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Abstract

Forecasting Marine Heatwaves in the Northeast Pacific Ocean: A

Comparative Analysis of Machine Learning Approaches

by

Courtney A. Stratton

Marine heatwaves (MHWs) are periods of abnormally high sea surface tem-

peratures (SSTs) that persist for periods of time, causing adverse impacts of marine

ecosystems and coastal communities. With projections that MHWs will become

more frequent and severe, it is increasingly important to be able to predict MHW

events to mitigate risks for ecosystems and communities. Here, we investigate the

predictability of MHWs in the northeast Pacific Ocean by employing a suite of mod-

els, including logistic regression, naive Bayes, gradient boosting, random forest, and

feedforward neural network, all of which are trained on selected oceanic and atmo-

spheric variables. We find that the random forest model performs best at predicting

the presence or absence of a MHW event at the 90th percentile MHW threshold

using cluster centroid balanced data. The model is able to predict with accuracy

ranging from 0.98 to 0.97 for leads spanning from 1 day to 2 weeks. While all mod-

els encounter difficulties in accurately categorizing MHWs, predicting their presence

or absence remains a valuable metric for informing managers and industries about

impending MHW events. Short-term forecasts can be especially advantageous in

alerting industries and communities to these events, empowering them to imple-

ment adaptive measures against the detrimental impacts of MHWs.
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Chapter 1

Introduction

Marine heatwaves (MHWs) are prolonged periods of abnormally warm sea

surface temperatures (SSTs), often lasting from days to months [21]. Marine heat-

wave events have been linked to numerous ecosystem, biological, and economic dis-

ruptions in many regions across the globe [2, 14, 42, 41, 8]. Unusually high SSTs

have been linked to irregular weather patterns, suppressed nutrient transports lead-

ing to low chlorophyll events and species range shift, as seen in the record high MHW

event named the “Blob” in the northeast Pacific Ocean from 2013-2015 [2, 14]. This

prolonged warm water anomaly in the northeast Pacific Ocean provided valuable

insights into the repercussions of extreme weather events on temperature-sensitive

marine ecosystems. During this event, the largest recorded outbreak of neurotoxins

and domoic acid occurred along the North American west coast, impacting fisheries

in the region resulting in extensive closures [34, 42]. The “Blob” was associated

with heightened vertical stratification, inhibiting the vertical transport of nutrients

and consequently triggering food web disruption [8]. Phytoplankton, crucial as the

basis of the food web, experienced a decline, adversely affecting a multitude of ma-

rine species, including those at higher trophic levels like sea lions and baleen whales

1



[8]. Experiments have indicated that increased coastal nutrient runoff from human

activities, combined with warmer ocean temperatures, could exacerbate the severity

of toxic events in oceans [34]. Not only can harmful algal blooms impact fisheries,

but increased SSTs can result in species range shift and decrease in fish biomass,

with projections that fish populations of pacific cod, California anchovy and sockeye

salmon will drastically decrease in the coming decades in the northeast Pacific Ocean

[9].

While our focus lies on the northeast Pacific Ocean, it is essential to ac-

knowledge the broader implications of MHWs across various oceanic regions and

ecosystems. For example, the MHW that occurred off the coast of Western Australia

from 2010-2011 caused numerous ecosystem, social and economic impacts including a

decline in keystone species, such as seagrass and kelps, and loss of habitat, impacting

the toursim industry and resulting in extensive fishery closures [36]. Extreme SSTs

have also been linked to coral bleaching in many regions, which disrupts the ecosys-

tem by decreasing ecosystem function, loss of habitat and a decline in biodiversity

[2, 36]. With projections of more severe and frequent MHWs under anthropogenic

climate change, coral reefs are expected to suffer a tough future as bleaching inten-

sity and coral mortality continue to climb [14]. Among localized impacts, MHWs

can influence global weather patterns. Sea surface temperatures play an important

role in global weather patterns, “with phenomena such as El Niño-Southern Oscil-

lation (ENSO) regarded as a major source of interannual climate variability at the

global scale” [45]. El Niño-Southern Oscillation is known to regulate global SST

“variability and the MHW frequency, duration, and intensity”, with global impacts

[45].

Several oceanic and atmospheric phenomena are known to influence ex-

2



treme SSTs on both a regional and global scale. Research utilizing an operational

coupled ocean-atmosphere prediction system (ACCESS-S1) focused on forecasting

MHWs on the Great Barrier Reef found that shortwave radiation, low cloud cover,

and latent heat flux anomalies influenced MHW patterns [4]. In the northeast Pacific

Ocean, it has been suggested that strong positive anomalies in sea level pressure and

low net heat flux, partially driven by wind speeds, led to the warming event that

occurred during the 2014-2015 winter [5]. In the Kuroshio-Oyashio Extension Re-

gion, a study identified key factors behind intense summer MHWs occurring in 1999,

2008, 2012, and 2016 [13]. These events were primarily influenced by air-sea heat

flux anomalies and reduced cloud cover, while regional factors such as the strength-

ened North Pacific High system and the Philippine-Japan teleconnection also played

roles [13]. Another study explored the potential causes of anomalous events in the

Indian Ocean Dipole (IOD), which can stem from teleconnections with the equatorial

Pacific, including evolving El Niño events, as well as cooling phenomena along the

Australian coast [15]. These findings underscore the complex interplay of oceanic

and atmospheric dynamics in shaping extreme SST events.

Recent studies have advanced our understanding of MHW forecasting, re-

vealing that numerical multimodel ensemble and machine learning approaches offer

promising accuracy in long-range predictions spanning from 1 month to 1 year. How-

ever, these approaches face limitations in short-term forecasting below 1 month. A

study forecasting MHWs using a multimodel ensemble has shown that MHWs can be

forecasted accurately using monthly data with leads spanning from 1 month to 1 year

[23]. The accuracy of the model is highly dependent on the region, season and the

regime of large-scale climate modes and cannot forecast at time scales smaller than 1

month [23]. Prior forecasting based on machine learning, using a deep learning time
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series prediction model (Unet-LSTM), has proven skillful in long-range forecasting

for up to 18 months [45]. Both cases of MHW forecasting based on numerical models

or machine learning discussed above focus on long-term forecasting using monthly

resolution data at a global scale, leaving a gap for forecasting MHWs on short-term

timescales with daily resolution data [23, 45].

Studies focusing on short-term forecasts at both the global and regional

level have shown promising results in predicting MHWs. Research using a deep learn-

ing convolutional neural network (CNN) model demonstrated good accuracy on the

global scale with a 2 week lead time, with forecast improvements of 10% when com-

bined with a physical forecast model [43]. Additional research using the ACCESS-S1

operational coupled ocean-atmosphere prediction system at the Great Barrier Reef

found the model can accurately predict MHW spatial extent, but struggled with

longer-term forecasting due to unaccounted sub-seasonal weather variability in the

region [4]. Other research used previous daily SSTs and forecast atmospheric tem-

perature to predict SST extremes in Chesapeake Bay, USA, using a 35-day proba-

bilistic forecast and found the model is skillful at predicting SST extremes with lead

times ranging from 1-2 weeks using two predictors (SST and air temperature) as

precursors [40]. Another study demonstrated the efficacy of machine learning mod-

els in predicting SSTs with high accuracy at a fraction of the computational cost

of physics-based models on a global scale [50]. Employing various machine learn-

ing algorithms, including random forest, generalized additive models, and extreme

gradient boosting, the study investigated their effectiveness in predicting MHWs

across different regions, highlighting the variability in model performance and the

absence of a one-size-fits-all solution [50]. Similarly, a localized study in the Mediter-

ranean Sea utilized machine learning models such as random forests, long short-term
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memory, and convolutional neural networks to predict MHWs [6]. By incorporating

lagged SSTs and selected atmospheric variables as predictors, all models successfully

forecasted MHWs with at least 50% confidence at a lead time of 1 week [6]. Further

studies have proven promising with the use of a random forest model predicting

the presence or absence and MHW using spatial, temporal and climate variables

known to impact SSTs with an accuracy of 76% at weekly time leads [19]. This

study further assessed predictive power using the random forest model to predict

the category of MHW as either no event, moderate, strong or severe/extreme, but

forecasting accuracy dropped to 38% at weekly time leads [19]. Such studies give in-

sight into the ability to predict sub-seasonal MHWs using various techniques across

several oceanic regions.

Among previous research addressing predictability of MHWs, there is lim-

ited research that uses oceanic and atmospheric variables to predict MHWs on short

timescales using daily resolution data in the northeast Pacific Ocean. Lagged sea

surface temperature remains the most widely documented and adopted precursor to

MHW prediction, leading to a deficit in studies that address other atmospheric and

oceanic variables as sole predictors to MHWs on short timescales [20]. This high-

lights the significance of evaluating daily to weekly forecasts of ocean temperature

extremes to develop operational forecast products for early warning systems. With

climate models predicting longer and more severe MHWs, short-term predictions

of MHWs are increasingly important to mitigate risks on marine ecosystems and

communities dependent on these ecosystems to take adaptive measures to alleviate

impacts [39].

In this thesis, we aim to enhance our comprehension of the predictive ca-

pacities of five distinct models; logistic regression, naive Bayes, gradient boosting,
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random forest, and feedforward neural network utilizing daily resolution data to fore-

cast MHW events. The main goal is to assess and quantify the ability of these five

models in predicting MHW events based on the selected predictor variables (wind

speed, net heat flux, surface air temperature and sea level pressure), that are known

to drive MHW events, as indicators to accurately predict these extreme events [41].

The final model seeks to enhance our comprehension of the precursors leading to

MHWs and to establish an early warning mechanism for MHW events on a sub-

seasonal timescale. Utilizing sub-seasonal forecasts can be valuable for industries

such as shipping, fisheries, and coastal water management, especially in regions like

the northeast Pacific Ocean where variability can significantly impact operational

planning and decision-making [12]. With anthropogenic climate change projected

to drive more frequent and extreme MHW events, it is increasingly important to be

able to predict MHWs to help mitigate risks [30].
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Chapter 2

Data and Methods

2.1 Data

2.1.1 Data Pre-Processing

The National Oceanic and Atmospheric Administration (NOAA) Daily Op-

timum Interpolation Sea Surface Temperature (DOISST) version 2.1 dataset span-

ning from 1981 to 2019 is employed to examine SST extremes and extrapolate MHW

data [3]. The DOISST dataset is a comprehensive global dataset measuring SST

anomalies on a daily timescale at .25° x .25° grid cell locations. Marine heatwaves

are defined as “prolonged discrete anomalously warm water event that can be de-

scribed by its duration, intensity, rate of evolution, and spatial extent” [21]. Similar

to Hobday’s definition, MHW events are defined here as at least 5 consecutive days

of extreme SST anomalies exceeding at least the 90th percentile [21]. Throughout

data processing, four unique MHW event dataset splits were generated: those ex-

ceeding the 90th SST percentile, those exceeding the 95th SST percentile, as well as

two-class and four-class MHW event datasets. In the two-class datasets, class 0 rep-

resents non-MHW with SST < 90th percentile, class 1 represents MHWs with 90th
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< SST < 95th percentile and class 2 represents MHW with SST > 95th percentile.

In the four-class datasets, class 0 represents non-MHW with SST < 90th percentile,

class 1 represents MHW with 90th < SST < 92.5th percentile, class 2 represents

MHW with 92.5th < SST < 95th percentile, class 3 represents MHW with 95th <

SST < 97.5th percentile, class 4 represents MHW with SST > 97.5th percentile.

Climate variables including net heat flux, sea level pressure, surface air

temperature and wind speed on daily timescales are used to predict MHWs. The

explanatory variables were obtained from the National Centers for Environmental

Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis

1 [26]. The high resolution SST dataset is regridded to 2.5° x 2.5° resolution to

align with both the spatial and temporal parameters of the explanatory variables

[26]. The final dataset consists of daily observations from 1992 to 2019, covering

variables recorded at each grid cell within the northeast Pacific Ocean, equating

to 3,668,621 data points prior to data balancing. This area extends from 10°N

to 65°N and from 100°W to 175°W, an ecologically significant region renowned for

its rich biodiversity and vital contribution to the habitats and migration routes of

numerous marine species. Codebase used for regridding can be found at https:

//github.com/KatGiamalaki/Random_Forest_for_MHW.

2.1.2 Data Balancing

Since MHW events are infrequent occurrences, they represent a minority

within the dataset, with the majority of data consisting of days without MHWs.

This results in class imbalance, necessitating data balancing. Failure to balance

the data means models would be predominantly trained on non-MHW instances,

leading the models to disproportionately favor predicting non-MHW occurrences.
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To address the class imbalance issue, we use two dataset balancing approaches:

random balancing and cluster centroid balancing. These techniques are used to

undersample the majority class in the dataset in order to achieve a balanced class

distribution for both binary and multi-class classification tasks. Random sampling

entails the selection of samples from the dataset such that each majority class sample

has an equal chance of being selected, without replacement and any discernible

pattern, ensuring equitable representation. When applied to an imbalanced dataset,

random sampling the majority class means selecting a subset of the majority class

randomly to balance the class distribution relative to the minority class. Whereas

cluster centroid sampling organizes similar samples into clusters and subsequently

selects representative majority samples, without replacement, from the centroids of

these clusters. To determine the optimal number of clusters, an elbow curve was

constructed using binary MHW data. The elbow curve is a visual tool used in

clustering analysis to find the optimal number of clusters in a dataset. It plots the

number of clusters against a measure of clustering quality, such as within-cluster

sum of squares (WCSS). The “elbow” point on the curve, where the rate of decrease

in WCSS slows down significantly, indicates the optimal number of clusters. Here,

seven clusters were chosen as sufficient (Figure 2.1).

Both balancing methods were geared towards addressing class imbalances

by concentrating on the majority class and selecting exemplar samples to help make

more robust models. Each MHW data split (90th, 95th, 2-Class and 4-Class MHW

split) was further refined into three variations, ensuring a comprehensive exploration

of data balancing techniques: unbalanced, randomly balanced, and cluster centroid

balanced datasets. This approach resulted in the creation of a total of 12 distinct

datasets to provide detailed insights and support thorough analysis of MHW occur-

9



Figure 2.1: Within-cluster sum of squared distances as a function of the number of

clusters. The “elbow” point on the curve, where the rate of decrease in within-cluster

sum of squares slows down significantly, indicates the optimal number of clusters.

Seven clusters seem sufficient.

rences and their patterns.

Additionally, each dataset was split into two subsets: a training dataset

used to train the models and a testing dataset used to assess model performance.

In total, there are 309,976 MHW data points exceeding the 90th percentile of SSTs.

The dataset was split such that 75% of the data was used for training (observations

from 1992 ∼ 2015) while the remaining 25% was reserved for testing (observations

from 2015 ∼ 2019). The bulk of the dataset was allocated for training to optimize

model performance, while ensuring a sufficient amount of data remained available

for thorough performance testing. To evaluate model performance, leads of 1, 3,

5, 7, and 14 days were incorporated into the predictor variable, which denoted the

presence, absence or classification of MHWs. This step aimed to assess the predictive

capability of the model across various temporal scales, exploring how effectively
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previous day values of predictor variables could anticipate future occurrences of

MHW events. Additionally, the models were evaluated as a “nowcast” (referred

here as lag 0) to gauge their ability to predict outcomes for the current day. To

preserve the integrity of variable relationships, all lagging procedures were executed

prior to any dataset processing and cleansing tasks, such as MHW grouping and

data balancing. All analysis was conducted in R programming using version R/4.2.0

and Python programming version 3.9.14 [46, 16]. The codebase for this report can

be found at https://git.ucsc.edu/castratt/masters-project.

2.2 Models

2.2.1 Logistic Regression Model

Logistic regression is a statistical method primarily used for binary clas-

sification tasks and can be extended to multi-classification tasks, where the goal

is to predict the probability of an event occurring based on one or more predictor

variables. In the context of predicting MHWs, logistic regression can be utilized to

forecast the probability of an event based on various predictor variables. Logistic

regression is defined as:

P (y = 1 |x) = 1

1 + e−(0+β1x1+β2x2+...+βpxp)
(2.1)

where P (y = 1 |x) is the probability that the target variable y equals 1 given the

input features x, β0 is the intercept term, β1, β2, . . . , βp are the coefficients (weights)

associated with each input feature x1, x2, . . . , xp. Here, logistic regression serves as

the baseline model due to its simplicity and ease of implementation. The glmnet R

package was used to implement logistic regression models [17, 44].
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2.2.2 Naive Bayes Model

Naive Bayes is a statistical classification algorithm based on Bayes’ theo-

rem. Naive Bayes calculates the probability of a given instance belonging to each

class based on the features or attributes associated with that instance [24]. It as-

sumes that the presence of a particular feature in a class is independent of the

presence of other features. Bayes’ theorem is expressed as:

P (B|A) =
P (A|B)P (B)

P (A)
(2.2)

where P (B|A) is the posterior probability of class B given predictor A, P (A|B) is the

likelihood, the probability of predictor A given class B, P (B) is the prior probability

of class B and P (A) is the marginal likelihood, the probability of predictor A.

Naive Bayes is known to perform well in practice, especially with large

datasets and when the independence assumption amongst predictors holds approx-

imately true [24]. To ensure the independence assumption is respected, a simple

correlation test was conducted between predictor variables, finding that there is an

insignificant amount of correlation among predictors and thus the independence as-

sumption is sustained. The algorithm works by first estimating the probabilities of

each class and the conditional probabilities of each feature given the class. These

probabilities are typically estimated from the training data using maximum likeli-

hood estimation. When given a new instance with features, Naive Bayes calculates

the probability of the instance belonging to each class based on these probabilities.

The class with the highest probability is then predicted.

Naive Bayes is computationally efficient and simple, especially with high-

dimensional data, and is commonly used in text classification [22]. It requires

minimal training data to estimate the parameters, and the classification process is
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Figure 2.2: Correlation between predictor variables: wind speed (wndsp), net heat

flux (qnet), sea level pressure (slp), surface air temperature (sat).

straightforward, fast and typically provides good performance [22, 52]. This makes it

particularly attractive for tasks where computational resources are limited or where

rapid deployment is necessary. As such, no additional model parameters were im-

plemented. R packages that were used to achieve outlined tasks were; naivebayes

and e1071 [33, 35].

2.2.3 Gradient Boosting Model

Gradient boosting classification is a machine learning technique used to

predict categorical outcomes, such as whether a MHW will occur based on various

input variables. The model works by combining multiple weak learners, typically

decision trees, to form a strong predictive ensemble [18]. The model iteratively fits

new trees to the residuals of the previous trees, with each tree aiming to correct

the errors made by the previous ones [18]. This process continues until a predefined

number of trees are built or until no further improvements can be made.
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The model starts with a single decision tree, often referred to as a weak

learner. This decision tree is trained on the predictor variables and their corre-

sponding MHW labels. However, this initial tree may not accurately capture all

the patterns in the data. To improve prediction accuracy, subsequent decision trees

are added to the ensemble in an iterative manner. Each new tree is trained on

the residuals (the differences between the actual MHW labels and the predictions

of the existing ensemble). The goal of each new tree is to correct the errors made

by the previous trees, focusing on the instances where the model’s predictions were

inaccurate. During each iteration, the model places more emphasis on the instances

where it previously made mistakes, effectively learning from its errors. This process

continues until a predefined number of decision trees are added to the ensemble, or

until no further improvements can be made.

Figure 2.3: Figure from [53] demonstrates the basic mechanics of the gradient boost-

ing ensemble prediction.

The ensemble of decision trees works together to make predictions on new

data points. Each tree in the ensemble independently predicts whether a given

observation corresponds to a MHW event based on the input variables. The final
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prediction is then determined by aggregating the individual predictions of all the

trees in the ensemble. R packages that were used to achieve outlined tasks were;

‘gbm’ [17].

2.2.4 Random Forest Model

Random Forest is a non-parametric machine learning method in which the

combined results of an ensemble of decision trees are used to arrive at a single

result. Each decision tree in the ensemble is trained on a random subset of the

data and predictor variables, reducing overfitting and capturing diverse patterns in

the data [7]. The model aggregates predictions through bagging, where each tree’s

prediction is voted for classification [7]. A decision tree is made of a root node

at the start of a tree, internal nodes that govern features of the branches and leaf

nodes where a branch terminates and a decision is returned. Each tree splits into

smaller groups of data, creating branches, and when the relationship between the

independent variables and the dependent variable is assessed and understood by the

decision trees, the model can be used to predict either binary or categorical MHW

events given a set of independent predictor variables provided by the testing dataset.

The model, a supervised learning algorithm, has gained popularity for its

robustness and accuracy in predictive modeling tasks where parameters are chosen

for optimal model performance. Although default hyperparameters have proven to

be sufficient, it is suggested that tuning specific hyperparameters further improves

model performance; number of trees grown, number of variables randomly sampled

each split (mtry) and minimal number of data points in node required to split (minn)

[38].

The number of trees determines the ensemble’s size, balancing model com-
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Figure 2.4: Figure adapted from [27]. The schematic illustrates the tree growth of

a random forest model. One hundred trees are grown for each model configuration,

from which the majority vote is used to arrive at a final result. The red indicates a

potential path that the data may follow and the resulting terminal node.

plexity with computational efficiency. A trees versus error plot, shown in Figure

2.5, is used to visually determine the optimal number of trees to grow in the forest

through comparing error rate for each additional tree added to the forest [32].

It was determined that 100 trees were sufficient as the gain in accuracy

is negligible beyond 100 trees and any additional trees do not significantly increase

performance and only increase runtime (Figure 2.5). This approach ensures a bal-

ance between predictive power and computational cost. A 10-fold cross validation

grid search was then performed to determine the optimal mtry and minn param-

eters based on root mean square error (RMSE) values for various combinations

of these selected hyperparameters [51]. Once the optimal final model parameters

were determined, the final model was fitted. R packages that were used to achieve

outlined tasks were; randomForest, ranger, tidyverse, tidymodels and caret
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Figure 2.5: Out-of-bag (OOB) error rate as additional trees are added in the random

forest model. The OOB measures the predictive accuracy of the random forest model

using samples not included in each tree’s bootstrap sample. The OOB error rate

decreases in a logarithmic manner, until it reaches a plateau at around 100 trees.

One hundred trees were chosen for the final model, as the gain in accuracy beyond

100 trees is negligible and is outweighed by the increase in additional computation

time. A 0.2 error rate signifies a 20% error rate in the random forest model before

additional metrics are optimized.

[28, 32, 48, 49, 51].

2.2.5 Feedforward Neural Network Model

Feedforward neural networks are a widely adopted simple neural network

from which many more complex neural networks, such as recurrent neural networks

(RNNs), are derived from [31]. Feedforward neural networks consist of intercon-

nected layers of neurons, each layer passing its output as input to the next layer

without any feedback loops. This structure enables the network to map input data

to output predictions through a series of transformations [31]. Feedforward neu-
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ral network comprises an input layer, one or more hidden layers, and an output

layer. Each neuron in the network is associated with a set of learnable parame-

ters, including weights and biases, which are adjusted during the training process

to minimize the discrepancy between predicted and actual outputs [31]. Through a

process known as forward propagation, input data is passed through the network,

and successive layers apply nonlinear activation functions to generate increasingly

complex representations of the input [47].

Figure 2.6: Figure from [37] demonstrates the mapping of a feedforward neural

network model.

The Rectified Linear Unit (ReLU) is a nonlinear activation function and is

used for both the binary and multi-class classification models and implemented in

the hidden layer. The Rectified Linear Unit (ReLU) activation function is defined

as:

f(x) = max(0, x) (2.3)

where x is the weighted sum of the input layers from the previous layer. The func-

tion returns the input value if it is positive, and zero otherwise. This simple yet
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effective activation function introduces non-linearity to the neural network, enabling

it to learn complex relationships in the data. Its nonlinear nature allows the network

to capture and represent non-linear relationships between input features and target

outputs. This is essential for learning complex patterns in the data, making ReLU

a popular choice in neural network architectures. Whether the task is binary clas-

sification or multiclass classification, ReLU can be utilized effectively in the hidden

layers of the FNN.

The sigmoid function, also known as the logistic function, is a nonlinear

activation function and is used for the binary classification models and implemented

in the output layer. It takes an input (usually the weighted sum of inputs plus a bias

term) and compresses it to a value between 0 and 1, making it suitable for modeling

binary classification problems and producing probability-like outputs. The sigmoid

function is defined as:

σ(x) =
1

1 + e−x
(2.4)

where x is the weighted sum of inputs plus a bias term. As the input x increases,

the sigmoid function asymptotically approaches 1, indicating a high probability of

the positive class. Conversely, as x decreases towards negative infinity, the func-

tion approaches 0, signaling a high probability of the negative class. In situations

where x is close to 0, the sigmoid function yields a probability close to 0.5, denoting

uncertainty between classes.

The softmax function is implemented for multiclass classification tasks in

the output layer. It transforms the raw output scores from the neural network’s final

layer into probabilities, ensuring they sum to 1. The softmax function is defined as:

softmax(z)i =
ezi∑N
j=1 e

zi
(2.5)
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where zi is the raw score (logit) for the ith class and N is the total number of classes.

This function exponentiates each score and normalizes it by dividing it by the sum

of all exponentiated scores, resulting in a probability distribution across all classes.

The output probabilities facilitate classification by indicating the likelihood of each

class, allowing the model to predict the class with the highest probability as the final

output. R packages that were used to achieve outlined tasks were; tensorflow and

keras [1, 25].

2.3 Model Evaluation and Performance Metrics

When evaluating performance across all models, Receiver Operating Char-

acteristic curve (ROC) and Precision Recall curve (PR) are used to provide a graphi-

cal representation of model evaluation. The ROC curve is a graphical representation

of the true positive rate (Sensitivity) against the false positive rate (1-Specificity)

across different decision thresholds. The ROC curve provides the trade-off between

the true positive rate (TPR) and the false positive rate (FPR) across different thresh-

old values. It aids in visualizing the performance of binary classification models,

illustrating the model’s ability to discriminate between positive and negative in-

stances. A perfect classifier would exhibit an ROC curve that reaches the upper

left corner of the plot (Sensitivity=1, Specificity=1), whereas a random classifier

would resemble the diagonal line (AUC=0.5), represented in the following plots as

the light grey line. The Area Under the ROC Curve (AUC) quantifies the overall

performance of the model across all possible thresholds. A higher AUC value in-

dicates better discriminatory power, with a maximum value of 1 indicating perfect
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classification. True positive rate (TPR) is defined as:

TPR =
TP

TP + FN
(2.6)

where true positive (TP) is the instance where the model correctly predicted a MHW

(i.e. predicted class 1 MHW event and it indeed occurred in reality). False negative

(FN) is defined as the instances where the model incorrectly flagged non-MHW

instances as MHW events (i.e. predicted a MHW event (class 1), but it does not

occur in reality (the actual class is 0)). False positive rate (FPR) is defined as:

FPR =
FP

FP + TN
(2.7)

where false positive (FP) is the instance where the model failed to detect MHW

events (i.e. predicted the absence of a MHW (class 0), but it occurs in reality (the

actual class is 1)). True negative (TN) is defined as the number of instances where

the model correctly identified non-MHW (i.e. (class 0), and it indeed does not occur

in reality). AUCROC is defined as:

AUCROC =

∫ 1

0
TPR d(FPR) (2.8)

where the integral represents the area under the ROC curve and provides a mea-

sure of the overall discriminatory power of a classification model across all possible

thresholds. An AUCROC of 1 indicates a perfect classifier and 0.5 indicates a ran-

dom classifier. The AUCROC is a helpful metric because it offers a comprehensive

evaluation of model performance across all classification thresholds, effectively cap-

turing the model’s ability to discriminate between positive and negative instances

regardless of class distribution.

The Precision-Recall curve is another evaluation metric commonly em-

ployed in binary classification tasks. Unlike the ROC curve, which focuses on the
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true positive rate against the false positive rate, the PR curve depicts the trade-off

between precision (positive predictive value) and recall (sensitivity) across various

decision thresholds. In situations where the positive class is rare or of particular

interest, the PR curve can provide a more informative assessment of the model’s

performance compared to the ROC curve. The area under the Precision-Recall

curve (AUCPR) quantifies the model’s ability to balance precision and recall, with

higher values indicating superior performance in capturing relevant instances while

minimizing false positives. Precision (P) is defined as:

P =
TP

TP + FP
(2.9)

and recall (R) is defined as:

R =
TP

TP + FN
(2.10)

where TP, FP and FN are the same as defined above. AUCPR is defined as:

AUCPR =

∫ 1

0
Precision d(Recall) (2.11)

where the integral represents the area under the PR curve, where 0 indicates a poor

model and 1 indicates perfect model. The AUCPR metric provides a balanced assess-

ment of model performance by focusing on the precision-recall trade-off, specifically

evaluating the classifier’s ability to rank positive instances higher than negative ones.

Two performance metrics are used to evaluate and compare the perfor-

mance across all models: accuracy and hit-rate. All models are tested using a

holdout dataset to assess predictive power as a nowcast and leads of 1, 3, 5, 7 and

14 days.

Accuracy measures the proportion of correctly classified instances among

the total instances. Here, mean accuracy is calculated by averaging accuracy across
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all correctly predicted MHW classes. This provides a robust assessment of model

performance under conditions of class balance, where each class is evenly represented

within the dataset, but may not be sufficient when dealing with imbalanced datasets,

where one class dominates the mean accuracy score. In the case of testing accuracy

of MHWs using unbalanced data, where one class disproportionately outweighs the

others, accuracy is heavily influenced by the dominant class (i.e. no MHW instance)

and therefore falsely inflates the accuracy metric. To address these issues of class

imbalance and rare event detection, hit-rate is used as complementary metrics to en-

hance the comprehensive evaluation of model performance. Accuracy (A) is defined

as:

A =
TP+ TN

TP+ TN+ FP + FN
(2.12)

and mean accuracy (MA) is defined as:

MA =
A0 +A1 + . . .+An

number of MHW classes
(2.13)

where An represents MHW class accuracy n. Accuracy and mean accuracy quantify

the proportion of all correctly predicted instances by the model.

Hit-rate evaluates the model’s ability to predict rare events accurately. It

focuses specifically on the model’s performance concerning positive instances and is

especially valuable as a complimentary metric to assess predictive power of MHW

events. Hit-rate is defined as:

Hit Rate =
TP

TP + FP
(2.14)

where TP represents true positives and FP represents false positives. This metric

helps quantify the proportion of correctly predicted positive instances out of all

instances predicted as positive by the model.
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For evaluating spatial accuracy and hit rate, spatial plots were employed

to depict the effectiveness of each model in predicting the spatial distribution of

a MHW occurrence on a chosen day that showcased a significant number of MHW

events. To broaden the spatial visualization, the hit rate was computed for each grid

cell over the period of the testing data to provide a comprehensive understanding of

the model’s predictive performance across the temporal and spatial domain.

In the final section of the results (3.3), we apply the best-performing model

identified in the preceding sections; the random forest model. Additionally, we

augment the model with additional predictor variables to evaluate its predictive

efficacy. The presentation of the final model results mirrors that of the previous

sections, featuring similar figures and spatial plots.
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Chapter 3

Results

In this section, we present the results of our model performance in two

different model configurations: 90th percentile binary MHW prediction (Section 3.1)

and 2-Class MHW prediction (class 0 = non-MHW with SST < 90th percentile,

class 1 = MHW with 90th < SST < 95th percentile, class 2 = MHW with SST >

95th percentile (Section 3.2)). The remaining model configurations, 95th percentile

binary MHW prediction (Section A.2) and 4-class MHW (class 0 = non-MHW with

SST < 90th percentile, class 1 = MHW with 90th < SST < 92.5th percentile, class

2 = MHW with 92.5th < SST < 95th percentile, class 3 = MHW with 95th < SST

< 97.5th percentile, class 4 = MHW with SST > 97.5th percentile (Section A.4)),

are touched on in this section, but the main results are presented in the appendix as

they exhibit similar behavior to that of the selected model configurations presented

in this section. We present the findings of the two main selected configurations,

90th percentile binary MHW and 2-class MHW, via various methods to provide a

comprehensive evaluation of each model’s predictive capabilities.
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3.1 90th Percentile MHW

Figure 3.1 represents the ROC curve and associated AUC for each model

trained on random balanced data for a binary MHW outcome at the 90th threshold.

The diagonal light grey line indicates random chance (associated with an AUC of

0.50), demonstrating all models perform better than random chance. The random

forest model, performs significantly better than other models, with an AUC score

of 0.89 for class 0 and class 1 (Figure 3.1D). While the logistic regression model

performed the worst (AUC = 0.56 for class 0 and class 1, Figure 3.1A), the remaining

models shown on Figure 3.1 B, C and E do not perform much better, all with AUC

scores near 0.61 for class 0 and class 1. The ROC curves for the cluster centroid

balanced data, depicted in Figure 3.2, demonstrated slight enhancements across all

models in terms of AUC scores. Notably, the dominance of the random forest model

(AUC = 0.93 for both class 0 and class 1, Figure 3.2D), the underperformance of

logistic regression (AUC = 0.58 for both class 0 and class 1, Figure 3.2A), and the

intermediate to poor performance of the remaining models (AUC ranging from 0.63

to 0.64 for both class 0 and class 1, Figure 3.2 B, C, and E) were consistent.
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Figure 3.1: ROC curve for the 90th percentile random balanced binary MHW pre-

diction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.
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Figure 3.2: ROC curve for the 90th percentile cluster centroid balanced binary MHW

prediction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.

Figure 3.3 displays the Precision-Recall (PR) curve and corresponding AUC

values for all models using random balanced data, providing an additional metric

for model evaluation. Notably, the feedforward neural network model (AUC =

0.22 for class 0 and AUC = 0.65 for class 1, Figure 3.3A) exhibits the poorest

performance, while the random forest model (AUC = 0.78 for class 0 and AUC =

0.95 for class 1, Figure 3.3D) demonstrates the highest performance. It is worth

mentioning that across all models, the AUC score for class 0 is consistently lower

than that for class 1, suggesting that in the balanced dataset, the classifiers tend

to achieve higher precision but lower recall. Figure 3.4 presents the PR curves for

cluster centroid balanced data and exhibit similar performance to random balanced
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data PR performance, with slight AUC improvements across both classes and all

models. Notable across all PR curves is the poor performance of the feedforward

neural network, rather than the baseline logistic regression model.

Figure 3.3: PR curve for the 90th percentile random balanced binary MHW pre-

diction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.
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Figure 3.4: PR curve for the 90th percentile cluster centroid balanced binary MHW

prediction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.

To track model performance over time, we evaluated accuracy and hit rate

against lagged predictor variables. Figures 3.5a and 3.5b illustrate the accuracy of

each model across different lag periods, ranging from 1 day to 2 weeks, using ran-

dom balanced and cluster centroid balanced data, respectively. In both cases, lag

0 consistently exhibited the highest accuracy across all models, while increasing lag

resulting in reduced accuracy. There is marginal improvement in accuracy observed

with the cluster centroid balanced data, indicating its slightly superior performance.

Although the random forest model remains dominant in both scenarios, the imple-

mentation of cluster centroid balanced data notably enhanced the performance of

the naive Bayes model, rendering it comparable to the random forest.
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(a) Random Balanced Data (b) Cluster Centroid Balanced Data

Figure 3.5: Accuracy versus lagged predictor variables using balanced binary 90th

percentile MHW data across all models: Logistic Regression, Naive Bayes, Gradient

Boosting, Random Forest and Feedforward Neural Network.

To narrow down the focus of model evaluation and look specifically at

instances where models accurately predicted a MHW event, we constructed a lag

versus hit rate plot. This plot encompasses lag periods ranging from 1 day to 2 weeks

for all models using random balanced and cluster centroid balanced data, as shown

in Figure 3.6a and Figure 3.6b, respectively. Similar to the accuracy versus lag plot,

the lag versus hit rate plot reveals a decrease in hit rate with increased lag time.

Across both balanced datasets, the random forest model consistently performed the

best, followed by naive Bayes, gradient boosting, feedforward neural network and

logistic regression. There was a slight improvement observed when using the cluster

centroid balanced data. Across all models when using cluster centroid balanced data,

the decline in hit rate is slower than that of the random balanced data, with notable

enhancements observed in the naive Bayes and gradient boosting models. Overall
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scoring of the hit rate versus lag plot across all models was better than the accuracy

versus lag plot, indicating that all models are better at predicting the presence of a

MHW rather than the absence of a MHW.

(a) Random Balanced Data (b) Cluster Centroid Balanced Data

Figure 3.6: Hit rate versus lagged predictor variables using balanced binary 90th

percentile MHW data across all models : Logistic Regression, Naive Bayes, Gradient

Boosting, Random Forest and Feedforward Neural Network.

To illustrate the models’ ability to forecast the presence or absence of a

MHW event, spatial plots were generated for each model. These plots depict the

observed MHW occurrences on a specific day alongside the model predictions uti-

lizing lagged data at intervals of 7 and 14 days, where the presence of a MHW is

indicated by a black dot and the data is superimposed onto observed SST anomalies

for the specified day. This analysis encompassed both data balancing techniques,

providing insights into the predictive capacity of each model across different tempo-

ral contexts and balancing strategies. To highlight the strongest model’s predictive

capability, Figure 3.7 provides insights into the predictive capabilities of the random

forest model using cluster centroid balanced data regarding the presence or absence
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of a MHW on August 18, 2015 — a day characterized by a notable frequency of

MHW occurrences. Figures A.1 through A.10, found in the appendix, provide fur-

ther insights into the predictive capabilities of each model regarding the presence or

absence of a MHW on the same day, August 18, 2015.

Figure 3.7: Random forest model forecasts for the 90th percentile MHW using cluster

centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.

Notable trends represented in the spatial plots is the inability of the logistic

regression model and feedforward neural network to capture spatial patters on the

given day, though there is slight improvement in prediction in the feedforward neural

network when using cluster centroid balanced data. While the naive Bayes and

gradient boosting models demonstrate moderate predictive power at 1 week and

2 week lead times, the random forest model demonstrates the strongest ability to

predict MHW occurrence. On the selected day, the random forest model (Figure

3.7) is able capture the spatial extent of the MHW with good accuracy, whereas

the remaining models (Figures A.1 to A.10) struggled to capture the MHW spatial

shape and extent.

To further illustrate each model’s ability to correctly predict MHW events,

a spatial hit rate plot was compiled for each model for both data balancing tech-
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niques. The hit rate is averaged across the entire testing dataset for each grid cell,

resulting in a comprehensive spatial plot that illustrates the model’s effectiveness

in predicting MHWs where a higher hit rate (indicated by dark red here) repre-

sents a higher model performance. Figure 3.8 represents the random forest model

with cluster centroid balanced data, demonstrating the model’s strong ability to

correctly predict MHWs in the region. Figures A.11 through A.19, found in the

appendix, demonstrate the remaining model’s spatial hit rate plots. Again, we are

seeing similar patters that have been observed with supporting data: poor perfor-

mance with logistic regression, moderate performance for naive Bayes and gradient

boosting, moderate to poor performance for feedforward neural network and high

performance for random forest. Across all models, performance increases when using

cluster centroid balanced data.

Figure 3.8: Random Forest hit rate spatial plot for binary 90th percentile MHW

outcome with cluster centroid balanced data.

When the binary MHW threshold was extended to 95th percentile SST as

a MHW events, the results were very similar to that of the 90th percentile MHW

exhibited above. The ROC and PR curves for the 95th percentile MHW exhibited

similar AUC values to the 90th percentile MHW, with the random forest perform-

ing the best (Figures A.22 through A.25). The accuracy versus lag and hit rate

34



versus lag plots exhibited almost the same behavior as the 90th percentile MHW,

with only small decreases in accuracy and hit rate across many of the models while

the model ranking and behavior with increased lags remained the same as the 90th

percentile (Figures A.26 through A.29). Figures A.30 through A.39 representing the

spatial accuracy for each model, with notable differences from the 90th percentile

being poor performance across all models at the 2 week lag time, demonstrating

all models struggle to predict a higher threshold binary MHW event at longer lag

times. Further emphasizing the same patterns of model performance using the 95th

percentile, Figures A.40 through A.48 represent the spatial hit rate plots across all

models and both balancing methods. Overall, the 95th percentile MHW threshold

exhibited the same behaviors as the 90th percentile MHW threshold: random forest

using cluster centroid data had the best overall performance. Seeing the similar pat-

terns among both binary MHW thresholds suggests that despite raising the threshold

for identifying a MHW, the models did not demonstrate significant adverse impacts.

3.2 2-Class MHW

In this section, the primary emphasis will be on utilizing cluster centroid

balanced data, which has been demonstrated as the most effective balancing method

in the preceding section (Section 3.1). Figure 3.9 depicts the Receiver Operating

Characteristic (ROC) curve and associated Area Under the Curve (AUC) for each

model trained on cluster centroid balanced data for a 2-class MHW outcome. All

models demonstrate poor performance in distinguishing between MWH classes. No-

tably, the logistic regression, gradient boosting, and feedforward neural network

exhibit particularly inadequate performance (Figure 3.9 A, C, and E, respectively).
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Both the naive Bayes and random forest perform relatively better than the other

models, but even so these models do not perform well, with the highest AUC of 0.63.

Four of five models perform worse for class 1, suggesting that the models struggle

to effectively differentiate between MHW classes, often misclassifying MHW events

as either non-MHW (class 0) or the most extreme MHW class (class 2).

Figure 3.9: ROC curve for cluster centroid balanced 2-class MHW prediction across

all models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Ran-

dom Forest, E) Feedforward Neural Network.

Figure 3.10 illustrates the Precision-Recall (PR) curves and correspond-

ing Area Under the Curve (AUC) values for all models trained on cluster centroid

balanced data, providing further insights into the predictive performance of 2-class

MHWs. Despite utilizing cluster centroid balanced data, the feedforward neural

network demonstrates the poorest performance overall. It exhibits an AUC of 0.18
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for class 0, 0.48 for class 1, and 0.43 for class 2 (Figure 3.10E). Conversely, the

best-performing models, the random forest and naive Bayes, do not show significant

improvements in AUC across all classes (Figure 3.10 B and D).

These findings underscore the challenges faced by all models in distinguish-

ing and accurately classifying MHW events across different classes. Even when clus-

ter centroid balanced data is employed, all models continue to struggle, as evidenced

by similarly poor AUC scores to those observed with random balanced data (Figure

A.52 and A.53).

Figure 3.10: PR curve for cluster centroid balanced 2-class MHW prediction across

all models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Ran-

dom Forest, E) Feedforward Neural Network.

To track the evolution of model performance, we evaluated accuracy and

hit rate against lagged predictor variables. In Figures 3.11a and 3.11b, we present
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the accuracy and hit rate of each model across different lag periods, ranging from

1 day to 2 weeks, using cluster centroid balanced data. Across both scenarios, lag

0 consistently showcased the highest accuracy across all models. All model accura-

cies and hit rates are averaged between all classes and thus are likely dragged down

by intermediate classes that perform very poorly (in this case, class 1 predictions).

Random forest remained the dominant model for both accuracy and hit rate, fol-

lowed by naive Bayes, logistic regression, gradient boosting and feedforward neural

network. Note here the poor performance of gradient boosting, even worse than

the logistic regression baseline model. Performance among all models is very poor,

indicating all models struggle to predict MHW classes.

(a) Accuracy versus lagged predictor

variables using cluster centroid bal-

anced 2-class MHW data across all

models

(b) Hit rate versus lagged predictor

variables using cluster centroid bal-

anced 2-class MHW data across all

models

Figure 3.11: Lag Accuracy and hit rate for 2-Class MHW with cluster centroid bal-

anced data across all models : Logistic Regression, Naive Bayes, Gradient Boosting,

Random Forest and Feedforward Neural Network.
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To illustrate the models overall hit rate, spatial plots were generated for

each model demonstrating each model’s average hit rate for lag 7 and lag 14 across

both random and cluster centroid balanced data. Here, we show only random forest

with cluster centroid data to demonstrate the relatively best 2-class MHW predic-

tions, demonstrating that even the best of the multi-class configuration struggles

to correctly classify MHWs into categories (Figure 3.12). Figures A.56 through

A.64, found in the appendix, demonstrate all models struggled to correctly predict

MHW classes, with minor improvements when using cluster centroid data rather

than random balanced data.

Figure 3.12: Random forest hit rate spatial plot for 2-class MHW outcome with

cluster centroid balanced data.

Figures A.67 and A.68 present ROC curves and associated AUC values

for models trained on randomly balanced and cluster centroid balanced data for 4-

class MHW predictions. Despite varying approaches, all models demonstrate poor

performance in distinguishing between MHW classes. Notably, logistic regression

and gradient boosting models exhibit particularly weak predictive power. However,

random forest and naive Bayes models show relatively better performance, especially

in distinguishing extreme MHW classes (class 0 and class 4). Similarly, Precision-

Recall (PR) analysis, depicted in Figures A.69 and A.70, reveals consistent poor
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predictive power across all models. This underscores the challenges in discerning

relative performance nuances from PR curves due to minimal differences.

Evaluation of accuracy and hit rate over various lag periods further rein-

forces the models’ limitations in correctly predicting MHW classes. Figures A.71

and A.72 illustrate poor accuracy across different lag periods for both randomly bal-

anced and cluster centroid balanced data. Similarly, Figures A.73 and A.74 highlight

poor hit rate performance across lags. Spatial hit rate analysis (Figures A.75 through

A.84) demonstrates marginal improvement compared to 2-class MHW predictions in

average hit rate for 4-class MHW, particularly with cluster centroid data. However,

overall performance remains poor across all models and data balancing techniques.

Across the model configurations in this study (90th percentile MHW, 95th

percentile MHW, 2-class MHW and 4-class MHW) the performance of the feedfor-

ward neural network in predicting MHWs has been marked by inconsistency and

poor performance. The model struggles to provide accurate predictions, yielding

probabilities for events that closely resemble random chance. Consequently, its reli-

ability and consistency are compromised. It is important to acknowledge that while

the results of the feedforward neural network are presented here, its unreliability

necessitates limited discussion.

3.3 Final Model

From the results presented above, we implemented the best model with

the best performing specifications; the random forest model with the 90th percentile

MHW binary outcome using cluster centroid data. To further evaluate and enhance

the final model, sea surface temperature, temporal (day of year) and spatial location
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(a) Accuracy versus Lags (b) Hit Rate versus Lags

Figure 3.13: Accuracy and hit rate for final random forest model with cluster centroid

balanced data.

were added as a predictor to the previously outlined predictor variables. The results

show a substantial improvement in overall model accuracy and hit rate. Accuracy

for the previous random forest model ranged from 0.85 to 0.71 for lag 0 through lag

14, while the new random forest model has accuracy ranging from 0.98 to 0.97 for

lag 0 through 14 (Figures 3.13a and 3.5b). Hit rate exhibited similar improvements,

with the previous random forest model having hit rates ranging from 0.85 to 0.77

while the new fitted model hit rates range from 0.99 to 0.98 (Figures 3.6b and 3.13b).

The final fitted random forest model exhibits the best predictive behavior,

with the spatial plot demonstrating the model’s ability to correctly predict almost

all locations of a MHW event on an arbitrarily selected day, August 15, 2018 (Figure

3.14). As shown in the figure, the model is able to capture almost all of the spatial

extent and shape of the MHW event on the given day for both a lag 7 and lag 14.

Although, it is important to note that unlike the original random forest model, the

new fitted model over predicted in this region on this given day, especially for lag 7
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(Figure 3.14). The average hit rate plot provides additional evidence of the model’s

consistently high hit rate across all grid cells, with each cell’s hit rate averaged over

the entire testing dataset (Figure 3.15).

Figure 3.14: Final random forest model spatial plot with cluster centroid balanced

data.

Figure 3.15: Final random forest model spatial hit rate plot with cluster centroid

balanced data.

Sea surface temperature is by far the most important predictor variable in

the final model (Figure 3.16). Although the remaining predictor variables in the final

model exhibit comparatively less significance, date, latitude, and longitude emerge

as the subsequent most important predictors following SST. For comparison, we also

show the predictor variable importance for the baseline random forest model that

was implemented with just net heat flux, sea level pressure, surface air temperature

and wind speed to demonstrate these predictor variables show relatively similar

importance, with surface air temperature showing the most variable importance
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(Figure 3.17).
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Figure 3.16: Final random forest model variable importance plot with cluster cen-

troid balanced data. The final model includes sea surface temperature, date, lati-

tude, longitude, wind speed, net heat flux, sea level pressure and surface air tem-

perature as predictors to MHWs.
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Figure 3.17: Random forest model variable importance plot with cluster centroid

balanced data, excluding SST, temporal and spatial predictor variables.
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Chapter 4

Discussion and Conclusion

4.1 Binary MHW Classification

In the first part of the study, we evaluate the predictive capabilities of five

models in forecasting MHWs within the northeast Pacific Ocean; logistic regression,

naive Bayes, gradient boosting, random forest, and feedforward neural network. We

utilize selected atmospheric and oceanic variables to gauge their efficacy in predicting

binary MHW outcomes, defined by either the 90th or 95th of SST anomalies in the

dataset. Based on the selected predictor variables, we find that random forest is the

overall best performed model in predicting the presence of absence or a MHW at

both the 90th and 95th MHW thresholds.

When assessing the accuracy and hit rate for the 90th and the 95th per-

centile binary MHW lagged data across all models and balancing techniques, the

general performance ranking holds true: random forest, naive Bayes, gradient boost-

ing, feedforward neural network and logistic regression. The best performing model,

the random forest model, for the 90th percentile MHW has accuracy for lag 0 using

random and cluster centroid balanced data of 0.83 and 0.85 with the accuracy of that
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same model configuration slowly decreasing to 0.67 and 0.71 for lag 14, respectively

(Figures 3.5a and 3.6b), while the accuracy of the random forest model at the 95th

percentile threshold is similar to that of the 90th (Figures A.26 and A.27).

Across all models, there is a slight increase in accuracy and hit rate when

using cluster centroid data compared to random balanced data, due to cluster cen-

troid’s ability to select more representative samples when undersampling the ma-

jority class. Notably, the naive Bayes model shows significant improvement with

cluster centroid balanced data, achieving performance comparable to the random

forest model. The hit rate plots across all models and data balancing techniques

exhibit similar behavior to the lag accuracy plots, with hit rate being slightly higher

than accuracy, indicating that all models are slightly better able to predict the pres-

ence of a MHW rather than the absence (Figures 3.6a and 3.6b).

At both the 90th and 95th MHW thresholds, the random forest model

performs the best in terms of accuracy and hit rate when tested using lag 0 predictor

data for both the random balanced data and the cluster centroid balanced data,

which is no surprise as we expect the accuracy to be high at lag 0 and decrease with

lagged data (Figures 3.5 through 3.6 and A.26 through A.29 ).

Figures A.1 through A.10 exemplify the predictive capabilities of each

model in discerning the occurrence or absence of MHWs at the 90th percentile MHW

threshold on a randomly selected day. These figures provide a snapshot into the per-

formance of each model in predicting MHWs with temporal lags of 1 and 2 weeks,

highlighting their effectiveness in capturing both the spatial accuracy and extent of

a given MHW event. Gradient boosting and random forest appear to be able to

perform the best in capturing the MHW event, while the remaining models lack in

capturing spatial extent.
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To extend the analysis further, figures A.30 through A.39 provide insight

into the same MHW event, but using the 95th percentile MHW threshold. As the

MHW extent on the same day is now smaller due to the higher threshold, there are

less MHW locations to predict. Unlike the 90th percentile MHW threshold, the 95th

percentile MHW predictions showed large improvement when using cluster centroid

data across all models.

These findings are further supported by the ROC and PR curves, where

random forest exhibits consistently better AUC values across both MHW percentile

thresholds and data balancing techniques (Figures 3.1 through 3.4 for 90th percentile

MHW and A.22 through A.25 for 95th percentile MHW). After considering all model

evaluation techniques, the random forest model demonstrates superior performance

in predicting the presence or absence of MWHs at both the 90th and 95th percentiles.

4.2 Multi-Class MHW Classification

In the second part of the study, we evaluate the predictive capabilities

of the five models in forecasting MHW classes within the northeast Pacific Ocean.

Using the same predictor variables as the binary MHW classification (wind speed,

net heat flux, sea level pressure, surface air temperature) we find that all models

have difficulty correctly categorizing MHWs for both the 2-class and 4-class MHWs.

Figures A.54 and 3.11a demonstrate the accuracy for various lag times for

each model using 2-class random balanced and cluster centroid balanced data, re-

spectively. The highest performing model, the random forest model, has the highest

average accuracy of just under 0.25 for lag 0 (Figure 3.11a). All other models per-

form similarly poor, with average accuracies ranging from 0.25 to less than 0.10.
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Similar to the binary MHW predictions, there are improvements with each model

when just assessing hit rate through various lags. Figures A.55 and 3.11b show the

hit rate across each model through time, with again the highest score occurring with

the random forest model at lag 0 using cluster centroid balanced data (hit rate =

0.70). Overall hit rate is relatively low with random balanced data, with hit rates

ranging from 0.42 to 0.25 for all models except feedforward neural network, which

exhibits sporadic and unreliable beha for the multi-class MHW predictions (Figure

A.55). While average hit rate is still relatively low, we do see an improvement in

overall hit rate when using cluster centroid balanced data, with hit rate ranging

from 0.70 to 0.32 (Figure 3.11b). Hit rate scores are substantially higher than the

average accuracy indicating that the models perform better at correctly predicting

MHW classes than no MHW. The associated ROC and PR curves further conclude

the inability of the models to accurately predict MHW classes, with even the best

model, random forest, demonstrating poor ROC and PR AUC scores (Figures A.52,

3.9, A.53, and 3.10).

Extending the study to forecasting 4-class MHWs results in similarly poor

model performance as in the 2-class MHW results. Figures A.71 and A.72 display

the accuracy for lags ranging from 1 to 2 weeks. Again, we see a poor average

accuracy among all models and both data balancing techniques. Four-class MHW

average accuracy is notably lower than 2-class, with the highest accuracy occurring

at lag 0 with the random forest model using cluster centroid balanced data with an

accuracy of 0.18 (Figure A.72). Although the highest average accuracy is 0.18, the

majority of the accuracies range from 0.08 to 0.04, further emphasizing the inability

of the models to correctly predict the category of MHW (Figures A.71 and A.72).

Similar to the 2-class lag results, we again see an improvement in average
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hit rate for 4-class MHW compared to the average accuracy. Figures A.73 and A.74

represent the hit rate over lagged times for random and cluster centroid balanced

data, respectively (Figures A.73 and A.74). While the general model performance

structure holds true (random forest performing the best and logistic regression per-

forming the poorest), we see an notable improvement in the hit rate when using

the cluster centroid balanced data specifically for the random forest model over the

lagged time. Although the accuracy and hit rate across all models is relatively poor,

again, we see the random forest emerging as the leader in both the accuracy and hit

rate performance metrics.

We represented the average hit rate over time across all models at each grid

cell to provide a visual into the spatial hit rate of each model (Figures A.56 through

A.64 and 3.12 for 2-class, Figures A.75 through A.84 for 4-class). Across all models,

we see an improvement in spatial hit rate when using cluster centroid data, with

random forest and gradient boosting classifier exhibiting the most cohesive spatial

extent hit rate with 4-class MHW data.

4.3 Final Model

This study explored the forecasting potential of selected atmospheric vari-

ables, including wind speed, net heat flux, sea level pressure, and surface air tem-

perature, in predicting MHWs and sought to identify the most effective models for

this purpose. While it has been well documented and studied that lagged SSTs

are the most popular input variable for forecasting SSTs, our investigation aimed

to assess the predictive performance of other atmospheric variables, excluding SSTs

[20]. Thus, the majority of the study lacks arguably one of the most important

49



predictor variables: lagged SSTs. To address this issue, the best performing model,

the random forest model, was selected to include more predictor variables as it is a

non-parametric model that can handle correlation among predictors.

After evaluating previous model configurations, as stated previously, the

random forest emerged as the top-performing model. Subsequently, a final model

was tailored specifically using configurations that were showcased as resulting in

the best performance: the 90th percentile binary MHW event using cluster centroid

balanced data. To enhance final model’s performance, we incorporated additional

predictor variables including sea surface temperature, along with temporal and spa-

tial data. Consequently, the final model comprises a comprehensive set of seven

variables encompassing spatial, temporal, atmospheric, and oceanic dimensions: lo-

cation, day of year, sea surface temperature, wind speed, net heat flux, sea level

pressure, and surface air temperature. The final model is able to predict the pres-

ence or absence of a MHW event with high accuracy and hit rates at lead times of

1 and 2 weeks in the region (Figures 3.13 and 3.15). The final model heavily relies

on lagged SST as a predictor, while the remaining predictors are comparatively less

important (Figure 3.16).

Random forests are a popular machine learning method as they are fast

to implement, handle imbalanced datasets and complex relationship, generally work

well “out of the box”, and are robust against overfitting [11]. The superiority of ran-

dom forest over logistic regression, naive Bayes, gradient boosting, and feedforward

neural networks for predicting marine heatwaves with the selected predictor vari-

ables may be attributed to several key factors. Random forest are known to perform

well and capture non-linear relationships and complex interactions among predictors,

which here is particularly advantageous in the context of MHW prediction, where
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the relationships between atmospheric and oceanic variables predicting a MHW are

often complex and non-linear [11]. Random forests perform feature selection by eval-

uating the importance of each predictor variable, allowing it to identify the most

relevant features for MHW prediction more effectively than the other models evalu-

ated in this study [11]. Further, random forest’s ensemble learning approach, which

combines multiple decision trees, offers increased complexity and flexibility allowing

it to capture complex patterns in the data more effectively [7].

While the final model demonstrates superior performance, it is important

to note that the 90th percentile MHW random forest model achieved commendable

accuracy in predicting MHW presence or absence using only wind speed, net heat

flux, sea level pressure, and surface air temperature as predictors. This suggests

that these selected oceanic and atmospheric variables serve as robust indicators of

upcoming MHWs (Figures 3.5, 3.6, and 3.17). While sea surface temperature is the

strongest predictor variable, wind speed, sea level pressure, net heat flux and surface

air temperature together are able to predict with good accuracy (Figures 3.16 and

3.17).

4.4 Implications and Future Research

In this study, we conducted a thorough evaluation of binary and multi-

class MHW predictions. Consistent with our previous discussions, a clear pattern

emerges in the performance of the classification models. The random forest consis-

tently achieves the highest overall performance, followed by the naive Bayes, gradient

boosting, feedforward neural network, and logistic regression, ranked in descending

order of performance. Notably, employing cluster centroid balanced data yields supe-
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rior performance. This enhancement can be attributed to the balancing technique’s

ability to select more representative data samples, consequently ensuring that the

models are trained on more comprehensive and meaningful sampled data. The abil-

ity of the random forest model, and by close proximity the naive Bayes model, in

predicting MHWs given the selected predictor variables signifies that MHWs can be

predicted with moderate accuracy using wind speed, net heat flux, sea level pres-

sure and surface air temperature and very good accuracy when additional predictor

variables are included in the final random forest model.

Previous research using monthly averages of SSTs have proven skillful at

predicting MHWs in the global ocean 1 to 12 months in advance using a large multi-

model ensemble of global climate forecasts [23]. In addition, other research has

developed a deep learning time series prediction model (Unet-LSTM) that uses SST

and air temperature to predict SST variability at various lead times using monthly

mean values to forecast up to 2 years [45]. It has been noted that monthly forecasts

are more useful to capture seasonal variability of SST in the global ocean, whereas

daily resolution forecasting is better suited for short-term forecasting [45, 23]. Down-

scaling global forecasts to regional forecasts “may provide enhanced skill for specific

areas” to supplement the global forecasting model [23].

Other research has addressed forecasting SST extremes on a localized re-

gion and a smaller timescale. Such research used previous SSTs and forecast at-

mospheric temperature to predict SST extremes in Chesapeake Bay, USA, using a

35-day probabilistic forecast [40]. The Chesapeake Bay study found that the model

is skillful at predicting SST extremes with lead times ranging from 1-2 weeks using

two predictors (SST and air temperature) as precursors [40]. Further studies have

proven promising with the use of a random forest model predicting the presence or
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absence and MHW using spatial, temporal and climate variables known to impact

SSTs with an accuracy of 76% at weekly time leads [19]. This study further as-

sessed predictive power using the random forest model to predict the category of

MHW as either no event, moderate, strong or severe/extreme, but forecasting accu-

racy dropped to 38% at weekly time leads [19]. An additional localized case study

in the Mediterranean Sea implemented machine learning models including random

forests, long short-term memory and convolution neural network, using lagged SSTs

and selected atmospheric variables as predictors, found that all models were able to

predict MHWs at a lead of 1 week with at least 50% confidence [6]. Another study

focused on data-driven modeling of SSTs with in-situ observations and demonstrated

that machine learning models can predict SSTs with good accuracy at a fraction of

the computational cost as physics-based models on a global scale [50]. In contrast

to the present study, this study implemented various machine learning algorithms

to predict MHWs (including random forest, generalized additive models, extreme

gradient boosting) and found that some models work better in particular regions,

demonstrating that no one model fits all regions [50].

Additional studies have investigated the drivers and influences of MHWs

on a regional basis. A study in Kuroshio-Oyashio Extension Region found that the

driving factors of intense summer MHWs that occurred during 1999, 2008, 2012,

and 2016 were primarily driven by by air-sea heat flux anomalies and reduced cloud

cover, but were also influenced by region factors including the strengthened North

Pacific High system and the Philippine-Japan teleconnection [13]. Another regional

study employed a convolutional neural network and found that the SST anomalies in

the Indian Ocean Dipole (IOD) region could be predicted up to 6 months in advance

[15]. Notably, the study investigates the potential causes of anomalous events in the
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IOD, which can arise from teleconnections with the equatorial Pacific, including

evolving El Niño events, as well as cooling phenomena along the Australian coast

[15].

The research outlined in this paper extends previous research by providing

a comprehensive evaluation of several models in their ability to predict MHWs using

selected atmospheric and oceanic variables in the northeast Pacific Ocean. The final

model, the random forest model with additional predictor variables including SST,

temporal and spatial variables, is able to predict the presence and absence of MHWs

with high accuracy for lag times ranging from 1 to 2 weeks, adding to the research

in short term MHW forecasting (Figures 3.13a and 3.13b).

The ability to predict MHWs on sub-seasonal timescales is becoming in-

creasingly crucial for mitigating associated risks. Sea surface temperature extremes

can influence coastal flooding and disrupt fisheries, highlighting the critical need

for accurate MHW predictions [12]. Effective MHW forecasting “can help minimize

disruptions to everyday public and commercial activity, keep coastal and maritime

workers safe, and aid marine conservation efforts” [12]. Additionally, forecasting al-

lows for timely adjustments in commercial fisheries management plans and strategies,

alleviating the impact on businesses and resources [12]. These forecasts are essen-

tial for proactive planning and response, ultimately safeguarding both economic and

environmental interests.

Future work should encompass several avenues for enhancement and refine-

ment. There is a potential to incorporate neighboring effects into MHW predictions

[50]. Additionally, the integration of more predictor variables such as mixed layer

depth and water column stability could be explored, with an acknowledgment of

potential regional variations in the relevance of these variables. Another avenue
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for research could involve assessing the ability of the random forest model to pre-

dict MHWs on a global scale, considering that prediction accuracy may vary across

different regions. There is also potential to explore the utilization of higher resolu-

tion data to further improve prediction accuracy and capture finer-scale phenomena.

These potential future directions could contribute to advancing the understanding

and predictive capabilities in the field of MHW modeling.
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impact marine heatwaves attributable to human-induced global warming. Sci-

ence, 369:1621–1625, 2020.

[31] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[32] Wiener M Liaw A. Classification and Regression by randomForest, 2002.

[33] Michal Majka. High Performance Implementation of the Naive Bayes Algo-

rithm, March 2024.

[34] Ryan M. McCabe, Barbara M. Hickey, Raphael M. Kudela, Kathi A. Lefebvre,

Nicolaus G. Adams, Brian D. Bill, Frances M. D. Gulland, Richard E. Thomson,

William P. Cochlan, and Vera L. Trainer. An unprecedented coastwide toxic

algal bloom linked to anomalous ocean conditions. Geophysical Research Letters,

43(19):10,366–10,376, 2016.

[35] David Meyer. Misc Functions of the Department of Statistics, Probability The-

ory Group (Formerly: E1071), TU Wien, December 2023.

[36] Brett Molony, Damian Thomson, and Ming Feng. What can we learn from the

2010/11 western australian marine heatwave to better understand risks from

the one forecast in 2020/21? Frontiers in Marine Science, 8:645383, 02 2021.

[37] Arnaud Nguembang Fadja, Evelina Lamma, and Fabrizio Riguzzi. Vision in-

spection with neural networks. 12 2018.

60



[38] Philipp Probst, Marvin Wright, and Anne-Laure Boulesteix. Hyperparameters

and Tuning Strategies for Random Forest. WIREs Data Mining and Knowledge

Discovery, 9(3), May 2019. arXiv:1804.03515 [cs, stat].

[39] Zijian Qiu, Fangli Qiao, Chan Joo Jang, Lujun Zhang, and Zhenya Song. Evalu-

ation and projection of global marine heatwaves based on CMIP6 models. Deep

Sea Research Part II: Topical Studies in Oceanography, 194:104998, 2021.

[40] Alanna C Ross and Charles A Stock. Probabilistic extreme sst and marine

heatwave forecasts in chesapeake bay: A forecast model, skill assessment, and

potential value. Front Mar Sci, 9:896961, Oct 2022.

[41] Alex Sen Gupta, Mads Thomsen, Jessica A Benthuysen, et al. Drivers and

impacts of the most extreme marine heatwave events. Sci Rep, 10(1):19359,

Nov 2020.

[42] Dan A Smale, Thomas Wernberg, Eric CJ Oliver, Mads Thomsen, Ben P Har-

vey, Susanne C Straub, et al. Marine heatwaves threaten global biodiversity

and the provision of ecosystem services. Nat Clim Change, 9(4):306–312, Apr

2019.

[43] Di Sun, Zhao Jing, and Hailong Liu. Deep learning improves sub-seasonal

marine heatwave forecast. Environmental Research Letters, 2024.

[44] J. Kenneth Tay, Balasubramanian Narasimhan, and Trevor Hastie. Elastic Net

Regularization Paths for All Generalized Linear Models. Journal of Statistical

Software, 106(1), 2023.

[45] James Taylor and Ming Feng. A deep learning model for forecasting global

61



monthly mean sea surface temperature anomalies. Front Clim, 4:932932, Sep

2022.

[46] R Core Team. R: A language and environment for statistical computing., 2022.

[47] Jun Wang and B. Malakooti. A feedforward neural network for multiple criteria

decision making. Computers & Operations Research, 19(2):151–167, 1992.

[48] Hadley Wickham, Mara Averick, Jennifer Bryan, Lucy D’Agostino McGowan,

Romain François, Alex Hayes, Lionel Henry, Max Kuhn, Thomas Lin Peder-

sen, Evan Miller, Stephan Milton Bache, Kirill Müller, Jeroen Ooms, Winston

Chang, Garrett Grolemund, Jim Hester, David Robinson, Dana Paige Seidel,

Vitalie Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke, Kara Woo, and

Hiroaki Yutani. Welcome to the tidyverse, 2019.

[49] Hadley Wickham and Max Kuhn. Tidymodels: a collection of packages for

modeling and machine learning using tidyverse principles., 2020.

[50] Stefan Wolff, Fearghal O’Donncha, and Bei Chen. Statistical and machine

learning ensemble modelling to forecast sea surface temperature. Journal of

Marine Systems, 208:103347, 05 2020.

[51] Ziegler A Wright MN. Ranger: A Fast Implementation of Random Forests for

High Dimensional Data in C++ and R, 2017.

[52] Harry Zhang. The optimality of naive bayes. Proceedings of the Seventeenth In-

ternational Florida Artificial Intelligence Research Society Conference, FLAIRS

2004, 2, 01 2004.

[53] Tao Zhang, Wuyin Lin, Andrew M. Vogelmann, Minghua Zhang, Shaocheng

62



Xie, Yi Qin, and Jean-Christophe Golaz. Improving Convection Trigger Func-

tions in Deep Convective Parameterization Schemes Using Machine Learning.

Journal of Advances in Modeling Earth Systems, 13(5):e2020MS002365, May

2021.

63



Appendix A

Appendix

A.1 90th Percentile MHW

A.1.1 Balanced Data

To illustrate the models’ ability to forecast the presence or absence of a

MHW event, spatial plots were generated for each model. These plots depict the

observed MHW occurrences on a specific day alongside the model predictions uti-

lizing lagged data at intervals of 7 and 14 days, where the presence of a MHW is

indicated by a black dot and the data is superimposed onto observed SST anomalies

for the specified day. This analysis encompassed both data balancing techniques,

providing insights into the predictive capacity of each model across different tem-

poral contexts and balancing strategies. Figures A.1 through A.10 provide insights

into the predictive capabilities of each model regarding the presence or absence of a

MHW on August 18, 2015 — a day characterized by a notable frequency of MHW

occurrences.
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Figure A.1: Logistic regression model forecasts for the 90th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.

Figure A.2: Logistic regression model forecasts for the 90th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.
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Figure A.3: Naive Bayes model forecasts for the 90th percentile MHW using random

balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag. The

color bar represents the observed sea surface temperature anomaly and dots indicate

where a MHW was correctly predicted.

Figure A.4: Naive Bayes model forecasts for the 90th percentile MHW using cluster

centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.
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Figure A.5: Gradient boosting model forecasts for the 90th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.

Figure A.6: Gradient boosting model forecasts for the 90th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.
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Figure A.7: Random Forest model forecasts for the 90th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days

lag. The colorbar represents the observed sea surface temperature anomaly and

dots indicate where a MHW was correctly predicted.

Figure A.8: Random forest model forecasts for the 90th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.
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Figure A.9: Feedforward neural network model forecasts for the 90th percentile

MHW using random balanced data for August 18, 2015, with no lag, 7 days lag and

14 days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.

Figure A.10: Feedforward neural network model forecasts for the 90th percentile

MHW using cluster centroid balanced data for August 18, 2015, with no lag, 7 days

lag and 14 days lag. The color bar represents the observed sea surface temperature

anomaly and dots indicate where a MHW was correctly predicted.

Notable trends represented in the spatial plots is the inability of the logis-

tic regression model and feedforward neural network to capture spatial patters on

the given day, though there is slight improvement in prediction in the feedforward

neural network when using cluster centroid balanced data. While the naive bayes

an gradient boosting models demonstrate moderate predictive power at 1 week and

2 week lead times, the random forest model demonstrates the strongest ability to

predict a MHW occurrence.
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To further illustrate each model’s ability to correctly predict MHW events,

a spatial hit rate plot was generated for each model at both the 90th percentile MHW

for both data balancing techniques. The hit rate is averaged across the entire testing

dataset for each grid cell, resulting in a comprehensive spatial plot that illustrates

the models’ effectiveness in predicting MHWs where a higher hit rate (indicated by

dark red here) represents a higher model performance. Figures A.11 through A.18

represent the spatial hit rate plots across all models and both balancing methods.

Figure A.11: Logistic regression hit rate spatial plot for binary 90th percentile MHW

outcome with random balanced data.

Figure A.12: Logistic regression hit rate spatial plot for binary 90th percentile MHW

outcome with cluster centroid balanced data.
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Figure A.13: Naive Bayes hit rate spatial plot for binary 90th percentile MHW

outcome with random balanced data.

Figure A.14: Naive Bayes hit rate spatial plot for binary 90th percentile MHW

outcome with cluster centroid balanced data.

Figure A.15: Gradient boosting hit rate spatial plot for binary 90th percentile MHW

outcome with random balanced data.

71



Figure A.16: Gradient boosting hit rate spatial plot for binary 90th percentile MHW

outcome with cluster centroid balanced data.

Figure A.17: Random Forest hit rate spatial plot for binary 90th percentile MHW

outcome with random balanced data.

Figure A.18: Feedforward neural network hit rate spatial plot for binary 90th per-

centile MHW outcome with random balanced data.
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Figure A.19: Feedforward neural network hit rate spatial plot for binary 90th per-

centile MHW outcome with cluster centroid balanced data.

The hit rate spatial plots provide insight into the model’s overall perfor-

mance. Again, we are seeing similar patters that have been observed with support-

ing data: poor performance with logistic regression, moderate performance for naive

bayes and gradient boosting, moderate to poor performance for feedforward neural

network and high performance for random forest. Across all models, performance

increases when using cluster centroid balanced data.

A.1.2 Unbalanced Data

The ROC curve (A.20) and PR curve (A.21) illustrate the 90th percentile

MHW’s model performance, revealing its inadequate performance. Class 0 dominat-

ing due to its majority, resulting in poor predictive performance for class 1, which

is outweighed by the prevalence of class 0.
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Figure A.20: ROC Curve for 90th Percentile MHW with Unbalanced Data.
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Figure A.21: PR Curve for 90th Percentile MHW with Unbalanced Data.

A.2 95th Percentile MHW

A.2.1 Balanced Data

Figure A.22 represents the ROC curve and associated AUC for each model

trained on random balanced data for a binary MHW outcome at the 95th threshold.

While all models perform better than random chance, Figure A.22D, representing

the random forest model, performs significantly better than other models indicated

by the ROC curve closely hugging the upper left corner, with an AUC score of 0.90

for class 0 and class 1. The logistic regression performed the worse (AUC = 0.57

for class 0 and class 1, Figure A.22A) while the remaining models Figure A.22 B,

C and E had poor to moderate performance, all with AUC scores around 0.65 for
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class 0 and class 1.

The cluster centroid balanced data ROC curves, shown in Figure A.23,

showed slight improvements compared to the random balanced data, with AUC

score improvements across all models. The ROC curves for the cluster centroid

balanced data, depicted in Figure A.23, demonstrated slight enhancements across all

models in terms of AUC scores. Notably, the dominance of the random forest model

(AUC = 0.94 for both class 0 and class 1, Figure A.23D), the under performance of

logistic regression (AUC = 0.60 for both class 0 and class 1, Figure A.23A), and the

intermediate performance of the remaining models (AUC ranging from 0.70 to 0.78

for both class 0 and class 1, Figure A.23 B, C, and E) were consistent.

Figure A.22: ROC curve for the 95th percentile random balanced binary MHW

prediction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.
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Figure A.23: ROC curve for the 95th percentile cluster centroid balanced binary

MHW prediction across all models: A) Logistic Regression, B) Naive Bayes, C)

Gradient Boosting, D) Random Forest, E) Feedforward Neural Network.

Figure A.24 displays the Precision-Recall (PR) curve and corresponding

AUC values for all models for random balanced data, further contributing to model

evaluation. Notably, the feedforward neural network model (AUC = 0.22 for class

0 and AUC = 0.60 for class 1, Figure A.24A) exhibits the poorest performance,

while the random forest model (AUC = 0.80 for class 0 and AUC = 0.95 for class

1, Figure A.24D) demonstrates the highest performance. It’s worth mentioning

that across all models, the AUC score for class 0 is consistently lower than that

for class 1, suggesting that in the balanced dataset, the classifiers tend to achieve

higher precision but lower recall. Figure A.25 presents the PR curves for cluster

centroid balanced data and exhibit similar performance to random balanced data
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PR performance, with slight AUC improvements across both classes and all models.

Notable across all PR curves is the poor performance of the feedforward neural

network, rather than the baseline logistic regression model. It’s worth noting that

the ROC and PR curve results at the 95th percentile displayed analogous patterns

to those at the 90th percentile. This suggests that despite raising the threshold for

identifying a MHW, the models did not demonstrate significant adverse effects, as

observed from the ROC and PR curves.

Figure A.24: PR curve for the 95th percentile random balanced binary MHW pre-

diction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.
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Figure A.25: PR curve for the 95th percentile cluster centroid balanced binary MHW

prediction across all models: A) Logistic Regression, B) Naive Bayes, C) Gradient

Boosting, D) Random Forest, E) Feedforward Neural Network.

To monitor model performance over time, we assessed accuracy and hit

rate against lagged predictor variables. Figures A.26 and A.27 depict the accuracy of

each model across various lag periods, ranging from 1 day to 2 weeks, using random

balanced and cluster centroid balanced data, respectively. In both scenarios, lag

0 consistently demonstrated the highest accuracy across all models, with accuracy

decreasing as the lag increased. While there was a slight improvement in accuracy

observed with the cluster centroid balanced data, indicating its slightly superior

performance, the improvement was not significant. Although the random forest

model remained dominant in both scenarios, the use of cluster centroid balanced data

notably enhanced the performance of the naive Bayes model, mirroring the pattern
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observed with 90th percentile MHW and making it comparable to the random forest

model.

Figure A.26: Accuracy versus lagged predictor variables using random balanced

binary 95th percentile MHW data across all models: Logistic Regression, Naive

Bayes, Gradient Boosting, Random Forest and Feedforward Neural Network.
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Figure A.27: Accuracy versus lagged predictor variables using cluster centroid bal-

anced binary 95th percentile MHW data across all models: Logistic Regression,

Naive Bayes, Gradient Boosting, Random Forest and Feedforward Neural Network.

To refine our model evaluation and concentrate on instances where models

successfully predicted a MHW event, we constructed a plot illustrating the lag versus

hit rate for the 95th percentile MHW. This plot encompasses lag periods ranging from

1 to 14 days for all models, utilizing both random balanced and cluster centroid

balanced data. Refer to Figure A.28 for results with random balanced data and

Figure A.29 for results with cluster centroid balanced data.

Similar to the accuracy versus lag plot, the lag versus hit rate plot reveals

a decrease in hit rate with increased lag time. Across both balanced datasets, the
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random forest model consistently performed the best, followed by naive Bayes, gra-

dient boosting, feedforward neural network and logistic regression. There was a

slight improvement observed when using the cluster centroid balanced data. Across

all models, the decline in hit rate for cluster centroid balanced data (Figure A.29) is

slower than that of the random balanced data (Figure A.28), with notable enhance-

ments observed in the naive Bayes and gradient boosting models. Similar to that of

the results observed with the 90th, the overall scoring of the hit rate versus lag plot

across all models was better than the accuracy versus lag plot, indicating that all

models are better at predicting the presence of a MHW rather than the absence of

a MHW with the balanced datasets.
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Figure A.28: Hit rate versus lagged predictor variables using random balanced binary

95th percentile MHW data across all models : Logistic Regression, Naive Bayes,

Gradient Boosting, Random Forest and Feedforward Neural Network.
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Figure A.29: Hit rate versus lagged predictor variables using cluster centroid bal-

anced binary 95th percentile MHW data across all models : Logistic Regression,

Naive Bayes, Gradient Boosting, Random Forest and Feedforward Neural Network.

Figures A.30 through A.39 represent the spatial accuracy in predicting the

presence or absence of MHW across each model for both data balancing techniques

on an arbitrarily selected day, August 18, 2015. Each figure represents the observed

MHW data and the subsequent MHW predictions for each model using 1 week and

2 week lags.
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Figure A.30: Logistic regression model forecasts for the 95th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted

Figure A.31: Logistic regression model forecasts for the 95th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted
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Figure A.32: Naive Bayes model forecasts for the 95th percentile MHW using random

balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag. The

color bar represents the observed sea surface temperature anomaly and dots indicate

where a MHW was correctly predicted.

Figure A.33: Naive Bayes model forecasts for the 95th percentile MHW using cluster

centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.
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Figure A.34: Gradient boosting model forecasts for the 95th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days lag.

The color bar represents the observed sea surface temperature anomaly and dots

indicate where a MHW was correctly predicted.

Figure A.35: Gradient boosting model forecasts for the 95th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.
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Figure A.36: Random Forest model forecasts for the 95th percentile MHW using

random balanced data for August 18, 2015, with no lag, 7 days lag and 14 days

lag. The colorbar represents the observed sea surface temperature anomaly and

dots indicate where a MHW was correctly predicted.

Figure A.37: Random forest model forecasts for the 95th percentile MHW using

cluster centroid balanced data for August 18, 2015, with no lag, 7 days lag and 14

days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.
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Figure A.38: Feedforward neural network model forecasts for the 95th percentile

MHW using random balanced data for August 18, 2015, with no lag, 7 days lag and

14 days lag. The color bar represents the observed sea surface temperature anomaly

and dots indicate where a MHW was correctly predicted.

Figure A.39: Feedforward neural network model forecasts for the 95th percentile

MHW using cluster centroid balanced data for August 18, 2015, with no lag, 7 days

lag and 14 days lag. The color bar represents the observed sea surface temperature

anomaly and dots indicate where a MHW was correctly predicted.

Notable trends represented in the spatial plots are the weak forecasting

capability for 2 week lag across all models with the random balanced data. Across

all models, there was significant improvement in MHW prediction in both extent

and spatial accuracy with cluster centroid data. Similar to that of the 90th MHW

threshold, the random forest is able to best predict the MHW event represented in

these figures.

To further illustrate each model’s ability to correctly predict MHW events,
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a spatial hit rate plot was generated for each model using both data balancing

techniques. Again, the hit rate is averaged across the entire testing dataset for

each grid cell, resulting in a comprehensive spatial plot that illustrates the models’

effectiveness in predicting MHWs where a higher hit rate (indicated by dark red

here) represents a higher model performance. Figures A.40 through A.48 represent

the spatial hit rate plots across all models and both balancing methods.

Figure A.40: Logistic regression hit rate spatial plot for binary 95th percentile MHW

outcome with random balanced data.

Figure A.41: Logistic regression hit rate spatial plot for binary 95th percentile MHW

outcome with cluster centroid balanced data.

90



Figure A.42: Naive Bayes hit rate spatial plot for binary 95th percentile MHW

outcome with random balanced data.

Figure A.43: Naive Bayes hit rate spatial plot for binary 95th percentile MHW

outcome with cluster centroid balanced data.

Figure A.44: Gradient boosting hit rate spatial plot for binary 95th percentile MHW

outcome with random balanced data.
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Figure A.45: Gradient boosting hit rate spatial plot for binary 95th percentile MHW

outcome with cluster centroid balanced data.

Figure A.46: Random forest hit rate spatial plot for binary 95th percentile MHW

outcome with random balanced data.

Figure A.47: Random forest hit rate spatial plot for binary 95th percentile MHW

outcome with cluster centroid balanced data.
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Figure A.48: Feedforward neural network hit rate spatial plot for binary 95th per-

centile MHW outcome with random balanced data.

Figure A.49: Feedforward neural network hit rate spatial plot for binary 95th per-

centile MHW outcome with cluster centroid balanced data.

The hit rate spatial plots provide insight into the model’s overall perfor-

mance. Again, we are seeing similar patters that have been observed with the 90th

percentile MHW and supporting data: poor performance with logistic regression,

moderate performance for naive Bayes and gradient boosting, moderate to poor

performance for feedforward neural network and high performance for random for-

est. Again, we see performance increases when using cluster centroid balanced data.
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A.2.2 Unbalanced Data

The ROC curve (A.50) and PR curve (A.51) illustrate the 95th percentile

MHW’s model performance, revealing all models poor performance with unbalanced

data. The 95th percentile MHW’s model performance exhibits similar behavior to

that of the 90th percentile MHW’s model performance, with class 0 dominating

due to its majority, resulting in poor predictive performance for class 1, which is

outweighed by the prevalence of class 0.

Figure A.50: ROC Curve for 95th Percentile MHW with unbalanced Data
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Figure A.51: PR Curve for 95th Percentile MHW with unbalanced Data

A.3 2-Class MHW

A.3.1 Balanced Data

Figure A.52 depicts the Receiver Operating Characteristic (ROC) curve

and associated Area Under the Curve (AUC) for each model trained on randomly

balanced data for a 2-class MHW outcome. Despite training on random balanced

data, all models demonstrate poor performance in distinguishing between MHW

classes. Notably, the logistic regression, gradient boosting, and feedforward neu-

ral network exhibit particularly inadequate performance (Figure A.52 A, C, and

E, respectively), with the feedforward neural network even performing worse than

random chance for class 2.
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Both the random forest and naive Bayes models show relatively better

performance for classes 0 and 2 with random balanced data, with an AUC of 0.63

for both models and classes. However, they perform worse for class 1, with an

AUC of 0.53 for both models. This suggests that the models struggle to effectively

differentiate between MHW classes, often misclassifying MHW events as either non-

MHW (class 0) or the most extreme MHW class (class 2).

Figure A.52: ROC curve for random balanced 2-class MHW prediction across all

models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Random

Forest, E) Feedforward Neural Network.
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Figure A.53: PR curve for random balanced 2-class MHW prediction across all

models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Random

Forest, E) Feedforward Neural Network.

Figure A.53 illustrates the Precision-Recall (PR) curves and corresponding

Area Under the Curve (AUC) values for all models trained on random balanced data,

providing further insights into the predictive performance of 2-class MHWs. Despite

utilizing random balanced data, the feedforward neural network demonstrates the

poorest performance overall. It exhibits an AUC of 0.14 for class 0, 0.43 for class

1, and 0.34 for class 2 (Figure A.53E). Conversely, the best-performing models, the

random forest and naive Bayes, do not show significant improvements in AUC across

all classes (Figure A.53 B and D).

These findings underscore the challenges faced by all models in distinguish-

ing and accurately classifying MHW events across different classes. Even when clus-

97



ter centroid balanced data is employed, all models continue to struggle, as evidenced

by similarly poor AUC scores to those observed with random balanced data (Figure

3.10).

In order to refine the evaluation of our models, comprehensive plots illus-

trating lag versus accuracy and lag versus hit rate were constructed (Figures A.54

and A.55). All models exhibited poor average accuracy and hit rate through all lags.

Figure A.54: Accuracy versus lagged predictor variables using random balanced

2-class MHW data across all models: Logistic Regression, Naive Bayes, Gradient

Boosting, Random Forest and Feedforward Neural Network.
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Figure A.55: Hit rate versus lagged predictor variables using random balanced 2-class

MHW data across all models: Logistic Regression, Naive Bayes, Gradient Boosting,

Random Forest and Feedforward Neural Network.

Figures A.56 through A.64 demonstrate each model’s averaged hit rate. All

models struggled to correctly predict MHW classes, with minor improvements when

using cluster centroid data rather than random balanced data.
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Figure A.56: Logistic regression hit rate spatial plot for 2-class MHW outcome with

random balanced data.

Figure A.57: Logistic regression hit rate spatial plot for 2-class MHW outcome with

cluster centroid balanced data.

Figure A.58: Naive Bayes hit rate spatial plot for 2-class MHW outcome with ran-

dom balanced data.
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Figure A.59: Naive Bayes hit rate spatial plot for 2-class MHW outcome with cluster

centroid balanced data.

Figure A.60: Gradient boosting hit rate spatial plot for 2-class MHW outcome with

random balanced data.

Figure A.61: Gradient boosting hit rate spatial plot for 2-class MHW outcome with

cluster centroid balanced data.
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Figure A.62: Random forest hit rate spatial plot for 2-class MHW outcome with

random balanced data.

Figure A.63: Feedforward neural network hit rate spatial plot for 2-class MHW

outcome with random balanced data.

Figure A.64: Feedforward neural network hit rate spatial plot for 2-class MHW

outcome with cluster centroid balanced data.
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A.3.2 Unbalanced Data

The ROC curve (A.65) and PR curve (A.66) illustrate the 2-class MHW’s

model performance, revealing all models perform poorly.

Figure A.65: ROC Curve for 2-Class MHW with Unbalanced Data
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Figure A.66: PR Curve for 2-Class MHW with Unbalanced Balanced Data

A.4 4-Class MHW

A.4.1 Balanced Data

Figure A.67 depicts the Receiver Operating Characteristic (ROC) curve

and associated Area Under the Curve (AUC) for each model trained on randomly

balanced data for a 4-class MHW outcome while figure A.68 represents the ROC

curve and associated AUC using cluster centroid balanced data. All models demon-

strate poor performance at distinguishing between MHW classes for both the random

and cluster centroid balanced data, notably poor prediction is the logistic regression

and gradient boosting. Across both data balancing techniques, random forest and

naive Bayes exhibit relatively good performance, with class 0 and class 4 having
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AUC ranging from 0.66 to 0.55 (Figures A.67 and A.68, B and D). The relatively

highest AUC scores among the most extreme classes (class 0 and class 4), similar to

2-class results, demonstrate that even the best of the models struggle to distinguish

between MHW classes. The remaining models (logistic regression, gradient boost-

ing, feedforward neural network) for both datasets sparsely demonstrate predictive

performance better than random chance (Figures A.67 and A.68 A, C and E).

Figure A.67: ROC curve for random balanced 4-class MHW prediction across all

models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Random

Forest, E) Feedforward Neural Network.
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Figure A.68: ROC curve for cluster centroid balanced 4-class MHW prediction across

all models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Ran-

dom Forest, E) Feedforward Neural Network.

Figures A.69 and A.70 depict the Precision-Recall (PR) curves and corre-

sponding Area Under the Curve (AUC) values for all models trained on randomly

balanced and cluster centroid balanced data. These visualizations offer deeper in-

sights into the predictive efficacy of 4-class MHW models. Consistent with the ROC

curves, the PR curves indicate generally poor predictive power across all models.

However, discerning relative performance nuances from the PR curves is challenging

due to minimal differences. Therefore, in this context, ROC curves provide a clearer

representation of relative model performance.
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Figure A.69: PR curve for random balanced 4-class MHW prediction across all

models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Random

Forest, E) Feedforward Neural Network.
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Figure A.70: PR curve for cluster centroid balanced 4-class MHW prediction across

all models: A) Logistic Regression, B) Naive Bayes, C) Gradient Boosting, D) Ran-

dom Forest, E) Feedforward Neural Network.

To track the evolution of model performance, we evaluated accuracy and

hit rate against lagged predictor variables. In Figures A.71 and A.72, we present the

accuracy of each model across different lag periods, ranging from 1 day to 2 weeks,

using random balanced and cluster centroid balanced data, respectively. Across

both data balancing scenarios, all models performed very poor. As the accuracy

represented here is averaged among all classes, the average accuracy is likely weighed

down heavily by classes that performed very poorly (the intermediate MHW classes,

class 1, class 2 and class 3).
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Figure A.71: Accuracy versus lagged predictor variables using random balanced

4-class MHW data across all models: Logistic Regression, Naive Bayes, Gradient

Boosting, Random Forest and Feedforward Neural Network.
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Figure A.72: Accuracy versus lagged predictor variables using cluster centroid bal-

anced balanced 4-class MHW data across all models: Logistic Regression, Naive

Bayes, Gradient Boosting, Random Forest and Feedforward Neural Network.

Similar to the accuracy versus lag plot, the hit rate versus lag plots assess

each model’s hit rate over lags ranging from 1 day to 2 weeks. Figures A.73 and

A.74 display each model’s hit rate over various lags. Much like the accuracy versus

lag plot, each model for both the random balanced and cluster centroid balanced

data exhibit poor hit rate performance, further emphasizing all model’s inability to

correctly classify MHWs.
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Figure A.73: Hit rate versus lagged predictor variables using random balanced 4-class

MHW data across all models: Logistic Regression, Naive Bayes, Gradient Boosting,

Random Forest and Feedforward Neural Network.
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Figure A.74: Hit rate versus lagged predictor variables using cluster centroid bal-

anced 4-class MHW data across all models: Logistic Regression, Naive Bayes, Gra-

dient Boosting, Random Forest and Feedforward Neural Network.

Figures A.75 through A.84 represent the spatial hit rate across each models

and both balancing techniques. Similar to 2-class MHW predictions, 4-class performs

poor. Although, with 4-class there is some improvement in the average hit rate,

especially with cluster centroid data.
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Figure A.75: Logistic regression hit rate spatial plot for 4-class MHW outcome with

random balanced data.

Figure A.76: Logistic regression hit rate spatial plot for 4-class MHW outcome with

cluster centroid balanced data.

Figure A.77: Naive Bayes hit rate spatial plot for 4-class MHW outcome with ran-

dom balanced data.
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Figure A.78: Naive Bayes hit rate spatial plot for 4-class MHW outcome with cluster

centroid balanced data.

Figure A.79: Gradient boosting hit rate spatial plot for 4-class MHW outcome with

random balanced data.

Figure A.80: Gradient boosting hit rate spatial plot for 4-class MHW outcome with

cluster centroid balanced data.
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Figure A.81: Random forest hit rate spatial plot for 4-class MHW outcome with

random balanced data.

Figure A.82: Random forest hit rate spatial plot for 4-class MHW outcome with

cluster centroid balanced data.

Figure A.83: Feedforward neural network hit rate spatial plot for 4-class MHW

outcome with random balanced data.
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Figure A.84: Feedforward neural network hit rate spatial plot for 4-class MHW

outcome with cluster centroid balanced data.

A.4.2 Unbalanced Data

The ROC curve (A.85) and PR curve (A.86) illustrate the 2-class MHW’s

model performance, revealing all models perform poorly.

Figure A.85: ROC Curve for 4-Class MHW with unbalanced Data
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Figure A.86: PR Curve for 4-Class MHW with unbalanced Balanced Data
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