cancer type, suggesting 

that enhancer expression signals detected contain considerable sampling power to represent 

cancer enhancer functions on a global scale (Figure 1D, Table S3). To evaluate further the 

clinical significance of the enhancer expression, we assessed correlations of the expression 

levels with patient survival in each of the 25 cancer types that had sufficient sample size and 

follow-up time. That analysis identified a few dozen to thousands of prognostic enhancers 

per cancer type, and some of them tended to correlate with prognosis across multiple cancer 

types (Figure 1E, Figure S1C, D, Table S1, Table S4). Given the same sample cohorts and 

FDR cutoff = 0.05, we compared the proportions of enhancers and protein-coding genes that 

showed prognostic significance. Interestingly, in most cancer types, the fraction of enhancers 

with prognostic power was comparable to, or even higher than, that of protein-coding genes 

(Figure 1F). Finally, we examined the variation in enhancer expression across cancer types 

based on global enhancer expression level (summarizing over all of the enhancers surveyed, 

in reads per million mapped reads [RPM]). Liver hepatocellular carcinoma (LIHC) showed 

the lowest global enhancer expression level (~100 RPM), and thymoma (THYM) showed 

the highest (~240 RPM). Within each cancer type, there was also large variation (as large as 

~5-fold) among patient samples (Figure 1G). Compared with adjacent normal tissues from 

the same patients, most cancer types showed global enhancer activation (paired t-test, p < 

0.05, for 13 cancer types that had >10 matched tumor-normal pairs, Figure 1H). 

Collectively, those results present a general picture of enhancer expression in human cancers 

and suggest that enhancer expression signals detected from TCGA RNA-seq data represent a 

biological dimension of interest, complementary to other genomic features. The enhancer 

expression datasets presented here provide a starting point for exploration by the research 

community.

Global enhancer activation in cancer is positively associated with tumor aneuploidy

Somatic copy-number alteration (SCNA) and point mutation are the two most common 

types of mutational events that impact the stability of a cancer genome. To explore the 

relationship between genomic instability and enhancer expression in cancer, we determined 

the correlations of global enhancer expression level (RPM) with the SCNA and mutation 

burdens in each cancer type. Specifically, for a given tumor sample, we used the aneuploidy 

value (defined as the fraction of the genome affected by SCNAs) from Affymetrix SNP6.0 

arrays and the total number of silent somatic mutations from whole-exome sequencing to 
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quantify the global SCNA level and mutation burden, respectively. For the majority of 

cancer types surveyed (19 out of 25 cancer types with ≥80 samples), the aneuploidy level 

showed a significantly positive correlation with the global enhancer activation level (Figure 

2A). In contrast, point mutations showed no correlation or a slight negative correlation 

(Figure 2B). These results indicate complex relationships between enhancer activation and 

different types of genomic aberrations in cancer.

To explore further the global patterns of enhancer expression across cancer types, we 

performed consensus clustering of tumor samples using the 1500 (~10% of 15808) 

enhancers with the highest coefficients of variation (CV) across samples (STAR Methods). 

Enhancer expression levels were Z-normalized within each cancer type to minimize tissue 

effects. The analysis resulted in three robust subtypes (clusters): C1, C2, and C3 were 

separated in the space of the top three principal components, and the clusters were not driven 

by disease type (Figure 2C, D, and Figure S2). Comparison of the enhancer-based subtypes 

with well-established pathological subtypes further supported the biological significance of 

the clustering (Figure S3A, B). The most distinct feature among the subtypes was their 

differential levels of global enhancer expression: the enhancer expression levels of the three 

subtypes were higher than those of their normal counterparts; subtype C2 showed the 

highest level of enhancer activation, 1.25 or 1.15-fold higher than that of normal or C1/C3 

samples (Figure 2E). Notably, the 15% increase of global enhancer expression was a large 

effect, indicating >400 more activated enhancers in C2 than in C1/C3 samples, up to be 

~30% of the active enhancers that a tumor usually has (Figure 2F). Consistent with the 

associations between aneuploidy and global enhancer expression within individual cancer 

types, ~25% of a typical C2 genome was affected by aneuploidy, 1.5-fold more than that of a 

typical C1 (16%) or C3 (15%) genome (Figure 2G), indicating thousands more genes 

perturbed by SCNAs. In terms of mutation burden, subtype C1 samples contained slightly 

more point mutations than subtype C2, and both C1 and C2 showed significantly higher 

mutation burdens than subtype C3 (Figure 2H). We also saw that some cancer driver genes 

appeared to be under strong positive selection in subtype C1 (Figure S3C, D). For example, 

C1 had a 1.5-fold higher TP53 truncation rate than did the others. The decoupling of point 

mutations and global enhancer activation in the above pan-cancer analysis is compatible 

with the patterns we observed within cancer types (Figure 2A, B). Taken together, the 

correlations of enhancer activation with genomic instability can be summarized as a tree 

(Figure 2I): subtype C1 was enriched with samples having high mutation load and low 

aneuploidy; subtype C2 was enriched with samples having high mutation load and high 

aneuploidy; and C3 was “normal-like,” with low mutation load and low aneuploidy. Both the 

analyses within cancer types and the analyses across cancer types indicate that SCNAs, but 

not point mutations, are positively associated with enhancer activation.

A “chromatin-state”-centered model for the interplay of enhancer activation, SCNAs, and 
point mutations

The above section raised a question of great interest: why do SCNAs and point mutations 

correlate with global enhancer activation in cancer differently (or even to some extent 

inversely in some cancer types)? Variations in chromatin organization of the human genome 

have been reported to be major determinants of the variation of somatic mutation rates 
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across the genome (Schuster-Bockler and Lehner, 2012); low mutation rate is a feature of 

open DNA because of their accessibility by the DNA repair machineries (Figure 3A) (Polak 

et al., 2014). Interestingly, chromatin opening happens to be a prerequisite for enhancer 

activity (Figure 1A). Upon activation, enhancers loop to, and interact with, their target 

DNAs, creating topological DNA-DNA interactions (Figure 3A). Meanwhile, long-range 

DNA-DNA contacts physically increase the chance for loci far apart on the 1D–sequence to 

meet and rearrange with each other when breaks occur, generating structural alterations 

(Figure 3A) (Fudenberg et al., 2011). Those observations collectively suggest a molecular 

mechanism in which SCNAs and point mutations are differently associated with global 

enhancer activation patterns established through differences in the openness of chromatin. In 

that model, compact chromatin favors point mutation and keeps enhancers silent; once 

chromatin opens, enhancers are more likely to be activated, and because unfolded DNA is 

elongated by 1–2 orders of magnitudes, enabling long-range DNA-DNA interactions, which 

increase the chance of DNA rearrangements (SCNAs).

To test that hypothetical model further, we used SCNA and mutation data from whole-

genome sequencing to perform the analysis across different genomic regions, thereby 

providing evidence independent of that from our cross-sample analyses (Figure 3B, STAR 
Methods). A direct prediction of the model is that loose and compact chromatin regions in 

the cancer genome are dominated by SCNAs and mutations, respectively. Consistent with 

that prediction, in the cross-genomic-region analysis (using 1 Mb as a unit), DNA regions 

that featured markers of open chromatin (DNA hypersensitivity and H3K27Ac) were 

associated with higher rates of DNA double-strand breaks (DBSs) and lower mutation rates. 

Also as predicted, the relationship between chromatin state and enhancer expression was the 

same as that for chromatin state and DSBs. In contrast, closed chromatin, characterized by 

histone methylation (H3K9Me2 and H3K9Me3), displayed a strikingly opposite pattern 

(Figure 3B). We also observed a significantly negative association between point mutations 

and enhancer activation across genomic regions (rho = −0.46, n = 2663, p < 10−16). That 

correlation was much stronger than those in cross-sample comparisons (only 4 out of 25 

cancer types showed significant negative correlations, Figure 2B). Those differences are 

probably due to genome-wide SCNA and mutation burdens positively correlated across 

tumor samples of different disease stages (Figure S4). Further, according to the model 

posited here, the long-range DNA-DNA interactions (Hi-C interactions) in open chromatin 

should at least partially explain the coincidence of enhancer activation and SCNAs across 

different genomic regions. To test that possibility, we examined the 500 10 kb-fragments of 

the human genome with the highest DSB rates. We found that ~40% (n = 204) of them 

overlapped with anchors of Hi-C loops, representing a >3-fold enrichment (p < 10−3, 

permutation test, Figure 3C). The same anchor regions also tended to overlap with the 

enhancers in our study (n = 15808; enrichment = 1.9 fold, p < 10−3; permutation test, Figure 

3D). As summarized in Figure 3E, this hypothetical model provides a simple and reasonable, 

although tentative, explanation for differential associations of enhancer activation with 

SCNAs and with mutations.

Chen et al. Page 6

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Systematic identification of causal enhancer-cancer gene interactions

To elucidate the molecular functions of individual enhancers in cancer development and 

assess their clinical utility, it is important to identify their downstream target genes. 

Although new technologies like Hi-C (Jin et al., 2013) have been used to infer enhancer-

gene interactions at the level of chromatin blocks (Dekker et al., 2013), computational 

methods that can accurately pinpoint target genes are seriously needed. Integrating enhancer 

and mRNA expression data, we can obtain candidate target genes of an enhancer through co-

expression analysis. For a given enhancer-gene combination that is co-expressed, there are at 

least three possible relationship models: (1) a causal relationship, in which changes in the 

expression of the enhancer cause differential expression of the gene; (2) a reactive 

relationship, in which the gene is upstream of the enhancer; and (3) a co-responsive 

relationship, in which the enhancer and the gene are both responding to other molecular 

changes (Figure 4A). To distinguish the first (causal) model from the other two, we 

introduced expression quantitative trait loci (eQTL) information. The rationale was as 

follows: In the causal model, but not the other two, a single nucleotide polymorphism (SNP) 

that affects the enhancer’s activity would also affect expression of the enhancer’s 

downstream target gene, thereby making the SNP (or a nearby, genetically linked SNP) an 

eQTL of the gene of interest. Finally, for such enhancer-gene pairs, we can use recently 

available Hi-C data to assess whether the imputed causal relationship is likely (or not) to be 

direct regulation.

Following the logic above, we developed a computational method to identify potential 

causal/direct enhancer-gene regulations (Figure 4B). First, we selected enhancers with at 

least one nearby (< 500 bp) common SNP annotated in the 1000 Genomes Project (minor 

allele frequency >20%) or GTEx database (1000 Genomes Project Consortium, 2012; 

Lappalainen et al., 2013). We focused on a set of 822 cancer genes that combined clinically 

actionable genes (i.e., biomarkers or therapeutic targets) (n = 126), OncoKB (n = 476), and 

the Cancer Gene Consensus (CGC, n = 567) (Chakravarty et al., 2017; Futreal et al., 2004; 

Yuan et al., 2016). Second, we performed a co-expression analysis, which revealed ~40,000 

associations between the enhancers and the genes in ≥4 of 33 TCGA cancer types (absolute 

Spearman’s rho > 0.3 and FDR < 10−4; STAR Methods). Third, we inferred casual 

relationships by examining whether the SNP on a given enhancer was an eQTL of the co-

expressed gene in either the 1000 Genome or the GTEx dataset. We then integrated the long-

range DNA-DNA interaction data from Hi-C (Rao et al., 2014) to predict whether causal 

relationships were acting through direct enhancer-gene contacts or through regulatory 

cascades. Specifically, if an enhancer and its co-expressed gene were located in one of the 

two anchors of a Hi-C DNA loop, the pair was considered as possible instances of direct 

regulation if the signal in the eQTL analysis was significant (p < 0.05). For enhancer-gene 

co-expression pairs without detected Hi-C interactions, we set a more stringent eQTL cutoff 

at (FDR < 10−4; with multiple comparison correction to account for all SNPs of a given 

enhancer) and considered them as instances of casual regulation.

Using that approach, we identified 65 such interactions involving 49 enhancers and 47 

cancer genes, resulting in a predicted enhancer-gene regulatory network (Figure 4C). In 

total, 22 and 8 of the cancer genes were annotated, respectively, as oncogenes and tumor 
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suppressor genes (TSG) in CGC, indicating a trend toward oncogene regulations 

(background Oncogenes: TSGs = 214: 198 in CGC, p = 0.037, chi-squared test, Figure 4C). 

Those 30 genes are involved in diverse cancer hallmarks with bias toward proliferation and 

metastasis, according to CGC annotations (Figure 4D). Interestingly, consistent with the bias 

toward oncogenes and the previously observed global enhancer activation, our network is 

strongly enriched with positive regulations, 43 of 54 (80%) and 11 of 11 (100%) for causal 

regulations and direct causal regulations, respectively (p < 0.01 for both enrichments, Figure 

4E). Those results provide insight into the way in which global enhancer activation may 

contribute to tumor progression. They also identify individual enhancer-gene regulations that 

may be crucial in cancer development or clinical management.

Enhancers of actionable genes show potential clinical relevance

To investigate regulation by the enhancers identified as described above, we analyzed in 

detail an enhancer on chr22 (chr22:50980817–50981280, henceforth called enhancer-22) 

and its inferred target SYK. The ENCODE ChIP-seq dataset annotates a large number of 

protein-DNA interaction peaks within or flanking the enhancer-22 region (Figure 5A), 

suggesting its role as a hub in a regulatory network. Three genetically-linked SNPs are 

located in the enhancer, all of which are SYK eQTLs. For example, the T-allele of SNP 

rs5770772 was associated with higher expression of both enhancer-22 and SYK than the C-

allele in the 1000 Genomes Project RNA-seq dataset (Figure 5B, 5C). When we analyzed 

the TCGA protein expression dataset, we confirmed that higher enhancer activity was 

associated with higher SYK protein levels (Figure 5D, 5E). SYK is an oncogenic driver that 

is activated in multiple types of late-stage cancer and is associated with poor clinical 

outcome (Puissant et al., 2014; Yu et al., 2015). Consistent with that relationship, our own 

analysis of patient survival times further supported the role of enhancer-22 as a marker of 

poor prognosis in several cancer types (Figure 5F–K, Figure S5). Since the eQTL, RNA-seq, 

and protein data were generated from independent platforms and the correlations were 

observed across multiple tissues of origin, these results provide evidence that enhancer-22 is 

a prognostic marker, largely through its effect on the downstream gene SYK.

Besides prognostic markers, enhancers may serve as predictive markers for therapeutic 

response. PD-L1 plays a key role in a cancer’s escape from attack by the immune system 

and thus has been a major target of “check-point inhibition” immunotherapy, most 

prominently for lung cancer and melanoma (Topalian et al., 2016). In our enhancer-gene 

regulation network, we found an enhancer (chr9:5580709-5581016, hereafter called 

enhancer-9) located ~140kb from PD-L1. We observed strong co-expression between the 

PD-L1 mRNA level and the enhancer expression in multiple cancer types (Figure 6A). We 

then validated the co-expression in a cohort of 130 lung cancer cell lines from the Cancer 

Cell Line Encyclopedia database (Figure 6B). A PD-L1 eQTL close to the enhancer suggests 

the enhancer as an upstream regulator (Figure 6C). The Hi-C dataset from a panel of seven 

human cell lines further confirmed a direct interaction between the PD-L1 gene and the 

enhancer (Figure 6D, Figure S6A). Interestingly, out of the 161 transcription factors 

surveyed in the ENCODE project, NF-κB (measured with RELA/p65 ChIP-seq data) was 

the only one annotated for enhancer-9. Consistently, ChIP-seq data showed a strong NF-κB 

binding signal on the enhancer-9 and on the p65 binding motif of PD-L1’s promoter (Figure 

Chen et al. Page 8

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6E), strongly suggesting that NF-κB complex is involved in the enhancer/PD-L1 interaction. 

Consistent with that idea, the NF-κB dimer has recently been reported to be essential to PD-

L1 activation (Gowrishankar et al., 2015). To validate the causal effects of enhancer-9 on 

PD-L1 expression, we designed three pairs of single-guide CRISPR/Cas9 RNAs (sgRNAs) 

to delete enhancer-9. Using the most effective sgRNA pair, we obtained a stable lung cancer 

A549 cell line with the homozygous enhancer-9 deletion (Figure 6F, Figure S6B, and STAR 
Methods). As predicted, knockout of enhancer-9 substantially reduced PD-L1 expression 

(~10-fold) at both mRNA and protein levels (Figure 6G, H) and largely masked the inductive 

effect (~80% reduction) of INF-γ (activating NF-κB) on PD-L1 expression (Figure 6H, 

Figure S6C). Collectively, these results suggest an NF-κB-mediated enhancer-promoter 

interaction model of PD-L1 activation (Figure 6I). This example highlights the potentially 

important way in which enhancers can modulate key therapeutic targets.

Discussion

Although the role of enhancers in cancer development has increasingly been recognized, 

genome-wide profiling studies on enhancer activity using conventional techniques (e.g., 

ChIP-seq) over large patient sample cohorts have not been done. Using TCGA RNA-seq 

data, we characterized the enhancer expression landscape in a broad range of cancer types. 

We observed global enhancer activation positively associated with large SCNAs but not 

point mutations, and proposed a model in which chromatin state is a key contributor to the 

observed genomic patterns. In contrast to closed chromatin, which favors point mutations 

(Polak et al., 2014), open DNA promotes structural rearrangements through long-range 

DNA-DNA interaction and activates enhancers by exposing them to transcription factors. 

The model provides insights into mutational landscape and clonal evolution. Epigenetic 

status, including histone modifications, nucleosome packaging, and DNA methylation could 

be precisely inherited during cell division (Probst et al., 2009). Variations in chromatin 

organization in a single tumor progenitor cell could, therefore, create striking differences 

among tumors if their effects are accumulated for many generations of cell growth. 

Chromatin organization could be substantially remodeled by histone gene mutations, which 

are frequently seen in cancers (Yuen and Knoepfler, 2013), or by chromatin remodeling 

events such as SMURF2 or HMGB1 loss of function (Blank et al., 2012; Celona et al., 2011) 

that globally loosen the structure of the genome (Schwab, 2009). Such events could create a 

high across-patient diversity of chromatin organization that may have crucial effects on 

genomic features such as SCNAs, point mutations, and enhancer activation. Thus, chromatin 

state could substantially shape the mutational landscape and at least partially explain an 

interesting but incompletely understood observation that tumors tend to be driven by either 

mutation (M class) or copy-number alteration (C class) (Ciriello et al., 2013). Due to the 

polyA selection and relatively low depth of TCGA RNA-seq data, our analysis only covered 

a proportion of enhancers in the human genome and may contain some noise. Therefore, 

further efforts using alternative technologies would be required to achieve a more 

comprehensive picture of enhancer activity in human cancers.

The global enhancer activation we observed in cancer samples (relative to those from normal 

issues, as shown in Figure 1H, Figure 2E) also provides insights into the clonal evolution of 

tumors. In contrast with microRNAs, which are dominantly down-regulated in cancer (Lu et 
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al., 2005), enhancers are globally activated. Those up- and down-regulations both serve to 

up-regulate a large number of protein-coding genes, raising the question of their selective 

advantages. They may be a handy solution to stress in the short term of cancer evolution 

(Yona et al., 2012), in which activation of oncogenes and loss of TSGs are favored. 

However, given the nature of mutations, loss-of-function mutations are much easier to obtain 

than gain-of-function (activating) ones. As a result, cells with global gene activation could 

benefit from the advantages of oncogene activation. Meanwhile, the hitchhiked TSGs would 

be inactivated by loss-of-function mutations, which are more easily generated. Such an 

alternative may be particularly favored in cancer evolution (Yona et al., 2012).

The co-expression-based enhancer-gene regulatory network we infer here is of high value 

from the perspectives of both systems and translational research. ChIP-seq and CAGE-seq 

have proven to be powerful techniques for searching enhancers (Andersson et al., 2014; 

Park, 2009). A DNA-DNA interaction-based technique, Hi-C, has identified many enhancer-

gene interactions (Schmitt et al., 2016). However, these interactions have limitations in that 

(1) no regulatory relationship behind the interaction is guaranteed, and (2) usually only low-

resolution interactions are available. For example, a typical Hi-C result generates 

interactions at a resolution level of 10–50 kb, whereas a typical enhancer is only ~200 bp in 

length (Schmitt et al., 2016). Therefore, the method we propose, based on co-expression, 

eQTL, and Hi-C data integration, may be complementary to the other approaches. Due to 

limited data from matched tissues across different datasets, we combined signals from 

different tissues in our pipeline to infer causal enhancer regulations, which may lead to some 

false positives. Independent experiments are required to validate the proposed enhancer 

regulations. Our analysis reveals a considerable number of enhancers, including enhancer-9 

for PD-L1, that are associated with clinically actionable genes, including the experimentally 

validated regulation of enhancer-9 for PD-L1. These results suggest a conceptually 

alternative strategy to inhibit key therapeutic targets, and further efforts are required to 

investigate the potential of enhancers in clinical applications.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Han Liang (hliang1@mdanderson.org).

Experimental Model and Subject Details

HEK (human embryonic kidney) 293T, HEK 293FT, and A549 cell lines were purchased 

from American Type Culture Collection (ATCC). HEK 293T and HEK 293FT cells were 

cultured in Dulbecco’s modification of Eagle’s medium (DMEM) with 10% fetal bovine 

serum (Invitrogen) at 37 °C and 5% CO2. A549, A549-cas9, and the cell lines established 

based on A549-cas9 were maintained in RPMI-1640 with 10% fetal bovine serum at 37 °C 

and 5% CO2. The mycoplasma testing was confirmed to be negative for all the cell lines 

used in this study.
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Method Details

Annotation of expressed enhancers in TCGA RNA-seq data—We obtained the 

information for 65423 FANTOM enhancers (Andersson et al., 2014) from http://

fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/

human_permissive_enhancers_phase_1_and_2.bed.gz. For enhancer expression analysis, we 

first re-annotated the 65423 FANTOM enhancers according to the University of California, 

Santa Cruz gene annotation file (refgene.txt), FANTOM transcription start sites and 

alternative polyadenylation sites (Andersson et al., 2014). We removed those that overlapped 

with known genes or intron regions, resulting in a subset of 15808 enhancers for which we 

could confidently assign the RNA-seq reads (Table S1). As a further layer of quality control, 

we extended the definition of known transcription events to all Ensembl transcripts (v90) 

and identified 3228 out of 15808 enhancers overlapped with at least one Ensembl transcript 

(Table S1). All annotations were based on the human genome build hg19. We obtained 8928 

TCGA RNA-seq BAM files of 33 cancer types from CGHub or the NCI Genomic Data 

Commons Data Portal. All these files were based on hg19 and processed by the TCGA 

genomic data analysis center at the University of North Carolina.

Chromatin state analysis of enhancers—We obtained all experimental data of DNase 

hypersensitivity, p300 binding, CTCF binding, H3K4Me1, and H3K27Ac modification from 

the ENCODE data portal (https://www.encodeproject.org/matrix/?type=Experiment). All 

files meeting the following criteria were included in the analysis: (1) Format= BigWig; (2) 

Genome version= Hg19; (3) Signal type= fold-change over control. The ChIP signal of an 

interested DNA region was extracted from BigWig files using UCSC software 

bigWigAverageOverBed. We then chose the output column “mean” to represent the signal 

intensity. ChIP signals were measured on the whole length of DNA or flanking 25 bp for 

enhancers or TSSs, respectively. The TSSs loci were obtained from UCSC (refgene.txt). For 

any element of interest, we also obtained the signal on its flanking 1kb regions (window 

size: 50 bp; step size: 50 bp). The 41 data points (50 bp ×20 on up-stream sequence, 50 bp 

×20 on down-stream sequence, and one of the elements of interest, itself) were normalized 

as Z-scores. We then calculated the mean signal across all aligned sequences in all cell lines 

to generate the chromatin status plots in Figure 1B and Figure S1B. To further confirm the 

quality of our enhancer set, we compared them with all transcripts annotated by Ensembl, 

which was more comprehensive but also noisier. We identified 3228 out of 15808 (~20%) 

enhancers overlapping with at least one Ensembl transcript, but detected no differences on 

chromatin status between the two groups of enhancers; thus, we retained the 3228 enhancers 

for further analysis.

For the genomic-region-based analysis, we first obtained a human genome benchmark from 

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/NIST_union_callsets_06172013/

union13callableMQonlymerged_addcert_nouncert_excludesimplerep_excludesegdups_exclu

dedecoy_excludeRepSeqSTRs_noCNVs_v2.18_2mindatasets_5minYesNoRatio.bed.gz, 

which excluded the genomic regions that were ambiguous for mutation calling. We divided 

the human genome into 1Mb-sized fragments and only retained 2663 fragments with >50kb 

(5% of 1Mb) benchmark sequences. The ChIP signal of each fragment was measured as 

described above except that only benchmark sequences were considered. For Hi-C data, we 
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obtained the DNA-DNA interaction loops from the Gene Expression Omnibus database 

(GSE63525)(Rao et al., 2014). For breakpoint and mutation data analysis, we downloaded 

the files CosmicGenomeScreensMutantExport.tsv.gz and CosmicNCV.tsv.gz from COSMIC 

FTP and retained only the data annotated as “WGS” (whole genome sequencing) in both 

files. The mutation rate and breakpoint rate were calculated in the benchmark regions on 

each 1Mb-sized fragment. For the double strand break (DSB) hotspots, we divided the 

human genome into 10kb-sized fragments, calculated the DSB rate in the same way as for 

the 1Mb-sized fragments, and defined the top 500 fragments as DSB hotspots in the human 

genome, with a minimal DSB rate of 1.6 breakpoints per kb.

Comparison of global enhancer activation between tumor and normal 
samples—For the tumor vs. normal tissue comparison, we considered a total of 13 cancer 

types with >10 tumor-normal sample pairs. For each sample, we measured its global 

enhancer expression level by counting the number of reads per million mapped reads [RPM] 

on the surveyed enhancers (n = 15808). The y-axis of Figure 1H was defined as 

(RPMTumor/RPMNormal-1)%, where RPMTumor (or RPMNormal) was the mean RPM cross all 

tumor (or normal) samples of a given cancer type. Statistics were performed using paired t-

test.

Consensus clustering of enhancer expression profile—We calculated the 

log2RPKM values of the enhancers in TCGA samples as previously described (Li et al., 

2015). We excluded 599 samples with a low sequence depth to reduce noise and included 

8329 samples in the clustering analysis. Within each of the 33 cancer types, we scaled the 

expression level (log2RPKM) of each enhancer into a Z-score. The Z-scores across all 

samples of 33 cancer types were combined to calculate the CV. The 10% (1,500 of 15808) of 

the enhancers with the highest CVs were subjected to consensus clustering using the R 

package “ConsensusClusterPlus”. When the number of clusters (k) increased from 2 to 10, 

we observed little gain of area under the cumulative distribution function curve in consensus 

clustering after k = 3 (Figure S2B), which indicated that three clusters were identified in our 

analysis (Stefano Monti 2003).

Integrative analysis of enhancer expression with other molecular and clinical 
data—For genomic variations, the SCNA level of each tumor was obtained from the 

cBioportal feature “fraction of copy number altered genome,” while mutations (TCGA 

PanCanAtlas MC3) were obtained from the NCI Genomic Data Commons Data Portal. We 

used the number of silent mutations per exome to quantify the overall mutation load since 

non-silent mutations could be largely affected by positive selection. These statistics were 

obtained by using the Kruskal-Wallis test. Subtype information was obtained from the 

TCGA PanCanAtlas Pathway Analysis Working Group. The chi-squared test was used to 

test the independence of the subtype and enhancer cluster. For prognostic analysis, we first 

filtered the enhancers without detectable expression in >10% of the samples in each cancer 

type. For each of the remaining enhancers, we used the Cox regression model and log-rank 

test to determine the enhancer’s prognostic power. Enhancers associated with either the 

overall survival time or progression-free interval time (FDR < 0.05, John Storey’s 

correction, Table S4) were considered as prognostic enhancers.
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Inference of causal enhancer–gene regulation—We first constructed a cancer-type–

specific enhancer–gene co-expression network. Enhancers with common SNPs (minor allele 

frequency > 0.2) in the 1000 Genomes Project dataset (1000 Genomes Project Consortium, 

2012) or GTEx dataset or within their flanking 500 bp sequences were considered in this 

analysis. We combined a group of actionable genes (n = 126), OncoKB with the Cancer 

Gene Consensus (n = 567) to be the cancer gene set in the analysis. In each cancer type, we 

used Spearman’s rank correlation model with Bonferroni’s correction for multiple 

comparisons to determine the enhancer-gene co-expression. Co-expression of an enhancer–

gene pair was defined as significant co-expressions (absolute Spearman’s rho > 0.3 and FDR 

< 10−4) in at least four cancer types (>10% of the 33 cancer types). For each enhancer-gene 

co-expression pair, we then examined whether they contacted each other directly through 

long-range DNA-DNA loops. If they were located respectively on the two anchors on any 

DNA loops identified in GSE63525 (Rao et al., 2014), we considered the co-expression as a 

potential direct regulation, for which, we then tested if the SNP on this enhancer was an 

eQTL of the paired gene (p < 0.05). For other co-expression pairs without detected 

interaction through DNA loops, we applied a more stringent cutoff (FDR < 10−4) for the 

eQTL analysis. For both direct and indirect regulations, the p values in eQTL tests were 

corrected according to the number of SNPs associated with each enhancer. The RNA-seq 

and genotype data of the 1000 Genomes Project and GTEx were obtained from http://

www.internationalgenome.org/category/rnaseq/ and dbGAP (phg000520), respectively 

(Lappalainen et al., 2013). For the GTEx dataset, 11 tissues with ≥ 80 samples were 

subjected to analysis: adipose_tissue, blood, blood_vessel, brain, esophagus, heart, lung, 

muscle, nerve, skin, and thyroid. For the eQTL analysis, we first artificially assigned the 

genotype scores of 1, 2, and 3 to individuals with genotypes of 0/0, 0/1, and 1/1, 

respectively. Spearman’s correlation between the genotype score and the gene’s expression 

was used to determine if the SNP was an eQTL of the gene. If more than one SNP was 

associated with an enhancer, the results were subjected to Bonferroni’s correction. 

Enhancer–gene pairs that survived the eQTL test were considered to have causal regulation.

Computational analysis of enhancer-9—We obtained the raw observation/expectation 

ratio (O/E ratio) representing the interaction level of distant genomic loci from GSE63525 

(Rao et al., 2014). The raw O/E ratio was normalized according to the “readme” description 

file in the dataset. We then calculated the median O/E ratio of seven human cell lines of 

different tissue origins as the final interaction level, as presented in Figure 6C. All the 

ENCODE ChIP-seq bigwig files (including NF-κB ChIP-seq data) were obtained from the 

ENCODE data portal. The ChIP-seq signal intensities were extracted from bigwig files, and 

their mean values were used to measure the NF-κB binding affinity on the enhancer-9 or 

PD-L1 promoter.

CPRISPR/Cas9 genetic perturbation of enhancer-9—The single-guide RNA 

(sgRNA) sequences were designed using Cas-Designer (http://www.rgenome.net/cas-

designer/) within 400 bp sequences flanking the enhancer region (chr9:5580709–5581016). 

Three gRNAs on either side of the enhancer were selected from the results, generating 9 

(3×3) possible combinations of sgRNA pairs (Figure S6B). The upstream and downstream 

sgRNA sequences were synthesized and cloned into two CRISPR-Cas9 plasmids (Addgene 
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48138 and 64324) that respectively express GFP and mCherry as reporters. The sgRNA 

sequences were validated by Sanger sequencing after plasmid construction. The plasmids 

with upstream and downstream sgRNAs were mixed and then transfected using 

lipofectamine 3000 into the human embryonic kidney (HEK) 293T cell line grown in 

Dulbecco’s modification of Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) 

at 37°C and 5% CO2. Three independent transfections were carried out for each pair of 

sgRNAs. Genetic perturbation efficiency was examined using polymerase chain reaction 

(PCR) six days after transfection. According to their efficiency, we chose sgRNA-L2 and 

sgRNA-R3 to generate the enhancer-9 homozygous deletion cell line. To obtain a constant 

cas9 expression cell line, we first packaged the cas9 plasmid (Addgene 73310) into 

lentivirus in the HEK 293FT cell line (grown in DMEM with 10% FBS), and then infected 

the human lung cancer cell line A549 (grown in RPMI-1640 with 10% FBS) by the 

lentivirus. After one week of blasticidin (25 µg/ml) selection, the A549-cas9 cell line was 

established. On day 0, 500 ng plasmids with sgRNAs or scramble controls were 

electroporated into A549-cas9 cell line using 100 µl tips at 1230V with 30ms width and 2 

pulses (Neon Transfection System, Life Technologies). After three days of puromycin (4 

µg/ml) selection, single cells were seeded into 96-well plates. During colony expansion, 

genotyping was carried out using KAPA Mouse Genotyping Kit (KAPA Biosystems) to 

screen single-cell clones with the deletion of enhancer-9. We obtained a homozygous 

enhancer-9 deletion cell line and confirmed the deletion region by Sanger sequencing. The 

mRNA and protein levels of PD-L1 expression after enhancer-9 deletion were measured by 

quantitative reverse-transcriptase PCR (qRT-PCR) and western-blot assay, respectively. One 

day after cell seeding, IFN-γ was added to the medium at the final concentration of 1 ng/ml. 

The expression level of PD-L1 was quantitated three days later. For mRNA expression level, 

RNA extraction was performed with RNeasy Plus Mini Kit (Qiagen). The high-capacity 

cDNA reverse transcription kit (Thermo Fisher Scientific) was used to reverse-transcribe 1 

µg total RNA into cDNA. The SYBR select master mix (Thermo Fisher Scientific) and the 

Mastercycler RealPlex4 (Eppendorf) were used to perform qRT-PCR, which used the 

following primer sequences. For ACTB, the primer sequences were 

ATTGGCAATGAGCGGTTC/ CGTGGATGCCACAGGACT, and for PD-L1, the primer 

sequences were GCATTTACTGTCACGGTTCC/ TGCTGAACCTTCAGGTCTTC. For 

protein expression level, whole-cell lysates were extracted with RIPA buffer (25 mM Tris-

HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, protease, and 

phosphatase inhibitor cocktails) and measured concentration using Pierce BCA Protein 

Assay Kit (Thermo Fisher Scientific). For each sample, 30 µg total protein was loaded into 

4%-12% SDS-PAGE, transferred to a polyvinylidene fluoride membrane, and depicted with 

Amersham ECL Western Blotting Detection Reagents (GE Healthcare Life Sciences). The 

following antibodies were used: PD-L1 (1:1000, Cell Signaling Technology, 13684T), 

ACTB (1:30,000, Sigma, A3854).

Quantification and Statistical Analysis—The analyses were based on 8928 tumor 

samples, except for the clustering analysis, which excluded 599 samples with a low read 

coverage, and the survival analysis, which excluded 8 cancer types with insufficient patient 

survival data. The definitions of significance for the various statistical tests are described and 

referenced in the respective Method Details sections.

Chen et al. Page 14

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data and Software Availability—The TCGA data are available at https://

gdc.cancer.gov/about-data/publications/pancanatlas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Systematic analysis of enhancer expression across ~9,000 samples of 33 

cancer types

• Global enhancer activation positively correlated with aneuploidy but not 

mutations

• A computational method that infers causal enhancer-target-gene relationships

• Enhancers as key regulators of therapeutic targets, including PD-L1
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Figure 1. Overview of enhancer expression in TCGA RNA-seq data
(A) When activated, expressed enhancers may generate RNA molecules detectable by RNA-

seq. (B) The chromatin status of enhancers, TSSs of protein-coding, and lncRNA genes, as 

well as their flanking 1-kb regions. The y-axis shows the normalized ChIP-seq signals from 

the ENCODE bigwig files. (C) Transcription of enhancers and their flanking 2-kb sequences 

detected in TCGA RNA-seq dataset. The y-axis shows the average reads per million mapped 

(RPM) to the nucleotide at the relative position from an enhancer, as indicated on the x-axis. 

Flanking sequences that overlapped with known genes were excluded from the calculation. 

(D) Numbers of expressed enhancers in different cancer types. An enhancer was considered 
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as expressed in a cancer type if observed in >10% of the samples. (E) Numbers of 

prognostic enhancers in different cancer types. For each enhancer, its correlation with 

patients’ survival times in a given cancer type was calculated using Cox regression. The p-

value was subjected to multiple-testing correction with FDR = 0.05 as cut-off. (F) 

Comparison of the proportion of prognostic enhancers and coding genes across cancer types, 

given the same patient cohorts and FDR cutoffs as in E above. (G) The variation in enhancer 

expression within and across cancer types. (H) Global enhancer activation in cancer as 

determined through comparison of matched tumor-normal pairs. Thirteen cancer types with 

>10 tumor–normal pairs were considered. The y-axis shows changes in global enhancer 

expression (RPMtumor/RPMnormal −1)%; statistics were performed with paired t-test. See 

also Figure S1.
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Figure 2. Enhancer expression is associated with different types of genomic aberration
(A, B) Spearman’s correlation coefficient (rho) between global enhancer expression 

determined by RPM and (A) aneuploidy (measured as the proportion of the genome affected 

by SCNAs) or (B) mutation burden (measured as the number of silent exonic mutations). 

Significant correlations are colored. (C, D) Consensus clustering analysis identified three 

major enhancer expression subtypes. Within each cancer type, the log2RPKM values of 

15808 enhancers were scaled to the Z-score before clustering to correct for tissue-specific 

patterns that would otherwise affect the clustering. Consensus clustering based on 1500 

enhancers (~10%) with the highest coefficients of variation identified three major clusters. 
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The Z-score matrix was projected onto the first three dimensions identified in principal 

component analysis, with colors representing the (C) three clusters or (D) cancer types. (E) 

Relative global enhancer expression level (RPM) of the three clusters in tumors compared 

with normal samples. Error bars show mean ± standard error (SE). Statistics were computed 

using t-test. Absolute RPM levels are shown at the top of each bar. (F) Numbers of 

enhancers detected in the three clusters (RPKM > 0.5). Error bars show mean ± standard 

error (SE). Statistics were computed using t-test. (G) Aneuploidy level in the three subtypes; 

sample proportions of 50% and 75% are in the box and within the limits, respectively. (H) 

Numbers of silent mutations in the three subtypes; sample proportions of 25% and 50% are 

in the box and within the limits, respectively. Kolmogorov-Smirnov p-values are shown. (I) 

Summary of genomic aberration profiles of the three subtypes. See also Figures S2 and S3.
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Figure 3. A “chromatin-state”-centered mechanistic model for the interplay among enhancer 
activation, SCNAs, and point mutations
(A) Hypothetical impacts of chromatin state on the cancer genome. (B) Real correlations 

between genomic features across genomic regions. The human genome was divided into 

2663 1-Mb fragments for correlation analysis. Enhancer activation level was defined as the 

mean RPKM of all enhancer regions within a fragment. The mutation rate and DNA double-

strand break rate were calculated for each fragment using whole-genome data from 

COSMIC (STAR Methods). DNase hypersensitivity and histone-modifications were 

obtained from the ENCODE ChIP-seq dataset, and the density of DNA-DNA interactions 

was determined using Hi-C data (STAR Methods). Spearman’s correlation coefficients 

between genomic features were plotted as indicated. All correlations were of strong 
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statistical significance (p < 10−16). (C) The top 500 10-kb human genome fragments with 

the highest breakpoint rates were considered as DSB hotspots, of which 204 and 296, 

respectively, were found inside and outside of the anchors of DNA loops detected by Hi-C. 

(D) The distribution of 15808 enhancers inside and outside of DNA loop anchors detected 

by Hi-C. (E) Hypothetical model demonstrating how chromatin opening favors DNA 

structural rearrangement. See also Figures S4.
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Figure 4. Systematic identification of causal enhancer/cancer-gene interactions
(A) Three models of enhancer-gene co-expression pairs. (B) Bioinformatic method for 

inferring causal enhancer-gene interactions. (C) A network view for regulation of cancer 

genes by enhancers. Each arrow represents an interaction in the causal model in (A). (D) 

Number of genes in the network that contribute to the set of cancer hallmarks. (E) Number 

of positive enhancer-gene co-expressions in different steps of (B).
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Figure 5. Enhancer-22 as a prognostic marker across cancer types
(A) Genomic context of enhancer-22 (chr22:50980817-50981280). (B) and (C) SNP 

rs5770772 is simultaneously a cis-eQTL of enhancer-22 and and trans eQTL of SYK. (D) 

Co-expression levels between enhancer-22 and SYK in multiple cancer types based on 

RNA-seq and reverse-phase protein array (RPPA) datasets; P-values calculated by 

Spearman’s rank correlation and Bonferroni-corrected. (E) Scatter plot showing co-

expression between SYK protein level determined by RPPA and enhancer-22 expression 

level determined as log2RPKM. Kaplan-Meier plots for patient stratification based on 

enhancer-22 expression in (F) kidney renal cell clear cell carcinoma (KIRC), (G) low-grade 
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glioma (LGG), (H) uveal melanoma (UVM), (I) uterine corpus endometrial carcinoma 

(UCEC), (J) thymoma (THYM), and (K) pancreatic adenocarcinoma (PAAD). P-values 

based on log-rank test are shown. See also Figure S5.
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Figure 6. Enhancer-9 regulates PD-L1, a key target of immunotherapy
(A) Co-expression levels between enhancer-9 (chr9:5580709-5581016) and PD-L1 in 

multiple cancer types (RNA-seq); p-values for Spearman’s rank correlations were calculated 

and Bonferroni-corrected. (B) Scatter plot showing co-expression between PD-L1 mRNA 

level and enhancer-9 expression level. (C) SNP rs1536927 near enhancer 9 is a PD-L1 

eQTL; p-value was calculated using ANOVA. (D) Direct interaction between PD-L1 gene 

body and enhancer 9 detected by Hi-C. The Hi-C O/E ratio was calculated as the median of 

O/E ratios of 7 human cell lines. (E) NF-κB ChIP-seq signals of enhancer-9 and the PD-L1 

promoter. (F) Experimental design of sgRNA-guided enhancer perturbation by Cas9 protein. 
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Three different sgRNAs were designed for each side of the enhancer. (G) Relative mRNA 

expression levels of PD-L1 in A549 cells and the same line after homozygous enhancer-9 

deletion. Error bars show mean ± SE of results of 4 replicates; the difference was assessed 

using t-test. (H) PD-L1 protein levels in the control and enhancer-9 deletion cell lines 

without and with INF-γ stimulation. (I) Cartoon of NF-κB-mediated enhancer/promoter 

interaction for PD-L1 activation. See also Figure S6.

Chen et al. Page 34

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	ETOC
	Introduction
	Results
	Overview of enhancer expression in human cancers
	Global enhancer activation in cancer is positively associated with tumor aneuploidy
	A “chromatin-state”-centered model for the interplay of enhancer activation, SCNAs, and point mutations
	Systematic identification of causal enhancer-cancer gene interactions
	Enhancers of actionable genes show potential clinical relevance

	Discussion
	STAR Methods
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Annotation of expressed enhancers in TCGA RNA-seq data
	Chromatin state analysis of enhancers
	Comparison of global enhancer activation between tumor and normal samples
	Consensus clustering of enhancer expression profile
	Integrative analysis of enhancer expression with other molecular and clinical data
	Inference of causal enhancer–gene regulation
	Computational analysis of enhancer-9
	CPRISPR/Cas9 genetic perturbation of enhancer-9
	Quantification and Statistical Analysis
	Data and Software Availability


	Secondary author list
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6



