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ABSTRACT

We propose an algorithm for low Mach number reacting flows subjected to electric field that
includes the chemical production and transport of charged species. This work is an extension
of a multi-implicit spectral deferred correction (MISDC) algorithm designed to advance the
conservation equations in time at scales associated with advective transport. The fast and non-
trivial interactions of electrons with the electric field are treated implicitly using a Jacobian-Free
Newton Krylov approach for which a preconditioning strategy is developed. Within the MISDC
framework, this enables a close and stable coupling of diffusion, reactions and dielectric relax-
ation terms with advective transport and is shown to exhibit second-order convergence in space
and time. The algorithm is then applied to a series of steady and unsteady problems to demon-
strate its capability and stability. Although developed in a one-dimensional case, the algorithmic
ingredients are carefully designed to be amenable to multidimensional applications.

KEYWORDS
low Mach number combustion, spectral deferred correction (SDC), Jacobian Free Newton
Krylov (JFNK), electric field

1. Introduction

Experiments have shown that applying electric fields to flames can provide an effective control

of the combustion process by enhancing flame propagation speed, improving flame stabilization

and reducing pollutant emissions [1, 2]. However, the development of such technology has proven

difficult without a clear understanding of the interaction mechanisms between the flame and the

electric field, and the use of electric fields is currently limited to flame detection sensors [3].

The chemical decomposition of hydrocarbons proceeds mainly through reactions involving

neutral intermediate radicals. However, some reactions, called chemi-ionization reactions, also

produce small quantities of charged chemical species and electrons [4, 5, 6]. These particles
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undergo a force when subjected to an electric field and their interactions with the surrounding

gas can result in a global flame response to the electric field. Three major effects have been

advanced in the literature [1]: 1) the collision of charged particles with neutral ones induces

a bulk convective transport in the gas called the ionic wind effect; 2) the transport of highly

reactive charged particles from the reactive layer of the flame to the low temperature zone

enhances the fuel oxidation rate; and 3) for strong electric fields ohmic heating increases the

flame temperature, resulting in a higher flame speed. These processes were found to have an

effect on flame speed [7, 8, 9, 10, 11], flame stabilization [12] and NOx and soot formation

[13, 14, 15]. The extent to which each process is important depends on the applied potential

difference, the polarity, the distance between the electrodes and the flame, and the operating

conditions, making it difficult to compare results from different experiments and to provide clear

design guidelines for engineers.

Over the last decade, several groups have developed numerical methods to analyze the in-

teractions of an electric field with charged particles in a flame. In most applications, the flame

can be considered weakly ionized, i.e., the number density of electrons is much smaller than

that of neutrals. However, the presence of charged particles, especially light electrons, results

in challenging numerical issues associated with the wide scale separation between the electron

dielectric relaxation scale and the comparatively slow hydrodynamic scale. Consequently, early

studies focused mainly on steady-state one-dimensional flames [16, 17, 18] without an external

applied electric field and identified the main chemical pathways associated with ions as well

as the role of the ambipolar diffusion in the charged species spatial distribution. More recently,

these steady-state numerical studies have been used to provide a more complete characterization

of the flame response to external forcing (also called the i−V curve, relating the current drawn

from the flame to the applied voltage difference) [19, 20, 21, 22]. In agreement with experimental

evidence, the effect of the external electric field is found to strongly depend on its polarity. The

current is found to increase linearly with the potential difference before reaching a saturation

current for high (positive) voltage. These studies highlight the dependence of the numerical

results on the choices of the chemical mechanism and, to a lesser extent, on the modeling of

electron and ion transport properties [23, 24]. Steady-state multi-dimensional simulations have

also been reported [25, 26], showing that the simulations are able to capture qualitatively the

change in flame shape and position resulting from the ionic wind. Due to the aforementioned

multi-scale nature of the problem, fewer unsteady simulations are reported in the literature

[27, 28, 29, 21, 30]. These simulations capture the effect of the electric field on the flame base

position and investigate both direct current (DC) and alternative current (AC) conditions. To

partially alleviate the fast electron drift velocity constraint on the stability of the numerical

method, Belhi et al. [28, 29] employed a small value of the electron mobility κe and a linearized

approximation of the charged species transport equation. The effects of these assumptions on the
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flame response was not evaluated and this approach cannot be extended to more realistic values

of κe and higher intensity external electric fields without significant reduction of the simulation

time step. In the plasma community, semi-implicit methods have been developed to overcome

the electron time scale constraint [31]. However these approaches allow at best a couple orders

of magnitude increase of the time step (∼ 10−11 − 10−13 s depending on the intensity of the

electric field), which remains several order of magnitudes smaller than the hydrodynamic time

scale in typical turbulent combustion applications (∼ 10−7 − 10−8 s).

In this paper, we propose a strategy based on multi-implicit spectral deferred correction

(MISDC) method [32] to include the coupling between charged species and an electric field in a

low Mach number combustion framework. The MISDC approach allows tight coupling between

the different physical processes in a multi-scale simulation by including the effect of each process

in their separate integration (in contrast to Strang splitting methods that consider each process

sequentially and independently [32]). To alleviate the electron dielectric relaxation time scale

constraint, the non-linear system formed by the coupled electron conservation equation and

electrostatic potential equation is solved implicitly using a preconditioned Jacobian-free Newton

Krylov (JFNK) method.

The paper is organized as follows. In Section 2 we introduce the low Mach number conservation

equations including the electrostatic potential equation as well as the chemical and transport

models. In Section 3 we discuss the changes implemented in the MISDC algorithm and details

of the solution of the implicit non-linear system. We then provide a skeletal description of the

time advance procedure. In Section 4 we present results for premixed flames in 1D under DC

and AC conditions. Finally, the paper finishes with the main take-away of our approach and

discusses future work.

2. Low Mach number equation set

2.1. Low Mach number equation set

This paper builds on the low Mach number equations set reported in previous work [33, 32], with

the addition of an electrical drift contribution in the momentum, species and enthalpy equations,

a separate conservation equation for the electron number density and a Poisson equation for the

electrostatic potential to obtain an electric field consistent with the charged species distribution.

In the low Mach number regime, the characteristic velocity of the fluid Uadv is much smaller

than the speed of sound a (typically |Uadv|/a = M ∼ 0.1 or even smaller), so the effect of

acoustic wave propagation can be neglected since it does not affect the dynamics of the system.

In numerical simulations, this effect is mathematically removed from the equations of motion

and the system evolves subject to a time step based on the advective CFL condition. In low

Mach number conditions, the total pressure can be decomposed into a spatially uniform (ther-
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modynamic) component p0, and a perturbational term, π, that drives the flow:

p(x, t) = p0 + π(x, t) (1)

Although the formulation supports a time varying p0 (arising, for example, in closed chamber

applications [43]), we assume an open domain here to simplify the exposition.

The set of equations describing species, electrons, enthalpy and momentum conservation in

the low Mach number limit [33] are given by:

∂(ρYm)

∂t
+ ∇ · (UadvρYm) = −∇ · Γm + ω̇m m = 1 : N (2)

∂(ne)

∂t
+ ∇ · (Uadvne) = −∇ · Γe + ω̇e (3)

∂(ρh)

∂t
+ ∇ · (Uadvρh) = ∇ · λ∇T −

∑
m

∇ · (hmΓm) +
∑
m+e

zmYmΓm ·E (4)

∂(ρUadv)

∂t
+ ∇ · (ρUadvUadv) = −∇π + ∇ · τ + ρ

∑
m+e

zmYmE (5)

where N is the total number of species (excluding the electrons), ρ is the density, Ym is the mass

fraction of species m, ne is the electron number density, Uadv is the fluid advective velocity, Γm

(resp. Γe) is the diffusion mass flux of species m (electrons), h =
∑

m(Ymhm) is the mixture

total (sensible and chemical) enthalpy with hm(T ) the enthalpy of species m, ω̇m (resp. ω̇e)

is the production rate of species m (electrons) due to chemical reactions, λ is the thermal

conductivity, zm is the electric charge per unit mass of species m, E is the electric field, and π

is the perturbational pressure arising from the low Mach number approximation. The evolution

equations are closed by an equation of state, p0 = p(ρ, T, Y ) for the thermodynamic pressure.

Note that the low Mach assumption requires that the flow evolve subject to a constant p0. This

DAE system can be solved by differentiating the equation of state in the frame of the fluid and

requiring that the evolution be constrained to satisfy constant pressure in this frame [34]. Here

we assume a mix of ideal gases:

p0 = ρ
Ru

W
T = ρRu

∑
m

Ym
Wm

(6)

where p0 is the ambient pressure, W is the mean molecular weight of the mixture, Wm is

the molecular weight of species m and Ru is the universal gas constant. Expanding in partial

derivatives and using the conservation equations, the constant p0 condition can be recast as a
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constraint on the velocity [33]:

∇ ·Uadv =
1

ρcpT

(
∇ · λ∇T +

∑
m

Γm ·∇hm +
∑
m+e

zmYmΓm ·E
)

+
1

ρ

∑
m

W

Wm
∇ · Γm +

1

ρ

∑
m

(
W

Wm
− hm
cpT

)
ω̇m ≡ S

(7)

where cp is the specific heat at constant pressure for the mixture. Since this constraint is a

linearization of the equation of state, the thermodynamic variables will not remain consistent

with p0 numerically; in order to prevent this thermodynamic drift, a correction term δχ has

been added to to the constraint equation 7:

∇ ·Uadv = S +
f

peos

(
peos − p0

∆t
+Uadv ·∇peos

)
︸ ︷︷ ︸

δχ

≡ Ŝ (8)

where 0 < f < 1 is a damping factor (see Day et al. [33] for details on the iterative implemen-

tation of this equation). Compared to classical low Mach number reactive flows, two additional

source terms appear in the conservation equations: 1) the Lorentz volumetric forces (last term

in Eq. (5) and 2) the ohmic heating, corresponding to the work of the Lorentz forces (last term

in Eq. (4)).

The stress tensor in the momentum Eq. 5 is defined as:

τ = µ

[
∇Uadv + (∇Uadv)

T − 2

3
I(∇ ·Uadv)

]
(9)

where µ(Ym, T ) is the dynamic viscosity and I is the identity tensor (we ignore the bulk viscosity

here). Since neither species diffusion nor chemistry redistribute total mass, we have
∑

m Γm = 0

and
∑

m ω̇m = 0. Noting that
∑

m Ym = 1 (ignoring the mass of electrons), the continuity

equation can be derived summing up the species continuity equations:

∂ρ

∂t
+ ∇ · (ρUadv) = 0 (10)

The diffusion flux of species m can be expressed as:

Γm = ρYmVm , Vm = −Υm dm = −Υm
(
dm,d + dm,ef

)
= Vm,d + Vm,ef (11)

where Vm defines the diffusion velocity of species m in terms of EGLIB’s “flux diffusion vector”

Υm = Wm

W
Dm [35] and the driving forces dm; Dm is the mixture-averaged diffusion coefficient

of species m. Ignoring Dufour, Soret and barodiffusion terms, the diffusion and electric driving
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forces are, respectively:
dm,d = ∇Xm

dm,ef =
νmqeNA

RuT

W

Wm
Ym∇φ = zmYm

W

RuT
∇φ

(12)

where Xm is the mole fraction of species m, φ is the electric potential, νm is the valence (e charges

per molecule) of species m, qe is the elementary electron charge, NA is Avogadro’s number, and

zm = νmqeNA/Wm is the charge per unit mass of species m.

Under the electrostatic assumption, the local electric field E is obtained from Gauss’ law:

∇ ·E =
qt
ε0εr

(13)

where qt =
∑

m zmρYm + qene is the local total charge number density of the mixture and ε0

and εr = 1 are the vacuum permittivity and the relative permittivity of the gaseous medium,

respectively. The electric field is the negative gradient of the electrostatic potential φ, i.e:

E = −∇φ (14)

Inserting Eq. (13) in Eq. (14) we obtain the electrostatic potential equation:

− ε0εr∇2φ = qt (15)

The drift velocity Vm,ef can also be written as Vm,ef = κmE, where κm is the mobility of species

m in the mixture. Thus, consistent with the Einstein relation [36], the mobility is defined as:

κm = Dm
νmqeNA

RuT
(16)

The right-hand side of the diffusive driving force in Eq. 12 can be rewritten as:

∇Xm =
W

Wm
∇Y m +

Ym
Wm

∇W (17)

and so the diffusion fluxes can be rewritten in terms of mass fractions gradients plus W correc-

tions:

ρYmVm,d = −ρWm

W
Dm
( W
Wm

∇Y m +
Ym
Wm

∇W
)

= −ρDm∇Y m − ρDm
Ym

W
∇W (18)

We will use this form of the transport equation to build an iterative time-implicit update scheme

based on lagging the corrections and sweeping through the species with decoupled linear solves
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for the Crank-Nicolson update. The resulting form of the diffusive species flux will be:

Γ̃m ≡ −ρDm∇Y m − ρDm
Ym

W
∇W − ρYmκm∇φ (19)

However, since we employed mixture averaged diffusion coefficients, equation 19 will not in

general satisfy that
∑

m Γ̃m = 0; to conserve mass, we introduce a correction velocity [33] that

guarantees that these fluxes sum to zero. Since we use an implicit approach to compute the

diffusion fluxes, we first solve the implicit system to evaluate the original fluxes Γ̃m, then we

conservatively correct Γ̃m so that they sum to zero on each cell face (we will denote the corrected

fluxes as Γm), and finally we modify the time-advanced values of the mass fractions Ym to be

consistent with the corrected fluxes.

2.2. Chemical mechanism and species transport properties

The chemical mechanism employed in this work combines the GRI3.0 [37] for the oxidation of

methane with the reaction mechanism for charged species reported in Belhi et al. [38]. The com-

bined mechanism contains 61 species (not including electrons) and 386 reactions, and includes

10 ions (4 cations and 6 anions) as listed in Table 1. In the remainder of the paper, charged

species refers to the ions whereas charged particles also includes the electron. Several studies

have showed that anions are only present in very small quantities in freely evolving flames; elec-

trons account for most of the negative charges. However, Belhi et al. [30] recently showed that

including the anions (especially large anions such as CO−3 and HCO−3 ) is essential to reproduce

the ionic wind motion observed experimentally.

Cation H3O+ HCO+ C2H3O+ CH5O+

Wm [g/mol] 19.02 29.02 43.05 33.05

Anions OH− O− O−2 CO−3 HCO−2 HCO−3
Wm [g/mol] 17.01 16.00 32.00 60.01 44.01 61.02

Table 1. List of ions included in the chemical mechanism along with their molecular weight.

The thermodynamic data for the charged species from the Burcat [39] database were used.

The computation of the transport properties for the charged particles listed in Table 1 uses

the EGLIB library. Specific treatment of the ion/neutral or ion/ion collision is not investigated

in this work, the use of (n,6,4) and Coulomb [40] interaction potentials for ions/neutrals and

ions/ions collisions as described in Han et al. [24] will be studied in future work.

The electron transport coefficients require a more detailed treatment. For low values of the

reduced electric field |E|/N , where N is the background gas number density, the electrons are in

thermal equilibrium with the mixture. In these conditions, the electron temperature is equal to

that of the mixture: electrons are accelerated by the electric field E, but the collision frequency

with neutral species (represented by N ) is high enough to prevent the electrons from reaching
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high kinetic energy conditions. For higher values of |E|/N , the electrons gain sufficient kinetic

energy that their energy (temperature) is higher than the remainder of the mixture. For this

case the electrons are said to be non-thermal. Under these conditions, the evaluation of the

electron transport coefficients require the computation of the evolution of the electron energy

distribution function (EEDF) by solving the Boltzmann equation [41]. Additionally, the chemi-

ionization reaction CH + O → HCO+ + e− is no longer the only chemical pathway producing

electrons since impact ionization rates become important [41]. However, this last effect is not

included in our framework at the present time and its relevance will be the subject of future

studies.

Previous studies employed a constant value of the electron mobility κe = 0.4 mJ−1s−1 [21, 26]

since this constant value was found to provide a good agreement with simulations obtained

from more detailed thermal electron transport calculations [23]. The framework developed in

this work aims at simulating realistic engineering applications characterized by relatively high

external voltages, conditions at which electrons can no longer be assumed thermal. In order to

include a non-thermal electron transport coefficient without explicitly computing the evolution

of the EEDF, the mixture composition and temperature are extracted from the simulation as

function of the progress variable c:

c =
T − Tin

Tmax − Tin
(20)

Note that other definitions of the progress variable could be used for fuels exhibiting more

complex behaviors. This information is then used in the BOLSIG+ [42] code to estimate the

EEDF and the corresponding value of the electron mobility and diffusion coefficient at different

values of |E|/N . The resulting two-dimensional tables are shown in Fig. 1 and electron transport

properties are extracted from these tables during the simulation using c and |E|/N . Note that

3. MISDC strategy

3.1. MISDC strategy

The present strategy builds upon the MISDC methodology developed in Nonaka et al. [32, 43].

As a brief reminder, the spectral deferred correction (SDC) method [44] solves a system of

ordinary differential equation:

ϕt = F (t,ϕ(t)), t ∈ [tn, tn+1]; (21)

ϕ(tn) = ϕn (22)
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Figure 1. (a) Electron mobility κe as function of progress variable and reduced electric field. The full line corresponds to
the constant value κe = 0.4 m2.V−1.s−1. (b) Electron diffusion coefficient κe as function of progress variable and reduced

electric field.

using the integral form:

ϕ(t) = ϕn +

∫ t

tn
F (τ,ϕ(τ)) dτ (23)

The SDC method generates successive approximation ϕ(k)(t) of ϕ(t) using the update equation:

ϕ(k+1)(t) = ϕn +

∫ t

tn

[
F (ϕ(k+1))− F (ϕ(k))

]
dτ +

∫ t

tn
F (ϕ(k)) dτ (24)

where the explicit dependence of F and ϕ on t in the integrals has been dropped for simplicity.

By using a low-order approximation of the first integral and a more accurate quadrature rule

for the second integral, the SDC method effectively constructs an arbitrary order (the order of

the quadrature rule) solution by successive low-order corrections of the approximation ϕ(k)(t).

In MISDC [45, 46], F is decomposed into distinct processes, that can be treated separately in

their own time scales:

F (t,ϕ(t)) ≡ A(t,ϕ(t)) +D(t,ϕ(t)) +R(t,ϕ(t)) (25)

with A, D and R referring here to the advection, diffusion and reaction processes, respectively.

Here, following [32], A(t,ϕ(t)) and D(t,ϕ(t)) are piece-wise constant over each time step. The

former is evaluated using a second-order Godunov method while the latter is evaluated using
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a midpoint rule. To accommodate the stiffness of hydrocarbon chemical reactions, the update

equation for the reaction is formulated as an ODE and integrated using a stiff ODE package such

as CVODE. The effects of advection and diffusion are taken into account as temporally constant

forcing terms in the chemical ODE integration (see [32] for more details on the integration

procedure).

The main steps of the integration algorithm are summarized in Algorithm 1. The set of

transported thermodynamic scalars is written as ϕ = (ρ, ρh, T, ne, ρYm)T . The superscript n

indicates the timestep and (k) is the SDC iteration index. The diffusion operator for scalar ϕ at

time tn is written Dn
ϕ, the k-th approximation of this operator at time tn+1 is written D

n+1,(k)
ϕ

and the k-th approximate of the advection operator obtained with the Godunov procedure is

A
n+1/2,(k)
ϕ . The charged species drift flux appearing in Eq. 19 is non-symmetric and introduces

numerical instabilities when discretized with the species diffusion flux using a second order

centered scheme. To overcome this difficulty, the drift flux is treated along with the advective

flux in the second-order Godunov procedure by constructing an effective velocity for each species,

m:

U
(k)
ef,m = U

(k)
adv − νmκm∇φ

n+1,(k) (26)

The resolution of the coupled electron/electrostatic potential non-linear system requires pro-

visional charged species mass fraction ρ̃Y
n+1,(k+1)

m :

ρ̃Y
n+1,k+1

m = ρY n + ∆t

[
An+1/2,(k)
m +

1

2

(
Dn
m −Dn+1,(k)

m

)
+D

n+1,(k+1)
m,AD + I

(k)
R,m

]
(27)

where I
(k)
R,m is the integrated representation of the reaction term for species m from the previous

SDC iteration.

3.2. Non-linear implicit solution

At each SDC iteration, we solve the non-linear system formed by the electron conservation

equation (Eq. (3)) and the electrostatic potential equation (Eq. (15)):
∂(ne)

∂t
= −∇ · ne(U− κe∇φ) + ∇ ·De∇ne + IR,e

ε0εr∇2φ = −
∑
m

zmρ̃Y m + ene,

(28a)

(28b)

where ρ̃Y
n+1,k+1

m is the provisional charged species mass fraction at the current SDC iteration

and IR,e is the last evaluation of the electron chemical source term.
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Algorithm 1: Time step: tn → tn+1

1 Get advection velocities: U∗adv
2 Advance thermodynamic variables

(a) Initialize SDC predictor:
- Get scalar transport properties from ϕn

- Solve Poisson equation for φn

- Compute initial diffusion operators Dn
ϕ

- Initialize SDC predictor: ϕn+1,(0) ← ϕn, D
n+1,(0)
ϕ ←Dn

ϕ

(b) do k : 1, kmax (> 2 for 2nd-order)
- Get scalar transport properties from ϕn+1,(k)

- Compute approximate diffusion operators D
n+1,(k)
ϕ

- Compute projected advection velocity U
(k)
adv

- Compute explicit advection operators A
n+1/2,(k)
ϕ :

· Compute effective velocity for each species U
(k)
ef,m = U

(k)
adv − νmκm∇φ

n+1,(k)

· Use second-order Godunov to get advection fluxes (ϕU ef,ϕ)n+1/2,(k)

- Compute implicitly the species and enthalpy diffusion D
n+1,(k+1)
ϕ,AD

- Solve implicit non-linear electron/Poisson system

· Compute provisional charged species fields ρ̃Y
n+1,(k+1)

m

· Use algorithm from Section 3.2 to get n
n+1,(k+1)
e and φn+1,(k+1)

- Integrate species reaction and enthalpy evolution over ∆t and evaluate the reaction
term
I

(k+1)
R,ϕ

3 Advance velocity

Using a first order backward Euler time discretization, the implicit non-linear system can be

written as: − n
n+1
e −∆t∇ · nn+1

e (U− κe∇φn+1)−∆t∇ ·De∇ne
n+1 + fe = 0

− nn+1
e +

ε0εr
e

∇2φn+1 + fφ = 0,

(29a)

(29b)

where fe = −InR,e + nne and fφ =
∑

m zmρ̃Y
n+1,k+1

m /e. Introducing X = (ne,φ), Eq. (29) can

be written as F (X) = 0, where F (X) is the non-linear residual. This system is solved using a

Jacobian-free Newton-Krylov (JFNK) method [47].

The basis of JFNK is the iterative non-linear Newton solution, where at each iteration l, a

linear system of the form:

J (l)δX(l) = −F (X(l)) (30)
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is solved. Here, δX(l) = X(l+1)−X(l) is the Newton update and J (l) = J (X(l)) = ∂F (X(l))/∂X

is the system Jacobian matrix. In practice, the components of X(l) and F (X(l)) can have entries

than span a large range of values which can affect the solution of the linear system (30) and

destroy the convergence properties of Newton’s method. To address this issue, Eq. (30) is scaled

by two diagonal matrices SF and SX :

(S−1
F J

(l)SX)(S−1
X δX(l)) = −S−1

F F (X(l)) (31)

where SF contains typical values of F (ne) and F (φ) respectively, and SX contains typical values

of ne and φ. The typical values are evaluated at the beginning of the non-linear iterations since

the apropriate values may evolve with the solution. The Newton iterations are stopped when

the norm of scaled residual is reduced by εF orders of magnitude or the scaled magnitude of the

Newton step drops below a certain value εX :

||S−1
F F (X(l))||∞ < εF (32)

||S−1
X δX(l)||∞ < εX (33)

These tolerances must be chosen to ensure that the non-linear solution residual remains smaller

than the truncation error of the numerical schemes. A backtracking linesearch algorithm is

employed for globalization of the Newton method [48].

For large non-linear systems encountered in multi-dimensional simulations, the computational

cost and memory requirements of solving a linear system with a direct solver at each Newton

iteration are prohibitive. Our implementation thus uses the GMRES Krylov method [49] to

solve the scaled linear system (31). For clarity, the left and right scaling matrices will not be

carried in the following description and the outer (Newton) iteration index l is dropped (the

scaling is implemented in the code; however). The GMRES starts with an initial guess δX0,

and the corresponding residual r0 = −F (X0) − J δX0. In the context of a Newton-Krylov

method, δX0 = 0 is used since the Newton step tends toward zero as we go through the Newton

iterations. At the pth iteration of the GMRES method, we construct an approximation δXp of

the solution by solving a minimization problem in the Krylov subspace Kp of J :

Kp(J , r0) = span(r0,J r0,J 2r0, ...,J p−1r0) (34)

It can be seen that the GMRES method only needs the action of the Jacobian matrix on a vector.

For large linear systems, the construction and storage of matrix J can hinder the performance

and the scalability of the algorithm. In the JFNK context, the explicit construction of J is

12



dropped in favor of a finite difference approximation of the the matrix/vector product J v:

J (X)v =
F (X + εFDv)− F (X)

εFD
(35)

where εFD is a small number. The quality of the approximation of J .v depends on the choice

of εFD. Here we use the method employed in the Trilinos package [50]:

εFD = λFD

(
λFD +

|X|
|v|

)
(36)

where λFD = ε
1/3
mach is a small parameter related to the machine precision εmach. The linear

solver is iterated until:

||J δXp + F (X)||2 < γ||F (X)||2 (37)

A constant value of γ is kept throughout the simulation and the effect of the choice of γ on the

non-linear system solution will be assessed in Section 4.2.

The performance of the JFNK depends strongly on the number of GMRES iterations required

to solve (31). If J has a large condition number, the Krylov method requires a large number of

iterations to converge. In this case, it is necessary to apply a preconditioner to the linear system:

P−1J δX = −P−1F (X) (38)

where P is an approximation of J , such that P−1J ∼ I. The main objective of the precondi-

tioner is to cluster the eigenvalues of the resulting P−1J matrix, allowing the GMRES method

to find a good δXp in a small Krylov space (i.e. small number of iterations). To construct the

preconditioner, we start by linearizing Eq. (29):
− δnn+1

e + ∆t [∇ ·De∇−∇ · (U− κe∇φn+1)]︸ ︷︷ ︸
Df

δnn+1
e + ∆t∇ · nn+1

e κe∇︸ ︷︷ ︸
Dr

δφn+1 = 0

− δnn+1
e +

ε0εr
e

∇2︸ ︷︷ ︸
L

δφn+1 = 0,

(39a)

(39b)

This allows us to write the block matrix form of the Jacobian J resulting from the spatio-

temporal discretization of Eq. (29):

J =

(
(∆tDf − I) ∆tDr

Ie L

)
(40)

where the block matrices Df , Dr and L are the spatial operators underlined in Eq. 39. Note
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that Ie actually differs from the identity matrix because of the scaling applied to the linear

system (31). Schur factorization of the inverse of the 2 × 2 block Jacobian is written as:

P−1 = J −1 =

(
I −(∆tDf − I)−1∆tDr

0 I

)(
(∆tDf − I)−1 0

0 S−1

)(
I 0

−Ie(∆tDf − I)−1 I

)
(41)

where S = L − Ie(∆tDf − I)−1∆tDr is the Schur complement of J . Here, P−1 is the exact

inverse of the Jacobian matrix and it only requires (∆tDf − I)−1 and S−1, both of which are

easier to invert than J . However, computing S−1 is still difficult since the construction of S
requires the solution of (∆tDf − I)−1. Instead, we use an approximation S̃ = L + Ie∆tDr of

S that is easier to solve. It can be seen that for small time steps, S̃ is a good approximation of

S. Both (∆tDf − I) and S̃ are then diagonally dominant and can be solved effectively using a

multi-grid (MG) approach. The present implementation uses a standard V-cycle approach with

red-black Gauss-Siedel relaxation to solve both linear systems to a tolerance γMG. The effect of

γMG on the performance of the JFNK is evaluated in Section 4.2. Applying P−1 to any vector

v requires the application of the successive matrices of Eq. (41) to v. In its classical Schur

factorization form (41), this entails four MG solves (three solves of (∆tDf − I)−1 and one of

S̃
−1

). To save one MG solve, the block factorization (41) is rewritten in the following form:

P̃−1 =

(
I −(∆tDf − I)−1∆tDr

0 I

)(I 0

0 S̃
−1

)(
I 0
Ie I

)(
(∆tDf − I)−1 0

0 I

)
(42)

The solution of the implicit non-linear system is summarized in Algorithm 2. Superscript l

corresponds to the Newton iteration index while subscript p is the GMRES iteration index.

4. Numerical experiments

We first evaluate the robustness and performance of the proposed algorithm in order to optimize

the numerical parameters and tolerances employed in the JFNK. Then, simulations of steady one-

dimensional premixed methane/air flames subject to DC electric fields are performed in order

to estimate the accuracy of the complete algorithm and provide comparisons with experimental

data. Finally, the behavior of flames subjected to AC electric fields at various frequencies is

analyzed.

4.1. Numerical set-up

Throughout this section, we consider an unstrained one-dimensional burner-stabilized premixed

methane/air flame. The operating conditions correspond to the experimental study of Speelman

et al. [20]: the inlet velocity is set to the flame speed of a stoichiometric methane/air flame at T
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Algorithm 2: JFNK resolution

1 Get typical values of X(0) and F (X(0)) to fill SX and SF
2 do while : ||S−1

F F (X(l))||∞ > εF
- Build MG operators for P−1 with current X(l)

- δX0 = 0
- r0 = P−1F (X(l))
- Initialize Krylov subspace base vector K0 = r0/||r0||
do while : ||J (l)δXp + F (X(l))||2 > γ||F (X(l))||2

- Compute Kp = P̃−1J (l)Kp−1

- FD approximation of the matrix-vector product J (l)Kp−1 (Eq. (35))

- Apply Eq.(42), using MG to solve the (∆tDf − I)−1 and S̃
−1

blocks
- Gram-Schmidt method to orthogonalize Kp

- Find δXp that minimizes residual rp in the Krylov subspace Kp(P−1J (l), r0)

- Evaluate λ such that ||F (X(l) + λδXp)|| < ||F (X(l))− αλ∇F (X(l))′δXp||
- Update X(l+1) = X(l) + λδXp

= 300 K while the inlet temperature is set to T = 350 K, such that the flame is stabilized on the

left boundary of the domain. Simulations are initialized from a resolved CANTERA [51] solution

(∼ 4000 unequally-spaced grid points), that does not include the effect of the electric field. The

CANTERA solution is interpolated onto a set of uniform grids with varying resolution, and

simulations are evolved initially without external electric forcing for 5 ms in order to eliminate

any spurious artifacts introduced by the initialization. Subsequently, the external electric field

is activated and set to the desired values. The main characteristics of the simulations are listed

in Table 2. Unless otherwise specified, the numerical parameters ( kmax, γ, ...) listed in Table 2

are employed.

Operating conditions
Tin [K] Uadv,in [m/s] Pressure [Pa] Yfuel,in YO2,in YN2,in

350.0 0.371 101325.0 0.055 0.220 0.725

Numerical parameters
L [m] nx ∆x [µm] kmax γ γMG

0.01 [128,2048] [156,9.77] 4 1.0e−4 1.0e−4

Table 2. Characteristic of the 1D laminar premixed flame

The interactions of the electric field with the charged particles in the flame introduces addi-

tional time scales compared to classical reactive flow simulations. The following is an overview

of the relevant characteristic time scales and summarizes the specific treatment used here in the

numerical strategy:
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• bulk advective time scale:

τbulk =
∆x

Uadv
(43)

• species/electron diffusive time scale:

τdiff,m =
∆2
x

2 d max{m∈Np}(Dm)
(44)

where d is the number of dimensions.

• chemical reaction time scale:

τchem =
ρ

max{m∈Np}(ω̇m)
(45)

where ω̇m is chemical production rate per volume of species m.

• charged species/electron effective convective time scale:

τconv,m =
∆x

max{m∈Nc}(Uadv + κmE)
(46)

τconv,e =
∆x

Uadv + κeE
(47)

where the drift velocity of the species is considered. Note that for large values of the external

electric field, the drift velocity can oppose the convective velocity and its magnitude can

exceed it. Additionally, the large mobility of the electrons results in a more stringent time

step constraint, compared to ions.

• electron dielectric relaxation time scale characterizes the response of the electric field to a

change in the electron distribution:

τdiel =
ε0εr
eκene

(48)

The first three time scales are common in reactive flow simulations. In most combustion sim-

ulations using detailed chemical kinetics, the chemical time-step constraint is alleviated in the

numerical implementation by using a stiff ODE integrator. Additionally, we use a semi-implicit

Crank-Nicholson method for conduction and species diffusion which enables time steps larger

than the fast diffusive time scales of light species. The advection of charged species is treated

time explicitly so that the advective time scale constrains the overall simulation time-step. Al-

though this often results in time steps smaller than τbulk, the charged species time scales are

still several orders of magnitude larger than that of the electrons. Typical values of the various
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time scales are plotted against the external electric forcing ∆V in Fig. 2. The data is based on a

nx = 512 grid points simulation, corresponding to ∆x = 19.5µm. The bulk advective time scale

is only shown as a reference for the classical low Mach number time constraint. Both τconv,e and

τconv,m decrease with increasing values of ∆V ; τconv,e is approximately four orders of magnitude

smaller than τbulk. Both advective time scales exhibit a plateau at around ∆V = 250 V.cm−1,

corresponding to the saturation voltage. At the same location, the dielectric time scale jumps

to exceed τbulk. This is behavior is related to the drop in peak electron number density as the

external voltage exceeds the saturation value. Across the range of ∆V considered, the time scales

associated with electrons are several orders of magnitude more stringent than the others, thus

highlighting the need for an implicit treatment of the electrons.
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Figure 2. Evolution of the typical value of the simulation time scales against the external voltage ∆V for a nx = 512
mesh.

4.2. Iterative solvers performance

Solution of the implicit non-linear electron/electrostatic potential system with JFNK involves

several tolerances, which can have a significant impact on both the robustness and performance

of the proposed methodology. A series of tests are performed in order to evaluate the optimal

settings.

At the lower level of the JFNK algorithm is the application of the inverse of the preconditioner

P̃ on the GMRES basis vectors (see Eq. (42)). This requires three MG solutions (two solutions of

(∆tDf −I)−1 and one solution of S̃
−1

) using a standard V-cycle approach [52]. Two relaxation

operations are applied going down and up each level of the V-cycle based on a Red-Black Gauss
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Siedel. Figure 3(a) shows the total number of GMRES iterations per SDC iteration, as function

of the V-cycle tolerance γMG. Figure 3(b) shows the total number of V-cycle as function of

γMG. To separate the effect of each block on the performance of the preconditioner, the MG

tolerance is tested for one block while the other is solved exactly (using a tri-diagonal solver in

the present one-dimensional case). The number of GMRES iterations is only marginally affected

by the multigrid tolerance on S̃
−1

, while loose tolerance on (∆tDf − I)−1 results in a large

increase of the number of iterations. However, the number of V-cycles directly increases the

CPU cost of the algorithm and, in the present cases, the trade-off between the MG tolerance

and the total number of V-cycles shows V-cycles minimized around γMG ∼ 1.0e−4 as can be

observed in Figure 3(b).
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Figure 3. (a) Total number of GMRES iterations per SDC iterations as function of the MG tolerance γMG. (b) Total

number of V-cycle per SDC iterations as function of γMG.

Given these settings, the efficiency of the preconditioner can be directly evaluated by com-

paring the convergence of the GMRES solver with and without preconditioning. Figure 4 shows

the GMRES residual as function of the GMRES iteration count for different values of ∆V

both with and without the preconditioner. The preconditioned systems converge 20 to 50 times

faster, regardless of the operating conditions. Note that simulations are performed at a constant

CFLconv,m, so that the time step is reduced as ∆V increases, resulting in a more efficient pre-

conditioning (S̃
−1

tends towards S−1 as ∆t decreases). Additionally, the preconditioned system

convergence is only marginally affected by the size of the system whereas the unpreconditioned

system convergence rate decreases with nx (not shown).
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Figure 4. Convergence of the normalized GMRES residual with and without preconditioner in the nx = 512 case and

∆V = 0, 10, 50, 100, 500, 1000 V.

4.3. Method convergence

In order to evaluate the convergence properties of the complete algorithm, simulations are per-

formed halving the inlet velocity and evolving the system to a fixed time with increasing reso-

lution, decreasing ∆x by a factor two with each refinement. The simulations are performed at a

constant CFLm,conv. The error is obtained by comparing the results at resolution ∆x with those

computed with twice the resolution ∆x/2. The L2 norm of the error for a simulation with nx

cells is:

L2
nx

=

√√√√ 1

nx

nx∑
i=1

(
ϕi − ϕc−fi

)2
(49)

where ϕc−fi is the average of the fine results onto the coarser grid. Figure 5 shows the L2 norm

of the error at four grid resolutions for 6 scalars: ρ, ρh, YCH4
, YH2

, ne and YH3O+ . The slope

of the error shows that second order is reached for all variables across the range of external

forcing considered. The error on neutral species and mixture averaged quantities is not affected

by the external forcing whereas the error on ne and YH3O+ decreases for high ∆V values (but

remains a second order convergence rate). This decrease in errors indicates that the applied

voltage is higher than the saturation voltage at which the charged species are drawn away from

the reaction zone by the electric drift as fast as they are produced by chemical reactions.
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Figure 5. L2-norm of the error in the 1D premixed flame with four grid resolution and increasing the external electrical
forcing.

4.4. Steady premixed flame under DC

Burner-stabilized, steady-state premixed methane/air flames subjected to DC electric fields have

been studied using the PREMIX program in previous studies [20, 38]. Fig. 6 shows the tem-

perature as well as oxygen, CH, electrons, H3O+ and C2H3O+ profiles across the flame in the

absence of an external electric field. Oxygen and CH are the key neutral species controlling the

production rate of electrons, i.e. the number of charged particles in the flame and consequently

the maximum current that can be drawn from the flame [20, 22]. Accordingly, the peak electron

density in Fig. 6 is located near the corresponding maximum of CH. Note that the number

density of charged species is about 5 orders of magnitude smaller than that of an intermediate
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radical such as O. In the absence of an external electric field, the sum of number densities of the

two major cations (H3O+ and C2H3O+) equals that of electrons, as ambipolar diffusion tends

to balance charge separation resulting in a near electro-neutral gas.

2300

1800

1300

800

300

T
em

pe
ra

tu
re

 [K
]

4.03.02.01.00.0

Position [mm]

16

12

8

4

0

Species num
ber density x10

16  [m
-3]

 T
 nH3O+

 nC2H3O+

 ne-

2300

1800

1300

800

300

T
em

pe
ra

tu
re

 [K
]

4.03.02.01.00.0

Position [mm]

16

12

8

4

0
Species num

ber density x10
21  [-]

 T
 nO

 nCH * 100

(a) (b)

Figure 6. (a) Profiles of temperature, nO and nCH across the flame. (b) Profiles of temperature and ne, nH3O+ nH3O+

and nC2H3O+ across the flame. ∆V = 0.

The peak value of electron and H3O+ is higher than that reported in a previous study [38]

where the neutral chemical mechanism was optimized to better reproduce the CH distribution.

This study showed that the GRI3.0 mechanism over-predicts the CH mass fraction, resulting in

higher chemi-ionization rate and electron maximum number density.

Figure 7 shows comparisons between experimental i-V curves [20] and the present simulations.

The current i is evaluated by computing the charge flux carried by the charged species m:

Jm =
zm
qe

Γm +
zm
qe
ρYmU ef,m (50)

and summing over positive and negative species:

J+ =
∑
m∈Np

Jm (51)

J− =
∑
m∈Nn

Jm + Je (52)

J = J+ + J− (53)

Finally, i = JSexpe, where Sexpe = 7.04 cm−2 is the experimental cross section of the burner

[20]. Note that from the species conservation equations, in steady-state conditions Jm = zm
qe
ω̇m,

showing that the current drawn from the flame is directly related to the production rate of
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charged particles. The simulation results are consistent with the experimental data: the current

increases for positive voltage until it reaches a plateau as the applied voltage exceeds a saturation

value. In contrast, higher negative voltage is required to reach saturation conditions. This effect

of the polarity, known as diodic effect, results from the large difference in distance between the

flame and each electrode [20]. The over-prediction of the saturation current is consistent with

the fact that the mass fraction of CH is over-predicted by the GRI3.0 mechanism.
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Figure 7. Comparison between experimental and numerical i-V curves

The profiles of charge particles at different values of the external voltage ∆V is presented

in more detail in Figures 8 to 10, which also show the steady-state profiles of electrostatic

potential and electric field, for both positive and negative ∆V . For sub-saturation voltages, the

electric field profiles show the existence of a ’dead zone’, where the electric field is close to zero

and the particles are not affected by electric forces. As the external voltage intensity increases,

the electrode sheath develops, eventually penetrating into the reaction zone of the flame. As

saturation conditions are reached, the peak number densities of charged particles drop since

they are convected away from the reaction zone as fast as they are produced through chemi-

ionization. This drop is responsible for the jump of ∆tdiel in Fig. 2 and the drop in L2-norm of

the error on charged particles in Fig. 5.

The charged particles profiles in Fig. 10 show that the proposed algorithm is able to accom-

modate very sharp profiles in the charged species distribution, without introducing numerical

noise that would eventually lead to unstable numerical oscillations due to the strong non-linear

coupling between the electrons and the electrostatic potential.
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Figure 8. (a) Electrostatic potential and (b) Electric field for positive values of ∆V .
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Figure 9. (a) Electrostatic potential and (b) Electric field for negative values of ∆V .

4.5. Unsteady premixed flame

In order to demonstrate the potential of the method to tackle unsteady simulations, the behavior

of the burner-stabilized flame subjected to AC conditions is studied. Three forcing amplitudes

AAC are considered: 100V, 1000V and 2500V respectively corresponding to conditions below both

positive and negative saturation voltages, above positive and below negative saturation voltages

and above both positive and negative saturation voltage. In order to estimate a characteristic

relaxation time of the electrical structure of the flame, the time required for the electron and

H3O+ to travel across the computational domain is evaluated using an averaged effective velocity
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Figure 10. (a) H3O+ profiles for positive values of ∆V . (b) e− profiles for negatve values of ∆V .

U ef based on a representative mobility value for each particle and the external forcing intensity

∆V . Table 3 summarizes these relaxation times for the three forcing amplitudes considered,

showing that electrons relax within a few micro-seconds, whereas it takes about a 100 times

longer for the H3O+ to relax.

Relaxation time [s]
∆V = 100V ∆V = 1000V ∆V = 2500V
τe− τH3O+ τe− τH3O+ τe− τH3O+

2.5e−6 2.5e−4 2.5e−7 2.5e−5 1.0e−7 1.0e−5

Table 3. Estimated relaxation time of electrons and H3O+ for increasing external forcing intensity ∆V .

These relaxation time scales can be compared to the half period of an AC forcing τAC/2 to

distinguish several regimes (for a fixed value of ∆V ): 1) for low forcing frequency, fAC , both

electrons and ions remain in quasi-equilibrium with the instantaneous potential difference and

the charged particles profiles are close to the corresponding steady-states; 2) for higher fAC ,

the electrons are close to equilibrium, but the slower ions do not reach steady-state, changing

the current drawn from the flame and possibly inducing an asymmetric ionic wind due to the

diodic effect; and 3) for very high fAC the ions are too slow to respond to the change in external

electric potential and the ionic wind (mainly due to the motion of ions) becomes negligible. In

practice, only the first two regimes are of interest to study the effect of ionic wind on the flame

behavior. Additionally, in the first regime, the flame structures are expected to remain close to

the ones described in Section 4.4 so that we will focus on the second regime by considering fAC

listed in Table 4.

The temporal evolution of the H3O+ profile during a statistically steady period of the AC
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Case fAC [Hz] τAC/2 [s] τAC/2τe− τAC/2τH3O+

AC1k 1000 5e−4 2000 20
AC2.5k 2500 2e−4 800 8
AC5k 5000 1e−4 400 4
AC10k 10000 5e−5 200 2
AC25k 25000 2e−5 80 0.8
AC50k 50000 1e−5 40 0.4
AC100k 100000 5e−6 20 0.2

Table 4. Considered forcing frequencies and half periods for the AC cases along with ratios to the characteristic relaxation

time of electrons and H3O+ at AAC = 1000 V.

forcing is shown in Fig. 11 for the seven values of fAC considered at a constant forcing amplitude

of 1000 V. Each plot shows the evolution of the one-dimensional H3O+ number density profile

(horizontal direction) as function of the normalized time t∗ = t/τAC (vertical direction, from

top to bottom). A few periods are necessary before reaching statistically steady oscillations.

Note that, these plots confirm that the proposed algorithm is able to smoothly capture the fast

motion of steep charged species fronts.

Figure 11 shows that for the initially positive polarity, the development of the cathode sheath

is qualitatively similar to the steady states depicted in Fig. 10(a). For low forcing frequency,

positive saturation conditions are reached for most of the cycle first half-period. As the forcing

frequency increases, the cathode sheath is no longer able to fully develop and H3O+ depletion

near the right boundary of the computational domain remains during part the second half of

the cycle, even though the polarity is reversed. Additionally, the peak value of H3O+ is found

to decrease with increasing frequency, indicating that the charged particle profiles are no longer

able to relax to the forcing free profiles while the instantaneous voltage is close to zero.

To analyze the effect of the forcing frequency and amplitude on the ionic wind effect, the

integral of the Lorentz forces appearing the momentum equation (5) across the computational

domain is computed:

FLorentz =

∫
x
ρ
∑
m+e

zmYmE dx (54)

corresponding to the force per unit area. Additionally, to evaluate the effect of this force on

the flame, the average work of the Lorentz forces WLorentz over a period is evaluated from the

Ohmic heating term appearing in the energy equation (4). Figures 12(a-c) show the temporal

evolution of FLorentz during one AC forcing period for the three values of the forcing amplitude

while Fig. 12(d) shows the evolution of WLorentz as function of the frequency for different values

of AAC . For small forcing amplitude (below both positive and negative saturation values) the

proximity of the flame to the anode, also responsible for the diodic effect, results in an overall

negative Lorentz force, the work of which increases with increasing frequency. As the forcing
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Figure 11. Space (horizontal) and time (vertical) evolution of the H3O+ number density at six AC forcing frequency and
AAC = 1000 V. Time is normalized by the forcing period τAC .

amplitude increases, the positive Lorentz force during the second half of forcing cycle becomes
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more important. In these conditions, increasing the forcing frequency results in an increase of

the averaged work generated by the Lorentz force, up to a critical frequency above which the

electric field is no longer able to penetrate into the flame and the work begin to decrease. These

results indicate that, as in the DC cases, the effect of the AC electric field not only depends upon

the forcing frequency and amplitude, but also the flame position compared to the electrodes.
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Figure 12. (a)-(c): temporal evolution of the integrated Lorentz forces FLorentz . Time is normalized by the AC period.
(d) : evolution of the Lorentz forces average work as function of fAC .

5. Conclusion

This work proposes a new numerical strategy to include the motion of charged particles in

simulations of low Mach number reactive flows in the presence of electric fields. We have found
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that to overcome the stringent time-step constraint imposed by fast electrons and their coupling

with the electrostatic potential equation, a non-linear implicit solution of the system of equations

governing these two quantities is necessary. Keeping in mind the need for an efficient methodology

in large scale (multi-dimensional) computations, we have developed an algorithm that introduces

a JFNK solver within the SDC iterations developed for classical reactive flow simulation. To

obtain good performance, we constructed a preconditioner based on the Schur decomposition

of the Jacobian matrix for the electrons/electrostatic potential system. An approximation of

the Schur complement of the Jacobian matrix is proposed enabling use of multi-grid method to

approximate the inverse of the preconditioner in the iterative linear solve.

We demonstrated on one-dimensional burner-stabilized premixed flame configurations, that

second-order accuracy is reached for all the transported variables and for a wide range of exter-

nal electric forcing. The numerical results compare well with experimental data regarding the

current-voltage characterization of the flame (given the uncertainty on the chemical mechanism)

and detailed analysis of the charged particles profiles are consistent with previous studies using

steady-state one-dimensional solvers.

The proposed strategy is currently being implemented in the low Mach number reactive flow

solver PeleLM, which is based on the block-structured adaptive mesh refinement library AMReX.

The resulting unique numerical tool will allow us to investigate realistic engineering applications

of electric field controlled flames that have so far not been possible.
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