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Abstract

Background & Aims: Despite recent progress, non-invasive tests for the diagnostic assessment 

and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we 

aimed to identify diagnostic signatures of the key histological features of NAFLD.

Methods: Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 

single serum samples from 636 individuals with histologically confirmed NAFLD. We developed 

and validated dichotomized protein-phenotype models to identify clinically relevant severities of 

steatosis (grade 0 vs. 1–3), hepatocellular ballooning (0 vs. 1 or 2), lobular inflammation (0–1 vs. 

2–3) and fibrosis (stages 0–1 vs. 2–4).

Results: The AUCs of the four protein models, based on 37 analytes (18 not previously linked 

to NAFLD), for the diagnosis of their respective components (at a clinically relevant severity) 

in training/paired validation sets were: fibrosis (AUC 0.92/0.85); steatosis (AUC 0.95/0.79), 

inflammation (AUC 0.83/0.72), and ballooning (AUC 0.87/0.83). An additional outcome, at-risk 

NASH, defined as steatohepatitis with NAFLD activity score ≥4 (with a score of at least 1 

for each of its components) and fibrosis stage ≥2, was predicted by multiplying the outputs of 

each individual component model (AUC 0.93/0.85). We further evaluated their ability to detect 

change in histology following treatment with placebo, pioglitazone, vitamin E or obeticholic 

acid. Component model scores significantly improved in the active therapies vs. placebo, and 

differential effects of vitamin E, pioglitazone, and obeticholic acid were identified.

Conclusions: Serum protein scanning identified signatures corresponding to the key 

components of liver biopsy in NAFLD. The models developed were sufficiently sensitive to 

characterize the longitudinal change for three different drug interventions. These data support 

continued validation of these proteomic models to enable a “liquid biopsy”-based assessment of 

NAFLD.

Clinical Trial Number: Not applicable.

Graphical Abstract
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Introduction

Non-alcoholic fatty liver disease (NAFLD) affects 20–30% of the adult population.1 The 

majority have a relatively stable form, i.e. non-alcoholic fatty liver (NAFL), while those 

with non-alcoholic steatohepatitis (NASH) are more likely to progress to cirrhosis.2 The 

burden of end-stage liver disease due to NAFLD is expected to increase 2- to 3-fold by 

2030.3,4 These data underscore the need to identify those who are likely to progress or are 

progressing so that they may be targeted for treatment.

Liver histology is the reference standard for identification of those with NAFLD at increased 

risk of liver-related outcomes.5 There are several limitations of a biopsy-based approach, 

including its invasive nature and attendant risks,6 sampling and observer variability, and 

cost, which render it suboptimal for application in routine clinical practice.2 This provides 

a strong rationale for the development of non-invasive tests (NITs) for the assessment of 

NAFLD. While many NITs exist, only the enhanced liver fibrosis test has been approved 

as a prognostic biomarker and the development of NITs for various purposes in NAFLD 

remains an unmet need.

Large-scale serum/plasma protein scanning has recently become available for identification 

of changes in the proteome in disease states.7 In a preliminary single-center study, this 

enabled identification of a circulating protein signature associated with advanced fibrosis in 

patients with NASH.8 This study is limited by its single-center nature and small sample size, 

which can increase the risk of missing relevant biomarkers with smaller effect sizes.

We therefore conducted a study to identify and validate a proteomic signature, using the 

SomaScan® platform for the following a priori defined contexts of use: (1) for the diagnosis 

of individual components of NAFLD at a clinically relevant severity, and (2) for disease 

monitoring to identify features reflective of disease activity and fibrosis over time with and 

without specific drug intervention.
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Materials and methods

This study was an ancillary study of the NIDDK NASH Clinical Research Network (CRN) 

under a collaborative agreement with SomaLogic Operating Co. The proposal was reviewed 

and approved by both the Ancillary Studies and Steering Committees of the CRN and 

NIDDK. The data analysis was performed by SomaLogic and verified by the NASH CRN 

investigators. The investigators take full responsibility for the contents of this manuscript. 

All participants whose samples were used provided written informed consent for their 

biosamples to be used for research. Results are reported in alignment with TRIPOD 

guidance for reporting biomarker data.9

Study population

Serum samples were from adult participants in the NASH CRN NAFLD Database (DB), 

Adult DB2 registries, PIVENS and FLINT clinical trials (NCT#01030484, NCT#00063622, 

NCT# 01265498), enrolled from 2004 through 2014 at eight tertiary sites. The DB and DB2 

registries are non-interventional long-term follow-up studies of patients with histologically 

confirmed NAFLD. The PIVENS trial tested the efficacy of pioglitazone or vitamin E vs. 

placebo over a 96-week treatment period whereas the FLINT trial evaluated the efficacy 

of obeticholic acid vs. placebo over 72 weeks.10,11 Our study required participants to have 

biopsy-confirmed NAFLD and corresponding serum samples. An overview of the sampling 

and biopsy schedule is shown in Table S1 and Fig. S1.

To address aim 1 (diagnosis of histological components of NASH at a clinically relevant 

severity) a training set comprising 559 unique serum samples from 315 of the trial 

participants and 244 participants in the Natural History Studies (234 baseline DB/DB2 

and 10 who had previously participated in PIVENS but were not included in the trial 

sample sets noted above) was used. Half the samples from PIVENS and FLINT were 

baseline samples and temporally related to baseline biopsy histology, while half the samples 

were end-of-treatment samples and temporally related to the end of treatment biopsy. The 

rationale for this was both to capture a mix of populations with and without prior therapy 

and to maximize the likelihood that models developed would be impervious to any potential 

treatment effects.

Two separate and independent validation sets were used to assess model performance: a 

“paired validation” set included (1) the remaining baseline and end of treatment samples 

from each of the PIVENS and FLINT participants (n = 392) that were not used in the 

training model, and (2) an independent “hold-out” model validation set of samples from 77 

trial participants not included in the training data or paired validation data set. These sample 

sets were also used for the post hoc analyses, i.e. the diagnosis of cirrhosis and at-risk 

NASH.

To address aim 2 (disease monitoring), a total of up to seven serum samples (see Table S1 

for sampling schedule) were available per participant from PIVENS and FLINT, including 

those obtained at baseline and end of treatment with accompanying biopsies, and additional 

interval time-points defined by protocol. Approximately 91% of PIVENS and 99% of 
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FLINT participants had six or seven samples available, resulting in 1,333 evaluable samples 

from PIVENS and 1,275 samples from FLINT.

Liver histology assessment

The liver biopsies were read centrally by the NASH CRN Pathology Committee, who 

were masked to all clinical and proteomic data. The protocol and methodology used by 

the Committee as well as the case definitions have been described previously.12,13 It 

is also known that those with NASH and fibrosis stage ≥2 have higher all-cause and 

liver-related mortality.14 Further, disease activity drives fibrosis.2,15 We therefore defined 

a sub-phenotype of NAFLD with steatohepatitis, NAFLD activity score (NAS) ≥4 (with a 

score of at least 1 for each of its components) and fibrosis stage ≥2 as “at-risk” NASH. 

Fibrosis stage ≥2 was referred to as clinically significant fibrosis.16

Proteomic analyses

The modified aptamer binding reagents,17 SomaScan assay,18,19 and its performance 

characteristics20 have been described previously. The median intra- and inter-assay 

coefficients of variation are ~5%20 and median lower limit of detection is in the femtomolar 

range. The proteins were assayed blinded. Following normalization, calibration, and data 

quality control processes, the proteomic data were provided to the NASH CRN before the 

clinical and biopsy data were made available for machine learning, as described in the next 

section.

Model building and statistical analyses

Aim 1: cross-sectional protein-based model development of liver histology
—For aim 1, the histological readout was dichotomized based on Pathology Committee 

consensus as follows: steatosis (grade 0 vs. 1, 2 or 3, training n = 72 vs. 486), lobular 

inflammation (0 or 1 vs. 2 or 3, training n = 361 vs. 198), hepatocellular ballooning (0 

vs. 1 or 2, training n = 244 vs. 315) and fibrosis (stage 0 or 1 vs. 2, 3 or 4, training n 

= 330 vs. 228). The dichotomization of fibrosis stages was based on literature indicating 

increased risk of liver-related outcomes in such individuals.14 Proteome-based models were 

developed to predict these dichotomized histological readouts. These dichotomized models 

were developed individually for each histological component because they could not only be 

used to infer the presence of active disease and clinically significant fibrosis (stage ≥2) but 

also NASH resolution, which requires ballooning resolution and lobular inflammation to be 

absent or minimal (grades 0–1).21 All analyses were done on a complete-case basis.

Using the training set, univariate t-tests were used to assess associations of analytes with 

each histological parameter. Multiple testing correction was completed using the Benjamini-

Hochberg procedure for the false discovery rate (FDR).22 As an initial feature selection step, 

analytes were filtered based on the minimal FDR-corrected p values using an alpha of 0.1. 

Remaining analytes were then centered and scaled to enable standardized coefficient values 

in methods that utilized regularization. After univariate filtering, a multi-variable feature 

selection method, stability selection23 with an L1-logistic regression kernel, was used to 

identify candidate lists of analytes for each histological component. Final binary prediction 

models consisted of an elastic net logistic regression classifier that utilized a mixture of L1 
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and L2 regularization24 to do a final feature reduction and to account for correlated features. 

Repeated k-fold cross-validation with 5 repeats of 10 folds was performed on the training 

set to assess initial performance, potential overfitting, and to select a final model for each of 

the four biopsy components individually (steatosis, inflammation, ballooning and fibrosis). 

Specifically, the training data was split into 10 “folds”, then a model is fit to 9 of the folds 

and performance assessed on the 10th. This analysis was repeated 10 times, where each fold 

becomes the assessment set. The entire process was repeated 5 times.

The performance of the model was further evaluated in those where samples were taken 

from baseline visits in clinical trials and end of treatment visits for both placebo and active 

treatment arms to determine if they were affected by prior treatment. The DeLong’s test 

for differences in AUC with a two-sided alternative was used to identify any statistically 

significant differences in model performance at baseline vs. end of treatment.

Aim 2: proteomic models for monitoring the course of disease over time—The 

characterization and monitoring of the impact of active therapy vs. placebo over time was 

performed using the output of models developed in aim 1 for each longitudinal sample. 

Though the models were trained on dichotomized scores, the output was a continuous score 

reflecting the probability of being in the positive category. These values were used to assess 

the ability to monitor change. For determination of significant treatment effects over time, 

linear mixed effects models that specifically explored the interaction effect of treatment by 

time were used with the logit-transformed predicted probability as the outcome measure.

Post hoc analyses that were not part of the original plan of analysis for this study

Diagnosing at-risk NASH—A specific model to mimic the pathologists’ diagnosis of 

NASH was not planned because of the diverse permutations of individual histological 

findings that could be associated with a NASH diagnosis. Instead, a combination of the four 

component models (multiplication of each of the predicted probability model outputs) was 

used to assess the presence of at-risk NASH, where a positive result was defined as NAS 

≥4 with a score of at least 1 each for steatosis, ballooning and inflammation and fibrosis 

stage ≥2. The analysis was performed with the same training (n = 558), holdout (n = 77) and 

paired validation (n = 391) data sets as the histology component models and the prevalence 

of at-risk NASH was 31%, 38%, and 39%, respectively.

Diagnosis of cirrhosis (F4)—For the exploratory diagnosis of cirrhosis, we evaluated 

whether using a different threshold for the probability output of the dichotomous fibrosis 

model developed in aim 1, where the negative class represents individuals predicted to 

have a fibrosis stage of 0–3 and the positive class represents stages 4, could be used to 

identify participants with F4 results. Results are presented for a post hoc threshold predicted 

probability greater than 0.95. All analyses were completed using R (v3.5.2) and various R 

packages including the tidyverse, caret, tidy-models, and glmnet.

Results

A total of 332 participants from the DB and DB2 studies and 209 and 197 participants from 

PIVENS and FLINT trials were screened for this analysis. After removing duplicate and 
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non-evaluable samples, there were 636 unique participants, including 234 from DB/DB2, 

215 from PIVENS and 187 from FLINT (Fig. 1 and Table S2). The mean age and sex 

distribution across these modeling subsets were not significantly different compared to the 

Natural History cohort (Table S2). At baseline, the adult participants’ mean age was 48.6 

(12.1) years, 37% were male, 13% were of Hispanic ethnicity and predominantly Caucasian 

race, reflecting the patient populations seen at the participating centers.

The mean interval between baseline serum samples and biopsy was 37 days, with a 

maximum interval of 6 months. The mean prevalence of type 2 diabetes (27%), dyslipidemia 

(tri-glycerides >140 mg/dl and/or HDL-cholesterol <40 mg/dl; 59%) or hypertension (51%) 

was similar to that in other reported NAFLD populations,25 in addition to obesity (BMI: 

34 kg/m2, weight: 97 kg). The mean [SD] baseline liver-related enzyme values (alanine 

aminotransferase 76 U/L [48], aspartate aminotransferase 53 U/L [32], alkaline phosphatase 

84 U/L [52] and gamma-glutamyltransferase 72 U/L [128]) were also similar to other 

reported NAFLD populations and included large proportions of definite NASH (60%), 

bridging fibrosis (19%), and high activity (NAS >4 in 49%). Only 3% of participants had 

cirrhosis.

Cross-sectional protein-based model development of liver histology (aim 1)

Initial univariate analysis using a FDR with alpha = 0.1 yielded a large number of potential 

targets, including 532, 1,408, 809, and 2,201 proteins for steatosis, ballooning, lobular 

inflammation, and fibrosis, respectively (Table S3). Table 1 shows the analytes selected 

for inclusion first by stability selection and further by elastic net regularization in the four 

final models in rank order of their statistical association with the endpoint. There were 12 

for steatosis, 14 for inflammation, 5 for ballooning, and 8 for fibrosis. Thirty-seven unique 

analytes were featured in the final four models. There was little overlap between analytes 

across models, with only two analytes shared between two models (PTGR1 in steatosis and 

ballooning models and ADAMTSL2 in ballooning and fibrosis models) and none in three 

or more. Fourteen of 37 proteins have previously been associated with various aspects of 

NAFLD whereas 18 proteins were previously unrecognized in relation to NAFLD (Table 

S4). The relationship of the predicted probabilities for each proteomic model to the ordinal 

biopsy result for model training and validation are shown in Figs 2 and 3 and its diagnostic 

performance metrics are shown in Table 2.

The AUC of the models for steatosis (0.67–0.95), lobular inflammation (0.72–0.83), 

hepatocellular ballooning (0.71–0.87) and fibrosis (0.83–0.92) all had higher AUCs in the 

training sets but expected lower values in validation sets (a typical pattern in machine 

learning). Further, the AUCs of the models for inflammation, hepatocellular ballooning, and 

fibrosis were similar when using baseline and end of study samples from the placebo and 

the active treatment arms, indicating that the models were not affected by the treatments 

provided in the trials (Table S5). The relatively large drop for the steatosis model may relate 

to the poor representation in the hold-out set; specifically, there were only eight individuals 

with no steatosis resulting in the observed drop in AUC (Table 2).

The construct specificity of the individual models was further evaluated by measuring the 

performance of the model for its intended purpose vs. its performance for the diagnosis of 
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other features of NAFLD. For example, a model for steatosis would be expected to perform 

well for steatosis but not as well to evaluate another feature, e.g. hepatocellular ballooning.

As expected, this resulted in a decrease in average accuracy of the models (between 10–

30% decrease) and odds ratio (Fisher’s exact test) obtained from applying the proteomic 

models to their intended vs. non-intended histological features of interest (Table S6). 

For example, when the fibrosis model, with an accuracy of 78%, is used to assess 

inflammation, ballooning or steatosis, the predicted accuracy drops to 52–66%. Conversely, 

when inflammation, ballooning or steatosis models are applied to fibrosis scores, the 

accuracy drops to 54–73%. Similarly, comparing fibrosis biopsy results from histology to 

ballooning, inflammation, or steatosis biopsy results, the accuracy drops to 51–65%.

Proteomic models for monitoring the course of disease over time (aim 2)

Predicted probabilities were computed using each of the four proteomic models for the 

individual histologic characteristics of NASH for all seven samples available (baseline, end 

of treatment, interim visits) for each participant in PIVENS and the FLINT trial. Linear 

mixed effects models to test changes in logit-transformed predicted probabilities of each of 

the proteomic models by group over time (i.e., the treatment group × time interaction effect) 

were developed for each histological component. The patterns for the predicted probabilities 

(mean and 95% CIs) are shown in Fig. 4.

Within the PIVENS cohort, there was a significant interaction between time and treatment 

across all four models (fibrosis: χ2
11,23 = 59.27, p value = 3.06e-08; steatosis: χ2

11,23 = 

44.48, p value = 1.27e-05; ballooning: χ2
11,23 = 73.84, p value = 6.1e-11; inflammation: 

χ2
11,23 = 109.13, p value = 8.89e-18). For fibrosis, the average difference in change over 

time between placebo and pioglitazone or vitamin E was significant starting at week 32 (p 
= 1.28e-03 and p = 1.26e-02, respectively). Both therapies had earlier significant impacts 

on steatosis, ballooning, and inflammation, starting at week 16 (steatosis: pPioglitazone = 

1.27e-05, pVitamin E = 9.01e-03; ballooning: pPioglitazone = 2.68e-03, pVitamin E = 6.85e-04; 

inflammation: pPioglitazone = 4.94e-10, pVitamin E = 2.37e-02).

In the FLINT cohort, there was not a significant difference in the changes in steatosis 

probability score in the treatment group compared to placebo over time, in contrast to 

histological assessments which demonstrated a decrease in steatosis.11 There was however 

a significant decrease in the probability score of fibrosis in the treatment group over 

time (χ210,16 = 44.16, p = 6.87e-08) starting at week 24 (p = 1.00e-02), concordant 

with histological improvement at an individual participant level. Similar changes in the 

probability scores for lobular inflammation and ballooning were noted starting at week 12 (p 
= 3.41e-03, p = 2.68e-02).

Post hoc analyses

Identification of at-risk NASH—Using the multiplied outputs of each of the four 

component models, the AUC for identification of at-risk NASH was 0.93 in the training 

cohort and 0.84–0.85 in the validation cohorts (Table 2 and Fig. 3). In all cohorts, using a 

threshold of 0.0625 (0.54, the equivalent of multiplying the thresholds for each proteomic 

Sanyal et al. Page 8

J Hepatol. Author manuscript; available in PMC 2023 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model), the sensitivity was high (0.87–0.92) with a specificity ranging from 0.6–0.77 at a 

prevalence of biopsy-confirmed at-risk NASH of 31–39%.

Identification of cirrhosis (F4)

Using a 95% probability cut-off in the fibrosis model, the current data set enabled 

identification of 17 of 25 individuals with cirrhosis in the training set and 2 of 3 and 7 

of 10 in the two validation sets, respectively. The overall specificity for diagnosis of cirrhosis 

was 93–95% while 14% of those with stage 2–3 would be misclassified as having cirrhosis.

Discussion

The current study demonstrates that serum proteomic profiles are associated with various 

phenotypes of NAFLD and can also detect histological changes induced by multiple 

therapeutic interventions. These data must be considered in the context of the robustness 

of the assays, the biological relationship between the proteins identified and disease biology, 

and their overall diagnostic performance.

The robustness of the aptamer-based proteomic assays has been previously established.26 

Notably, ALT – a well-known marker of liver injury – was not identified as a key analyte 

in the models. The classical tests for ALT do not distinguish between the ALT1 and ALT2 

isoforms and report only on its functional activity, whereas the aptamer methods quantify 

ALT1 abundance only. The mean ALT values were low, and the limited range of ALT may 

have further decreased the ability of the models to relate ALT to histological severity in this 

study. Thus, the lack of correlation is not surprising.

The biological plausibility of the models is supported by the known connection of multiple 

proteins with metabolic stress and metabo-inflammation, supporting a linkage with NASH 

biology.27 Of note, AKR1B10 was also identified in transcriptomic analyses of NASH in 

other studies.28 Eighteen proteins were identified that have not been previously linked to 

NAFLD biology and could be further studied for their potential role in disease development 

and progression.

A key element in biomarker evaluation is its context of use, which defines the conditions 

in which it will be used. For the diagnostic context of use, the goal was to enrich the 

probability of having a high level of activity and/or stage 2 or higher fibrosis in a population 

with NAFLD. The study population was therefore appropriate. Yet, there is potential for 

some ascertainment bias given that the study was performed in a tertiary care setting. 

Spectrum bias is another important issue. While the proportions of individuals with and 

without inflammation, ballooning and fibrosis stages 0–3 were relatively balanced, this study 

is limited by a small number of individuals with cirrhosis. Also, since these studies were 

performed in a cohort with NAFLD, there were very few individuals with grade 1 or 0 

steatosis. This potentially explains the drop in accuracy of the models for steatosis in the 

validation cohorts, in which only eight individuals had grade 0–1 steatosis. This limitation 

notwithstanding, the current data are foundational for further testing in an intended use 

population with risk factors for NAFLD.
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Another potential source of error relates to the known inter- and intra-observer variability 

in histological assessment.2 In this study, the NASH CRN pathology committee followed a 

rigorous validated scoring of the biopsies with no knowledge of the proteomic findings. The 

histological reads thus meet the highest standards available for scientific rigor.

The AUC and overall accuracy of the proteomic signatures for features of NAFLD and 

clinically significant fibrosis are comparable to several leading biomarkers and elastography-

based methods.29 It is however cautioned that the generation of predictive values for clinical 

decision making will also depend on the prevalence of the phenotypes in the populations 

where it will be tested. Identifying those with at-risk NASH is key in clinical practice and 

for clinical trial enrollment. This was evaluated in a post hoc manner because this entity 

was not formally identified at the time the project was conceptualized. The dichotomous 

assessment of NAS ≥4 and stage ≥2 fibrosis was leveraged to generate a probability score 

for the presence of these phenotypes. This would extend the dynamic range of the results 

and potentially allow for more refined assessment along a continuous scale in future studies. 

This, however, awaits independent validation in future studies such as those performed and 

reported in abstract form by the LIT-MUS consortium.

The current study also supports the ability of the proteomic models to detect histological 

changes over time. The changes predicted by the model were largely concordant in placebo 

and active arms of the treatment trials. It is important to note that the overall clinical 

endpoint in the trials of a decrease in NAS by ≥2 points was not evaluated because the size 

of the study population was insufficient to model the multiple combinations of changes that 

could lead to such a decrease. The observed disconnect in the lack of model changes in 

steatosis for OCA vs. the histological findings could either be a failure of the model to be 

sensitive to change or inaccurate histological assessment. It is noteworthy that OCA did not 

improve steatosis in the REGENERATE trial.30

The current study mainly included Caucasians, reflecting the study populations at the 

participating centers and the data cannot yet be generalized to other populations. Also, 

there were not enough individuals with each grade and stage of disease to model each one 

individually and this remains an important area for future study in a large and diverse cohort.

In summary, the current study demonstrates that a proteomics-based signature of individual 

features of NAFLD can detect the key histological phenotypes of NASH, including at-risk 

NASH. The proteomic models are sensitive to change and may enable patient selection 

and monitoring in clinical trials, and serve as an aid to clinical management. These results 

represent critical initial steps to support their further validation as biomarkers for NAFLD.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Aptamer proteomics and machine learning generated blood-based NASH 

models.

• Serum models of liver steatosis, in flammation, ballooning and fibrosis were 

validated.

• Models accurately reflect liver biopsy results and NASH severity.

• Models allow for non-invasive longitudinal monitoring of treatment response.
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Impact and implications

An aptamer-based protein scan of serum proteins was performed to identify diagnostic 

signatures of the key histological features of non-alcoholic fatty liver disease (NAFLD), 

for which no approved non-invasive diagnostic tools are currently available. We also 

identified specific protein signatures related to the presence and severity of NAFLD 

and its histological components that were also sensitive to change over time. These are 

fundamental initial steps in establishing a serum proteome-based diagnostic signature of 

NASH and provide the rationale for using these signatures to test treatment response and 

to identify several novel targets for evaluation in the pathogenesis of NAFLD.
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Fig. 1. 
Cohort derivation, validation and longitudinal assessment.
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Fig. 2. Model predictions vs. observed biopsy results in the training, hold-out validation, and 
paired validation data sets.
Models were trained on dichotomized variables (left and right of vertical yellow lines). 

Probability outputs of the models (probability of any given sample being in the positive 

class) are displayed by the original biopsy grade. The decision threshold for all models 

was greater than or equal to 0.5 (horizontal gray lines). Boxes show medians, 25th and 75th 

centiles. By random chance there were no zero inflammation scores in the paired validation 

set. Training: left panels; Hold-out validation: center panels; Paired validation: Right panels.
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Fig. 3. Model predictions for at-risk NASH vs. biopsy-based composite outcome of NAS ≥4 and 
fibrosis ≥2 in training, hold-out validation, and paired validation data sets.
At-risk NASH predictions are calculated by multiplying the predicted probability of the 

models. The decision threshold was set at 0.0625 (0.54, the equivalent of multiplying the 

decision thresholds for each model). Yellow vertical lines indicate the binary class threshold 

and gray horizontal lines indicate the model decision threshold. Boxes show medians, 25th 

and 75th centiles. Prevalence of at-risk NASH was 31%, 38% and 39% for training/holdout/

validation data sets respectively. Training: left panels; Hold-out validation: center panels; 

Paired validation: Right panels.
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Fig. 4. Predictions of protein models in longitudinal serum samples.
Results are for each component for the mixed effects models using continuous predicted 

probability (logit-transformed) for each study. Higher scores reflect greater probability of 

being in the positive class. The black dashed line corresponds to the decision cut-off at 0.5. 

The placebo groups are shown in gray. The active groups are shown in blue and teal. The 

95% CIs of the mean predicted probabilities across all samples is shown for each group 

at each single time point. Confidence intervals were calculated using the standard error 

estimated from the mixed effects models with week and treatment group fixed effects and a 

random subject effect.
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