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Engineering ER-stress dependent non-
conventional mRNA splicing
Weihan Li1,2*, Voytek Okreglak1,2†, Jirka Peschek1,2, Philipp Kimmig1,2‡,
Meghan Zubradt2,3, Jonathan S Weissman2,3, Peter Walter1,2*

1Department of Biochemistry and Biophysics, University of California, San Francisco,
San Francisco, United States; 2Howard Hughes Medical Institute, San Francisco,
United States; 3Department of Cellular and Molecular Pharmacology, University of
California, San Francisco, San Francisco, United States

Abstract The endoplasmic reticulum (ER) protein folding capacity is balanced with the protein

folding burden to prevent accumulation of un- or misfolded proteins. The ER membrane-resident

kinase/RNase Ire1 maintains ER protein homeostasis through two fundamentally distinct processes.

First, Ire1 can initiate a transcriptional response through a non-conventional mRNA splicing reaction

to increase the ER folding capacity. Second, Ire1 can decrease the ER folding burden through

selective mRNA decay. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two Ire1

functions have been evolutionarily separated. Here, we show that the respective Ire1 orthologs

have become specialized for their functional outputs by divergence of their RNase specificities. In

addition, RNA structural features separate the splicing substrates from the decay substrates. Using

these insights, we engineered an S. pombe Ire1 cleavage substrate into a splicing substrate, which

confers S. pombe with both Ire1 functional outputs.

DOI: https://doi.org/10.7554/eLife.35388.001

Introduction
In eukaryotes, the vast majority of secretory and transmembrane proteins are folded in the endoplas-

mic reticulum (ER). The ER protein folding homeostasis is maintained by a collective of signaling

pathways, termed the unfolded protein response (UPR) (Walter and Ron, 2011; Ron and Walter,

2007). The most evolutionarily conserved branch of the UPR is mediated by the ER-transmembrane

kinase/endoribonuclease (RNase) Ire1. Direct binding of unfolded proteins to Ire1’s ER lumenal

domain triggers Ire1 to oligomerize and form foci (Gardner and Walter, 2011; Karagöz et al.,

2017; Credle et al., 2005; Aragón et al., 2009). In turn, Ire1 oligomerization activates Ire1’s cyto-

solic kinase/RNase domain (Korennykh et al., 2009), which restores ER homeostasis through two

functional outputs. First, Ire1 initiates a process of non-conventional cytosolic splicing of XBP1

mRNA (in metazoans) or HAC1 mRNA (in S. cerevisiae). Translation of the spliced mRNA produces a

transcription factor Xbp1 (Hac1 in S. cerevisiae), which drives a large transcriptional program to

adjust the ER’s protein-folding capacity according to the protein folding load in the ER lumen

(Cox et al., 1993; Mori et al., 1993; Yoshida et al., 2001; Calfon et al., 2002; Sidrauski et al.,

1996). Second, Ire1 can reduce the ER folding burden by cleaving a set of mRNAs encoding ER-tar-

get proteins. The initial Ire1-mediated cleavage leads to mRNA degradation, in a process termed

regulated Ire1-dependent decay (RIDD) (Hollien and Weissman, 2006; Hollien et al., 2009;

Kimmig et al., 2012). The mechanism that distinguishes the non-conventional mRNA splicing from

RIDD has largely remained unknown.

Interestingly, the two Ire1 modalities co-exist in metazoan cells (Hollien and Weissman, 2006;

Hollien et al., 2009; Moore and Hollien, 2015), yet are evolutionarily separated in the two yeast

species, S. cerevisiae and S. pombe. The UPR in S. cerevisiae engages Ire1 exclusively in mRNA
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splicing, whereas in S. pombe it engages Ire1 exclusively in RIDD. There is no detectable RIDD in S.

cerevisiae and no HAC1/XBP1 ortholog in S. pombe, nor is there a corresponding transcriptional

program (Niwa et al., 2005; Kimmig et al., 2012). It is intriguing to note that the fundamental task

of maintaining ER protein homeostasis can be achieved by two radically different processes cata-

lyzed by two distantly related Ire1 orthologs. The two yeast species, S. cerevisiae and S. pombe,

therefore provide a unique opportunity to dissect the two Ire1 functional outputs, which has

remained an unsolved challenge in metazoans. Here, we set out to exploit this opportunity.

Results

S. pombe and S. cerevisiae Ire1’s cytosolic domains are functionally
divergent
Despite their common role as UPR effectors and conserved domain structures (Figure 1A), S. pombe

and S. cerevisiae Ire1 orthologs share 29% sequence identity, and sequence variation may confer

Ire1’s functional divergence. To explore this notion, we swapped the homologous IRE1 genes

between the two yeast species by expressing S. cerevisiae Ire1 in Dire1 S. pombe cells and, vice

versa, S. pombe Ire1 in Dire1 S. cerevisiae cells. To this end, we constructed strains in which we inte-

grated the foreign IRE1 genes into the genomes of the other yeast such that their expression was

regulated by the host species-endogenous IRE1 promoters and the resulting mRNAs contained host

species-endogenous 5’ and 3’ untranslated regions (UTR). The IRE1 genes contained sequences

encoding FLAG-tags that we inserted into an unstructured loop in their ER-lumenal domains in a

position known to preserve Ire1 function (Rubio et al., 2011). In both yeasts, the foreign genes

expressed Ire1 at comparable levels (Figure 1B and C, lanes 3). However, when grown on plates

containing tunicamycin, a drug that blocks N-linked glycosylation and induces ER stress, the foreign

Ire1s failed to support cell growth of either S. pombe and S. cerevisiae cells (Figure 1D and E, lanes

3), indicating that S. pombe and S. cerevisiae Ire1s are not interchangeable.

There are two plausible, not mutually exclusive scenarios that could explain the failure of cross-

species complementation: (i) the foreign Ire1 lumenal domains fail to sense ER stress, or (ii) the for-

eign Ire1 cytosolic domains fail to recognize species-appropriate RNA substrates. Since the Ire1

lumenal domains have lower sequence identity (21%) than the cytosolic kinase/RNase domains

(45%), we first swapped the Ire1 lumenal domains, generating chimeras with foreign lumenal

domains and host species-endogenous transmembrane/cytosolic domains. Both chimeras supported

growth on tunicamycin plates, suggesting that the divergent Ire1 lumenal domains share a con-

served mechanism to sense ER stress and transduce the signal across ER membrane (Figure 1D and

E, lanes 4). Next, we swapped the Ire1 transmembrane/cytosolic domains. These Ire1 chimeras failed

to restore growth on tunicamycin plates of both S. pombe and S. cerevisiae cells (Figure 1D and E,

lanes 5), indicating that the Ire1 transmembrane/cytosolic domains cause the Ire1 functional incom-

patibility when expressed in the opposing yeast. As a control, we expressed FLAG-tagged host spe-

cies-endogenous Ire1s into Dire1 strains of both yeasts. These strains phenocopied the wild type

(WT) cells on tunicamycin plates (Figure 1D and E, lanes 6). We again confirmed by immunoblotting

that all of the FLAG-tagged Ire1 constructs were stably expressed at near-endogenous level in both

yeasts (Figure 1B and C).

We next asked whether the Ire1 constructs would process the host species-appropriate RNA sub-

strates in S. pombe and S. cerevisiae cells. To this end, we performed Northern blot and qPCR analy-

ses to measure cleavage and subsequent down-regulation of GAS2 mRNA, which is a RIDD target in

S. pombe cells (Kimmig et al., 2012). We performed the Northern blot in Dski2 S. pombe, in which

the RNA 3’ to 5’ decay machinery is impaired so that the GAS2 mRNA 5’ cleavage fragments can be

detected in the gel. Of the different Ire1 variants, only the Ire1 chimera bearing the S. pombe cyto-

solic domain cleaved the GAS2 mRNA (Figure 1—figure supplement 1A) and decreased the mRNA

level (Figure 1F), consistent with the growth phenotype. In S. pombe, Ire1 also cleaves the BIP1

mRNA within its 3’UTR, producing a truncated mRNA with an increased half-life (Kimmig et al.,

2012). To assess BIP1 mRNA processing, we performed qPCR analysis using two pairs of primers,

one pair bracketing the Ire1 cleavage site and the other pair bracketing a region upstream of it

(Figure 1G, schematic insert, black vs. grey arrows), reporting on uncleaved only and both BIP1

mRNA species (i.e. total BIP1 mRNA), respectively. As expected, upon tunicamycin-induced ER
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Figure 1. S. pombe and S. cerevisiae Ire1 have functionally conserved stress sensing ER-lumenal domains and

divergent cytosolic domains. (A) Cartoon illustration of lumenal domain (LD), transmembrane/cytosolic linker

domain (TMD + L) and kinase/RNase domain (KR) for S. pombe (Sp) (blue) and S. cerevisiae (Sc) Ire1 (orange). (B,

C) Expression levels of S. cerevisiae Ire1 (128 kD), S. cerevisiae lumenal S. pombe cytosolic Ire1 (126 kD), S. pombe

lumenal S. cerevisiae cytosolic Ire1 (125 kD) and S. pombe Ire1 (122 kD) in S. pombe (B) and S. cerevisiae cells (C).

Figure 1 continued on next page
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stress in WT cells uncleaved BIP1 mRNA levels decreased while total BIP1 mRNA level increased

(Figure 1G, lanes 1, 2). As shown in Figure 1G, Ire1 variants bearing the S. pombe cytosolic domain

processed BIP1 mRNA, whereas Ire1 variants bearing the S. cerevisiae cytosolic domain did not. This

result was further validated by Northern blot analysis of BIP1 mRNA (Figure 1—figure supplement

1B).

Correspondingly in S. cerevisiae cells, we examined HAC1 mRNA splicing by PCR across its splice

junction. Consistent with the cell growth phenotype on tunicamycin, the two Ire1 constructs bearing

the S. pombe cytosolic domains did not splice HAC1 mRNA in S. cerevisiae cells (Figure 1H, lanes

6, 10). By contrast, the Ire1 chimera bearing the S. pombe lumenal domain and S. cerevisiae cyto-

solic domains spliced HAC1 mRNA (Figure 1H, lane 8), albeit at reduced efficiency compared to WT

S. cerevisiae Ire1 (Figure 1H, lane 2). We confirmed the activity of the various Ire1 constructs in

HAC1 mRNA splicing by monitoring UPR dynamics with a HAC1 mRNA-derived splicing reporter

(Figure 1—figure supplement 2A and B) previously described (Aragón et al., 2009; Zuleta et al.,

2014). The reduced HAC1 mRNA splicing efficiency observed for Ire1 bearing the S. pombe lumenal

domain (Figure 1H, lane 8, and Figure 1—figure supplement 2B, column 4) can be explained by

the observation that the S. pombe lumenal domain mediates a lower degree of oligomerization than

its S. cerevisiae counterpart, as demonstrated by the reduced ability of Ire1-mCherry fusion con-

structs to form foci visible by fluorescent microscopy (Figure 1—figure supplement 2C). Consistent

with previous studies (Aragón et al., 2009), the insertion of the mCherry module into the Ire1 cyto-

solic linker, which connects Ire1 transmembrane domain and cytosolic kinase/RNase domain, did not

affect its ability to sustain cell growth (Figure 1—figure supplement 2D).

Ire1 kinase/RNase domains have distinct RNase specificity
To further confine the Ire1 region giving rise of the species differences in outputs, we expressed an

Ire1 chimera that, in addition to the S. cerevisiae lumenal domain, also included the S. cerevisiae

transmembrane and cytosolic linker domains fused to the S. pombe kinase/RNase domain. This chi-

meric Ire1 weakly rescued cell growth and mildly restored the HAC1 mRNA splicing upon ER stress

(Figure 2A lane 4, and Figure 2B lane 6), compared to the chimera containing S. pombe transmem-

brane and cytosolic linker domains, although both constructs were expressed at similar protein levels

(Figure 2C). This result indicates that the major difference lies in the kinase/RNase domains, but that

the transmembrane and cytosolic linker domains can afford a marginal rescue, most likely by reintro-

ducing cytosolic linker elements that facilitate HAC1 mRNA docking (van Anken et al., 2014).

To study the differences by which the Ire1 kinase/RNase domains select their respective substrate

mRNAs, we purified recombinant S. cerevisiae and S. pombe kinase/RNase domains and performed

in vitro RNA cleavage assays. The S. cerevisiae Ire1 kinase/RNase efficiently cleaved a cognate 29-

nucleotide RNA hairpin derived from the 3’ splice site of S. cerevisiae HAC1 mRNA (Figure 2D). By

contrast, under the same conditions the S. pombe Ire1 kinase/RNase cleaved the S. cerevisiae HAC1

mRNA-derived substrate ~60 fold slower (Figure 2D). Reciprocally, the S. pombe Ire1 kinase/RNase

Figure 1 continued

Extracts were immunoblotted for 3xFLAG-Ire1. Ponceau stain (B) or Pgk1 (C) was used as loading control. (D, E)

Cell growth assay on tunicamycin (Tm) plates. Serial dilutions of S. pombe (D) or S. cerevisiae (E) cells, which

expressed the indicated Ire1 constructs, were spotted onto plates containing 0.05 mg/ml (D) or 0.1 mg/ml (E) of

Tm. Plates were photographed after incubation at 30˚C for 4 days. (F, G) qPCR assay for S. pombe GAS2 (F) or

BIP1 (G) mRNA fold change upon 1 mg/ml Tm treatment for 1 hr. Experiments were done in triplicates. In (G),

uncleaved (dark grey) or total (light grey) BIP1 mRNA was detected using the corresponding PCR primers

illustrated as arrows in the schematic insert. The red dashed line indicates the Ire1 cleavage position on BIP1

mRNA. (H) Detection of S. cerevisiae HAC1 mRNA splicing by RT-PCR across the splice junction. Cells were

treated with or without 1 mg/ml of Tm for 1 hr.

DOI: https://doi.org/10.7554/eLife.35388.002

The following figure supplements are available for figure 1:

Figure supplement 1. Ire1 chimeras with S. pombe cytosolic domain cleave BIP1 and GAS2 mRNA in S. pombe.

DOI: https://doi.org/10.7554/eLife.35388.003

Figure supplement 2. Ire1 oligomeric state determines the HAC1 mRNA splicing dynamics in S. cerevisiae cells.

DOI: https://doi.org/10.7554/eLife.35388.004
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Figure 2. S. pombe and S. cerevisiae Ire1 have distinct RNase specificity. (A) Growth assay for S. cerevisiae cells expressing indicated Ire1 constructs on

Tm plates, as Figure 1E. (B) Measuring HAC1 mRNA splicing, as Figure 1H. (C) Comparing the expression levels of the indicated 3xFLAG-tagged Ire1

chimeras using immunoblotting. Ponceau stain was used as loading control. (D, E, F, G) In vitro RNA cleavage assays. 5’-radiolabeled hairpin RNA

substrates were incubated with 12.5 mM S. cerevisiae or S. pombe Ire1 kinase/RNase domains (KR) at 30˚C for the indicated time. (D) Hairpin RNA

Figure 2 continued on next page
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efficiently cleaved a cognate 32-nucleotide RNA hairpin derived from the cleavage site in S. pombe

BIP1 mRNA and cognate RNA hairpins derived from the RIDD cleavage sites in S. pombe

SPAC4G9.15 and PLB1, whereas S. cerevisiae Ire1 kinase/RNase cleaved the BIP1 mRNA-derived

substrate and the S. pombe SPAC4G9.15 >500 fold slower and PLB1 mRNA-derived hairpins ~100

fold slower (Figure 2E,F,G). These in vitro data validate and expand the conclusions from the experi-

ments conducted in vivo, suggesting that the different Ire1 RNase specificities separate their func-

tional outputs and that they are not dependent on other cellular factors such as associated proteins

or lipids.

Ire1 kinase/RNase domains recognize distinct RNA sequence and
structural features
Ire1 recognizes its substrates based on both RNA sequence and structural features. The required

RNA sequence motifs were characterized previously and differ between species: for S. cerevisiae

Ire1 a nucleotide sequence of CNG|CNGN or CNG|ANGN (‘|’ indicates the Ire1 cleavage position)

situated in a strictly conserved 7-membered loop is required (Gonzalez et al., 1999). By contrast,

for S. pombe Ire1 a three-nucleotide sequence of UG|C is required and no additional structural fea-

tures have yet been characterized (Kimmig et al., 2012; Guydosh et al., 2017). To fill this gap in

our knowledge, we examined the RNA secondary structures in vivo. To this end, we treated the S.

pombe cells with dimethyl sulfate (DMS), which allows detection of exposed (unpaired and not

blocked by proteins) adenine/cytosine residues (illustrated as green dots in Figure 3A). RNA was

extracted, reverse transcribed and deep-sequenced. The DMS modifications stop reverse transcrip-

tase and generate truncated DNA fragments that we mapped through deep sequencing. We then

used identified unpaired bases to guide in silico RNA secondary structure predictions

(Rouskin et al., 2014). For example, near one of the GAS2 mRNA cleavage sites, five bases, labeled

in green in Figure 3B, have high DMS modification signals. In the RNA folding software mfold

(Zuker, 2003), we provided the constraint such that these five residues are unpaired and obtained

the predicted RNA secondary structure (Figure 3C). In this structure, the GAS2 mRNA forms a 9-

membered stem loop with the cleavage consensus sequence UG|C located near the center of the

loop. In similar analyses of 13 additional S. pombe Ire1 substrate mRNA cleavage sites previously

identified by both Kimmig, Diaz et al. and Guydosh et al. (Guydosh et al., 2017; Kimmig et al.,

2012), we found in all of them cleavage sites located near the center of loops in RNA stem-loop

structures (Figure 3—figure supplement 1A,B). By contrast to those found in S. cerevisiae HAC1

mRNA, the predicted loops were of variable sizes, with the smallest being a 3-membered loop (e.g.,

the SPAC4G9.15 mRNA cleavage site) and the largest being a 9-membered loop (e.g., the BIP1

mRNA cleavage site). We summarize that S. pombe Ire1 is tolerant to loop size variation, while the

S. cerevisiae Ire1 stringently recognizes 7-membered stem loops. Thus, the S. cerevisiae and S.

pombe Ire1 recognize distinct RNA sequence and structural features (Figure 3D).

A prediction of this model is that RNAs that combine S. cerevisiae and S. pombe Ire1 motifs

should be substrates to Ire1 from either species. To test this prediction, we analyzed a substrate sat-

isfying criteria for both species. Specifically, we examined a substrate predicted to form a 7-mem-

bered stem loop with the sequence CUG|CAGC, meeting the criteria of both the S. cerevisiae Ire1

motif (CNG|CNGN) and the S. pombe Ire1 motif (UG|C). Indeed, both enzymes cleaved this RNA in

vitro with similar efficiency, in strong support of our model (Figure 3E).

We further challenged the model in vivo by modifying the S. pombe BIP1 mRNA. First, we

replaced the Ire1 cleavage site in the 3’ UTR of BIP1 mRNA with a sequence derived from the S. cer-

evisiae HAC1 mRNA 5’ splice site. This modification is predicted to change the endogenous 9-

Figure 2 continued

substrate derived from the 3’ splice site of S. cerevisiae HAC1 mRNA. The calculated kobs is 9.4 ± 0.9 � 10�4 s�1 for S. cerevisiae Ire1 KR and

0.15 ± 0.01 � 10�4 s�1 for S. pombe Ire1 KR. (E) Hairpin RNA substrate derived from the Ire1 cleavage site on S. pombe BIP1 mRNA. The calculated

kobs is 0.079 ± 0.0006 � 10�4 s�1 for S. cerevisiae Ire1 KR and 37.3 ± 4.4 � 10�4 s�1 for S. pombe Ire1 KR. (F) Hairpin RNA substrate derived from the

Ire1 cleavage site on S. pombe SPAC4G9.15 mRNA, encoding a gene of unknown function. The calculated kobs was below our detection limit for S.

cerevisiae Ire1 KR and 15.6 ± 2.2 � 10�4 s�1 for S. pombe Ire1 KR. (G) Hairpin RNA substrate derived from the Ire1 cleavage site on S. pombe PLB1

mRNA. The calculated kobs is 0.2 ± 0.003 � 10�4 s�1 for S. cerevisiae Ire1 KR and 19.0 ± 2.5 � 10�4 s�1 for S. pombe Ire1 KR.

DOI: https://doi.org/10.7554/eLife.35388.005
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Figure 3. S.pombe and S. cerevisiae Ire1 recognize distinct RNA sequence and structural features. (A) Illustration of RNA structural mapping by DMS

modifications. Dimethyl sulfate (DMS) allows detection of unpaired adenine and cytosine RNA bases (green dots). (B) The normalized DMS modification

signals near the Ire1 cleavage site on S. pombe GAS2 mRNA (cleavage site is indicated by the red dashed line). The positions with high DMS

modification signals are labeled in green and the previously identified S. pombe Ire1 UG|C motif is labeled in red. (C) In sillico RNA secondary structure

Figure 3 continued on next page
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membered loop to a 7-membered one. The new construct (‘BIP1-HAC1 hybrid mRNA’) contained

the sequence AG|C, which is different from the S. pombe Ire1 sequence motif UG|C. In support of

our model, S. pombe Ire1 failed to cleave the BIP1-HAC1 hybrid mRNA upon UPR induction

(Figure 3G, bar 3 and 4, Figure 3—figure supplement 2A,B). Next, we mutated the non-cognate A

to a cognate U, such that the S. pombe Ire1 cleavage motif UG|C was restored. Indeed, the single

nucleotide change restored the S. pombe Ire1 cleavage (Figure 3G, bar 5 and 6, Figure 3—figure

supplement 2C). Taken together, we conclude that the Ire1 orthologs in S. cerevisiae and S. pombe

have divergent substrate preferences.

Engineering non-conventional mRNA splicing in S. pombe
While these results revealed the differences between the S. cerevisiae and S. pombe UPR at the

step of Ire1 cleavage, it was not clear what determines the fates of the RNA cleavage fragments,

that is RNA ligation in S. cerevisiae and RNA degradation in S. pombe. To address this question, we

tested whether S. pombe cells contain functional mRNA ligation machinery. To this end, we

expressed the S. cerevisiae HAC1 mRNA-derived splicing reporter (Figure 1—figure supplement

2A) in Dire1 S. pombe cells, bearing genomic copies of various Ire1 constructs. A chimeric Ire1 bear-

ing the S. pombe cytosolic domain failed to splice the reporter mRNA, in agreement with our model

(Figure 4A, lane 5 and 6). Interestingly, both Ire1 constructs bearing the S. cerevisiae cytosolic

domains successfully spliced the reporter mRNA (Figure 4A, lanes 1–4). Thus, the S. pombe cells

ligated the mRNA cleavage fragments as long as the correct RNA substrates were provided. This

result suggested that features in the RNA substrates determine their fate post Ire1 cleavage.

Recently, we reported that in mammalian cells the XBP1 mRNA actively participates in the splic-

ing reaction. In particular, a conformational RNA rearrangement promotes XBP1 mRNA intron ejec-

tion and exon ligation (Peschek et al., 2015). We wondered if this mechanism could be the factor

that diverges the fates of the RNA cleavage fragments. To address this question, we aimed to syn-

thetically create the Ire1-dependent non-conventional mRNA splicing reaction in S. pombe cells initi-

ated by endogenous S. pombe Ire1. First, we identified the analogous RNA conformational

rearrangement in S. cerevisiae HAC1 mRNA. To obtain a HAC1-derived RNA splicing cassette opti-

mized for S. pombe Ire1, we then engineered the two Ire1-cleavage sites at the splice junctions to

match the S. pombe Ire1 UG|C motif and pruned the intron (originally 252 bp in S. cerevisiae) to the

very residues predicted to be critical for the mRNA conformational rearrangement (30 bp). Finally,

we inserted the S. pombe-optimized mRNA splicing cassette into S. pombe BIP1 mRNA, replacing

its endogenous Ire1 cleavage site (Figure 4B, Figure 4—figure supplement 1). Indeed, we found

that the BIP1 mRNA containing the synthetic splicing cassette was spliced in S. pombe upon induc-

tion of ER stress (Figure 4C lane 2). Sequencing of the lower band in Figure 4C (lane 2) verified the

designed identity of the splicing product (Figure 4D). To show that insertion of the splicing cassette

triggers mRNA splicing independent of particular flanking elements, we inserted the splicing cas-

sette into the 3’UTR of another synthetic mRNA. In this case, we constructed a synthetic mRNA con-

taining the 5’ UTR of tubulin (NDA2) mRNA, the open reading frame of a GAS2 mutant mRNA in

which all of its RIDD cleavage sites were mutated, and the 3’ UTR of NDA2 mRNA with the inserted

splicing cassette (Figure 4E). As for the mRNA described above, this construct was efficiently spliced

Figure 3 continued

prediction of the Ire1 cleavage site on GAS2 mRNA. Structure prediction was constrained by forcing the positions with high DMS modification signals

(green) to be unpaired. (D) RNA sequence and structural motifs recognized by the S. cerevisiae and S. pombe Ire1. (E) In vitro cleavage assay using an

RNA hairpin derived from human XBP1 mRNA 3’ splice site, which is predicted to be a shared substrate for S. cerevisiae and S. pombe Ire1 KR. The

calculated kobs is 16.7 ± 2.3 � 10�4 s�1 for S. cerevisiae Ire1 KR and 38.9 ± 4.0 � 10�4 s�1 for S. pombe Ire1 KR. (F) Illustrations of the S. pombe BIP1

mRNA variants and (G) their uncleaved (dark grey) or total (light grey) mRNA fold change upon ER stress in S. pombe cells. Experiments were done in

triplicates.

DOI: https://doi.org/10.7554/eLife.35388.006

The following figure supplements are available for figure 3:

Figure supplement 1. S. pombe Ire1 cleaves at UG|C positioned near the center of loops in RNA stem-loop structures.

DOI: https://doi.org/10.7554/eLife.35388.007

Figure supplement 2. Ire1 cleavage sites on BIP1 mRNA variants.

DOI: https://doi.org/10.7554/eLife.35388.008
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Figure 4. Engineering the Ire1-mediated non-conventional mRNA splicing in S. pombe cells. (A) Measuring the non-conventional mRNA splicing in S.

pombe cells, which were transformed with the S. cerevisiae HAC1 mRNA splicing reporter (SR) and the indicated Ire1 constructs. Cells were treated

with 1 mg/ml Tm for 1 hr. (B) Illustration of the engineered S. pombe BIP1 mRNA splicing variant. (C) Measuring the non-conventional mRNA splicing of

the engineered S. pombe BIP1 mRNA splicing variant. Experimental conditions are the same as those for Figure 4A. (D) Sequencing reads of the

spliced BIP1 mRNA. The schematic illustration (E) and the splicing assay (F) of the synthetic splicing substrate in S. pombe. Cells were treated with 1

mg/ml Tm for 1 hr.

DOI: https://doi.org/10.7554/eLife.35388.009

The following figure supplements are available for figure 4:

Figure supplement 1. The splicing cassette in the engineered S. pombe BIP1 mRNA splicing variant.

DOI: https://doi.org/10.7554/eLife.35388.010

Figure supplement 2. The Ire1a cleavage sites on XBP1 mRNA and RIDD targets.

DOI: https://doi.org/10.7554/eLife.35388.011

Figure supplement 3. The sequence alignment of the kinase/RNase domains of Ire1a, Ire1b, the S. cerevisiae Ire1 and the S. pombe Ire1.

DOI: https://doi.org/10.7554/eLife.35388.012
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in S. pombe upon ER stress (Figure 4F). Thus, we conclude that the substrate RNA structure deter-

mines the fate of the RNA cleavage fragments.

Discussion
‘What I cannot create, I do not understand’ (Richard Feynman). Inspired by this quote, we engi-

neered S. pombe cells to carry out a non-conventional mRNA splicing reaction that does not occur

in this species naturally. This feat was enabled by a combination of a detailed mechanistic characteri-

zation of the differences in Ire1-dependent mRNA processing between two yeast species reported

in this paper and by functional insights gleaned previously from a characterization of the mammalian

XBP1 mRNA splicing mechanism (Peschek et al., 2015). Two main conclusions emerged from this

study. First, the evolutionary divergence of Ire1’s substrate specificity determines the set of mRNAs

that are cleaved in either species. Second, features in the mRNAs determine the distinct fates of the

severed mRNA fragments. S. pombe can be coopted to carry out the core non-conventional mRNA

splicing reaction with fidelity, as long as it is provided with a spliceable RNA substrate that matches

the specificity requirements of its endogenous Ire1. Albeit not optimized in evolution for efficiency

of the reaction, no other components (such as the RNA ligase) need to be fundamentally specialized

to mediate the core splicing reaction.

Ire1 orthologs in S. cerevisiae and S. pombe recognize their cognate mRNA substrates by dis-

criminating both sequence and structural features. S. pombe Ire1 RNase specificity is more promis-

cuous, and has a broad substrate scope, in line with its role to initiate degradation of many ER-

bound mRNAs to reduce the ER’s protein folding burden. By contrast, S. cerevisiae Ire1’s RNase

specificity is very stringent and specialized with HAC1 mRNA being as its only substrate in the cell

(Niwa et al., 2005), in line with its role to produce a single transcription activator to drive UPR tar-

get genes. In mammals, two paralogs of Ire1 are expressed in a tissue-specific manner (Tsuru et al.,

2013; Bertolotti et al., 2001). Ire1a, which performs both XBP1 mRNA splicing and RIDD, recog-

nizes a similar but longer RNA sequence motif, CUG|CAG, displayed in stem-loop structures

(Maurel et al., 2014). Interestingly, the loop sizes that Ire1a recognizes differ between the XBP1

mRNA cleavage sites and RIDD cleavage sites, with the two cleavage sites on XBP1 mRNA to be

conserved 7-mer loops (Hooks and Griffiths-Jones, 2011), while the cleavage sites on RIDD sub-

strates vary in range from 9-mers to 5-mers (Figure 4—figure supplement 2). This suggests that

mammalian Ire1a may display two distinct modes of RNase activity—a more stringent mode of

RNase activity observed on 7-mer stem-loop RNAs (XBP1 mRNA and BLOC1S mRNA) and a more

promiscuous mode of RNase activity on RNA substrates with variable loop sizes. As shown here,

these two modes have been cleanly separated in evolution between S. cerevisiae and S. pombe Ire1.

Hence it seems plausible that mammalian Ire1a may switch selectively into one or the other state,

perhaps in response to the timing of UPR activation or certain physiological conditions, which could

be reflected in particular oligomeric states, post-translational modifications, or other effectors yet to

be discovered.

Ire1a is more efficient in XBP1 mRNA splicing, while Ire1b prefers to cleave ribosomal RNA

(Iwawaki et al., 2001; Nakamura et al., 2011; Imagawa et al., 2008). Pairwise sequence alignment

did not reveal an obvious similarity signatures that would distinguish the Ire1 species performing for

RIDD, that is, S. pombe Ire1 and Ire1b, from those engaged in mRNA splicing, that is, S. cerevisiae

Ire1 and Ire1a (Figure 4—figure supplement 3A,B). On the substrate side, two Ire1b cleavage sites

both located on rRNA, have been mapped to date. They share a common sequence of G|C at the

cleavage site. Previous studies indicated that differences in Ire1a’s and Ire1b’s RNase domains lead

to their functional distinction (Imagawa et al., 2008). We did not observed cleavage of rRNA by S.

pombe Ire1 (Figure 1—figure supplement 1A,B); mammalian Ire1b’s activity to do so may therefore

reflect a specialization that is not generalizable to all Ire1 RNases that perform RIDD. Therefore,

modulating Ire1’s RNase specificity to regulate its mode of action emerges as a general theme for

different species, as well as for different tissues within the same species.

In S. cerevisiae cells, apart from the HAC1 mRNA, other mRNAs contain the S. cerevisiae Ire1

cleavage motif, yet are not cleaved (Niwa et al., 2005). This is explained by spatial coordination.

HAC1 mRNA is targeted to Ire1 upon stress, utilizing a specific signal in the HAC1 mRNA 3’UTR

(Aragón et al., 2009), conferring exquisite specificity that renders HAC1 mRNA the sole substrate

of the reaction. Although two other Ire1 substrate RNAs have been reported (Tam et al., 2014), we
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have not been able to reproduce this result. By contrast to the dedicated mRNA targeting in S. cere-

visiae, S. pombe and mammalian cells target XBP1 mRNA and most RIDD substrates to the ER via

the signal recognition particle (SRP) pathway (Hollien and Weissman, 2006; Hollien et al., 2009;

Yanagitani et al., 2009; Yanagitani et al., 2011; Plumb et al., 2015). In this way, S. pombe and

mammalian Ire1 efficiently sample through substrate RNAs at ER periphery, which they cleave more

promiscuously. We presume that in our experimental set-up, the chimeric BIP1-mRNA containing

the splicing cassette would highjack the SRP-mediated targeting route initiated by the BiP1 signal

sequence, as we previously showed for other RIDD substrate mRNAs (Kimmig et al., 2012).

After Ire1 cleavage, RNA fragments are ligated or degraded, depending on the substrate RNA

structures. According to this notion, in mammalian cells where splicing and RIDD co-exist, we predict

that XBP1 mRNA splicing and RIDD substrate degradation are separated post Ire1 cleavage. The

two cleavage sites on the XBP1 mRNA are coordinated by a zipper-like RNA structure, which enable

the exons to be held in juxtaposition and ligated by the cytosolic tRNA ligase (Peschek et al., 2015;

Sidrauski et al., 1996; Jurkin et al., 2014; Lu et al., 2014; Kosmaczewski et al., 2014). By contrast,

cleavage sites on the RIDD substrates lack such coordination and the cleavage fragments are further

degraded.

Our study revealed that Ire1’s RNase specificity and its RNA substrate structure separate Ire1’s

modes of action, opening the door to identify residues that shape Ire1’s RNase specificity. In this

way, it should become possible to design metazoan Ire1s that favor mRNA splicing over RIDD, and

vice versa, enabling us to discriminate the biological significance of the two Ire1 functional outputs

separately in physiological and pathological contexts.

Materials and methods

Strains, plasmids and growth conditions
Standard S. cerevisiae and S. pombe genome editing and growth conditions were used

(Moreno et al., 1991; Guthrie and Fink, 2002). Strains used in this study are listed in the Table 1.

Specifically, all Ire1 constructs have a 3x FLAG-tag in their lumenal domains replacing an unstruc-

tured region (255–274 in S. pombe and 267–286 in S. pombe). S. cerevisiae Ire1 domain boundaries

were previously described (Rubio et al., 2011), S. pombe Ire1 domains were determined by

sequence alignment with S. cerevisiae Ire1. Specifically, the lumenal domain is 1–526 for S. cerevisiae

and 1–507 for S. pombe. The transmembrane/cytosolic linker is 527–672 for S. cerevisiae and 508–

651 for S. pombe. Kinase/RNase is 673–1115 for S. cerevisiae and 652–1073 for S. pombe. Ire1 con-

structs were integrated into the HO locus in S. cerevisiae (backbone plasmid: HO-Poly-KanMX4-HO)

and Leu locus in S. pombe (backbone plasmid: pJK148). S. pombe BIP1 variants were integrated at

the BIP1 locus through homologous recombination and uracil selection. The mCherry-tagged Ire1

constructs and the splicing reporter were previously described (Aragón et al., 2009).

Growth assay
Serial dilutions of S. cerevisiae or S. pombe cells were spotted onto YPD plates with 0.1 mg/ml tuni-

camycin (for S. cerevisiae) or YE5S plates with 0.05 mg/ml tunicamycin (for S. pombe). Plates were

photographed after incubating at 30˚C for 4 days.

Immunoblotting
For both S. cerevisiae and S. pombe cells, total protein was isolated from yeast cultures growing at

exponential phase by vortexing with glass beads in 8 M urea, 50 mM Hepes, pH 7.4, and 1% sodium

dodecylsulfate (SDS). Samples were boiled and then centrifuged at 16,000 x g for 10 min. A sample

containing 20 mg total protein was separated using electrophoresis and then transferred to nitrocel-

lulose. The 3xFLAG-tagged Ire1 was probed with monoclonal anti-FLAG antibody (Sigma F3165).

qPCR assays
Total RNA was purified from yeast cultures using phenol extraction (Köhrer and Domdey, 1991).

RNA samples were resuspended in RNase-free water and quantified by spectrophotometry. cDNA

was synthesized by reverse transcription using random hexamer DNA primers (Thermo Fisher Scien-

tific), SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) and 1 mg total RNA as described
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previously (Kimmig et al., 2012). 1% of the cDNAs was employed for qPCR reactions using SYBR

green qPCR kit (Bio-Rad). qPCR was performed in triplicates using CFX96 Touch Real-Time PCR

Detection System (Bio-rad). qPCR primers are listed in Table 2. mRNA levels were normalized to

NDA2 mRNA in S. pombe.

In vivo mRNA splicing assay
cDNA was synthesized the same way as described in the qPCR section. Then we used Phusion High-

Fidelity PCR Kit (NEB) and performed PCR with cDNA and a set of primers across the splice junction.

For HAC1 mRNA, the forward primer was ATGGAAATGACTGATTTTGAACTAACTAGTAATTCG.

The reverse primer was TCATGAAGTGATGAAGAAATCATTCAATTCAAATG. The PCR was per-

formed for 26 cycles with annealing temperature of 51.5˚C and extension time of 30 s. For the S.

pombe BIP1 mRNA containing the splicing cassette, the forward primer was GAATCGTGACTCTA

TAGCCATTAACA. The reverse primer was CAATTATTGTCAGTTCCACAAAGC. The PCR was per-

formed for 36 cycles with annealing temperature of 63.4˚C and extension time of 15 s. For S. cerevi-

siae HAC1 mRNA derived splicing reporter expressed in S. pombe cells, the forward primer was

GAACTACAAGACACGTGCTGAAG. The reverse primer was GATGAAGAAATCATTCAATTCAAA

Table 1. Yeast strains used in this study.

All strains are derived from WL001 and WL002. All Ire1 constructs listed below are 3x FLAG-tagged

within their lumenal domains.

Strain Species Description

yWL001 Sc WT, mat A, leu2-3,112 TRP1 can1-100 ura3-1 ADE2 his3-11,15

yWL002 Sc ire1D::NATR

yWL003 Sc ire1D::NATR, HO::Sp IRE1

yWL004 Sc ire1D::NATR, HO::SpLumScCyto IRE1

yWL005 Sc ire1D::NATR, HO::ScLumSpCyto IRE1

yWL006 Sc ire1D::NATR, HO::Sc IRE1

yWL007 Sc ire1D::NATR, HO::ScLum/transmembrane/linkerSpKR IRE1

yWL008 Sc WT, leu2::5’hac1-gfp-3’hac1

yWL009 Sc ire1D::NATR, leu2::5’hac1-gfp-3’hac1

yWL010 Sc ire1D::NATR, leu2::5’hac1-gfp-3’hac1, HO::Sp IRE1

yWL011 Sc ire1D::NATR, leu2::5’hac1-gfp-3’hac1, HO:: SpLumScCyto IRE1

yWL012 Sc ire1D::NATR, leu2::5’hac1-gfp-3’hac1, HO:: ScLumSpCyto IRE1

yWL013 Sc ire1D::NATR, leu2::5’hac1-gfp-3’hac1, HO::Sc IRE1

yWL014 Sc leu2::5’hac1-gfp-3’hac1, his3::pTdh3-mCherry

yWL015 Sp WT, mat h+, ade6-M210, ura4-D18, leu1-32

yWL016 Sp ire1D::KANR

yWL017 Sp ire1D::KANR, leu1::Sp IRE1

yWL018 Sp ire1D::KANR, leu1::SpLumScCyto IRE1

yWL019 Sp ire1D::KANR, leu1::ScLumSpCyto IRE1

yWL020 Sp ire1D::KANR, leu1::Sc IRE1

yWL021 Sp ire1D::KANR, leu1::SpLumScCyto IRE1, ura4::5’hac1-gfp-3’hac1

yWL022 Sp ire1D::KANR, leu1::ScLumSpCyto IRE1, ura4::5’hac1-gfp-3’hac1

yWL023 Sp ire1D::KANR, leu1::Sc IRE1, ura4::5’hac1-gfp-3’hac1

yWL024 Sp bip1::bip1-hac1 hybrid

yWL025 Sp bip1::bip1-hac1 hybrid A->U

yWL026 Sp bip1::bip1 splicing variant

yWL027 Sp ura4::synthetic splicing substrate

DOI: https://doi.org/10.7554/eLife.35388.013
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TG. The PCR was performed for 60 cycles with annealing temperature of 63.2˚C and extension time

of 20 s. For the synthetic splicing substrate in S. pombe, the forward primer was CTCATTTAGA

TTAGCAATTCAAATG. The reverse primer was GATTAGATCAACAATTCAAATGATC. The PCR was

performed for 40 cycles with annealing temperature of 59.7˚C and extension time of 20 s.

Recombinant protein purification
S. cerevisiae Ire1 kinase/RNase was purified as previously described (Korennykh et al., 2009).

Details of the S. pombe Ire1 kinase/RNase purification will be described in a separate paper. Briefly,

S. pombe Ire1 kinase/RNase was N-terminally fused with Glutathione S-transferase (GST) tag

through a linker containing Human Rhinovirus (HRV) 3C protease cleavage site, and was regulated

by T7 promoter. This S. pombe Ire1 kinase/RNase expression cassette was transformed into E. coli

cells. 16 hr after transformation, we mixed and collected all the colonies on the transformation plates

by scraping them off from the agar plate into 50 ml of LB medium. After 3 hr incubation at 37˚C, the
sample was diluted to 12 l of LB medium and further incubated at 37˚C until optical density reached

1. Protein expression was induced by adding 0.5 mM IPTG. Then, the culture was incubated at 25˚C
for 4 hr before we pelleted the cells by centrifugation. Cells were resuspended in GST binding buffer

(50 mM Tris/HCl pH 7.5, 500 mM NaCl, 2 mM Mg(OAc)2, 2 mM DTT, 10% Glycerol) and homoge-

nized using high-pressure homogenizer (EmulsiFlex, Avestin). The cell lysate was applied to GST-

affinity column and eluted with GST elusion buffer (50 mM Tris/HCl pH 7.5, 200 mM NaCl, 2 mM Mg

(OAc)2, 2 mM DTT, 10% Glycerol, 10 mM glutathione). The column elution was treated with GST-

tagged HRV 3C protease (PreScission Protease, GE Health). At the same time, the sample was dia-

lyzed to remove glutathione in the elution buffer. Next, the sample was further purified through neg-

ative chromatography by passing through a GST-affinity column (to remove free GST and residue

GST-fused Ire1 kinase/RNase) and an anion exchange column (to remove contaminating nucleic

acids). Finally, the sample was subject to gel filtration, concentrated to about 14 mM in storage

buffer (50 mM Tris/HCl pH 7.5, 200 mM NaCl, 2 mM Mg(OAc)2, 2 mM TCEP, 10% Glycerol), and

flash frozen in liquid nitrogen. The final purity, as well as purity at intermediate steps, was assessed

by SDS-PAGE using Coomassie blue staining.

In vitro RNA cleavage assays
Short RNA oligos were purchased from Dharmacon, Inc. RNA oligos were gel extracted, acetone

precipitated and resuspended in RNase-free water. Then, oligos were 5’ end radio-labeled with g-

[32P]-ATP (Perkin Elmer) using T4 polynucleotide kinase (NEB) and cleaned using ssDNA/RNA Clean

and Concentrator kit (Zymo Research D7010). To fold the RNA oligos, we heated the RNA oligos to

90˚C for 3 min and slowly cooled them down at a rate of 1˚C per minute until the temperature

reached 10˚C. In the Ire1 cleavage assays, the reaction samples contained 12.5 mM of S. cerevisiae

or S. pombe Ire1 kinase/RNase. The cleavage reaction was performed at 30˚C in reaction buffer (50

mM Tris/HCl pH 7.5, 200 mM NaCl, 2 mM Mg(OAc)2, 2 mM TCEP, 10% Glycerol). At each time

point, an aliquot of 0.75 ml was transferred to 5 ml STOP buffer (10 M urea, 0.1% SDS, 1 mM EDTA,

0.05% xylene cyanol, 0.05% bromophenol blue). RNAs were separated using denaturing 15% urea-

Table 2. qPCR primers used in this study.

qPCR primers description Sequence

uncleaved Sp BiP1 mRNA forward primer GAATCGTGACTCTATAGCCATTAACA

uncleaved Sp BiP1 mRNA reverse primer CAATTATTGTCAGTTCCACAAAGC

total Sp BiP1 mRNA forward primer TGGTAAGGTTGATCCCGAAG

total Sp BiP1 mRNA reverse primer CATCGAGTTTTTGACGCTGA

Sp GAS2 mRNA forward primer GTTGTCAACAATGCCTCGAA

Sp GAS2 mRNA reverse primer CGGTCTCAGAGTTGGTGTCA

Sp NDA2 mRNA forward primer TCCATGAATCCAACAGCGTA

Sp NDA2 mRNA reverse primer CTAGTAACGGCAGCCTGGAC

DOI: https://doi.org/10.7554/eLife.35388.014

Li et al. eLife 2018;7:e35388. DOI: https://doi.org/10.7554/eLife.35388 13 of 17

Research article Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.35388.014
https://doi.org/10.7554/eLife.35388


PAGE gels (run at 100 V for 90 min). Gels were imaged with a Phosphorimager (Typhoon FLA 9500,

GE Health) and the band intensities were quantified using imageJ. The cleaved portion was calcu-

lated as the cleaved band intensity divided by the sum of the cleaved band and uncleaved band

intensities. The kobs were obtained by fitting the data to first-order (‘one-phase’) decay equation

using Prism. For the cleavage reactions that less than 10% of the substrates were cleaved, because

the substrate concentration was approximately constant, the cleavage dynamics was fitted to a linear

equation to obtain kobs. The sequence of hairpin RNA substrate derived from Ire1 cleavage site on

S. pombe BIP1 mRNA is CGCGAGAUAACUGGUGCUUUGUUAUCUCGCG.

The sequence of hairpin RNA substrate derived from Ire1 cleavage site on S. pombe SPAC4G9.15

mRNA is CCACCACCGAGUAUGCUACUCGGUGGUGG.

The sequence of hairpin RNA substrate derived from S. cerevisiae HAC1 mRNA 3’ splice site is

GCGCGGACUGUCCGAAGCGCAGUCCGCGC

The sequence of hairpin RNA substrate derived from XBP1 mRNA 3’ splice site is UGCACCUC

UGCAGCAGGUGCA.

Automated flow cytometry
Measuring S. cerevisiae UPR dynamics using automated flow cytometry was previously described in

detail (Zuleta et al., 2014). Briefly, we co-cultured two S. cerevisiae strains, a strain of interest and a

control strain. The control strain contained a constitutively expressed mCherry reporter. The signal

from the control strain was computationally separate based on its high mCherry level. In an 11.5 hr

time course at 30˚C, a data point was taken every 20 min. 1.5 hr after inoculation, DMSO (as control)

or 0.25 mg/ml, 0.5 mg/ml, 1 mg/ml, 2 mg/ml of Tm were added. Splicing dynamics were monitored

for another 10 hr. The GFP signal was normalized to the signal at time zero.

Probing in vivo mRNA structure in S. pombe cells
A culture of 15 ml S. pombe cells, which were exponentially growing at 30˚C, was treated with 400

ml of DMS for 3.5 min. DMS was then quenched by adding 30 ml of solution containing 30% b-mer-

captoethanol and 25% isoamyl alcohol. Then, cells were pelleted by centrifugation at 4˚C, and

washed with 15 ml 30% b-mercaptoethanol. Total RNA was extracted using phenol extraction. Poly

(A)+ mRNAs were isolated using poly(A)+ Dynabeads (Invitrogen). The sequencing library was gen-

erated and sequenced, and the DMS modifications were computed as previously described (Rouskin

et al.).

mRNA secondary structure prediction
Near the Ire1 cleavage sites, we first identified the most highly reactive base and set its DMS modifi-

cation signal as 1. Then, the DMS modification signal raw data for other bases was normalized pro-

portionally. Finally, we put a 38-base-pair RNA sequence (19 base pair upstream and downstream

from the Ire1 cleavage site) into the RNA secondary structure prediction program mfold

(Zuker, 2003). Bases with normalized DMS modification signals >0.2 were forced to be single

stranded to constrain the RNA folding prediction.
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