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Abstract of the Dissertation

Cohomological Invariants of Algebraic Tori

by

Semyon Blinstein

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Alexander Merkurjev, Chair

Given a field F of arbitrary characteristic and an algebraic torus T/F, we calculate degree 2

and 3 cohomological invariants of T with values in Q/Z(1) and Qp/Zp(2), respectively, the

latter for p 6= 2, char(F ), and generalize the former to other algebraic groups. Moreover, we

obtain descriptions of the corresponding unramified cohomology groups, and in particular of

H3
nr(F (T ), µ⊗2

n ) for n prime to 2 and char(F ). In the process, we construct a useful short

exact sequence for cohomological invariants and make connections with recent results on

Chow groups of codimension 2.
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Introduction

Fix a base field F of characteristic q ≥ 0 and let Fsep be a separable closure. Write ΓF , or

simply Γ, for the absolute Galois group Gal(Fsep/F ) and H i(F,C) for the Galois cohomology

of a Γ-module C (see §1.1 for the precise definition). Let FieldsF be the category of field

extensions of F with F -homomorphisms. If G/F is an algebraic group, i.e. a connected

smooth affine group scheme of finite-type over F, and K/F any field extension, we write

H1(K,G) for the (pointed) Galois cohomology set H1(K,G(Ksep)), which classifies GK-

torsors over K ( = principal homogeneous spaces) up to isomorphism [Mil80, §III.4]. The

distinguished element corresponds to the (isomorphism class of the) trivial torsor, which is

represented by G itself with G acting by multiplication. A (degree i) cohomological invariant ,

or simply invariant , η of G with values in C is a natural transformation of functors

η : H1(−, G) −→ H i(−, C),

viewing both functors from FieldsF to PSets, the category of pointed sets. In particular,

any such natural transformation maps the distinguished element of H1(K,G) to the trivial

element in H i(K,C) (see Remark 0.1(b) below). Thus, for any extension K/F, η assigns to

each GK-torsor a degree i cohomology class with coefficients in C, and for any F -embedding

K −→ L one has a commutative diagram

H1(K,G)

��

ηK // H i(K,C)

��

H1(L,G)
ηL // H i(L,C).

We denote by Invi(G,C) the set of degree i cohomological invariants of G with values in C,

which has the natural structure of an abelian group under the pointwise operation. Although

invariants have been known for some time, their study did not appear in the literature until

[GMS03], which we follow throughout this section for some of the basic constructions and

examples. We refer to [GMS03, Part 1, App. B] for details on their historical development

and context.
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Remark 0.1.

(a) Because the functor H1(−, G) commutes with direct limits, a cohomological invariant

is determined by its restriction to the category of finitely generated extensions of F

and we will see in §1.2 that there always exists a finitely generated extension E/F and

a G-torsor T ∈ H1(E,G) such that every cohomological invariant is determined by

its value at T . In fact, even more is true.

(b) Although it is possible to consider natural transformations of the given functors as func-

tors taking values in simply Sets, this offers no new insight. In this case, there is an em-

bedding H i(F,C) �
�
// Invi(G,C) given by h 7−→ ah, where the natural transformation

ah is defined as follows: given an extension K/F and a torsor T ∈ H1(K,G), ah(T ) =

hK , where hK is the image of h under the natural map H i(F,G) −→ H i(K,G). Such

invariants are called constant and the subgroup of constant invariants is identified with

H i(F,C). In this setting, an invariant is said to be normalized if it vanishes on the

distinguished element of H1(F,G), which is equivalent to it being a natural transfor-

mation of functors with values in PSets. It is clear then that the invariants group would

decompose as a direct sum of H i(F,C) and the normalized invariants, so it suffices to

consider only normalized invariants as we do.

(c) More generally, invariants can be defined for any two functors A : FieldsF −→ Sets and

H : FieldsF −→ Abelian Groups and there are interesting examples of functors A that

are not of the form H1(−, G) for any algebraic group G and functors H which are not

Galois cohomology (cf. [GMS03, Part 1, §3 and §4]). See [Mer99] for an investigation

of invariants when A = G is itself an algebraic group over F viewed as a functor of

points and H varies over a large class of functors (discussed in §1.3) which includes

Galois cohomology as a special case.

Example 0.1.

(a) For certain choices of G the pointed set H1(K,G) classifies well-known objects. When

G is the constant group scheme of the symmetric group Sn, H
1(K,G) classifies étale
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K-algebras of rank n, i.e. products
∏

i Li of finite separable extensions Li/K such that∑
i[Li : K] = n. For G = PGLn, H

1(K,G) classifies central simple algebras over K

of degree n, i.e. K-algebras of dimension n2 with center K (= K · 1) and no nontrivial

two-sided ideals. In both cases, the maps H1(K,G) −→ H1(L,G) for an embedding

of fields K −→ L over F correspond to “extension of scalars, ” i.e., tensoring with L

over K. For more examples see [GMS03, Part 1, §3] and [KMR98, §29].

(b) Let n be prime to q and set G = PGLn. If C = µn is the group of nth-roots of unity

in F×sep, the Kummer sequence and Hilbert’s Theorem 90 imply that H2(K,µn) ∼=

nBr(K), the elements of exponent dividing n in Br(K). One can consider the invariant

a ∈ Inv2(PGLn, µn) given by mapping a central simple algebra to its corresponding

class in Br(K).

(c) Let A be a central simple algebra over F of exponent e in Br(F ) and let SL1(A) be the

kernel of the reduced norm homomorphism Nrd : GL1(A) −→ Gm (cf. [KMR98, §20]).

Torsors are given by H1(F,SL1(A)) ∼= F×/Nrd(A×). One can define an invariant

r ∈ Inv3(SL1(A), µ⊗2
e ) by the formula

r(a · Nrd(A×)) = a ∪ [A] ∈ H3(F, µ⊗2
e ),

where a is the class of a in F×/F×e ∼= H1(F, µe), [A] ∈ eBr(F ) ∼= H2(F, µe) is the

Brauer class of A, and the cup-product is induced by the natural pairing µe × µe −→

µ⊗2
e . This invariant is called the Rost invariant and is of particular interest because it

is, in fact, the canonical generator of Inv3(SL1(A), µ⊗2
e ), a finite cyclic group of order e

(cf. [KMR98, §31], [Mer02, App. B], and [GMS03, Part 2, §9 and §10] for details). See

[Mer99, §5] for the Rost invariant in the context of invariants of the functors mentioned

at the end of Remark 0.1(c) above.

Our motivation for considering invariants of tori comes from their connection with un-

ramified cohomology (defined in §1.4 below). Specifically, this work began as an investigation

of a question posed by Colliot-Thélène in [Col95, p. 39]: for n prime to q and i ≥ 0, calcu-

late H i
nr(F (T ), µ

⊗(i−1)
n ), where F (T ) is the function field of a torus T/F and H i

nr(F (T ), µ⊗in )

3



is its unramified cohomology. In this work, we recover (Theorem 3.2) and elaborate on

(Theorem 3.1 and its Corollary) the previously known case i = 2 and derive a new formula

when i = 3 (§5, esp. Theorem 5.12 and Remark 5.6), the latter up to 2-torsion. We also

illustrate how the i = 2 case easily generalizes to arbitrary groups in characteristic 0 and

to reductive groups in positive characteristic (Remark 3.3) thanks to more recent work by

Colliot-Thélène. The connection with invariants is provided by a result originally due to

Rost (Theorem 1.12), which states that for a particular smooth variety X/F, one has an

isomorphism H i(F,C)⊕ Invi(G,C) ∼= A0(X,H i[C]). Here, A0(X,H i[C]) is the subgroup of

H i(F (X), C) consisting of classes which are “unramified along every divisor of X”:

A0(X,H i[C]) =
⋂

x∈X(1)

ker
[
H i(F (X), C)

∂x // H i−1(F (x), C(−1))
]
,

where F (X) is the function field of X, ∂x is the residue homomorphism corresponding

to the discrete valuation associated to a codimension one point x ∈ X (cf. §1.3), F (x)

is the residue field at x, and C(−1) = Hom(µn, C) when C is finite of exponent n and

Hom(lim←− µn, C) when C is torsion with all elements of order prime to q (see Remark

1.3(a) for restrictions on C). For a construction of this group in the larger context of

cycle modules, see §1.3 below. The unramified cohomology group H i
nr(F (X), C) is the sub-

group of A0(X,H i[C]) consisting of classes which vanish under the residue homomorphism

corresponding to any DVR A which contains F and has quotient field F (X). Therefore, we

sometimes refer to the groups A0(X,H i[C]) as partially unramified groups. The isomorphism

H i(F,C) ⊕ Invi(G,C) ∼= A0(X,H i[C]) mentioned above then allows one to define unrami-

fied invariants Invinr(G,C) ⊆ Invi(G,C) as the subgroup corresponding to H i
nr(F (X), C) ⊆

A0(X,H i[C]) (see Construction 1.13 for details). Although by definition unramified invari-

ants calculate unramified cohomology of (the function field of) X, for an arbitrary torus T

one can in fact find a torus S such that H i
nr(F (T ), C) ∼= H i(F,C)⊕ Invinr(S,C) (Proposition

1.14). Moreover, S satisfies Invinr(S,C) ∼= Invi(S,C) (Proposition 1.15). Turning this result

around, we will see that Invinr(T,C) ∼= Invi(N,C) for a torus N with the same properties

as S (Proposition 1.16). Therefore, calculation of unramified cohomology and unramified

invariants of tori is reduced to the determination of (ordinary) invariants of auxiliary tori.
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In §4 we will see that computing this last group involves working with partially unramified

groups of auxiliary varieties, hence reducing questions regarding (totally) unramified groups

to partially unramified ones.

The structure of this work is as follows. In §1 we review essential constructions and

define Q/Z(i) and related modules. In particular, in §1.4, we define unramified cohomology

and unramified invariants and investigate the relationship between the two in the case of

tori (Propositions 1.14, 1.15, 1.16). In §2, we calculate Inv2(G,Q/Z(1)) for a an algebraic

group G/F, assumed reductive if F is not perfect (Theorem 2.2), recovering [KMR98, Prop.

31.19] when q = 0 (cf. Remark 2.1(b)). In §3 we apply the results of the previous section

to determine H2
nr(F (T ),Q/Z(1)) (Theorem 3.1 and its Corollary) and Inv2

nr(T,Q/Z(1)) for

a torus T/F . We also recover the characterization originally given in [Col95, p. 39] (The-

orem 3.2) and generalize the result to arbitrary groups in characteristic 0 and reductive

groups in positive characteristic (Remark 3.3). In §4 we construct a short exact sequence

relating (ordinary) invariants to the partially unramified groups of some auxiliary varieties

and obtain the results of §2 (and therefore also of §3) for tori as a corollary (Remark 4.1).

This sequence is then used in §5 to calculate Inv3(T,Qp/Zp(2)) for p 6= 2, q (Theorem 5.12),

leading to formulas for degree 3 unramified cohomology of tori (Remark 5.6). In §6 we use

the results on degree 3 invariants to obtain a new equivalence statement for tori. Finally,

we conclude in §7 with connections to Pirutka’s recent results [Pir11] on the failure of sur-

jectivity of the natural map CH2(X) −→ CH2(Xsep)Γ, where for an F -variety X we write

Xsep for X × Spec(Fsep).

Notation: Along with the notation already introduced above, we will use the following. By

an algebraic variety X/F we mean an integral separated scheme of finite-type over F and

denote by X(i) the points of codimension i in X. For any point x ∈ X we write F (x) for

the residue field at x. We write F [X] for the ring of regular functions of X and F (X) for

its function field. We let Fsep[X] and Fsep(X) denote the ring of regular functions and the

function field of Xsep, respectively. For any field extension K/F we let XK = X × Spec(K)

5



(except we write simply Xsep when K = Fsep). For any scheme Y, Br(Y ) will mean the

cohomological Brauer group H2
ét(Y,Gm). We write µn ⊂ F×sep for the group of nth-roots of

unity. For an abelian group A and a prime p we write A{p} for the p-primary component and

A(p) for the localization of A at p. If A is a torsion abelian group then A(p) can be identified

with A{p}. We write nA for the n-torsion of A, i.e., the kernel of the multiplication by

n map A −→ A. We will abbreviate by A′ the subgroup of A of all elements of (finite)

order prime to q and refer to the q-component A{q} as the characteristic component. Tensor

products without a subscript are assumed to be taken over Z. We tend to use Γ, g, h for

profinite groups and G,H for finite (abstract) groups when discussing both. We also use the

latter symbols for algebraic groups. Most other notations are introduced in §1 as specific

constructions are reviewed.

1 Preliminaries

1.1 Algebraic Tori and Resolutions

All the constructions and results in this subsection can be found in [CS77], but we review

them here briefly for completeness. Let g be a profinite group. By a g-module A we will

mean a discrete abelian group with a g-action which satisfies any of the following equivalent

statements: (i) the action map g × A −→ A is continuous for the product topology, (ii)

A =
⋃

hA
h, where the union is taken over all open subgroups h ≤ g and Ah ≤ A is the

subgroup of elements fixed by h, or (iii) the stabilizer for each a ∈ A is an open subgroup of

g. Note also that the action respects A’s group structure: g · (a+ b) = g ·a+g · b for all g ∈ g

and a, b ∈ A. All morphisms between g-modules are assumed g-equivariant. We write Lg for

the category of finitely generated torsion-free g-modules, sometimes referred to as g-lattices.

For M,N ∈ Lg, write Hom(M,N) for the g-module HomZ(M,N) with action σ · f = σfσ−1

for σ ∈ g, and let M ⊗ N be the g-module with diagonal action. Denote by M0 the dual

module Hom(M,Z), where Z has trivial g-action. A g-module P is called a permutation

module if it has a Z-basis permuted by g. Considering the stabilizers of a basis element

6



from each orbit, it is clear that such a module is of the form P ∼=
⊕

i Z[g/hi] for some open

subgroups hi ≤ g, hence P ∼= P 0. A module I is called invertible if it is a direct summand

(as a g-module) of a permutation module. Two modules M,N ∈ Lg are said to be similar

if they are isomorphic up to addition of permutation modules: M ⊕ P1
∼= N ⊕ P2 for P1, P2

permutation modules; we write [M ] for the similarity class of M . The similarity classes of

Lg form (under direct sum) a commutative monoid Sg which contains the subgroup Ug of

invertible modules. The duality M 7−→ M0 induces an involution of Sg which preserves Ug.

If [M ] = [0] we say that M is stably permutation.

For the next construction we start with a finite group G. A G-module M is called flasque

(resp. coflasque) if H1(H,M0) = 0 (resp. H1(H,M) = 0) for all subgroups H ≤ G; in

particular, M is flasque if and only if M0 is coflasque. A more common characterization is

that M is flasque if and only if Ĥ−1(H,M) = 0 for all subgroups H ≤ G, where Ĥ i denotes

the Tate cohomology groups (cf. [Ser79, Ch. VIII, §1]). For these and other characterizations

of flasque and coflasque modules, see [CS77, Lemme 1]. Permutation modules are both

flasque and coflasque, hence so are invertible modules. In particular, the groups H1(H,M)

and Ĥ−1(H,M) are independent of the choice of representative of [M ] so we write FG (resp.

F 0
G) for the sub-monoid of SG consisting of similarity classes of flasque (resp. coflasque)

modules. Taking duals induces an isomorphism FG ∼= F 0
G.

A flasque resolution (resp. coflasque resolution) of a moduleM ∈ LG is an exact sequence

of G-modules 0 −→ M −→ P −→ S −→ 0 (resp. 0 −→ Q −→ P −→ M −→ 0) with P

permutation and S flasque (resp. Q coflasque). Therefore, any coflasque resolution of M

defines, by duality, a flasque resolution, and vice versa. Coflasque, hence flasque, resolutions

exist by [CS77, Lemme 3].

For a profinite group g and g-lattice M we can extend the above definition by saying that

M is flasque (resp. coflasque) if H1(h,M0) = 0 (resp. H1(h,M) = 0) for all open subgroups

h ≤ g. Moreover, the Galois cohomology groups satisfy ([Ser97, Ch. I, §2, Cor. 1])

H i(g,M) = colim
n

H i(g/n,Mn), i ≥ 0,

7



where the colimit is taken over all open normal subgroups n ≤ g. Since M is finitely gener-

ated and a continuous g-module, there exists an open normal subgroup h ≤ g fixing M, i.e.

M h = M, hence H i(g,M) = H i(g/h,M). Furthermore, it is equivalent for a g-module with

trivial h-action to satisfy the above properties (permutation, invertible, flasque, coflasque,

etc.) in Lg or Lg/h and thus any flasque (resp. coflasque) resolution of M in Lg/h is a flasque

(resp. coflasque) resolution of M in Lg. So, it suffices to consider the finite case (see [CS77,

§1, esp. Lemme 2]).

We recall the following simple but important result.

Lemma 1.1. ([CS77, Lemme 4 and Lemme 5]) Let M ∈ Lg and let 0 −→ M
i−→ P −→

S −→ 0 be a flasque resolution and 0 −→ Q −→ R
j−→M −→ 0 a coflasque resolution. Any

morphism from M to a permutation module P ′ factors through i and any morphism from P ′

to M factors through j. Moreover, the similarity classes of S and Q do not depend on the

representative of [M ].

By the Lemma, the map p : SG −→ FG given by M 7−→ [S] is well-defined and we call p(M)

the Picard class of M .

By an algebraic torus T/F we mean a group scheme T of finite type over F which upon

base extension to the separable closure becomes isomorphic to a particular diagonalizable

group:

Tsep
∼= Spec(Fsep[Zn]) ∼= Gm × · · · ×Gm,

where Fsep[Zn] is the group ring. In particular, tori are smooth. Because they are of finite-

type over F, one can in fact find a finite Galois extension L/F which splits T, i.e., such

that TL ∼= Spec(L[Zn]). If G = Gal(L/F ), then the category of algebraic tori split by L is

anti-equivalent to the category LG by the mapping T 7−→ HomL−gp(TL,Gm) and M 7−→

D(M) := Spec(L[M ]G). We say that D(M) is the torus dual to the G-module M . We call

T̂sep := HomFsep−gp(Tsep,Gm) the character module of T and we write T̂ = HomF−gp(T,Gm)

for the characters over the ground field; we have that T̂ = T̂ Γ
sep. We call T̂ 0

sep = Hom(T̂sep,Z)
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the cocharacter module. If T is split by L/F then T̂sep
∼= HomL−gp(TL,Gm). In this case,

Gal(Fsep/L) acts trivially on T̂sep hence the inflation-restriction exact sequence ([Ser79, Ch.

VII, §6, Prop. 4]) implies that H1(F, T̂sep) ∼= H1(G, T̂sep). Given a torus T/F, we call

T 0 := D(T̂ 0
sep) the dual torus ; it will always be clear whether we mean the torus D(M) dual

to a G-module M or the dual torus T 0 of a given torus T .

A torus T/F is called quasitrivial (resp. invertible, resp. flasque, resp. coflasque) if

its character module T̂sep is permutation (resp. invertible, resp. flasque, resp. coflasque).

Therefore, we define a flasque resolution (resp. coflasque resolution) of a torus T as the

exact sequence of tori dual to a flasque resolution (resp. coflasque resolution) of T̂sep. In

particular, if T is split by L/F then all tori in such a resolution are assumed to be as well.

If

1 −→ S −→ P −→ T −→ 1

is a flasque resolution of T then [Ŝsep] = p(T̂sep) so we sometimes refer to S as a Picard

torus of T ; it is defined up to a product with a quasitrivial torus. See Remark 3.3 for

generalizations to other groups.

Example 1.2.

(a) We have that D(Z) = Gm. If g = Gal(L/F ) then for any open subgroup h ≤ g

corresponding to a Galois extension L/K, D(Z[g/h]) = RK/F (Gm), the Weil restriction.

Moreover, RK/F (Gm) is an open set in Am
F with m = [K : F ] (cf. [Vos98, §3.12]).

(b) Since any permutation module is of the form
⊕

i Z[g/hi], we see that a quasitrivial torus

is isomorphic to a product
∏

iRKi/F (Gm) hence is rational since it can be identified

with an open set in the affine space An
F for n =

∑
i[Ki : F ]. In fact, it is a principle

open set in An
F . Moreover, by Hilbert’s Theorem 90 and the Faddeev-Shapiro-Eckmann

Lemma [KMR98, Thm. 29.2 and Lemma 29.6] we see that quasitrivial tori have no

nontrivial torsors over any field extension K/F : H1(K,P ) = 0. Algebraic groups

satisfying this property are called universally special.
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(c) Consider the exact sequence 0 −→ Ig/h −→ Z[g/h]
ε−→ Z −→ 0, with ε

(∑
i nigih

)
=∑

i ni and {gih} a fixed set of cosets; we call ε augmentation. Taking duals we have

the sequence 0 −→ Z N−→ Z[g/h] −→ Jg/h −→ 0, where N is determined by N(1) =∑
i gih. In particular, the g-invariants (Jg/h)

g are trivial. We use the standard notation

R
(1)
K/F (Gm) = D(Jg/h) and refer to it as the torus of norm 1 elements in the extension

K/F . Thus, we have an exact sequence

1 −→ R
(1)
K/F (Gm) −→ RK/F (Gm) −→ Gm −→ 1.

We make critical use of the module Jg/h in Examples 6.4(b) and 7.3.

1.2 Versal Torsors and Classifying Varieties

The following is the key object in the study of cohomological invariants.

Definition 1.3. Let G/F be an algebraic group. A versal G-torsor is a G-torsor E −→ X

over a smooth F -variety X such that for every extension K/F and every G-torsor T over

K there exists an x ∈ X(K) such that T ∼= Ex, where Ex := E ×X Spec(K) is the fiber of E

over x. We call X the classifying variety for G and for ξ ∈ X the generic point we refer to

Eξ as the generic torsor. That is, we have the pullback diagram

T ∼= Ex

��

// E

��

Spec(K) x
// X.

Remark 1.1. This definition agrees with [GMS03, Part 1, Def. 5.1], except we don’t require

that for K infinite the set of x ∈ X(K) such that T ∼= Ex is dense in X. Also, the

nomenclature is slightly different: there, our generic torsor Eξ ∈ H1(F (X), G) is called the

versal torsor.

We reproduce the following construction of versal torsors because the details illuminate

the classifying nature of the variety X and allow one to easily determine when certain torsors

are versal. For a slightly different construction, see [GMS03, Part 1, Example 5.4].
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Lemma 1.4. (cf. [GMS03, Part 1, §5.3]) Versal torsors exist.

Proof. Choose an embedding G �
�
// S into a universally special (cf. Example 1.2(b)) alge-

braic group S (e.g., S = GLn,SLn) and let X = S/G be the homogeneous space. We have

that for any extension K/F

X(K) =
[
S(Ksep)

/
G(Ksep)

]ΓK

,

the ΓK-invariants of the set of left cosets. We claim that the natural map S −→ X is a

versal G-torsor. It is obviously a G-torsor. By [Ser97, §I.5.4, Prop. 36] and the fact that S

is universally special, we have the exact sequence

0 −→ G(K) −→ S(K) −→ X(K) −→ H1(K,G) −→ 0,

hence for any T ∈ H1(K,G), T ∼= Sx for some x ∈ X(K) and, in fact, such an x is unique

up to the action of S(K) on X(K), which is given by left coset translation.

Remark 1.2. We will use the construction in the previous lemma exclusively to obtain versal

torsors. Moreover, we will have occasion for the associated action map

S ×X a // X.

Indeed, we let the G-torsor structure of the natural map µ : S −→ X be right multiplication,

hence if we let G act on S × S trivially in the first factor and by right multiplication in the

second then we have

(S × S)
/
G ∼= S ×X.

But the composition

S × S m // S
µ
// X

is constant on the G-orbits of this action hence by the universal property of the homogeneous

space (S × S)/G, it descends to the action map

S ×X ∼= (S × S)
/
G

a // X.

In particular, we see that S acts on X on the opposite side that G acts on S by multiplication.
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In our work with tori we will be interested in realizing a given torus as a classifying

variety of some auxiliary torus. This is provided by the following observation.

Lemma 1.5. If 1 −→ S −→ P −→ T −→ 1 is an exact sequence of tori with P quasitrivial

(e.g., a flasque resolution of T or a coflasque resolution of S) then P −→ T is a versal

S-torsor.

Proof. It is obvious that P −→ T is an S-torsor. Versality follows as in the proof of the

previous lemma because P is quasitrivial hence universally special (cf. Example 1.2(b)).

The connection to cohomological invariants is provided by the following result due to Rost.

Theorem 1.6. ([GMS03, Part 1, §11 and §12]) Let E −→ X be a versal G-torsor and

Eξ ∈ H1(F (X), G) its generic torsor. Then the map r : Invi(G,C) −→ H i(F (X), C) given

by a 7−→ a(Eξ) is an embedding. Moreover, the image of r is contained in the subgroup

A0(X,H i[C]).

For a definition of A0(X,H i[C]), see the introduction or §1.3 below. See also Remark 1.4

below for a more accurate description of the image of r. See [Mer02, Thm. 3.2] for a proof

of the above injection for a particular type of versal torsor.

1.3 Cycle Modules

We briefly recall some basic constructions from [Ros96], where all details can be found. For

a field E, let Kn(E) be Milnor’s K-group (cf. [Mil70]). A cycle module over F is an object

function

M : FieldsF −→ Abelian Groups

together with a Z-grading M =
∐

nMn and some data satisfying certain rules. The data

includes:

(i) For every F -embedding ϕ : E −→ L, a degree 0 restriction homomorphism ϕ∗ :

M(E) −→M(L).
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(ii) If [L : E] is finite in (i), a degree 0 corestriction homomorphism ϕ∗ : M(L) −→M(E).

(iii) For every extension E/F, a left K∗(E)-module structure on M(E) that respects the

gradings: Km(E) ·Mn(E) ⊂Mm+n(E).

(iv) For every extension E/F having a discrete valuation v which is trivial on F and has

residue field κv, a degree −1 residue homomorphism ∂v : M(E) −→M(κv).

Let X/F be an algebraic variety. Write M(x) for M(F (x)), where F (x) is the residue

field of a point x ∈ X. Using the various rules ([Ros96, §1]) and some additional data

([Ros96, Def. 2.1]) one can construct, for each n ∈ Z, complexes

· · · −→
∐

x∈X(i−1)

Mn−(i−1)(x) −→
∐

x∈X(i)

Mn−i(x) −→
∐

x∈X(i+1)

Mn−(i+1)(x) −→ · · · ,

and we denote the ith homology group by Ai(X,Mn), which is referred to as the Chow group

(of i-codimensional cycles) with coefficients in Mn. The name is motivated by the next

example.

Example 1.7.

(a) The most basic example of a cycle module over F is Milnor’s K-ring K∗ (cf. [Ros96,

Thm. 1.4 and Rem. 2.4]). Moreover, when X is smooth, the group Ap(X,Kp) is just

the Chow group CHp(X) of p-codimensional cycles on X modulo rational equivalence.

If X is normal, the group A0(X,K1) is naturally isomorphic to the group F [X]× of

invertible regular functions on X.

(b) For each n relatively prime to q, let µn ⊂ F×sep be the group of nth-roots of unity. If C

is a Γ-module of exponent n, define the ith Tate twist of C to be

C(i) =

 µ⊗in ⊗Z/nZ C i ≥ 0

Hom(µ⊗−in , C) i < 0,

where µ⊗0
n = Z/nZ. If C is infinite torsion with all elements of order prime to q, write

C = lim−→C ′, where C ′ are the finite submodules of C, and set C(i) = lim−→C ′(i). We then
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have that for any integers i, j, C(i)(j) = C(i + j), hence in particular, C(−i)(i) = C.

For any integer j and any extension K/F, the assignment

K 7−→ H∗[C(j)](K) :=
∐
i≥0

H i(K,C(i− j))

defines a (cohomological) cycle module H∗[C(j)] over F ([Ros96, Rem. 1.11 and Rem.

2.5]). In particular, if v is a discrete valuation on K which is trivial on F and has residue

field κv, one constructs (using the Hochschild-Serre spectral sequence, cf. [Ros96, Rem.

1.11], [GMS03, Part 1, §7], or [Col95, §3.3]) residue homomorphisms

∂v : H i(K,C(i− j)) −→ H i−1(κv, C(i− j − 1)).

We write simply H i[C] for H i[C(i)](−) = H i(−, C) so that for a variety X/F we have

A0(X,H i[C]) = ker
[
H i(F (X), C)

∐
∂x
//
∐

x∈X(1) H i−1(F (x), C(−1))
]
,

which agrees with the notation in the introduction, where we write ∂x for the residue

homomorphism corresponding to the discrete valuation associated to a codimension

one point x ∈ X.

Remark 1.3.

(a) The above residue homomorphisms are not defined on the characteristic component,

so we always assume that C is either torsion-free or only has torsion prime to q when

writing A0(X,H i[C]) or H i
nr(F,C) (defined in the next section). Issues related to this

restriction are discussed in Remark 2.1(c) and the comments after Remark 5.6 below.

See the upcoming paper [BM12] for a more general definition of unramified cohomology

which make sense for all components. The authors also associate to particular points on

a variety a generalized residue homomorphism which makes sense on all components.

(b) It is possible to define residue homomorphisms ∂v in the context of étale cohomology,

as is done in [Col95, §3.3] for C = µ⊗jn , but they may differ by a sign from those

defined above. This may require changing ∂v by a sign to ensure H∗[C(j)] satisfies
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all the rules for a cycle module, which obviously does not affect A0(X,H i[C]) or the

groups H i
nr(K,C) defined in the next section. See the footnote in [Ros96, p. 336] for

implicit choices in the above construction that could also affect the sign of ∂v.

The following properties will be essential.

Theorem 1.8. ([Ros96, §3.5, Prop. 8.6, §12]) Let X and Y be smooth F -varieties and M a

cycle module over F . Then

(i) (Functoriality) A∗(−,M∗) are contravariant functors from the category of smooth F -

varieties to Abelian Groups. For g : X −→ Y we call

g∗ := Ai(g,Mn) : Ai(Y,Mn) −→ Ai(X,Mn)

the pullback. Moreover, the pullback induced by ξ ∈ X(F (X)) the generic point,

ξ∗ : A0(X,Mn) −→ A0(Spec(F (X)),Mn) = Mn(F (X)),

is the natural inclusion.

(ii) (Homotopy invariance) The pullback along the projection p : X × An
F −→ X induces

an isomorphism

A∗(X,M∗) ∼= A∗(X × An
F ,M∗).

Remark 1.4.

(a) Let F be a contravariant functor from the category of F -varieties to Abelian Groups and

letX/F be a variety with structure morphism s : X −→ Spec(F ). If x : Spec(F ) −→ X

is a rational point then it induces a splitting

F (Spec(F ))
F (s)

//F (X)
F (x)

//F (Spec(F ))

hence we have a decomposition

F (X) ∼= F (Spec(F ))⊕F (X).
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We refer to F (X) as the normalized part of F (X). In particular, for any cycle module

M,

A0(X,Mn) ∼= Mn(F )⊕ A0
(X,Mn).

If X = G is an algebraic group (respectively, X = G/H for some subgroup H ≤

G) then we always take the decomposition induced by the group identity in G(F )

(respectively, by the canonical element in X(F ) = [G(Fsep)/H(Fsep)]Γ).

(b) Since all our invariants are functors of pointed sets, i.e., they map the distinguished

element of H1(F,G) to the trivial element of H i(F,C), we see that the Rost embedding

of Theorem 1.6 in fact has image in A
0
(X,H i[C]). Moreover, pullback respects the

decomposition so that if g : Y −→ X and y ∈ Y (F ) (hence g(y) ∈ X(F )) then

g∗ : A
0
(X,Mn) −→ A

0
(Y,Mn).

(c) In the case Mn = Kn, we can describe this splitting explicitly. By construction (cf.

§1.3)

A0(X,Kn) = ker
[
Kn(F (X))

∐
∂x
//
∐

x∈X(1) Kn−1(F (x))
]
,

and for all y ∈ F× we have that vx(y) = 0, where vx is the discrete valuation associated

with a codimension 1 point x ∈ X
(1)
sep. Therefore, by [Mil70, Lemma 2.1], we have a

factorization

Kn(F ) //

i &&

Kn(F (X))

A0(X,Kn),
?�

OO

where the unlabeled maps are the natural ones. Since A0(Spec(Fsep),Mn) = Mn(Fsep)

for any cycle module M∗, any point in X(F ) splits i:

Kn(F ) i // A0(X,Kn) // Kn(F ).

1.4 Unramified Cohomology

The following is the motivating construction for this work and was first defined in full

generality (for C = µ⊗jn ) by Colliot-Thélène and Ojanguren in [CO89].
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Definition 1.9. Let K/F be an extension and C a Γ-module. The unramified cohomology

groups are defined by

H i
nr(K,C) =

⋂
v

ker
[
H i(K,C)

∂v // H i−1(κv, C(−1))
]
,

where the intersection is taken over all discrete valuations v on K which are trivial on F and

have residue field κv, and the ∂v are the residue homomorphisms discussed in §1.3 above. If

X/F is a variety we sometimes write H i
nr(X,C) for H i

nr(F (X), C) hence, with this notation,

H i
nr(−, C) is a birational invariant of F -varieties (in contrast to A0(−, H i[C])). In fact, more

is true (cf. Theorem 1.10).

By construction we have the inclusions H i
nr(X,C) ⊆ A0(X,H i[C]) ⊆ H i(F (X), C), hence

we sometimes refer to the groups A0(X,H i[C]) as partially unramified. Moreover, since we

only consider discrete valuations which are trivial on F, for all extensions K/F the natural

map H i(F,C) −→ H i(K,C) has image in H i
nr(K,C) (cf. [CS07, Lemma 5.4]). When we

have a decomposition A0(X,H i[C]) ∼= H i(F,C) ⊕ A
0
(X,H i[C]) induced by some rational

point x ∈ X(F ), the composition

H i(F,C) −→ H i
nr(X,C) ⊆ A0(X,H i[C]) −→ H i(F,C),

with the last map the projection, implies that we have an analogous decomposition

H i
nr(X,C) ∼= H i(F,C)⊕H i

nr(X,C),

so to calculate unramified cohomology groups of X it suffices to determine the normalized

ones.

Remark 1.5. The usefulness of unramified cohomology groups was first demonstrated by

Artin and Mumford [AM72] when they constructed unirational varieties (over C) whose

non-rationality was determined by showing that a particular cohomology group was non-

trivial; later, it was observed that in the unirational case their group could be identified

with the unramified Brauer group (cf. the discussion after Remark 1.6) of the variety’s

function field. The unramified point of view (in degree 2) was further developed by Saltman
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and Bogomolov in relation to Noether’s problem, and we refer to the survey [CS07] for

more details on that work. Colliot-Thélène and Ojanguren [CO89] were the first to use

degree 3 unramified cohomology groups to prove non-rationality of unirational varieties whose

degree 2 unramified cohomology groups vanished, and this approach was continued by Peyre

in [Pey93]. The latter author also used higher unramified cohomology groups in further

investigations of Noether’s problem [Pey08]. But the power of unramified cohomology is not

restricted to rationality problems: Pirutka’s result [Pir11] was based on the construction of

nontrivial elements in an unramified cohomology group of degree 3, and our parallel to her

work relies on constructing a nontrivial cokernel into an unramified cohomology group (cf.

§7).

The following property will be useful.

Theorem 1.10. (cf. [Col95, Thm. 4.1.5]) Let K/F be a finitely generated extension. Then

the natural map H i(K,C) −→ H i(K(t1, . . . , tm), C) induces an isomoprhism

H i
nr(K,C) ∼= H i

nr(K(t1, . . . , tm), C).

In particular, H i(F,C) ∼= H i
nr(F (t1, . . . , tn), C).

The next result will allow us to take advantage of smooth compactifications in our calcula-

tions.

Theorem 1.11. (cf. [Col95, Prop. 2.1.8 and Thm. 4.1.1]) Let X/F be a proper smooth

variety. Then the natural inclusion H i
nr(X,C) �

�
// A0(X,H i[C]) is an isomorphism for

any Γ-module C.

The following result, due to Rost, allows us to define unramified invariants and use them

to calculate (normalized) unramified cohomology groups of classifying varieties. See also

[GMS03, Part 1, App. C]. For a construction in a specific case, see Theorem 2.1.

Theorem 1.12. ([Mer02, Thm. 3.2]) Let G/F be an algebraic group and C a Γ-module.

Then there exists a versal G-torsor S −→ Y such that the Rost embedding r : Invi(G,C) −→

A
0
(Y,H i[C]) of Theorem 1.6 is an isomorphism.
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Construction 1.13. Using this G-torsor we define the subgroup Invinr(G,C) ⊆ Invi(G,C) as

the subgroup corresponding to H
i

nr(Y,C) under the isomorphism Invi(G,C) ∼= A
0
(Y,H i[C]).

The versal G-torsor in the previous result is of the form S −→ Y = S/ρ(G), where

ρ : G �
�

// S is an embedding of G into a split semisimple simply connected rational univer-

sally special algebraic group S (cf. Example 1.2(b) for the definition of universally special);

for example, one can take S = SLn (cf. Theorem 2.1 below).

Suppose now that ρ : G �
�

// T is an embedding of G into a merely rational universally

special algebraic group T and let X = T /ρ(G); for example, one can take T = GLn. It is

shown in [Mer02, §2.1] that the stable birationality class of X is independent of ρ and T

(this is where the rational hypothesis on T is used), hence by Theorem 1.10, H
i

nr(F (X), C) ∼=

H
i

nr(F (Y ), C). Moreover, the natural map T −→ X is a G-torsor and T universally special

implies that it is in fact versal (cf. the proof of Lemma 1.4). Therefore, the Rost embedding

r : Invi(G,C) �
�

// A
0
(X,H i[C]), which exists for any versal torsor with classifying space

X, maps Invinr(G,C) ∼= H
i

nr(F (Y ), C) isomorphically onto H
i

nr(F (X), C), even though r

may not surject. This is essential because sometimes the most convenient versal G-torsor

is one for which the Rost embedding is not an isomorphism; nonetheless, this will allow

us to calculate (normalized) unramified cohomology groups of the corresponding classifying

variety using the unramified invariants defined in the previous paragraph. In summary, for

any rational universally special algebraic group T and embedding ρ : G �
�
// T , we have the

following commutative diagram for X = T /ρ(G):

Invinr(G,C)� _

��

∼= // H
i

nr(F (X), C)� _

��

Invi(G,C) �
� r // A

0
(X,H i[C]).

(1.1)

Moreover, if X ′ is another classifying variety for G which is stably birational to such an X

then we have the same diagram with X ′ in place of X.

Applying this to tori we obtain the following useful result.

19



Proposition 1.14. Let

1 −→ S
i−→ P −→ T −→ 1

be an exact sequence of tori with P quasitrivial (e.g., a flasque resolution of T or a coflasque

resolution of S). Then

H
i

nr(F (T ), C) ∼= Invinr(S,C).

If, moreover, S is flasque, then the isomorphism holds with the ordinary invariants Invi(S,C)

on the right.

Proof. By Example 1.2(b), quasitrivial tori are both rational and universally special hence

T = P/i(S) is of the form considered above. Thus diagram (1.1) holds with G = S and

X = T . If S is flasque, the last statement follows from the next result.

Proposition 1.15. If S is a flasque torus then Invinr(S,C) ∼= Invi(S,C).

Proof. The main ingredient is the result [CS87, Thm. 2.2(i)] which gives flasque tori their

name: if X/F is a smooth variety and U ⊂ X an open set, the natural map H1(X,S) −→

H1(U, S) is surjective (in fact, the hypotheses on X can be much weaker). Explicitly, every

S-torsor E −→ U is the pullback of some S-torsor E ′ −→ X along the inclusion U �
�
// X.

Moreover, if E −→ U is a versal S-torsor then so is E ′ −→ X: if K/F is a field extension

and T ∈ H1(K,S) an S-torsor then by assumption there exists a K-point Spec(K) −→ U

such that T is the pullback of E along this point. This gives the sequence of pullbacks

T

��

// E //

��

E ′

��

Spec(K) // U // X

so indeed E ′ −→ X is also versal. Now, let

1 −→ S −→ P −→ Q −→ 1

be an exact sequence of tori with P quasitrivial (e.g., a coflasque resolution of S). By

Lemma 1.5, P −→ Q is a versal S-torsor. Let X be a toric model for Q ([CHS05]), so that in
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particular X/F is a smooth proper variety admitting an open embedding Q �
�
// X. By the

above discussion, there exists a versal S-torsor E ′ −→ X, i.e., X is a classifying variety for

S. Since X is birational to Q by construction, H
i

nr(F (X), C) ∼= H
i

nr(F (Q), C) and (as in the

proof of the previous proposition, where Q was called T ) diagram (1.1) implies that the Rost

embedding maps Invinr(S,C) isomorphically onto the latter. Since X/F is proper, Theorem

1.11 implies that the natural inclusion H
i

nr(F (X), C) �
�
// A

0
(X,H i[C]) is an isomorphism

hence we have the diagram

Invinr(S,C)� _

��

∼= // H
i

nr(F (X), C)� _

∼=
��

Invi(S,C) �
� r // A

0
(X,H i[C]),

which implies that the natural inclusion Invinr(S,C) �
�
// Invi(S,C) is an isomorphism.

As stated, by taking flasque resolutions, Proposition 1.14 reduces the calculation of un-

ramified cohomology of a torus T to the determination of (ordinary) invariants of an auxiliary

torus. But, we can turn things around by starting with a short exact sequence involving T

1 −→ T −→ P −→ Q −→ 1

with P quasitrivial (e.g., a coflasque resolution of T ) and view the result as a calculation of

unramified invariants of T in terms of unramified cohomology of Q. One more application

of the Proposition (this time to Q) then expresses the unramified invariants of T in terms

of ordinary invariants of (yet another) auxiliary torus; in fact, a Picard torus of Q. We

summarize this in the next result.

Proposition 1.16. Let T/F be an algebraic torus. Then there exists an exact sequence of

tori

1 −→ T −→ N −→ P −→ 1

with P quasitrivial and N flasque. For any such sequence,

Invinr(T,C) ∼= Invi(N,C).
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Proof. Let

1 −→ T −→ P ′ −→ Q −→ 1

be an exact sequence of tori with P ′ quasitrivial (e.g., a coflasque resolution of T ) and

1 −→ N ′ −→ P −→ Q −→ 1

a flasque resolution of Q. Two applications of Proposition 1.14 to these sequences gives the

isomorphisms

Invinr(T,C) ∼= H
i

nr(F (Q), C) ∼= Invinr(N
′, C),

respectively, and Proposition 1.15 implies that the last group is isomorphic to Invi(N ′, C).

The proof of [CS87, Lemma 0.6] shows (for the dual modules) that the torus N ′ fits into an

exact sequence

1 −→ T −→ P ′ ×N ′ −→ P −→ 1,

so we let N = P ′ ×N ′, which incidentally shows that [N̂sep] = [N̂ ′sep] = p(Q̂sep), i.e., that N

is a Picard torus of Q. Since P ′ is quasitrivial we have that Invi(N ′, C) ∼= Invi(N,C) (cf.

Example 1.2(b)).

Remark 1.6. Unramified invariants should be viewed as an intermediary device connecting

(by the previous propositions) unramified cohomology to ordinary invariants, and it is for

the latter that computational tools with be developed.

We will be primarily interested in the modules Q/Z(i) = lim−→ µ⊗in and Qp/Zp(i) = lim−→ µ⊗ipm , for

n and p prime to q, with the direct limits over n and m, respectively. Thus, Q/Z(0) = Q/Z′.

(See §5 for a discussion of constructions of characteristic components for Q/Z(i)). In

particular, the Kummer sequence and Hilbert’s Theorem 90 imply that H2(K,Q/Z(1))

is isomorphic to the subgroup of Br(K) consisting of all elements of exponent prime to

q, i.e. H2(K,Q/Z(1)) = Br(K)′. We always have H2(K,Qp/Zp(1)) ∼= Br(K){p} and

H2(K,µn) ∼= nBr(K) for n and p prime to q. We define the unramified Brauer group

Brnr(K) as H2
nr(K,Q/Z(1)), which in characteristic 0 agrees with constructions found in the

literature (e.g. [Pey93], [Col95], [CS07]). Explicitly, when q = 0 one has that Br(K) =
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lim−→ H2(K,µn) and since H1(κv,Q/Z) = lim−→ H1(κv,Z/nZ) for each discrete valuation v

on K which is trivial on F and has residue field κv, one can define the residue homomor-

phism ∂v : Br(K) −→ H1(κv,Q/Z) to be the union of the ordinary residue homomorphisms

H2(K,µn) −→ H1(κv,Z/nZ) discussed in §1.3. The intersection
⋂
v ker ∂v of their kernels

then coincides with our construction of H2
nr(K,Q/Z(1)).

Remark 1.7. In [Col95, Rem. 3.3.2], Colliot-Thélène describes how one can in fact define

residue homomorphisms ∂v : Br(K) −→ H1(κv,Q/Z) under the sole assumption that K is

perfect. In characteristic 0, these maps agree up to a sign with those constructed by taking

the union of residue homomorphisms from §1.3, hence defining the unramified Brauer group

as
⋂
v ker ∂v with these maps would agree with the above in this case. But, in arbitrary

characteristic this definition of the unramified Brauer group may not, a priori , agree with

our definition using H2
nr(K,Q/Z(1)) since by construction H2

nr(K,Q/Z(1)){q} is trivial.

2 Degree 2 Invariants

In this section we compute Inv2(G,Q/Z(1)) for an algebraic group, assumed reductive if F

is not perfect. The heart of the calculation is the following result, originally due to Rost,

which will be useful in its own right later on. The proof reduces to the same situation as

in the proof of the more general result [Mer02, Thm. 3.2] but then exploits a property

specific to SLn, hence is simpler insofar as it doesn’t make use of spectral sequences and is

self-contained.

Theorem 2.1. (cf. [Mer02, Thm. 3.2]) Let G/F be an algebraic group. Choose an embedding

G �
�
// SLn for some n and let X = SLn/G be the homogenous space. Then Invi(G,C) ∼=

A
0
(X,H i[C]).

Proof. The proof of Lemma 1.4 shows that the natural map SLn −→ X is a versal G-torsor.

Therefore, by Theorem 1.6 we have the Rost embedding r : Invi(G,C) �
�
// A

0
(X,H i[C]),
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for which we will construct an inverse. As in the proof of Lemma 1.4, for all K/F

X(K)
/
SLn(K) ∼= H1(K,G),

i.e., for each torsor T ∈ H1(K,G) there exists an x ∈ X(K) such that T ∼= SLn,x is

given by the fiber of SLn over x and such an x is unique up to the action of SLn(K) on

X(K), which is given by left coset translation since X(K) = [SLn(Ksep)/G(Ksep)]ΓK and

SLn(K) = SLn(Ksep)ΓK .

We now define a map m : A
0
(X,H i[C]) −→ Invi(G,C). Given α ∈ A

0
(X,H i[C]) we

let m(α) : H1(−, G) −→ H i(−, C) be the invariant defined as follows. For an extension

K/F and a torsor T ∈ H1(K,G) consider any element x ∈ X(K) such that T ∼= SLn,x as

described above. Since x : Spec(K) −→ X, it induces the pullback

x∗ : A
0
(X,H i[C]) −→ A

0
(Spec(K), H i[C]) = H i(K,C),

and we set m(α)K(T ) = x∗(α) ∈ H i(K,C). Once it is well-defined it is necessarily a

homomorphism since if α, α′ ∈ A0
(X,H i[C]) then m(α + α′)K(T ) = x∗(α + α′) = x∗(α) +

x∗(α′) by Theorem 1.8(i). To see that it is well-defined, we must check that it is independent

of the choice of x, i.e., that it is independent of the action of SLn(K) on X(K): given

s ∈ S(K) and x, x′ ∈ X(K) such that s · x = x′, we must show that x∗(α) = (x′)∗(α).

By definition (cf. Remark 1.2), we have that

Spec(K)

x′

99

(s,x)
// SLn ×X a // X

and

Spec(K)

x

88

(s,x)
// SLn ×X π // X,

both commute, where π is the projection, hence it suffices to show that a and π induce the

same pullback homomorphisms A
0
(X,H i[C]) −→ A

0
(SLn ×X,H i[C]). If we let i : X −→

SLn×X be the natural map x 7−→ (1, x) then π ◦ i = IdX = a◦ i implies (Theorem 1.8) that

i∗◦π∗ = Id
A

0
(X,Hi[C])

= i∗◦a∗. Therefore, it suffices to show that π∗ induces an isomorphism.
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For all n ≥ 2 we have that Ga ≤ SLn as algebraic groups by embedding Ga(R) = R

as elementary matrices in SLn(R) for every F -algebra R. Therefore, the action map can be

restricted to a : Ga × X −→ X. Since SLn(K) is generated by the elementary matrices,

which can be identified with K = Ga(K), we can further assume that s ∈ Ga(K). Hence,

it suffices to show that the pullback of the restricted projection π : Ga × X −→ X is an

isomorphism A
0
(X,H i[C]) −→ A

0
(Ga × X,H i[C]). But, this is precisely the homotopy

invariance property of Theorem 1.8. Hence, our map m : A
0
(X,H i[C]) −→ Invi(G,C) is

well-defined.

To finish, we need to show m is an inverse to the Rost embedding. Given η ∈ Invi(G,C)

we have that r(η) = η(SLn,ξ) where ξ ∈ X(F (X)) is the generic point. To see that η =

m(r(η)) it suffices to show that they agree on the generic torsor SLn,ξ ∈ H1(F (X), G) since

all invariants are determined by their value on the generic torsor, since r is injective by

Theorem 1.6). But, by definition of m,

m(r(η))(SLn,ξ) = ξ∗(r(η)) = ξ∗(η(SLn,ξ)) = η(SLn,ξ),

where the last equality follows by Theorem 1.8(i), which says that ξ∗ is the identity on

A0(X,H i[C]) ⊆ H i(F (X), C). Therefore m ◦ r = Id. Conversely, if α ∈ A0(X,H i[C]) then

r(m(α)) = m(α)(SLn,ξ) = ξ∗(α) = α,

by the same result. Therefore r ◦m = Id as well and r is an isomorphism.

The main result of this section now follows as a straightforward Corollary (see also

Remark 4.1).

Theorem 2.2. Let G/F be an algebraic group and assume that G is reductive if F is not

perfect. Then Inv2(G,Q/Z(1)) ∼= Pic(G)′.

Proof. With X as in the previous Theorem, it suffices to show that A
0
(X,H2[Qp/Zp(1)]) ∼=

Pic(G){p} for all p 6= q. Since SLn −→ X is a G-torsor, by [San81, Prop. 6.10] we have the

exact sequence

0 = Pic(SLn) −→ Pic(G) −→ Br(X) −→ Br(SLn) = Br(F ),

25



where the two equalities follow from [Vos98, §4.3, Theorem 1(3)]; see [Mer99, p. 144] or

[GMS03, Part 2, §6] for a different proof of the first equality using K-theory. Since Br(X) −→

Br(F ) above splits the natural map Br(F ) −→ Br(X), we see that Pic(G) ∼= Br(X) :=

Br(X)/Br(F ). By (the component version of) [Col95, §3.4, Sequence (3.9)] we have the

exact sequence

0 −→ Br(X){p} −→ Br(F (X)){p} ⊕∂x−→
⊕
x∈X(1)

H1(F (x),Qp/Zp),

thus A
0
(X,H2[Qp/Zp(1)]) ∼= Br(X){p} ∼= Pic(G){p}.

Remark 2.1.

(a) The reductive hypothesis in the previous theorem when F is not perfect is forced by

Sansuc’s result.

(b) [KMR98, Prop. 31.19] constructs a direct map Pic(G) −→ Inv2(G,Q/Z(1)) as follows:

to every element of Pic(G) one can associate an exact sequence of algebraic groups

1 −→ Gm −→ G′ −→ G −→ 1,

hence for any field extensionK/F one has the connecting homomorphismH1(K,G) −→

H2(K,Gm) = Br(K). Moreover, the definition of Q/Z(1) there is assumed to include

an appropriate q-component so that H2(K,Q/Z(1)) ∼= Br(K) in all characteristics (cf.

the beginning of §5 or [GMS03, Part 2, App. A]) . Therefore, such an exact sequence

gives rise to an invariant in Inv2(G,Q/Z(1)). The citation asserts (without proof) that

this is an isomorphism, hence it claims the result of the previous theorem with the full

Pic(G) in all characteristics and with arbitrary (connected) G (though with a modified

Q/Z(1)). This is confirmed, for example, in the specific case G = PGLn. The natural

invariant in Inv2(PGLn, µn) constructed in Example 0.1(c) is in fact a generator of

Inv2(PGLn,Q/Z(1)) of order n. Since Pic(PGLn) ∼= Z/nZ, we get an isomorphism

with the full Picard group.
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(c) In this work we do not compute the characteristic component of the invariants in

either degree 2 or 3 only because we crucially appeal to results and constructions

in both cases which explicitly exclude characteristic components, for example, in the

degree 2 case, the last sequence of the previous theorem ([Col95, §3.4]) and in the

degree 3 case, the isomorphism in (5.9) ([MS90]). Moreover, our reliance on Rost’s

Chow groups with values in Galois cohomology also restricts us to p 6= q because the

residue homomorphisms we use are not defined on the characteristic component and

in fact will also force us to impose the condition p 6= 2 later on (cf. Remark 1.3(a) and

§5 and the discussion after Remark 5.6).

Corollary. Let T/F be an algebraic torus. Then Inv2(T,Q/Z(1)) ∼= H1(F, T̂sep)′.

Proof. It suffices to show that Pic(T ) ∼= H1(F, T̂sep). There is an exact sequence

1 −→ Fsep[T ]× −→ Fsep(T )× −→ Div(Tsep) −→ Pic(Tsep) = 0, (2.1)

where Div(Tsep) is the group of divisors. By [Ros61, Thm. 3], Fsep[T ]× = F×sep ⊕ T̂sep hence

taking cohomology gives the exact sequence

0 −→ F [T ]× −→ F (T )× −→ Div(T ) −→ H1(F, T̂sep) −→ 0.

Since, by construction, we have the same exact sequence with Pic(T ) in place of H1(F, T̂sep),

the two are necessarily isomorphic.

3 Degree 2 Unramified Cohomology

When combined with Proposition 1.14 and 1.16, the results of the previous section give full,

albeit indirect, descriptions of the groups H
2

nr(F (T ),Q/Z(1)) and Inv2
nr(T,Q/Z(1)) for an

arbitrary torus T/F . By Proposition 1.14 and the Corollary to Theorem 2.2, we have the

following.
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Theorem 3.1. Let T/F be an algebraic torus and let 1 −→ S −→ P −→ T −→ 1 be a

flasque resolution of T . Then

Brnr(F (T ))
def
= H

2

nr(F (T ),Q/Z(1)) ∼= H1(F, Ŝsep)′.

Although we obtain this isomorphism indirectly via invariants, we can at least describe

the embedding Brnr(F (T )) �
�
// H1(F, Ŝsep)′ . Taking cohomology of the exact sequence (2.1)

and using the fact Fsep[T ]× = F×sep ⊕ T̂sep mentioned there gives the exact sequence

H1(F,Div(Tsep)) −→ Br(F )⊕H2(F, T̂sep) −→ H2(F, Fsep(T )×) −→ H2(F,Div(Tsep)).

By [Vos98, p. 19], we have that

H i(F,Div(Tsep)) =

 0 i = 1⊕
t∈T (1) H1(F (t),Q/Z) i = 2,

so we obtain the exact sequence (of primed torsion abelian groups)

0 −→ Br(F )′ ⊕H2(F, T̂sep)′
f−→ H2(F, Fsep(T )×)′ −→

⊕
t∈T (1)

H1(F (t),Q/Z)′. (3.1)

Next, we can view Brnr(F (T )) ⊆ H2(F, Fsep(T )×)′ ⊆ Br(F (T ))′. The first inclusion

follows from the inflation-restriction exact sequence ([Ser79, Ch. X, §5, Prop. 6]),

0 // H2(Gal(Fsep(T )/F (T )), Fsep(T )×) inf // Br(F (T )) res // Br(Fsep(T ))

Brnr(F (T ))
?�

OO

// Brnr(Fsep(T )),
?�

OO

where the bottom map and commutativity of the square follow from [CS07, §5, Lemma

5.5]). Tsep is a split torus hence Fsep(T ) ∼= Fsep(t1, . . . , tn) so by Theorem 1.10, or more

specifically [CS07, §5, Prop. 5.7]), Brnr(Fsep(T )) = Br(Fsep) = 0. Since Brnr(F (T )){q} =

0 by definition, exactness implies that Brnr(F (T )) can be identified with a subgroup of

H2(Gal(Fsep(T )/F (T )), Fsep(T )×)′. But, Gal(Fsep(T )/F (T )) can be identified with Γ, hence

the latter cohomology group is H2(F, Fsep(T )×)′ and we have the first inclusion; the exact

row of the diagram then shows that the second inclusion is given by the inflation map.
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In particular, the second map in (3.1) is given by the residue homomorphisms corre-

sponding to the codimension one points t of T restricted to the subgroup

H2(F, Fsep(T )×)′ ⊆ Br(F (T ))′ ∼= H2(F (T ),Q/Z(1)).

Recall (§1.4, esp. Remark 1.7), the residue homomorphisms are not, in general, defined on

all of Br(F (T )), hence the necessity of using primed subgroups in (3.1). Since

Brnr(F (T )) = H2
nr(F (T ),Q/Z(1)) ⊆ A0(T,H2[Q/Z(1)]) = ker(⊕∂t)

by definition, (3.1) implies that Brnr(F (T )) can be identified with a subgroup of H2(F, T̂sep)′.

Therefore, we have the diagram

0

��

H1(F, Ŝsep)′

��

Brnr(F (T ))

��

� � g // H2(F, T̂sep)′

��

Brnr(F (P )) �
�
// H2(F, P̂sep)′,

with the right-hand vertical row exact and the square commutative. But P is a quasitrivial

torus, hence is rational (Example 1.2(b)). Therefore, just as for Tsep above, we have that

Brnr(F (P )) = 0 and therefore g identifies Brnr(F (T )) with a subgroup of ker
[
H2(F, T̂sep)′ −→

H2(F, P̂sep)′
]

= H1(F, Ŝsep)′. By construction, g is a section of f because it was obtained by

showing that Brnr(F (T )) is contained in ker(⊕∂t), the second map in (3.1): f◦g = IdBrnr(F (T )).

The universal property of flasque resolutions gives the following corollary to Theorem 3.1.

Corollary. With the hypotheses of the previous theorem,

H
2

nr(F (T ),Q/Z(1)) ∼=
⋂

T̂sep→R̂

ker
[
H2(F, T̂sep)′ −→ H2(F, R̂)′

]
,

where the intersection is over all Γ-homomorphisms T̂sep −→ R̂ for every permutation Γ-

module R̂.
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Proof. Exactness of the dual sequence 0 −→ Ŝsep −→ P̂sep −→ T̂sep −→ 0 implies that

H1(F, Ŝsep)′ ∼= ker[H2(F, T̂sep)′ −→ H2(F, P̂sep)′], hence the intersection is necessarily con-

tained inH1(F, Ŝsep)′. Conversely, if T̂sep −→ R̂ is any Γ-homomorphism with R̂ permutation,

then by Lemma 1.1 we have the diagram

0 // T̂sep

��

// P̂sep
//

}}

Ŝsep
// 0

R̂

hence we obtain the corresponding diagram in cohomology

H2(F, T̂sep)′

��

// H2(F, P̂sep)′

ww

H2(F, R̂)′

and so any element vanishing under the horizontal map must also vanish under the vertical.

Remark 3.1. Since the modules appearing in the flasque resolution of T̂sep can be chosen as

G-modules, the corollary also holds if we consider only R̂ which are permutation G-modules.

The following formulates the result as originally stated in [Col95, p. 39] (which was in

characteristic 0; see Remark 1.7). Because we will appeal to results specific to finite groups,

we assume all tori involved are split by some fixed finite Galois extension L/F with Galois

group G so that all degree 1 Galois cohomology groups above can be viewed over G by the

inflation-restriction exact sequence ([Ser79, Ch. VII, §6, Prop. 4]). Note the small typo in

the citation in which the full unramified Brauer group Brnr(F (T )) was used instead of the

normalized one Brnr(F (T )).

Theorem 3.2. With the notation of the previous theorem,

Brnr(F (T )) ∼= {α ∈ H2(G, T̂sep)′ | α ∈ ker
[
H2(G, T̂sep) res // H2(H, T̂sep)

]
, ∀H ≤ G cyclic}.
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Proof. By the previous theorem, it suffices to show that the group on the right is isomorphic

to H1(G, Ŝsep). By exactness, the latter is isomprhic to ker
[
H2(G, T̂sep)

φ−→ H2(G, P̂sep)
]
,

which we call K for brevity.

Let α ∈ K and let H ≤ G be an arbitrary cyclic subgroup. We then have the diagram

with exact rows

H1(G, Ŝsep) //

res
��

H2(G, T̂sep)
φ
//

res
��

H2(G, P̂sep)

res
��

H1(H, Ŝsep) // H2(H, T̂sep) // H2(H, P̂sep).

(3.2)

The Endo-Miyata Theorem (cf. [CS77, Prop. 2, p. 184]) states that a group G is metacyclic

(= all Sylow subgroup are cyclic) if and only if all flasque G-modules are invertible; in

particular, H1(H, Ŝsep) = 0 (hence the reason for reducing our Galois cohomology groups to

finite group cohomology). Therefore, α ∈ ker
[
H2(G, T̂sep) −→ H2(H, T̂sep)

]
.

Conversely, suppose that α is in the kernel of restriction to every cyclic subgroup of G.

By Remark 1.2(b), we can write

P̂sep
∼=
⊕
i

Z[G/Li],

so we can assume P̂sep = Z[G/L] for some subgroup L ≤ G. By the Faddeev-Shapiro Lemma

([Ser97, Ch. I, §2.5, Prop. 10]) we then have that

H2(G, P̂sep) ∼= H2(L,Z) ∼= H1(L,Q/Z) = Hom(L,Q/Z).

If φ(α) = β 6= 0 then Im(β) =
〈

1
n

〉
for some n. Let l ∈ L be such that β(l) = 1

n
and let

H = 〈l〉 ≤ L ≤ G. Diagram (3.2) can be augmented to

H2(G, T̂sep)
φ
//

res
��

H2(G, P̂sep)

res
��

∼= // Hom(L,Q/Z)

��

H2(H, T̂sep) // H2(H, P̂sep)
ψ
// H2(H,Z) ∼= Hom(H,Q/Z),

where the last vertical map is literal restriction and ψ is induced by the map of modules

Z[G/L] −→ H which sends the identity coset to l. If γ : H −→ Q/Z is the restriction of

31



β, then by construction γ(l) 6= 0, contradicting that res(α) = 0. Therefore we must have

φ(α) = β = 0 and α ∈ K.

Remark 3.2. Note that one obtains H
2

nr(F (T ), µn) as the n-torsion subgroup of Brnr(F (T ) =

H
2

nr(F (T ),Q/Z(1)).

For the sake of focus, we relegate the easy generalization of Theorem 3.1 to the following

Remark.

Remark 3.3. In the more recent work [Col08], Colliot-Thélène generalized the notion of

flasque resolutions to arbitrary algebraic groups (in our sense) when the characteristic is

0, and to reductive groups when the characteristic is positive. Explicitly, he defines an

algebraic group H/F, assumed reductive in positive characteristic, to be quasitrivial if it is

an extension of a quasitrivial torus by a simply connected group. This is equivalent to the

two conditions Fsep[H]×/F×sep is a permutaiton Γ-module and Pic(Hsep) = 0 [Col08, §2]. If

G/F is an algebraic group, assumed reductive in positive characteristic, there exists an exact

sequence, called a flasque resolution of G,

1 −→ S −→ H −→ G −→ 1,

with S a flasque torus and H a quasitrivial group as defined above [Col08, §3]. If X is a

smooth F -compactification of G then by [Col08, Thm. 7.1, p. 109] we have that

Br(X)′ ∼= H1(F, Ŝsep)′,

where Br(X) := Br(X)/Br(F ). By (the primed version of) [Col95, §3.4, Sequence (3.9)] we

have that

Br(X)′ ∼= A
0
(X,H2[Q/Z(1)]), (3.3)

but since X/F is proper (and contains G as an open subset), Theorem 1.11 implies this is

isomorphic to H
2

nr(F (G),Q/Z(1)).

Analogous to how we obtained Theorem 3.1, Proposition 1.16 and the Corollary to Theorem
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2.2 imply that the two invariants groups satisfy

Inv2
nr(T,Q/Z(1)) ∼= H1(F, N̂sep)′

� _

��

Inv2(T,Q/Z(1)) ∼= H1(F, T̂sep)′,

where N̂sep is a flasque module that fits into an exact sequence

0 −→ P̂sep −→ N̂sep −→ T̂sep −→ 0

with P̂sep a permutation module, which explains the inclusion H1(F, N̂sep) �
�
// H1(F, T̂sep)

independent of the natural one for the corresponding invariants groups.

4 An Exact Sequence

In this section we construct an exact sequence that relates invariants of an algebraic group

G to the partially unramified groups (cf. the introduction or §1.4) of auxiliary varieties.

Applying this to tori in degree 2 (cf. Remark 4.1 below) recovers the Corollary to Theorem

2.2 and it will be the main tool for determining degree 3 invariants in the next section. We

refer to it throughout as the invariants sequence.

Theorem 4.1. Let G/F be an algebraic group and C a Γ-module. Let G �
�
// S be an

embedding into a universally special algebraic group S and let X = S/G be the homogenous

space. Then there exists an exact sequence

0 // Invi(G,C) r // A
0
(X,H i[C])

a∗−π∗
// A

0
(S ×X,H i[C]),

where r is the Rost embedding of Theorem 1.6 and a∗ and π∗ are the pullbacks induced by

the action (cf. Remark 1.2) and projection morphisms S ×X //
// X, respectively.

Proof. The proof of Lemma 1.4 implies that the natural map µ : S −→ X is a versal G-torsor

hence exactness at Invi(G,C) follows from Theorem 1.6. Replacing SLn by S, the arguments

at the beginning of the proof of Theorem 2.1 (and the last paragraph) show that a given

α ∈ A0
(X,H i[C]) is in Im(r) if a∗(α) = π∗(α), hence ker(a∗ − π∗) ⊆ Im(r).
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Now let β ∈ Invi(G,C) so that r(β) = β(Sξ), where ξ ∈ X is the generic point. Writing

η ∈ S ×X for the generic point, a and π induce maps on function fields and a commutative

diagram

Spec(F (S ×X))

η

��

a′ //

π′
// Spec(F (X))

ξ

��

S ×X
a //

π
// X

(4.1)

hence they induce maps on torsors

H1(F (X), G) //
// H1(F (S ×X), G)

given by pullback along a′ and π′, respectively. The key to comparing a∗(β(Sξ)) and

π∗(β(Sξ)) is the fact that β is a natural transformation of functors hence one has a commu-

tative diagram

H1(F (X), G)

β
��

//
// H1(F (S ×X), G)

β
��

H i(F (X), C) //
// H i(F (S ×X), C)

A
0
(X,H i[C])
?�

OO

a∗ //

π∗
// A

0
(S ×X,H i[C]).

?�

OO

Therefore

a∗(β(Sξ)) = β(Sξ◦a′)

π∗(β(Sξ)) = β(Sξ◦π′)

since Sξ is itself the pullback of µ : S −→ X along ξ : Spec(F (X)) −→ X. Writing E1 = Sξ◦a′

and E2 = Sξ◦π′ for clarity, it suffices to show that E1
∼= E2 in H1(F (S ×X), G). Moreover,

by diagram (4.1) we have that ξ ◦ a′ = a ◦ η and analogously with π′ and π. Therefore, one

can realize E1 and E2 as pullbacks along η:

E1, E2
//
//

����

E1,E2
//
//

�� ��

S

µ

��

Spec(F (S ×X)) η
// S ×X

a //

π
// X.
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Hence we reduce to showing that E1
∼= E2 in H1(S × X,G). In fact, we will see that both

are isomorphic (as G-torsors) to

S × S
Id×µ
��

S ×X.
in which G acts trivially on the first component and by right multiplication on the second.

It is clear we have a commutative diagram

S × S π2 //

Id×µ
��

S

µ

��

S ×X π
// X,

where m is the multiplication map. Moreover, for any scheme Y/X forming a commutative

diagram

Y

(ϕS ,ϕX)

&&

ψ

��

S × S π2 //

Id×µ
��

S

µ

��

S ×X π
// X,

the map (ϕS, ψ) : Y −→ S × S completes the diagram uniquely, i.e., we have that

S × S ∼= E1 ∈ H1(S ×X,G)

since E1 is the pullback of µ : S −→ X along π : S×X −→ X by definition and the G-torsor

structures are induced by the pullback in both cases.

Analogously, by construction of the homogeneous space X as the “orbit space” of a fixed

w ∈ W for some representation S −→ GL(W ) such that G �
�
// S is the stabilizer of w, we

have a commutative diagram

S × S m //

Id×µ
��

S

µ

��

S ×X a
// X.
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Moreover, for any scheme Y/X forming a commutative diagram

Y

(ϕS ,ϕX)

&&

ψ

��

S × S m //

Id×µ
��

S

µ

��

S ×X a
// X,

the map (ϕS,m ◦ (i ◦ ϕS, ψ)) : Y −→ S × S, with i : S −→ S the inverse, completes the

diagram uniquely, i.e., we have that

S × S ∼= E2 ∈ H1(S ×X,G)

since E2 is the pullback of µ : S −→ X along a : S ×X −→ X by definition and as before

the G-torsor structures are induced by the pullback in both cases.

It remains only to see why the G-torsor structures on Id×µ : S × S −→ S ×X induced

by the two pullbacks are isomorphic. Since the structure morphism is the identity in the first

component, we have that G must act trivially on the first component in both pullbacks. Since

the G-torsor structure in both cases is induced from the G-torsor structure on the natural

map µ : S −→ X, which is given by right multiplication (cf. Remark 1.2), considering the

two pullback diagrams we see that in fact G must also act by right multiplication on the

second component in both cases. Thus indeed the two pullbacks are isomorphic as G-torsors

over S×X since they are isomorphic as S×X-varieties and have the same G-structure.

Remark 4.1. We use the invariants sequence of the previous Theorem to recover the calcu-

lation of degree 2 invariants of tori obtained in the Corollary to Theorem 2.2 above. What

makes the invariants sequence so useful for tori is the existence of toric resolutions: if

1 −→ T −→ P −→ Q −→ 1

is an exact sequence of tori with P quasitrivial (e.g., a coflasque resolution of T or a flasque

resolution of Q) then the invariants sequence applies with S = P and X = Q; in particular,

toric resolutions allow one to use schemes X and S×X in the invariants sequence which are
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themselves tori. In degree 2 with C = Q/Z(1), the invariants sequence becomes, after the

identity Br(Y )′ ∼= A
0
(Y,Q/Z(1)) of Equation (3.3),

0 // Inv2(T,Q/Z(1)) r // Br(Q)′
a∗−π∗

// Br(P ×Q)′ .

Therefore, we are reduced to calculating Brauer groups of tori, which can be done by using the

Hochschild-Serre spectral sequence, and ker(a∗ − π∗). This is essentially the same approach

we take in §5 to compute degree 3 invariants of tori, but in one degree higher (cf. Theorem

5.2). The spectral sequence is

Ep,q
2 = Hp

ét(F,H
q(Qsep,Gm)) =⇒ Hp+q

ét (Q,Gm)

and we have that

H i
ét(Qsep,Gm) =


Fsep[Q]× = F×sep ⊕ Q̂sep i = 0

Pic(Qsep) = 0 i = 1

Br(Qsep) i = 2,

where the first equality is [Ros61, Thm. 3]. Considering the E2-page, one obtains the exact

sequence

0 // Br(F )⊕H2(F, Q̂sep) // Br(Q) θ // Br(Qsep).

But, the commutative diagram

Br(Q) θ // Br(Qsep)

Inv2(T,Q/Z(1)) //
?�

OO

Inv2(Tsep,Q/Z(1)) = 0
?�

OO

implies that Inv2(T,Q/Z(1)) ⊆ ker(θ) = H2(F, Q̂sep) so the invariants sequence becomes

0 // Inv2(T,Q/Z(1)) // H2(F, Q̂sep)′
a∗−π∗

// H2(F, P̂sep)′ ⊕H2(F, Q̂sep)′.

To determine ker(a∗ − π∗) we consider the short exact sequence of Γ-modules

0 // Q̂sep
ĵ
// P̂sep

î // T̂sep
// 0. (4.2)
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We have the commutative square

P ×Q a // Q

P × P

(Id,j)

OO

m
// P

j

OO

and its dual

P̂sep ⊕ Q̂sep

(Id,̂j)
��

Q̂sep
âoo

ĵ
��

P̂sep ⊕ P̂sep P̂sep,∆
oo

where ∆ is the diagonal map, hence we see that

â = (ĵ, Id).

Similarly, the dual of the projection π : P ×Q −→ Q is π̂ = (0, Id) and so

a∗ − π∗ = f ⊕ 0, (4.3)

where f : H2(F, Q̂sep) −→ H2(F, P̂sep) is the map on cohology induced by ĵ : Q̂sep −→ P̂sep.

Since P̂sep is a permutation Γ-module, the exact sequence (4.2) implies that

ker(a∗ − π∗) = ker(f) ∼= H1(F, T̂sep).

5 Degree 3 Invariants

In this section we calculate Inv3(T,Qp/Zp(2)) for T/F an algebraic torus and p 6= 2, q. We

begin by connecting our work to an older construction which will allow us to make use of

some auxiliary results. We then use the Hochschild-Serre spectral sequence to determine the

necessary groups and maps in the relevant form of the invariants sequence of the previous

section.

In [Lic87], Lichtenbaum defined a weight-two motivic complex Γ(2)X of étale sheaves on

any regular noetherian scheme X. This complex is concentrated in degrees 1 and 2 and

we write Hp(X,Γ(2)) for the étale (hyper)cohomology groups. We let Γ(0) be the constant
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sheaf Z concentrated in degree 0 and Γ(1) the sheaf Gm concentrated in degree 1 and use

the notation

Hp,q(X) =

 Hp(X,Γ(q)) q = 0, 1, 2

0 otherwise

for the motivic cohomology groups. We write Hp,q(F ) for Hp,q(Spec(F )). In particular, we

have that

Hp,1(X) = Hp−1
ét (X,Gm),

hence

H3,1(F ) ∼= Br(F ) ∼= H2(F,Q/Z(1))⊕ Br(F ){q},

since the our (see below) Γ-module Q/Z(1) has no characteristic component.

In the introduction to [Kah96], the author defines étale sheaves Qp/Zp(2) = Q/Z(2){p}

whose sections over Fsep agree with the identically notated (see Remark 5.1 below) Γ-modules

we defined in §1.4 for primes p 6= q, hence their cohomology over fields agrees canonically

with our Galois cohomology groups. But, whereas our construction of the Γ-module

Q/Z(2) =
∐

p prime 6=q

Qp/Zp(2) (5.1)

avoids the characteristic part, in [Kah96], the author explicitly constructs a q-component

Qq/Zq(2). In [GMS03, Part 2, App. A], although the object Qq/Zq(2) is not constructed,

the author defines the “cohomology” groups H i+1(F,Qq/Zq(i)) as H2(F,Ki(Fsep)){q} for all

i ≥ 0, which guarantees that H2(F,Q/Z(1)) ∼= Br(F ) and not just Br(F )′. The fact, that the

two constructions of H3(F,Qq/Zq(2)) in [Kah96] and [GMS03] agree is a highly nontrivial

result related to the so-called Bloch-Kato conjecture in positive characteristic (cf. [BK86]).

Remark 5.1. Although in this work Q/Z(i) will always refer to our “q-less” Γ-module con-

struction (5.1), because we will appeal to results in [Kah96], one should keep in mind that the

Q/Z(2) which appears in that work is an étale sheaf and includes the characteristic compo-

nent Qq/Zq(2) constructed there. Thus, when referencing results from [Kah96] that include

this object, we will write Q/Z(2) for Kahn’s characteristic-inclusive étale sheaf. We continue

to write Qp/Zp(2) for the components in both constructions because it will always be clear
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form context whether we mean the étale sheaf or the Γ-module. For clarity, we suppress

subscripts in the cohomology groups when taking étale cohomology over fields. Moreover,

we will have occasion (Theorem 5.2 below) to exploit the étale sheaf structure of Q/Z(2)

and its components Qp/Zp(2) for p 6= q.

As in Remark 1.4, if x ∈ X(F ) one has that Hp,q(F ) is a direct summand of Hp,q(X).

Moreover, [Kah96, Thm. 1.1] implies that

Hi,2(F ) ∼= H i−1(F,Q/Z(2)) ∼= H i−1(F,Q/Z(2))⊕H i−1(F,Qq/Zq(2)), i ≥ 4. (5.2)

Avoiding the characteristic part, if x ∈ X(F ) we define the normalized motivic cohomology

groups

H4,2
(X) := H4,2(X)

/
H3(F,Q/Z(2)). (5.3)

The reason for this (instead of the more natural H4,2(X)/H4,2(F )) will become apparent in

the proof of Theorems 5.2 and 7.1 below.

For the invariants sequence, we need to determine (normalized) partially unramified

groups A
0
(Y,H3[Q/Z(2)]) for specific varieties Y/F (cf. Theorem 4.1). The connection

to Lichtenbaum’s complex is provided by a result of Kahn’s and the cohomology of this

complex is determined using the Hochschild-Serre spectral sequence. Moreover, this spec-

tral sequence reveals how, when working with tori, one can shrink the partially unramified

groups appearing in the invariants sequence and still obtain an exact sequence involving

cohomological invariants. The resulting groups, and in particular maps between them, can

then be analyzed using basic K-theory and Galois cohomology.

We begin with a lemma which will simplify the presentation of the next theorem.

Lemma 5.1. If Q is a coflasque torus then CH2(Q) = 0.

Proof. In the Corollary to Theorem 2.2, we saw that Pic(Q) ∼= H1(F, Q̂sep), and the latter

is isomorphic to H1(G, Q̂sep) by the inflation-restriction exact sequence ([Ser79, Ch. VII,

§6, Prop. 4]), where G = Gal(L/F ) is the Galois group of a finite splitting field L/F of Q.

More generally, for all intermediate fields F ⊆ E ⊆ L, we have that Pic(QE) = H1(H, Q̂sep),
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where H = Gal(L/E). Since Q is coflasque, we obtain Pic(QE) = 0 for all such intermediate

fields.

By [MP97, Cor. 5.13], K0(Q) is generated by (iE/F )∗(Pic(QE)) for all intermediate fields

E as above, where (iE/F ) : QE −→ Q is the natural map. By the above, Pic(QE) consists

only of the structure sheaf OQE
and

(iE/F )∗(OQE
) = O[E:F ]

Q ,

hence K0(Q) ∼= Z, generated by OQ. The second Chern class

c2 : K0(Q) // // CH2(Q)

is surjective and although it is not a homomorphism, it is not too far off: by [Ful98, Thm.

3.2(e)], the composition

K0(Q)
c2 // //

c2

44
CH2(Q) // // CH2(Q)

/
CH1(Q).CH1(Q)

is a homomorphism. Since the generator OQ corresponds to a line bundle in K0(Q), we have

that c2 = 0 and therefore CH2(Q) = CH1(Q).CH1(Q). But CH1(Q) ∼= Pic(Q) = 0.

Theorem 5.2. Let T/F be an algebraic torus and let 1 −→ T −→ P −→ Q −→ 1 be a

coflasque resolution of T . Then for every prime p 6= q, there is an exact sequence

0 // Inv3(T,Qp/Zp(2)) r // H2(F,A0(Qsep, K2)){p} a
∗−π∗
// H2(F,A0(Psep ×Qsep, K2)){p},

where r is the Rost embedding of Theorem 1.6 and a∗ and π∗ are induced by the action and

projection morphisms P ×Q //
// Q, respectively.

Proof. In [Kah96, Thm. 1.1], the author constructs the short exact sequence

0 −→ CH2(X) −→ H4,2(X) −→ H0
Zar(X,H3(Q/Z)) −→ 0 (5.4)

for any smooth, connected variety X/F, where H3(Q/Z(2)) is the Zariski sheaf associated

to the the presheaf U 7−→ H3
ét(U,Q/Z(2)) (cf. Remark 5.1 and the paragraph proceeding
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it). Using the (étale cohomology) Gersten resolution of this sheaf (cf. [BO74]), one can see

that

H0
Zar(X,H3(Q/Z)){p} ∼= A0(X,H3[Qp/Zp(2)]) (5.5)

for primes p 6= q. As pointed out in Remark 4.1, the invariants sequence (Theorem 4.1)

applies with S = P and X = Q. Moreover, both Q and P ×Q are coflasque tori hence the

previous lemma combined with (5.4) and (5.5) imply that, for p 6= q,

H4,2(Q){p} ∼= A0(Q,H3[Qp/Zp(2)]), (5.6)

and analogously with P×Q. Hence, after the definition in (5.3), the invariants exact sequence

can be expressed

0 −→ Inv3(T,Qp/Zp(2)) −→ H4,2
(Q){p} −→ H4,2

(P ×Q){p}. (5.7)

To determine the latter two groups, we use the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(F,Hq,2(Xsep)) =⇒ Hp+q,2(X).

For smooth connected varieties X/F, [Kah96, Thm. 1.1] shows that

Hq,2(X) =



0 q ≤ 0

K ind
3 (F (X)) q = 1

A0(X,K2) q = 2

A1(X,K2) q = 3,

(5.8)

where K ind
3 (F (X)) = coker

[
K3(F (X)) −→ KQ

3 (F (X))
]

and KQ
3 (F (X)) is Quillen’s K-

Theory group ([Qui73]). The group K ind
3 (F ) is studied in [MS90].

Consider the case X = Q. Since Fsep(Q) ∼= Fsep(t1, . . . , tn), by [MS90, Lemma 4.2],

one has that K ind
3 (Fsep(Q)) ∼= K ind

3 (Fsep), and by [MS90, Thm. 10.2] the latter is divisible.

Moreover, [MS90, Prop. 11.1] shows that

K ind
3 (Fsep)tor

∼= Q/Z(2). (5.9)

42



Note that the Q/Z(2) used in [MS90] comes from [Tat76], but in fact agrees with our notation

(cf. the discussion around (5.32)). Since K ind
3 (Fsep(Q))/K ind

3 (Fsep(Q))tor is uniquely divisible,

it has trivial Galois cohomology in degree ≥ 1 and therefore

Hp(F,K ind
3 (Fsep(Q))) ∼= Hp(F,Q/Z(2)), p > 1. (5.10)

We have by [GMS03, Part 2, Cor. 5.6(2)] that

A1(Qsep, K2) = 0, (5.11)

so combining the formulas in (5.8) with the computations in (5.10) and (5.11), a portion of

the E2-page of the Hochschild-Serre spectral sequence for X = Q is

q

3 0 //

2 H1(F,A0(Qsep, K2))

d1,2
2

--

H2(F,A0(Qsep, K2))
d2,2

2

,,

1 H3(F,Q/Z(2)) H4(F,Q/Z(2))

0 0 //

OO

// p

1 2 3 4

Considering the filtration

F 4 ⊆ F 3 ⊆ F 2 ⊆ F 1 ⊆ H4,2(Q)

we have that F 4 ∼= E4,0
∞ = 0 hence E3,1

∞
∼= F 3 ⊆ H4,2(Q). Using this, we can see that the

differentials d1,2
2 and d2,2

2 are both trivial. Indeed, we have that the differentials d3,1
r = 0 for

r ≥ 2 and the differentials mapping into E3,1
s are trivial for s ≥ 3, hence E3,1

∞ = E3,1
3 =

coker(d1,2
2 ). Thus, we have the composition

E3,1
2 = H3(F,Q/Z(2))

44

// // coker(d1,2
2 ) = E3,1

∞
� � // H4,2(Q),

which is injective because the group identity in Q(F ) induces a splitting

H4,2(F ) // H4,2(X) // H4,2(F )
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and H3(F,Q/Z(2)) is a direct summand of H4,2(F ) by (5.2), which is preserved by this

mapping. Therefore, H3(F,Q/Z(2)) ∼= coker(d1,2
2 ) hence d1,2

2 = 0. An entirely analogous

argument, in one degree higher, applies to d2,2
2 (except that, a priori , we only have a surjection

coker(d2,2
2 ) // // E4,1

∞ ⊆ H5,2(Q) because although all the differentials d4,1
r = 0 for r ≥ 2, we

do not bother investigating whether the differential mapping into E4,1
4 is trivial).

Since F 1/F 2 ∼= E1,3
∞ = 0, the above implies that

F 3 ∼= E3,1
∞ = coker(d1,2

2 ) = H3(F,Q/Z(2))

F 2
/
F 3 ∼= E2,2

∞ = ker(d2,2
2 ) = H2(F,A0(Qsep, K2))

H4,2(Q)
/
F 2 ∼= H4,2(Q)

/
F 1 ∼= E0,4

∞ .

Taking the quotient by F 3 = H3(F,Q/Z(2)) everywhere in the filtration then gives the short

exact sequence

0 // H2(F,A0(Qsep, K2)) // H4,2
(Q) // E0,4

∞
// 0,

justifying the definition in (5.3). Because all differentials into E0,4
r for r ≥ 2 are necessarily

0, we have that

E0,4
∞

� � // E0,4
2 = H4,2(Qsep)Γ ⊆ H4,2(Qsep).

Combining this with the inclusion in (5.7), the previous exact sequence can be rewritten and

augmented to

0 // H2(F,A0(Qsep, K2)) // H4,2
(Q) // H4,2

(Qsep)

Inv3(T,Q/Z(2))
?�

OO

// Inv3(Tsep,Q/Z(2)) = 0,
?�

OO

hence the embedding Inv3(T,Q/Z(2)) �
�
// H4,2

(Q) has image in H2(F,A0(Qsep, K2)). Since

P ×Q satisfies all the necessary hypotheses and the top row is functorial, we are done after

the invariants exact sequence in (5.7).

If X/F is a smooth variety then X(Fsep) 6= ∅ and so K2(Fsep) is a direct summand of

A0(Xsep, K2) by Remark 1.4(c). But, since the Γ-action on both is diagonal, the decom-

position holds as Γ-modules, which is essential because we take Galois cohomology in the
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previous theorem. Writing

A0(Qsep, K2) = K2(Fsep)⊕ A0
(Qsep, K2),

and analogously with Psep × Qsep, the following will allow us to ignore the first component

and restate the previous theorem.

Lemma 5.3. H i(F,K2(Fsep)){p} = 0 for all p 6= q and all i ≥ 1.

Proof. Write A = K2(Fsep){p}. Since K2(Fsep) is p-divisible, K2(Fsep)/A is uniquely p-

divisible and so the p-primary component of its Galois cohomology is trivial in positive

degree. Since localization is exact, it commutes with taking cohomology and so the exact

sequence in cohomology gives a surjection

H i(F,A){p} // // H i(F,K2(Fsep)){p}

for all i ≥ 1. Therefore, it suffices to show that A = 0. By [MS82, Thm. 14.2], we have

that a symbol in pK2(Fsep) is necessarily of the form {ζp, b} for some pth-root of unity ζp and

b ∈ F×sep. Since Fsep = F p
sep for p 6= q, we have that {ζp, b} = {ζp, cp} = {1, c} = 0.

Remark 5.2. Note that the above result holds for any field L such that µp ⊂ L and L = Lp.

Also, there is a more direct argument that does not rely on [MS82, Thm. 14.2] and which

actually proves the stronger statement K2(L){p} = 0. One constructs an inverse to the

multiplication by p map

K2(L)
p−→ K2(L)

as follows. Begin with a map L ⊗ L −→ K2(L) given by a ⊗ b 7−→ {a1/p, b} where a1/p is

any pth-root of a. This is well-defined because all pth-roots of a differ by a ζp and we already

saw that any {ζp, b} = 0. Since the map is clearly linear, to descend this to K2(F ) we need

to show that it respects the Steinberg relation: a⊗ (1− a) 7−→ 0. But, we can write

1− a =

p∏
i=1

(1− ζ ipa1/p)
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hence

a⊗ 1− a 7−→
p∑
i=1

{a1/p, 1− ζ ipa1/p} =

p∑
i=1

{ζ ipa1/p, 1− ζ ipa1/p} = 0.

Thus, we have a map

K2(L) −→ K2(L)

{a, b} 7−→ {a1/p, b}

which is clearly inverse to the multiplication by p map.

After the lemma and the splitting above, we have that

H i(F,A0(Qsep, K2)){p} ∼= H i(F,A
0
(Qsep, K2)){p}, i ≥ 1,

for all p 6= q, and analogously with Psep×Qsep. Hence, we can restate Theorem 5.2 as follows.

Corollary. Let T/F be an algebraic torus and let 1 −→ T −→ P −→ Q −→ 1 be a coflasque

resolution of T . Then for every prime p 6= q, there is an exact sequence

0 // Inv3(T,Qp/Zp(2)) r // H2(F,A
0
(Qsep, K2)){p} a

∗−π∗
// H2(F,A

0
(Psep ×Qsep, K2)){p}.

(5.12)

Therefore, we must investigate not only the group structure of A
0
(Qsep, K2) and A

0
(Psep ×

Qsep, K2) but also their Γ-module structure, and it is in doing so that we will impose the

condition p 6= 2.

To begin with, [GMS03, Part 2, Cor. 5.6(1)] implies that we have a split short exact

sequence of abelian groups

0 // F×sep ⊗ Q̂sep
ι // A

0
(Qsep, K2)

p
// Λ2(Q̂sep)

σ

dd

// 0, (5.13)

with ι(a⊗ η) = {a, η} and σ(fi ∧ fj) = {fi, fj} for i 6= j, where {f1, . . . , fn} is a Z-basis for

Q̂sep. Indeed, these maps make sense because

Fsep[Q]× = ker
[
Fsep(Q)×

∐
vx
//
∐

x∈Q(1)
sep

Z
]
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hence [Mil70, Lemma 2.1] implies that the symbols {g, h} ∈ K2(Fsep(Q)) with g, h ∈ Fsep[Q]×

vanish under the residue homomorphisms ∂x, i.e., all such {g, h} ∈ A0(Qsep, K2). By [Ros61,

Thm. 3] we have that Fsep[Q]× = F×sep ⊕ Q̂sep hence we can view symbols of the form {a, η}

and {η, χ}, with a ∈ F×sep and η, χ ∈ Q̂sep, in A0(Qsep, K2), and in fact in A
0
(Qsep, K2).

Remark 5.3. The Γ-action on F×sep ⊗ Q̂sep and Λ2(Q̂sep) is the diagonal one and the action

on A
0
(Qsep, K2) is induced by the natural inclusion A

0
(Qsep, K2) ⊆ K2(Fsep(Q)), hence is

also diagonal. Therefore, although ι and p are Γ-equivariant, σ, a priori , is not. That is,

the splitting is only as abelian groups, not as Γ-modules (yet). This is because the result

[GMS03, Part 2, Cor. 5.6(1)] deals exclusively with split tori hence there the Γ-action is

trivial and the character module is merely a free abelian group.

The cost of splitting the exact sequence (5.13) as Γ-modules will ultimately be the condition

p 6= 2 in the exact sequence (5.12) of the previous corollary, but it will not be the only time

we will need this assumption (cf. proof of Theorem 5.10 below). The main step towards a

Γ-splitting is the following lemma.

Lemma 5.4. The exact sequence (5.13) splits as a sequence of Γ-modules if for all χ ∈ Q̂sep,

{χ, χ} = 0 in K2(Fsep(Q)).

Proof. Although a direct computation shows that σ becomes Γ-equivariant if {fi, fi} = 0 for

all i = 1, . . . , n, a basis-free splitting is given by the map

τ : Λ2(Q̂sep) −→ A
0
(Qsep, K2)

η ∧ χ 7−→ {η, χ},

which is well-defined by the hypothesis and Γ-equivariant by construction.

Since localization is exact, all of the above applies mutatis mutandis if the exact sequence

(5.13) if localized at some prime p. Since {χ, χ} = {−1, χ} ∈ K2(Fsep(Q)) (which shows

how the elements {fi, fi} appear in the splitting (5.13)) and since −1 has order 2 in the

group Fsep(Q)×, the symbol {χ, χ} has order 2 in K2(Fsep(Q)). In particular, the condition

of the previous lemma in the localized setting is guaranteed if we localize at a prime p 6= 2
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because this kills the 2-torsion in each group. Moreover, localization, being exact, commutes

with taking cohomology. Since Galois cohomology groups are torsion in degree ≥ 1 and

the localization of a torsion abelian group at a prime p can be identified with its p-primary

component, localizing the exact sequence (5.13) at a prime p 6= 2, q allows us to rewrite the

previous corollary as follows.

Theorem 5.5. Let T/F be an algebraic torus and let 1 −→ T
i−→ P

j−→ Q −→ 1 be a

coflasque resolution of T . Then for every prime p 6= 2, q there is an exact sequence

0 −→ Inv3(T,Qp/Zp(2))
r−→ H2(F, (F×sep ⊗ Q̂sep)(p) ⊕ Λ2(Q̂sep)(p))

a∗−π∗−→ H2(F, (F×sep ⊗ (P̂sep ⊕ Q̂sep))(p))⊕ Λ2(P̂sep ⊕ Q̂sep)(p)).

Our goal then is to calculate ker(a∗ − π∗). The maps a∗ and π∗ are, in this context,

induced by â, π̂ : Q̂sep −→ P̂sep ⊕ Q̂sep, which are given by q 7−→ (ĵ(q), q) and q 7−→ (0, q),

respectively (cf. Remark 4.1) with ĵ : Q̂sep
� � // P̂sep dual to j : P −→ Q above. Because

Galois cohomology is additive and the maps A
0
(Qsep, K2) −→ A

0
(Psep × Qsep, K2) induced

by a and π respect the splittings above, we can consider the two components separately and

write

Inv3(T,Qp/Zp(2)) ∼= ker(a∗ − π∗) = ker(φ)⊕ ker(ψ), (5.14)

where

H2(F, (F×sep ⊗ Q̂sep)(p))
φ−→ H2(F, (F×sep ⊗ P̂sep)(p))

and

H2(F,Λ2(Q̂sep)(p))
ψ−→ H2(F,Λ2(P̂sep)(p))⊕H2(F, (P̂sep ⊗ Q̂sep)(p)),

the latter after the standard formula

Λ2(P̂sep ⊕ Q̂sep)
∼=−→ Λ2(P̂sep)⊕ Λ2(Q̂sep)⊕ (P̂sep ⊗ Q̂sep)

(p, q) ∧ (p′, q′) 7−→ (p ∧ p′, q ∧ q′, p⊗ q′ − p′ ⊗ q).

Note that we have dropped the components H2(F, (F×sep⊗ Q̂sep)(p)) and H2(F, (Λ2(Q̂sep))(p))

in the codomain of φ and ψ, respectively, that depend on Q̂sep because the Q̂sep components
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of the images of â and π̂ are the same, hence when subtracting the maps a∗ and π∗ that they

induce in cohomology we get 0 in those components (cf. the following Remark and Equation

(4.3) in Remark 4.1 for the analogous situation in the degree 2 case).

We write ψ = (κ, ε) for its components.

Remark 5.4. It is important to note that, in general, the map a∗ − π∗ is not induced by the

map â− π̂. Rather, we must determine a∗ as induced by â and π∗ as induced by π̂ separately

and then subtract. This is because Λ2(−) is not an additive functor as demonstrated by the

Künneth formula above and ignoring this one would lose the second, nontrivial, component

ε of the image of ψ since â− π̂ reduces to ĵ : Q̂sep −→ P̂sep. Indeed, the previous comment

shows that this doesn’t matter for φ because F×sep⊗− is an additive functor nor does it matter

for the “additive part” of Λ2(−); this is also what happened in Remark 4.1. In particular,

φ is induced by â − π̂ = ĵ as is the first component κ of ψ. On the other hand, the second

component ε of ψ is the map on cohomology that is induced by the map

ε̂ : Λ2(Q̂sep) −→ P̂sep ⊗ Q̂sep

q ∧ q′ 7−→ ĵ(q)⊗ q′ − ĵ(q′)⊗ q
(5.15)

coming from â alone, because the corresponding map induced by π̂ happens to be the zero

map.

Determining ker(φ) is entirely analogous to the computation in Remark 4.1 and we will

see that while the degree 2 invariants with coefficients in Qp/Zp(1), p 6= q, are given exactly

by the p-primary component of the first cohomology group of the character module T̂sep, in

degree 3 (for p 6= 2, q) we obtain the p-primary component of the first cohomology group of

the twist F×sep ⊗ T̂sep, and moreover, this doesn’t tell the whole story this time. For the final

result, see Theorem 5.12.

Theorem 5.6. We have that ker(φ) ∼= H1(F, F×sep ⊗ T̂sep){p} ∼= H1(F, T 0){p} in Equation

(5.14).

Proof. Although F×sep is not a flat Z-module (if (n, q) = 1 then F×sep is non-uniquely n-

divisible and the short exact sequence 1 −→ µn −→ F×sep
n−→ F×sep −→ 1 fails to be exact
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after tensoring with F×sep), the map

F×sep ⊗ Q̂sep
Id⊗ĵ

// F×sep ⊗ P̂sep

is nonetheless injective because character modules of tori are torsion-free. Since tensoring is

always right-exact and localization is exact, the short exact sequence

0 −→ Q̂sep
ĵ−→ P̂sep

î−→ T̂sep −→ 0 (5.16)

induces a short exact sequence

0 −→ (F×sep ⊗ Q̂sep)(p) −→ (F×sep ⊗ P̂sep)(p) −→ (F×sep ⊗ T̂sep)(p) −→ 0

and taking cohomology gives the exact sequence

H1(F, (F×sep ⊗ P̂sep)(p)) −→ H1(F, (F×sep ⊗ T̂sep)(p))

−→ H2(F, (F×sep ⊗ Q̂sep)(p))
φ−→ H2(F, (F×sep ⊗ P̂sep)(p)),

where we obtain φ because it is precisely the map on cohomology induced by ĵ as pointed

out in the previous Remark. The result follows after the first statement of the next lemma

and the (dual of the) observation that H1(F, T ) ∼= H1(F, F×sep⊗ T̂ 0
sep), which follows because

T (Fsep) ∼= Homgp(T̂sep, F
×
sep) ∼= F×sep ⊗ T̂ 0

sep.

Lemma 5.7. The groups H1(F, (F×sep⊗ P̂sep)(p)) and H1(F, (Q̂sep⊗ P̂sep)(p)) are both trivial.

Proof. If Γ0 ≤ Γ is a closed subgroup and N is a Γ0-module, we call

IndΓ0
Γ (N) := {α : Γ −→ N | α is continuous and α(γ0γ) = γ0α(γ)}

the induced module. It is a Γ-module whose action is given by γα(γ′) = α(γ′γ). We are

interested in this construction because of the Faddeev-Shapiro Lemma [Ser97, Ch. I, §2.5,

Prop. 10], which says that for all i ≥ 0, the natural map

IndΓ0
Γ (N) −→ N

f 7−→ f(1)
(5.17)
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induces an isomorphism

H i(Γ, IndΓ0
Γ (N)) ∼= H i(Γ0, N).

LetM be a Γ-module (viewed as Γ0-module by restriction). Then we have an isomorphism

of Γ-modules

M ⊗ IndΓ0
Γ (N)

∼=−→ IndΓ0
Γ (M ⊗N),

m⊗ f 7−→ fm

(5.18)

where fm : Γ −→M ⊗N is given by fm(γ) = γm⊗ f(γ).

Now, assume that Γ0 ≤ Γ is an open subgroup and choose representatives g1 = 1, . . . , gn

for the set of right cosets Γ/Γ0, which we endow with the left action γ · (Γ0g) = Γ0gγ
−1.

Then we have an isomorphism

Z[Γ/Γ0]
∼=−→ IndΓ0

Γ (Z)

n∑
i=1

ni(Γ0gi) 7−→ α,
(5.19)

where Z always has trivial (left) action, and α(γ) = ni if Γ0γ = Γ0gi. Then indeed, α(γ0γ) =

α(γ) and one can check this is a Γ-equivariant homomorphism with inverse given by α 7−→∑n
i=1 α(gi)(Γ0gi).

Since P̂sep is a permutation Γ-module, we have that P̂sep
∼=
⊕

i Z[Γ/Γi] for some finite

collection of open subgroups Γi ≤ Γ (Example 1.2(b)). By the isomorphisms (5.18) and

(5.19),

M ⊗ Z[Γ/Γi] ∼= IndΓi
Γ (M),

so we see that

H i(F,M ⊗ P̂sep) ∼=
⊕
i

H i(F,M ⊗ Z[Γ/Γi])

∼=
⊕
i

H i(F, IndΓi
Γ (M))

∼=
⊕
i

H i(Γi,M).
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For i = 1 and M = F×sep, the last group vanishes by Hilbert’s Theorem 90. If M = Q̂sep, it

vanishes by definition of coflasque modules. The lemma then follows because localization is

an exact functor hence commutes with taking cohomology.

The next lemma will be useful in calculating the second component of Inv3(T,Qp/Zp(2))

in (5.14), ker(ψ).

Lemma 5.8. For

H2(F,Λ2(Q̂sep)(p))
ψ=(κ,ε)

// H2(F,Λ2(P̂sep)(p))⊕H2(F, (P̂sep ⊗ Q̂sep)(p))

in (5.14), we have that ker(ψ) = ker(ε).

Proof. Since ψ = (κ, ε), we have that ker(ψ) = ker(κ) ∩ ker(ε). After Remark 5.4 (esp.

(5.15)), κ and ε are the maps in cohomology induced by the maps in the diagram

Λ2(P̂sep)

Λ2(Q̂sep)

κ̂
88

ε̂ &&

P̂sep ⊗ Q̂sep

ĵ(q) ∧ ĵ(q′)

q ∧ q′
-

66

�

((

ĵ(q)⊗ q′ − ĵ(q′)⊗ q.

(5.20)

If we let

Λ2(P̂sep)

P̂sep ⊗ Q̂sep

θ̂

OO

be defined by the natural factorization through P̂sep ⊗ P̂sep, i.e.,

θ̂(p⊗ q) = p ∧ ĵ(q),

then we have that

(θ̂ ◦ ε̂)(q ∧ q′) = θ̂ (ĵ(q)⊗ q′ − ĵ(q′)⊗ q)

= ĵ(q) ∧ ĵ(q′)− ĵ(q′) ∧ ĵ(q)

= 2(ĵ(q) ∧ ĵ(q′))

= 2 · κ̂(q ∧ q′).
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Localizing and passing to cohomology, the following diagram therefore commutes up to

multiplication by 2

H2(F, (Λ2(P̂sep))(p))

H2(F, (Λ2(Q̂sep))(p))

κ
44

ε
**

H2(F, (P̂sep ⊗ Q̂sep)(p)).

θ

OO

Since we localized at p 6= 2, ker(ε) ⊆ ker(κ) and so ker(ψ) = ker(ε).

To finish the calculation of ker(ψ), we introduce the following construction.

Construction 5.9. Let g be a profinite group and M a finitely generated torsion-free g-

module, i.e., a g-lattice. For every open subgroup h ≤ g choose representatives γ1 = 1, . . . , γn

for the left cosets of h in g. We have the trace map Tr : M h −→ M g given by Tr(m) =∑n
i=1 γim. We write Dec(M) for the subgroup of decomposable elements in S2(M)g generated

by the elements Tr(m ·m′) for every open subgroup h ≤ g and all m,m′ ∈M h. In particular,

we have that the symmetric square (M g)2 ⊂ Dec(M) by choosing h = g. We often write

simply S2(M)g/Dec for S2(M)g/Dec(M) unless the emphasis is necessary for clarity.

If N is another g-lattice, write Dec(M,N) for the subgroup of (M ⊗N)g generated by all

the traces Tr(m⊗ n) for every open subgroup h ≤ g and all m ∈ M h, n ∈ N h. The natural

isomorphism

S2(M ⊕N) ∼= S2(M)⊕ S2(N)⊕ (M ⊗N) (5.21)

given by the correspondence (m+n) · (m′+n′)←→ m ·m′+n ·n′+m⊗n′+m′⊗n implies

the decomposition

Dec(M ⊕N) ∼= Dec(M)⊕Dec(N)⊕Dec(M,N). (5.22)

Theorem 5.10. We have that ker(ψ) ∼=
(
S2(T̂sep)Γ/Dec

)
{p} in (5.14).
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Proof. After the previous lemma, it suffices to compute ker(ε). As with ker(φ) in Theorem

5.6, we determine ker(ε) by exploiting an exact sequence of cohomology groups induced by

a specific short exact sequence of Γ-modules. Since a Γ-lattice N is torsion-free, tensoring it

with the short exact sequence of character modules (5.16) gives the exact sequence

0 −→ N ⊗ Q̂sep −→ N ⊗ P̂sep −→ N ⊗ T̂sep −→ 0. (5.23)

Recall that if A is a commutative ring and M is an A-module then the standard exact

sequence

0 −→ Λ2(M) −→M ⊗M −→ S2(M) −→ 0, (5.24)

where the injection is given by m∧m′ 7−→ m⊗m′−m′⊗m, splits if 2 ∈ A×: on the right by

m ·m′ 7−→ 1
2
(m⊗m′+m′⊗m) or on the left by m⊗m′ 7−→ 1

2
(m∧m′). Moreover, if M is a

Γ-module then the splitting respects the action because Γ acts diagonally everywhere hence,

in particular, the splitting holds with Γ invariants and in cohomology. Localizing at p 6= 2

and applying this to M = Q̂sep we see that the short exact sequence (5.23) with N = Q̂sep

induces the exact sequence in cohomology

0 −→ H1(F, (Q̂sep ⊗ T̂sep)(p))
s−→ H2(F, (Λ2(Q̂sep))(p))⊕H2(F, (S2(Q̂sep))(p))

u−→ H2(F, (Q̂sep ⊗ P̂sep)(p)) −→ 0 (5.25)

where H1(F, (Q̂sep⊗ P̂sep)(p)) = 0 on the left because of the second statement in Lemma 5.7.

If we let

λ : H2(F, (Λ2(Q̂sep))(p)) −→ H2(F, (Q̂sep ⊗ P̂sep)(p))

be the restriction of u to the factor H2(F, (Λ2(Q̂sep))(p)) then λ is induced by the composition

Λ2(Q̂sep) // Q̂sep ⊗ Q̂sep
// Q̂sep ⊗ P̂sep

q ∧ q′ � // q ⊗ q′ − q′ ⊗ q � // q ⊗ ĵ(q′)− q′ ⊗ ĵ(q).

If we let σ̂ be the “flip” isomorphism of a tensor product and σ the isomorphism it induces on

cohomology, then by diagram (5.20) (or (5.15)) we see that σ◦λ = −ε hence ker(λ) = ker(ε).
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Moreover, exactness of (5.25) implies that

ker(λ) ∼= s−1
[
H2(F, (Λ2(Q̂sep))(p))

]
∼= s
[
H1(F, (Q̂sep ⊗ T̂sep)(p))

]
∩H2(F, (Λ2(Q̂sep))(p))

(5.26)

To determine this intersection we combine the various short exact sequences (5.23) for N =

Q̂sep, T̂sep, and P̂sep, obtaining the diagram

0

��

0

��

0

��

0 // Q̂sep ⊗ Q̂sep
//

��

Q̂sep ⊗ P̂sep
//

��

Q̂sep ⊗ T̂sep
//

��

0

0 // P̂sep ⊗ Q̂sep
//

��

P̂sep ⊗ P̂sep
//

��

P̂sep ⊗ T̂sep
//

��

0

0 // T̂sep ⊗ Q̂sep
//

��

T̂sep ⊗ P̂sep
//

��

T̂sep ⊗ T̂sep
//

��

0

0 0 0

with exact rows and columns. Combining the induced cohomology exact sequences we have

H1(F, (P̂sep ⊗ P̂sep)(p)) // H1(F, (P̂sep ⊗ T̂sep)(p))
k // H2(F, (P̂sep ⊗ Q̂sep)(p))

H1(F, (Q̂sep ⊗ P̂sep)(p)) // H1(F, (Q̂sep ⊗ T̂sep)(p))

h

OO

s // H2(F, (Q̂sep ⊗ Q̂sep)(p))

t

OO

H0(F, (T̂sep ⊗ T̂sep)(p))

−1g

OO

l
// H1(F, (T̂sep ⊗ Q̂sep)(p))

r

OO

H0(F, (P̂sep ⊗ T̂sep)(p))

f

OO

// H1(F, (P̂sep ⊗ Q̂sep)(p)),

OO

where the marked square anti-commutes by [CE99, §IV.2, Prop. 2.1]. After Lemma 5.7 and
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the decompositions of cohomology groups induced by the splitting of (5.24), this becomes

0 // H1(F, (P̂sep ⊗ T̂sep)(p))
k // H2(F, (P̂sep ⊗ Q̂sep)(p))

0 // H1(F, (Q̂sep ⊗ T̂sep)(p))

h

OO

s // H2(F, (Λ2(Q̂sep))(p))⊕H2(F, (S2(Q̂sep))(p))

t

OO

(Λ2(T̂sep))Γ
(p) ⊕ (S2(T̂sep))Γ

(p)

−1g

OO

l
// H1(F, (T̂sep ⊗ Q̂sep)(p))

r

OO

(P̂sep ⊗ T̂sep)Γ
(p)

f

OO

// 0.

OO

(5.27)

By construction of the splitting (5.24), applying σ to the decomposition

H i(F, (Q̂sep ⊗ Q̂sep)(p)) ∼= H i(F, (Λ2(Q̂sep))(p))⊕H i(F, (S2(Q̂sep))(p)) (5.28)

fixes the symmetric part and multiplies the exterior part by −1, hence −σ does the opposite.

Moreover, because the flip isomorphism commutes with the maps in the short exact sequences

(5.24) with N = Q̂sep and T̂sep, i.e., we have the commutative diagram

0 // Q̂sep ⊗ Q̂sep
//

σ̂
��

Q̂sep ⊗ P̂sep
//

σ̂
��

Q̂sep ⊗ T̂sep
//

σ̂
��

0

0 // T̂sep ⊗ Q̂sep
// T̂sep ⊗ P̂sep

// T̂sep ⊗ T̂sep
// 0,

we have that σ commutes with the connecting homomorphisms in cohomology, i.e., we have

commutative diagrams

H1(F, (Q̂sep ⊗ T̂sep)(p))

σ

��

s // H2(F, (Q̂sep ⊗ Q̂sep)(p))

σ

��

H1(F, (T̂sep ⊗ Q̂sep)(p)) r
// H2(F, (Q̂sep ⊗ Q̂sep)(p)),

(5.29)

and

H0(F, (T̂sep ⊗ T̂sep)(p))

σ

��

l // H1(F, (T̂sep ⊗ Q̂sep)(p))

σ

��

H0(F, (T̂sep ⊗ T̂sep)(p)) g
// H1(F, (Q̂sep ⊗ T̂sep)(p)).

(5.30)
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Now choose

α ∈ s−1
[
H2(F, (Λ2(Q̂sep))(p))

] ∼= ker(λ).

Then the fact that −σ fixes s(α) and (5.29) imply that

s(α) = −σ(s(a)) = −r(σ(α)),

so that s(α) ∈ Im(r) and exactness of the second column in (5.27) implies t(s(α)) = 0.

Commutativity of the top square in (5.27) thus implies that k(h(α)) = 0 hence h(α) = 0

because k is injective, and therefore α ∈ Im(g) by exactness of the first column. In particular,

we have shown that

s−1
[
H2(F, (Λ2(Q̂sep))(p))

]
⊆ Im(g).

Claim. We have that

s
[
g
(
Λ2(T̂sep)Γ

(p)

)]
⊆ H2(F, (S2(Q̂sep))(p)),

s
[
g
(
S2(T̂sep)Γ

(p)

)]
⊆ H2(F, (Λ2(Q̂sep))(p)).

This follows by the combining the two previous diagrams (5.29) and (5.30) with the anti-

commutative square in (5.27). Let

ζ ∈ Λ2(T̂sep)Γ
(p).

Then σ(ζ) = −ζ and thus

σ(s(g(ζ)))
(5.29)
= r(σ(g(ζ)))

(5.30)
= r(l(σ(ζ)))

(5.27)
= −s(g(σ(ζ))) = s(g(ζ)).

Since s(g(ζ)) is fixed by σ, we must have that

s(g(ζ)) ∈ H2(F, (S2(Q̂sep))(p)).

If, on the other hand, we start with ζ ∈ S2(T̂ )Γ
(p) then we have σ(ζ) = ζ and in the previous

sequence of equalities, the last one gives −s(g(ζ)) on the right so in this case σ maps s(g(ζ))

to its negative and therefore s(g(ζ)) ∈ H2(F, (Λ2(Q̂sep))(p)), proving the claim.
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Before the claim, we saw that

s−1
[
H2(F, (Λ2(Q̂sep))(p))

]
⊆ Im(g),

so write α = g(γ, δ) for α on the left hand side with γ ∈ Λ2(T̂sep)Γ
(p) and δ ∈ S2(T̂sep)Γ

(p). If

we write

s(α) = s(g(γ, 0)) + s(g(0, δ))

then since s(α) = −σ(s(α)) by assumption, the claim implies that

s(g(γ, 0)) + s(g(0, δ)) = −σ(s(g(γ, 0)))− σ(s(g(0, δ)))

= −s(g(γ, 0)) + s(g(0, δ))

which means that 2 · s(g(γ, 0)) = 0 and therefore s(g(γ, 0)) = 0 because we have localized at

p 6= 2. Since s is an embedding, g(γ, 0) = 0 and thus α = g(0, δ). This proves

s−1
[
H2(F, (Λ2(Q̂sep))(p))

]
⊆ Im

[
g|(S2(T̂sep))Γ

(p)

]
,

and since the other inclusion ⊇ is just the second statement of the claim, we have equality.

Since the group on the left is isomorphic to ker(λ) (cf. (5.26)), we have reduced to determining

the image of the restriction of g to (S2(T̂sep))Γ
(p). By exactness of the first column in (5.27),

we have that

Im
[
g|(S2(T̂sep))Γ

(p)

] ∼= S2(T̂sep)Γ
(p)

/[
Im(f) ∩ S2(T̂sep)Γ

(p)

]
.

The result then follows after the following lemma.

Lemma 5.11. We have that

S2(T̂sep)Γ
(p)

/[
Im(f) ∩ S2(T̂sep)Γ

(p)

] ∼= (S2(T̂sep)Γ
/

Dec
)
{p}.

Proof. We begin by computing Im(f). We have that f is the map on Γ-invariants induced

by

P̂sep ⊗ T̂sep −→ T̂sep ⊗ T̂sep

p⊗ t 7−→ î(p)⊗ t,
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where î is the map on character modules dual to i : T −→ P from the coflasque resolution in

Theorem 5.5. But, by Lemma 1.1, we know that if i′ : P̂ ′ −→ T̂sep is any map from another

permutation module P̂ ′ then we have a factorization

0 // Q̂sep
ĵ
// P̂sep

î // T̂sep
// 0,

P̂ ′

aa

i′

OO

hence

Im( î ) =
∑

Im(i′),

the sum over all maps i′ from some permutation module into T̂sep. By Example 1.2(b),

an arbitrary permutation module is of the form P̂ ′ ∼=
⊕

i Z[Γ/Γi] for some open subgroups

Γi ≤ Γ, hence Im(f) is generated by the images of all maps

(Z[Γ/Γ0]⊗ T̂sep)Γ
(p)

f0=(i0⊗Id)(p)
// (T̂sep ⊗ T̂sep)Γ

(p)

induced by all Γ-equivariant maps

Z[Γ/Γ0]
i0 // T̂sep

for every open subgroup Γ0 ≤ Γ. The following claims will allow us to describe Im(f) in

terms of the group Dec(T̂sep) defined in Construction 5.9 above.

Claim. HomΓ(Z[Γ/Γ0], T̂sep) ∼= (T̂sep)Γ0 ∼= (Z[Γ/Γ0]⊗ T̂sep)Γ.

As in Lemma 5.7, we view Γ/Γ0 as right cosets with left action given by γ · (Γ0g) = Γ0gγ
−1

and fix representatives g1 = 1, . . . , gn. Because Γ acts transitively on the cosets Γ/Γ0, we see

that every Γ-equivariant homomorphism

Z[Γ/Γ0]
i0 // T̂sep

is determined by the image of the identity coset Γ0. Moreover, if Γ0 7−→ t then Γ-equivariance

implies that γ0 · t = t for all γ0 ∈ Γ0 so t ∈ (T̂sep)Γ0 . For the second isomorphism, we need

only appeal to the proof of Lemma 5.7, which shows that

Z[Γ/Γ0]⊗ T̂sep
∼= IndΓ0

Γ (Z)⊗ T̂sep
∼= IndΓ0

Γ (T̂sep)
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hence

(Z[Γ/Γ0]⊗ T̂sep)Γ = H0(F,Z[Γ/Γ0]⊗ T̂sep)

∼= H0(F, IndΓ0
Γ (T̂sep))

∼= H0(Γ0, T̂sep)

= (T̂sep)Γ0 .

Next we determine Im(f0) for a fixed i0 ∈ HomΓ(Z[Γ/Γ0], T̂sep).

Claim. We have that Im(f0) =
{∑n

k=1 g
−1
k x ⊗ g−1

k y | y ∈ (T̂sep)Γ0
}

(p)
, where x = i0(Γ0) ∈

(T̂sep)Γ0 .

By definition, if

z =
m∑
l=1

( n∑
k=1

[
nlk(Γ0gk)

]
⊗ tl

)
∈ (Z[Γ/Γ0]⊗ T̂sep)Γ

then

(i0 ⊗ Id)(z) =
m∑
l=1

(
i0

( n∑
k=1

nlk(Γ0gk)

)
⊗ tl

)
=

m∑
l=1

n∑
k=1

g−1
k x⊗ nlktl.

(5.31)

On the other hand, we can trace the element z through the second isomorphism of the

previous claim (given explicitly in Lemma 5.7):

(Z[Γ/Γ0]⊗ T̂sep)Γ ∼= (IndΓ0
Γ (Z)⊗ T̂sep)Γ ∼= (IndΓ0

Γ (T̂sep))Γ ∼= (T̂sep)Γ0

∑m
l=1

(∑n
k=1

[
nlk(Γ0gk)

]
⊗ tl

)
oo //

∑m
l=1 αl ⊗ tl oo //

∑m
l=1 βl

oo //
∑m

l=1 βl(1),

where αl : Γ −→ Z is given by αl(γ) = nlk if Γ0γ = Γ0gk and βl : Γ −→ T̂sep is given

by βl(γ) = αl(γ)γtl, hence βl(1) = nl1tl because g1 = 1. The last map is the (degree 0)

Faddeev-Shapiro isomorphism described by (5.17) in the proof of Lemma 5.7. Although we

have that
∑m

l=1 βl(1) =
∑m

l=1 nl1tl, the sum of the βl is a Γ-invariant element of the induced

module, hence by definition of the action (cf. the proof of Lemma 5.7), we have that

m∑
l=1

βl(γ) =
m∑
l=1

βl(1)
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for all γ ∈ Γ. In particular, we can choose γ = gk which gives

m∑
l=1

nlkgktl =
m∑
l=1

βl(1), 1 ≤ k ≤ n.

Then,

n∑
k=1

[
g−1
k x⊗ g−1

k

( m∑
l=1

βl(1)

)]
=

n∑
k=1

[
g−1
k x⊗ g−1

k

( m∑
l=1

nlkgktl

)]
=

m∑
l=1

n∑
k=1

g−1
k x⊗ nlktl

= (i0 ⊗ Id)(z),

where the last equality follows from (5.31). Because the z ∈ (Z[Γ/Γ0] ⊗ T̂sep)Γ correspond

isomorphically to the y =
∑m

l=1 βl(1) ∈ (T̂sep)Γ0 , the claim follows since (i0 ⊗ Id)(p) = f0 and

localization commutes with taking the image.

Im(f) is generated by the images of the f0 for every i0 ∈ HomΓ(Z[Γ/Γ0], T̂sep) and all

open subgroups Γ0 ≤ Γ, and we saw that the i0 correspond isomorphically to the characters

x = i0(Γ0) ∈ (T̂sep)Γ0 . Moreover, since the g1, . . . , gn are representatives for the right cosets

of a subgroup Γ0 ≤ Γ, their inverses are representatives of the left cosets. Therefore, writing

γk = g−1
k for these representatives and varying the x and the Γ0, we obtain

Im(f) =

〈 n∑
k=1

γkx⊗ γky
∣∣∣∣ x, y ∈ (T̂sep)Γ0 ,Γ0 ≤ Γ open

〉
(p)

.

By definition, the intersection Im(f)∩S2(T̂sep)Γ
(p) is just the image of the group Im(f) under

the natural projection

(T̂sep ⊗ T̂sep)Γ
(p)

// S2(T̂sep)Γ
(p)

since this map is the inverse to the split embedding

S2(T̂sep)Γ
(p)
� � // (T̂sep ⊗ T̂sep)Γ

(p)∑l
i=1

xi·zi
ni

� //
∑l

i=1
xi⊗zi
2ni

+
∑l

i=1
zi⊗xi
2ni

.

Hence Im(f) ∩ S2(T̂sep)Γ is precisely Dec(T̂sep)(p) and therefore,

S2(T̂sep)Γ
(p)

/[
Im(f) ∩ S2(T̂sep)Γ

(p)

]
= S2(T̂sep)Γ

(p)

/
Dec(p).
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Since localization commutes with taking quotients and this is a direct summand of the p-

primary torsion group Inv3(T,Qp/Zp(2)), the result follows.

Remark 5.5. As in Construction 5.9 above, let h ≤ g be an open subgroup of a profinite

group with left coset representatives γ1, . . . , γn and M a g-lattice. In the upcoming paper

[BM12], the authors extend the trace map Tr : M h −→ M g to the so-called quadratic trace

map Qtr : M h −→ S2(M)g given by Qtr(m) =
∑

i<j γim · γjm and instead define the

decomposable elements as the subgroup generated by the square (M g)2 and the elements

Qtr(m) for every open subgroup h ≤ g and all m ∈ M h. Note that the symmetric square is

included separately since Qtr(m) = 0 for all m ∈ M g by definition. Denoting this alternate

subgroup of decomposable elements D̃ec(M), the isomorphism (5.21) identifies

Qtr(m+ n) = Qtr(m) + Qtr(n) + [Tr(m)⊗ Tr(n)− Tr(m⊗ n)]

and so implies a decomposition analogous to (5.22):

D̃ec(M ⊕N) ∼= D̃ec(M)⊕ D̃ec(N)⊕Dec(M,N),

with the same Dec(M,N) we defined above. But, for x ∈M h, the formula

2 ·
∑
i<j

γix · γjx =
∑
i<j

γix · γjx+
∑
j<i

γix · γjx

=
∑
i 6=j

γix · γjx

=

( n∑
i=1

γix

)
·
( n∑

j=1

γjx

)
−

n∑
i=1

γix · γix

= Tr(x) · Tr(x)− Tr(x · x)

shows that 2·D̃ec(M) ⊆ Dec(M) since Tr(x) ∈M g. Incidentally, this implies that Tr(x·x) ∈

D̃ec(M) since both constructions of the decomposable elements contain (M g)2. Similarly, if
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x, y ∈M h and z = x+ y, this same formula shows

2 ·
∑
i<j

γiz · γjz = Tr(z) · Tr(z)− Tr(z · z)

= Tr(z) · Tr(z)−
n∑
i=1

γi(x · x+ y · y + 2x · y)

= Tr(z) · Tr(z)− Tr(x · x)− Tr(y · y)− 2 Tr(x · y),

which implies that 2 ·Dec(M) ⊆ D̃ec(M). Therefore, localizing at a prime p 6= 2, we cannot

tell the difference: Dec(M)(p) = D̃ec(M)(p) in S2(M)g(p).

In some sense, our decomposable elements Dec(M) are naive because they arise from

the localized approach we used to compute Inv3(T,Qp/Zp(2)) for p 6= 2, q (2 being the

problematic prime as far as the decomposable elements are concerned since the characteristic

restriction was imposed by our reliance on Rost’s Chow groups with coefficients). But, this is

precisely why we use them: they are the natural construction for our approach. This point of

view is further supported by the fact that the decomposable elements D̃ec(M) help capture

the description of degree 3 invariants for all primes p, as demonstrated in the upcoming

paper [BM12]. See the discussion after the next theorem for the relation between our work

and [BM12].

Combining formula (5.14) with Theorems 5.6 and 5.10, we obtain the main result of this

work.

Theorem 5.12. Let T/F be an algebraic torus. Then for every prime p 6= 2, q there is an

isomorphism

Inv3(T,Qp/Zp(2)) ∼= H1(F, T 0){p} ⊕
(
S2(T̂sep)Γ

/
Dec

)
{p}.

Remark 5.6. As in §3, when combined with Propositions 1.14 and 1.16, the previous the-

orem gives a description of the groups H
3

nr(F (T ),Qp/Zp(2)) and Inv3
nr(T,Qp/Zp(2)) for an

arbitrary torus T/F and p 6= 2, q. By Proposition 1.14 we have that

H
3

nr(F (T ),Qp/Zp(2)) ∼= H1(F, S0){p} ⊕
(
S2(Ŝsep)Γ

/
Dec

)
{p},
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where [Ŝsep] = p(T̂sep), which answers the motivating question in [Col95, p. 39] in the case

i = 3 and n prime to 2, q (cf. the Introduction). On the other hand, Proposition 1.16 implies

that

Inv3
nr(T,Qp/Zp(1)) ∼= H1(F,N0){p} ⊕

(
S2(N̂sep)Γ

/
Dec

)
{p},

where N̂sep is a flasque module that fits into an exact sequence

0 −→ P̂sep −→ N̂sep −→ T̂sep −→ 0

with P̂sep a permutation module.

Unfortunately, the numerous technical calculations we used to derive the formula in the

previous theorem hide the precise description of the isomorphism. Furthermore, our reliance

on Rost’s theory of cycle modules is ultimately responsible for the restriction p 6= 2, q because

of the necessity of splitting the exact sequence (5.13) (as Γ-modules) and the fact that the

residue homomorphisms used to define the partially unramified groups A0(X,H i[C]) (and the

unramified cohomology groups H i
nr(F,C)) are not defined on the characteristic component

(cf. Remarks 1.3(a) and 2.1(c)).

Defining the characteristic component Qq/Zq(2) following [Kah96] and replacing Rost’s

cycle modules with other constructions, the upcoming paper [BM12] (developed from the

ideas in this work) extends the formula of the previous theorem to the case p = q. Although

the isomorphism does not hold in the case p = 2, one in fact obtains an exact sequence

containing Inv3(T,Q/Z(2)⊕Qq/Zq(2)) (recall we always write Q/Z(i) for the characterstic-

free module) which gives the above result on the p-primary components when p 6= 2. Using a

more general definition of unramified cohomology that includes a characteristic component,

the paper then extends the computation of degree 3 unramified cohomology of the function

field of a torus in the previous remark to the case p = q, with the case p = 2 described via

the aforementioned exact sequence for invariants of an auxiliary torus, namely the Picard

torus (cf. Proposition 1.14).

Morevoer, the isomorphism of the previous theorem is constructed explicitly in [BM12]

using advanced techniques in motivic cohomology and the results can be used to give a
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related description in our simplified setting of Galois cohomology as long as one stays away

from the characteristic component, which suffices for our purposes. Although we do not

verify this here to avoid a long digression into topics outside the scope of this work, the

construction is worth describing insofar as it reveals an important difference between the

degree 2 and degree 3 cases.

Following [Tat76], for p 6= 2, q, let Zp = lim←−Z/pnZ be the p-adic integers. Define the

Γ-module

Zp(1) = lim←− µpn ,

where the inverse limit is taken over all non-negative integers n. Letting Zp(0) = Zp, define

inductively

Zp(m+ 1) = Zp(m)⊗Zp Zp(1), m ≥ 0.

For any abelian group M which is both a Zp and a Γ-module, set

M(m) = M ⊗Zp Zp(m),

so that in particular

Qp/Zp(1) = Qp/Zp ⊗Zp Zp(1) = lim−→ µpn =
⋃
n

µpn ⊂ F×sep, (5.32)

hence Q/Z(i) and Qp/Zp(i) in this notation agree with the notation we have been using

throughout. Moreover, we have the pairings

M(i)× Zp(j) −→M(i+ j) (5.33)

induced by the natural pairings Zp(i) × Zp(j) −→ Zp(i + j) given by the tensor product,

since Zp(i) = (Zp(1))⊗i.

For each integer n ≥ 0 and every field extension K/F we have the induced map ΓK −→ Γ

and thus the following commutative diagram of ΓK-modules

0 // µpn // K×sep
// K×sep

// 0

0 // µpn+1 //

p

OO

K×sep
//

p

OO

K×sep
//

Id

OO

0.
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Passing to the inverse limit over n and tensoring (over Z) with the torsion-free abelian group

(and induced ΓK-module) T̂ 0
sep, we obtain the short exact sequence

0 −→ Zp(1)⊗ T̂ 0
sep −→ lim←−K

×
sep ⊗ T̂ 0

sep −→ K×sep ⊗ T̂ 0
sep −→ 0.

Therefore, we have the connecting map in cohomology

H1(K,T ) = H1(K,K×sep ⊗ T̂ 0
sep) ν // H2(K,Zp(1)⊗ T̂ 0

sep), (5.34)

where the equality follows from the end of the proof of Theorem 5.6. After (5.32), we have

the short exact sequence

0 −→ Qp/Zp(1) −→ K×sep −→ K
×
sep −→ 0

hence also

0 −→ Qp/Zp(1)⊗ T̂sep −→ K×sep ⊗ T̂sep −→ K
×
sep ⊗ T̂sep −→ 0.

Since K×sep is m-divisible for all m relatively prime to q and Qp/Zp(1) = K×sep{p} by (5.32),

we see that the group K
×
sep⊗ T̂sep is uniquely p-divisible and thus the p-primary components

of its Galois cohomology is trivial in positive degree. Hence, we have the surjection

H1(K,Qp/Zp(1)⊗ T̂sep) ω // // H1(K,K×sep ⊗ T̂sep){p} = H1(K,T 0){p}, (5.35)

where as before, the last equality follows from the end of the proof of Theorem 5.6. Setting

M = Qp/Zp and i = j = 1 in (5.33) and considering the natural pairing between T̂sep and

T̂ 0
sep into Z, we obtain the cup-product

H1(K,Qp/Zp(1)⊗ T̂sep)×H2(K,Zp(1)⊗ T̂ 0
sep) ∪ // H3(K,Qp/Zp(2)) .

Using this, one can show that the first component of the isomorphism in Theorem 5.12

is described explicitly by the split embedding H1(F, T 0){p} � � // Inv3(T,Qp/Zp(2)) which

takes a class α ∈ H1(F, T 0){p} to the invariant that maps a torsor T ∈ H1(K,T ) to the

cohomology class ω−1(αK) ∪ ν(T ) ∈ H3(K,Qp/Zp(2)), where αK ∈ H1(K,T 0) is the image

of α under the natural map H1(F, T 0) −→ H1(K,T 0). By construction, two preimages of αK

66



under ω differ by an element β coming from H0(K,Ksep⊗ T̂sep), hence β is p-divisible. Since

Galois cohomology is torsion in positive degree, Im(ν) is torsion. Moreover, multiplication

by n relatively prime to p is an isomorphism of Zp(1), thus Im(ν) is in fact p-primary torsion.

Therefore, the cup-product β ∪ ν(T ) = 0 and so the given map is well-defined. Moreover,

because we take the cup-product with ν(T ), it is irrelevant whether we view Zp(i) with

its natural topology (as is done in [Tat76]) or with the discreet topology when forming its

cohomology groups.

Analogously, we claim that the second component of the isomorphism in Theorem 5.12

is described using a (different) cup-product. This time, the natural pairing between T̂sep and

T̂ 0
sep is doubled:

(Qp/Zp(1)⊗ T̂ 0
sep)× (Zp(1)⊗ T̂ 0

sep)× (T̂sep ⊗ T̂sep)(p) −→ Qp/Zp(2).

The induced cup-product is

H1(K,Qp/Zp(1)⊗ T̂ 0
sep)×H2(K,Zp(1)⊗ T̂ 0

sep)×H0(K, (T̂sep ⊗ T̂sep)(p))

∪−→ H3(K,Qp/Zp(2)),

and we claim that the second split injection (S2(T̂sep)Γ/Dec){p} � � // Inv3(T,Qp/Zp(2)) of

Theorem 5.12 is given as follows. For a coset α ∈ (S2(T̂sep)Γ/Dec){p}, choose a representative

α ∈ S2(T̂sep)Γ
(p) and write α for its image under the natural embedding

S2(T̂sep)Γ
(p)
� � // (T̂sep ⊗ T̂sep)Γ

(p) .

Since the ΓK-module structure is given by the induced map ΓK −→ Γ, we have that

α ∈ (T̂sep ⊗ T̂sep)ΓK

(p) = H0(K, (T̂sep ⊗ T̂sep)(p)).

The invariant corresponding to α maps a torsor T ∈ H1(K,T ) to the cohomology class

ω−1
0 (Tp)∪ν(T )∪α ∈ H3(K,Qp/Zp(2)), where we write Tp for the projection of T onto the

p-primary component of H1(K,T ) and ω0 for the dual of ω in (5.35) obtained by replacing

T with T 0. As above, this is independent of the choice of preimage under ω0 and one can

check that it is also independent of the choice of representative α for α.
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The fact that the pairing between T̂sep and its dual is doubled in the second cup-

product is significant because the degree 3 invariants corresponding to the second component

(S2(T̂sep)Γ/Dec){p} in Theorem 5.12 are of a new type, different from those corresponding

to the first component H1(F, T 0){p} and degree 2 invariants. This difference is captured

by the following definitions. If G is a commutative algebraic group, e.g. a torus, then the

(pointed) set of isomorphism classes of torsors H1(K,G) is in fact an abelian group. In this

case, an invariant i ∈ Invi(G,C) is called linear if iK : H1(K,G) −→ H i(K,C) is a group

homomorphism for every field K/F . An invariant i ∈ Invi(G,C) is called quadratic if the

function h(T ,T ′) = i(T + T ′)− i(T )− i(T ′) is bilinear and h(T ,T ) = 2 · i(T ) for all

torsors T ,T ′ ∈ H1(K,G) over all fields K/F . We write Invilin(G,C) and Inviquad(G,C) for

the linear and quadratic invariants, respectively.

In the Corollary to Theorem 2.2 we proved that Inv2(T,Q/Z(1)) ∼= H1(F, T̂sep)′. In

[BM12], the authors describe this isomorphism (with a characteristic component, in fact)

via a cup-product pairing in a manner similar to the description above for the degree 3

isomorphism in Theorem 5.12. It is induced by the natural pairing

H1(K, T̂sep)×H1(K,K×sep ⊗ T̂ 0
sep) ∪ // H2(K,K×sep),

i.e., identifying H1(K,T ) with H1(K,K×sep ⊗ T̂ 0
sep) as in (5.34), the degree 2 invariant asso-

ciated to α ∈ H1(F, T̂sep)′ maps a torsor T ∈ H1(K,T ) to the cohomology class αK ∪ T ∈

H2(K,Q/Z(1)) = H2(K,K×sep)′, where αK ∈ H1(K, T̂sep)′ is the image of α under the natural

map H1(F, T̂sep) −→ H1(K, T̂sep) and T ′ is the projection of T onto the characteristic-free

part H1(K,T )′. Because cup-products are bilinear, we see that all degree 2 invariants as

well as the first component H1(F, T̂sep){p} of degree 3 invariants are linear, while the second

component (S2(T̂sep)Γ/Dec){p} of degree 3 invariants is quadratic. That is, Theorem 5.12

can be augmented to

Inv3(T,Qp/Zp(2)) ∼= H1(F, T 0){p} ⊕
(
S2(T̂sep)Γ

/
Dec

)
{p}

= Inv3
lin(T,Qp/Zp(2))⊕ Inv3

quad(T,Qp/Zp(2)).
(5.36)

In Example 6.4 we give a construction of tori which exhibit nontrivial quadratic invariants.
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6 An Equivalence for Algebraic Tori

In this section and the next, we present applications of our main result, Theorem 5.12. The

first is an equivalence for tori which demonstrates a level of control that degree 3 invariants

have over invariants of all other degrees.

We begin with some notation and a preliminary result. Let T/F be a torus and 1 −→

T −→ P −→ Q −→ 1 an exact sequence of tori with P quasi-trivial (e.g., a coflasque

resolution of T or a flasque resolution of Q). By Lemma 1.5, P −→ Q is a versal T -torsor

and we write Pξ for the generic torsor in H1(F (Q), T ) and e for its period (= order in this

abelian group). Since EndΓ(T̂sep) ∼= (T̂sep ⊗ T̂ 0
sep)Γ is a direct summand of S2(T̂sep ⊕ T̂ 0

sep)Γ,

we can view the identity endomorphism Id in the symmetric square and we write Id for its

image in the quotient S2(T̂sep ⊕ T̂ 0
sep)Γ/Dec (see Construction 5.9 for the definition of the

subgroup Dec).

Proposition 6.1. The following are equivalent:

(1) T is universally special, i.e., H1(K,T ) = 0 for all K/F .

(2) e = 1.

(3) Id = 1.

(4) T̂sep is invertible.

Proof. (1) =⇒ (2) is obvious and (2) ⇐⇒ (3) follows from [Mer10, Thm. 2.2] (which in

fact proves that e = |Id|). Construction 5.9 shows that the projection of the subgroup of

decomposable elements Dec ⊆ S2(T̂sep⊕ T̂ 0
sep)Γ onto the factor (T̂sep⊗ T̂ 0

sep)Γ is generated by

the traces Tr(t⊗ s) for all open subgroups Γ′ ≤ Γ and all elements t ∈ (T̂sep)Γ′ , s ∈ (T̂ 0
sep)Γ′ .

Thus, if (3) holds, we can write

Id =
n∑
i=1

Tr(ti ⊗ si)

for some open subgroups Γi ≤ Γ and ti ∈ (T̂sep)Γi , si ∈ (T̂ 0
sep)Γi . Moreover, if we let Pi =

Z[Γ/Γi] then we can view the ti and si as Γ-equivariant homomorphisms Pi −→ T̂sep and
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T̂sep −→ Pi, respectively (cf. the second claim in the proof of Lemma 5.11). Letting P =⊕n
i=1 Pi, we then have a factorization

T̂sep

Id

99

(si)
// P

(ti)
// T̂sep,

hence (4) holds since P is a permutation module. Since the implication (4) =⇒ (1) is

obvious, the result follows.

The following Lemma will be useful in the next result.

Lemma 6.2. If a commutative algebraic group G/F has no nontrivial degree i linear invari-

ants with values in a Γ-module C universally, i.e., Invilin(GK , C) = 0 for all field extensions

K/F, then it has no nontrivial degree i quadratic invariants with values in C universally,

i.e., Inviquad(GK , C) = 0 for all field extensions K/F .

Proof. Let K/F be an extension and i ∈ Inviquad(GK , C) be a quadratic invariant. If T ∈

H1(K,G) is a fixed GK-torsor, then the invariant which maps a torsor T ′ ∈ H1(L,G) for

some field extension L/K to the cohomology class h(TL,T ′) = i(TL + T ′)− i(TL)− i(T ′)

is linear, i.e., h(T ,−) ∈ Invilin(GK , C), hence trivial by hypothesis. Choosing L = K, we

obtain i(T + T ′) = i(T ) + i(T ′). Since K and the torsors T ,T ′ were arbitrary, we see

that i is actually a linear invariant, hence trivial.

Theorem 6.3. For every prime p 6= 2, q, the following are equivalent:

(1) Inv3(TK ,Qp/Zp(2)) = 0 for every field extension K/F .

(2) H1(K,T ){p} = 0 for every field extension K/F .

(3) Invilin(TK , C){p} = 0 for any field extension K/F, in any degree i, and for any Γ-

module C.

(4) (e, p) = 1.
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(5) There exists an integer n such that (n, p) = 1 and a factorization n · Id : T̂sep −→

P −→ T̂sep for some permutation module P .

(10) - (50), the same statements for the dual torus T 0.

Proof.

(1) =⇒ (20), (10) =⇒ (2): This follows directly from Theorem 5.12.

(2) =⇒ (3), (20) =⇒ (30): Let K/F be any field extension and Y −→ X be any

versal TK-torsor and write Yξ for the generic torsor in H1(K(X), T ). By the Rost em-

bedding (Theorem 1.6), every invariant is determined by its value at the generic torsor

so if α ∈ Invilin(TK , C) for some Γ-module C then by definition of linear invariants,

|α| | |Yξ|. If (2) holds then (|Yξ|, p) = 1, hence (|α|, p) = 1 and so Invilin(TK , C){p} = 0.

(3) =⇒ (1), (30) =⇒ (10): This follows from Lemma 6.2 after (5.36).

This establishes the equivalence of (1), (2), (3), and their duals.

(2) ⇐⇒ (4), (20) ⇐⇒ (40): This follows directly from [Mer10, Prop. 1.1] which

shows that the period e of the generic torsor Pξ ∈ H1(F (Q), T ) coming from the

specific versal T -torsor P −→ Q arising from a resolution of T (see above) is divisible

by the period of any T -torsor over any field extension of F .

(4) ⇐⇒ (5), (40) ⇐⇒ (50): [Mer10, Thm. 2.2] shows that e = |Id| hence if (4) holds

we have that e · Id ∈ Dec and we obtain the desired factorization with n = e as in

the proof of the previous Proposition. Conversely, the same proof shows that such a

factorization implies |Id| | n hence (e, p) = 1 and (4) holds.

Using this result we give a construction of tori with nontrivial quadratic invariants in

degree 3.
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Example 6.4.

(a) If S/F is any torus with a nontrivial p-primary torsor T ∈ H1(K,S){p} for p 6= 2, q

over some field K/F then Theorem 6.3 implies that p | e = |Id| and therefore the

element e
p
· Id ∈ (S2(Ŝsep ⊕ Ŝ0

sep)Γ/Dec){p} is nontrivial. Thus, the torus T = S × S0

has nontrivial quadratic invariants by (5.36). For example, if S is not invertible and

split by a p-group G = Gal(L/F ) for some prime p 6= 2, q then H1(K,S) 6= 0 for some

F ⊂ K ⊂ L by Proposition 6.1 and moreover is p-primary because composing the

restriction and corestriction maps for the trivial subgroup implies that (finite) group

cohomology is annihilated by the order of the group (cf. [Ser97, Ch. I, §2.5, Prop. 9]).

(b) Let L/F be a cyclic extension of prime order p 6= 2, q, i.e., G = Gal(L/F ) = Z/pZ.

Consider the torus T = R
(1)
L/F (Gm)×R(1)

L/F (Gm) and write T̂L = J⊕J for the G-module

of characters, shortening the notation introduced in Example 1.2(c) for clarity. Recall,

J is defined by the exact sequence

0 −→ Z N−→ Z[G] −→ J −→ 0, (6.1)

with N(1) =
∑

G g. As we saw in Example 1.2(c), the G-invariants JG are trivial.

Since G is cyclic, J ∼= J0 so in fact T is of the type considered in (a) (and self-dual).

But, in this case we can explicitly describe the entire factor containing the non-trivial

element Id considered above. Following the notation in Construction 5.9, we have the

decomposition

S2(T̂L)G
/

Dec ∼=
[
S2(J)

/
Dec(J)

]
⊕
[
S2(J)

/
Dec(J)

]
⊕
[
(J ⊗ J)G

/
Dec(J, J)

]
. (6.2)

Since G has prime order and JG = 0, Dec(J, J) is generated only by the traces Tr(j ⊗

k) =
∑

G gj ⊗ gk for j, k ∈ J and so

(J ⊗ J)G
/

Dec(J, J) = (J ⊗ J)G
/〈∑

G gj ⊗ gk
∣∣ j, k ∈ J〉 = Ĥ0(G, J ⊗ J), (6.3)

where Ĥ i(G,−) refers to the Tate cohomology groups (cf. [Ser79, Ch. VIII, §1]).

Moreover, by [Vos98, §4.8, p. 53, 56] there is an exact sequence

0 −→ J −→ Z[G]p−1 −→ J ⊗ J −→ 0, (6.4)
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hence we have the exact sequence in cohomology

Ĥ0(G,Z[G]p−1) −→ Ĥ0(G, J ⊗ J) −→ H1(G, J) −→ H1(G,Z[G]p−1).

Since Z[G]G = 〈
∑

G g〉 we have that Ĥ0(G,Z[G]p−1) = 0 and H1(G,Z[G]p−1) = 0 as

well because Z[G] is a permutation G-module. Therefore,

Ĥ0(G, J ⊗ J) ∼= H1(G, J). (6.5)

But G is cyclic hence (Tate) cohomology is 2-periodic and so in the exact sequence

0 −→ H1(G, J) −→ H2(G,Z) −→ H2(G,Z[G])

induced by (6.1) above, we have that H2(G,Z[G]) ∼= Ĥ0(G,Z[G]), which we just saw

is trivial. Therefore,

H1(G, J) ∼= H2(G,Z) ∼= Ĥ0(G,Z) = Z
/
|G|Z, (6.6)

where the last equality follows because G acts trivially on Z. Combining (6.2), (6.3),

(6.5), and (6.6) with (5.36), we see that the group Z/pZ is (isomorphic to) a direct

summand of Inv3
quad(T,Qp/Zp(2)).

7 Connections with Chow Groups

As a final application of our main result we obtain a new example of a recent result on Chow

groups. LetX be a smooth projective variety over F and write CH i(X) for the Chow group of

cycles of codimension i on X modulo rational equivalence. In [Pir11], the author answers the

following question in the negative: in cases when the natural map CH1(X) −→ CH1(Xsep)Γ

surjective, is the corresponding map CH2(X) −→ CH2(Xsep)Γ also surjective?

Using degree 3 cohomological invariants of a torus T, we produce a counterexample by

constructing an embedding

coker
[
H1(F, T 0){p} −→ Inv3(T,Qp/Zp(2))

]
� � // coker

[
CH2(X)(p) −→ CH2(Xsep)Γ

(p)

]
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for an auxiliary (smooth and projective) variety X/F, where the map on the left is the one

given by Theorem 5.12 and the subscript denotes localization at a prime p 6= 2, q. The

counterexample follows by exhibiting a torus T with nontrivial quadratic invariants so that

the coker on the left is nontrivial (after (5.36)). Since localization is exact, this will imply that

CH2(X) −→ CH2(Xsep)Γ has nontrivial cokernel. In fact, our desire to have surjectivity on

the level of the first Chow groups of X will lead us to an isomorphism of these cokernels (cf.

Theorem 7.2 and Example 7.3). Moreover, we will see that the torus T is necessarily flasque,

hence its invariants are all unramified (Proposition 1.15). Thus, we ultimately obtain our

counterexample by showing that an unramified cohomology group (cf. Proposition 1.14) is

large enough. Interestingly, Pirutka’s result relied on demonstrating that a particular degree

3 unramified cohomology group was nontrivial.

In order to obtain the isomorphism above we form a cross diagram of two exact sequences.

The first will be derived from the Hochschild-Serre spectral sequence in a manner analogous

to the proof of Theorem 5.2 and the second will be a localization of (5.4). The connection

between the two will be the two maps whose cokernels we consider above, which will deter-

mine precisely the relationship between the torus T and the smooth projective variety X/F,

the latter of which will serve as our counterexample.

Theorem 7.1. Let T/F be a flasque torus and 1 −→ T −→ P −→ Q −→ 1 an exact

sequence of tori with P quasitrivial (e.g., a coflasque resolution of T or a flasque resolution

of Q). Then for every prime p 6= q there exists a smooth projective variety X/F and an

exact sequence

0 −→ H1(F, T 0){p} −→ H4,2
(X)(p) −→ CH2(Xsep)Γ

(p) −→ H2(F,Pic(Xsep)⊗ F×sep){p},

where the (normalized) motivic cohomology group H4,2
(X) is introduced in §5 and the sub-

scripts denote localization. If, moreover, the cohomological dimension of F is ≤ 1, then the

last group vanishes and we obtain the short exact sequence

0 −→ H1(F, T 0){p} −→ H4,2
(X)(p) −→ CH2(Xsep)Γ

(p) −→ 0.
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Proof. Although parts of the proof are analogous to the proof of Theorem 5.2, we include

the details for completeness. Let X be a smooth projective toric model for Q ([CHS05]) and

consider the localized Hochschild-Serre spectral sequence

Er,s
2 = Hr(F,Hq,2(Xsep))(p) =⇒ Hr+s,2(X)(p).

Since Galois cohomology is torsion in positive degree and localization coincides with taking

the p-primary component for a torsion abelian group, we will write the p-primary component

for Er,s
2 when r ≥ 1. Since X is smooth and connected, [Kah96, Thm. 1.1] shows that

Hq,2(X) =



0 q ≤ 0

K ind
3 (F (X)) q = 1

A0(X,K2) q = 2

A1(X,K2) q = 3.

(7.1)

Since Q is an open subset of X, we obtain that

Er,1
2 = Hr(F,K ind

3 (Fsep(Q))){p} ∼= Hr(F,Qp/Zp(2)), r > 1,

where the isomorphism follows from (5.10). By [Sus84, Thm. 25.5], we have that

A0(Xsep, K2) ∼= K2(Fsep). (7.2)

Note that “rational” in [Sus84, Thm. 25.5] means “geometrically rational” and K -cohomology

(= Zariski cohomology for the sheaf associated to the presheaf U 7−→ KQ
∗ (U)) can be iden-

tified with Rost’s Chow groups with values in K-Theory by Gersten’s conjecture (proved in

[Qui73]). After Lemma 5.3 we have that

Er,2
2 = Hr(F,K2(Fsep)){p} = 0, r ≥ 1. (7.3)

The vanishing of this row will be essential for obtaining our exact sequence from a filtration

on the abutment , which is the reason for using the localized version of the Hochschild-Serre

spectral sequence and ultimately why the result is the localized exact sequence away from

the characteristic (cf. [BM12]).
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Since X is a smooth toric model for Q, [Mer08, Cor. 2.2] implies that there is an

isomorphism

A1(Xsep, K2) ∼= Pic(Xsep)⊗ F×sep.

Because X is cellular, the Γ-module Pic(Xsep) is finitely generated and Z-free (see also [Vos98,

§4.5]). Moreover, Pic(Xsep) is a flasque module and there is an exact sequence

0 −→ Q̂sep −→ P ′ −→ Pic(Xsep) −→ 0

for some permutation module P ′. Since by hypothesis

0 −→ Q̂sep −→ P̂sep −→ T̂sep −→ 0

is also flasque resolution of Q̂sep, Lemma 1.1 implies that the Γ-modules T̂sep and Pic(Xsep)

are similar, i.e., become isomorphic after addition of permutation modules. By the proof of

Lemma 5.7 and the end of the proof of Theorem 5.6, we see that

E1,3
2 = H1(F,A1(Xsep, K2)){p}

∼= H1(F,Pic(Xsep)⊗ F×sep){p}

∼= H1(F, T̂sep ⊗ F×sep){p}

∼= H1(F, T 0){p}.

Thus, a portion of our E2-page is of the form

q

4 H4,2(Xsep)Γ
(p) d0,4

2

--

3 (Pic(Xsep)⊗ F×sep)Γ
(p) H1(F, T 0){p} H2(F,Pic(Xsep)⊗ F×sep){p}

2 0 //

1 H2(F,Qp/Zp(2)) H3(F,Qp/Zp(2))

0 0 //

OO

// p

0 1 2 3
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Because Er,0
2 = 0 = Er,2

2 and the spectral sequence is first quadrant, we have the E3-page

differentials

(Pic(Xsep)⊗ F×sep)Γ
(p) = E0,3

3

d0,3
3 // E3,1

3 = H3(F,Qp/Zp(2))

H1(F, T 0){p} = E1,3
3

d1,3
3 // E4,1

3 = H4(F,Qp/Zp(2)).

(7.4)

The filtration

F 4 ⊆ F 3 ⊆ F 2 ⊆ F 1 ⊆ H4,2(X)(p)

implies that F 4 ∼= E4,0
∞ = 0 hence E3,1

∞
∼= F 3 ⊆ H4,2(X)(p). Moreover, the differentials

d3,1
i = 0 for i ≥ 2 and the differentials mapping into E3,1

j are trivial for j ≥ 4, hence

E3,1
∞ = E3,1

4 = coker(d0,3
3 ). The composition

E3,1
3 = H3(F,Qp/Zp(2))

33

// // coker(d0,3
3 ) = E3,1

∞
� � // H4,2(X)(p)

is injective because the group identity of Q(F ) in X(F ) induces a splitting

H4,2(F ) // H4,2(X) // H4,2(F ) (7.5)

and H3(F,Qp/Zp(2)) is a direct summand of H4,2(F ) by (5.2), which is preserved by this

mapping. Since the former is p-primary torsion, it is preserved in the localization H4,2(X)(p).

Therefore, H3(F,Qp/Zp(2)) ∼= coker(d0,3
3 ) hence d0,3

3 = 0. An entirely analogous argument,

in one degree higher, applies to show that d1,3
3 = 0 (except that, a priori , we only have

coker(d1,3
3 ) // // E4,1

∞ ⊆ H5,2(X)(p) because although all the differentials d4,1
i = 0 for i ≥ 2, we

do not bother investigating whether the differential mapping into E4,1
4 is trivial).

Since F 2/F 3 ∼= E2,2
∞ = 0, the above implies that

F 3 ∼= E3,1
∞ = coker(d0,3

3 ) = H3(F,Qp/Zp(2))

F 1
/
F 3 ∼= E1,3

∞ = ker(d1,3
3 ) = H1(F, T 0){p}

H4,2(X)(p)

/
F 1 ∼= E0,4

∞ .

Taking the quotient by F 3 = H3(F,Qp/Zp(2)) everywhere in the filtration then gives the

short exact sequence

0 // H1(F, T 0){p} // H4,2
(X)(p)

// E0,4
∞

// 0, (7.6)
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where the second term follows from the definition in (5.3) and the fact that localization

commutes with taking quotients. In fact, we have that

E0,4
∞
∼= ker

[
H4,2(Xsep)Γ

(p)

d0,4
2 // H2(F,Pic(Xsep)⊗ F×sep){p}

]
. (7.7)

This follows because d0,4
3 : ker(d0,4

2 ) = E0,4
3 −→ E3,2

3 = 0 and thus

d0,4
4 : ker(d0,4

2 ) = E0,4
4 −→ E4,1

4 = H4(F,Qp/Zp(2)).

One then shows that d0,4
4 = 0 in the same way we showed that d0,3

3 and d1,3
3 were trivial above

and so d0,4
k = 0 for all k ≥ 3, which, along with the fact that all differentials mapping into

E0,4
i for i ≥ 2 are trivial, implies (7.7). Therefore, the short exact sequence (7.6) gives the

exact sequence

0 // H1(F, T 0){p} // H4,2
(X)(p)

// H4,2(Xsep)Γ
(p)

d0,4
2 // H2(F,Pic(Xsep)⊗ F×sep){p}.

Localizing Kahn’s short exact sequence (5.4) with Xsep and using (5.5) implies that

H4,2(Xsep)(p)

/
CH2(Xsep)(p)

∼= A0(Xsep, H
3[Qp/Zp(2)]).

But, Xsep is proper and rational over Fsep, hence Theorems 1.11 and 1.10 show that

A0(Xsep, H
3[Qp/Zp(2)]) ∼= H3

nr(Fsep(X),Qp/Zp(2))

∼= H3(Fsep,Qp/Zp(2))

= 0,

and so H4,2(Xsep)(p)
∼= CH2(Xsep)(p), and the result follows from the previous exact sequence.

Our reliance on (5.5) to connect the terms in Kahn’s exact sequence with Rost’s Chow groups

is another reason we work in the localized setting away from the characteristic.

Suppose now that cd(F ) ≤ 1, which means that Hr(F,A) = 0 for all torsion Γ-modules

A and r ≥ 2. Although Pic(Xsep) ⊗ F×sep is not a torsion Γ-module, we can exploit the

roots of unity inside F×sep to see that it has trivial cohomology in degree ≥ 2. Indeed, if

µ =
⋃
n µn ⊂ F×sep are all the roots of unity then µ = (F×sep)tor. Since F×sep is divisible, the

quotient F×sep/µ is uniquely divisible and therefore has trivial Galois cohomology in positive
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degree. Since Pic(Xsep) is Z-free, Pic(Xsep) ⊗ (F×sep/µ) remains uniquely divisible and we

have the short exact sequence of Γ-modules

0 −→ Pic(Xsep)⊗ µ −→ Pic(Xsep)⊗ F×sep −→ Pic(Xsep)⊗
(
F×sep

/
µ
)
−→ 0.

Since Pic(Xsep)⊗ µ is torsion, we see that

Hr(F,Pic(Xsep)⊗ F×sep) ∼= Hr(F,Pic(Xsep)⊗ µ) = 0, r ≥ 2.

In order to relate invariants to coker
[
CH2(X)(p) −→ CH2(Xsep)Γ

(p)

]
, we combine the

exact sequence from the previous theorem with the localization of Kahn’s exact sequence

(5.4)

0 −→ CH2(X)(p) −→ H4,2(X)(p) −→ H0
Zar(X,H3(Q/Z)){p} −→ 0, (7.8)

for the same X. By (5.5), we have that the last term is isomorphic to A0(X,H3[Qp/Zp(2)]).

To make the connection with invariants we need X to be a classifying variety for T because

then the Rost embedding (Theorem 1.6 and Remark 1.4) gives us the inclusion

Inv3(T,Qp/Zp(2)) �
�
// A

0
(X,H3[Qp/Zp(2)]).

If T is a flasque torus, then the proof of Proposition 1.15 shows that not only is the toric

Q-model X a classifying variety for T, but all the invariants of T are unramified and we have

isomorphisms

Inv3
nr(T,Qp/Zp(2)) ∼= Inv3(T,Qp/Zp(2)) ∼= A

0
(X,H3[Qp/Zp(2)]). (7.9)

Furthermore, since X(F ) 6= ∅, the splitting (7.5) and the diagram

H4,2(F )

��

Id

��

CH2(X) �
�

//

��

H4,2(X)

��

0 = CH2(F ) �
�

// H4,2(F )
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show that CH2(X)∩H3(F,Qp/Zp(2)) = 0 inside H4,2(X) hence we can normalize (7.8) and

obtain our second exact sequence

0 −→ CH2(X)(p) −→ H4,2
(X)(p) −→ Inv3

(nr)(T,Qp/Zp(2)) −→ 0, (7.10)

where the subscript on the invariants denotes the fact that all the invariants are unramified.

The following will allow us to construct our counterexample.

Theorem 7.2. Let T/F be a flasque torus and 1 −→ T −→ P −→ Q −→ 1 an exact

sequence of tori with P quasitrivial (e.g., a coflasque resolution of T or a flasque resolution

of Q). Let X be a toric model for Q (cf. [CHS05]). Then for every prime p 6= 2, q we have

an embedding

coker
[
H1(F, T 0){p} f−→ Inv3(T,Qp/Zp(2))

]
� � // coker

[
CH2(X)(p)

gp−→ CH2(Xsep)Γ
(p)

]
,

where f is the map from Theorem 5.12 and gp is the (localization of the) natural map. If,

moreover, the cohomological dimension of F is ≤ 1 then this is an isomorphism.

Proof. Notice we must impose the condition p 6= 2 in addition to the characteristic restriction

because of Theorem 5.12. Combining the exact sequence in the previous theorem and (7.10)

we obtain the cross-diagram

0

��

H1(F, T 0){p}

��

f

**

0 // CH2(X)(p)

gp
))

// H4,2
(X)(p)

��

// Inv3
(nr)(T,Qp/Zp(2)) // 0

CH2(Xsep)Γ
(p)

��

H2(F,Pic(Xsep)⊗ F×sep){p},
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and the result follows after the so-called “Lemma of the 700th” ([MT93, p. 142]), noting

that the last term in the vertical sequence vanishes under the extra hpothesis cd(F ) ≤ 1 by

Theorem 7.1.

After Theorem 7.2, we need only construct a flasque torus with non-trivial quadratic

invariants to exhibit a smooth and projective variety X/F such that the natural map

CH2(X) −→ CH2(Xsep)Γ is not surjective. But, we would also like an example for which

surjectivity holds on the level of the first Chow groups. Since X is smooth, we have that

CH1(X) ∼= Pic(X). The Hochschild-Serre spectral sequence

Ep,q
2 = Hp(F,Hq(Xsep,Gm)) =⇒ Hp+q(X,Gm)

gives the exact sequence

0 −→ Pic(X) −→ Pic(Xsep)Γ −→ Br(F ) −→ Br(X),

hence the obstruction to surjectivity of the first Chow groups is the Brauer group of the

ground field. If cd(F ) ≤ 1 then the Brauer group vanishes by the same argument we used to

show H2(F,Pic(Xsep)⊗F×sep) = 0 in the proof of Theorem 7.1. Although this is not necessary

for Br(F ) to vanish (cd(F ) ≤ 1 is equivalent to the stronger statement “ Br(K) = 0 for all

K/F” by [Ser97, Ch. II, §3.1, Prop. 5]), it is a convenient assumption and incidentally

results in an isomorphism of the cokernels in Theorem 7.2 instead of merely an embedding.

Example 7.3. Let F be a field of cohomological dimension ≤ 1 and let L/F be a Galois

extension with G = Gal(L/F ) and |G| = n. Recall the G-module J introduced in Examples

1.2(c) and 6.4(b) above. It was defined by the short exact sequence (6.1)

0
N−→ Z −→ Z[G] −→ J −→ 0

with N(1) =
∑

G g and we had the auxiliary exact sequence (6.4)

0 −→ J −→ Z[G]n−1 −→ J ⊗ J −→ 0.

If H ≤ G is a subgroup then Ĥ0(H,Z[G]) = 0 by direct calculation (i.e., free G-modules

have trival Tate cohomology in degree i = −1, 0, and 1) and H1(H,Z) = 0 because G acts
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trivially on Z so this group can be identified with Homcont(H,Z) = Hom(H,Z). In fact,

this holds for profinite groups because the image of any such homomorphism is a compact

subgroup of Z, hence finite (cf. [Ser97, Ch. I, §2.2]). Therefore Ĥ0(H, J) = 0. The second

exact sequence then implies that Ĥ−1(H, J⊗J) = 0, hence J⊗J is flasque, i.e., this sequence

is a flasque resolution of J . By [CS87, Lemma 0.6], there exists an exact sequence

0 −→ J ⊗ J −→M −→ P −→ 0

with M coflasque and P permutation G-modules. Since M is between two flasque modules,

it is necessarily flasque. If G has a non-cyclic abelian subgroup then by [CS77, Cor. 1 to

Prop. 1] we have that the Picard class p(J) = J ⊗ J is not coflasque, which implies that

M cannot be invertible. If S = D(M) is the torus with character module M then the torus

T = S × S0 is flasque and not invertible. Example 6.4(a) implies that S has non-trivial

quadratic invariants and so Theorem 7.2 produces a counterexample to the question at the

beginning of the section.

For an explicit example, one can take F = E(x) for some separably closed field E = Esep

and L = F (x1/p, (1 + x)1/p) for some prime p 6= 2, q, so that G = Z/pZ× Z/pZ.

Remark 7.1.

(a) It is worth noting that this counterexample can be constructed in arbitrary character-

istic whereas Pirutka’s original construction [Pir11] is over a finite field. In fact, our

approach over a finite field Fq almost does the opposite because over a finite field every

torus is split by a cyclic group hence by the Endo-Miyata Theorem (cf. [CS77, Prop.

2, p. 184]) all flasque G-modules are invertible and so have no invariants in any degree.

Thus, coker(f) = 0 in Theorem 7.2 and since cd(Fq) ≤ 1, we see that coker(gp) = 0 for

every p 6= 2, q.

(b) The reason we are interested in a counterexample with X projective is because the

group Inv3
(nr)(T,Qp/Zp(2)) is identified with A

0
(X,H3[Qp/Zp(2)]) by (7.9) and by con-

struction this group can only become larger for an open subset U ⊂ X, which would
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make coker(f) in Theorem 7.2 larger. In the projective case, Rost’s Chow group is as

small as possible among all stably birationally equivalent spaces because it is isomor-

phic to the unramified cohomology group of the function field (Theorem 1.11), which

is a birational invariant (Theorem 1.10). Thus, one is inclined to seek out a projective

counterexample.

(c) The upcoming paper [BM12] obtains the cross-diagram above without the localizations,

but the X there is not projective. Hence, although the approach taken here fails to cap-

ture the characteristic and 2-primary components of the invariants, it is able to produce

a projective counterexample to the above question where [BM12] cannot. Nonetheless,

from the cross-diagram there, one obtains a (non-projective) counterexample in the

same way we have done here.
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