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Abstract 
 

Effects of Climate Change-Induced Low Flows on Sierra Nevada Stream Ecosystems 
 

By 
 

Kyle Leathers 
 

Doctor of Philosophy in Environmental Science, Policy, and Management  
 

University of California, Berkeley  
 

Professor Albert Ruhi, Chair 
 

Climate change is altering physical environments and biotic communities globally. High-
elevation mountain streams are particularly at risk because rising air temperatures can reduce 
snowpack and extend the duration of summer low flow, consequently altering a variety of abiotic 
variables. In turn, populations and communities exposed to environmental change can undergo 
shifts in phenology, fitness, and behavior–altering the ecosystem processes that these biota 
control. In this dissertation, I examined how climate change-induced low flows are impacting 
stream water temperature, invertebrate communities, and the mechanistic pathways through 
which low flow acts on communities. I achieved this with three complementary approaches. 
First, I tested the effects of earlier low flows on organismal phenology, community composition, 
and resulting ecosystem processes via a mesocosm experiment that simulated flow regimes 
expected under end-of-the-century climate projections. Second, I assessed spatiotemporal 
variation in thermal vulnerability to climate change in a mid-elevation stream network in the 
Sierra Nevada over an extreme drought year (2020–2021). Lastly, I investigated the abiotic and 
biotic pathways whereby drought alters invertebrate community composition and structure in a 
California Sierra Nevada watershed across nested spatio-temporal scales–from microhabitat to 
watershed, and over two decades. I found that extended low flows will likely have diverse 
abiotic and biotic ramifications on stream ecosystems, but the mechanisms behind these changes 
are complex and require deep understanding of the ecosystem context. 

In the summer of 2019, I experimentally examined how earlier snowmelt will alter the 
phenology of mountain stream organisms and ecosystem processes via outdoor mesocosm 
stream channels in the Eastern Sierra Nevada, California. Channels were assigned to three 
hydrograph treatments that simulated the current flow regime or a 3 to 6 week earlier return to 
summer baseflow conditions projected under regional climate change scenarios. I measured 
discharge, water temperature, primary production, benthic macroinvertebrate secondary 
production and phenology, macroinvertebrate emergence, and predatory behavior of a riparian 
bird. Water temperature increased under advanced low flow conditions, which may have played 
a role in biofilm production to respiration ratios declining by 32%. Additionally, the majority of 
the benthic and emergent invertebrate species explaining community dissimilarity changed in 
phenology as a consequence of the early low-flow treatment. Emergent flux pulses of the 
dominant insect group (Chironomidae) also nearly doubled in magnitude, benefitting riparian 
predators. One such riparian predator, the Brewer’s Blackbird, gained access to feed on benthic 
macroinvertebrates under the 6 week early low flow treatment that aligned with their nesting 
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period. Changes in both invertebrate community structure (composition) and ecosystem 
processes were mostly fine-scale, and response diversity at the community level stabilized 
seasonally aggregated responses. My findings illustrate how climate change in mountain streams 
at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale 
changes in phenology even when community structure and ecosystem processes appear stable 
over longer time periods. 

In 2020-2021, I deployed a nested array of high-frequency sensors and used advances in 
time-series models to examine spatiotemporal variation in thermal vulnerability. This work took 
place in Bull Creek, one of the Kings River Experimental Watersheds (KREW). Stream thermal 
sensitivity to atmospheric warming fluctuated strongly over the year and peaked in spring and 
summer. I found that spatially, the reach scale (~50 m) best captured variation in summer 
thermal regimes. Spatial variation in summer water temperature was driven firstly by upstream 
water temperature, with elevation, discharge, and conductivity as local correlates. Lastly, I 
combined the estimated summer thermal sensitivity and downscaled projections of summer air 
temperature to forecast end-of-the-century stream warming. I found that 25.5% of cold-water 
habitat may be lost under high-emissions scenario RCP 8.5 (or 7.9% under mitigated RCP 4.5). 
This estimated reduction suggests that up to 27.2% of stream macroinvertebrate biodiversity 
could be stressed or threatened in what was previously cold‑water habitat. My results support 
that thermal vulnerability in montane stream networks may be highly variable over space and 
time. Taking spatiotemporal variation into account is critical to understand how climate change 
will impact high mountain stream ecosystems through rising temperatures and shifts in 
precipitation. 

Stream low flows can alter communities via multiple environmental and biological 
mechanisms across time and space, but support is mixed as to which mechanisms are paramount 
and how spatial and temporal context determines their relative importance. I investigated the 
mechanisms whereby low flow alters stream invertebrate community composition and structure 
in high-mountain streams–across space and over time. To this end, I sampled aquatic 
macroinvertebrates from the same 60 sites in Bull Creek where temperature sensors were 
deployed in 2020, using a nested sampling design. Additionally, long-term data in four reaches 
were sampled 11 times from 2002 to 2023. The inspected abiotic mechanisms of drought 
(temperature, water velocity, and fine sediment) all explained variation in a similar percentage of 
taxa in the community (36.8% - 47.4%), but effects differed when examined spatially vs. 
temporally. Total spatial variance explained by abiotic mechanisms for each species had no 
relationship with its temporal counterpart. Biological mechanisms also differed across space and 
time; community dissimilarity across space was driven by differences in fine sediment causing 
species turnover (i.e., sensitive species being replaced by tolerant ones), while temporal 
dissimilarity was driven by differences in temperature and water velocity causing reordering 
(i.e., shifts in relative abundance). These results challenge the key assumption of ‘space-for-time’ 
substitution that underpins abundant research on climate change ecology. I contend that space-
for-time substitution approaches may be inappropriate in mountain river studies because of their 
hierarchical structure, high temporal variability, and mechanisms operating distinctly across 
space and time. 

This dissertation provides evidence that climate change-induced low flows will alter 
Sierra Nevada stream ecosystems in a variety of ways. High elevation mountain streams will 
increasingly be affected by climate change, a threat that is not well understood despite extensive 
research efforts. My findings demonstrate that climate change effects are highly context 
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dependent and examining them at the appropriate spatiotemporal scale is necessary to properly 
assess their impact. Notably, changing abiotic conditions due to extended low flows may benefit 
some ecosystem processes and taxa at the upper edge of their elevation range, potentially at the 
cost of coldwater specialists adapted to harsh high mountain streams. High response diversity of 
species in this dissertation ensured that ecosystem processes often remained stable even if many 
individual species responded to changing flow regimes. Advances in ecological models and 
methodology enable finer assessment of environments and communities than ever before, but my 
research shows that extensive data collection and knowledge of local natural history are 
necessary for these methods to be effective. This dissertation expands the field of drought 
ecology, which is of the utmost importance in a quickly changing world. 
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Introduction 
 
 The global environment faces threats from a myriad of anthropogenic sources like land 
use change, pollution, and invasive species; however, none may be as ubiquitous as climate 
change. Human emitted greenhouse gasses last decades to centuries in the atmosphere and trap 
emitted radiation from the earth, altering climates across the globe (Karl and Trenberth 2003). 
Air temperatures have increased as a result, along with shifts in precipitation and the frequency 
of extreme weather events. These climatic changes have altered body size, behavior, phenology, 
distributions, and ecosystem processes (Weiskopf et al. 2020). However, models of ecological 
responses to climate change are highly uncertain and contrast with paeloecological observations 
(Moritz and Agudo 2013). Improving our understanding of climate change impacts may be most 
important in sensitive, isolated mountain and freshwater environments (Poff et al. 2012, Bowler 
et al. 2017). 
 
 Mountain streams are vulnerable to climate change due to their isolated nature and 
expected future hydrologic change. High mountains, home to cold-adapted taxa, can be isolated 
akin to islands due to the ruggedness of the terrain and sharp environmental gradients that hinder 
dispersal (Pauli and Halloy 2019). This isolation is exacerbated in mountain streams, where 
species can be further constrained by movement within the river network and suitable habitat 
may be fragmented across the landscape (Woodward et al. 2010). Although high montane 
streams are resilient to warming from increases in air temperature (Isaak et al. 2016), changes in 
hydrological processes, particularly snowmelt, are likely. In high montane streams, snow 
typically accumulates in the winter, followed by large increases in discharge as a result of 
snowmelt. Streamflow gradually declines afterwards until baseflow (i.e., low flow) is reached, 
potentially after peak air temperatures have passed. The natural flow regime of these streams is 
threatened by increases in air temperature that are projected to advance snowmelt by up to 50 
days in the future as a result of precipitation switching to rain and increased snowmelt in winter-
spring (Musselman et al. 2017, Reich et al. 2018). The commencement, duration, and intensity of 
low flows will advance or increase as a result (Yarnell et al. 2010). Droughts are also expected to 
become more frequent and severe in many areas such as the American Southwest, exacerbating 
low flows for mountains therewithin (Cayan et al. 2010). Thus, montane stream ecosystems may 
be highly vulnerable to climate change as a consequence of more severe low-flow periods 
occurring earlier and lasting longer (Herbst et al. 2019). 
 
 Low flow events intensified by climate change will affect habitat conditions and water 
quality. Specifically, low-flow events are associated with increased water temperature, decreased 
dissolved oxygen, reduced water velocity, increased sedimentation, shallower water depth, and 
reduced habitat connectivity (Rolls et al. 2012). Anticipating the impacts of these often 
covarying factors is critical, but complex (Carlisle et al. 2016). For example, although increased 
air temperature alone is unlikely to increase montane water temperature, low flows reduce 
thermal buffering and can increase maximum daily average water temperature up to 10°C (Elliott 

https://www.zotero.org/google-docs/?HbM7VT
https://www.zotero.org/google-docs/?988QWv
https://www.zotero.org/google-docs/?LD67QX
https://www.zotero.org/google-docs/?dWoMtj
https://www.zotero.org/google-docs/?dWoMtj
https://www.zotero.org/google-docs/?cJF0Uh
https://www.zotero.org/google-docs/?SaFS0p
https://www.zotero.org/google-docs/?76daiq
https://www.zotero.org/google-docs/?LB1fZb
https://www.zotero.org/google-docs/?s6e4f8
https://www.zotero.org/google-docs/?AsU9rv
https://www.zotero.org/google-docs/?ZWsQLj
https://www.zotero.org/google-docs/?fw2yOW
https://www.zotero.org/google-docs/?tYW27h
https://www.zotero.org/google-docs/?cveHnI
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2000, Rolls et al. 2012). However, changes in abiotic low flow conditions are not always 
coupled. A low flow experiment in New Zealand found that water velocity declined by 57% but 
no difference was observed in water temperature (Dewson et al. 2007a). If suspended sediment 
levels do not decline drastically with low flow, reduced water velocity can increase fine sediment 
deposition which disrupts connection to groundwater and reduces habitat heterogeneity (Dewson 
et al. 2007b). Increased fine sediment may last long after low flows end, until flushing flows 
occur. These altered habitat conditions may profoundly impact populations, communities, and 
food webs. 
 

Low flow is responsible for complex biotic responses that researchers are still striving to 
understand. Increasing maximum temperatures during the summer can push species beyond their 
physiological limits due to thermal stress and/or insufficient dissolved oxygen levels (Trimmel et 
al. 2018). Warming also alters individual growth rate, behavior, and phenology in aquatic insects 
and fish (Hogg and Williams 1996, Woodward et al. 2010, Ledger et al. 2013). Effects on 
individuals may scale up to affect whole ecosystems via changes in metabolism, decomposition, 
and community composition (Dewson et al. 2007b, Pyne and Poff 2017). Reduced water velocity 
during drought alters species’ ability to avoid predators and harms filter feeders (Malmqvist and 
Sackmann 1996). Lastly, sedimentation can reduce macroinvertebrate abundance and species 
richness in streams because of homogenized habitat and reduced access to the hyporheic zone 
(Dewson et al. 2007b). Despite the need to understand how drought acts upon communities, 
study results vary as to which abiotic mechanisms of drought are most influential (Hawkins et al. 
1997, Waddle and Holmquist 2013, Herbst et al. 2019). A reason for this could be that drought 
effects are often assessed at different scales, where both scale-dependencies and cross-scale 
interactions can occur [i.e., patterns that are only apparent at a particular scale, or patterns that 
emerge when comparing scales (Levin 1992)]. Studies comparing communities across space also 
may not be equivalent to those comparing communities over time (Angert 2024). Detailed study 
of the mechanisms and context of low-flow effects on stream communities is needed to 
anticipate and appropriately react to climate change-enhanced droughts in mountain streams–and 
more broadly, to inform river ecosystem conservation and restoration (Palmer and Ruhi 2019). 
 

Within this dissertation, I aim to improve our understanding of how climate change-
altered low flows will affect Sierra Nevada stream ecosystems. According to best available 
science, climate change will advance median snowmelt runoff in the Sierra Nevada up to two 
months by 2080 (Musselman et al. 2017, Reich et al. 2018). Changes in snowmelt timing will 
likely alter water temperature and low flow duration with complex ecological consequences 
(Rolls et al. 2012). This dissertation may help identify vulnerable mountain streams, refugia, and 
effective management options. For example, if increased sedimentation—not temperature—
drives community assembly, then groundwater-fed streams that mitigate summer warming may 
not be refugia from low flow. A mechanistic understanding of responses to low flows at 
appropriate scales and across space and time can be integrated to generate expectations for 
impending effects of future climate change. 
 
 In Chapter 2, I experimentally tested how climate-induced, extended summer low flow 
conditions alter the phenology of mountain stream organisms and the ecosystem processes that 
these organisms control. Increased water temperatures during low flow often cause phenological 
shifts in freshwater organisms, but it is uncertain if phenological change in a multitrophic 

https://www.zotero.org/google-docs/?cveHnI
https://www.zotero.org/google-docs/?ura8nK
https://www.zotero.org/google-docs/?V6g3jN
https://www.zotero.org/google-docs/?V6g3jN
https://www.zotero.org/google-docs/?wkHHNe
https://www.zotero.org/google-docs/?wkHHNe
https://www.zotero.org/google-docs/?83hxCz
https://www.zotero.org/google-docs/?SlG6gy
https://www.zotero.org/google-docs/?rqb1b0
https://www.zotero.org/google-docs/?rqb1b0
https://www.zotero.org/google-docs/?ouCMC9
https://www.zotero.org/google-docs/?w4xsI0
https://www.zotero.org/google-docs/?w4xsI0
https://www.zotero.org/google-docs/?Sapvjm
https://www.zotero.org/google-docs/?25Wb1S
https://www.zotero.org/google-docs/?xv3fFJ
https://www.zotero.org/google-docs/?zyNmD3
https://www.zotero.org/google-docs/?p3Ih7w
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community alters ecosystem processes (Woods et al. 2021). Ecosystem responses to low flow 
may be sudden (e.g., after a certain abiotic threshold is passed) or cumulative, but few studies 
have examined the timing of change (Rolls et al. 2012, Rosero-López et al. 2022). I predicted 
that extended low flows would increase water temperature, alter biofilm metabolism, and 
advance benthic and emergent macroinvertebrate phenology. In order to test these predictions, I 
subjected nine flow-through outdoor stream mesocosms in California’s Sierra Nevada to three 
flow regime treatments and examined whether the onset of low flow caused immediate or 
delayed shifts in aspects of the ecosystem at fine time scales. 
 
 In Chapter 3, I examined the extent to which Sierra Nevada streams are vulnerable to 
warming from climate change via drivers of variation across space and time. Determining the 
spatial and temporal scale that variation occurs at was also valuable in this pursuit. Models 
predicting future stream water temperatures may fall short due to assumptions that the 
relationship between water and air temperature is static, along with uncertainty regarding how 
thermal regimes vary across spatial scales (Lisi et al. 2015, Leach and Moore 2019). Addressing 
these knowledge gaps, along with accounting for how water temperature propagates downstream 
and is mediated by local conditions, can enable watershed wide estimations of thermal conditions 
now and in a warmer future. I predicted that thermal sensitivity varies over time at fine scales, 
water temperature varies spatially at the reach scale, and that current invertebrate communities 
would be vulnerable to projected future warming. I carried this research out using a nested array 
of high-frequency sensors needed for spatial network models, and advanced time series models, 
in a model Sierra Nevada watershed. 
 
 In Chapter 4, I investigated the abiotic and biotic pathways whereby droughts may alter 
invertebrate community composition and structure. Stream low flows can alter communities via 
multiple environmental (abiotic) and biological (biotic) mechanisms, but their relative 
importance is uncertain (Hawkins et al. 1997, Waddle and Holmquist 2013, Herbst et al. 2019). 
Further, it is unclear whether drought-induced community change across space and over time are 
realized through similar environmental and biological processes (Angert 2024). This is assumed 
for space-for-time substitution, where, for example, a warm site at the base of a mountain can 
‘preview’ the community at higher elevations if temperatures increase. Addressing the accuracy 
of space-for-time approaches is critical, as they underpin much of the literature on climate 
change ecology (Lovell et al. 2023). I predicted that different abiotic mechanisms of drought 
would all affect species in unique ways, and the way they affect species and biotic mechanisms 
of community change would differ across space and time. I monitored a river network in 
California’s Sierra Nevada encompassing 60 sites following a nested spatial structure combined 
with long-term data in four reaches that were sampled 11 times from 2002 to 2023. This allowed 
me to compare spatial and temporal ecological pathways of drought. 
 

Discovering how low flows mechanistically affect Sierra Nevada stream ecosystems 
requires integrating results across approaches, scales, contexts, and end points. In this pursuit, I 
combined experimental, observational, and modeling methods to incorporate causation with 
realism and foresight. This dissertation seeks to further our understanding of low flow effects, 
but the approaches and methods used are broadly effective at exploring the effects of other 
stressors in flowing waters. Ultimately addressing freshwater threats will require not only 
understanding the mechanisms at play, but also knowledge of how to restore ecosystems based 

https://www.zotero.org/google-docs/?T9BzuI
https://www.zotero.org/google-docs/?sgukej
https://www.zotero.org/google-docs/?cBF7Xd
https://www.zotero.org/google-docs/?Iz2P3G
https://www.zotero.org/google-docs/?GsAqoG
https://www.zotero.org/google-docs/?FfG5vU
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on natural history. Even perfect knowledge of the environment will come to nothing if zeal and 
love for nature do not spur action and sacrifice; scientists must continue to share the beauty of 
the natural world within their unique community spheres.  
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2 
Climate change is poised to alter mountain stream 
ecosystem processes via organismal phenological shifts 
 
Abstract 
 

Climate change is affecting the phenology of organisms and ecosystem processes across a 
wide range of environments. However, the links between organismal and ecosystem process 
change in complex communities remain uncertain. In snow dominated watersheds, snowmelt in 
the spring and early summer, followed by a long low-flow period, characterizes the natural flow 
regime of streams and rivers. Here, we examined how earlier snowmelt will alter the phenology 
of mountain stream organisms and ecosystem processes via an outdoor mesocosm experiment in 
stream channels in the Eastern Sierra Nevada, California. The low‑flow treatment, simulating a 
three to six week earlier return to summer baseflow conditions projected under climate change 
scenarios in the region, increased water temperature and reduced biofilm production to 
respiration ratios by 32%. Additionally, most of the invertebrate species explaining community 
change (56% and 67% of the benthic and emergent taxa, respectively), changed in phenology as 
a consequence of the low-flow treatment. Further, emergent flux pulses of the dominant insect 
group (Chironomidae) almost doubled in magnitude, benefitting a generalist riparian predator. 
Changes in both invertebrate community structure (composition) and functioning (production) 
were mostly fine-scale, and response diversity at the community level stabilized seasonally-
aggregated responses. Our study illustrates how climate change in vulnerable mountain streams 
at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale 
changes in phenology—leading to novel predator-prey ‘matches’ or 'mismatches’ even when 
community structure and ecosystem processes appear stable at the annual scale.  
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Introduction 
 

Recent climate shifts in temperature and precipitation patterns have already altered the 
phenology of many organisms (1, 2). Climate warming has changed the timing of key life history 
events such as hatching, migration, mating, blooming, and death in a wide variety of plants and 
animals (3). These changes may benefit individual species via extended growing seasons and 
resource pulses; or harm them via stress, habitat contraction, and spatio-temporal mismatches 
between energy needs and food availability (4, 5). Mounting evidence supports that even 
phenological shifts of individual species can impact ecosystem processes at large scales. For 
example, milder winters have delayed mortality of mountain pine beetles (Dendroctonus 
ponderosae), enabling range expansion and causing widespread tree mortality that has 
transformed forests from being carbon sinks to sources (6). Similarly, warmer springs have 
advanced ephemeral plant flowering but not pollinator emergence, ultimately reducing 
production (7). However, many ecosystem processes (e.g., primary production, secondary 
production, and cross-ecosystem subsidies) often depend on many species. While it is typically 
assumed that phenological shifts can alter ecosystem processes, few studies have examined this 
question in complex, multi-trophic systems (8, 9). 

 
Understanding the link between phenological change and ecosystem process change is 

particularly crucial in streams and rivers because freshwater ecosystems are highly sensitive to 
environmental change (10). Climate change has disproportionately eroded freshwater species 
populations (11), and extinction rates for freshwater organisms under future climate change are 
expected to be an order of magnitude higher than for marine and terrestrial counterparts (10, 12). 
This high vulnerability is due to the fragmented nature of freshwater habitat, the climate-
sensitivity of thermal and hydrologic regimes (10, 12), and the dominance of ectotherms in 
freshwater food webs (13). Despite the high potential for climate-driven phenological shifts in 
fresh waters, it is uncertain how whole communities may respond to warming–and whether 
phenological change may alter the ecosystem processes that these organisms control (14). 

 
Among freshwater ecosystems, small streams in snow-dominated catchments are 

particularly vulnerable to climate change (15). In mountain ranges where snow is the dominant 
form of precipitation (e.g., in California’s Sierra Nevada), snowmelt in the late spring and early 
summer constitutes the majority of annual runoff and is often followed by a period of baseflow 
conditions in late summer and fall (16), in which streams are sustained by groundwater. Here, we 
use the general term low flow in place of baseflow to describe low discharge levels during the dry 
season (17). Climate change is predicted to reduce snowpack and advance snowmelt, which will 
extend summer low flow duration by up to two months by the end of the century, increasing the 
overlap between periods of low flow and peak air temperature (18). Climate change has already 
altered snowmelt in mid-elevation mountain ranges globally, by decreasing snowpack and 
shifting the rain-to-snow transition zone (19). Some impacts of extended summer low flows on 
stream biodiversity and ecosystem processes, like fish population declines, often occur rapidly 
via physiological stress when flow drops below a threshold (20); in contrast, other responses may 
be cumulative [e.g., the accumulation of cyanobacteria in biofilm (21)] and may thus only be 
noticeable after a period of time. However, few studies have examined the immediate vs. delayed 
effects of low flows on stream biodiversity and ecosystem processes using frequent temporal 
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monitoring. Such an approach is costlier than before-after experimental designs, but may reveal 
the scales and mechanisms driving ecological change more precisely (20). 

 
One key impact of earlier, extended summer low flow conditions in small streams is that 

low flows may accelerate climate-driven warming via reduced thermal buffering. Warming can 
shift community composition and structure by replacing species adapted to cold, well-
oxygenated waters (cold stenotherms) with those from warmer environments (eurytherms) (22). 
Warming also controls key ecosystem processes, and often increases ecosystem-level primary 
production and respiration rates (23, 24). Because water temperature controls metabolic rates of 
ectotherms, warming is expected to speed up aquatic insect growth rates and development, 
potentially advancing the timing of metamorphosis and emergence of adult, flying insects. In 
turn, changes in the timing and/or magnitude of emerging insects could affect foraging behavior 
of riparian birds, lizards, and bats, which often rely on emerging aquatic insects as a resource 
pulse (25). However, we note here that temperature-driven changes in secondary production are 
not well understood. Theory predicts that warming should not affect secondary production, given 
the approximately opposed effects that warming should have on community biomass (by 
shrinking mean body size of species) and turnover rates (by accelerating them) (26, 27). 
Empirical tests have provided mixed support for this expectation, owing to variation in species 
thermal preferences (28) and basal resources responding to warming (29). The link between 
warming-driven community change in a stream food web and changes in ecosystem processes 
has become a recent focus of research (24), and it could be greatly advanced by experiments with 
more complex, realistic assemblages. 

 
Here we sought to test how climate-induced, extended summer low flow conditions, 

simulating an end-of-century hydroclimate of reduced snowpack and earlier snowmelt (18) will 
alter the phenology of mountain stream organisms—and the ecosystem processes that these 
organisms control. In contrast to most research on the topic, focused on the effects of flow 
magnitude (30–33), here we focused on the effects of an earlier snowmelt-driven flow recession 
associated with a longer summer low flow period (i.e., low-flow timing and duration) to better 
examine ecological impacts arising from phenological change. We broadly hypothesized that this 
climate change-induced flow regime change would alter the whole food web—from epilithic 
biofilm metabolism to stream invertebrate production and emergence, primarily through 
increases in water temperature (3, 4). However, in agreement with recent findings on thermal 
response diversity [i.e., different species respond in different directions and/or magnitudes to 
temperature change (27)], we also expected the community-level responses to be buffered 
against change, relative to population-level responses. 

 
Specifically, we predicted that extended summer low flow would: (1) increase water 

temperature and biofilm respiration—altering the rates and balance of biofilm metabolism; (2) 
advance phenology and secondary production of stream invertebrates, but not change production 
at the seasonal scale due to stabilizing mechanisms (e.g., response diversity); and (3) advance 
cross-ecosystem subsidies of emergent stream invertebrates, which could be consequential if 
overlap shifts between peak resource availability and peak demand by riparian predators. 
Notably, while some of these changes may be apparent immediately, others may build over time 
(Figure 1). 
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Figure 1. Potential ecological responses to low-flow treatment. Each pair of solid lines 
represents a potential ecological response to the low-flow treatment, arising from comparing 
treatment trajectories at the start, middle, and end of the experiment. The vertical dashed line 
indicates the onset of summer low-flow. (A) No discernible change over the study period would 
support the absence of seasonal or treatment effects. (B) Seasonal effects would be evidenced by 
both treatments exhibiting similar shifts over time. (C) An immediate treatment effect would be 
evidenced by treatments differing significantly at the onset of treatment differences in the middle 
period, but not at the start. This difference may be temporary (as shown here), or sustained 
through the end of the experiment. (D) A delayed treatment effect would be evidenced by no 
shift occurring immediately after treatment onset, but rather at the end of the experiment. In our 
study, we predicted that differences in the timing of the onset and duration of summer low flow 
would cause immediate or delayed changes in our ecological responses. Onset of summer low 
flow in the 6-week treatment marks the transition between the start and middle periods; while 
onset of summer low flow for the Current treatment marks the transition between the middle and 
end periods. See Table S1 for details on how statistical tests provide support for each of the four 
potential responses. 
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In order to test our predictions, we subjected nine flow-through outdoor stream 
mesocosms (SI Appendix, Fig. S1) in California’s Sierra Nevada to three flow regime treatments: 
a flow regime based on historic average conditions (Current treatment), a mitigated climate 
change scenario where streamflow returns to summer low flow levels three weeks earlier than 
currently (3-week treatment), and an unmitigated climate change scenario where summer low 
flow begins six weeks earlier than currently (6-week treatment) (18). Over the course of a season, 
we regularly measured epilithic biofilm production and community composition, production, and 
emergence of benthic and emergent stream invertebrates. We examined support for seasonal, 
immediate, and delayed ecological responses to the low-flow treatment (Fig. 1) by quantifying 
changes in magnitude and phenology for each response variable. Specifically, we combined 
study period (i.e., start, middle, and end) with treatment (Current, 3-week, 6-week), creating a 
variable that captures both timing and treatment effects (i.e., period-treatment; Fig. 1). This 
allows us to examine how low-flow treatments altered phenology. When period-treatment had an 
effect, we ran directed pairwise tests to identify which response type occurred (i.e., a seasonal 
effect, an immediate treatment effect, or a delayed treatment effect; Table S1). In addition to 
testing each prediction, we ran a piecewise structural equation model to identify causal pathways 
connecting extended low flows to our ultimate end point in the food web: aquatic insect benthic 
production and emergence, a critical cross-ecosystem subsidy connecting streams to riparian 
ecosystems (34, 35). 
 
Methods 
 
Experimental design 

 
The experiment took place over four months, from May 2019 to August 2019, in nine 

outdoor, flow-through channels at the Sierra Nevada Aquatic Research Lab (SNARL) located 
near Mammoth Lakes, California [SI Appendix, Fig. S1 (61)]. The channels are 50 m long by 1 
m wide, consist of six pools connected by long riffle sections in a meandering fashion, and are 
fed by the adjacent Convict Creek. Convict Creek also provided natural substrate consisting of 
cobbles, sand, and silt. This experimental array has been used in past research questions 
investigating fish growth and stream invertebrate community composition (56, 62). The artificial 
channels have the advantage of mimicking natural ecosystems better than recirculating field 
mesocosms or laboratory flumes, while allowing for replication that is difficult to obtain in 
natural streams. The channels were naturally colonized without alteration for over a year prior to 
the start of the experiment. We assigned each channel to one of three treatments (with three 
replicate channels each) in a block design. The three treatments were: (1) current hydrologic 
conditions based on the historic (long-term) hydrograph at Convict Creek (Fig. S2), with a flow 
regime that reaches low flow conditions around August 3rd (i.e., Current treatment); (2) 
hydrologic conditions under a mitigated climate change scenario, where the stream would return 
to low flow conditions three weeks earlier than it currently does (i.e., 3-week treatment); and (3) 
hydrologic conditions under unmitigated climate change, where the stream would return to low 
flow six weeks earlier than it currently does (i.e., 6-week treatment). These scenarios connect 
greenhouse gas emission trajectories to the timing and duration of summer low flow (i.e., flow at 
or near designed low flow), based on a recent report using hybrid downscaling to project end-of-
century hydrologic change in the Sierra Nevada (18). 
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We regulated discharge by controlling sluice gates at the head of each channel. Flows in 
the channels differed by one order of magnitude between high-flow and low-flow conditions 
(i.e., 15 L/s and 1.5 L/s, respectively), following a typical Sierra Nevada stream hydrograph for a 
small stream (SI Appendix, Fig. S3) (63). The tenfold magnitude change in discharge, 
characteristic of Sierra Nevada streams, is due to the strong influence of snowmelt on the flow 
regime. We removed fish in the channels prior to the experiment, kept screens in place to 
exclude them (mesh size = 1.25 cm), and conducted electrofishing during the experiment to 
ensure their absence. These efforts allowed us to avoid confounding top-down effects and 
increase realism given first-order streams in the region tend to be fishless (unless artificially 
stocked). Channels were inspected and maintained daily, were heavily instrumented (see next 
section), and were monitored and sampled for several responses: epilithic biofilm metabolism, 
secondary production, and benthic and emerging stream invertebrates (composition and 
abundance). We tested whether each variable was explained by low flow treatment or, for time-
varying variables, by period-treatment (i.e., the combination of time period and low-flow 
treatment). The three periods we designated in the study are: start (5/11/2019 - 6/10/2019), 
middle (6/11/2019 - 8/2/2019), and end (8/3/2019 - 8/21/2019). Period timespans were based on 
treatment timing: start and middle periods are separated by the onset of summer low flow in the 
6-week treatment, and the middle and end periods are separated by the onset of summer low flow 
in the Current treatment. The number of sampling events was balanced among periods for 
biofilm production and benthic macroinvertebrates. However, more samples were taken in the 
middle period for emergent macroinvertebrates compared to the other periods, as a function of 
the higher frequency at which this ecological response was measured (i.e., every 10 days instead 
of 21), to account for its pulsated nature (64). 
  
Monitoring of environmental variables 
 

We measured water depth and water temperature every five minutes throughout the 
experiment (4/21/2019–8/25/2019) with replicated pressure transducers (HOBO U20L-04, 
Onset). We placed a pressure transducer in the fifth pool downstream in each channel and two 
emerged sensors on land to correct data for fluctuations in atmospheric pressure, and thus 
calculate water level (i.e., pool depth). Water level series were subsequently transformed into 
discharge series via channel-specific rating curves. Rating curves were developed for each 
channel by estimating discharge manually using channel depth and velocity measurements taken 
with a Marsh-McBirney Flo-Mate 2000 current meter throughout the summer (17-26 repeated 
estimates per channel). We measured water temperature using the same HOBO U20L-04 sensors 
that recorded data every five minutes in pools. We averaged discharge and water temperature to 
hourly values, which we then used to calculate daily metrics (i.e., daily mean, minimum, 
maximum, and diel range). 
  
Estimation of epilithic biofilm metabolism 

 
We estimated epilithic biofilm production and respiration using the light/dark bottle 

method at each channel, once every three weeks [as done previously (65)]. We calculated 
respiration (ER), net primary production (NPP), and the sum of their absolute values–gross 
primary production (GPP). We used three representative cobbles from the streambed for each 
sample and measured their surface area using aluminum foil to correct for differences in surface 
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area. All epilithic biofilm production measurements were taken during peak sunlight hours 
between 10 am and 2 pm using two 90-minute incubation periods for light, followed by dark 
measurements. Benthic stream invertebrates were removed from rocks prior to incubation. We 
conducted three replicates for each channel at each sampling date (n = 162). Daily GPP per 
channel was estimated by multiplying the channel average hourly rate by the number of sunlight 
hours at each date (n = 54). We estimated daily ER per channel by multiplying the channel 
average hourly rate by 24 hours at each date (n = 54). Daily epilithic biofilm production was then 
estimated for the interval between each sampling date by averaging the bookend interval values. 
We multiplied the average interval value by the number of days in the interval and finally 
summed these values to generate cumulative seasonal channel estimates (n = 9). GPP and ER can 
both be higher during the day when sunlight and temperatures peak, so there is some uncertainty 
around our extrapolated daily and seasonal estimates. We also collected continuous dissolved 
oxygen series in all channels and in the feeder channel, but short water residence times in the 
channels prevented us from using diel variation in dissolved oxygen to model whole-ecosystem 
metabolism. 
  
Sampling and processing benthic invertebrates 

 
We sampled benthic stream invertebrates using a 500 micron Surber sampler at six visit 

dates three weeks apart throughout the experiment. Each sample was a composite of three 
subsamples (two riffle and one pool samples for 0.279 m2 total) to represent the overall stream 
community. We took benthic samples for the Current and 6-week treatment channels (n = 36) 
and stored them in 70% ethanol. We then subsampled the composite samples using a rotating-
drum splitter in the laboratory to sort and identify at least 500 individuals from each composite 
sample under a stereomicroscope. All subsamples were completely processed to avoid bias 
regarding the size of individuals picked and identified. Benthic stream invertebrates were 
identified to the highest resolution possible, typically genus or species level, and all intact 
specimens were measured. Benthic stream invertebrate biomass was then estimated using 
published taxon-specific length-mass relationships (66–70). The subsampled community was 
multiplied by the inverse of the fraction of the total sample that was identified (e.g., if ¼ of the 
sample was identified to get a count over 500 individuals, then the abundance of each taxon was 
multiplied by 4). We assigned length values to these extrapolated individuals (and individuals 
that could be identified but not measured due to damage) using the length values from randomly 
selected individuals of the same taxon in the sample. 

 
We sampled emergent stream invertebrates using emergence traps, each deployed for 72 

hours every three weeks during the experiment. We sampled emergence four additional times 
halfway between the three-week intervals for every sample visit after the second one, when 
flows began to differ between treatments (n = 90 overall). We deployed emergence traps at the 
tail of riffles (to capture the influence of both riffle and pool habitat) next to HOBO sensors. We 
identified emergent insects to genus or family level (depending on taxa), and measured length of 
intact specimens. Emergence traps were tent-shaped, covered 0.33 m2 of the stream, and had 2 
mm white mesh (71). We chose to use emergence traps over sticky traps or other alternatives 
because they do not damage individuals, allowing for fine taxonomic identification that is critical 
to assess phenology (72). We derived seasonally-aggregated values of benthic and emergent 
abundance or flux, respectively, as the sum of all samples taken for each channel. 
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Secondary production 

 
We estimated benthic stream invertebrate secondary production via a combination of 

three methods. We used the size-frequency method for taxa that were abundant throughout the 
experiment (i.e., >1% of total abundance) and had known generation times, excluding 
Chironomidae, Oligochaeta, Turbellaria, and Muscidae (73). For Chironomids, we used the 
instantaneous growth rate method. Production was calculated using regression equations for non-
Tanypodinae chironomids, which incorporate mean temperature into growth estimates for small, 
medium, and large chironomids (74). Finally, we used the production to biomass ratio method 
(P/B) for the remaining taxa, including Tanypodinae, by multiplying seasonal biomass by known 
P/B ratios in literature of the closest related taxa possible (75, 76). Uncertainty in production 
from P/B ratios is unlikely to affect our results, as taxa in this group comprised <1% of the total 
assemblage production. We estimated emergent insect biomass using published, taxon-specific 
length-mass relationships (77). We derived seasonally-aggregated estimates of emergent 
production by taxon, by multiplying the average biomass between successive samples by the 
number of days in the interval, and by then summing interval estimates for the season. 
  
Brewer's Blackbird feeding observations 

 
We noticed Brewer's Blackbirds (Euphagus cyanocephalus) feeding in the 6-week 

treatment channels at the onset of summer low flow (June 22, 2019). Brewer’s Blackbirds were 
nesting nearby and waded in the channels to pick benthic macroinvertebrates as food for their 
young. We recorded feeding behavior of Brewer’s Blackbirds shortly thereafter to examine if 
they altered the invertebrate community in the channels. We studied Brewer’s Blackbird 
behavior by observing the time duration that any bird occupied the benthos of the channels over 
a 30-minute period. We measured this behavior with a stopwatch and made observations 
periodically throughout the remainder of the experiment between noon and 6 pm (78). We 
switched our target from daily to weekly observations once Brewer’s Blackbirds fledged and 
moved to meadow habitat, far (>5 km) from the channels. Two researchers conducted these 
observations each time, with one person observing the six upper channels and another person 
observing the three lower channels. Brewer’s Blackbirds were not observed feeding in the 
channels before summer low flow, as the high water depth prevented them from wading and they 
were not yet nesting at that point. 
  
Data analysis 

 
For our first prediction that extended summer low flow would shift epilithic biofilm 

metabolism phenology, we tested GPP:ER, GPP, and ER across period-treatment using repeated 
measures ANOVA and pairwise post-hoc comparisons with the Benjamini-Hochberg correction 
when appropriate (i.e., when period-treatment was significant). We log transformed GPP:ER to 
improve the normality of residuals. We assessed cumulative season-long GPP:ER across 
treatments using a 2-way analysis of variance (ANOVA) in order to assess if epilithic biofilm 
metabolism varied across low flow treatments. GPP and ER were tested similarly. Several 
ANOVA and repeated measures ANOVA tests throughout our analyses violated the assumption 
of equal variance (based on a Fligner-Killeen test) but were still the best available method to test 
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our questions. In such cases, we visually confirmed that statistical patterns were not driven by a 
single sample with high leverage. 

 
For our second prediction regarding stream invertebrate phenology and production, we 

first used permutational multivariate analysis of variance (PERMANOVA) tests based on 999 
permutations with the function adonis2 in the vegan R package in order to quantify benthic and 
emergent community change over time and across treatments (79). We also ran pairwise post-
hoc comparisons with the Benjamini-Hochberg correction, when appropriate. We estimated 
community dissimilarity using the Bray-Curtis statistic, and visualized community trajectories 
via non-metric multidimensional scaling (NMDS). We fit individual taxa using the function 
envfit, also in the vegan package, and subsequently filtered the taxa based on which had a highly 
significant correlation with the NMDS axes (P ≤ 0.002; SI Appendix, Fig. S10, Table S6, and 
Table S12). Taxa that were significantly correlated with a NMDS axis were further tested for 
variation in abundance across period-treatment. 

 
In order to quantify how period-treatment may change benthic stream invertebrate taxa 

populations and emergent flux in aquatic insects, we used repeated measures ANOVA tests and 
pairwise post-hoc comparisons with the Benjamini-Hochberg correction when appropriate. We 
square-root transformed taxa abundance when needed to improve normality of residuals, 
although some skewed distributions did not strictly pass the homogeneity of variance test. We 
tested if shifts in scraper abundance (i.e., grazing invertebrates) occurred across period-treatment 
levels to examine the possibility that the experimental treatment altered top‑down (herbivory) 
control. To this end, we assigned taxa to functional feeding groups (using 80), and pooled all 
scrapers to assess their change over time and treatments. 

 
In order to test if cumulative seasonal benthic stream invertebrate secondary production 

responded to low flow treatment, we used 95% confidence intervals of bootstrapped data (n = 
1000) from each channel (73). The 95% confidence intervals of the treatments included the 
97.5th and the 2.5th percentiles of all values from the same treatment. We tested if low flow 
treatments affected cumulative seasonal emergent production for the community and individual 
emergent taxa using a 2-way ANOVA. 

 
Lastly, we tested response diversity of the 15 most abundant benthic macroinvertebrates 

using dissimilarity abundance responses to discharge change. We first took the derivative of the 
relationship between abundance and discharge for each species, then estimated dissimilarity 
based on pairwise Euclidean distances in derivatives between all pairs of species in the 
community (following 36). We excluded our first sampling date so that low discharge always 
corresponded with warmer conditions. We compared the distribution of dissimilarity values in 
our study with previous values reported in the literature, as benchmarks of low and high response 
diversity (dissimilarity) levels (36). 

 
For our third prediction, we used piecewise structural equation models with the psem 

function in the piecewiseSEM R package in order to mechanistically test the relationships 
between discharge, water temperature, benthic production, and emergent production (81). 
Piecewise structural equation models allow more flexibility in model structure (which we needed 
to run repeated measures linear mixed effect models) than traditional structural equation models. 
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We focused on emergent Chironomidae, as that was the only taxon that had time-varying benthic 
production (i.e., the instantaneous growth rate method provided time-varying secondary 
production, unlike other methods). Calculated growth rates for taxa are rare in the literature and 
were unavailable for other taxa in the study. We calculated benthic production using the average 
biomass between sampling dates, so that five sampling midpoints were used for analysis in the 
model. All other variables were averaged for sample midpoint dates matching benthic production 
(n = 30). We further tested the mechanisms and links between discharge and Chironomidae 
production with a second model that used benthic and emergent size along with benthic and 
emergent abundance. All six sampling dates were used in this case (n = 36). We log transformed 
benthic abundance, emergent abundance, and emergent production to give model residuals a 
normal distribution. Both piecewise structural equation models were supported for inference 
based on the Fisher’s C statistic. Model coefficients were standardized by standard deviation for 
comparison. 

 
We also used repeated measures ANOVA tests in order to analyze how period-treatment 

affected emergent Chironomidae production. We used pairwise post-hoc comparisons with the 
Benjamini-Hochberg correction for the ANOVA data. Lastly, we tested Brewer’s Blackbird 
feeding time using the Kruskal-Wallis rank sum test. We specifically tested if the time that 
Brewer’s Blackbirds were observed in the channel was explained by low flow treatment. We also 
tested if Brewer’s Blackbirds altered the macroinvertebrate community following a Before-
After-Control-Impact (BACI) design, focusing on the interaction term between treatment and 
time (i.e., before vs. after blackbird presence). We ran a total of 6 different tests, to explore 
potential effects of blackbirds on benthic and emergent invertebrate richness and abundance (via 
repeated measures ANOVA models), and on benthic and emergent composition (via a 
PERMANOVA, given the multivariate nature of the data). If Brewer’s Blackbirds caused an 
effect, we would expect the interaction term to be significant, reflecting a ‘difference in 
difference’ between the 6-week and Current treatment after the blackbirds’ arrival. 
  
Results 
 
Effects of earlier, extended low flows on abiotic variables and epilithic biofilm 
 

The early low-flow treatment drove changes in water temperature, including a 4.6-7.5°C 
increase in maximum water temperature with the onset of summer low flow (F8,14 = 120.3, P < 
0.001; SI Appendix, Fig. S2, Fig. S3, Fig. S4, and Table S2). We also observed a 2.6°C increase 
in the diel range of water temperature in the 6-week treatment with the onset of summer low 
flow, as maximum temperatures were higher and minimum temperatures were lower (SI 
Appendix, Fig. S5). Dissolved oxygen declined seasonally (F8,13 = 14.18, P < 0.001), but 
channels remained well oxygenated throughout the experiment (Fig. S6 and Table S3). 

 
Low-flow timing affected the estimated production and respiration rates of epilithic 

biofilm—the base of production of our stream food web, which lacked macrophytes or plankton. 
Cumulative seasonal epilithic biofilm gross production to respiration ratios (GPP:ER) did not 
differ significantly by treatment, but there was an immediate decline in GPP:ER ratios with low-
flow treatment (Fig. 2). The GPP:ER ratio responded to period-treatment (F8,41 = 3.307, P = 
0.005) and was 32.2% lower for the 6‑week treatment in the middle of the experiment compared 
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to the Current treatment, partially supporting our prediction (SI Appendix, Table S4). ER 
increased immediately for the 6-week treatment in the middle period (F8,41 = 3.707, P = 0.002), 
showing 77.4% higher ER levels than the Current treatment (SI Appendix, Fig. S7 and Table S5). 
GPP also responded to treatment over time (F8,41 = 2.3, P = 0.039), but there was no support for 
any of the potential response types. Overall, the low-flow treatment shifted the phenology of 
epilithic biofilm metabolism as expected, tipping the balance between production (GPP) and 
respiration (ER) towards the latter. 
 

 
  
Figure 2. Earlier, extended low flows altered epilithic biofilm metabolism. (A) Mean epilithic 
biofilm GPP:ER ratio (± standard error) for the cumulative seasonal GPP and ER. The horizontal 
dashed gray line represents an equilibrium between GPP and ER (N = 9). (B) Mean GPP:ER 
ratio (± standard error) at each sampling date. The 6-week treatment GPP:ER in the middle of the 
experiment was significantly lower than that of the Current treatment (t45 = -3.22, P = 0.011). 
The Current treatment was the only treatment in which ratios significantly declined between the 
middle and end periods, constituting a delayed effect (t45 =3.43, P = 0.011). Vertical dashed lines 
represent the onset of summer low flow, colored by treatment. The three potential response types 
(immediate treatment effect, delayed treatment effect, seasonal effect) are listed, and are colored 
black when supported (see conceptual framework in Fig. 1, and Table S1 for how statistical tests 
connect with each response type). Breakpoints in the time series plot denote each sampling 
event. 
 
Effects of earlier, extended low flows on invertebrate communities 

 
The benthic stream invertebrate community exhibited fine-scale responses to low-flow 

timing. Cumulative (seasonally-aggregated) benthic stream invertebrate abundance did not differ 
by treatment (Fig. 3A). However, the 6-week treatment had a delayed effect on the community 
due to several taxa responding to summer low flow, either by increasing or by decreasing in 
abundance (pseudo-F5,30 = 2.571, P < 0.001; Fig. 3B-C; SI Appendix, Fig. S8 and Tables S6-
S10). Among the taxa that significantly explained community dissimilarity, 38% of them 
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increased and 25% decreased in abundance under low-flow treatment. Taxa with the greatest 
responses included Chironomini (F5,26 = 5.267, P = 0.002; Fig. 3B), Hydroptila (F5,26 = 15.77, P 
< 0.001), and Micrasema (F5,26 = 7.017, P < 0.001). Notably, Chironomini abundance for the 6-
week treatment at the end of the experiment was 173% higher than that in the middle of the 
experiment. Highly-resolved taxonomy for a subset of Chironomini and Pseudochironomini 
support that abundance increases were driven by Apedilum, Polypedilum aviceps, and 
Pseudochironomus–taxa that tolerate warm conditions. Chironomini and Micrasema also 
experienced magnitude responses in abundance, increasing and decreasing respectively under the 
low-flow treatment. The subset of flow-sensitive taxa caused a delayed response at the 
community level (SI Appendix, Table S11), leading to a novel assemblage at the end of the 
season. However, we note here that the abundance of scrapers (i.e., biofilm-grazing 
invertebrates) did not respond to low-flow treatment (F5,28 = 1.512, P > 0.05). 

 

 
 

Figure 3. Earlier, extended low flows did not alter aggregate seasonal density or emergence, but 
phenological shifts occurred in several taxa. In each panel, the mean density/flux of stream 
invertebrates (± standard error; shaded area) is represented across treatments or time. Panels A 
and D display average values across channels under each treatment, after aggregating all samples 
from the experiment within each channel. In all shown taxa, density or flux values were 
significantly explained by period-treatment (P < 0.05). The three potential response types 
(immediate treatment effect, delayed treatment effect, and seasonal effect) are listed, and colored 
black when supported (see conceptual framework in Fig. 1, and Table S1 for how statistical tests 
connect with each response type). Vertical dashed lines represent the onset of summer low flow, 
colored by treatment. (A) We did not observe any significant community-level response when 
looking at seasonally-aggregated data (N = 6), but (B-C) Chironomini (F5,26 = 5.267, P = 0.002) 
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and Micrasema (F5,26 = 7.017, P < 0.001) had delayed increases and declines in abundance, 
respectively, under the low-flow treatment (N = 36). (D) We also did not observe any significant 
emergent community-level response when looking at seasonally-aggregated data (N = 9), but (E-
F) Chironominae (t81 = 2.97, P = 0.008) and Prodiamesinae (t81 = 4.89, P = 0.027) experienced 
an immediate increase in emergent flux in the middle period (N = 90). Chironominae in the 3-
week treatment exhibited a delayed increase (t81 = -2.40, P = 0.0299). Breakpoints in the time 
series plots denote each sampling event. 

 
Emergent stream invertebrates responded to the low-flow treatments, but, in contrast to 

the benthic community, they did so immediately and exhibited strong phenological change 
(pseudo-F8,81 = 5.728, P < 0.001; SI Appendix, Fig. S8). Among the taxa that significantly 
explained emergent community dissimilarity, 67% of them increased in abundance under low-
flow treatment (SI Appendix, Table S12). Chironominae was important again in driving the shift, 
with its abundance increasing immediately by 147% in the middle period (F8,77 = 3.79, P < 
0.001; Fig. 3E; SI Appendix, Table S13). Post-hoc analysis supported an immediate shift in 
emergent community composition, based on the 6-week community being different from the 
Current community (SI Appendix, Table S14). This composition shift reflected a phenological 
shift, as the 6-week community in the middle period anticipated the assemblage at the end of the 
experiment in the other treatments. 

 
In turn, low-flow treatment did not significantly alter cumulative invertebrate secondary 

production (i.e., production integrated across the experiment) for either the benthic or the 
emergent portion of the community (Fig. 4A & D). However, we did observe a wide diversity of 
responses across taxa, both in how their secondary production responded to low-flow treatment 
and in their contribution to community-wide secondary production (Fig. 4C & F). We tested if 
the lack of seasonal aggregate response in our community could be due to response diversity. We 
found that response diversity to change in discharge, measured as response dissimilarity, was 
high in our community compared to published benchmarks for response-diverse communities 
(36), with a median value of 2.5 (SI Appendix, Fig. S9). Overall, these results partially support 
our prediction that extended low flow conditions will shift stream invertebrate phenology. 
However, changes in both structure (composition) and functioning (production) were mostly 
fine-scale, and seasonally-aggregated responses were stabilized by high community response 
diversity. 
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Figure 4. Seasonal secondary production did not differ across treatments. Mean cumulative 
secondary production over the study period (± standard error) for: (A) the entire benthic 
community (N = 6); (B) the 16 most productive benthic taxa (N = 96); (D) the entire emergent 
community (N = 9); and (E) the 10 most productive emergent taxa (N = 90). Orthocladiinae 
emergence production was significantly explained by treatment (F2,4 = 12.17, P = 0.020). (C, F) 
Pie plots displaying the relative proportion of production for taxa with more than 5% of the total 
community production. Taxon names are abbreviated to the first three letters, and pie plots are 
separated by treatment for the Current and 6-week treatments. Average Bray-Curtis dissimilarity 
between treatments is listed in brackets between the pie plots. 
  
Causal pathways connecting low flows to cross-ecosystem resource pulses 

 
Using a set of structural equation models (SEM), we examined the mechanisms 

connecting environmental drivers to the secondary production and subsequent emergence of the 
dominant aquatic insect group, Chironomidae midges (Fig. 5). This group accounted for 70% of 
the emergent production and 93% of the emergent abundance, thus controlling both in-stream 
processes and cross-ecosystem (i.e., stream-to-land) subsidies. Despite the apparent stability of 
Chironomidae production at the seasonal scale (see previous section), low-flow driven warming 
drove subseasonal variation in Chironomidae benthic and emergent production (Fig. 5A). This 
influence was realized via dual, opposing effects of temperature on Chironomidae abundance 
and body size (Fig. 5B). Specifically, warming decreased mean Chironomidae body size, but 
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also increased their numerical abundance, with the positive effect on abundance outweighing the 
negative effect on body size by a factor of three (Fig. 5B). 

 

 
 

Figure 5. Low-flow induced warming increased Chironomidae production and emergence via 
increased abundance of individuals, despite reductions in body size. (A) Piecewise structural 
equation model of the relationship between discharge and emergent Chironomidae production 
with temperature and benthic production linking them. Discharge has a negative relationship 
with water temperature (low-flow induced warming). Water temperature has positive 
relationships with both benthic and emergent production. (B) Piecewise structural equation 
model of the relationship between discharge and emergent Chironomidae production with 
mechanistic drivers linking them. Discharge has a negative effect on water temperature. Water 
temperature increases both benthic and emergent Chironomidae abundance but has a negative 
effect on benthic Chironomidae size. Emergent Chironomidae size and abundance both have 
positive effects on emergent Chironomidae production. Comparison of models (A) and (B) 
suggests that low-flow induced warming increases the emergent flux of Chironomidae midges 
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(model A); this increase is realized via an increase in numerical abundance that overcompensates 
for their smaller body sizes, both in the benthic and emergent stages (model B). Both models are 
supported for inference based on the Fisher’s C statistic (Model A: C4 = 1.108, P > 0.05; Model 
B: C24 = 30.296, P > 0.05). Standardized estimates and associated 95% confidence intervals are 
shown next to linking arrows. 
 

 
Lastly, we recorded riparian bird feeding behavior to assess how low-flow treatment may 

have altered the behavior of a generalist predator we noticed visiting and nesting in the area, the 
Brewer’s Blackbirds (Euphagus cyanocephalus), once the experiment was underway (Fig. 6). 
Brewer’s Blackbirds fed on benthic macroinvertebrates in the 6-week channels when discharge 
dropped to summer low-flow conditions. We began to record their behavior afterwards to 
account for possible effects on the macroinvertebrate community. We found that emergent 
Chironomidae production increased in the middle period during Brewer’s Blackbirds nesting 
(F8,68 = 5.663, P < 0.001; Fig. 6). The time that Brewer’s Blackbirds spent feeding on benthic 
stream invertebrates in each channel was also associated with treatment (x22 = 13.836, P = 
0.001): they spent the most time in channels undergoing the 6-week treatment (6-week vs. 
Current: P = 0.018; 6-week vs. 3-week: P = 0.01). Brewer’s Blackbirds departed from the study 
site upon fledging, resulting in few observations after early July. Brewer’s Blackbirds did not 
have a measurable influence on the benthic or emergent macroinvertebrate community, measured 
either as abundance, species richness, or composition (SI Appendix, Table S15). Overall, these 
results support our prediction that our low-flow treatment will alter the phenology of aquatic-
terrestrial subsidies–with changes that can be influential even if they take place at short 
timescales. 
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Figure 6. Earlier, extended low flows increased cross-ecosystem pulses. (A) Mean daily 
Chironomidae emergent production (± standard error) over time (N = 81). The three potential 
response types (immediate treatment effect, delayed treatment effect, seasonal effect) are listed, 
and colored in black as they were all supported (see conceptual framework in Fig. 1, and Table 
S1 for how statistical tests connect with each response type). Chironomidae production in the 6-
week treatment was immediately higher than in the other treatments in the middle period (t72 = 
3.56, P = 0.004 vs. Current; t72 = 2.36, P = 0.039 vs. 3-week) although all treatments showed a 
seasonal increase. Chironomidae production in the 6-week treatment also showed a delayed 
decline in production from the middle to end periods (t72 = 2.92, P = 0.014). Vertical dashed 
lines represent the onset of summer low flow, colored by treatment. (B) Time in seconds that 
Brewer’s Blackbirds were observed in the artificial channels, over 30-minute periods (N = 117). 
Brewer’s Blackbirds were present significantly more in the 6-week treatment compared to the 
Current (P = 0.018) and 3-week treatments (P = 0.01). The solid lines are smoothed conditional 
means using LOESS (locally estimated scatterplot smoothing) for each treatment, to assist in 
visualizing temporal trends. 

 
Discussion 

 
Numerous studies suggest that climate-driven phenological shifts will alter ecosystem 

processes (8, 9). However, few studies to date have empirically examined this link in complex, 
multi-trophic communities (8, 9). Here we used an outdoor, artificial stream system in 
California’s Sierra Nevada to simulate future hydroclimatic conditions in mountain streams. We 
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measured how extended summer low flows are likely to affect organism phenology, ecosystem 
processes, and the link between the two. We found that earlier, extended low-flow conditions 
will likely: (1) raise water temperature, increase epilithic biofilm respiration (ER), and 
consequently tip the balance between epilithic biofilm production and respiration (GPP:ER); (2) 
advance phenology of the stream invertebrate community, even if compensatory mechanisms 
buffer change in production at longer, seasonal scales; and (3) alter cross-ecosystem resource 
fluxes by advancing emergence of key insect groups (such as Chironomidae) and by creating 
novel feeding opportunities for generalist riparian predators. Our findings add mechanism to the 
link between climate-driven phenological shifts and ecosystem process shifts (8, 24). Further, we 
advance the notion that ecological processes that appear insensitive to climate change at long 
scales can respond at finer scales—with far-reaching implications for food-web matches and 
mismatches (2, 37). 

 
Our study highlights that different species responding in diverse ways to climate change 

stressors can stabilize community-level properties at seasonal scales. This property, often 
referred to as response diversity, played out at two different levels: at the population level (i.e., 
diverse demographic changes in size and phenology) and at the community level (i.e., dissimilar 
responses in species abundance across species). Notably, we found response diversity values in 
our complex community to be greater than those in communities previously used to illustrate a 
‘high’ response diversity level (36). Our results are consistent with observations from long-term 
field studies showing that even if animals have generally advanced their phenology 2.9 days per 
decade, substantial variation among taxa may buffer aggregate community shifts (1). While 
small ectotherms are generally more responsive to warming, limits to phenologic plasticity exist 
(1). For example, nonlinear responses to climate change can occur as a result of crossing 
physiological limits (e.g., critical thermal maxima), along with the local abiotic and biotic 
contexts interacting with each other (38). In a mesocosm study in southern England, increased 
temperatures altered community composition and resulting decomposition rates differently 
depending on the time of year (39). Additionally, temporary ecosystem process shifts due to 
changing phenology can cancel each other out over seasonal or yearly timescales, like we 
observed in the ecosystem processes we studied (e.g., secondary production). This characteristic 
pattern of ‘stability despite change’ may be akin to that of ‘climatic debt’ in climate velocity 
research, where a lack of community composition response can hide impending biodiversity 
collapse (40). 

 
Our study suggests that streamflow, via its effects on temperature, may be the mechanism 

whereby climate change in mountain streams is most likely to affect organism phenology and 
ecosystem processes (41). Many of the low-flow effects we observed resulted from water 
temperature rising during low flow conditions. The GPP:ER decline we found with increasing 
water temperature was similar to that reported from a warming mesocosm experiment in the UK 
(42). In both cases, reduced GPP:ER was likely due to respiration increasing at a faster rate than 
GPP, based on their respective activation energies. However, low flows and high water 
temperatures may increase biofilm production and reduce water quality if the stream is not 
nutrient limited, as in our oligotrophic system (43, 44). Our methods captured biofilm production 
and respiration, which is only a portion of ecosystem metabolism (45). Because the light-dark 
bottle method excludes hyporheic metabolism and respiration from invertebrate heterotrophs, we 
cannot use estimates from the light-dark bottle to scale up to whole stream ecosystem 
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metabolism. These exclusions likely underestimated ecosystem-level ER, thus preventing us 
from upscaling biofilm GPP:ER ratios to ecosystem-level GPP:ER ratios. Additionally, both low 
flows and increased water temperature have also been shown to favor small, flow-sensitive taxa 
like Chironomidae, which can alter overall community composition, in agreement with our 
results (15). We did not, however, notice a general decline in sensitive Ephemeroptera, 
Plecoptera, and Trichoptera taxa due to early low flows, as observed elsewhere (46). This 
discrepancy is likely explained by many of these taxa emerging in spring and early summer in 
high mountain streams. The lack of a cumulative secondary production response we observed 
differs from the conventional belief that low flows reduce production (20), as is often the case if 
flow intermittency occurs (31). However, some studies have reported that low flows may not 
impair, or may even slightly increase, stream invertebrate secondary production, given 
overcompensating increases in Chironomidae production (47). Likewise, we found that extended 
summer low flow is poised to increase Chironomidae production by increasing their abundance 
more than reducing their body size—showing that changes in ecosystem processes driven by 
organisms (and their phenology) may depend on a fragile balance of life-history mechanisms. 

 
Given the dynamic nature of most responses observed, our study illustrates the need to 

record time-varying rather than ‘time-averaged’ ecosystem responses to climate change. In our 
case, tracking responses over time allowed us to parse out immediate shifts (e.g., water 
temperature, biofilm production, emergence, and riparian predator feeding) from delayed or 
time-lagged shifts (e.g., benthic stream invertebrate community composition). These changes 
may connect different trophic levels—leading to novel, climate-driven ‘matches’ or 
‘mismatches’ between resource availability and demand. While climate change leading to 
predator-prey mismatches is unsurprising (48), we found a novel match between peak 
Chironomidae emergence and Brewer’s Blackbirds nesting. Understanding when and where 
these new food-web links could replace current connections is important for conservation (49). 
However, novel matches can also be ecologically harmful. For example, advanced hatching in 
the moth Agriopis aurantiaria is increasingly coinciding with sub-Arctic birch budburst, causing 
widespread tree die-off (50). Notably, interspecific variation in phenological responses may 
preserve ecosystem processes when species are not tightly linked, or when voltinism is plastic 
(51). The study of predator-prey mismatch remains challenging (52), and requires tracking how 
climate change is affecting organismal phenology at a high taxonomic and temporal resolution. 

 
Our experiment is one of the few assessing phenological change at the community level 

in a realistic, outdoor mesocosm system (2); however, our approach has limitations. First, a 
multi-year experiment may have found greater declines in sensitive taxa abundance that are 
caused by inter-generational effects. High temperatures can reduce egg survival and adult 
fecundity via reduced body size, which may not be noticeable over a single season (27). Second, 
unmeasured abiotic variables beyond flow and temperature may have partly driven biotic 
responses. For example, reduced flow can increase retention of allochthonous particulate organic 
matter, which could influence biofilm metabolism (23); similarly, reduced water velocity may 
have influenced fluctuations in dissolved oxygen, even if biologically harmful hypoxia was not 
reached in our case [SI Appendix, Fig. S6 (53, 54)]. Reduced flow can also increase the 
concentration of nutrients with higher residence time, even if this is unlikely in our oligotrophic 
system (44, 55). Overall, disentangling abiotic change driven by vs. covarying with flow 
alteration requires further research. Third, we did not measure immigration or drift of 
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individuals. While immigration from nearby Convict Creek during the experiment could have 
reduced treatment differences, drift into the channels was negligible in a past study (56). 
However, emigrant drift may have differed among our treatments, as described by studies that 
found short-term increases in drift under reduced flow conditions followed by drift declines (20). 
Some of our results could also be driven by a reduced period of high flow rather than by an 
earlier, longer summer low flow period, if organisms require prolonged high flow conditions for 
dispersal, filter-feeding, or some other life history. Lastly, the artificial channels are not 
connected to groundwater, which can cool down low-order stream habitats experiencing summer 
low flow conditions (57). These factors suggest that care should be applied when transferring our 
results to other climatic and geologic contexts. 

 
The temporal shifts in phenology and ecosystem processes we observed are meaningful 

given ongoing climate change trends in mountain ranges globally (19), and particularly in the 
rain-to-snow transition zone. In addition to climate change leading to advanced and extended 
summer low flow conditions, warmer air temperatures will increasingly overlap with periods of 
reduced thermal buffering from low flows (20, 58), increasing stream water temperatures even 
further (58). Warmer air temperatures will also increase the likelihood of precipitation falling as 
rain and rain-on-snow events, raising the frequency and magnitude of flooding (59). These 
changes in snow-dominated mountain streams are expected to cause widespread ecological 
change, as is already seen when comparing communities from unusually wet to dry years (15). 
Our study shows that response diversity may help maintain stability in key ecosystem processes, 
similarly to how biodiversity stabilizes ecosystem processes in warming terrestrial ecosystems 
[e.g., as seen with bee diversity and plant pollination (60)]. However, stabilizing mechanisms 
may be further eroded if environmental change continues to extirpate species locally (11). 
Studying community phenology at fine temporal scales is vital to capture the vulnerability of 
taxa facing climate change and to understand impending effects of climate change on ecosystem 
processes. 
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Supplementary Materials 
 

Figure S1. Diagram and photos of the outdoor channel array at the Sierra Nevada Aquatic 
Research Laboratory (SNARL) in Mammoth Lakes, California, USA. (A) Channels were 
assigned to one of three treatments with three replicate channels each in a block design. Channel 
number is shown to the left of the channel inlet and colored according to treatment. The 
treatments were: (1) current hydrologic conditions based on the historic (long-term) hydrograph 
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at Convict Creek with a flow regime that reaches baseflow conditions around August 3rd (i.e., 
Current treatment); (2) hydrologic conditions under a mitigated climate change scenario, where 
the stream would return to baseflow conditions three weeks earlier than it currently does (i.e., 3-
week treatment); and (3) hydrologic conditions under unmitigated climate change, where the 
stream would return to baseflow six weeks earlier than it currently does (i.e., 6-week treatment). 
(B) Aerial photo of the artificial channels, courtesy of Google Maps. (C) Photos of high flow 
(left; ~15 L/s) and low flow (i.e., baseflow) conditions (right; ~1.5 L/s). Photo credits: Carol 
Blanchette (B), Guillermo de Mendoza (C1), and Ludmila Sromek (C2). 
 
  

Figure S2. Historical flow regime of Convict Creek. Long-term seasonal trends in mean daily 
discharge in Convict Creek from March to November each year from 1960 to 1974 (in dashed 
green lines), as measured by the available data from U.S. Geological Survey streamgage 
10265200. We averaged the 15 years of streamflow data to create a daily mean discharge value 
(black line). We then used this average flow regime as the basis for the “Current” flow regime 
and advanced the start of summer low flows for the 3-week and 6-week treatments from this 
baseline, in agreement with downscaled climate change projections from Reich et al. 2018 (1; 
Figure S3). The first-order streams that our experimental channels are simulating are smaller 
than Convict Creek and located at a higher altitude. They thus experience faster return to summer 
baseflow conditions. 
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Figure S3. Average recorded and targeted daily discharge for each treatment throughout the 
experiment. (A) The recorded discharge was calculated using high frequency water depth sensors 
and rating curves in each channel. Discharge was manually controlled by opening or closing the 
sluice gate at the inlet of each channel to match the target flow regime. (B) Target discharge in 
the Current treatment follows the historic average flow regime timing of snowmelt recession in 
the water source, Convict Creek (see Fig. S3). The other two treatments were designed to 
experience summer low flow three and six weeks earlier in the year, respectively, following 
downscaled climate change projections (see methods for details). The designed onset of summer 
low-flow conditions is indicated for each treatment by a dashed vertical line colored by 
treatment. The shaded area represents ±1 standard error. 
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Figure S4. Maximum daily water temperature for each treatment, throughout the experiment. 
Maximum water temperature increased with advanced low flow treatments. The targeted onset of 
summer low-flow conditions is indicated for each treatment by a dashed vertical line, colored by 
treatment. Average treatment maximum water temperature (± standard error) is shown. See 
Figure S3 for targeted and observed hydrographs. 
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Figure S5. Mean, minimum, and diel range of water temperature for each treatment throughout 
the experiment. Advanced low flow treatments affected all water temperature metrics 
immediately. The designed onset of summer low-flow conditions is indicated for each treatment 
by a dashed vertical line colored by treatment. The means of each water temperature metric (± 
standard error) are shown by treatment. 
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Figure S6. Distribution of dissolved oxygen hourly concentrations in each channel, pooled 
across the duration of the experiment. The boxplots display channel-specific medians (bold 
lines), interquartile ranges (boxes), and interquartile range*1.5 extents (whiskers). Hypoxia, 
defined as dissolved oxygen concentrations dropping below 2 mg/L (2), was never detected in 
the experiment, and almost all readings (99.6% of them) were over 5 mg/L, a threshold often 
used to assess long-term performance of sensitive, coldwater mayflies and stoneflies (3 and 
references therein). The “Feeder” label refers to measurements taken at the two inlets connecting 
Convict Creek to the experimental channels. 
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Figure S7. Seasonal and time-varying estimates of epilithic biofilm production (GPP) and 
respiration (ER). (A) No differences were observed between treatments for cumulative seasonal 
GPP. (B) Cumulative seasonal ER was significantly higher in magnitude for the 6-week 
treatment relative to the other two treatments (indicated by *). (C) No predicted responses were 
observed for GPP. (D) An immediate increase in the magnitude of ER occurred in the 6-week 
treatment based on comparisons between the middle and start of the experiment. Shaded error 
ribbons and error bars represent ±1 standard error. Each breakpoint in the time series plots 
denotes a sampling event. The three potential response types (immediate treatment effect, 
delayed treatment effect, and seasonal effect) are listed, and colored in black when supported 
(see conceptual framework in Fig. 1, and Table S1 for how statistical tests connect with each 
response type). 
 
  
  

16

20

24

28

Current 3−week 6−week
Treatment

(g
 C

 m
-2

 s
ea
so
n-

1 )
A) GPP

−20

−18

−16

Current 3−week 6−week
Treatment

B) ER

100

200

300

400

Jun Jul Aug
Date

(m
g 
C

 m
-2

 d
ay

-1
)

C) GPP

−300

−200

−100

Jun Jul Aug
Date

D) ER

Treatment

Current

3−week

6−week

*

Immediate
Delayed
Seasonal

Immediate
Delayed
Seasonal



40 

Figure S8. Low-flow treatment effects on stream invertebrate community structure. Earlier, 
extended low flows had a delayed effect on benthic stream invertebrate community composition 
and an immediate effect on emergent insect community composition. Black arrows represent 
significant post-hoc differences due to predicted responses, where arrow end points indicate 
ellipse centroids. (A) The benthic stream invertebrate community experienced a delayed 
response, based on differences between the 6-week treatment at the end and the middle of the 
experiment. (B) The community composition of emergent stream invertebrates changed 
immediately in the middle period between the 6-week treatment and the Current treatment. There 
was a delayed change in the community in the 3-week treatment. The middle period in this study 
begins ten days preceding the onset of summer low flow for the 6-week treatment, to reflect that 
falling discharge can cause effects before minimum summer low flow is reached. The three 
potential response types (immediate treatment effect, delayed treatment effect, seasonal effect) 
are listed, and colored black when supported (see conceptual framework in Fig. 1, and Table S1 
for how statistical tests connect with each response type). 
  

−0.4

0.0

0.4

−2 −1 0 1 2
NMDS1

A

−2

0

2

−4 −2 0 2
NMDS1

B
N

M
D

S 
2

Period
Start experiment
Mid−experiment
End experiment

Start experiment
Mid−experiment
End experiment

Treatment
Current
3−week
6−week

Benthic community Emergent community

Immediate
Delayed
Seasonal

Immediate
Delayed
Seasonal



41 

  
Figure S9. Response diversity in our study relative to values in the literature. We measured 
response diversity using dissimilarity in how species abundance responded to change in 
discharge, via the method described in Ross et al. 2023 (4). We note dissimilarity has a minimum 
value of 1, and higher values indicate higher response diversity. The 15 most abundant benthic 
taxa were included in our analyses, and response diversity was calculated for each channel 
independently. The boxplot displays the median (bold red line), interquartile range (box), and 
interquartile range*1.5 (whiskers) of all channel response diversity values. Samples from the first 
sampling date were excluded for this analysis to focus on the experimental response. The dashed 
horizontal lines are median dissimilarity values used as benchmarks, reported to have low and 
high dissimilarity in Ross et al. 2023. 
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Figure S10. Taxa driving community dissimilarity in Figure S8. The NMDS space is the same 
here as that in Figure S8. (A) Benthic taxa that significantly explained community dissimilarity 
among samples are shown (P ≤ 0.002). The position of the taxa label indicates where the taxa is 
in the NMDS space. The label position for Drunella flavilinea is moved to prevent overlap and 
the line connected to it indicates the actual space it corresponds to in the NMDS. (B) Emergent 
taxa that significantly (P ≤ 0.002) explained community dissimilarity among samples. 
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Table S1. Description of how statistical tests support evidence for each of the potential 
ecological responses described in Figure 1 (no effect, seasonal effect, immediate treatment 
effect, delayed treatment effect). Responses reflect a change in magnitude or phenology of the 
response variable. A seasonal effect is inferred when an advanced low flow treatment and the 
Current conditions treatment exhibit a shift in the same direction and magnitude over time. An 
example of a seasonal effect is Chironominae emergence (Figure 3; Table S13), where all three 
treatments increase in emergence in the middle period compared to the start period. An 
immediate effect occurs when there is a difference in how treatments change from the start to the 
middle period, or when a difference occurs between treatments within the middle period (i.e., at 
the onset of treatment differences). An immediate effect is seen in Chironominae, where 
emergence under the 6-week treatment is significantly different from emergence under the 
Current treatment (middle period). Lastly, a delayed effect occurs when there is a difference in 
how treatments change from the middle to end period, or between treatments within the end 
period. An example of a delayed effect occurred in benthic Chironomini (Figure 3), where 
abundance increased significantly between the middle and end periods for the 6-week treatment, 
but not for the Current treatment. Immediate and delayed effects could theoretically occur 
sequentially in the same response variable, but we did not expect it a priori, and it did not occur 
in our study. 
  

Response 
type 

Relevant comparisons Rationale 

Seasonal 
effect 

Middle 6-week vs. Start 6-
week 
Middle Current vs. Start 
Current 
Middle 3-week vs. Start 3-
week 
End 6-week vs. Middle 6-week 
End Current vs. Middle 
Current 
End 3-week vs. Middle 3-week 

If the Current treatment and either 
the 6-week or 3-week treatment 
exhibit the same significant 
response over time, then we 
describe a seasonal effect. 

Immediate 
effect 

Middle 6-week vs. Start 6-
week 
Middle Current vs. Start 
Current 
Middle 3-week vs. Start 3-
week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

An immediate effect may be 
evidenced by a significant 
difference between the Current 
and 6-week or 3-week treatments 
in the middle period. An 
immediate effect can also take 
place if the Current and 6-week or 
3-week treatments differ in how 
they change between the start and 
middle periods. 
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Delayed 
effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle 
Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

A delayed effect may be 
evidenced by a significant 
difference between the Current 
and 6-week or 3-week treatments 
in the end period. A delayed effect 
can also take place if the Current 
and 6-week or 3-week treatments 
differ in how they change between 
the middle and end periods. 
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Table S2. Pairwise comparisons of maximum water temperature among period-treatment 
groups. We examined maximum daily temperature via post-hoc pairwise comparisons (P‑values) 
corrected by the Benjamini–Hochberg method. A bolded P-value indicates that the pairwise 
comparison was significant for that response type. If the Current and 3-week or 6-week 
treatments are significant for the same comparison across periods (e.g., start vs. middle) then 
P‑values are bolded for seasonal effects but not for immediate or delayed treatment effects, as 
that would indicate similar change over time regardless of treatment. See conceptual framework 
on response types in Fig. 1, and Table S1 for how statistical tests connect with each response 
type. 
 
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

1.07E-12 
5.49E-06 
1.81E-09 
0.0231 
3.93E-12 
2.02E-09 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

1.07E-12 
5.49E-06 
1.81E-09 
1.35E-09 
1.85E-04 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.0231 
3.93E-12 
2.02E-09 
0.017 
0.425 
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Table S3. Pairwise comparisons of dissolved oxygen among period-treatment groups. We 
examined dissolved oxygen over time via post-hoc pairwise comparisons (P‑values) corrected by 
the Benjamini–Hochberg method. A bolded P-value indicates that the pairwise comparison was 
significant for that response type. If the Current and 3-week or 6-week treatments are significant 
for the same comparison across periods (e.g., start vs. middle) then P‑values are bolded for 
seasonal effects but not for immediate or delayed treatment effects, as that would indicate similar 
change over time regardless of treatment. See conceptual framework on response types in Fig. 1, 
and Table S1 for how statistical tests connect with each response type. 
 
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

1.78E-06 
2.16E-05 
9.83E-06 
0.918 
6.12E-03 
9.99E-02 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

1.78E-06 
2.16E-05 
9.83E-06 
4.33E-01 
8.93E-01 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.918 
6.12E-03 
9.99E-02 
0.042 
0.133 
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Table S4. Pairwise comparisons of epilithic biofilm GPP:ER ratios among period-treatment 
groups. We examined GPP:ER ratios over time via post-hoc pairwise comparisons (P-values) 
corrected by the Benjamini–Hochberg method. A bolded P-value indicates the pairwise 
comparison was significant for that response type. If the Current and 3-week or 6-week 
treatments are significant for the same comparison across periods (e.g., start vs. middle), then 
P‑values are bolded for seasonal effects but not for immediate or delayed treatment effects, as 
that would indicate similar change over time regardless of treatment. See conceptual framework 
on response types in Fig. 1, and Table S1 for how statistical tests connect with each response 
type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

7.21E-02 
9.89E-01 
9.63E-01 
0.989 
1.12E-02 
2.26E-01 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

7.21E-02 
9.89E-01 
9.63E-01 
1.12E-02 
1.71E-01 

Delayed treatment 
effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.989 
1.12E-02 
2.26E-01 
0.937 
0.989 
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Table S5. Pairwise comparisons of biofilm respiration among period-treatment groups. We 
examined biofilm respiration over time via post-hoc pairwise comparisons (P-values) corrected 
by the Benjamini–Hochberg method. A bolded P-value indicates the pairwise comparison was 
significant for that response type. If the Current and 3-week or 6-week treatments are significant 
for the same comparison across periods (e.g., start vs. middle) then P-values are bolded for 
seasonal effects but not for immediate or delayed treatment effects, as that would indicate similar 
change over time regardless of treatment. See conceptual framework on response types in Fig. 1, 
and Table S1 for how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

3.55E-04 
1.51E-01 
3.07E-02 
0.0242 
4.86E-02 
1.78E-01 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

3.55E-04 
1.51E-01 
3.07E-02 
1.52E-03 
6.02E-01 

Delayed treatment 
effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.0242 
4.86E-02 
1.78E-01 
0.298 
0.845 
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Table S6. Effects of period-treatment on the abundance of benthic taxa that significantly 
explained community dissimilarity in Figure S8. Significant responses are assigned to seasonal 
and to treatment effects (immediate or delayed). Asterisks indicate P < 0.05 for period-treatment. 
Short horizontal dashes (~) indicate P < 0.10. A positive sign (+) or negative sign (-) indicates if 
advanced low flow treatment had a positive or negative effect, respectively, on taxa abundance, 
provided that treatment differences explained post-hoc differences. A combination of positive 
and negative signs (±) indicates that low flow treatment had positive and negative effects at 
different times. See conceptual framework on response types in Fig. 1, and Table S1 for how 
statistical tests connect with each response type. 
  

Taxa ANOVA response 

Period-
Treatment 

Treatment effect 
(Immediate/Delayed/Absent) 

Seasonal effect 
(Present/Absent) 

Chironomini * Delayed (+) Absent 

Epeorus ~ Immediate (-) Absent 

Glossosoma       

Hydroptila * Delayed (+) Present 

Muscidae * Absent Absent 

Oligochaeta       

Orthocladiinae sensu lato       

Simuliidae * Delayed (+) Present 

Tanytarsini       

Turbellaria ~ Delayed (+) Absent 

Baetis * Immediate & Delayed (±) Absent 

Tanypodinae sensu lato       

Diphetor       

Lepidostoma * Delayed (+) Present 

Micrasema * Delayed (-) Absent 
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Drunella flavilnea * Immediate (-) Present 
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Table S7. Pairwise comparisons of benthic Chironomini abundance among period-treatment 
groups. We examined benthic Chironomini abundance via post-hoc pairwise comparisons (P-
values) corrected by the Benjamini–Hochberg method. A bolded P-value indicates the pairwise 
comparison was significant for that response type. If the Current and 3‑week or 6-week 
treatments are significant for the same comparison across periods (e.g., start vs. middle) then P-
values are bolded for seasonal effects but not for immediate or delayed treatment effects, as that 
would indicate similar change over time regardless of treatment. See conceptual framework on 
response types in Fig. 1, and Table S1 for how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 

0.672 
0.545 
0.000519 
0.113 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 6-week vs. Middle 
Current 

0.672 
0.545 
0.862 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 6-week vs. End Current 

0.000519 
0.113 
0.0506 
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Table S8. Pairwise comparisons of benthic Hydroptila abundance among period-treatment 
groups. Benthic Hydroptila abundance post-hoc pairwise comparisons (P-values) corrected by 
the Benjamini–Hochberg method. A bolded P-value indicates the pairwise comparison was 
significant for that response type. If the Current and 3-week or 6-week treatments are significant 
for the same comparison across periods (e.g., start vs. middle) then P-values are bolded for 
seasonal effects but not for immediate or delayed treatment effects, as that would indicate similar 
change over time regardless of treatment. See conceptual framework on response types in Fig. 1, 
and Table S1 for how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 

0.238 
0.985 
1.54E-09 
0.00459 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 6-week vs. Middle 
Current 

0.238 
0.985 
0.238 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 6-week vs. End Current 

1.54E-09 
0.00459 
0.0000721 

 
  
  



53 

Table S9. Pairwise comparisons of benthic Simuliidae abundance among period-treatment 
groups. Benthic Simuliidae abundance post-hoc pairwise comparisons (P-values) corrected by 
the Benjamini–Hochberg method. A bolded P-value indicates the pairwise comparison was 
significant for that response type. If the Current and 3-week or 6-week treatments are significant 
for the same comparison across periods (e.g., start vs. middle) then P-values are bolded for 
seasonal effects but not for immediate or delayed treatment effects, as that would indicate similar 
change over time regardless of treatment. See conceptual framework on response types in Fig. 1, 
and Table S1 for how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 

0.8 
0.9 
0.0000146 
0.0197 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 6-week vs. Middle 
Current 

0.8 
0.9 
0.8 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 6-week vs. End Current 

0.0000146 
0.0197 
0.0152 
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Table S10. Pairwise comparisons of benthic Micrasema abundance among period-treatment 
groups. Benthic Micrasema abundance post-hoc pairwise comparisons (P-values) corrected by 
the Benjamini–Hochberg method. A bolded P-value indicates the pairwise comparison was 
significant for that response type. If the Current and 3-week or 6-week treatments are significant 
for the same comparison across periods (e.g., start vs. middle) then P-values are bolded for 
seasonal effects but not for immediate or delayed treatment effects, as that would indicate similar 
change over time regardless of treatment. See conceptual framework on response types in Fig. 1, 
and Table S1 for how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 

0.837 
0.347 
0.0169 
0.28 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 6-week vs. Middle 
Current 

0.837 
0.347 
0.341 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 6-week vs. End Current 

0.0169 
0.28 
0.516 
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Table S11. Pairwise comparisons of benthic stream invertebrate NMDS community composition 
among period-treatment groups. A PERMANOVA test was first conducted with period-
treatment as a fixed effect and it was found to significantly explain benthic community 
composition (pseudo-F5,35 = 2.571, P < 0.001). Benthic stream invertebrate NMDS community 
post-hoc pairwise comparisons (P-values) corrected by the Benjamini–Hochberg method. A 
bolded P-value indicates the pairwise comparison was significant for that response type. If the 
Current and 3-week or 6-week treatments are significant for the same comparison across periods 
(e.g., start vs. middle) then P-values are bolded for seasonal effects but not for immediate or 
delayed treatment effects, as that would indicate similar change over time regardless of 
treatment. See conceptual framework on response types in Fig. 1, and Table S1 for how 
statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 

0.105 
0.171 
0.0188 
0.209 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 6-week vs. Middle 
Current 

0.105 
0.171 
0.464 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 6-week vs. End Current 

0.0188 
0.209 
0.171 
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Table S12. The effects of period-treatment on the abundance of emergent taxa that significantly 
explain community dissimilarity (P ≤ 0.002) in Figure S8. Significant responses are determined 
to be due to seasonal or treatment effects. Asterisks indicate P < 0.05 for period-treatment. A 
positive sign (+) indicates that low flow treatment had a positive effect on taxa abundance, 
provided that treatment differences explained post-hoc differences. See conceptual framework on 
response types in Fig. 1, and Table S1 for how statistical tests connect with each response type. 
  

Taxa ANOVA response 

Period-
Treatment 

Treatment effect 
(Immediate/Delayed/Absent) 

Seasonal effect 
(Present/Absent) 

Chironominae * Immediate & Delayed (+) Present 

Prodiamesinae * Immediate (+) Absent 

Orthocladiinae * Absent Absent 
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Table S13. Pairwise comparisons of emergent Chironominae abundance among period-
treatment groups. Emergent Chironominae abundance post-hoc pairwise comparisons (P-values) 
corrected by the Benjamini–Hochberg method. A bolded P-value indicates the pairwise 
comparison was significant for that response type. If the Current and 3-week or 6-week 
treatments are significant for the same comparison across periods (e.g., start vs. middle), then 
P‑values are bolded for seasonal effects but not for immediate or delayed treatment effects, as 
that would indicate similar change over time regardless of treatment. See conceptual framework 
on response types in Fig. 1, and Table S1 for how statistical tests connect with each response 
type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

3.75E-05 
4.07E-03 
4.39E-03 
0.755 
1.48E-01 
2.99E-02 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

3.75E-05 
4.07E-03 
4.39E-03 
8.18E-03 
9.32E-01 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.755 
1.48E-01 
2.99E-02 
0.755 
0.584 
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Table S14. Pairwise comparisons of emergent stream invertebrate NMDS community 
composition among period-treatment groups. A PERMANOVA test was first conducted with 
period-treatment as a fixed effect and it was found to significantly explain emergent community 
composition (pseudo-F8,89 = 5.7277, P < 0.001). Emergent stream invertebrate NMDS 
community post-hoc pairwise comparisons (P-values) corrected by the Benjamini–Hochberg 
method. A bolded P-value indicates the pairwise comparison was significant for that response 
type. If the Current and 3-week or 6-week treatments are significant for the same comparison 
across periods (e.g., start vs. middle) then P-values are bolded for seasonal effects but not for 
immediate or delayed treatment effects, as that would indicate similar change over time 
regardless of treatment. See conceptual framework on response types in Fig. 1, and Table S1 for 
how statistical tests connect with each response type. 
  
Response type Relevant comparisons P-value 
Seasonal effect Middle 6-week vs. Start 6-week 

Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 

0.00257 
0.00257 
0.00257 
0.38 
0.197 
0.0208 

Immediate 
treatment effect 

Middle 6-week vs. Start 6-week 
Middle Current vs. Start Current 
Middle 3-week vs. Start 3-week 
Middle 6-week vs. Middle 
Current 
Middle 3-week vs. Middle 
Current 

0.00257 
0.00257 
0.00257 
0.0394 
0.883 

Delayed 
treatment effect 

End 6-week vs. Middle 6-week 
End Current vs. Middle Current 
End 3-week vs. Middle 3-week 
End 6-week vs. End Current 
End 3-week vs. End Current 

0.38 
0.197 
0.0208 
0.883 
0.532 
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Table S15. Assessment of potential Brewer’s Blackbird effects on benthic and emergent 
macroinvertebrate communities, using a Before-After-Control-Impact (BACI) design. We tested 
if benthic community composition and structure changed immediately after blackbird arrival in 
channels that were visited relative to channels that were not visited. The interaction term of 
treatment*time (time being binary: pre vs post-bird presence) was not statistically significant 
when examining either benthic or emergent invertebrate abundance, richness, or composition, 
denoting no significant bird effects. Degrees of freedom (df) lists the df for the treatment*time 
interaction first, then the df of residuals. 
  
Response variable df F statistic P-value for treatment*time 
Benthic abundance 1, 30 0.238 0.629 
Benthic species richness 1, 30 1.649 0.209 

Benthic community 
composition 

1, 32 0.957 0.438 

Emergent abundance 2, 82 0.269 0.765 
Emergent species 
richness 

2, 82 0.62 0.540 

Emergent community 
composition 

2, 84 0.716 0.693 
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Transition from Chapters 2 to 3 
 

The artificial stream experiment in Chapter 2 showed a strong causal relationship 
between reduced flow and stream water warming – even over short distances. Warm water 
temperatures during low-flow conditions can be particularly consequential to stream ecosystems, 
shifting both species phenologies and ecosystem processes. However, it is uncertain to what 
extent climate change is poised to alter real thermal regimes in Sierra Nevada streams via a 
combination of air and water warming, and reduced flow. Although thermal buffering declines 
with low flow, increased groundwater contributions can cool streams, and other local factors 
could mediate thermal sensitivity to warming, complicating predictions. Existing models 
predicting future stream water temperatures may fall short due to assumptions that the 
relationship between water and air temperature is static, along with uncertainty regarding how 
thermal regimes vary across spatial scales (Lisi et al. 2015, Leach and Moore 2019). Addressing 
these knowledge gaps, and accounting for how water temperature propagates downstream, can 
enable watershed-wide projections of thermal conditions, now and in a warmer future. Chapter 3 
was motivated by a desire to learn how, when, and where Sierra Nevada streams may be the 
most sensitive and vulnerable to climate change.  
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3 
 

Dynamic, downstream-propagating thermal vulnerability 
in a mountain stream network: Implications for 
biodiversity in the face of climate change 
 
Abstract 
 

As climate change continues to increase air temperature in high-altitude ecosystems, it 
has become critical to understand the controls and scales of aquatic habitat vulnerability to 
warming. Here we used a nested array of high-frequency sensors, and advances in time-series 
models, to examine spatiotemporal variation in thermal vulnerability in a model Sierra Nevada 
watershed. Stream thermal sensitivity to atmospheric warming fluctuated strongly over the year 
and peaked in spring and summer—when hot days threaten invertebrate communities most. The 
reach scale (~50 m) best captured variation in summer thermal regimes. Elevation, discharge, 
and conductivity were important correlates of summer water temperature across reaches, but 
upstream water temperature was the paramount driver—supporting that cascading warming 
occurs downstream in the network. Finally, we used our estimated summer thermal sensitivity 
and downscaled projections of summer air temperature to forecast end-of-the-century stream 
warming, when extreme drought years like 2020-2021 become the norm. We found that 25.5% 
of cold-water habitat may be lost under high-emissions scenario RCP 8.5 (or 7.9% under 
mitigated RCP 4.5). This estimated reduction suggests that 27.2% of stream macroinvertebrate 
biodiversity (11.9% under the mitigated scenario) will be stressed or threatened in what was 
previously cold‑water habitat. Our quantitative approach is transferrable to other watersheds with 
spatially‑replicated time series and illustrates the importance of considering variation in the 
vulnerability of mountain streams to warming over both space and time. This approach may 
inform watershed conservation efforts by helping identify, and potentially mitigate, sites and 
time windows of peak vulnerability.  
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Introduction 
  

Ongoing climate change threatens to drastically increase stream water temperature means 
and extremes—particularly in ecosystems located in high altitudes or latitudes (Pepin et al. 
2015). Throughout much of California’s Sierra Nevada, air temperature is predicted to increase 
between 3°C and 6°C by 2080 relative to historical averages (Null et al. 2010; Reich et al. 2018). 
This warming is poised to advance snowmelt and thus the onset of baseflow up to 50 days, 
reducing thermal buffering and potentially subjecting stream communities to stressful 
temperatures (Reich et al. 2018). Similar patterns have been projected, or even observed during 
supra-seasonal droughts, in other mountain ranges globally (Larson et al. 2011; Vlach et al. 
2020). Mountain streams sustain unique ecosystems and are important sources of drinking water, 
culture, and recreation, all of which may be affected by warming (Isaak et al. 2015; Siirila-
Woodburn et al. 2021). Thus, determining the extent of climate change impacts is paramount. A 
critical step to that end is understanding how thermal vulnerability (i.e. the combination of a 
species’ sensitivity to temperature and its exposure to temperature) varies within stream 
networks (Clusella-Trullas et al. 2021). 
 

Although increased air temperature alone may marginally increase montane stream water 
temperature, warming-induced low flows and stream fragmentation (i.e. flow intermittency) can 
drastically increase average water temperature by reducing thermal buffering (Mayer 2012; Rolls 
et al. 2012). For example, Elliott (2000) observed water temperature increasing up to 10°C in a 
high-gradient, small stream during a drought year relative to an average year. Earlier snowmelt 
as a result of climate change will likely limit thermal buffering capacity further due to increases 
in overlap between the timing of peak summer temperature and baseflow (Arismendi et al. 
2013). This summer window is particularly stressful to organisms, as they can reach their 
physiological limits due to thermal stress and/or insufficient dissolved oxygen (Trimmel et al. 
2018). Warming also alters individual growth rate, behavior, and fecundity in aquatic insects and 
fish (Hogg and Williams 1996; Woodward et al. 2010; Ledger et al. 2013) with effects 
potentially scaling up to whole-ecosystem functioning (e.g. changes in decomposition rates and 
cross ecosystem subsidies; Dewson et al. 2007; Pyne and Poff 2017; Sardina et al. 2017). While 
climate warming is a prominent stressor in stream ecosystems of major mountain ranges globally 
(including the Sierra Nevada), uncertainty exists around when and how warmer air may threaten 
stream thermal regimes, i.e. the characteristic patterns of variation in temperature over time 
(Caissie 2006; Steel et al. 2017). 
  
       Stream and air temperature typically have a positive correlation, but its strength can vary 
over time, especially at high elevations (Stefan and Preud’homme 1993). We define the 
correlation between air temperature and water temperature as thermal sensitivity (Δ°C water/ 
Δ°C air; Leach and Moore 2019). Air and water temperature are correlated with each other 
because both are heated through solar radiation, in addition to air temperature affecting water 
temperature directly via long wave radiation and via sensible heat transfer (Lisi et al. 2015). 
Thermal sensitivity is typically measured using the slope coefficient in a linear or non-linear 
model that relates water to air temperature (Mohseni et al. 1998). Most studies have assumed a 
fixed value of thermal sensitivity for long time periods via linear regression, and a few analyses 
have used more sophisticated time-series methods (e.g. autoregressive state-space models) 
focusing on a particular season (e.g. Lisi et al. 2015). Approaches based on Dynamic Linear 
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Models (DLM) could help refine inferences by estimating thermal sensitivity at shorter 
timescales (e.g. daily) and in a time-varying way, as shown in other ecological applications (e.g. 
Scheuerell and Williams 2005). 

 
Ninety years of data showed that thermal sensitivity and air temperature may peak in 

July-August in low elevation, medium-sized streams (Webb and Nobilis 1997). However, 
patterns of thermal sensitivity could differ in montane regions, where increases in air temperature 
can cool down stream water in spring due to increased relative contributions of snowmelt 
(Brown and Hannah 2007). Further complicating these patterns, snowmelt entering the stream as 
subsurface flow may warm stream water via heat transfer from the soil (e.g. warming by 1.5°C to 
3°C in a study in a low elevation, small stream; Kobayashi et al. 1999). Examining how warmer 
air may affect stream habitats within and across seasons could help quantify stream network 
vulnerability to future air warming—with major implications for stream biodiversity 
conservation. 

 
Calls have also been made to understand how thermal regimes in montane regions vary 

across spatial scales (Leach and Moore 2019). Identifying the appropriate extent and grain to 
study water temperature is important, as scale-dependencies may exist (i.e. patterns that are only 
apparent at a particular scale; Levin 1992). However, studies of stream temperature spanning a 
range of spatial scales remain scarce (Imholt et al. 2013). Microhabitats, reaches, and watersheds 
are three relevant scales of biotic and abiotic variation in streams, and they encompass a wide 
range of thermal drivers (Poff 1997). Variation in thermal regimes within a stream reach (~50 - 
100 m) is often driven by factors at the microhabitat scale (i.e. a sediment patch within a reach, 
~0.02 – 5 m2), such as differences in canopy cover or variation in water velocity and depth 
between riffles and pools (Hawkins et al. 1997). In turn, variation among reaches within a 
watershed (~10 – 100 km2) is often driven by a combination of groundwater influence, network 
topology, aspect, and elevation. Lastly, large-scale changes across watersheds (~>100 km2) are 
often controlled by geology and climate (Imholt et al. 2013). Without an explicit focus on scale, 
regional models may overlook thermal refugia (i.e. a subset of the landscape where organisms 
can survive stressful thermal conditions) provided by small-scale habitat heterogeneity. 
Alternatively, studies focusing on small-scale variation may miss drivers that create regional 
gradients (Steel et al. 2016; Selwood and Zimmer 2020). Determining the spatial scale that best 
captures variation in thermal regimes requires abundant data but could increase cost-
effectiveness of monitoring and conservation of thermal refugia. 

 
Here we sought to examine spatiotemporal variation in thermal vulnerability in a pristine 

stream network in the Sierra Nevada, using high-frequency air and water temperature data at 
multiple (nested) spatial scales over an extreme drought year (2020-2021). We contend that 
determining how thermal sensitivity and thermal regimes vary across spatiotemporal scales is 
crucial to accurately assess current and future vulnerability to warming (Figure 1). In particular, 
we asked the following questions: (Q1) How does thermal sensitivity change within and over 
seasons across a mountain watershed? (Q2) At what spatial scale do thermal regimes vary? (Q3) 
What is the relative effect of ‘local’ conditions vs. upstream water temperature in driving spatial 
variation in maximum water temperature? Lastly, (Q4) how will current thermal stress worsen 
under future climate change and threaten sensitive invertebrate taxa? 
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Figure 1. Diagram illustrating different hypothesized levels of thermal complexity over time and 
space. Water temperature may not respond to variation in air temperature (a), may respond in an 
approximately static way (b), or may be time-varying, with windows of high sensitivity (c). In 
turn, variation in water temperature may be homogenous throughout the watershed (d), may be 
homogenous within reaches but vary across reaches (e), or may vary strongly at small 
microhabitat-level scales (f). The black and gray lines in A-C represent air and water temperature 
respectively. Colored segments in the watershed represent the ten reaches examined in this study. 

 
We hypothesized that if analyzed with adequate data and techniques, thermal 

vulnerability would prove dynamic across time and space. In particular, we predicted that (Q1) 
thermal sensitivity would be time-varying and peak simultaneously with air temperature in July 
and August (as suggested from Stefan and Preud’homme 1993; Webb and Nobilis 1997) due to 
reduced thermal buffering during low flows and peak longwave radiation and sensible heat 
transfer (Letcher et al. 2016). We also expected that (Q2) the reach scale would best explain 
spatial variation in thermal regimes as a result of differences in groundwater influence and 
channel morphology: groundwater inputs can decouple air and water temperature via advection; 
in turn, reaches with a higher proportion of shallow pool habitat may decrease thermal buffering 
(Hawkins et al. 1997; Imholt et al. 2013; Hare et al. 2021). In addition to air temperature, we 
predicted that (Q3) elevation, canopy cover, water depth, and upstream water temperature would 
all influence local maximum water temperature. Higher elevations reduce air temperature (lapse 
rate) and shift precipitation from rain to snow (Isaak and Hubert 2001; Ficklin et al. 2013), 
canopies dampen solar radiation, and deep pools increase thermal buffering through lower 
surface area to volume ratios (Hawkins et al. 1997; Simmons et al. 2015). Finally, (Q4) we 
predicted that current invertebrate communities would be vulnerable to projected future 
warming. Summer air temperature is expected to warm in the future, and we predict that thermal 
sensitivity peaks in the summer—the combination of these two occurrences would reduce the 
proportion of cold-water habitat in the stream network when refugia matter the most (Trimmel et 
al. 2018). 
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Methods 
 
Study site 
 

This study took place in the southern Sierra Nevada, California, during the severe 
drought period of 2020-2021, when snowpack amounted to only 45% of long-term average 
levels—a situation that foreshadows the norm by 2080 if climate change goes unmitigated (Roos 
2004; Reich et al. 2018). We focused on the Bull Creek stream network, a watershed in the 
Kings River Experimental Watersheds (KREW). Habitats within Bull Creek range from 
meadow-dominated headwaters to Sierra mixed-conifer forest bordered mainstems, and the 
watershed geology consists of Cagwin soils, derived from granite (Hunsaker et al. 2012). While 
75% to 90% of precipitation typically falls as snow (Hunsaker et al. 2012), climate change is 
poised to increase the relative importance of rainfall at middle elevations (1500-2500 m) where 
Bull Creek resides (Null et al. 2013). The watershed has been instrumented with four long-term 
water temperature sensors that enabled contextualizing our 2020-2021 records to long-term data 
(2007-2019). 
  
Data collection 
 

We deployed a total of 120 Onset MX2202 light-temperature sensors (Onset Computer 
Corporation, Pocasset, Massachusetts) throughout the Bull Creek watershed in July 2020, for 12 
months (7/11/2020 to 6/22/2021) at 15-minute intervals. We targeted ten ~50 m reaches, each 
receiving six water temperature sensors deployed in three adjacent pool-riffle pairs (Figure 2). 
This design allowed us to examine variation in thermal regimes across nested scales: from 
microhabitat to reach to the whole watershed. For each water temperature sensor, we deployed 
an additional sensor on a secure terrestrial feature to measure air temperature next to the stream 
channel. Sensors were housed in PVC cases to prevent direct sunlight biasing temperature 
readings (Isaak et al. 2013). 
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Figure 2. Map of study sites in Bull Creek watershed, California, following a nested spatial 
design. Each of the 10 reaches had three pairs of pool-riffle sites (often overlapping in the 
representation due to mapping exact GPS coordinates). Perennial, intermittent, and ephemeral 
flow regimes are represented, based on the National Hydrography Dataset Plus v.2, except for 
reaches I-3 and H-4, which were observed as perennial rather than intermittent even during the 
drought conditions recorded over the study period. Site names reflect the position of each reach 
within the stream network (H = headwater reaches, I = intermediate reaches, M = Mainstem 
reaches). 
 

We recovered all 120 sensors. We collected environmental data for each sensor site 
during low flows in August of 2020, including canopy cover, conductivity, elevation, stream 
width, depth, velocity, and channel morphology (i.e. pool or riffle). To measure canopy cover, 
we used a 17-point spherical convex densiometer in four directions over each microhabitat (Ode 
et al. 2016). We measured conductivity, water velocity, stream depth, and channel width at each 
microhabitat and discharge at each reach. Site elevation was obtained from a Digital Elevation 
Model (U.S. Geological Survey 2017). 
  
Time-varying water temperature sensitivity 
 
         To answer question 1 on time-varying thermal sensitivity (i.e. water temperature 
sensitivity to air temperature), we used multivariate Dynamic Linear Models (DLM) on paired 
water-air temperature data. After inspection of all the time series, eight sensors were removed 
from analyses because they experienced dry conditions (e.g. due to intermittency or sensor 
dislodgment by high flows), rendering 15% or more of their daily data unusable. Fifty-two 
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submerged sensors and their 52 terrestrial pairs were kept for analysis. We averaged 15-minute 
temperature readings to the daily scale, as we sought to examine variation in thermal sensitivity 
across days and seasons rather than at subdaily timescales. We averaged air temperature records 
within each reach to smooth small-scale variation in shading and snow accumulation. 
 

Here we refined past approaches examining thermal sensitivity as a fixed value for long 
periods of time by estimating it as a time-varying parameter, via DLM. Unlike most current 
methods, DLM does not incorporate future temperatures in its estimates of thermal sensitivity. 
We used the MARSS package in R (R Core Team 2020) to fit the DLM (Scheuerell and Williams 
2005; Holmes et al. 2012). A DLM captures relationships between a predictor and a response 
variable in a time-varying fashion by fitting a random walk for each parameter of the regression 
(i.e. one for the slope and another one for the intercept), updating parameters at daily timesteps. 
We modeled the 52 air‑water temperature sensor pairs simultaneously via a multivariate DLM 
structure—the first multivariate use to our knowledge in any similar context. In the matrix form, 
the multivariate DLM equations take the following form: 

 
                  xt = xt-1 + wt ,            where  wt ∼ MVN(0,Q)                    (Eq. 1) 

                     yt = Ztxt + vt ,            where vt ∼ MVN(0,R)                      (Eq. 2) 
 

The multivariate temperature data (water and air) at day t entered the model in Eq.2, as yt (water 
temperature, the response variable in each of the 52 sites) and in Zt, an array that contains the 
matching paired time series of air temperature (i.e. the covariate data at each site). Water 
temperature at each site was modeled as a function of air temperature via time-varying regression 
parameters (xt), and observation errors (vt). The time-varying regression parameters (xt), namely 
the intercept and slope between air and water temperature, were modeled as random walks for 
each site (Eq. 1), each with its own process error (wt). Thus, in our study the time‑varying slopes 
(in xt) are states that capture fluctuations over time in sensitivity of water temperature to 
variation in air temperature. Process errors (wt) and observation error (vt) were modeled as a 
multivariate normal distribution with a mean of 0 and covariance matrix Q and R respectively. 
See Supplementary Table 1 for more information on matrix structures and parameters. 
  
Spatial scales of summer water temperature variation 
  

To answer question 2, we focused on the period of peak annual air and water 
temperature, i.e. the summer period of 7/11/2020 to 8/20/2020. For these 40 days, we calculated 
sensor-specific daily mean, minimum, and maximum temperature, as well as diel range. We then 
fit a set of Multivariate Autoregressive models to identify which spatial scale best explained the 
diversity of thermal regimes (i.e. patterns of stream temperature variation over time) observed 
across the watershed. The Multivariate Autoregressive model equation in the matrix form is 
similar to Eq.1: 

 
xt = xt-1 + Cct + wt,               where wt ∼ MVN(0,Q)            (Eq. 3) 

 
Here xt is water temperature (unlike in the DLM) at time t, ct is mean daily air temperature (our 
covariate), and C is a matrix of covariate effects that captures the effects of air temperature on 
water temperature. In turn, wt is process error, assumed to be drawn from a multivariate normal 
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distribution of mean 0 and variance-covariance matrix Q. Covariate effects (in C) reflect 
variation in water temperature controlled by air temperature, while process error variance (in Q) 
captures stochastic (or ‘unexplained’) fluctuations in water temperature. 

 
While the dimensions of our models remained constant across scales (52 states, one per 

sensor), we tested hypotheses on the number of thermal regimes present in the watershed by 
simultaneously constraining the C and Q matrices. We fit models that represented: the watershed 
scale (1 thermal regime across the whole watershed), pool vs. riffle scale (2 thermal regimes), 
reach scale (10 thermal regimes), pool-riffle within reach scale (20 thermal regimes), and 
microhabitat scale (52 sensor-specific thermal regimes; see Supplementary Figure 1). Individual 
site water temperature was always used, but air temperature was averaged according to spatial 
scale tested (i.e. ct varied from a single time series average across all sensors to test the 
watershed scale, to 52 site-specific time series to test the microhabitat scale). All models 
converged and were bootstrapped to obtain 95% confidence intervals for coefficients. See 
Supplementary Table 2 for more details on matrix structures. 
  
Potential drivers of spatial variation in summer water temperature 
 

To answer question 3 and quantify the relative importance of local conditions vs. 
upstream temperature in driving spatial patterns of summer water temperature, we used Spatial 
Stream Network (SSN) models on the same sites and summer timeframe (like in the previous 
section). SSN models use environmental covariates as well as watercourse distances to explain 
variation in variables along stream networks. This feature is an advantage relative to ‘network-
agnostic’ models when modeling variables like water temperature, as spatial autocorrelation is 
highly driven by directional flows over short distances (Isaak et al. 2017). Here we selected a 
range of covariates found to influence stream temperature in previous research, namely mean 
summer air temperature, stream width, water depth, velocity, pool-riffle morphology, discharge, 
canopy cover, conductivity, and elevation (Hawkins et al. 1997; Isaak and Hubert 2001; Ficklin 
et al. 2013; Simmons et al. 2015). Environmental covariates were initially selected using the 
bestglm R package (McManus et al. 2020). After assessing multicollinearity, we used the Gram-
Schmidt orthogonalization process on discharge vs. elevation, to ‘decouple’ these two potential 
covariates and the discharge residual was used afterwards. Different SSN models were created 
for maximum, mean, minimum, and diel range in water temperature. Using ArcGIS (ESRI, 
Redlands, CA), we created the SSN object containing all sites, site conditions, whether sites were 
flow connected, and their environmental distances from one another. We then used the SSN 
package in R to compare support across model structures. We chose upstream distance as the 
spatial distance predictor, as downstream temperature should be influenced by upstream 
temperature (but not vice versa). All semivariogram covariance structures that could explain how 
covariance changes with distance (i.e. none, spherical, exponential, mariah, and linear sill) were 
tested for model selection using the lowest root mean square prediction error (RMSPE) produced 
by leave-one-out cross‑validation (Ver Hoef et al. 2014). We used the best SSN model for 
maximum water temperature and universal kriging to estimate maximum water temperature 
throughout the watershed. We tested estimated temperature accuracy by regressing observed 
onto modeled temperature values. 
  
Current and future invertebrate habitat suitability 
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Finally, we sought to determine current and future thermal suitability for the 

macroinvertebrate community during the summer period, when thermal stress peaks. To this end, 
we examined current suitability by combining the best-supported SSN model for maximum 
water temperature over the summer (from question 3), the best-supported spatial scale (from 
question 2), and extensive data on macroinvertebrate thermal tolerances (see below). We also 
calculated likely end-of-century stream temperatures in the watershed based on our estimated 
thermal sensitivity (from question 1) and downscaled maximum air temperature obtained from 
Multivariate Adaptive Constructed Analogs (Abatzoglou and Brown 2012). Using these results, 
we compared current to future habitat suitability of Bull Creek for cold-water invertebrates. 
 

Multivariate Adaptive Constructed Analogs (MACA) is a statistical method used for 
downscaling global climate model outputs, such as temperature and precipitation, to higher 
spatial resolutions suitable for local analysis (i.e. 1/16th degree). Historical MACA predictions 
for air temperature in Bull Creek watershed matched historical observations. MACA provided 
end-of-century estimates of air temperature under Representative Concentration Pathways (RCP) 
4.5 and 8.5, representing mitigated vs. high-emissions scenario scenarios. We used the difference 
in maximum air temperature between end-of-century scenarios (i.e. average July and August 
maximum air temperatures over 2090-2099) and our 2020 average maximum air temperature 
over July and August to predict end-of-century air warming. Historical data showed that the 
observed average maximum air temperature in 2020 was similar (within ±1 S.E.) to that of the 
past two decades. We then forecasted future water temperature increases in Bull Creek by 
multiplying projected increases in summer air temperature by our estimated thermal sensitivity 
for July-August. 

 
We assessed the potential ecological impacts of future air-driven stream warming by 

examining the distribution of thermal preferences of a large subset of representative invertebrate 
taxa (143 out of 288) observed over more than a decade (2002-2015) within Bull Creek (Herbst 
et al. 2018). We examined the entire community as well as a subset of orders commonly 
considered sensitive (Ephemeroptera, Plecoptera, and Trichoptera) and used taxa-specific CD75 
values (i.e. the temperature below which 75% of observations of the taxa are found) as a proxy 
for thermal stress, based on 663 sites across the western US (Yuan 2006). We then calculated the 
potential loss of cold-water habitat and associated threats to cold-cool eurythermal species (i.e. 
those occurring below 15°C, based on Vieira et al. 2006). Data used in analyses is available 
online (Leathers 2022) 
  
Results 
 
Time-varying water temperature sensitivity 
 
         As expected, both mean air and water temperatures peaked in late July and August, with 
peak daily means of 21.2°C for air and 16.8°C for stream temperature (Figure 3). Mean water 
temperatures varied strongly across headwaters during this time, with some headwater reaches 
being the warmest (14.2°C in H-1) or the coldest (9.4°C in H-2) across the watershed over the 
summer. In contrast, mean air temperatures varied little between reaches. Microhabitat-level 
variation was important in some cases (e.g. a 5.4°C range in mean summer water temperature 
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across sensors within H-1). As expected, the weeks spanning July-August were the hottest of the 
year, likely making them the most thermally stressful for aquatic insects present at this time. 
 

 
 
Figure 3. Patterns of mean daily air temperature (a – c), mean water temperature (d – f), and 
time-varying thermal sensitivity (g – i) at the microhabitat scale (i.e. each individual sensor) 
across the Bull Creek watershed over the study year (July 2020 – June 2021). In the thermal 
sensitivity plots, the magnitude of the y axis reflects the increase in water temperature given a 
1°C increase in air temperature. Pool microhabitats are displayed as solid lines and riffles are 
displayed as dashed lines. Site names reflect the position of each reach within the stream network 
(H = headwater reaches, I = intermediate reaches, M = Mainstem reaches). 

 
The Dynamic Linear Model (DLM) supported that mean air temperature was positively 

correlated with mean water temperature throughout the year. However, reaches varied in thermal 
sensitivity and in how sensitivity fluctuated over time at the daily scale (Figure 3). Sensitivity 
had a clear seasonal trend in some reaches (e.g. H-1, H-3, I-2, M-1, and M-2), being lowest from 
December to March when snow cover was highest (Supplementary Figure 2). Reaches H-1 and 
H-3 may have been covered by snow based on the lack of daily variation in air and water 
temperature observed from February to April. Thermal sensitivity peaked shortly afterwards in 
May and June immediately following snowmelt. For the entire study period, thermal sensitivity 
was overwhelmingly positive and statistically significant, with 95% confidence intervals never 
crossing zero except for one pool-riffle pair in H-3 during winter. Headwater reaches varied 
widely in their sensitivities, and values from winter vs. summer were often decoupled—for 
instance, H‑3 had the lowest sensitivity among all reaches in the winter (0.16°C/°C) but the 
highest one in the summer (0.37°C/°C). In contrast, intermediate reaches like I-1 and I-3 showed 
little seasonal variation in thermal sensitivity. Within-reach variation in sensitivity generally 
declined as stream size increased from headwater to mainstem habitats. These results partially 
support our prediction that stream thermal sensitivity would peak simultaneously with air 
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temperature over the summer period, although in some cases sensitivity peaked in early summer 
or late spring. 
  
Spatial scales of water temperature variation in summer 

 
In agreement with our hypothesis for question 2, the comparison of Multivariate 

Autoregressive models supported that summer thermal regimes varied at the reach scale (i.e. a 
total of 10 regimes) for all temperature metrics (Table 1; see other supported models in 
Supplementary Table 2). Stream temperature metrics varied substantially throughout the 
watershed during July and August, with average daily maximum water temperature over the 
summer ranging from 10.1°C to 23.25°C across sensors (mean across all sensors: 15.7°C). 
Average pool (15.7°C) and riffle (15.7°C) maximum water temperatures were identical. Notably, 
a wildfire smoke plume produced a synchronous, short-lived decline in water temperature on 
August 13 (Supplementary Figure 3). 
  
Table 1. Multivariate Autoregressive model comparison examining the optimal number of 
thermal regimes across the watershed in the summer. All models had 52 states (one per sensor), 
but the matrices for process error variance-covariance (Q) and covariate effects (C) reflected the 
number of thermal regimes (ranging from a single, watershed-wide regime to 52 regimes—one 
per sensor). Differences in AICc relative to the best model (ΔAICc) are shown for each 
temperature metric (mean, minimum, maximum, diel range), where ΔAICc = 0 identifies the 
model that received strongest support. 
 
Spatial scale 
(number of 
thermal regimes) 

Model type Mean Min Max Diel 

Watershed 
(1 regime) 

Without Air Temp 85.63 150.40 78.09 73.00 

With Air Temp 30.83 55.29 72.57 73.76 
Pool-Riffle 
(2 regimes) 

Without Air Temp 87.74 152.49 76.07 72.70 

With Air Temp 35.05 59.49 72.65 75.38 
Reach 
(10 regimes) 

Without Air Temp 39.27 81.78 0.00 0.00 

With Air Temp 0.00 0.00 12.07 18.34 
Pool-Riffle within Reach 
(20 regimes) 

Without Air Temp 59.63 102.02 15.97 20.37 

With Air Temp 42.35 42.10 49.95 60.36 
Microhabitat 
(52 regimes) 

Without Air Temp 119.19 163.51 46.83 76.51 

With Air Temp 176.75 178.22 155.56 190.24 
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Potential drivers of spatial variation in summer water temperature 

 
We assessed the potential drivers of water temperature in the critical summer period 

using SSN models and confirmed that temperature propagating downstream was highly 
influential. Maximum water temperature was largely explained by upstream distance (capturing 
spatial autocorrelation with upstream water temperature; 72.6% of variation explained) rather 
than local abiotic conditions (27.4% of variation explained; Supplementary Figure 4). This 
pattern was true for all temperature metrics (72.6%-91.2% variation explained by downstream 
propagation alone). The bestglm package selected elevation as a covariate for all temperature 
metrics, conductivity as a covariate for mean and minimum temperature, and discharge as a 
covariate for maximum and minimum temperature (Table 2; Supplementary Figures 5-7). 
Elevation and discharge had a negative effect on water temperature, while conductivity had a 
positive relationship with water temperature. These results partially support our hypothesis that 
upstream distance, elevation, air temperature, canopy cover, and water depth would best explain 
variation in water temperature (see reach-level information in Supplementary Table 3). Modeled 
maximum temperature at the reach (50 m) scale matched observed values (r2 =0.77, RMSE = 
1.08°C; Figure 4A) with prediction skill comparable to previous efforts to model stream 
temperature in the Western U.S. (e.g. Isaak et al. 2015; FitzGerald et al. 2021). 
 
Table 2. Summary of Spatial Stream Network (SSN) models examining summer stream water 
temperature variation as a function of local and upstream conditions. Covariate effect sizes from 
the final SSN model and associated statistical significance ( * = p < 0.05) are shown. Variance 
explained is the proportion of variation in water temperature explained by covariates, upstream 
temperature, and the nugget (i.e. residual variation that is unexplained or occurs on scales 
smaller than the two closest sensors in this study). See Supplementary Table 4 for details on 
autocovariance, range, and parsill values. 
 
  Parameter Mean Minimum Maximum Diel 

Covariate effect 
size 
  

Conductivity   0.016* 0.008 - - 

Elevation -0.011 -0.006 -0.017* -0.013* 

Q residual - -0.050 -0.14 - 

Variance explained 
  

Covariates 0.159 0.087 0.274 0.156 

Upstream 0.840 0.912 0.726 0.844 

Nugget <0.001 0.001 <0.001 <0.001 
  
RMSPE   0.158 0.113 0.335 0.271 
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Figure 4. Maps showing summer maximum water temperatures currently (observed and 
predicted by the SSN model) and forecasted by the end of the century. (a) The Spatial Stream 
Network (SSN) map shows observed maximum water temperature in July and August of 2020 
and the predicted maximum water temperature using the best model for Bull Creek watershed. 
The best model had discharge and elevation as selected covariates. (b) The SSN map shows 
forecasted maximum water temperature by the end of the century under warming predicted for 
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the high-emissions scenario RCP 8.5 along with 2020 sensor observed maximum water 
temperature. Maximum water temperature throughout the watershed at the end of the century is 
predicted to be 1.5°C warmer under projected air warming levels and estimated mean summer 
thermal sensitivity of 0.32 °C/°C. Maximum water temperatures are displayed using color. 
Sensor locations were jittered from their actual locations (shown in Figure 2) for better 
visualization.  
 
Current and future invertebrate habitat suitability 

 
The current distribution of cold-water habitat matched the current distribution of 

macroinvertebrate thermal thresholds well, both for the overall community and for the sensitive 
Ephemeroptera, Plecoptera, and Trichoptera subset (Figure 5). For example, 34.3% of modeled 
taxa in Bull Creek had a CD75 value lower than 15°C (59.9% for Ephemeroptera, Plecoptera, 
and Trichoptera), meaning they are likely stressed above 15°C, while 52.7% of the watershed 
stream length had maximum temperatures lower than 15°C (Figure 5). However, by the end of 
the century maximum air temperature in July and August is expected to increase by 1.6°C under 
RCP 4.5 (4.9°C under RCP 8.5), which based on the 0.32°C/°C average thermal sensitivity we 
observed for the summer would increase water temperature in Bull Creek by 0.5°C under RCP 
4.5 (or by 1.5°C under RCP 8.5; Figure 4B; Supplementary Figure 8). As a result, the percentage 
of cold-water habitat in the watershed would decline by 7.9% under RCP 4.5 (from 12.8 km to 
10.8 km), and by 25.5% under RCP 8.5 (from 12.8 km to 6.6 km). 

 

 
 
Figure 5. Cumulative thermal preference distribution of native invertebrate taxa and cumulative 
distribution of thermal habitat under current vs. future climate change scenarios (RCP 4.5 and 
RCP 8.5) by the end of the century. Invertebrate taxa were characterized using their individual 
thermal threshold (CD75 value). This is the temperature above which only 25% of taxa 
occurrences have been found. The thermal threshold distribution of taxa shows the cumulative 
percentage of the community that exceed their thermal threshold at a particular maximum 
temperature (X axis). In turn, the Bull Creek watershed thermal distribution of habitat shows the 
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cumulative percentage of the stream network that has a lower maximum temperature based on 
stream length. If the distribution curve of thermal habitat is higher than the taxa thermal 
threshold distribution, it indicates that there is a disproportionately high amount of suitable 
habitat relative to the percentage of taxa that prefer that thermal habitat. See Methods for details 
on warming scenarios. 

 
These warming scenarios threaten cold-water habitat macroinvertebrates, i.e. those 

occurring mostly under 15°C. The percentage of taxa in the whole community that are 
potentially stressed (i.e. above their CD75 values) would increase from 34.3% to 46.2% under 
RCP 4.5 (or up to 61.5% under RCP 8.5) in what is currently cold-water habitat (i.e. 15°C or 
lower maximum water temperature). For Ephemeroptera, Plecoptera, and Trichoptera taxa alone, 
such percentages would be even higher, from 59.9% to 76.3% under RCP 4.5 (or up to 86.4% 
under RCP 8.5). Overall, our projection shows that an additional 11.9% to 27.2% of 
macroinvertebrate species (and 16.4% to 26.5% of Ephemeroptera, Plecoptera, and Trichoptera) 
in current cold-water habitat may be threatened by climate-induced air warming at the end of the 
century. 
  
Discussion 

 
Climate change threatens stream habitats and communities via increases in temperature 

and altered precipitation patterns (e.g. decreased snowpack) that extend low flows—increasing 
water temperature indirectly (Yarnell et al. 2010; Reich et al. 2018). Our work adds to a growing 
body of research on stream thermal vulnerability (e.g. Mayer 2012; Li et al. 2014; Lisi et al. 
2015) by showing that sensitivity to air warming varies strongly over time at fine scales—
peaking during snowmelt but remaining high from late spring to early fall. We also examined the 
scales of thermal regimes and found that a medium spatial resolution (~50 m reaches) explained 
spatial variation best. Spatial variation in water temperature metrics was driven by upstream 
temperatures propagating downstream throughout the network more than local reach conditions. 
Finally, we found that stream invertebrates in our watershed are vulnerable to future warming, as 
suitable habitat will decline for cold-adapted taxa with thermal preferences that match present 
day (but not future) conditions. While we used a watershed in California’s Sierra Nevada as a 
model system, our quantitative approach and inferences may transfer to other montane 
watersheds in the vulnerable rain-snow transition zone (Null et al. 2013). Understanding 
variation in thermal vulnerability over space and time may help protect these fragile ecosystems 
into warmer futures. 
  
Time-varying water temperature sensitivity 
 

Our results indicate that Bull Creek, and potentially other montane watersheds, are 
vulnerable to climate change-induced increases in air temperature due to positive thermal 
sensitivity throughout the year. Despite conventional wisdom that deeper pools may generally 
buffer against warming (Hawkins et al. 1997), we found that riffles and pools had similar 
average temperatures and thermal sensitivities. Some differences existed in paired riffle-pool 
thermal sensitivities in headwaters, but those were rare and seasonal. The high amount of 
variation in water temperature and thermal sensitivity within and among headwaters is likely due 
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to their shorter lengths of upstream influence and lower thermal buffering relative to mainstem or 
intermediate reaches. 

 
The two headwater reaches in our study with the lowest water velocities (H-1 and H-3) 

had the highest early summer thermal sensitivities, possibly due to increased residence time 
enabling long wave radiation and sensible heat transfer to have a stronger effect. These two sites 
were also located in meadows with low baseflow and a high likelihood of being covered by snow 
during the winter, so spring increases in air temperature melting the snow could expose reaches 
and the surrounding landscape to radiation that was previously blocked. This could sharply 
increase thermal sensitivity during snowmelt, as observed. Similar results have been found in 
models of watersheds near Vancouver, Canada (Leach and Moore 2019). 

 
A strength of the multivariate DLM is its ability to estimate meaningful thermal 

sensitivity fluctuations over fine temporal scales—capturing the scales of variation of many 
temperature drivers (e.g. snowmelt, storms, and wildfires; Hunsaker et al. 2012). The short 
timescales at which thermal sensitivity fluctuated during snowmelt (e.g. daily) suggests that 
using temporally aggregated data (e.g. monthly mean or max; NorWeST) could be insufficient 
for capturing fine temporal scale dynamics, although this may be irrelevant for processes 
controlled by long-term average conditions (Turschwell et al. 2016). Seasonal declines in 
thermal sensitivity during the winter for some intermediate and mainstem reaches were possibly 
due to adjacent air temperatures dropping below 0°C, where the relationship between water and 
air temperature breaks down. 

 
Our study could not directly test how interannual hydroclimatic variation may affect 

thermal sensitivity. Sierra Nevada watersheds experience up to an order of magnitude in 
interannual variation in snowpack, affecting snowmelt duration, discharge, and residence time—
all of which alter thermal sensitivity (Smits et al. 2020). We predict that summer thermal 
sensitivity values would be lower in Bull Creek in high-snowpack years because the influence of 
cold snowmelt would be stronger and last longer. 
  
Spatial scales and drivers of thermal vulnerability 

 
The reach scale best explained temporal variation in water temperature for all metrics. In 

agreement, local conditions that best explained spatial variation (i.e. conductivity, elevation, and 
discharge) also varied at the reach scale. These results suggest that studies may miss important 
variation occurring within watersheds if stream temperatures are considered homogenous over 
longer distances (e.g. 1 km). Although the microhabitat scale did not perform as well, differences 
of 2°C to 4°C in maximum temperature often existed among microhabitats within the same 
reach. Even if these differences were relatively small compared to between-reach differences, 
this variation should not be neglected as it could matter for species that live close to or above 
their thermal optima. Because other studies have reported that the best spatial scale explaining 
water temperature variation may change seasonally (Imholt et al. 2013), our results may only 
apply to the summer. 

 
Thermal regimes of headwaters are critical to watershed health, as propagation of water 

temperature downstream was the paramount driver of local temperature in our study. Roon et al. 
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(2021) similarly found that reach-level water temperature propagated downstream, with local 
temperature magnitude influencing the distance of propagation. The strong ability of water 
temperature to propagate downstream suggests that increases in temperature in highly-vulnerable 
headwaters may warm up downstream sections, even if downstream sections are buffered against 
local air temperature effects by high discharge levels. 

 
The environmental covariates that explained spatial variation in summer stream 

temperature illustrate how mountain stream vulnerability to climate change can be highly 
connected to snowmelt processes. Elevation drives maximum water temperature along hillslopes, 
and at high elevations it controls the rain-to-snow transition (Klos et al. 2014; Turschwell et al. 
2016). In turn, the positive association observed between conductivity and maximum water 
temperature is likely due to low conductivity values in Sierra Nevada streams not varying with 
discharge (i.e. chemostatic behavior) and being associated with fast, shallow groundwater inputs 
from snowmelt (Miller et al. 2014; Ackerer et al. 2020). Consistent with this observation, 
discharge in Bull Creek was previously shown to not have a relationship with conductivity at I-1 
and I-2, likely because the physical structure of their groundwater flow paths generate higher 
velocities of shallow groundwater (Ackerer et al. 2020). This relationship is further supported by 
H-2 having the lowest maximum water temperature and the lowest conductivity. Similar to our 
study, Wissler et al. (2022) found that in the Cascade Range (North of the Sierra Nevada) 
thermal regimes were heavily influenced by groundwater and potentially snowmelt. Wissler et al. 
(2022) also found that the rain-dominated Coast Range had warmer water temperatures despite 
cooler air temperatures and more riparian cover, possibly because of reduced groundwater 
influence. The observed negative relationship between discharge and maximum temperature 
supports the notion that reduced thermal buffering in smaller streams could leave some 
headwaters especially vulnerable to climate-change induced low flows. However, groundwater 
influence may be greater in streams that reach baseflow due to a higher proportion of flow 
originating from groundwater, which may dampen summer warming depending on local 
geomorphology (Ward et al. 2011). Capturing reach-scale variation in temperature and local 
hydrogeomorphic conditions may lead to more accurate predictions of thermal refugia, 
increasing precision when quantifying aquatic species vulnerability to future climate (Steel et al. 
2016). 
  
Implications for conservation 
          

Although the distribution of macroinvertebrate thermal preferences matched the current 
availability of thermal habitat, we predicted a thermal mismatch by the end of the century that 
may threaten or locally extirpate up to 27.2% of macroinvertebrate taxa. Local extirpation may 
already be happening, as other studies across the world have found macroinvertebrates tolerant 
of warm conditions are replacing sensitive taxa over decadal timescales (Daufresne et al. 2007; 
Chessman 2009). Aquatic insects are often assumed to easily disperse to suitable habitat (e.g. 
higher elevations with greater snowmelt influence), but many cold-water taxa are poor dispersers 
and are thus prone to local extirpation (Dohet et al. 2015). 
 

More extensive sampling in mountain regions is needed to determine realized rather than 
potential vulnerability of aquatic insect communities (Birrell et al. 2020). Realized vulnerability 
should be based on exposure (i.e. current distribution, life histories, and warming exposure), 
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sensitivity (i.e. physiological, behavioral, and demographic changes in response to warming 
exposure), and adaptive capacity of organisms (i.e. plasticity and dispersal potential), as 
suggested by Kovach et al. (2019). Thus, assessing and acting upon realized vulnerability 
requires considering heterogeneity in temperature exposure within watersheds, as well as 
understanding how organisms may take advantage of that heterogeneity over their lifespan 
(Fausch et al. 2002). Our results support that thermal vulnerability in montane stream networks 
may be highly variable over space and time. Climate change will continue to alter stream water 
temperatures over the forthcoming decades via changes in air temperature, rain, snowfall, and 
snowmelt in ways that propagate downstream. Thus, it is crucial to understand how stream 
ecosystems will respond. 
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Supplementary Materials 
 
Table S1. Matrices, dimensions, and parameters for the multivariate Dynamic Linear Model 
(question 1). Process errors (wt) were modeled as a multivariate normal distribution with a mean 
of 0 and covariance matrix Q, which captured site-specific intercepts and slopes. In this case, 
each site was allowed to have different diagonal values in Q, as we expected state variances to 
potentially differ across sites. Observation error (vt) was also modeled as a multivariate normal 
distribution with a mean of 0 and covariance matrix R, but this matrix was set to diagonal and 
equal, as all sites were instrumented with the same sensor type and were assumed to have similar 
precision. The model converged via the BFGS optimization algorithm. The time-varying states 
(xt) were examined against a null hypothesis of no sensitivity (i.e. bootstrapped 95% confidence 
intervals including zero). 
 
Matrix Dimensions Parameters within matrix 

yt 52x345 
matrix 

Data values were water temperature in Celsius. Each row was 
a site, and each column was a timestep (i.e. day) 

Zt 52x104x345 
matrix 

Data values were air temperature in Celsius. Each row was a 
site. The diagonal values of the first 52 columns represented 
the individual intercept process error of each site and the last 
52 diagonal values represented the individual slope process 
error in the air-water temperature relationship of each site. The 
345 pages of the matrix each represented a day. 

xt 104x1 list Thermal sensitivity (xt) initial values were a 104 x 1 list set to 
0 for the regression intercept and slope for each site, as we had 
no prior expectation for these values. 

R 52x52 matrix R was set to diagonal and equal, so a single observation error 
value was calculated for all sites. 

Q 104x104 
matrix 

The first 52 diagonal values represented the individual 
intercept process error of each site, and the last 52 diagonal 
values represented the individual slope process error in the air-
water temperature relationship of each site. 
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Table S2. Matrices, dimensions, and parameters for the Multivariate Autoregressive model 
(question 2). The process error variance-covariance matrix (Q) always had the same dimensions 
(52 rows x 52 columns), but its diagonal structure reflected the number of thermal regimes. For 
example, the watershed-scale matrix had the same process error for all states, while variances 
were allowed to vary at the site level in the microhabitat-scale matrix. In the covariance matrix 
(C) rows were sites and columns reflected the spatial grouping (or number of thermal regimes). 
For the covariate data (ct), rows represented the spatial grouping (air temperature data at different 
spatial scales), and columns were the total number of time steps (i.e. days) considered over the 
summer period (a total of 40). Individual site water temperature was always used, but air 
temperature was averaged according to spatial scale tested (i.e. ct varied from a single average 
time series based on all sensors to test the watershed scale to 52 site specific time series to test 
the microhabitat scale). We ran an additional set of models without air temperature as a 
covariate. Water and air temperature were log-transformed to achieve normally distributed model 
residuals. We assessed model support via the Akaike Information Criteria corrected for small 
sample size (AICc). The second-best spatial scale for maximum water temperature and diel range 
was pool-riffle within each reach (20 regimes), while the simplified pool-riffle scale (2 regimes) 
was second-best for minimum and mean water temperature. Inclusion of air temperature was 
only supported for mean and minimum temperature. 
 
Matrix Spatial Scale 

Watershed Pool-Riffle Reach Pool-Riffle 
within Reach 

Microhabitat 

Q matrix 
(‘stochastic’ 
variation in 
water 
temperature) 

52x52 
(watershed 
level process 
error 
variance, i.e. 
single Q 
parameter) 

52x52 
(pool vs. 
riffle level 
process error 
variance, i.e. 
2 Q 
parameters) 

52x52 
(reach level 
process 
error 
variance, i.e. 
10 Q 
parameters) 

52x52 
(pool-riffle 
within reach 
level process 
error variance, 
i.e. 20 Q 
parameters) 

52x52 
(microhabitat 
process error 
variance, i.e. 
52 Q 
parameters) 

C matrix 
(air 
temperature 
effects) 

52x1 
(Same effect 
for all sites) 

52x2 
(different 
effect for 
pools vs. 
riffles) 

52x10 
(different 
effect for 
each reach) 

52x20 
(different 
effect for pools 
and riffles 
within each 
reach) 

52x52 
(different 
effect for 
each site) 

ct matrix 
(air 
temperature 
data) 

1x40 
(single 
covariate, 
mean values 
across the 
watershed) 

2x40 
(2 covariates, 
mean values 
for pools and 
riffles) 

10x40 
(10 
covariates, 
mean values 
within 
reaches) 

20x40 
(20 covariates, 
mean values 
for pools and 
riffles within 
each reach) 

52x40 
(52 
covariates, 
one per site) 
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Table S3. Environmental characteristics of the study reaches across Bull Creek watershed in the 
summer (question 3). Stream channel and discharge measurements were taken in August 2020. 
Average air temperature and water temperature values were calculated based on the summer 
period of peak thermal temperatures from 7/11/2020 to 8/20/2020. Elevation, conductivity, and 
discharge varied mostly at the reach scale. 
 

Reach H-1 H-2 H-3 H-4 I-1 I-2 I-3 M-1 M-2 M-3 

Maximum 
Water 
Temperature 
(°C) 19.1 12.2 14.6 12.9 16.1 15.4 14.5 16.6 17.2 16.9 

Mean Water 
Temperature 
(°C) 14.3  9.6 12 11.3 12.9 11.9 12.2 13.3 13.5 12.7 

Minimum 
Water 
Temperature 
(°C) 11.9  8.2 10.1  9.9 11.1  9.5 10.5 10.5 10.8 10.4 

Diel Water 
Temperature 
Range (°C) 7.2 4 4.5 3 5 5.9 3.9 6.1 6.5 6.5 

Conductivity 
(μS/cm) 22.3  9.1 33.5 25.9 15.5 17.8 17.1 24.1 20.6 15.5 

Canopy Cover 
(%) 73 91.9 55 78.2 82.6 83.3 92.9 66.8 79.4 88.8 

Stream Width 
(cm)  94.3  59.9  69.6  83.7 117.8  96.6 120.5 316.8 244.6 202.2 

Elevation (m) 2161 2306 2332 2395 2211 2217 2287 2097 2120 2158 

Depth (cm)  8.7  5.8 15.9 12.6 13.9 14.3 15.6 15.6 12.7 17.7 

Velocity 
(cm/s)  4.1  9.9  0.6  4.8  1.7  7.9  4.9 11.2 10.5  8.3 

Average Air 
Temperature 
(°C) 14.3  9.6 12.1 11.3 12.9 12 12.2 13.3 13.6 12.8 

Q (L/s)  0.5  0.4  0.2  0.7  1.0  3.6 11.7 16 12.5 11.7 
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Table S4. Best autocovariance model chosen, range, and parsill values for SSN models (question 
3). Upstream metric is the shape of the semivariogram that performed best (i.e. the one with the 
lowest RMSPE). Parsill (i.e. partial sill) is the variance of the distance covariance function at 
distance 0. Range is the maximum distance away from a location that spatial autocorrelation will 
explain variation. 
 
  Parameter Mean Minimum Maximum Diel 

Autocovariance 
model 

Upstream 
Metric 

Exponential Spherical Spherical Mariah 

Range (km) 4.693 5.583 0.306 8.894 

Parsill 
Upstream 

2.386 1.691 1.971 1.513 

Parsill 
Nugget 

<0.001 0.002 <0.001 <0.001 
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Figure S1. Hypothesized spatial scales of temperature variation across the watershed, as tested 
in question 2. The ten reaches are colored according to temperature at a given time step, to 
demonstrate possible scales of variation: (a) Watershed, where all water temperature sites are 
similar throughout the watershed (1 regime); (b) Pool-Riffle, where water temperature differs 
between pools and riffles throughout the watershed (2 regimes); (c) Reach, where variation in 
water temperature is mainly explained by differences between reaches (~50 stretches of stream; 
10 regimes); (d) Pool-Riffle within Reach, where variation in water temperature is mainly 
explained by differences between the pools and riffles within each reach (20 regimes); and (e) 
Microhabitat, where variation in water temperature is unique to each site (52 regimes). We 
defined summer thermal regimes as the characteristic patterns of variation in temperature during 
the summer—both the unexplained or ‘stochastic’ portion (in Q of the Multivariate 
Autoregressive model), and the portion that is explained by fluctuations in air temperature (in C). 
See Methods for details. 
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Figure S2. Temporal patterns of snow depth from the upper Bull Creek watershed with 
associated fluctuations in mean air temperature, water temperature, and time-varying thermal 
sensitivity at the microhabitat scale (i.e. sensor-specific). Snow depth data was accessed from the 
California Data Exchange Center for the Upper Bull (KUB) monitoring site.  
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Figure S3. Average of reach maximum daily water temperature over the critical summer period. 
The maximum water temperature of every sensor within a reach was averaged at a daily scale to 
produce the average reach maximum water temperature. Reach locations are shown in Figure 2. 
On August 13, strong smoke from a nearby wildfire caused a synchronous, pronounced dip in 
water temperature. Site names reflect the position of each reach within the stream network (H = 
headwater reaches, I = intermediate reaches, M = Mainstem reaches). 
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Figure S4. SSN map of the best model for maximum water temperature, which included 
elevation, discharge residual, and upstream temperature as predictors. Elevation and discharge 
residual are displayed on the map via a DEM contour and point size respectively. Positive values 
of discharge residual represent sites where the discharge is higher than would be expected at that 
elevation given the positive linear relationship between elevation and discharge. Point colors 
represent average maximum water temperature. The bar along the bottom of the map displays the 
relative amount of variation explained by covariates, upstream temperature, and the nugget (i.e. 
residual variation that is unexplained or occurs on scales smaller than the two closest sensors in 
this study). Sensor site locations are jittered from their actual locations, shown in Figure 2, for 
visibility. 
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Figure S5. SSN map of the best model for mean water temperature, which includes elevation, 
conductivity, and upstream temperature as predictors. Elevation and conductivity are displayed 
on the map via a DEM contour and point size, respectively. Point colors represent average mean 
water temperature. The bar along the bottom of the map displays the relative amount of variation 
explained by covariates, upstream temperature, and the nugget (i.e. residual variation that is 
unexplained or occurs on scales smaller than the two closest sensors in this study). Sensor site 
locations are jittered from their actual locations, shown in Figure 2, for visibility. 
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Figure S6. SSN map of the best model for minimum water temperature, which included 
elevation, discharge residual, conductivity, and upstream temperature as predictors. Selected 
covariates discharge residual (a) and conductivity and elevation (b) were included in the best 
model and are displayed on the maps. Positive values of discharge residual represent sites where 
the discharge is higher than would be expected at that elevation given the positive linear 
relationship between elevation and discharge. Point colors represent average minimum water 
temperature. The bar along the bottom of the map displays the relative amount of variation 
explained by covariates, upstream temperature, and the nugget (i.e. residual variation that is 
unexplained or occurs on scales smaller than the two closest sensors in this study). Sensor site 
locations are jittered from their actual locations, shown in Figure 2, for visibility. 
  
  

0

25

50

75

100

Diel Max Mean Min
Temp_Metric

Va
r_
Pe
rc
en
t

Variance_Typ
Covariates
Nugget
Upstream

0 25 50 75 100

Diel
Max

Mean
Min

Temp_Metric

Var_Percent

Variance_Typ
Covariates
Nugget
Upstream

.

0��

0��

+��

0��
,��

,��

,��

+��

+��

+��

%

$YHUDJH�0LQ�:DWHU
7HPSHUDWXUH���&�� ��� �����

NP

(OHYDWLRQ��P�
<2,100
2,100 - 2,150
2,150 - 2,200
2,200 - 2,250
2,250 - 2,300
2,300 - 2,350
2,350 - 2,400
2,400 - 2,450

&RQGXFWLYLW\��ȝ6�FP�
3 - 11
11 - 16
16 - 22
22 - 31
31 - 40

$YHUDJH�0LQ�:DWHU
7HPSHUDWXUH���&�

8
9.5
10.5
11
12.5

.

M-1

M-2

H-1

M-3
I-2

I-1

I-3

H-2

H-3

H-4

A

Average Min Water
Temperature (°C)0 0.5 10.25

km

Average Min Water
Temperature (°C)

8
9.5
10.5
11
12.5

Q residual
-7 - -6
-6 - -1
-1 - 0
0 - 1
1 - 6

(a) (b)



95 

 
 
Figure S7. SSN map of best model for diel range in water temperature, which included elevation 
and upstream temperature as predictors. Elevation was included in the best model and displayed 
on the map via a DEM contour. Point colors represent average diel water temperature range. The 
bar along the bottom of the map displays the relative amount of variation explained by 
covariates, upstream locations, and the nugget (i.e. residual variation that is unexplained or 
occurs on scales smaller than the two closest sensors in this study). Sensor site locations are 
jittered from their actual locations, shown in Figure 2, for visibility. 
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Figure S8. Map of forecasted maximum water temperature by the end of century under a RCP 
4.5 emissions scenario, in which maximum water temperature is expected to increase by 0.5°C. 
See Methods for details. Current observed maximum water temperature is displayed with points. 
Sensor site locations are jittered from their actual locations, shown in Figure 2, for visibility. 
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Transition from Chapters 3 to 4 
 
Chapter 3 suggested that increased air temperatures from climate change would threaten many 
coldwater taxa in a Sierra Nevada watershed. However, modeled expectations are not always 
realized in complex ecosystems, and low flows could affect macroinvertebrate communities via 
other abiotic mechanisms like reduced water velocity and increased fine sediment deposition. 
Although stream low flows can alter communities via multiple environmental and biological 
mechanisms, their relative importance is uncertain (Hawkins et al. 1997, Waddle and Holmquist 
2013, Herbst et al. 2019). Further, it is unclear whether drought-induced community change 
across space and over time are realized through similar processes (Angert 2024). This is assumed 
when scientists use space-for-time substitution approaches, where, for example, a warm site at 
the base of a mountain is understood to ‘preview’ the community at higher elevations if 
temperatures increase. Addressing the accuracy of space-for-time approaches is critical, as they 
underpin much of the literature on climate change ecology (Lovell et al. 2023). In Chapter 4, I 
sought to investigate the abiotic and biotic pathways whereby droughts may alter invertebrate 
community composition and structure in the same Sierra Nevada watershed as in Chapter 3. This 
approach adds realism to my previous findings on how invertebrate communities are likely to 
respond to climate change-induced low flows in Sierra Nevada streams. 
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4 
 

Ecological Pathways Connecting Drought to Stream 
Invertebrate Community Shifts across Space and Time 
 
Abstract  
 

Climate change is intensifying seasonal and interannual droughts in high mountains 
across the globe, with ramifications on the structure and dynamics of snow-dependent river 
ecosystems. Low flows can alter communities via multiple environmental (abiotic) and 
biological (biotic) mechanisms. However, it remains challenging to understand the relative 
importance of each mechanism, and whether they operate similarly across space and over time. 
Here, we investigated the abiotic and biotic mechanisms whereby drought alters stream 
invertebrate community composition and structure in high-mountain streams across space and 
over time. To this end, we monitored a river network in California’s Sierra Nevada (Bull Creek 
watershed) using a highly-replicated, nested design. The spatial design encompassed 60 sites 
following a nested structure that captured microhabitat and reach-level variation within the 
watershed. The temporal design benefitted from long-term data in four reaches that were 
sampled repeatedly over two decades (11 times from 2002 to 2023). We used Spatial Stream 
Network (SSN) models to explain the spatial variance and autoregressive (AR) models for the 
temporal variance. Temperature, water velocity, and fine sediment all explained variation in a 
similar percentage of taxa in the community (36.8% - 47.4%), but fine sediment had eight times 
more negative relationships than positive ones. Notably, the effects of abiotic mechanisms 
differed across space and time: only ~13% of taxa had their variance explained by the same 
abiotic mechanism across space and time, and total spatial variance explained by abiotic 
mechanisms for each species had no relationship with its temporal counterpart. With regards to 
biological mechanisms, we found that community dissimilarity across space was driven by 
differences in fine sediment causing species turnover (i.e., sensitive species being replaced by 
tolerant ones), while temporal dissimilarity was driven by differences in temperature and water 
velocity causing reordering (i.e., shifts in relative abundance). Our results challenge the key 
assumption of ‘space-for-time’ substitution that underpins abundant research on climate change 
ecology. We contend that space-for-time substitution approaches may be inappropriate in 
mountain river studies because of their hierarchical structure, high temporal variability, and 
mechanisms operating distinctly across space and time.  
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Introduction 
 

Climate change is intensifying seasonal and interannual droughts in high mountain 
streams across the globe, with ramifications on the structure and dynamics of ecosystems. Future 
droughts are expected to reduce flow magnitude and prolong low flow duration due to increased 
air temperature, reduced snowpack, and more frequent extreme dry seasons (Swain et al. 2018, 
Siirila-Woodburn et al. 2021). These projections matter to ecosystem health because recent 
experiments have shown that future drought conditions can alter species phenology, community 
composition, and ecosystem processes (Leathers et al. 2024). Low flows are simultaneously 
becoming more common and extreme from other anthropogenic activities like water abstraction 
for agriculture, flow regulation from dams, and land use change (Rolls et al. 2012). Intensifying 
low flows are ecologically impactful, even if intermittency is not reached, because flow is a 
‘master variable’ that controls a wide range of physical conditions (Poff et al. 1997, Lake 2003). 
Specifically, low flows cause or are associated with increased water temperature, reduced water 
velocity, and increased sedimentation, hereafter referred to as abiotic mechanisms of drought 
(Dewson et al. 2007). However, disentangling the relative effects of these mechanisms, and 
whether their influence varies over space and time, remains a challenge. 

 
Drought can manifest in the physical environment in multiple ways that act either directly 

or indirectly (via interactions and ‘second-order’ effects). For example, droughts reduce thermal 
buffering, which can increase maximum water temperature up to 10°C in some cases (Elliott 
2000, Rolls et al. 2012) Increased maximum temperatures can in turn deplete dissolved oxygen 
and ultimately impact biota even if thermal maxima are not surpassed (Croijmans et al. 2021). 
Although past work has extensively examined the effects of warming and drying on stream 
ecosystems, examining these effects alone is inadequate to understand the proximate 
mechanisms of community change–that is, how change is realized (Dewson et al. 2007, Aspin et 
al. 2018, Nelson et al. 2021). Water velocity also declines during drought, altering species’ 
ability to avoid predators and harming filter feeders that rely on high water velocities for food, 
among other impacts (Malmqvist and Sackmann 1996). Water velocity reduction in turn reduces 
the transport capacity of substrate, increasing the deposition of fine sediment. Sedimentation 
homogenizes habitats by covering large substrates with silt, which can stifle exchange with the 
hyporheic zone. This can be critical, as the hyporheic zone provides refuge for invertebrates and 
is the location through which groundwater influences water temperature and dissolved oxygen 
(Rolls et al. 2012). As a result, sedimentation can reduce macroinvertebrate abundance and 
species richness in streams (Dewson et al. 2007). Although these three abiotic mechanisms have 
been shown to affect stream communities and ecosystems, their relative importance and causal 
relationships are uncertain. For example, reduced flow can increase the cooling influence of 
groundwater (Dewson et al. 2007, Wawrzyniak et al. 2017). Conversely, water temperature may 
rise in a pool habitat as thermal buffering declines even if water velocity does not change. 
Understanding the abiotic mechanisms of drought is not only central to basic ecology, but could 
also inform conservation and management actions aimed at increasing climate resilience of 
mountain stream ecosystems. 

 
Efforts to understand how projected climate change is poised to affect aquatic 

communities often depend on space-for-time substitution approaches that lack verification. 
Space-for-time substitution argues that differences seen over a spatial range encompassing 
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varying environmental conditions mirror temporal differences that would occur in a single 
location undergoing a similar change in environmental conditions. This approach is commonly 
used in freshwater ecology (Meerhoff et al. 2012); however, the assumption that spatial climate-
biotic relationships are transferable to temporal relationships is rarely validated (Lovell et al. 
2023). When transferability has been tested, studies in terrestrial systems have found mixed or no 
support for the magnitude (and even direction) of climate effects being preserved across space 
and time (Elmendorf et al. 2015, Gaüzère et al. 2020, Angert 2024). Support for space-for-time 
substitution is also mixed in freshwater studies, but few studies have attempted a robust 
validation (but see Phillimore et al. 2010, Frauendorf et al. 2019). It is therefore critical to 
understand whether spatial effects of climate-induced droughts are different from temporal 
effects, either systematically or otherwise, to better project ecological impacts into the future. 

 
One reason why environmental covariate effects may differ between space and time is 

autocorrelation (i.e., observations made in close proximity over space or time are more similar 
than those far apart, for reasons other than the environment). On the spatial side, communities 
close in space may be similar to each other due to organismal dispersal among nearby patches, 
regardless of environmental similarity (Leibold et al. 2004). In turn, temporal autocorrelation 
may arise from populations in one time step affecting those in the following time step (e.g. via 
intergenerational effects). Spatial and temporal autocorrelation are critical in spatial and temporal 
modeling techniques, respectively, but it remains uncertain whether the two are related. Species 
with low dispersal ability can produce strong spatial autocorrelation patterns, which could be tied 
to expectations of low temporal variability if dispersal-limited populations have high abundances 
in the same locations year after year. Autocorrelation unrelated across space and time, or 
unrelated to environmental predictive power, could reflect species specific and abiotic reasons 
that communities have different spatial and temporal drivers. 

 
A final source of uncertainty connecting drought to community shifts is the multiple 

ways in which communities can change. Studies have often examined how drought can change 
species richness (Vellend et al. 2013), but species richness change does not reflect change in 
relative abundances, or replacement of sensitive taxa with tolerant taxa (Avolio et al. 2015). 
Alternatively, examining community dissimilarity differences account for all of these changes, 
but interpretation is abstract and does not reveal the pathways through which communities differ 
(Collins et al. 2008). One solution is to examine the components of rank abundance curves 
(RAC) that in aggregate contain the information used in dissimilarity indices (Avolio et al. 
2019). When comparing two rank abundance curves, differences can be seen in the identity of 
the species present (turnover), the relative abundance of each species in the community 
(reordering), the total number of species in the community (richness), and the slope of the RAC 
(evenness). Drought can alter community composition and structure through these pathways, but 
the relative importance of these mechanisms, and how they operate over space and time, remains 
a critical knowledge gap (Figure 1). 
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Figure 1. Conceptual diagram of the ways drought can affect community composition via rank 
abundance curves. Abiotic mechanisms of drought (e.g., increased fine sediment, increased water 
temperature, and reduced water velocity) can affect communities by reordering which species 
are most abundant, causing turnover in which species are present, altering species richness, and 
shifting the evenness in abundance among taxa. The combination of these mechanisms explain 
variation between two communities. In this theoretical example, Ephemeroptera (blue) and 
Plecoptera (yellow) both decline in abundance due to drought, while Chironomidae (orange) and 
Turbellaria (green) both experience population growth. Figure inspired by Avolio et al. 2019. 
 

Here we investigated the abiotic and biotic pathways whereby drought alters invertebrate 
community composition and structure in a long-studied watershed in California’s Sierra Nevada. 
Specifically, we asked: 1) How do species respond to the different abiotic facets of drought (i.e., 
increased water temperature, reduced water velocity, and increased fine sediment), and is there 
one particular mechanism that is most impactful?; 2) Do species respond the same way to spatial 
and temporal variation in each of these abiotic mechanisms (e.g., warming over time vs. warming 
across the river network)?; 3) What are the main mechanisms of biotic change (i.e., community 
reordering, turnover, evenness, richness), and do they similarly explain community change 
across space and over time?; and finally, 4) What is the whole chain of causality, or ecological 
pathway (i.e., sequence of abiotic and biotic mechanisms), ultimately connecting drought to 
community shifts over space and time?  

 
We predicted that: 1) Temperature, water velocity, and fine sediment would all explain 

variation in taxa abundance across space and time because of response diversity among Sierra 
Nevada macroinvertebrates (Hawkins et al. 1997, Waddle and Holmquist 2013, Herbst et al. 
2019); 2) Although space-for-time substitutions are common in ecology, including in freshwater 
studies (Meerhoff et al. 2012, Amundrud and Srivastava 2019), we expected that abiotic 
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mechanisms of drought would affect species differently across space and time. In high mountain 
streams, summer water temperature and water velocity have high interannual variation 
depending on snowmelt magnitude, which could result in stronger temporal than spatial effects; 
3) The amount and nature of community change may be unequal between space and time, due to 
different abiotic mechanisms driving change and autocorrelation having different signatures 
across space vs. over time (as in Gumpertz et al. 2000); and finally, 4) Community reordering 
and species turnover would be the most important proximal causes of community change across 
space and over time, respectively (as suggested by Bruno et al. 2019, Avolio et al. 2019). 
Assessing these predictions would help reveal the ecological pathways connecting drought to 
stream community change–an important goal given that climate change is projected to increase 
drought intensity and duration in high-mountain ecosystems globally (Barnett et al. 2005). 
 
Methods 
 
Study site and experimental design 
 

This study took place in Bull Creek, California within Sierra National Forest. Bull Creek 
consists mostly of Sierra mixed-conifer forest with a number of meadows surrounding 
headwaters (Hunsaker et al. 2012). The watershed falls within the rain-snow transition elevation 
zone (1500–2500 m), but over 75% of precipitation falls as snow (Hunsaker et al. 2012). 
However, climate change is predicted to increase the proportion of rainfall going forward (Null 
et al. 2013). Bull Creek is part of the Kings River Experimental Watersheds (KREW), which 
have been rigorously monitored for their hydrologic conditions since 2002 (Wagenbrenner et al. 
2021).  

 
To answer our research questions, we used samples from four reaches in Bull Creek that 

were sampled 11 times from 2002-2023, encapsulating a range of low and high precipitation 
years and associated streamflow levels during the summer (Figure 2). These samples include 
those previously taken at the reach scale (i.e., ~50-100 m) between 2002 and 2015 (discussed in 
Herbst et al. 2019), and those we sampled from the same four long-term reaches every year from 
2020 to 2023. All samples were collected in the summer after snowmelt allowed access to 
sample, between June and August. We tested spatial effects by comparing four reach samples 
taken within the same year. Temporal effects were determined by comparing the community 
from a year to every other year in the same reach. We also tested for space-time effects where a 
reach’s community was compared to every other reach community regardless of year or location. 
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Figure 2. Map of Bull Creek study reaches and variation in discharge over space and time. (A) 
Map of the measured discharge in 2020 and the years that each reach was sampled. Reaches H-1, 
M-2, I-1, and I-2 were sampled eleven times between 2002 and 2023 and were included in 
temporal and spatial analyses. The six other reaches were only sampled in 2020 and only used in 
spatial comparisons at the microhabitat scale, including species spatial responses. Reach names 
reflect the stream network position (H = headwater reaches; I = intermediate reaches; M = 
mainstem reaches). (B) The time series of average July discharge from the four reaches that were 
studied from 2002 - 2023. Bull Creek reach time series come from hydrologic stations 
maintained by the USDA Pacific Southwest Research Station. The average water year discharge 
of the North Fork Kings River, to which Bull Creek is a tributary, is also plotted for context. 
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North Fork Kings River data comes from site 11218400 which had over 80 years of data. This 
was used to classify water years by the percentile of discharge in the time series using shaded 
rectangles at the bottom of the figure. 
 

Additionally, we examined if abiotic mechanisms of drought effects and community 
assembly differed spatially at the microhabitat scale. To test this, we took fine scale microhabitat 
samples in 2020 using a nested spatial design. Ten reaches within Bull Creek (including the four 
long term reaches) were sampled in 2020 with six microhabitat samples taken from each reach. 
Microhabitat samples came from three paired pool-riffles, so that each reach had three pool and 
three riffle samples. Microhabitat sites were chosen to capture natural, intra-reach variation in 
abiotic mechanisms. We expected greater differences in RAC components within the 
microhabitat compared to the reach scale, as past work has found that most variation in 
macroinvertebrate communities occurs within the reach (Heino et al. 2004). In all samples across 
years, abiotic mechanisms were measured, and the macroinvertebrate community was sampled 
as described below.  
 
Environmental data collection 
 

Abiotic mechanisms of drought were measured during macroinvertebrate collection every 
year. We calculated water temperature in our study as the average temperature 30 days before the 
sampling date of a year. We estimated water temperature before 2020 using historic air 
temperature records beginning in 2004 within the Bull Creek watershed. We found a strong 
linear relationship (i.e., R2 >0.95) between air and water temperature averaged over the 30 days 
before sampling in our data from 2020-2023, so we estimated past water temperature using the 
resulting regression equation from the relationship. Air temperature records were not available 
from 2002-2003, so we used Parameter-elevation Relationships on Independent Slopes Model 
(PRISM) downscaled air temperature daily estimates for the 30 days prior to sampling for those 
years (PRISM Climate Group 2024). We corrected for overestimation in PRISM air temperature 
estimates relative to recorded Bull Creek air temperature using a linear regression that had strong 
support. High frequency water temperature sensors were deployed prior to sampling in 2020 to 
capture average thermal conditions leading up to sampling. An MX2202 temperature sensor 
(Onset Computer Corporation) was placed in each microhabitat site at approximately July 11, 
over a month before invertebrate sampling. Multiple STIC (Stream Temperature, Intermittency, 
and Conductivity) loggers were placed in long term reaches from 2021-2023 (Chapin et al. 
2014). Other abiotic mechanisms were measured at the time of sampling, including water 
velocity, the percent of fine sediment substrate, and discharge. Water velocity was estimated 
from 2002-2015 with a Global Water flow probe FP111 at the 50 transect sites. Water velocity in 
2020 was measured five times in each microhabitat using a USGS pygmy flow meter connected 
to an Aqua CMD Current meter digitizer. After 2020, water velocity was estimated using a 
combination of the USGS pygmy flow meter and measuring the velocity of a floating leaf at five 
points in a cross-stream transect for each reach. Measurements were averaged for tests done at 
the reach scale. Prior to 2021, reach estimates of velocity and sediment were a weighted average 
of pool and riffle values based on the proportion of pool and riffle habitat. The proportion of fine 
substrate particles (i.e., <0.1 mm diameter) was estimated in every reach. Prior to 2020, visual 
estimates of fine sediment coverage were made 50 times in each reach divided among 10 cross-
stream transects. A square foot grid with 25 equally spaced points was used in 2020 to estimate 
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the substrate size under each point in the microhabitat prior to sampling. Substrate coverage was 
visually estimated from 2021-2023 prior to sampling; observations were taken every 10 m in the 
100 m reach at each of the 11 sampling locations. Finally, we measured discharge in every reach 
using the velocity cross-sectional area method (Ode et al. 2016). Microhabitat discharge was 
assumed to be equal within a reach. 
 
Biological data collection 
 

Stream invertebrates were sampled using a 250 μm D-frame net until 2020 and a 500 μm 
D-frame net beginning in 2021. This sampling difference likely did not affect our results; past 
work in streams has found that community samples collected with a 250 μm and 500 μm mesh 
are generally comparable (Herbst and Silldorff 2006, Buss and Borges 2008). All samples were 
stored in ~70% ethanol. We used a rotating-drum splitter on samples in the laboratory to split the 
sample into smaller fractions before sorting and identifying at least 500 individuals from each 
sample under a stereomicroscope. Subsamples were completely processed to avoid bias 
regarding the size of individuals picked and identified. Invertebrates were identified to the 
highest resolution possible, typically genus or species level. Total taxa abundance was corrected 
by multiplying the counted abundance by the inverse of the fraction of the sample identified. All 
samples at the reach scale were made comparable by correcting density estimates to 1 m2 and 
ensuring all aggregate reach samples contained a number of subsamples from riffle or pool 
habitats proportional to the prevalence of those habitats. The 2021-2023 samples consisted of 11 
evenly spaced surber samples throughout a 150 m reach; sampling alternated between the right, 
center, and left of the channel. In other years, samples were taken and identified from pools and 
rifles separately, but the proportion of riffle:pool habitat area in the reach was recorded from 
2002-2015. We used this proportion to calculate a weighted average of the aggregate reach 
community. Abundance was corrected in the same manner in 2020; the riffle pool ratio was 
approximated by matching discharge in 2020 with the historic year from 2002-2015 that had the 
closest discharge for each reach. The riffle pool ratio of the selected historic year at the same 
location could then be used to correct abundance records. 
 
Taxa responses to drought across space and time 
 

In order to answer our first and second research questions, we first examined how taxa 
responded to abiotic mechanisms of drought across space at the microhabitat scale using a 
Spatial Stream Network (SSN) model. In an SSN model, environmental covariates and 
watercourse distances both explain variation in dependent variables within stream networks 
(Isaak et al. 2017). We used a SSN model for the most common taxa in the study (i.e., 19 taxa 
present in at least half the microhabitat sites and half of the reach samples taken over time) to test 
how much variation in taxa abundance was explained by spatial autocorrelation, abiotic 
mechanisms, or was left unexplained. We also examined how community abundance was 
explained by space and abiotic mechanisms using SSN models. We used ArcGIS (ESRI) to 
create the SSN object containing all sites, variables, site connectivity, and site environmental 
distances from one another. Using the SSN package in R, we used upstream distance to 
determine spatial autocorrelation along with mean water temperature, water velocity, and percent 
fine sediment as covariates. The exponential semivariogram covariance structure was used to 
explain how covariance changes with distance. A poisson distribution was used in taxa-specific 
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models, given the prevalence of low or zero abundance observations for many taxa. Covariate 
effect sizes were standardized by standard error for comparability. SSN model results include 
variance partitioned to spatial autocorrelation, covariates, and variance left unexplained. 

 
To test the importance of temporal autocorrelation and covariate effects across time, we 

used generalized least squares (gls) models explaining variation in taxa abundance at the reach 
scale with abiotic mechanisms as explanatory variables and first order autoregression [AR(1)]. 
We took the log abundance of each taxa used previously in the spatial analysis for our time series 
models. We standardized resulting effect sizes by standard error and recorded AR1 ɸ (phi) as an 
estimate of temporal autocorrelation. Model R2 was calculated from the aggregate variance 
explained by all the abiotic mechanisms. Total community abundance was also assessed in 
spatial and temporal models to see if abiotic mechanisms have similar importance over space and 
time. 

 
Standardized effects for each abiotic mechanism of drought from our SSN and gls results 

were compared using linear regression to determine if abiotic mechanisms have a consistent 
effect across space and time. We also compared spatial autocorrelation (i.e., upstream distance 
autocorrelation) and temporal autocorrelation (ɸ) of all taxa based on model results. In order to 
determine if the aggregate influence of abiotic mechanisms on taxa abundance is the same 
spatially and temporally, we compared the total proportion of variance attributed to abiotic 
mechanisms across space and time. Lastly, we tested if there was a relationship between taxa 
variance explained by abiotic mechanisms and autocorrelation for both spatial and temporal 
comparisons.  

 
Drivers and mechanisms of community change 
 

We compared community composition components across space, time, space-time, and 
different scales, in order to answer our third research question. Spatial differences were 
examined at the reach and microhabitat scale. Comparisons were made between all 60 samples 
collected for the microhabitat spatial comparison (n = 1,770 comparisons). Spatial comparison at 
the reach scale was done by comparing the four long term reach samples taken within the same 
year (n = 66 comparisons). We made comparisons across time at the reach scale by comparing 
the community from every year to every other year for the same reach (n = 220 comparisons). 
Lastly, comparisons across space-time at the reach scale compared every reach community 
against every other reach community without grouping by year or site (n = 946 comparisons). 

 
We used the codyn R package to examine change in turnover, reordering, richness, and 

evenness between communities across space, time, and space-time (Avolio et al. 2019). We 
always used the RAC_difference function, even for temporal comparisons to ensure 
comparability and because we wanted temporal comparisons to include samples more than one 
time step away. Turnover difference (i.e., species difference) was calculated by: 
 

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 = 2 ∗ !"#(%,')
)*%*'

    (1) 
where a is the number of species present in both samples, b is the number of species unique to 
the first sample, and c is the number of species unique to the second sample. Reordering 
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difference (i.e., rank difference) was calculated by: 
 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 =
∑ (|-!,#	/	-!,$	|)
%
!

(0&'&)(
    (2) 

where Ri,x is the rank of species Ri in sample x, Ri,y is the rank of species Ri in sample y, and Stot is 
the total number of unique species in both samples. We calculated richness difference as the 
difference in the alpha diversity of two samples divided by the alpha diversity of the two samples 
combined. Evenness was measured using the variance of abundance values to ensure that it is 
independent of species richness (Smith and Wilson 1996). Evenness difference is simply the 
difference between the evenness values of communities. Because we are interested in the 
magnitude of the RAC components rather than which community has greater evenness or species 
richness, we took the absolute value of evenness and species richness comparisons. We used 
one-way ANOVA tests to determine if RAC components differed among comparisons made 
across space, time, and space-time. If comparison was significant, then we ran a Tukey’s Honest 
Significant Difference post-hoc test to determine pairwise differences. We also estimated RAC 
components for microhabitat samples in 2020 to compare to reach scale spatial differences. 
 
Causal pathways connecting drought to community change 
 

For our final question, on the causal pathways ultimately connecting drought to 
community dissimilarity across space and time, we used piecewise structural equation models 
(pSEM). We did this with the psem function in the piecewiseSEM R package to mechanistically 
test the relationships between abiotic mechanisms, RAC components, and community 
dissimilarity all at once (Lefcheck 2016). Each pSEM was composed of five linear models; four 
models predicted each RAC component by abiotic mechanism differences between communities, 
and one model explained community dissimilarity between communities with the RAC 
components. We made pSEMs comparing communities across space, time, and space and time at 
the reach scale, along with a pSEM for microhabitat comparisons across space. We calculated 
the absolute difference in mean water temperature, water velocity, and percent of fine sediment 
between two samples to use the delta as covariates in models. We used generalized linear models 
to determine which differences in abiotic mechanisms best explained differences in RAC 
components for each space, time, or space-time comparison at the reach scale. The same tests 
were repeated with microhabitat spatial community comparisons to determine the importance of 
scale. Effect sizes of abiotic mechanisms were standardized by dividing by the standard error, for 
comparability between the abiotic mechanisms within and between models. We used ANOVA 
models to determine which RAC components best explained Bray Curtis dissimilarity for each 
space, time, or space-time comparison at the reach scale and microhabitat communities across 
space. We calculated partial eta squared (ηp2) of RAC components for comparability within 
models. 
 
Results 
 
Drought and the mosaic of environmental conditions  
 

Environmental conditions fluctuated strongly across space and over the years, largely 
driven by high variability in snowpack (and snowmelt-driven discharge) over the two study 
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decades. Temporally, summer discharge varied by two orders of magnitude over the course of 
the study in every reach of Bull Creek (Figure S1). Discharge was exceptionally high in water 
years 2011, 2017, and 2019, but fell below the 10th percentile of historic discharge records in 
2014, 2015, and 2021 (Figure 2). Spatially, discharge among the ten reaches of Bull Creek 
ranged from 0.2 - 16 L/s in the moderate drought year of 2020, when the microhabitat sampling 
took place (Figure 2). 

 
The strong temporal and spatial variation in discharge drove variation in the abiotic 

mechanisms of drought we considered: water temperature, water velocity, and fine sediment. 
Average water temperature showed similar spatial (9.2 - 15.2°C) and temporal (6.5 - 15.6°C) 
variation in our study, where the interannual range of temperature in each reach was 
approximately 6°C (Figure S1; Figure S2). Water velocity at the reach scale varied 1-2 orders of 
magnitude over time with greater variation in smaller reaches (Figure S1; Figure S3). Spatially, 
water velocity was typically lowest in the headwater reach, while the mainstem reach water 
velocity was 9.7 times higher on average across all years. Fine sediment cover was low at the 
reach scale (7.5%) and standard deviation was similar across space (7.4%) and time (9.5%). 
Temporally, high discharge could cause large erosion events that increased silt cover, but low 
discharge years could also increase sedimentation by increasing the settlement of silt (Figure S1; 
Figure S4). In a moderate drought year, the microhabitat scale had higher average fine sediment 
cover (33.7%) and standard deviation (39.8%) than that seen on average at the reach scale. 
Multicollinearity of abiotic mechanisms was not supported by variance inflation factor tests (less 
than 2 in all cases at both microhabitat and reach scales), supporting that they could 
independently explain variation in our study. These results suggest that variables associated with 
low flow exist in a diverse environmental mosaic across the watershed, supported by fine scale 
sampling and extended repeated sampling. 
 
Effects of drought on common taxa 
 

Among the 19 taxa retained to examine drought effects, all abiotic mechanisms were 
influential and had a similar percentage of significant relationships among common taxa (36.8% 
- 47.4%; Figure 3). At least one of the abiotic mechanisms was supported as an explanatory 
driver in 78.9% of taxa when combining spatial and temporal results. Water temperature had a 
positive relationship roughly as often as a negative one (four vs. three times, respectively). This 
suggests high response diversity in the community, as increased water temperatures may benefit 
and harm a similar number of species. Increased water velocity had a negative relationship six 
times and only one positive relationship, suggesting that reduced flow may benefit more species 
than are harmed in the watershed. Lastly, increased fine sediment showed eight negative 
relationships and a single positive one, suggesting that sedimentation may threaten most taxa. 
Collectively, these results support that drought may simultaneously improve and worsen habitat 
quality for certain species via different abiotic mechanisms, and illustrate that variation in effect 
direction and magnitude confer response diversity at the community level. 
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Figure 3. Abiotic mechanism effect sizes explaining spatial and temporal variation in the 
abundance of taxa. Taxa are ordered by the amount of spatial variation in abundance explained 
by abiotic mechanisms in aggregate. (A) Spatially, mean temperature has a positive association 
with species abundance, whereas higher proportions of fine sediment substrate tend to have a 
negative association with abundance. (B) Temporally, all abiotic mechanisms have significant 
relationships in at least one taxa. Species were more likely to have significant associations with 
species abundance across space rather than across time. Density plots display the distribution of 
species effect sizes for all taxa included in the plot. 

 
 Spatial vs. temporal importance of drought 
 

Spatial and temporal drought effects varied within species, failing to support that spatial 
relationships are transferable to temporal studies. The lack of a space-for-time relationship was 
apparent in the rarity of abiotic mechanisms being significant in the same taxa across space and 
time. Of the 15 taxa that showed a significant effect, only two (Sweltsa and Baetis) had 
significant relationships with the same covariate in spatial and temporal tests (negative fine 
sediment relationships in both cases). 

 
When examining responses across species, the number of taxa for which water 

temperature was a significant covariate was similar for space vs. time. However, water 
temperature almost always had a positive effect in spatial comparisons (median = 1.6), but when 
measured over time, the community-wide average effect size was negligible (median = -0.3; 
Figure 3). Water velocity had negative relationships with an equal number of taxa (three) 
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spatially and temporally, but only had a negative relationship with community abundance 
spatially (Figure 4). Fine sediment was supported as a covariate in seven taxa spatially, but only 
two taxa temporally. Despite more taxa having a negative relationship with fine sediment 
spatially, fine sediment had a negative relationship with community abundance in temporal but 
not spatial comparisons. Linear regressions of spatial and temporal abiotic mechanism effect 
sizes found nonsignificant positive slopes with weak predictive power (Figure 5). 

 

 
 
Figure 4. The standardized effect sizes of abiotic mechanisms explaining community abundance 
differences across space and time. Fine sediment coverage has a negative relationship with 
community abundance across time, but water velocity has a negative relationship with 
abundance across space. Spatial autocorrelation (i.e., variance explained by upstream distance) is 
77.1%, while temporal autocorrelation (i.e., phi) is 0.72. Abiotic mechanisms explain 13.9% 
variation across space and 9.6% variation across time. 
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Figure 5. Species responses due to spatial differences do not provide reliable information on 
how species respond across time. (A) Water temperature displays both positive and negative 
relationships with species abundance, but only one taxon displayed the same significant 
relationship across space and time. (B) Taxa respond to increased fine sediment substrate 
coverage mostly negatively, but spatial effect sizes do not explain temporal effect sizes. (C) The 
most common taxa typically respond negatively to increased water velocity, but spatial effect 
sizes do not explain temporal effect sizes. The gray dashed line represents a hypothetical case 
where spatial and temporal effects and autocorrelation are the same. The black line is the line of 
best fit with a shaded error region for each regression. 
 

Space-for-time substitution was not supported, neither for the environmental drivers (i.e., 
the aggregate importance of the three abiotic mechanisms) nor for autocorrelation (Figure 6; 
Table S1). Specifically, the spatial variance explained by abiotic mechanisms in aggregate for 
each species had no relationship with temporal variance (F1,17 = 0.136, P > 0.05). Similarly, the 
degree of spatial autocorrelation observed for a species was not related to its temporal 
autocorrelation (F1,17 = 0.214, P > 0.05). There was also no relationship between the amount of 
variance explained by abiotic mechanisms and autocorrelation for either spatial (F1,17 = 0.075, P 
> 0.05) or temporal tests (F1,17 = 0.066, P > 0.05). This suggests that neither an increase in 
spatiotemporal processes nor an increase in environmental filtering causes a decline in the other, 
possibly due to high unexplained variance. 
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Figure 6. (A) Explanatory power of abiotic mechanisms of drought in aggregate explaining 
spatial variation in taxa abundance is not related to the ability of abiotic mechanisms to explain 
temporal variation. (B) Increased species spatial autocorrelation is not associated with increased 
temporal autocorrelation. (C) The amount of temporal variance explained by abiotic mechanisms 
is not related to a species’ temporal autocorrelation. (D) The amount of spatial variance 
explained by abiotic mechanisms is not related to a species’ spatial autocorrelation. The gray 
dashed line represents a hypothetical case where spatial and temporal drought effects and 
autocorrelation are the same. The black line is the line of best fit with a shaded 95% confidence 
interval for each regression. Black points are values for individual taxons and red points are the 
mean value for the corresponding axis with ∓ 1 SD error bars. 

 
These results support our prediction that neither the amount of variation explained by 

drought-related drivers (individually or in aggregate), nor variation explained by biological 
autocorrelation (i.e., by virtue of communities closer in time or space being more similar than 
those further apart) can be transferred between space and time. 
 
Community change components across space and time  
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Community dissimilarity and its biological components had the smallest differences 
when reaches were compared across space rather than across time or across space and time 
simultaneously at the reach scale (Figure 7). Median community dissimilarity was lower in 
spatial comparisons (0.582) than both temporal (0.724) and space-time (0.727) comparisons 
(F2,1229 = 30.180, P < 0.001). The same pattern was seen when comparing differences in 
species richness (F2,1229 = 8.915, P < 0.001) and reordering (F1,17 = 39.800, P < 0.001). The 
median species richness difference was 0.066 when comparing across space, but 0.115 and 0.116 
when comparing across time and space-time respectively. In the case of reordering, the median 
difference across space (0.209) was again lower than that of time (0.230) and space-time (0.236). 
However, turnover difference across time had a lower median value (0.402) than comparisons 
across space (0.409) and space-time (0.426; F2,1229 = 9.642, P < 0.001). We did not find 
significant evenness differences among comparisons (F2,1229 = 2.705, P = 0.067). Evenness and 
richness differences were relatively low, while reordering and turnover were moderately high. 
These results support our prediction that the biotic mechanisms of community change differ 
across space and time. 

 

 
 
Figure 7. Boxplots for RAC pathways (left of the dashed line) and Bray-curtis dissimilarity 
across space, time, and space-time at the reach scale. Reordering values are multiplied by 2 to 
make the range of possible values 0-1 like for all metrics. Different letters indicate pairwise 
significant differences based on Tukey’s honestly significant difference post-hoc tests. For the 
boxplot, the central band is the median, the box is the interquartile range, whiskers are 1.5 times 
the interquartile range, and circles are outliers.  
 
Causal pathways connecting drought to community change 
 

Abiotic mechanisms of drought controlled biological pathways, and ultimately 
community dissimilarity, differently across space and time. Temperature, water velocity, and 
sediment all explained biological pathways in space-time comparisons (Figure 8; Table S2). 
However, sediment was the only significant abiotic mechanism in spatial tests. Temporal 
comparisons had the opposite pattern; sediment did not explain biotic pathways, but temperature 
and water velocity did. Turnover was significantly explained by differences in abiotic 
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mechanisms across space, time, and space-time comparisons, but the abiotic mechanisms that 
were significant depended on the type of comparison. Reordering was explained by temperature 
across time and space-time, but was unexplained in space comparisons. Lastly, evenness was 
explained by abiotic mechanisms in space and space-time comparisons, but the specific abiotic 
mechanisms varied. Although every abiotic mechanism explained biotic pathways in space-time 
comparisons, the effect size was typically smaller than when comparing across space or time 
individually. 

 

 
 
Figure 8. Abiotic mechanism differences affect community composition through different 
pathways depending on if communities are compared over (A) space, (B) time, or (C) space-
time. Piecewise structural equation models visualize the relationship between abiotic 
mechanisms and rank abundance curve components that explain Bray-curtis dissimilarity. Arrow 
size is determined by standardized effect sizes where 0-0.2 is a small effect, 0.2-3 is a medium 
effect, and values greater than 0.3 are large effects. Arrow color is red if there is a significant 
positive relationship, blue if there is a significant negative relationship, and gray if there is no 
significant relationship. 

 
Turnover and reordering were the main biotic pathways that explained community 

dissimilarity across space and time. ηp2 values supported that these biotic mechanisms were the 
most impactful drivers of community dissimilarity, and both were significant regardless of 
space-time, space, or time comparison (Table S3). Reordering explained the most variation in 
temporal dissimilarity (ηp2 = 0.180 , P < 0.001) and space-time dissimilarity (ηp2 = 0.174 , P < 
0.001) comparisons, but turnover had the highest eta squared value when comparing across space 
(ηp2 = 0.080 , P = 0.025). Differences in richness significantly explained dissimilarity across time 
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(ηp2 = 0.038 , P < 0.001) and space-time (ηp2 = 0.050 , P < 0.001), but not space alone. When 
richness was significant, it had a much lower eta squared value compared to turnover and 
reordering. Additionally, spatial scale (reach vs. microhabitat) affected our results. The abiotic 
and biotic pathways of drought were stronger and more diverse at the microhabitat scale with 
every abiotic and biotic mechanism possessing a significant link to explain community 
dissimilarity (Figure S5).These findings support our prediction that reordering and turnover are 
the biological pathways that best explain community dissimilarity associated with drought, 
although the relative importance of each biological pathway varied from our prediction at some 
spatial scales. 
 
Discussion 

 
Understanding drought impacts on high-mountain ecosystems is critical given climate 

change projections and increased anthropogenic alteration to watersheds (Siirila-Woodburn et al. 
2021). Despite this need, the interplay of drought-induced processes–both abiotic and biotic–that 
lead to altered stream communities remains uncertain, limiting our ability to predict where and 
when droughts are most ecologically harmful. Here we investigated the ecological pathways 
whereby droughts altered invertebrate communities in a Sierra Nevada watershed across space 
and time. We leveraged an experimental design that simultaneously maximized environmental 
and biological variation across nested spatial scales (60 microhabitats within 10 reaches) and 
over time (by visiting a subset of sites over two decades). We found that 1) Temperature, water 
velocity, and fine sediment all explained variation in a similar proportion of the community taxa; 
2) Abiotic mechanism effects differed across space and time, as spatial effects were generally 
unrelated to temporal effects; 3) Biotic community differences across space and time were 
unequal; and 4) The overall ecological pathway of drought differed across space and time. Our 
work adds to past research finding that drought alters river communities in complex ways (Rolls 
et al. 2012, Aspin et al. 2018), showing that temporal and spatial relationships (and thus 
pathways of ecological change) can differ widely. Although space-for-time substitution 
approaches are widespread in ecology (Lovell et al. 2023), we contend they may be inappropriate 
for the study of climate change on high-mountain stream ecosystems because of the hierarchical 
structure of watersheds and high temporal variability of the systems.  
 
Unequal drought effects across space and time 
 
 Space-for-time substitution was not supported in our study and may be inappropriate in 
lotic research generally. Space-for-time substitution assumes that succession occurs equivalently 
across a landscape and that habitat patches, in combination, contain a myriad of points along the 
chronosequence (Pickett 1989). The hierarchical nature of rivers runs counter to this assumption. 
River environments and communities gradually change longitudinally, in line with the river 
continuum concept, resulting in different steady state communities with changes in stream size 
and network position (Vannote et al. 1980). Furthermore, spate disturbances from snowmelt in 
high mountain streams can affect the majority of the stream network synchronously, frequently 
resetting the community and promoting stochastic processes like priority effects (i.e., the effect 
of a species on another is determined by the arrival order at a site). Even in situations where 
space-for-time substitution is touted as valid, the environmental drivers explaining variation 
differed greatly between spatial and temporal models (Blois et al. 2013). Space-for-time 

https://www.zotero.org/google-docs/?BmaaOm
https://www.zotero.org/google-docs/?YmGYXg
https://www.zotero.org/google-docs/?psVKkn
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substitution performs best when spatial and temporal heterogeneity are similar, but we found 
temporal differences in community composition to be higher than spatial differences. This may 
be due to temporal heterogeneity increasing in communities with subannual lifespans like many 
macroinvertebrates, as work has shown that species lifespan is a better predictor of temporal 
heterogeneity than spatial heterogeneity (Collins et al. 2018). Finally, space-for-time substitution 
has the best support at large spatial and temporal scales, but the scales that individuals live 
within and environmental variation acts upon are much finer (Blois et al. 2013). For these 
reasons, space-for-time substitution is especially ill suited to assess mechanistic processes in 
streams. 
 

Understanding drought effects across space-time requires understanding both spatial and 
temporal ecological pathways individually. All abiotic mechanisms of drought and nearly all 
biotic mechanisms of change explained community dissimilarity across space-time, but drought 
affected communities through unequal, narrower subsets of these pathways when spatial or 
temporal comparisons were made alone. Our results differ from a previous macroinvertebrate 
study in Hawaii streams that found space-for-time substitution generally held true, however, 
support is mixed in validations of other taxonomic groups (e.g., birds, butterflies, and plants; 
White and Kerr 2006, Adler and Levine 2007, La Sorte et al. 2009, Elmendorf et al. 2015, 
Frauendorf et al. 2019). We found that, spatially, fine sediment was more likely to have a 
significant negative relationship with individual taxa and it drove regional community 
dissimilarity by causing turnover in community composition (i.e., taxa sensitive to silt like Baetis 
and Sweltsa were replaced by tolerant taxa like Polypedilum). One reason for fine sediment 
having a spatial but not temporal effect could be that reach scale spatial variation in substrate 
reflects more meaningful environmental differences than temporal sediment variation. For 
example, a small headwater reach like H-1 in our study consistently has a greater proportion of 
silt and small substrate sizes than a larger mainstem reach. Fairly consistent spatial differences in 
fine sediment could be a reason that reordering of existing taxa was more important temporally 
than spatially. If environmental conditions within a reach are more similar year-to-year than the 
difference between reaches, then the same taxa may consistently use the same habitat patches 
even if their relative abundance can change. Alternatively, legacy effects could occur where taxa 
that were present in large numbers the prior year lead to a large number of local progeny, even if 
environmental conditions are no longer favorable and their relative abundance declines. 

 
Overall variance explained by abiotic mechanisms and autocorrelation were both 

unrelated across space and time, despite mean values being similar. Spatial and temporal 
autocorrelation might be expected to both be high for taxa that are poor dispersers in 
environments that are relatively stable, as these conditions promote local autocorrelation over 
time. This was seen with Acariformes and Turbellaria, but other taxa with poor mobility like 
Oligochaeta had low spatiotemporal autocorrelation. Oligochaeta might be undersampled 
because a substantial fraction of their populations are located in the hyporheic zone, limiting our 
ability to accurately assess their population (Malard et al. 2001). However other taxa that are 
strong dispersers may break down the positive relationship between spatial and temporal 
autocorrelation. Baetis and Sweltsa had high variation explained by local environmental 
conditions and high temporal autocorrelation, suggesting they can disperse well and the 
environment they inhabit is similar year to year. These taxa are mobile and can emigrate out of 
adjacent, unsuitable microhabitats, reducing spatial autocorrelation. Examinations of 

https://www.zotero.org/google-docs/?FJWqqA
https://www.zotero.org/google-docs/?nRIEog
https://www.zotero.org/google-docs/?oqjRwC
https://www.zotero.org/google-docs/?oqjRwC
https://www.zotero.org/google-docs/?oqjRwC
https://www.zotero.org/google-docs/?q2lO1x
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invertebrates elsewhere have seen that species models accounting for temporal and spatial 
autocorrelation are better supported than temporal autocorrelation alone and species 
autocorrelations may differ from one watershed to another (Gumpertz et al. 2000, Nally et al. 
2006). These results support that spatio-temporal models require both spatial and temporal 
processes to be examined independently, due to the lack of correlation observed. Previous work 
also supports that spatial or temporal analysis alone can result in biased results (Wiley et al. 
1997), so independent spatial and temporal processes must be integrated to understand ecological 
phenomena. 
 
Diversity of responses to drought-driven abiotic changes  
 

The different abiotic facets, or mechanisms of drought all influenced taxa and 
communities. While increased fine sediment from drought may harm most taxa, increased 
temperatures and reduced water velocity could counteract this in high elevation streams. 
Increased fine sediment tended to have a negative effect size on taxa abundance over both space 
and time, consistent with experimental studies’ results describing fine sediment as a ‘master 
stressor’ (Blöcher et al. 2020). Fine sediment substrate indirectly harms macroinvertebrates via 
oxygen depletion and directly harms them by covering refugia, clogging gills, and causing 
abrasion (Jones et al. 2012). Warming water temperatures, on the other hand, were associated 
with increased taxa abundance, based on positive bias in covariate effects. Climate change could 
therefore improve thermal conditions for warm eurythermal species at high elevations. Past work 
has shown that taxa abundance peaks at the center of their elevation range, with densities that 
follow a normal distribution (Richard Hauer et al. 2000). Elevation differences reflect thermal 
variation driving species abundance, so the most prevalent species seen in our watershed may be 
at higher elevations and colder water temperatures than they prefer. An alternative explanation is 
that the coldest reaches of Bull Creek are small headwaters that may be food limited due to low 
productivity in smaller streams and colder water. Lastly, taxa were more likely to benefit from 
low flows than high flows over both space and time, so climate change may benefit the most 
prevalent taxa that prefer pool habitat, such as Chironomidae. Summer water temperature and 
water velocity reflect preceding snowpack, making watersheds that could lose snow precipitation 
with warming particularly susceptible to habitat shifts that could favor low-elevation taxa due to 
climate change. However, the high response diversity seen for taxa in the community suggests 
that ecosystem processes like aquatic-terrestrial subsidies will likely be maintained. 

 
Given our observations that only one of our common taxa had multiple significant abiotic 

mechanisms of drought explaining temporal variation, this study’s findings suggest that climate 
change impacts will occur through individual mechanisms of drought rather than the interaction 
between multiple parameters. In our study, Sweltsa had a negative relationship with fine 
sediment and a positive relationship with water temperature, suggesting an antagonistic 
relationship between these parameters. However, all other taxa either had one or no significant 
abiotic mechanism for temporal variation. Our results contrast with mesocosm experiments 
finding that 54% of studied invertebrate families were significantly affected by water velocity 
and sedimentation in one case, and 46% of taxa were affected by both temperature and fine 
sediment in another (Piggott et al. 2015, Beermann et al. 2018). Mesocosm experiments may find 
stronger effects due to simplified environments that often preclude natural factors such as spatial 
habitat heterogeneity, variance in prior year community composition, and the hyporheic zone. 

https://www.zotero.org/google-docs/?2HTgoy
https://www.zotero.org/google-docs/?2HTgoy
https://www.zotero.org/google-docs/?A2GVDl
https://www.zotero.org/google-docs/?A2GVDl
https://www.zotero.org/google-docs/?AFMiNs
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Although the abiotic mechanisms in our study were not found to be multicollinear, they could 
interact in complex ways once certain thresholds are reached or they could interact with other 
environmental variables not assessed here. Increased fine sediment can reduce groundwater 
influence and promote macrophyte growth, which could increase water temperature and reduce 
water velocity respectively. 
 
Importance of spatiotemporal scales 
 

The use of the microhabitat rather than reach scale samples greatly enhanced our ability 
to explain community differences, suggesting that the scale we consider to be a community can 
influence our findings. The largest effect sizes and partial eta squared occurred at microhabitat 
scale, suggesting that drought affects communities most strongly at the microhabitat scale. One 
reason for this could be that the gradient of abiotic mechanisms of drought was larger at the 
microhabitat scale for fine sediment and water velocity without reach scale averaging of 
microhabitat conditions. Previous work has similarly found that local environmental conditions 
and biotic communities varied most at the microhabitat spatial scale rather than the reach scale, 
leading to community metrics like richness and evenness having the strongest relationships with 
environmental factors at the microhabitat scale (Boyero 2003, Herbst et al. 2018). Although 
temperature varied little within reaches at the microhabitat scale (as seen in Leathers et al. 2023), 
our microhabitat analyses included additional reaches in cold headwaters that increased the 
gradient of water temperature differences and may have led to stronger relationships. Although 
many studies take multiple samples within stream reaches and combine them to identify a 
representative community, this approach may be better suited for capturing total biodiversity 
rather than understanding the mechanisms of community change. In the same way that grouping 
spatial and temporal pathways of drought effects together muddles our ability to predict their 
individual pathways, grouping microhabitats together at the reach scale can be inappropriate to 
understand what drives fine scale variation in communities. This has nuance, however, as intra-
reach differences in environment conditions can decline as river size increases, and both extreme 
floods and droughts can homogenize reaches (Herbst et al. 2018). If reaches are comprised of 
more consistent microhabitats, then assemblage similarity can increase and conglomerate reach 
scale samples may be suitable to test drivers of change (Heino et al. 2004). Lastly, relationships 
between the environment and a biotic response found at the reach scale can still be informative to 
microhabitat relationships, as past work has found them to be positively correlated (Lamouroux 
et al. 2004). Similarly to our findings, the environment-biotic relationship was stronger at the 
microhabitat rather than reach scale in this case. 

 
Examining communities at the appropriate temporal scale is also important, although this 

was not a focus of our manuscript. Communities change over time due to seasonal change and 
the life histories of the species present. When comparing communities across space, care should 
be taken that sampling is conducted in a time period short enough that seasonal differences or 
variations in emergence do not conflate spatial and temporal differences between locations. 
Community composition can shift at the scale of days in periods of flash flood events (Leung et 
al. 2012), but streams with less extreme disturbance have been seen to shift in community 
composition roughly monthly (Warwick 2018). Although sampling date varied up to roughly a 
month interannually in our study, the beginning of our sampling period was typically determined 
by road access due to annual snowpack. Variation in community composition over time is partly 

https://www.zotero.org/google-docs/?YjU0fe
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due to environmental shifts related to discharge (Fierro et al. 2021), so our corrected sampling 
date may have improved year to year comparability of macroinvertebrate communities. 

 
Limitations and future directions 
 

Follow-up studies may build off our findings to better understand how drought, and 
environmental stressors generally, affect stream communities. We did not test for causality of 
abiotic mechanisms of drought on biotic responses using methods such as reciprocal transplants 
or common gardens (Lovell et al. 2023). However, given that space-for-time was not supported, 
a more accurate method of predicting temporal effects in a short term study could be experiments 
using natural, manipulatable systems (Elmendorf et al. 2015). Even though we found that water 
temperature, water velocity, and sediment were uncorrelated, it is uncertain how they may 
interact in their effects on taxa and communities. Past work in agricultural areas found that 
sedimentation and water velocity had additive effects (Elbrecht et al. 2016), but a meta-analysis 
of multiple stressors in freshwater systems observed that water temperature most often had 
antagonistic interactions with other stressors (Jackson et al. 2016). We found that turnover and 
reordering were the primary biotic pathways of community dissimilarity, but future work could 
investigate if these findings differ at the regional scale. In a regional rather than small watershed 
study, species are more likely to differ across space, so turnover and richness differences may 
become more influential and reordering could decline in importance. Additionally, the relative 
importance of reordering may depend on the taxonomic resolution of communities. Studies with 
fine taxonomic resolution would likely have lower reordering between communities. However, 
our finding that reordering and turnover are dominant biotic mechanisms of change is supported 
elsewhere. Analysis of 66 communities found that the largest composition differences were due 
to reordering (Avolio et al. 2019), and another study observed turnover of thermophilic alpine 
stream macroinvertebrates replacing cold-adapted taxa with warming drive shifts in community 
composition (Bruno et al. 2019). In our study, spatial comparisons occurred at the microhabitat 
scale, but temporal comparisons took place at the reach scale when modeling individual taxon 
responses. This was done because only ten reaches were sampled spatially–an insufficient 
sample size for an SSN model–requiring the use of microhabitat-scale samples. However, our 
finding that drought effects differ across spatial and temporal comparisons was consistently 
observed, including when communities were compared at the reach scale in both cases. Future 
studies could build on our work by systematically changing the spatial and temporal resolution of 
sampling, and examining whether the space-for-time relationships that we did not detect emerges 
at some combination of scales. 

 
Concluding remarks 
 

Our study shows that predicting biotic responses to drought requires a precise 
understanding of ecological context and a broad range of studies across space and time to 
succeed. We found that space-for-time substitution approaches may be inappropriate in the study 
of drought effects in mountain streams, possibly due to the hierarchical physical structure of 
streams and the high temporal variability they experience in abiotic conditions and communities. 
Unequal spatial and temporal dynamics in streams could also be due to variability caused by the 
relatively short lifespans of most macroinvertebrate groups and frequent spate disturbances that 
trigger community succession in river ecosystems (Power et al. 2008, Collins et al. 2018). The 

https://www.zotero.org/google-docs/?7YSyEq
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use of space-for-time substitution in our study would have overestimated the effect of fine 
sediment on future communities due to climate change, but would have underestimated the 
impact of temperature and water velocity shifts. Studies hoping to use space-for-time should both 
validate the transferability of spatial relationships and, ideally, corroborate that spatial effects are 
real (Lovell et al. 2023). Models predicting future communities will need to account for both the 
temporal and spatial drivers of variation, as accurate temporal models alone will fail to account 
for influence from the surrounding metacommunity and landscape. Research assessing how 
drought affects stream communities should also consider a variety of abiotic mechanisms of 
drought, as many species may only respond to a single aspect of low flow. Lastly, biotic 
responses should be assessed at the spatial and temporal scale that best suits the taxa and 
question. The spatial scale assessed should reflect the area that taxa perceive as their habitat 
(Boyero 2003), and the sampling date should be chosen when disturbance and invertebrate 
emergence are unlikely to shift community composition during the sampling period for a single 
timestep (Warwick 2018). There is a need to continue carefully-designed monitoring programs 
that capture both spatial and temporal dimensions of environmental change, as these datasets are 
needed to accurately assess causal pathways and provide necessary knowledge to design 
effective future studies. Considering spatial and temporal variation in the appropriate context is 
necessary in the quest to learn how climate change will alter mountain streams. 
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Supplementary Materials 
 

 
 
Figure S1. Variation in abiotic mechanisms of drought over time at the reach scale for (A) 
Discharge, (B) water temperature, (C) water velocity, and (D) fine sediment coverage.  
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Figure S2. Map of microhabitat mean temperature in 60 sampled sites from 2020. Mean water 
temperature is the average temperature of the 30 days prior to sampling in 2020. Sites are moved 
slightly from their actual positions to avoid overlap; see Leathers et al. 2023 for actual map of 
locations.  
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Figure S3. Map of microhabitat water velocity in 60 sampled sites from 2020. Sites are moved 
slightly from their actual positions to avoid overlap; see Leathers et al. 2023 for actual map of 
locations.  
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Figure S4. Map of microhabitat fine sediment coverage in 60 sampled sites from 2020. Sites are 
moved slightly from their actual positions to avoid overlap; see Leathers et al. 2023 for actual 
map of locations.  
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Figure S5. (A) Microhabitat variance of rank abundance curve components and Bray-curtis 
dissimilarity. Reordering values are multiplied by 2 to make the range of possible values 0-1 like 
for all metrics. For the boxplot, the central band is the median, the box is the interquartile range, 
whiskers are 1.5 times the interquartile range, and circles are outliers. (B) We explained Bray-
curtis community dissimilarity using a piecewise structural equation model with abiotic 
mechanisms and biotic mechanisms as explanatory variables. The model consisted of models 
that explained each rank abundance curve component by abiotic mechanisms and a model of 
Bray-curtis dissimilarity explained by rank abundance curve components. Differences in spatial 
scale (reach vs. microhabitat) affected our results, as abiotic mechanisms of drought explained 
community dissimilarity through more diverse pathways at the finer scale. At the microhabitat 
scale, water temperature, water velocity, and sediment affected all biotic pathways in aggregate, 
rather than only sediment being significant at the reach scale. Even looking specifically at 
sediment, it was a significant covariate for richness and reordering at the microhabitat scale, 
opposite of the reach scale model where it explained differences in turnover and evenness. All 
biotic pathways significantly explained community dissimilarity at the microhabitat scale 
contrary to only turnover at the reach scale.  
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Table S1. Spatial and temporal variance explained by abiotic mechanisms in aggregate and 
autocorrelation for the most common taxa of the study. Variance explained by abiotic 
mechanisms is the aggregate of all mechanisms. Spatial autocorrelation is based on upstream 
distance and temporal autocorrelation is phi. 
 

Taxa 
Spatial variance 
explained 

Temporal 
variance 
explained 

Spatial 
autocorrelation 

Temporal 
autocorrelation 

Baetis 25.456 28.286 0.200 0.528 

Acariformes 19.977 2.480 0.497 0.653 

Rheocricotopus 12.564 2.003 0.434 0.151 

Zavrelimyia 14.290 42.542 0.000 -0.051 

Tanytarsus 4.792 15.952 0.000 0.330 

Micropsectra 20.031 12.641 0.692 0.160 

Polypedilum 21.872 3.372 0.027 0.358 

Thiennemannimyia 4.748 5.282 0.225 0.512 

Stempellinella 8.542 16.301 0.604 0.365 

Micrasema 29.731 2.849 0.063 0.282 

Lepidostoma 19.538 7.064 0.419 0.285 

Turbellaria 0.805 9.036 0.217 0.896 

Paraleptophlebia 5.827 11.145 0.287 0.564 

Oligochaeta 6.047 15.738 0.081 0.064 

Serratella 5.451 4.981 0.050 0.038 

Sweltsa 18.126 24.261 0.230 0.776 

Ameletus 5.803 7.825 0.891 0.480 

Optioservus 16.311 36.973 0.038 0.542 

Bezzia sensu lato 12.340 20.285 0.798 0.328 
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Table S2. Abiotic mechanisms of drought as covariates of biotic mechanisms in generalized 
linear models. Values are standardized effect sizes. * indicates a significant effect at P < 0.05. 
The standardized effect size of microhabitat abiotic mechanisms on biotic pathways were 
typically much higher than that at the reach scale; the greatest standardized effect size at the 
microhabitat scale was eight times greater than the maximum reach scale effect size. 
 

Scale Comparison Abiotic mechanism Turnover Reordering Richness Evenness 

Reach Space Mean temperature 0.126 -0.022 0.687 0.196 

Reach Space Water velocity -0.584 -0.139 -0.741 0.656 

Reach Space Fine sediment 2.341 * 1.632 -1.82 1.337 

Reach Time Mean temperature 3.01 * 3.84 * 0.159 0.947 

Reach Time Water velocity 3.236 * 1.769 -1.85 0.484 

Reach Time Fine sediment 0.395 -1.539 -0.018 -0.774 

Reach Space-Time Mean temperature 3.478 * 4.595 * 0.557 -0.007 

Reach Space-Time Water velocity 5.385 * 0.509 -3.301 * 3.512 * 

Reach Space-Time Fine sediment 2.979 * 0.567 -1.768 0.021 

Micro
habitat Space Mean temperature 0.973 10.818 * 10.899 * 2.36 * 

Micro
habitat Space Water velocity 7.234 * 6.876 * -1.287 0.075 

Micro
habitat Space Fine sediment 0.609 16.612 * 9.604 * -0.156 
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Table S3. Variation in community dissimilarity (Bray Curtis) explained by biotic mechanisms. 
Values are partial eta squared to determine which RAC components best explain dissimilarity. * 
indicates a significant effect at P < 0.05. Bolded values have the highest partial eta squared for 
their comparison group. Reordering (ηp2 = 0.218, P < 0.001) had the greatest effect on 
community dissimilarity at the microhabitat scale. Tests in this table agreed with the findings of 
the pSEM models, with one exception; reordering did not explain community dissimilarity in 
spatial comparisons in the pSEM model, although it was significant in the simpler, individual 
model. 
 

Scale Comparison RAC component Partial eta squared 

Reach Space Turnover 0.080 * 
Reach Space Reordering 0.044 * 

Reach Space Richness 0.009 
Reach Space Evenness 0.00 

Reach Time Turnover 0.134 * 
Reach Time Reordering 0.180 * 

Reach Time Richness 0.038 * 
Reach Time Evenness 0.002 

Reach Space-Time Turnover 0.137 * 
Reach Space-Time Reordering 0.174 * 

Reach Space-Time Richness 0.050 * 
Reach Space-Time Evenness 0.002 

Microhabitat Space Turnover 0.064 * 
Microhabitat Space Reordering 0.218 * 

Microhabitat Space Richness 0.046 * 
Microhabitat Space Evenness 0.064 * 
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5 
 

Conclusion 
 
 My dissertation supports that climate change effects on low flows in Sierra Nevada 
streams will be pervasive, but environmental context is critical to understand how ecological 
impacts arise. The new insights made here, via a combination of field experiments, modeling, 
and long-term observation, help identify which mechanisms connecting drought to stream 
ecosystem dynamics should be examined in more detail going forward. Although flow 
intermittency may have greater impacts on stream communities than changes in flow magnitude, 
the latter is projected to occur in mountain ranges globally. These shifts in flow magnitude are 
poised to alter ecosystem dynamics, community composition, phenology, and food-webs. 
 
 I began my dissertation by experimentally simulating future low flow patterns in 
mountain streams. I found that reduced thermal buffering can raise water temperatures 
drastically, with pervasive effects on primary production, benthic production, and aquatic-
terrestrial subsidies. Resulting phenological shifts altered key ecosystem processes such as 
aquatic-terrestrial subsidies, ecosystem metabolism, and secondary production. Next, I combined 
high-frequency temperature sensors and advanced spatiotemporal models to estimate the thermal 
vulnerability of a Sierra Nevada watershed. Thermal sensitivity of water to air temperature 
varied at fine temporal scales and variation occurred spatially at the reach scale. Models of 
current thermal habitat, combined with measured thermal sensitivity and projected future air 
temperatures, enabled end-of-century thermal distribution estimates. These projections illustrate 
that coldwater habitat will decline substantially. Lastly, I conducted extensive observational 
sampling of a Sierra Nevada watershed and found that different abiotic mechanisms of drought 
were all influential on macroinvertebrate species, although their effects differed when compared 
across space vs. time. Biotic community differences across space and time also contrasted, 
leading to the overall ecological pathway connecting drought to community change to be 
separate between space and time. This challenges the space-for-time substitution approach that 
underlies much climate change ecology research 
 
 A major finding of my dissertation is that riverine ecosystems must be studied at 
appropriate spatiotemporal scales to obtain accurate and useful inferences about drought 
responses. In Chapter 2, I documented fine-scale temporal changes in phenology and secondary 
production. These changes would be missed if only two time periods were compared (e.g., before 
vs after surpassing a certain flow threshold), or if results were averaged across the season. 
Results from Chapter 3 support that the common aggregation of temperature data from months to 
seasons can miss daily fluctuations in thermal sensitivity that are short-lived but ecologically 
important (e.g., effects from transient, extreme events like storms and wildfires). Chapter 4 
highlighted that low flow has stronger impacts on communities at the microhabitat spatial scale 
compared to the more commonly-used reach scale; additionally, space-for-time substitution was 
not supported so the effects of low flow should be examined separately over space and time. The 
discrepancy between the predicted loss in coldwater taxa due to warming from Chapter 3 and the 
observed positive effect of temperature spatially in Chapter 4 could also be due to differences in 
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scale. I used CD75 thermal thresholds derived from broad regional occurrence data in Chapter 3 
that may suggest a thermal relationship that is absent at finer spatial scales, such as that in 
Chapter 4. Studying environmental responses at appropriate spatio-temporal scales has long been 
a quest in ecology (Levin 1992, Wiley et al. 1997) and river science (Dong et al. 2017, Palmer 
and Ruhi 2019); this work adds nuance and mechanism to its continued importance. 
 
 Although climate change is expected to increase the extinction risks of species, intensify 
extreme climate events, and threaten the livelihoods and health of people (Calvin et al. 2023), my 
dissertation suggests that some taxa and ecosystem processes may benefit from advanced low 
flows in Sierra Nevada streams. Chapter 2 found that cross-ecosystem subsidies may increase in 
pulse magnitude due to advanced Chironomini emergence and riparian predators gain access to 
benthic macroinvertebrates in climate change-altered low flows. Chapter 4 observed that taxa 
were more likely to benefit from low flows than high flows, and taxa abundance tended to have a 
positively biased relationship with water temperature, even if increased fine sediment could be 
harmful. However, coldwater specialist taxa are vulnerable to predicted climate change. 
Expected increased intermittency threatens taxa that require long hydroperiods, and permanent 
ice sources feeding alpine streams may melt completely to the detriment of coldwater specialist 
taxa (Tronstad et al. 2019). Predicted risk associated with climate change is also regularly 
associated with end of century conditions near 2100, but there is no guarantee that the global 
climate will stabilize after that policy horizon. 
 
 Sierra Nevada communities and ecosystem dynamics may have been more stable than 
initially anticipated, when exposed to climate change-induced low flows, thanks to species 
response diversity. Response diversity occurs when organismal responses to environmental 
change vary in magnitude and/or direction, stabilizing aggregate ecosystem processes (Elmqvist 
et al. 2003). Communities with high response diversity are more resistant to ecological change, 
which is of critical importance as anthropogenic environmental threats multiply. In Chapter 2, 
species varied in their phenological shifts in response to advanced low flow and the most 
common taxa had high response diversity to change in discharge. In Chapter 4, species had little 
consistency in how and whether they responded to the abiotic mechanisms of drought. This may 
have resulted in community shifts associated with low flow occurring primarily via reordering of 
the relative abundance of taxa rather than change in species richness. In aggregate, these results 
illustrate that ecosystem processes may often remain stable even if many individual species 
respond to changing flow regimes–and the physical conditions they control. The observed 
stability is dependent on maintaining current biodiversity, so other environmental threats must be 
considered that could threaten species and the response diversity they contribute to. 
 
 This dissertation leaves numerous doors open for future work. For example, Sierra 
Nevada streams face other anthropogenic alterations that may have interactive effects with low 
flow [e.g., dams (Carlisle et al. 2016), livestock use (Herbst et al. 2012, Holmquist et al. 2015), 
logging (Banks et al. 2007), and the introduction of fish at historically fishless high elevations 
(Herbst et al. 2009)]. Synergistic negative effects could occur when low flow and other 
anthropogenic alterations like livestock grazing both increase sedimentation, which my findings 
along with others suggest should be a restoration priority (Herbst et al. 2012). Restoration efforts 
and management decisions will be most effective when these interactions are understood and 
both the areas of greatest risk and habitat with the best likelihood of improvement can be 
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identified. One promising avenue to assess habitat is the increasing prevalence of LIDAR data in 
the Sierra Nevada (Hooshyar et al. 2015). Aircraft LIDAR data could reveal fine-scale channel 
morphology and how it changes over time, improving the accuracy of hydrologic models that are 
least accurate in small headwaters (Andualem et al. 2024). Satellite infrared technology may also 
improve to measure finer scales of water temperature in small streams and identify areas with 
groundwater influence (Fakhari et al. 2023). If macroinvertebrates are largely driven by 
conditions at fine scales, then models should capture microhabitat features. Even if physical 
habitat conditions are adequately captured, understanding biotic responses will require greater 
knowledge of aquatic macroinvertebrate life histories and traits to accurately predict not just 
their exposure but also their vulnerability and adaptive capacity.  
 

Researchers can better understand the ecological impacts of climate change if effort is 
funneled towards (i) improving our knowledge of species dispersal, as current traits are often 
inaccurate (Lancaster et al. 2024); and (ii) learning the distributions of macroinvertebrates within 
the Sierra Nevada (but see Meyer and McCafferty 2008, Mendez et al. 2019). Both of these 
sources of information are needed for accurate metapopulation models that could anticipate if 
species can disperse to suitable habitat as climate change takes place. The advent of eDNA 
measurements may allow more extensive occurrence data to be collected in pursuit of 
determining distributions, but collaboration between taxonomists and geneticists is needed to 
ensure accuracy, as eDNA-based methods still require substantial improvement (Pfrender et al. 
2010, Emmons et al. 2023). If eDNA-based identification from water samples becomes reliable 
for most taxa, then sufficient funding and collaboration with community organizations can 
promote voluntarily collected samples from citizens. These efforts can build off of existing 
programs like CALeDNA in California that freely provide eDNA samples to citizens to use and 
send for analysis (Meyer et al. 2021). Accurate distributions are especially needed for the 
endemic species of the Sierra Nevada, of which there are many, and coldwater specialists with 
limited distributions (Erman 1996). Understanding species resistance to low-flow conditions is 
also valuable at metapopulation scales. However, it is uncertain to what extent interpopulation 
variation exists in resistance traits, and whether that trait variation is inheritable or phenotypic 
(plastic). Obtaining locally-relevant information on these biological factors could greatly inform 
climate risk assessments (Stoks et al. 2014).  
 
 Climate change will continue to alter global air temperature and precipitation patterns, 
affecting stream flow regimes and the abiotic conditions they control (Calvin et al. 2023). My 
dissertation shows how longer, advanced low flows arising from climate change will alter 
mountain stream ecosystem structure and dynamics in complex and sometimes subtle ways. 
Carefully designed experiments and field studies, complemented by advancements in high-
frequency sensing and time-series modeling methods, were used to uncover the ways and context 
in which river ecosystems change. This dissertation contributes to a larger literature of drought 
ecology that must be considered collectively to progress in understanding this global driver of 
ecological change. 
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