
UC Berkeley
UC Berkeley Previously Published Works

Title

Landscape‐scale consequences of differential tree mortality from catastrophic wind 
disturbance in the Amazon

Permalink

https://escholarship.org/uc/item/0d65r3rm

Journal

Ecological Applications, 26(7)

ISSN

1051-0761

Authors

Rifai, Sami W
Muñoz, José D Urquiza
Negrón‐Juárez, Robinson I
et al.

Publication Date

2016-10-01

DOI

10.1002/eap.1368
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0d65r3rm
https://escholarship.org/uc/item/0d65r3rm#author
https://escholarship.org
http://www.cdlib.org/


Landscape‐scale consequences of differential tree mortality 
from catastrophic wind disturbance in the Amazon

Sami W. Rifai 
 
José D. Urquiza Muñoz 
 
Robinson I. Negrón  ‐  Juárez 
 
Fredy R. Ramírez Arévalo 
Rodil Tello  ‐  Espinoza 
 
Mark C. Vanderwel 
 
Jeremy W. Lichstein 
 
Jeffrey Q. Chambers 
 
Stephanie A. Bohlman
First published: 03 May 2016
https://doi.org/10.1002/eap.1368
Cited by: 5
UC-eLinks
Corresponding Editor: Y. Pan.
About









Sections
















https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Rifai%2C+Sami+W
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1368
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1368
https://esajournals.onlinelibrary.wiley.com/servlet/linkout?suffix=s0&dbid=16384&type=tocOpenUrl&doi=10.1002/eap.1368&url=http%3A%2F%2Fucelinks.cdlib.org%3A8888%2Fsfx_local%3Fsid%3Dwiley%26iuid%3D2396784%26id%3Ddoi%3A10.1002%2Feap.1368
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1368#citedby-section
https://doi.org/10.1002/eap.1368
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Bohlman%2C+Stephanie+A
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Chambers%2C+Jeffrey+Q
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lichstein%2C+Jeremy+W
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Vanderwel%2C+Mark+C
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Tello-Espinoza%2C+Rodil
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ram%C3%ADrez+Ar%C3%A9valo%2C+Fredy+R
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Negr%C3%B3n-Ju%C3%A1rez%2C+Robinson+I
https://esajournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Urquiza+Mu%C3%B1oz%2C+Jos%C3%A9+D














 















Abstract
Wind disturbance can create large forest blowdowns, which greatly reduces live biomass and 
adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within 
the central Amazon have quantified blowdown size and estimated total mortality but have not 
determined which trees are most likely to die from a catastrophic wind disturbance. Also, the 
impact of spatial dependence upon tree mortality from wind disturbance has seldom been 
quantified, which is important because wind disturbance often kills clusters of trees due to large 
treefalls killing surrounding neighbors. We examine (1) the causes of differential mortality 
between adult trees from a 300‐ha blowdown event in the Peruvian region of the northwestern 
Amazon, (2) how accounting for spatial dependence affects mortality predictions, and (3) how 
incorporating both differential mortality and spatial dependence affect the landscape level 
estimation of necromass produced from the blowdown. Standard regression and spatial 
regression models were used to estimate how stem diameter, wood density, elevation, and a 
satellite‐derived disturbance metric influenced the probability of tree death from the blowdown 
event. The model parameters regarding tree characteristics, topography, and spatial 
autocorrelation of the field data were then used to determine the consequences of non‐random 
mortality for landscape production of necromass through a simulation model. Tree mortality was 
highly non‐random within the blowdown, where tree mortality rates were highest for trees that 
were large, had low wood density, and were located at high elevation. Of the differential 
mortality models, the non‐spatial models overpredicted necromass, whereas the spatial model 
slightly underpredicted necromass. When parameterized from the same field data, the spatial 
regression model with differential mortality estimated only 7.5% more dead trees across the 
entire blowdown than the random mortality model, yet it estimated 51% greater necromass. We 
suggest that predictions of forest carbon loss from wind disturbance are sensitive to not only the 
underlying spatial dependence of observations, but also the biological differences between 
individuals that promote differential levels of mortality.

Introduction



The magnitude of tree mortality occurring in a tropical forest can determine its community 

dynamics, where periods of low mortality (background) promote gap phase replacement and a 

disturbance event resulting in high mortality can trigger a reset of the community followed by 

colonization of pioneer species. Much of the published research on tropical tree mortality has 

focused on background mortality, which is pragmatic considering that tropical forest plot 

networks, a main source of forest dynamics data, are not well suited to sample spatially 

aggregated disturbances (Fisher et al. 2008, Chambers et al. 2013). Catastrophic wind 

disturbances (i.e., events with greater than 5% mortality as defined by Lugo and Scatena 1996) in

tropical forests have largely focused on hurricane‐prone areas (Brokaw and Grear 1991, Lugo 

and Scatena 1996, Curran et al. 2008). However, the role of non‐hurricane catastrophic wind 

disturbance within tropical forests is increasingly recognized to alter both species composition 

(Chambers et al. 2009b, Marra et al. 2014) and create sudden losses of live biomass (Negrón‐

Juárez et al. 2010), which will decompose and be returned to the atmosphere as carbon 

emissions. In the Amazon basin in particular, wind storms can create blowdowns with spatial 

extents in excess of 30 km2 (Nelson et al. 1994). Amazonian blowdowns are thought to emanate 

from two meteorological mechanisms: downbursts from convective systems and squall line 

storms (Garstang et al. 1998). A recent display of the widespread mass mortality induced by a 

squall line storm was seen in 2005, where approximately 500 million trees were estimated to 

have died (Negrón‐Juárez et al. 2010). Yet not all trees die within a Neotropical blowdown, and 

the identities of which trees are killed has remained an open question until now. The individual 

variation in biomass of adult trees can span orders of magnitude, so understanding which trees 

die is of especial importance for reducing the large uncertainties regarding disturbance and its 

role in the Amazon's large contribution to global land–atmosphere carbon exchange (Davidson 

et al. 2012).

Previous research to quantify tropical forest blowdowns has mostly focused on identifying the 

shape of size frequency distributions of blowdowns (Fisher et al. 2008, Chambers 

et al. 2009a, 2013, Kellner and Asner 2009, Asner 2013). However, no studies to date have 

quantified how mortality rates vary between trees within tropical forest blowdowns and how this 

differential mortality will affect estimates of landscape‐scale carbon losses. On the contrary, 

because this was unknown, previous efforts to estimate mortality and necromass from wind 

disturbance events have had to model mortality as a random uniform process (e.g., Negrón‐

Juárez et al. 2010). Accurately quantifying the effects of episodic wind disturbances on 

community and ecosystem dynamics requires information not only on the size–frequency 

distribution of blowdowns, but also on tree mortality rates within blowdowns in relation to the 

properties of individual trees (e.g., their size and functional traits, such as wood density) and the 
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physical environment (e.g., topographic position). A key concern related to differential mortality 

(i.e., non‐random or selective mortality) is that large trees contain disproportionate amounts of 

forest biomass (Clark and Clark 1996). Therefore, if large trees suffer disproportionately high 

mortality during blowdowns, ignoring differential mortality will lead to underestimation of 

carbon lost to the atmosphere from the disturbance.

There are several reasons to expect differential tree mortality (i.e., dependence of mortality 

probability on microsite or individual tree properties) in large blowdowns in the tropics. First, 

background (non‐catastrophic) tree mortality rates in tropical forests depend on the 

characteristics of individual trees, such as high wood density (Chao et al. 2009, Kraft et al. 2010)

and, less consistently, large size (Clark and Clark 1996, Laurance et al. 2000, Thomas 

et al. 2013). Second, fire, drought, and hurricanes have all been shown to cause differential 

mortality (Barlow et al. 2003, Nepstad et al. 2007, Curran et al. 2008). Third, studies of wind 

disturbance in temperate forests have found that increasing tree size (Rich et al. 2007), low wood

density (Canham et al. 2001, Rich et al. 2007), and higher topographic position (Sinton 

et al. 2000) promote probability of death. Finally, tree mortality from wind disturbance has a 

high potential for spatial autocorrelation because the probability of a tree dying is not 

independent from its neighbor's fate. A large windthrown tree may directly kill or damage 

neighbors as it falls, or indirectly affects the probability of neighboring tree mortality due to 

increased wind exposure. Consequently, accurately predicting landscape mortality will likely 

require accounting for spatial autocorrelation.

In this study, we consider three questions: (1) How much do landscape and tree structural 

characteristics predispose a tree to die in an Amazon blowdown? (2) Does quantifying spatial 

autocorrelation alter the estimated degree of differential mortality? (3) How does incorporation 

of individual tree‐based differential mortality and spatial autocorrelation alter necromass 

estimation across a forest blowdown landscape?

Methods

Study site

Using 30‐m spatial resolution Landsat Thematic Mapper imagery, we located a blowdown that 

occurred in late 2009 in the Peruvian Amazon (4.389° S, 73.602° W), roughly 100 km south of 

Iquitos in the department of Loreto. The vegetation is terra firme forest and receives 

approximately 3,100 mm rainfall per year (Sombroek 2001). In this study area, elevation ranged 

from 130 to 160 m, where higher elevation strongly corresponds to hilltop topographic positions,
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intermediate elevations correspond to slopes and lesser ridgelines, and the lower elevations 

correspond with depressions and valleys.

Blowdown identification and satellite image analyses

Landsat 5 Thematic Mapper (TM) acquisitions with scene identifiers 

“LT50060632009245CUB00” (2 September 2008) and “LT50060632009341CUB00” (7 

December 2009) were used to assess the pre‐ and post‐disturbance landscape, respectively. The 

images were atmospherically corrected using the ENVI fast line‐of‐sight atmospheric analysis of

hypercubes (FLAASH; Exelis Visual Information Solutions, Boulder, Colorado, USA) prior to 

analysis. Chambers et al. (2007) demonstrated that forest wind disturbance can be detected and 

quantified from Landsat images due to a significant increase in dead woody material or non‐

photosynthetic vegetation (NPV) in the images, and the change in NPV can be used as a metric 

of disturbance intensity. Multiple endmember spectral mixture analysis (MESMA; Roberts 

et al. 1998), a variant of linear spectral unmixing, was used to estimate the pre‐ and post‐

disturbance NPV fraction of the blowdown landscape. For the unmixing, we used three 

endmembers: NPV, green vegetation (GV), and shade. Soil, which is often used as a fourth 

endmember in forested landscapes, was not used as an endmember because while blowdown 

events produce a high fraction of windthrown trees, relatively little soil is visible from above. 

Constrained reference endmember selection (Roberts et al. 1998) was used to derive spectral 

libraries of the target endmembers from the post‐disturbance images. Shade normalization was 

applied to produce an image of just the fraction of NPV, and the fraction of GV for each pixel. 

The pre‐disturbance fraction of NPV was then subtracted from the post‐disturbance fraction of 

NPV to yield the change in NPV, ΔNPV, image (Chambers et al. 2007, Negrón‐Juárez 

et al. 2010, 2011, Marra et al. 2014). A very similar implementation of the ΔNPV method has 

been demonstrated to be sensitive to subpixel‐scale clustered treefalls composed of as few as six 

trees (Negrón‐Juárez et al. 2011).

To generate landscape topographic variables, we downscaled the AST14DEM digital elevation 

model (DEM) (data available online) from 30‐ to 10‐m spatial resolution through cubic‐

convolution.1 Elevation and ΔNPV values were extracted for plot units from the 3‐ha transect 

and the ΔNPV calibration plots (see Methods: Blowdown identification and satellite image 

analyses). Image analysis was performed with ENVI and the VIPER Tools ENVI plugin 

(available online).2

Field data collection
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Three intersecting transects, consisting of 103 30 × 10 m contiguous plots (3.1‐ha total area), 

were installed inside and outside the blowdown affected area (Fig. 1; hereafter called “transect 

data”). Disturbed and non‐disturbed plots were chosen to have comparable topographic 

characteristics. Elevation ranged between 132 and 164 m across the entire transect, with mean 

elevation of 144 m in the undisturbed portion of the transect and 152 m in the disturbed portion. 

Disturbance within individual plots ranged from no disturbance‐induced tree mortality to near 

complete tree mortality. Diameter at breast height (DBH, 1.3 m) was measured on all live and 

dead individuals greater than 10 cm DBH. Diameters of some dead, fallen trees were measured 

above 1.3 m from the base (breast height) because their boles were made inaccessible by other 

windthrown trees.

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1368#eap1368-fig-0001


Figure 1
Open in figure viewer  PowerPoint
2009 blowdown study location roughly 100 km south of Iquitos, Perú in the department of 
Loreto. The top middle panel shows the post‐disturbance Landsat 5 TM (RGB : Bands 5,4,3) 
with yellow dotted line indicating the position of transect plots. The top right panel shows the 
variation in disturbance intensity indicated by different categories of ΔNPV (increase in exposed 
wood detected by pre‐ and post‐disturbance Landsat images). The bottom panel shows a photo 
from near the center of the blowdown, taken <1 yr after the disturbance event.
Caption
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Approximately 95% of live trees were identified to species, and no attempt was made to identify 

dead trees. Dominant families in the transect plot were Lecythidaceae, Euphorbiaceae, 

Sapotaceae, Myristicaceae, and Fabaceae (Appendix S1: Table S4). Wood density was sampled 

for one live individual of each species using a gas powered drill (Tanaka TED‐270PFR) by 

collecting all wood chips produced by drilling into the tree from the cambium to the pith with an 

18 mm wide ship auger bit. The hole's volume produced by drilling was measured with vernier 

calipers, and the mass of the oven dried wood shavings was divided by the hole volume to 

determine wood density (Francis 1994). These wood density values were compared with 

matching species (when available) that had replicated values from the Global Wood Density 

Database (Chave et al. 2009, Zanne et al. 2009) to ensure the method was comparable to 

previously published measurements (Appendix S1: Fig. S11). Wood density samples were also 

collected via chainsaw for all dead individuals. Dead wood samples were submerged for 3 d to 

approximate their pre‐death green volume, after which the volume was determined using the 

water balance submersion method. Samples were then oven‐dried and weighed.

A separate but closely located set of 30 20 × 20 m plots (hereafter referred to as the “ΔNPV 

calibration plots”) was installed in the same blowdown to calibrate the remote sensing‐derived 

disturbance intensity metric (ΔNPV) to tree mortality. Unlike the transect plots, each calibration 

plot was installed so its center would be as close as possible to the corresponding post‐

disturbance Landsat 5 TM pixel (Fig. 2, inset). Each tree greater than 10 cm DBH with its base in

the plot was counted and categorized as live or dead. Because our aim was to quantify blowdown

mortality, we only counted dead trees that were snapped or windthrown. Snapped but resprouted 

trees, as well as live trees that were partially uprooted, were counted as being alive despite being 

likely to die within a few years. Thus, the ΔNPV metric in this study only describes immediate 

post‐disturbance mortality and does not incorporate delayed tree mortality resulting from the 

disturbance.
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Figure 2
Open in figure viewer  PowerPoint
The fraction of observed adult tree mortality vs. the change in pre‐ and post‐disturbance non‐
photosynthetic disturbance (ΔNPV) with regressions through the origin (Model 1). The dotted 
and dashed lines represent the 95% credible interval for the calibration plots (green squares) and 
transect plots (solid blue circles). Calibration plots were carefully located to be centered on the 
Landsat pixels, while transect plots crossed multiple pixels.
Caption

Modeling tree mortality rates

Overview of mortality models.—

We briefly introduce four different models used to quantify how both differential mortality from 

the blowdown event and spatial autocorrelation affect estimates of landscape necromass 

produced by the blowdown. Details of each model are presented in the subsequent sections. 

Model 1 predicted the overall fraction of tree mortality within a pixel by regressing the overall 
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fraction of tree mortality solely against the pixel's ΔNPV (Chambers et al. 2007). Model 2 

predicted individual tree‐level probability of death from the blowdown event by fitting a logistic 

regression of mortality probability as a function of tree size and wood density within each of six 

categories of disturbance intensity (ΔNPV). Model 3 was similar to Model 2, but treated ΔNPV 

as a continuous variable in addition to topographic position, tree size, and wood density. Model 4

was similar to Model 3, but also accounted for spatial autocorrelation. Model 1 was fit twice, 

once using the transect data (also used to fit Models 2–4), but also fit with the ΔNPV calibration 

plot data to generate an estimate of the ΔNPV–mortality relationship with reduced uncertainty in 

the ΔNPV predictor (see Fig. 2, inset). Models 1–4 were fit to the transect data in a Bayesian 

modeling framework using either Markov chain Monte Carlo (MCMC; for Models 1–3) or 

nested Laplace approximation (for Model 4) to estimate the model parameters. The joint 

posterior distribution of parameters for each model was then used to simulate the landscape 

necromass produced by the blowdown while propagating model uncertainty.

Model 1: Pixel‐scale mortality depends on ΔNPV.—

Following Chambers et al. (2007), tree mortality from the blowdown was estimated from ΔNPV 

for each pixel using a simple linear regression, 

(1)

No intercept term was used to ensure that the predicted tree mortality was zero when ΔNPV = 0, 

as we were only trying to capture mortality related to disturbance (and thus ΔNPV) rather than 

background mortality. Forcing the relationship through the origin was also necessary to reduce 

bias in the lower portion of the ΔNPV and to constrain the over‐prediction of necromass 

(see Methods: Landscape simulation of blowdown necromass). For purposes of comparison of 

the relationship with an intercept, the model fit with intercept is included in Appendix S1: Fig. 

S12. As explained previously, the model was fit separately to each of two different datasets: the 

transect data and the ΔNPV calibration plots. Each ΔNPV calibration plot was spatially located 

at the center of a Landsat pixel, whereas the transect plots intercepted one to four Landsat pixels 

(Fig. 2, inset). The lack of a one‐to‐one correspondence between a transect plot and a Landsat 

pixel is expected to increase uncertainty in the explanatory variable (ΔNPV); we explore the 

implications of this uncertainty in Discussion: Differential tree mortality resulting from 

catastrophic wind disturbance. The posterior distribution of the slope and standard deviation 

were obtained using MCMC methods implemented in the R package FilzbachR (Lyutsarev and 

Purves 2013).

Model 2: Individual‐tree mortality depends on tree size and wood density
within ΔNPV classes.—
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Model 2 assumed that the probability of mortality (PM) for an individual tree depended on tree 

size (DBH) and wood density (WD) as,

(2)
where β0 is the intercept term. The model was fit as a generalized linear mixed model (GLMM) 
with intercept and slope parameters treated as random effects that varied across six groups of 
transect plots partitioned by ΔNPV class (<0, 0–0.04, 0.041–0.15, 0.151–0.4, 0.41–0.7, and 
>0.71, with higher values indicating greater disturbance severity). The ranges of the ΔNPV 
groups were set to more evenly distribute observations of live and dead trees. Including elevation
did not improve fit in Model 2, likely because elevation was correlated with ΔNPV (r = 0.468; 
Appendix S1: Fig. S10). The GLMM was fit using the Gibbs sampling MCMC package, JAGS 
(version 3.4.0) in conjunction with the R package, rjags (Plummer 2014).

Model 3: Individual‐tree mortality depends on ΔNPV, elevation, tree size, 
and wood density.—

Model 3 assumed that the probability of mortality (PM) for an individual tree depended on DBH 

and WD, as well as a transect plot's ΔNPV and topographic position (elevation), according to a 

logistic function generalized linear model (GLM),

(3)
where β0 is the intercept, and ELEV is elevation. Eq. 3 was fit using the R package FilzbachR. 
Model selection (i.e., inclusion/exclusion of certain interaction terms) is explained in Methods: 
Model selection and assessment.

Model 4: Individual‐tree mortality with spatial dependence.—

As explained in the introduction, tree mortality within a blowdown is an inherently spatial 

process, because the survival of an individual tree partially depends on whether its neighbors 

have been killed. To account for this spatial dependence, we used the stochastic partial 

differential equation GLM in the INLA package for R (Rue et al. 2009, Lindgren et al. 2011, 

Beguin et al. 2012). In this model (hereafter “spatial GLM”), a spatial random effect (SRE; 

constrained to have a mean of 0) is used to model a continuous random spatial process. The SRE 

term is as an additive model term (for each spatial location) that accounts for spatial dependence 

between observations, with the value of the SRE term varying among the spatial locations in a 

spatially autocorrelated manner (Beguin et al. 2012). The degree and scale of autocorrelation is 

not prescribed but rather is determined by the structure of the data as part of the model fitting 

procedure. Model 4 has the same form as Model 3, but with the SRE term included to account 

for spatially autocorrelated variation in mortality,
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(4)

In addition to sharing a common form with Model 3, this model form was confirmed by a formal

selection procedure.

Model selection and assessment

For the first three models, the selection of covariate combinations was guided by Akaike's 

information criteria, whereas the deviance information criteria (Spiegelhalter et al. 2002) was 

used for the spatial GLM. To compare the performance of the different models, we calculated 

two goodness‐of‐fit indices for each model: the ratio of predicted to observed necromass in the 

transect plots and the coefficient of determination (R2) where R2 = 1 – (sum of squaresResidual)/(sum 

of squaresTotal). R2 was calculated for individual trees and individual transect plots. The pixel 

ΔNPV of 27% of the landscape encompassing the blowdown, and 15.5% of the transect subplots 

were <0 (Appendix S1: Fig. S8). Negative ΔNPV occurs when pixels in the post‐disturbance 

image exhibit less NPV than the corresponding pixels in the pre‐disturbance image. The linear 

pixel‐scale ΔNPV model (Model 1) predicts negative necromass when ΔNPV is negative. 

Therefore, for purposes of comparison across all models, only trees in pixels with positive ΔNPV

were used to calculate R2 for individual trees or by plot. Spatial autocorrelation in individual tree 

model residuals (which would indicate a model's failure to capture spatial dependence patterns in

mortality) was assessed with Moran's I using the correlog function in the pgirmess R package 

(Giraudoux 2014). Residuals were considered to be spatially autocorrelated if Moran's I was 

significantly different from zero (P < 0.05).

Landscape simulation of blowdown necromass

We used results from the four statistical models with a simple simulation model to compare the 

estimated total landscape‐scale necromass generated by the blowdown. For each model, we 

combined the estimated parameters (and uncertainties) with ΔNPV and ASTER DEM values to 

simulate necromass in 30 × 30 m pixels across a 500.5‐ha area (5,561 pixels) that includes the 

blowdown. In each pixel, we simulated the mortality (or survivorship) of 50 trees, which was the

mean number of trees present in a pixel area as estimated from the non‐disturbed transect plots 

(ΔNPV < 0). The DBH and WD of the 50 trees per pixel were chosen at random from trees 

inventoried in the non‐disturbed transect plots. The aboveground biomass of each tree was 

estimated from its DBH and wood density using an allometric equation (Eq. 2.1 from Chave 

et al. 2005). For Model 1, the estimated mortality fraction of each pixel was drawn from a 
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normal distribution with a mean of the pixel ΔNPV multiplied by the slope β, with standard 

deviation σ, being drawn from the posterior distribution of the model fit. For Models 2–4, the 

posterior distributions from the model fits were used to parameterize the probability of death 

functions (Eqs. 2-4) for each individual tree in the simulated landscape. The spatial GLM (Model

4) indicated that the spatial random effect increased with disturbance intensity (Appendix S1: 

Fig. S2), so the simulation required predictions of SRE across the landscape, which were 

obtained by fitting the SRE as a third degree polynomial predicted from the ΔNPV (see 

Appendix S1: Fig. S2 for details). To propagate model uncertainty, 1,000 sets of parameter 

values were drawn from each model's joint posterior distribution and used for each of 1,000 

simulations to generate a distribution of landscape necromass predictions for each model. For 

Model 4, each of the 1,000 parameter sets included a random draw from the sampling 

distribution of the polynomial SRE model fit to ΔNPV (Appendix S1: Fig. S2).

Results

Overview

The probability of individual tree mortality in the blowdown increased with both tree size and 

elevation, while it decreased with wood density (Fig. 3). The choice of model as assessed by 

goodness of fit had a large impact on simulated landscape necromass. The linear ΔNPV model 

(Model 1), which did not include differential tree mortality, most underpredicted the amount of 

necromass in the transect data (Table 2), while the spatial GLM (Model 4), which included 

differential tree mortality and accounted for spatial autocorrelation in mortality, most closely 

predicted the observed necromass in the transect data.
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Figure 3
Open in figure viewer  PowerPoint
Estimated probability of mortality from a catastrophic wind disturbance of a tree with median 
tree characteristics, as predicted by the spatial logistic regression model with the SRE (Model 4).
Shaded regions represent 95% confidence interval as calculated by the Delta Method 
(Jackson 2011). The median tree characteristics were 17.3 cm DBH, 0.64 wood density, and 
149 m elevation.
Caption

Plot‐based tree mortality estimates
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The plot‐based model predicting the fraction of mortality linearly from ΔNPV using the transect 

inventory data (Model 1) yielded a slope of 0.776 with  

and R2 = 0.632. When fit with the calibration plots, the slope was estimated to be 1.156 with 

 and R2 = 0.845 (Fig. 2). Both ΔNPV slope estimates are 

similar to prior studies (slope of 0.996 in Chambers et al. 2007, 1.03 in Negrón‐Juárez 

et al. 2010).

Differential tree mortality models

Models 2–4 all indicated that tree mortality was non‐random, with large trees, low wood density 

trees, and trees at higher elevations being the most likely to die (Fig. 3). When probability of 

mortality was determined with the spatial model, the largest tree in the field data (98.7 cm) was 

predicted to be up to five times more likely to have died than the trees with minimum diameter 

measured in this study (10 cm DBH) at high ΔNPV (Fig. 4). Trees with the lowest wood density 

(~0.18 g/cm3) were up to four times more likely to die than trees with the highest wood density 

(~1.1 g/cm3) at high levels of disturbance intensity. Model 2, the ΔNPV‐partitioned GLMM, 

generally showed the effect size of DBH to increase with higher levels ΔNPV (Appendix S1: 

Table S2). The interaction between DBH and ΔNPV shows that large diameter trees are even 

more likely to die when disturbance intensity is high (Table 1, Figs. 3A and 4A). The interaction 

between WD and ΔNPV suggests that the effect of wood density towards promoting survival is 

stronger as disturbance intensity increases (Table 1, Figs. 3B and 4B; Appendix S1: Figs. S4 and 

S6). Large trees with low wood density (i.e., high DBH : WD ratio) are the most prone to die, 

even in the lower quarter of the ΔNPV spectrum (Fig. 3D).
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Figure 4
Open in figure viewer  PowerPoint
The ratio of estimated mortality probabilities between small and large (2.5 and 97.5% quantiles 
of the transect data, respectively) for (A) tree diameter, (B) wood density, and (C) elevation as a 
function of disturbance intensity, illustrating the interaction between disturbance intensity and 
tree/site characteristics. Large and small values were: 55 and 10.3 cm DBH; 0.97 and 0.33 wood 
density; and 162 and 134 m elevation. The model used was the spatial GLM (Model 4). The 
dashed line indicates no difference in the mortality probability.
Caption
Table 1. β coefficients for fixed effects in a non‐spatial generalized linear model (GLM; Model 
3) and a spatial GLM (Model 4)
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Non‐spatial GLM Spatial GLM

Effect 2.5% 50.0% 97.5% 2.5% 50.0% 97.5%

Intercept −15.784 −12.907 −9.626 −20.503 −11.617 −2.762

ΔNPV 0.882 3.404 6.029 −1.564 2.021 5.648

DBH −0.006 0.010 0.025 −0.007 0.012 0.031

WD −1.597 −0.446 0.789 −2.097 −0.633 0.824

Elevation 0.050 0.071 0.091 −0.001 0.059 0.118

ΔNPV : DBH 0.067 0.123 0.183 0.050 0.110 0.176

ΔNPV : WD −7.931 −4.272 −0.688 −7.494 −3.401 0.595

Notes

 2.5, 50, and 97.5% Bayesian credible intervals are presented. Abbreviations are ΔNPV, 

difference in non‐photosynthetic vegetation before and after disturbance event; DBH, diameter at

breast height (cm); WD, wood density (g oven dry/cm3 green volume); Elevation (m); ΔNPV : 

DBH, ΔNPV interaction with diameter; ΔNPV : WD, ΔNPV interaction with wood density.

Spatial vs. non‐spatial GLM

The spatial GLM was the only model of those tested that reduced spatial autocorrelation, as 

measured by Moran's I, to a non‐significant (P > 0.05) level across all tested distance classes 



(30–1,450 m; Appendix S1: Fig. S1). The coefficient estimates for the covariates in the spatial 

GLM and the non‐spatial version were similar (Table 1), but 95% credible intervals were 

narrower for the non‐spatial GLM, as expected when spatial autocorrelation is ignored (Lichstein

et al. 2002). The probability of mortality of individual trees was generally overpredicted by the 

non‐spatial individual tree‐based models (Models 2 and 3; Table 2; Appendix S1: Fig. S9).

Table 2. Goodness of fit between model necromass predictions and observed necromass from 
transect plot data

Model General description Spatial Traits Question

Linear ΔNPV‐ 

calibration data 

(1)

Predicts fraction of adult tree mortality 

from blowdown; fit with ΔNPV calibration

plot data.

no no baseline 0.45 0.57 0.88

Linear ΔNPV‐ 

transect data (1)

Predicts fraction of adult tree mortality 

from blowdown; fit with transect plot data.

no no baseline 0.38 0.47 0.59

ΔNPV 

partitioned 

GLMM (2)

Hierarchical model that predicts individual

mortality using DBH and WD; partitioned 

by disturbance intensity using ΔNPV 

(binned).

no yes Q1 0.21 0.54 1.11

Non‐spatial 

GLM (3)

Predicts individual mortality using ΔNPV 

(continuous), DBH, WD, and elevation.

no yes Q1 0.29 0.55 1.11

Spatial GLM 

(4)

Same as non‐spatial GLM, but accounts 

for spatial dependence between 

observations.

yes yes Q2 & Q3 0.34 0.58 0.91

Notes
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 The model number is listed in parentheses. Traits included diameter at breast height 

(DBH) and wood density (WD). Q1–3 are reference questions from last paragraph of 

introduction.

Goodness of fit of model necromass predictions

When comparing cumulative predicted necromass from the different models, the linear ΔNPV 

model (Model 1) most underpredicted the necromass (59.3% predicted : observed), while the 

non‐spatial GLM (Model 3) most over predicted necromass (111.2%; Table 2). The spatial GLM 

(Model 4) predicted 91.2% of the observed necromass, and the ΔNPV‐partitioned GLMM 

(Model 2) predicted 111.1% (Table 2). The linear ΔNPV model (Model 1) performed best at 

predicting necromass when R2 was calculated by individual tree, while the Spatial GLM (Model 

4) performed best when R2 was calculated by plot (Table 2).

Landscape necromass estimation from simulation modeling

The linear ΔNPV model (Model 1) that used the transect data rather than the calibration data 

predicted the least necromass across the landscape (Fig. 5). Compared to this model, the ΔNPV‐

partitioned GLMM (Model 2), the spatial GLM (Model 4), and the non‐spatial GLM (Model 3) 

models predicted 67.9%, 51%, and 93.6% more necromass, respectively (Appendix S1: Table 

S3). The linear ΔNPV model (Model 1) parameterized from the ΔNPV calibration plots predicted

31.5% more landscape‐level necromass than the same model parameterized from the transect 

data. The uncertainty of cumulative landscape necromass estimates varied considerably among 

the different models (Fig. 5; Appendix S1: Table S3). The ΔNPV‐partitioned GLMM (Model 2) 

and the spatial GLM allocated considerably less necromass into pixels with negative ΔNPV than 

the other models (Appendix S1: Table S1).
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Figure 5
Open in figure viewer  PowerPoint
Total estimated tree mortality (left column) and corresponding necromass (right column) from 
the simulated landscape using four different models. For Model 1, the dark line represents the 
simulation from the model fit from the transect data and the dotted line represents the simulation 
generated from the model fit with the calibration data. For all other models, only the transect data
was used. Solid vertical lines represent the 50% quantile, while dotted lines represent the 2.5 and
97.5%.
Caption

Discussion

Differential tree mortality resulting from catastrophic wind 
disturbance

We found that tree structural attributes that enhance survival during catastrophic wind 

disturbance in the Peruvian Amazon are different than attributes commonly cited to promote 

survival during periods of background mortality. For example, large Neotropical canopy 

emergent trees have been observed to exhibit approximately half the annual mortality of the 

landscape average (Thomas et al. 2013), while other observations have suggested increasing 

diameter to be an inconsistent predictor of death under background mortality conditions (Chao 

et al. 2008). In contrast, we observed drastically higher probabilities of mortality for large trees 
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from a catastrophic wind disturbance event. This contrast in predictive mortality of a trait 

highlights the importance of differentiating periods of background mortality from episodes of 

catastrophic mortality. Similarly, increased mortality has been reported for large trees near edges 

from fragmented forests in the central Amazon (Laurance et al. 2000), where increased exposure 

to wind has been suggested to be one of the root causes. This contrast in size effects between 

background and episodic mortality is not unique to wind disturbance, as a recent study also 

found a size mediated increase in mortality rates for large trees exposed to drought (Bennett 

et al. 2015). Forest simulators and ecosystem models may produce more accurate mortality 

predictions if different trait‐based mortality algorithms are implemented to decide which trees 

die under background mortality vs. during a catastrophic disturbance event. As in Neotropical 

forests, blowdowns are also well documented in northern temperate forests (Canham and 

Loucks 1984), where the size dependent effect upon tree mortality has also been observed from 

storm windthrow events in the Adirondack mountains of New York, USA (Canham et al. 2001), a

236,000‐ha blowdown in the southern boreal forests of Minnesota, USA (Rich et al. 2007), and 

in tree mortality from tornado impacted forests in the Eastern USA (Peterson 2007). In our study,

the probability of small tree mortality only increased at very high values of ΔNPV (Fig. 3A), 

which suggests that wind disturbance only affects small trees if disturbance is severe enough to 

kill many large trees. This has also been observed in the central Amazon during periods of 

elevated wind disturbance (Toledo et al. 2012), as well as in other studies covering periods of 

background levels of mortality (Clark and Clark 1991, Chao et al. 2009).

Wood density has often been cited as a predictor of background tree mortality in tropical forests 

(Chao et al. 2008), explaining ~31% of the interspecific variation in tree mortality rates across a 

network of large forest inventory plots (Kraft et al. 2010). Unlike tree size, wood density likely 

promotes survival through both periods of background and catastrophic mortality as wood 

density is highly correlated with strength (Niklas 1992), which is important because branch‐fall 

is a major source of damage for understory and sub‐canopy trees (Clark and Clark 1991). Tree 

diameter, wood density, elevation, and disturbance intensity interacted to alter the probability of 

mortality within a blowdown. For example, the difference in probability of death between low 

and high wood density trees is not as large as differences in mortality due to size or elevation 

(Figs. 3 and 4), yet when wood density is coupled with tree size, the differences in probability of 

death are at their most extreme (Fig. 3D; Appendix S1: Fig. S5), in that large trees with low 

wood density are especially likely to die in a wind disturbance.

For this blowdown, individual trees at higher elevation were more prone to die (Table 1, 

Figs. 3and 4). The blowdown epicenter was located on a ridge, so this elevation effect on 
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mortality may not be translatable to wind disturbances with epicenters on floodplains or 

depressions. Yet in a study from the central Amazon, approximately one quarter of the variation 

in tree mortality across a time interval with multiple wind storms could be attributed to variation 

in topography and soil fertility (Toledo et al. 2011). Potentially this could be due to increased 

exposure to high wind speeds on ridges that remove large individuals (Everham and 

Brokaw 1996), enhanced drought stress on ridges (Silva et al. 2013), or some combination of the 

two factors.

At very high levels of disturbance intensity, individual differences in diameter and elevation 

position become less important in differentiating which trees will die (Fig. 4). This may be 

explained by two interrelated causes: (1) as disturbance intensity increases and the fraction of 

trees that die approaches 1, mortality (by definition) becomes less discriminating, and (2) as 

disturbance intensity increases, each tree is under greater risk of being crushed or damaged by a 

neighboring tree. We cite two results to support the second claim. First, the SRE term of the 

spatial GLM, which captures the influence of neighboring trees on an individual's probability of 

mortality, increased the probability of mortality when ΔNPV > 0.065 and plateaued when 

ΔNPV > 0.3 (Appendix S1: Fig. S2). Second, we found the difference in probability of mortality 

between high and low WD trees increased with ΔNPV (Fig. 4), which is consistent with the idea 

that high WD should promote survival from damage caused by falling neighbors.

Our estimated landscape necromass is most likely an underestimate of the actual longer‐term 

necromass produced by the blowdown because only the number of trees killed within one year of

the blowdown is estimated, while more died in the years following. Second, linear modeling of 

the ΔNPV metric is not robust to detecting treefall events composed of fewer than six trees 

(Negrón‐Juárez et al. 2011), so many smaller treefall events were undetected. Finally, coarse 

woody debris that results from mechanisms other than tree mortality, including crown breakage 

and branchfall, likely represent a significant contribution to the true necromass pool created in 

the blowdown. For example, Palace et al. (2008) found that coarse necromass was 

underestimated by 45% when only derived from tree mortality rates.

Implications of spatial autocorrelation for estimating mortality 
effects and landscape‐scale necromass

Landscape necromass simulations using the spatial GLM predicted 51% more necromass than 

the linear ΔNPV model with random‐mortality fit using the transect data, yet only 15% more 

necromass than the random mortality linear ΔNPV fit using the calibration data. The difference 

in necromass estimates was a direct result of the difference in the slope parameters between the 
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linear regression models, where the slope of the transect fit (0.78) was lower than the calibration 

plot fit (1.16). This discrepancy was likely the result of the rectangular transect plots spanning 

multiple ΔNPV pixels (thereby introducing error in the explanatory variable and reducing its 

effect size; Lichstein et al. 2014), whereas the square calibration plots were located within the 

center of a single pixel. The ΔNPV error induced by crossing multiple pixels in the transect data 

is likely what caused the reduced slope in the ΔNPV–mortality relationship fit with the transect 

data (Fig. 2.). It is likely this misalignment also served to reduce the effect size of the ΔNPV 

term in the differential mortality models and reduced their overall ability to explain variation in 

mortality between individuals.

The clarity of the linear mortality–ΔNPV relationship was also obscured by the study region's 

occasional complex topography. Slopes in excess of 45° (30‐m scale) are not uncommon in the 

study region, producing a complex pattern of illumination and shading on top of the canopy, 

which in turn affects ΔNPV estimates. Two of the three largest model residuals in the 

relationship from the ΔNPV calibration plots were from areas where the field measured sub‐plot 

slope was in excess of 35°. Despite the complex topography, the estimated slopes of the linear 

mortality–ΔNPV relationships are fairly consistent with what has been estimated from studies in 

other tropical forest landscapes (Negrón‐Juárez et al. 2010, 2011).

Whereas the overall heterogeneity of disturbed forest patches across the blowdown was captured 

by mapping ΔNPV, addressing spatial dependence between pixels and between individual tree‐

level observations was crucial to constraining the predictions for a tree's probability of death. 

The coefficients for DBH, wood density and elevation in the non‐spatial and spatial GLMs were 

generally similar (Table 1), yet the inclusion of the spatial random effect in the spatial GLM 

better constrained the estimation of necromass in the lower range of the ΔNPV spectrum. For 

example, the simulated average necromass per killed tree was similar between both the non‐

spatial and the spatial GLMs (Appendix S1: Fig. S7), yet the non‐spatial GLM simulation of 

landscape disturbance estimated 26% more tree death and >27% more necromass than the spatial

GLM. This discrepancy was due to the non‐spatial GLM estimating more necromass in the lower

ΔNPV range of pixels (Appendix S1: Table S1 and Fig. S9), whereas the SRE of the spatial 

GLM increased survival when ΔNPV was under 0.065, and increased mortality when ΔNPV was

higher (Appendix S1: Figs. S2 and S3).

It was essential that in scaling up necromass predictions from the plot to the landscape level that 

mortality was not overpredicted in the lower portion of the disturbance intensity spectrum 

because the majority of pixels in the landscape encompassing the blowdown have low ΔNPV 

values (Appendix S1: Fig. S8). Because the spatial GLM model's residuals were not spatially 
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autocorrelated, had the smallest error of predicted : observed necromass, did not overpredict 

mortality in the low ΔNPV pixels, and produced the highest R2 for predicted necromass by 

individual plot, we suggest that the spatial GLM provides the best model to estimate landscape 

necromass.

Conclusions

We found that two factors, differential mortality and the spatial structure of mortality, acted 

independently to affect total necromass on the landscape. Simple relationships relating tree 

mortality to disturbance metrics in tropical forests can oversimplify the complex processes that 

create important variation in tree mortality related to tree and landscape characteristics. We show

evidence of differential mortality within a northwestern Amazon forest affected by a catastrophic

wind disturbance event. While estimating landscape necromass with the linear ΔNPV 

relationship coupled with random mortality is by far the easiest to implement, we conservatively 

estimate that this method underpredicts total blowdown necromass by 15–51% for the blowdown

documented here. Probabilistic estimation of tree mortality is better approached when underlying

spatial processes are included in models of tree mortality. Failure to account for spatial 

autocorrelation may produce undue confidence in parameter estimates, of which even small 

differences can result in large estimation discrepancies when scaled to the landscape. Whereas 

tree death from wind disturbance and differential probability of death have sometimes been 

incorporated into local scale gap dynamic models, this has yet to be incorporated into larger 

regional scale forest carbon models. Incorporating differential mortality from wind disturbance is

likely to augment estimates of forest biomass lost because of the strong predisposition of large 

trees to die.
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