UC Irvine

UC Irvine Previously Published Works

Title

Correction to "Perturbation to global tropospheric oxidizing capacity due to latitudinal redistribution of surface sources of NOx, CH4 and CO"

Permalink

https://escholarship.org/uc/item/0d71v1ng

Journal

Geophysical Research Letters, 26(2)

ISSN

0094-8276

Authors

Gupta, Mohan L Cicerone, Ralph J Elliott, Scott

Publication Date

1999-01-15

DOI

10.1029/1998gl900287

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Correction to "Perturbation to global tropospheric oxidizing capacity due to latitudinal redistribution of surface sources of NO_x, CH₄ and CO"

Mohan L. Gupta¹ and Ralph J. Cicerone

Department of Earth System Science, University of California, Irvine, CA

Scott Elliott

EES, Atmospheric Sciences Group, LANL, NM

In the paper "Perturbation to global tropospheric oxidizing capacity due to latitudinal redistribution of surface sources of NO_x, CH₄ and CO" by Mohan L. Gupta, Ralph J. Cicerone and Scott Elliott (*Geophysical Research Letters*, 25, (21), 3931-3934, 1998), Figure 3 was incorrect. The correct figure and caption appear below.

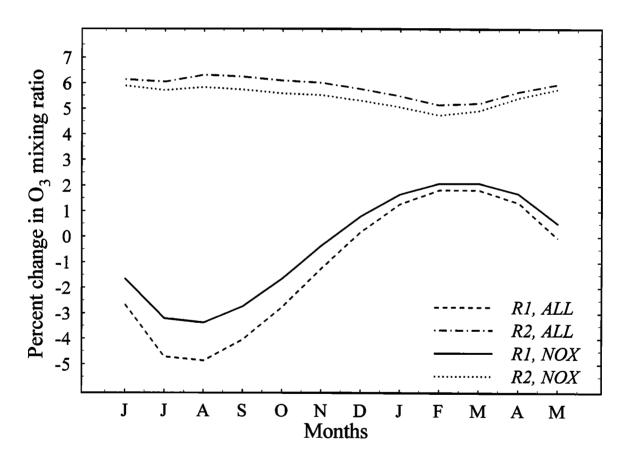


Figure 3. Monthly variations in calculated percent changes in regional surface O₃ mixing ratios simulated for scenarios ALL and NOX. R1 and R2 stand for latitude belts (90°N-30°N) and (30°N-equator).

Copyright 1999 by the American Geophysical Union.