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Exact Expression for the Lifting Condensation Level

David M. Romps

Department of Earth and Planetary Science, University of California, 
Berkeley, and Climate and Ecosystem Sciences Division, Lawrence Berkeley 
National Laboratory, Berkeley, California

Abstract

Many analytic, but approximate, expressions have been proposed for the 
height of the lifting condensation level (LCL), including the popular 
expressions by Espy, Bolton, and Lawrence. Here, the exact, explicit, analytic
expression is derived for an air parcel’s LCL as a function of its temperature 
and relative humidity. Unlike previous analytic expressions, some of which 
can have errors as high as hundreds or thousands of meters, this exact 
expression is accurate to within the uncertainty of empirical vapor pressure 
measurements: this translates into an uncertainty of around 5 m for all 
temperatures and relative humidities. An exact, explicit, analytic expression 
for the lifting deposition level (LDL) is also derived, and its behavior is 
compared to the LCL. At sufficiently cold temperatures, aerosols freeze 
homogeneously below the LCL; an approximate, implicit, analytic expression 
is given for this lifting freezing level (LFL). By comparing the LCL, LDL, and 
LFL, it is found that a well-mixed boundary layer can have an ice-
supersaturated layer that is no thicker than 400 m.
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1. Introduction

The lifting condensation level (LCL) is the height at which an air parcel would
saturate if lifted adiabatically. The LCL is a key concept in the prediction of 
cloud cover (e.g., Wetzel 1990), the parameterization of convection and 
precipitation in weather and climate models (e.g., Emanuel and Živković-
Rothman 1999), and the interpretation of atmospheric dynamics on other 
planets (e.g., Atreya et al. 2006). Over the past 180 years, many explicit, 
analytic expressions have been proposed to approximate the LCL as a 
function of temperature and humidity, but none of those expressions is 
exact, and none of them is expressed in terms of fundamental physical 
constants.

The first equation for the LCL was given by Espy (1836, p. 244), who wrote 
that, as soon as the ascending air was “as many hundred yards high as the 
temperature of the air on the ground was above the dew-point in degrees of 
Fahrenheit, the cold produced by the expansion of the air would begin to 
condense the vapour and form clouds.” Since 1 yd equals 0.9144 m and 1°F 
equals (5/9)°C, this means that the LCL is given by

, where z, T, and  



are the parcel’s initial height, temperature, and dewpoint temperature, 
respectively. Subsequent studies established that the coefficient should be 
closer to 137 m K−1 (Davis 1889), and the coefficient was later revised down 
to 123 m K−1 (McDonald 1963). Most recently, it has been suggested by 
Lawrence (2005) that the optimal value is 125 m K−1, giving

In the years since Espy’s original work, more complicated formulas were 
proposed, including the oft-used Eq. (22) of Bolton (1980) for the 
temperature of the LCL, which we can convert to a height as

where z is the parcel’s height, T is its absolute temperature, K denotes units 
of kelvins, RHl is the parcel’s relative humidity with respect to liquid, which 
ranges from 0 to 1, and cpm/g is the inverse of the dry adiabatic lapse rate 
with g = 9.81 m s−2 the gravitational acceleration and cpm the parcel’s heat 
capacity at constant pressure (a precise definition of cpm is given in section 
3). Bolton (1980) also gives an implicit expression for the LCL in his Eq. (18), 
but that equation is not analytic; it must be solved using a numerical root 
solver. Finally, more recently, Lawrence (2005) proposed a formula of 
intermediate complexity, which is

where z is the parcel’s height, T is its absolute temperature, K denotes units 
of kelvins, m denotes units of meters, and RHl ranges from 0 to 1. The 
intention of Lawrence (2005) is for this expression to be applied to parcels 
with  and .

The present study eliminates the need for this proliferation of formulas by 
deriving an exact, explicit, analytic expression for the LCL in the context of 
constant heat capacities. The tiny errors introduced by assuming constant 
heat capacities are also quantified: the uncertainty in this exact expression is
less than or equal to about 5 m. For those eager to use the exact expression 
for the LCL, it may be found in Eq. (22). The analogous equation for the 
lifting deposition level (LDL) may be found in Eq. (23). These functions are 
available for download from the author’s website in a variety of 
programming languages (currently R, Python, Fortran, and MATLAB).

2. Constant heat capacities

To derive an exact, explicit, analytic expression for the LCL, we will need to 
use constant values for the heat capacities of water. Although heat 
capacities do vary somewhat with temperature, neglecting this variation is 
standard practice. In this section, we show that a careful choice of gas 



constant and heat capacities can put the analytic expressions for saturation 
vapor pressure into excellent agreement with laboratory measurements. The
reader who is comfortable with the use of constant heat capacities may skip 
to the next section.

Let  be the saturation vapor pressure of liquid water at temperature T. 
For an arbitrary temperature T, and assuming constant heat capacities,

 is given by (Romps 2008; Romps and Kuang 2010; Romps 2015)

where  is the specific gas constant for water vapor,  is the specific heat 
capacity of water vapor at constant volume,  is the specific heat 
capacity of water vapor at constant pressure,  is the specific heat capacity 
of liquid water,  is the triple-point vapor pressure,  is the triple-point 
temperature, and  is the difference in specific internal energy between 
water vapor and liquid at the triple point. Similarly, defining  to be the 
saturation vapor pressure of solid water (i.e., ice) at temperature T,  is 
given by

where  is the specific heat capacity of solid water and  is the difference 
in specific internal energy between liquid and solid at the triple point. The 
values of , , , , and  used here are

Rather than specify the values of , , and  a priori, we will choose their 
values to minimize the fractional difference between the saturation vapor 



pressures given in Eqs. (4) and (5) and the saturation vapor pressures given 
by Wagner and Pruß (2002) and Wagner et al. (2011) based on laboratory 
data. Allowing those three parameters to vary, the optimization method of 
Nelder and Mead (1965) is used to minimize the following objective function:

This identifies the optimal values, which are

Figure 1a compares  from Eq. (5) with the ice-saturation expressions 
given by Sonntag (1990), Murphy and Koop (2005), and Wagner et al. 
(2011), which are fits to laboratory data; see the appendix for the formulas. 
Each of these four expressions is plotted as the fractional deviation (%) from 
the average of all four. Also included are the recent laboratory 
measurements of Bielska et al. (2013), plotted as circles with error bars; 
these are also plotted as the fractional deviation from the mean of the four 
expressions. As is evident, all of these expressions and data agree with each 
other to within ±1% over the full range of temperature from 180 to 273 K. 

Figure 1b compares the  from Eq. (4) with the liquid-saturation 
expressions given by Sonntag and Heinze (1982), Murphy and Koop (2005), 
and Wagner and Pruß (2002), which are also fits to laboratory data; see the 
appendix for the formulas. Here, the agreement is better than ±0.5% over 
the full range of temperature from 233 to 330 K. This agreement is not 
guaranteed for other choices of , , and . For example, if we were to use
a value of cυs = 2106 J kg−1 K−1, which is listed in many textbooks (e.g., Riegel
1992; Tsonis 2002; Wallace and Hobbs 2006; Cotton et al. 2011; Brasseur 
and Jacob 2017), we would get a  that deviates from empirical 
measurements by several percent at a temperature of 180 K.



From Fig. 1, we conclude that the values in Eqs. (6)–(13) do an excellent job 
of replicating the thermodynamics of water from 180 to 330 K. To quantify 
the remaining error or uncertainty, we can construct a simple function  
such that  bounds the expressions and data in Fig. 1. The fractional 
uncertainty U is modeled as

and +U and −U are plotted in Fig. 1 as the solid black lines. Note that the 
difference between the vapor pressures derived here and the expressions 
from the other studies is comparable to the differences among the 
expressions from the other studies. Therefore, U can be thought of as both 
an upper bound on the uncertainty (i.e., the empirical uncertainty as to the 
true saturation vapor pressure) and an upper bound on the error (i.e., the 
deviation from the true vapor pressure caused by using analytical vapor 
pressure expressions with constant heat capacities).

3. Exact expression

In this section, we will derive an exact expression for an air parcel’s LCL 
height using the analytic saturation vapor pressures. Let us denote the air 
parcel’s initial pressure and temperature by p and T, respectively. Let us also
denote the air parcel’s pressure and temperature at its LCL by  and , 
respectively. As a parcel of air is transported adiabatically to its LCL, its 
potential temperature is exactly conserved, which allows us to relate its LCL 



pressure and temperature (  and ) to its initial pressure and 
temperature ( p and T) by

where  is the air parcel’s specific gas constant and  is its specific heat 
capacity at constant pressure. The subscript m denotes that these are the 
appropriate values for moist air, that is,

where  is the mass fraction of water vapor,  is the specific gas constant 
of dry air,  is the specific heat capacity at constant pressure for 
dry air, and  and  are as defined in section 2. The values used for  and

 are

By the ideal gas law, the partial pressure of water vapor  and the total 
pressure p are related by . Adiabatic lifting of a parcel from its 
initial p to  does not change its , and therefore,  is the same at 
pressures p and . Therefore, we can multiply the left-hand and right-
hand sides of Eq. (15) by the unique value of  to get

This relates a parcel’s vapor pressure  at its LCL to its initial vapor 
pressure  and temperature T.

Next, we can use Eq. (4) to relate the parcel’s saturation vapor pressure with

respect to liquid at its LCL temperature  to its saturation vapor 

pressure with respect to liquid at its initial temperature . This yields

The next step is to recognize that , so the left-hand sides of 
Eqs. (20) and (21) are equal. Dividing Eq. (20) by Eq. (21), we get



where  is the air parcel’s initial relative humidity with respect to 
liquid. Defining , this equation is of the form , where 
a, b, and RHl are all independent of : they depend only on fundamental 
parameters and the initial properties of the air parcel. Taking this equation to
the power 1/a and defining c = b/a, we can then rearrange the equation to 
get

This can be solved using the Lambert W function, which is defined by
. The Lambert W function is double valued when its argument is 

negative; since  and , we want the −1 branch, which is denoted by
. Taking  of the above equation, we get

In a boundary layer with a dry adiabatic lapse rate, the dry static energy of a 
lifted parcel will be conserved, implying that the height above the ground at 
which the parcel’s temperature equals  will be . 
In fact, the parcel’s dry static energy will be very nearly conserved even in a 
boundary layer without a dry adiabatic lapse rate because the change in dry 
static energy for an adiabatically lifted parcel is proportional to its buoyancy 
(Romps 2015), and the typical buoyancy of parcels in a boundary layer is 
small. Therefore, the LCL temperature , the LCL pressure , and the 
LCL height  are

These equations give the parcel’s pressure, temperature, and height at its 
LCL ( , , and ) in terms of its initial pressure, temperature, and 



height (p, T, and z). Since W is a well-known special function, these are 
analytic expressions for the properties of the LCL. Equations (22a) and (22b) 
give the exact temperature and pressure of the parcel when it reaches 
saturation through adiabatic expansion. If that adiabatic expansion takes 
place in a well-mixed layer, then Eq. (22c) gives the exact height to which 
the parcel must ascend to saturate. We can easily check the limiting 
behaviors of Eq. (22a). When , we can use the fact that  to 
confirm that . As , we can use the fact that 
as  to confirm that . For a well-mixed layer, this would imply 
that the well-mixed subcloud layer occupies the entire atmosphere up to an 
altitude of cpaT/g. Note that Eq. (22) describes the pressure, temperature, 
and altitude of the lifting condensation level (i.e., the height at which the 
parcel’s vapor pressure equals the saturation vapor pressure over liquid 
water).

Similarly, we can define the lifting deposition level (LDL) as the height at 
which the parcel’s vapor pressure equals the saturation vapor pressure over 
solid water (i.e., ice). Above the LDL, the air parcel may form ice by 
heterogeneous deposition nucleation. Proceeding as in the derivation of the 
LCL, the LDL is found to be

Comparing to Eq. (22), we see that RHl has been replaced by ,
which is the initial relative humidity with respect to solid (i.e., ice);  has 
been replaced by ; and  has been replaced by .

If the temperature of the LCL is below 235 K (−38°C), then there is a height 
between the LDL and LCL at which aqueous aerosols freeze homogeneously. 
As an air parcel rises up below the LCL, the aerosols absorb water so that, in 
equilibrium, their activity matches the liquid relative humidity. As shown by 
Koop et al. (2000), the homogeneous freezing temperature for aqueous 
aerosols is a function primarily of the activity of the aerosol solution: the 
temperature of homogeneous freezing for pure water (an activity of one) is 
235 K (−38°C), and that temperature decreases with decreasing activity 



(i.e., with decreasing liquid relative humidity). As an air parcel rises, its 
temperature decreases (according to the dry adiabatic lapse rate) and the 
activity of its aerosols increases (to match the increasing liquid relative 
humidity). Both of these effects bring the aerosols closer to freezing 
homogeneously. At a particular height, which we will refer to as the lifting 
freezing level (LFL), the parcel’s temperature equals the homogeneous 
freezing temperature for the parcel’s liquid relative humidity; at this level, 
the aerosols freeze homogeneously.

From Fig. 3 of Koop et al. (2000), we note that a 1-μm drop hits an ice 
supersaturation of 1.67 at 175 K. Since the homogeneous freezing of pure 
water occurs at −38°C (235 K) (Hoose and Möhler 2012; Koop 2015), we can 
parameterize the relative humidity of homogeneous freezing  as the 
following linear function of temperature:

At the LFL,  will be equal to . Proceeding as in the
derivation of the LDL, we get

Equation (25a) can be solved for TLFL using a root solver. Note that, in 
contrast to the LCL and LDL, the approximate temperature dependence of 
the LFL’s relative humidity makes the expression for the LFL neither exact, 
explicit, nor analytic.

4. Physical implications of the LCL, LDL, and LFL



For a rising air parcel, what are the physical implications of the LCL, LDL, and
LFL? The LDL is the height above which the formation of an ice cloud is 
possible but not guaranteed. The LCL and the LFL are the heights at which an
air parcel is guaranteed to become cloudy if it has not already done so.

When the temperature of the LCL is between −38° and 0°C, the rising parcel 
can potentially form an ice cloud anywhere between the LDL and LCL 
through heterogeneous deposition nucleation (i.e., the formation of ice 
particles by deposition of water vapor onto ice nuclei) or immersion freezing 
(i.e., the freezing of aqueous aerosols onto an immersed ice nuclei) (Hoose 
and Möhler 2012). On the other hand, in the absence of any ice nuclei, the 
parcel can rise up past the LCL as a supercooled liquid cloud and still not 
freeze until the cloud reaches the homogeneous freezing temperature of 
−38°C, at which point it is obligated to become an ice cloud.

When the temperature of the LCL is below −38°C, the rising parcel can 
potentially form an ice cloud anywhere between the LDL and LFL through 
heterogeneous deposition nucleation or immersion freezing. In the absence 
of ice nuclei, however, neither of these processes is available, and the parcel
will fail to form a cloud until it gets to the LFL. At the LFL, the aqueous 
aerosols are forced to freeze homogeneously, and an ice cloud is born. In this
way, the existence of an LFL renders the LCL irrelevant; this is the case 
whenever the temperature of the LCL is below −38°C.

An application of the new expressions is shown in Fig. 2, in which the LCL, 
LDL, and LFL are plotted as functions of surface air temperature for a surface
air relative humidity (RH) of 50%. Here, we define RH as RHs when  
and as RHl when . Also plotted on this diagram are the −38° and 0°C 
isotherms constructed by calculating liquid-cloud moist adiabats above the 
LCL. Note that the LCL curve is continued to temperatures well below −38°C;
homogeneous freezing prevents the possibility of an LCL at those cold 
temperatures, but the LCL is plotted there to illustrate its behavior in a 
hypothetical world with no ice.



Using this diagram, we can track the evolution of an air parcel as it rises up 
from the surface. We can walk through three examples—corresponding to 
surface air temperatures of 220, 260, and 300 K—to get a feel for the 
behavior under conditions that demonstrate the various characteristic 
domains of the phase diagram.

 220 K: A parcel that rises from the surface with a temperature of 220 K
and a relative humidity of 50% hits its LDL at a height of 620 m. If there are 
sufficient ice nuclei for heterogeneous deposition, this parcel forms an ice 
cloud at or above that height. In the absence of ice nuclei, the parcel 
remains devoid of condensates until it reaches 990 m, which is its LFL. At 
this height, aerosols freeze homogeneously to form an ice cloud.
 260 K: A parcel that rises from the surface with a temperature of 260 K
and a relative humidity of 50% hits its LDL at a height of 885 m. As in the 
previous case, this parcel forms an ice cloud at or above its LDL if there are 
sufficient ice nuclei. With insufficient ice nuclei, the parcel will not nucleate 
any condensates until it reaches its LCL at 1180 m, at which point it forms a 
liquid cloud. With no ice nuclei, the parcel’s condensates remain as 
supercooled liquid. If some ice nuclei are present, then, depending on the 
number concentration of ice nuclei and the elapsed time above the LCL, the 
parcel forms either a mixed-phase cloud or an ice cloud.
 300 K: A parcel that rises from the surface with a temperature of 300 K
and a relative humidity of 50% hits its LCL at a height of 1435 m. At the LCL, 
the parcel forms a liquid cloud.



5. Comparison

Figure 3a plots  as given by Eq. (22) for all initial temperatures from 230 
to 330 K, all initial relative humidities RHl, an initial height of zero, and an 
initial pressure of 1 bar. (The pressure dependence of the LCL is very weak, 
but the pressure is needed in order to calculate , which enters into  and

.) The gray region denotes where the LCL temperature would be less than 
230 K, which is the lowest temperature for which we have reliable data on

; this is also the lowest temperature for which it makes much sense to 
think about an LCL since water freezes homogeneously at 235 K. Not 
surprisingly, at fixed temperature, the LCL lowers as the relative humidity 
increases. Also, at fixed relative humidity, the LCL lifts as the temperature 

increases. This is due to the fact that  is proportional to 1/T2: as 
temperature increases at fixed relative humidity, a larger temperature 
change (and, therefore, a larger dry adiabatic ascent) is needed to get to 
saturation.



Figure 3b plots the uncertainty in the exact LCL expression due to the 
nonzero U given by Eq. (14). These uncertainties in the LCL are calculated as

since the fractional uncertainty in the true saturation vapor pressure 
translates into a fractional uncertainty in the initial RH. For all combinations 



of T and RH in the ranges considered, this error in the predicted LCL lies in 
the range of 4–6 m (i.e., the uncertainty is about 5 m).

The remaining panels of Fig. 3 plot the errors in the previous approximations 
to the LCL, calculated as the difference between their prediction for the LCL 
and the actual value from Eq. (22). Figure 3c plots the error in Eq. (18) of 
Bolton (1980), which is solved using a numerical root finder. Over all possible
LCLs, its maximum error is 20 m, which occurs at the highest temperatures 
and relative humidities in Fig. 3c; this maximum error exceeds the 
uncertainty of 5 m. Figure 3d plots the error in Eq. (22) of Bolton (1980), 
which is printed here in Eq. (2). Its maximum error is 40 m. Figure 3e plots 
the error in the equation of Espy (1836) as subsequently modified and 
printed here in Eq. (1). Its maximum error is 665 m. Finally, Fig. 3f plots the 
error in the Eq. (24) of Lawrence (2005), which is printed here in Eq. (3). Its 
maximum error is 7130 m. The dashed box encloses the ranges of 
temperature (0°–30°C) and relative humidity (0.5–1) over which Lawrence 
(2005) intended for the expression to be used; in those ranges of 
temperature and humidity, the maximum error is 170 m.

Figure 4a plots the LDL given by the exact analytic Eq. (23) for all 
temperatures from 180 to 273 K, all relative humidities RHs, and a pressure 
of 1 bar. The gray region denotes where the LDL temperature would be less 
than 180 K, which is the lowest temperature for which we have reliable data 
on . Figure 3b plots the uncertainty in the exact LDL expression due to 
the nonzero U given by Eq. (14). As for the LCL, the uncertainties in the LDL 
are calculated as

For all possible LDLs, the uncertainties lie in the range of 4–6 m (i.e., the 
uncertainty is about 5 m).



6. The ice-supersaturated layer

Figure 5a plots the LCL minus the LDL as a function of temperature T and 
relative humidity with respect to ice . This serves as an upper bound on 
the thickness of the ice-supersaturated layer underneath the liquid cloud 
base. As discussed in section 4, the LCL is irrelevant when its temperature is 
below about −38°C. At those temperatures, the LFL lies below the LCL, so 
rising parcels will form ice clouds before they reach the LCL. Therefore, the 
depth of the potentially ice-supersaturated layer is . This
is plotted in Fig. 5b, where we see that the maximum depth of the 
supersaturated layer is about 400 m. We can summarize Fig. 5b as follows. 
For any surface air temperature, there is a sufficiently low relative humidity 
(i.e., a relative humidity below the 0°C LCL isotherm in Fig. 5b) that, in the 
absence of ice nuclei, will generate an ice-supersaturated layer just below 
the cloud base. For surface air temperatures below 0°C, a subcloud ice-
supersaturated layer is a possibility for all surface air relative humidities. The
maximum depth of that layer occurs when the LCL has a temperature of 
−38°C; at this temperature, the depth of the ice-supersaturated layer is 
about 400 m. For colder LCLs, the depth of the supersaturated layer 
decreases to about 300 m at the coldest surface air temperatures observed 
on Earth.

7. Summary

Expressions for the lifting condensation level (LCL) and the lifting deposition 
level (LDL) have been derived that are exact, explicit, and analytic; they are 
given in Eqs. (22) and (23). These expressions are given in terms of 
fundamental constants, which may be adapted to extraterrestrial 
atmospheres with a condensible gas that can be adequately described with 
constant heat capacities. An expression is also given for the lifting freezing 



level (LFL), defined as the height at which aqueous aerosols freeze 
homogeneously. That expression, given in Eq. (25), depends on an 
approximate equation for the homogeneous freezing activity; this makes the 
expression implicit, thereby requiring a numerical root solver for evaluation. 
These expressions then allow for a quantification of the maximum thickness 
of ice-supersaturated layers underlying liquid cloud–topped boundary layers. 
On Earth, the maximum potential thickness is about 400 m, which can be 
attained when the LCL is at the homogeneous freezing temperature of 235 K.
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APPENDIX

Empirical Saturation Vapor Pressure

In Fig. 1a, the equations for saturation vapor pressure over solid water  
from Sonntag (1990), Murphy and Koop (2005), and Wagner et al. (2011) are
as follows. The equation from Sonntag (1990) is

where T is in kelvins and  is in pascals. The equation from Murphy and 
Koop (2005) is

where T is in kelvins and  is in pascals. The equation from Wagner et al. 
(2011) is

where , , , ,
, , ,
, and .

In Fig. 1b, the equations for saturation vapor pressure over liquid water  
from Sonntag and Heinze (1982), Murphy and Koop (2005), and Wagner and 
Pruß (2002) are as follows. The equation from Sonntag and Heinze (1982) is



where T is in kelvins and  is in pascals. The equation from Murphy and 
Koop (2005) is

where T is in kelvins and  is in pascals. The equation from Wagner and 
Pruß (2002) is

where , , , ,
, , , , and
.
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