
Lawrence Berkeley National Laboratory
LBL Publications

Title
Diversity of ENSO Events Unified by Convective Threshold Sea Surface Temperature: A 
Nonlinear ENSO Index

Permalink
https://escholarship.org/uc/item/0d90p25g

Journal
Geophysical Research Letters, 45(17)

ISSN
0094-8276

Authors
Williams, Ian N
Patricola, Christina M

Publication Date
2018-09-16

DOI
10.1029/2018gl079203
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0d90p25g
https://escholarship.org
http://www.cdlib.org/


Diversity of ENSO Events Unified by Convective Threshold Sea 
Surface Temperature: A Nonlinear ENSO Index

Ian N. Williams1 and Christina M. Patricola1

1 Climate and Ecosystem Sciences Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA, USA

Correspondence to: I. N. Williams, inwilliams@lbl.gov

Abstract

We show that the well‐known failure of any single index to capture the 
diversity and extremes of El Niño‐Southern Oscillation (ENSO) results from 
the inability of existing indices to uniquely characterize the average 
longitude of deep convection in the Walker Circulation. We present a simple 
sea surface temperature (SST)‐based index of this longitude that compactly 
characterizes the different spatial patterns, or flavors of observed and 
projected ENSO events. It recovers the familiar global responses of 
temperature, precipitation, and tropical cyclones to ENSO and identifies 
historical extreme El Niño events. Despite its simplicity, the new longitude 
index describes the nonlinear relationship between the first two principal 
components of SST, and unlike previous indices, accounts for background 
SST changes associated with the seasonal cycle and climate change. The 
index reveals that extreme El Niño, El Niño Modoki, and La Niña events are 
projected to become more frequent in the future at the expense of neutral 
ENSO conditions.

Plain Language Summary

It is widely known that every El Niño is different. The 2015–2016 El Niño 
event is a case in point. Despite having similar sea surface temperature 
warming as historical events (1982–1983 and 1997–1998), the 2015–2016 El 
Niño had unexpectedly weak impacts on precipitation in the Western United 
States. No single index has been able to capture the diversity of El Niño‐
Southern Oscillation (ENSO) events (including La Niña), which has led to a 
proliferation of indices for each kind of ENSO event. Yet none of the existing 
indices measures the key atmospheric feature of ENSO—the west‐to‐east 
oscillation in the longitude of deep convection (thunderstorms) across the 
equatorial Pacific. We quantified this longitude and found that it compactly 
characterizes the diversity of ENSO events, clearly indicates extreme El Niño 
events (like 1982–1983 and 1997–1998) that produce the greatest impacts 
on global climate, and performs as well as existing indices in revealing the 
remote climate impacts of ENSO. Widespread adoption of this practical new 
index will simplify model evaluation of ENSO and more effectively monitor 
and communicate the state of the coupled climate system.

1 Introduction

Despite the central role of atmospheric deep convection in the El Niño‐
Southern Oscillation (ENSO), existing ENSO indices such as the Oceanic Niño 



Index (ONI) fail to capture the diverse responses of convection to tropical 
Pacific sea surface temperature (SST) variations during ENSO. The 2015–
2016 El Niño event is a case in point, having similar ONI to the 1982–1983 
and 1997–1998 El Niño events, but much less deep convection over the 
eastern Pacific (L'Heureux et al., 2016), coinciding with unexpectedly weak 
impacts on precipitation in the Western United States (Lee et al., 2018; Paek 
et al., 2017; Figure S1). In fact, none of the existing ENSO indices measures 
the key atmospheric feature of ENSO—the oscillation in the longitude of deep
convection across the equatorial Pacific. We quantified this longitude and 
found that it compactly characterizes the diversity of ENSO events 
(Capotondi et al., 2014) for the first time in a single index, is a robust 
indicator of La Niña and extreme El Niño events, and performs as well as 
existing metrics in revealing the remote climate impacts of ENSO.

The physical basis of ENSO indices has important implications for 
understanding past and future climates. The frequency of extreme El Niño 
events appears to dramatically increase in 21st century climate projections, 
if defined by rainfall in the Niño 3 region, yet corresponding changes in SST‐
based indices are only modest (Cai et al., 2014; Zheng et al., 2016). And 
while rain is indicative of deep convection, it is unclear to what extent rain‐
based indices reflect ENSO dynamics versus increases in column water vapor
with warming (Chen et al., 2017). Furthermore, the inability of any single 
index to capture changes in ENSO amplitude, including extremes in both 
phases of the oscillation (i.e., La Niña; Cai et al., 2015), casts uncertainty 
over how ENSO changes in warmer climates. A related question is whether 
projected increases in Central Pacific El Niño events come at the expense of 
the East Pacific variety (Li et al., 2017; Yeh et al., 2009), or if the distribution 
of El Niño and La Niña events broadens at the expense of ENSO‐neutral 
states.

Here we present a new SST‐based metric of ENSO that captures the 
nonlinear response of atmospheric deep convection to SST. We apply the 
metric to elucidate the role of deep convection in ENSO diversity, in 
observations and climate model projections.

2 Methods

We calculated the average longitude in the equatorial Pacific where SST 
exceeds the threshold SST for deep convection; an index we call the ENSO 
Longitude Index (ELI). Our development of ELI is motivated by the long‐
theorized coupling between SST, convective heating, and atmospheric 
circulation (e.g., Gill, 1980; Neelin & Held, 1987; Sobel & Bretherton, 2000; 
Zebiak & Cane, 1987). We used the average SST over the global tropics to 
approximate the convective threshold (Johnson & Xie, 2010). The basis for 
this approximation is that deep convection, and damping of horizontal 
buoyancy anomalies by atmospheric gravity waves, keeps the entire tropical 
troposphere close to a single moist adiabat associated with areas of deep 
convection (Williams et al., 2009). This process, known as convective 



adjustment, and efficient turbulent mixing in the atmospheric boundary layer
and surface layer, results in a close correspondence between the tropical‐
average SST and the threshold SST for deep convection.

We note that as the tropics warms, the area of the warm‐pool corresponding 
to atmospheric heating in deep convective clouds (the dynamic warm‐pool) 
remains nearly constant (Hoyos & Webster, 2012; McBride et al., 2003). The 
tropics‐wide average SST (the convective threshold) can be interpreted as 
the lower‐bound SST enclosing this dynamic warm‐pool.

The use of tropics‐wide average SST as a proxy for the convective threshold 
is applicable in historical and future climates (Johnson & Xie, 2010; Williams 
& Pierrehumbert, 2017) and paleoclimates (Williams et al., 2009). Although it
simplifies the calculation of ELI, it is not a necessary approximation; for 
example, similar results can be obtained by replacing the SST‐based 
convective threshold with a threshold in outgoing longwave radiation, a 
proxy for deep convection (Figure S2).

ELI is calculated by first, for each month, calculating the tropical‐average SST
over 5°S–5°N, to estimate the SST threshold for convection. We then create 
a binary spatial mask, assigning 1 to points where SST is at least the 
threshold value and 0 to points where SST is less than the threshold. Finally, 
ELI is the average of all longitudes over which this spatial mask is 1, within 
the Pacific basin and over 5°S–5°N. The results are insensitive to replacing 
5°S–5°N with 20°S–20°N. ELI is not weighted by how much SST exceeds the 
threshold.

The innovation of ELI is that it tracks the eastward extent and movement of 
the ascending branch of the Walker Circulation, by making the average 
longitude of convection the index variable instead of SST anomalies over 
spatially fixed boxes. Consequently, the index is robust to changes in the 
background SST climatology. That is, the index implicitly accounts for 
changes in SST associated with the seasonal cycle (i.e., the evolution of the 
east Pacific cold‐tongue and west Pacific warm‐pool), tropical SST variability 
outside the Pacific (e.g., the Atlantic Meridional Mode; Chiang & Vimont, 
2004), and climate change (Deser et al., 2010).

In addition to ELI, we calculated the 3‐month running average of the 
commonly used Niño3, Niño3.4 (referred to as ONI), and Niño4 indices 
(Trenberth, 1997) using the SST anomaly over the corresponding box, with 
baseline SST defined as the 30‐year running mean.

3 Data

For observed historical SST, we used the monthly 2° × 2° Extended 
Reconstructed SST v5 product over January 1854 through January 2018 
(Huang et al., 2017). To consider observational uncertainty, we also used the
monthly 1° × 1° Hadley Centre SST data set (HadISST) over January 1870 
through January 2018 (Rayner, 2003). The ONI and ELI of the two data sets 
are comparable (Figure S3). Observed precipitation is from the monthly 1° × 



1° Global Precipitation Climatology Centre v7 data set, which is based on 
station observations and covers January 1901 through present (U. Schneider 
et al., 2011).

To evaluate changes in ENSO and demonstrate the deficiency of fixed‐
location, anomaly‐based ENSO indices, we used monthly SST and 
precipitation data from the fully coupled 1° × 1° resolution historical (1920–
2005) and RCP8.5 (2006–2100) simulations of the Community Earth System 
Model Large Ensemble Project (CESM‐LENS), from ensemble members 1–35 
(Kay et al., 2014). We also used SST data from the low‐resolution (1° 
atmosphere; 60–30 km ocean) perpetual‐1850 preindustrial control 
simulation of the Energy Exascale Earth System Model (E3SM) v1, to 
preliminarily evaluate simulated ELI.

4 Results

ELI clearly distinguishes the extreme 1997–1998 and 1982–1983 El Niño 
boreal winter (December–February) events from other historical events, 
including the 2015–2016 El Niño, despite the three events being 
characterized by a similar ONI (Figure 1a). The eastward expansion of deep 
convection toward the South American coast in 1997–1998 and 1982–1983 is
a defining feature of these extreme El Niño events (Cai et al., 2014), which is
not apparent when using ONI (Figure 1a). In addition, there is a tendency for 
higher ELI (deep convection further east) during boreal summer (Figure 1b; 
June–August) compared to winter, which is associated with changes in the 
seasonal cycle of the cold‐tongue and warm‐pool not represented by ONI, as 
discussed later.

Figure 1

Comparison of observed ELI and ONI for (a) DJF and (b) JJA averages over the 1951–2016 period from 
Extended Reconstructed Sea Surface Temperature v5, showing greater sensitivity of ELI to the 
extreme 1982–1983 and 1997–1998 events. Modoki events (red circles) have intermediate ELI. The 
last two digits of the year starting in January are shown for selected events. DJF = December–February;



JJA = June–August; ENSO = El Niño‐Southern Oscillation; ONI = Oceanic Niño Index; ELI = ENSO 
Longitude Index.

ELI also gives a new perspective on the flavors of El Niño corresponding to 
different locations of SST warming. Among existing indices for Central Pacific
El Niño is the El Niño Modoki Index (EMI; Ashok et al., 2007). Winter Modoki 
events (red circles in Figure 1a) have intermediate ELI, indicating deep 
convection just west of the dateline on average (160–175°E). The 1967–1968
Modoki, which is classified as La Niña based on ONI, has an ELI characteristic 
of El Niño.

The comparison of ONI and ELI highlights that the utility of the different 
indices depends on their physical basis. Events characterized as Modoki or 
central Pacific El Niño are categorically similar from an atmospheric 
convection perspective, that is, in terms of ELI (Figure 1). However, the 
extreme El Niños in 1982–1983 and 1997–1998 are categorically distinct 
from others. Such a large variation in the longitude of convective heating is 
needed to alter the extratropical wave‐train response (Hoerling & Kumar, 
2002). Indeed, the extreme 1982–1983 and 1997–1998 El Niño events were 
characterized by an eastward shift and expansion in convection that was 
substantially greater (~20° longitude) than that during the 2015–2016 El 
Niño, potentially inducing a shift in the wave‐train response that is subtle on 
the global scale (Figure S4), yet impactful for Western U.S. precipitation 
(Figure S1). Other factors, including internal atmospheric variability, may 
also contribute to differences in the Western U.S. precipitation response 
during El Niño events (Chen & Kumar, 2018; Deser et al., 2018).

Like ONI, the Southern Oscillation Index is unable to capture the large 
difference in longitude of convection between the extreme 1982–1983 and 
1997–1998 El Niño events and the 2015–2016 El Niño (Figure S5), likely due 
to the use of spatially fixed points in the Southern Oscillation Index. We 
explored other conventional indices corresponding to SST anomalies 
averaged over boxes in the eastern, east‐central, and central Pacific using 
observations from 1871–2017 (Figure S6). The average longitude of deep 
convection (represented by ELI) is not a unique function of Niño4, let alone a 
monotonic one. The lack of a unique relationship between Niño4 (or ONI) and
ELI is also evident in climate simulations (Figure S6).

Familiar boreal winter impacts, including precipitation deficits over South 
America and Indonesia (Figures 2 and S7) and warming across North America
(Figure S8), were recovered using ELI in the linear regressions commonly 
used to infer remote impacts of ENSO. In some regions, ELI is a more 
sensitive predictor of observed winter precipitation than ONI, particularly 
over California, the Southeastern United States, East Africa, and Southeast 
China (Figure S9–S11 and Tables S1–S2). Similar results were obtained for 
nonlinear regressions (Tables S1–S2) and for CESM‐LENS (Figure S12 and 
Table S3–S4). In addition, the diversity of ENSO substantially impacts North 
Atlantic and Western North Pacific tropical cyclone activity (e.g., Patricola et 



al., 2016, 2018, and references therein). Again, ELI quantifies these 
relationships as well as ONI (Table S5).

Figure 2

 (a) Observed El Niño‐Southern Oscillation impacts on global land precipitation (mm/month), inferred 
from the slope of the linear regression of DJF precipitation anomalies against ELI. (b) As in (a), but for 
ONI. Regression slopes are multiplied by the range of each index. DJF = December–February; ELI = 
ENSO Longitude Index; ONI = Oceanic Niño Index.

To understand how ELI captures multiple facets of ENSO diversity in a single 
index, we explored winter averages of the first two principal components 
(PC1 and PC2) of tropical Pacific SST (Figure 3), which together account for 
81% of observed SST variance. Conventional ENSO indices can be well‐
represented by linearly regressing the index values onto the PC1‐PC2 plane 
(Takahashi et al., 2011). Each index corresponds to different rotations of the 
coordinate axes in the PC1‐PC2 plane (Dommenget et al., 2013; Takahashi et
al., 2011), meaning each index represents a particular flavor of El Niño, with 
no single index able to characterize the entire ENSO spectrum. For example, 
the variation between the extreme (1982–1983 and 1997–1998) El Niños and
the 2015–2016 El Niño is orthogonal to the variability explained by ONI.



Figure 3

Scatter diagrams of the first two principal components of tropical Pacific SST, averaged December–
February of each year (filled circles), color‐coded by ENSO Longitude Index. ENSO Longitude Index is 
also represented as a curved coordinate axis (black) fitted by nonlinear regression to PC1 and PC2. (a) 
Observations, showing additional coordinate axes (fitted by multiple linear regression) for EMI (green), 
ONI (red), and rainfall anomalies in the Niño 3 region (Rain3; blue). The goodness of fit to each index is
shown. Gray numbers indicate the last two digits of selected years. (b) Simulated historical climates 
from CESM‐LENS. (c) Projected future climates from CESM‐LENS. (d) Spatial patterns of observed SST 
associated with EOF1 and EOF2, corresponding to PC1 and PC2, respectively. ENSO = El Niño‐Southern
Oscillation; CESM = Community Earth System Model; PC = principal component; SST = sea surface 
temperature; ONI = Oceanic Niño Index; EMI = El Niño Modoki Index.

On the other hand, the axis of ELI is curved such that it is aligned in the 
direction of average local variations within the PC1‐PC2 plane (black curve in 
Figure 3a; fitted by regressing PC1 and PC2 onto parametric functions shown
in Figure S13), making it the first single index capable of characterizing the 
diversity of ENSO that has previously required multiple indices. Similar 
results were obtained in historical and future climate simulations from CESM‐
LENS (Figures 3b and 3c). In this sense, ELI unifies many of the indices 
proposed to characterize El Niño, including the Trans Niño Index (Trenberth 
& Stepaniak, 2001) and rainfall in the Niño 3 box (Rain3 here; Cai et al., 
2014). Like the Trans Niño Index, Rain3 characterizes strong and extreme El 
Niños (Figure 3a). Similarly, other metrics subset strong or impactful ENSO 
events according to outgoing longwave radiation (Chiodi & Harrison, 2013, 



2015) or SST thresholds (Johnson & Kosaka, 2016), within spatially fixed 
longitude boxes. The EMI is sensitive to Central Pacific events (Figure 3a).

Conventional ENSO indices are calculated from SST anomalies. However, the 
anomaly required to exceed the convective threshold varies with the 
background climatology (e.g., Figures 4a and 4b). The seasonal cycle of the 
cold‐tongue has a warming phase that propagates westward and reaches the
central‐Pacific in boreal summer (Horel, 1982). This results in colder central‐
Pacific SST (near 180–150°W) during winter compared to summer, despite a 
warmer cold‐tongue off the South American coast in winter (cf. Figures 4a 
and 4b). Therefore, a warmer central‐Pacific SST anomaly is required to 
obtain similar ELI in winter (cf. Figures 4c and 4d; for 164 < ELI < 184). 
Consequently, winter SST anomalies project strongly onto the Modoki (EMI) 
pattern associated with EOF2 (e.g., Figure 3d). However, for the same range 
of ELI, summer SST anomalies project only weakly onto the EOF2 pattern, 
which is consistent with the narrower range of ELI represented by Modoki 
events in summer (Figure 1b, red circles). This illustrates the ability of ELI to 
account for changes in the SST seasonal cycle that are missed by 
conventional ENSO indices.

Figure 4

Composite averages of SST observations. (a) Boreal winter (DJF) and (b) summer (JJA) SST 
climatologies. (c) winter and (d) summer SST anomalies averaged within six ELI groups (spanning 144 
to 204°E). Anomalies are defined relative to the background seasonal climatologies indicated in the 
top two panels. The number of months in each composite is indicated in the upper left corner of each 
panel. SST = sea surface temperature; DJF = December–February; JJA = June–August; ELI = El Niño‐
Southern Oscillation Longitude Index.

Next, we analyzed CESM‐LENS historical and RCP8.5 simulations to quantify 
future ENSO projections and to demonstrate how such interpretations 
depend on whether the ENSO metric accounts for the nonlinear convective 
response to SST and changes in climatological SST and its seasonal cycle. ELI
reveals that the tails of the ENSO spectrum—including extreme El Niño (ELI 



> 185°E, e.g., the 1982–1983 and 1997–1998 events), Modoki El Niño (160°E
< ELI < 175°E), and La Niña—are projected to become more frequent in the 
future at the expense of neutral‐ENSO conditions, which is not apparent 
using conventional indices for reasons explained below (Figures 5 and S6). 
This change occurs during boreal winter and summer and the peak Atlantic 
hurricane season (Tables S6–S8). Extreme December–February El Niño 
events are projected to become over two times more frequent during 2006–
2099 than 1921–2005—increasing from a one‐in‐60 to a one‐in‐26 year event
(Table S7), and three times more frequent during 2050–2100 than 1950–
2005. Furthermore, the RCP8.5 climate is projected to bring novel winter 
extreme El Niño events, with ELI reaching 215–220°E. These changes in El 
Niño may be linked with a projected increase in western U.S. wet seasons in 
CESM‐LENS (Swain et al., 2018).

Figure 5

Relative probability of December–February (a) Niño3 index, (b) ONI, (c) Niño4 index, and (d) ELI (°E) 
from the Community Earth System Model Large Ensemble Project historical (blue) and RCP8.5 (red) 
simulations, with overlap indicated by purple. The y axis is on log‐scale to illustrate changes in tails. 
ENSO = El Niño‐Southern Oscillation; ONI = Oceanic Niño Index.

These results are consistent with multimodel ensembles from the Climate 
Model Intercomparison Project (CMIP3 and CMIP5), which were analyzed 
using separate indices for extreme El Niño and La Niña events (Cai et al., 



2014, 2015). As in those studies, we found that the background 
climatological gradient of SST weakens in the CESM‐LENS RCP8.5 
simulations, allowing more frequent SST above the convective threshold in 
the cold‐tongue region in late winter through summer (Figure S14). Likewise,
conventional metrics fail to capture the changes in ENSO extremes with 
global warming, because they are calculated from anomalies that subtract 
the background SSTs. Although ONI captures the projected future increase in
the occurrence of moderate‐strong El Niño events, it misses the projected 
increase in extreme events based on ELI, instead indicating a future 
decrease (where ONI exceeds 3; Figure 5b).

5 Discussion and Conclusions

We presented a simple yet effective ENSO index (ELI) that describes the 
oscillation in eastward extent and location of the warm‐pool, the ascending 
branch of the Walker Circulation, and associated deep convection. ELI is 
effective in characterizing the diversity of ENSO events, because it accounts 
for the nonlinear, threshold‐like response of deep convection to SST. The 
transformation of the ENSO index variable from SST to longitude allows ELI 
to capture this diversity for the first time in a single index. Modoki (central 
Pacific) and extreme (east Pacific) El Niño simultaneously increase in 
frequency in projected warmer climates, as both central and eastern Pacific 
SSTs shift closer to the convective threshold, which itself increases.

The longitude of tropical Pacific deep convection provides a critical link 
between SST patterns, ENSO dynamics, and remote climate impacts of ENSO
(Hoerling & Kumar, 2002). Paleoclimate records suggest warmer climates 
have weaker SST gradients (Fedorov et al., 2006; Manucharyan & Fedorov, 
2014). Our results indicate that the gap between east‐Pacific SSTs and the 
convective threshold narrows but does not close by the end of the 21st 
century, permitting ENSO amplitude to increase as anomalous east‐Pacific 
convection occurs more readily. From this new perspective, weaker SST 
gradients are not necessarily inconsistent with varved sediments and fossils 
(Galeotti et al., 2010; Ivany et al., 2011) and coupled global climate models 
(Huber & Caballero, 2003) indicating robust ENSO‐like variability in middle 
and high latitudes in warmer paleoclimates.

With its direct connection to convective heating, ELI reflects the emerging 
energetic perspective on climate dynamics, which is leading to a powerful 
unified understanding of diverse circulations patterns including the 
Intertropical Convergence Zone and monsoons (Biasutti et al., 2018; T. 
Schneider et al., 2014). The simplicity and physical basis of ELI makes it 
useful for operations and applied research, including the evaluation of 
coupled climate models. A preliminary analysis of the preindustrial control 
simulation of E3SMv1 suggests that although the model represents the 
observed distribution of ONI well, Modoki El Niño events, characterized by ELI
of 165–170°E, appear underrepresented (Figure S15), with the caveat that 
preindustrial SST observations are limited. In addition, parameterizations of 



deep convection and clouds play an important role in the ability of coupled 
climate models to represent ENSO events (Bellenger et al., 2014; Neale et 
al., 2008). The relevance of ELI to deep convection is desirable for such 
evaluations. Finally, we note that ELI is a continuous time series, the 
dynamics of which can be analyzed using power spectra or time‐delay 
embedding methods (Chang et al., 1995; Tziperman et al., 1995), and 
presents an interesting target for theoretical models (Battisti & Hirst, 1988; 
Suarez & Schopf, 1988).

The 2015–2016 El Niño is part of the broader ENSO spectrum according to 
ELI, but would be categorized as an extreme event, comparable to the 1997–
1998 and 1982–1983 events, by conventional metrics. The unusual nature of
the 1982–1983 and 1997–1998 events is overlooked by such metrics, and 
suggests that such events commonly called canonical El Niño are actually 
extreme events. The 1982–1983 and 1997–1998 events may already reflect 
the projected future increase in extreme El Niño events in response to a 
warming climate (Figure S16d), a change not readily apparent in the limited 
observational record (Figure S16b) and poorly reflected in ONI (Figure S16c). 
Understanding the threshold‐like behavior of these extreme El Niño events, 
and related ocean‐atmosphere feedbacks, is key to advancing predictions of 
ENSO, its impacts on regional precipitation extremes and tropical cyclones, 
and future change.
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