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Multivariate Longitudinal Modeling of
Macular Ganglion Cell Complex

Spatiotemporal Correlations and Patterns of Longitudinal
Change

Vahid Mohammadzadeh, MD,1 Erica Su, MS,2 Lynn Shi, MD,1 Anne L. Coleman, MD, PhD,1

Simon K. Law, MD, PharmD,1 Joseph Caprioli, MD,1 Robert E. Weiss, PhD,2 Kouros Nouri-Mahdavi, MD, MS1

Purpose: To investigate spatiotemporal correlations among ganglion cell complex (GCC) superpixel
thickness measurements and explore underlying patterns of longitudinal change across the macular region.

Design: Longitudinal cohort study.
Subjects: One hundred eleven eyes from 111 subjects from the Advanced Glaucoma Progression Study with

� 4 visits and � 2 years of follow-up.
Methods: We further developed our proposed Bayesian hierarchical model for studying longitudinal GCC

thickness changes across macular superpixels in a cohort of glaucoma patients. Global priors were introduced for
macular superpixel parameters to combine data across superpixels and better estimate population slopes and
intercepts.

Main Outcome Measures: Bayesian residual analysis to inspect cross-superpixel correlations for subject
random effects and residuals. Principal component analysis (PCA) to explore underlying patterns of longitudinal
macular change.

Results: Average (standard deviation [SD]) follow-up and baseline 10-2 visual field mean deviation were
3.6 (0.4) years and �8.9 (5.9) dB, respectively. Superpixel-level random effects and residuals had the greatest
correlations with nearest neighbors; correlations were higher in the superior than in the inferior region and
strongest among random intercepts, followed by random slopes, residuals, and residual SDs. PCA of random
intercepts showed a first large principal component (PC) across superpixels that approximated a global intercept,
a second PC that contrasted the superior and inferior macula, and a third PC, contrasting inner and nasal
superpixels with temporal and peripheral superpixels. PCs for slopes, residual SDs, and residuals were
remarkably similar to those of random intercepts.

Conclusions: Introduction of cross-superpixel random intercepts and slopes is expected to improve
estimation of population and subject parameters. Further model enhancement may be possible by including
cross-superpixel random effects and correlations to address spatiotemporal relationships in longitudinal data
sets. Ophthalmology Science 2022;2:100187 ª 2022 by the American Academy of Ophthalmology. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Detection of glaucoma progression is crucial for prevention
of irreversible visual loss.1,2 To this aim, it is essential to
identify eyes with rapid or central glaucoma progression.3

Macular OCT imaging is now considered the standard
method for assessing the health of the central retinal
ganglion cells.4-9 There is mounting evidence that macular
OCT imaging can provide additional information comple-
mentary to that provided by retinal nerve fiber layer (RNFL)
thickness measurements for detection of glaucoma progres-
sion, especially after the early stages of glaucoma.2,3,5,10,11

Our research group has shown that ganglion cell complex
(GCC), which is the sum of macular RNFL, ganglion cell
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/). Published by Elsevier Inc.
layer, and inner plexiform layer, could be the preferred
outcome measure for establishing glaucoma progression in
the macular region.12,13 We recently proposed and
implemented a random intercept and random slope
Bayesian hierarchical model for estimating population
average and individual rates of change at the level of
3� � 3� macular superpixels in a cohort of patients with
central damage or moderate-to-advanced glaucoma. Our
model also included a subject-specific random variance for
superpixel residuals.13-19 In this model, information from
the entire cohort is used to efficiently estimate individual
intercepts and slopes for each superpixel. Compared with
1https://doi.org/10.1016/j.xops.2022.100187
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simple linear regression of thickness measurements against
time in a single superpixel for a single subject, the
hierarchical model more efficiently estimates individual
slopes and provides population estimates.14-18

Our initial random intercept and random slope model was
fit to all subjects’ longitudinal data from a single superpixel
and did not attempt to model correlations of population or
individual parameters across superpixels.13 Although the
cross-sectional correlation of the 10-2 visual field (VF)
test locations has been previously explored,20 there is no
information in the published literature on cross-sectional
or longitudinal correlations among thickness measure-
ments of superpixels across the macula. Constructing an
appropriate longitudinal model for macular thickness that
incorporates spatial and temporal relationships holds the
possibility of improved estimation of subject-level slopes
over the single superpixel hierarchical model and potentially
allows us to make accurate global statements about the
probability of glaucoma progression across the macula.

At issue with constructing a spatialetemporal model is
what kind of spatial structure to incorporate.12,21,22 Thus, we
further developed and fit a hierarchical random-effects
model that allows for spatial relationships to be discovered
without forcing a preconceived notion of which
superpixels might be most similar. We use this joint model
to explore the spatial correlations of the 3 random effects
and the residuals.

The aim of this study is (a) to develop a single Bayesian
multivariate hierarchical model encompassing data from all
superpixels over time with a hierarchical prior for the in-
dividual superpixel parameters and (b) to estimate
correlations across superpixels of the 3 subject-specific
random effects (intercept, slope, and residual superpixel
variance) in our initial model and the subject-visit residuals
in the proposed hierarchical model. Such information will
allow us to incorporate appropriate spatialetemporal cor-
relations into our Bayesian hierarchical model.
Methods

Study Sample

We enrolled 111 eyes from 111 subjects from the Advanced
Glaucoma Progression Study, an ongoing longitudinal study at the
University of California, Los Angeles. Eligible eyes were required
to have a minimum of 4 macular OCT images, � 2 years of follow-
up, and no other ocular pathology at baseline and during follow-up.
We analyzed observations up to 4.2 years after baseline in this
study. We omitted all data from visits less than 0.2 years after a
previous visit.13

The study adhered to the tenets of the Declaration of Helsinki, was
approved byUniversity ofCalifornia, LosAngeles’sHumanResearch
ProtectionProgram, and conformed to theHealth InsurancePortability
and Accountability Act policies. All subjects provided written
informed consent at the time of enrollment in the study.

Inclusion criteria were as follows: (a) clinical diagnosis of pri-
mary open-angle glaucoma, pseudoexfoliative glaucoma, pigmen-
tary glaucoma, or primary angle-closure glaucoma; (b) evidence of
either central damage on the 24-2 VF, defined as 2 or more points
within the central 10� with P< 0.05 on the pattern deviation plot or
VFmean deviationworse than�6 dB.Exclusion criteria consisted of
2

baseline age less than 40years or greater than 80years, best-corrected
visual acuity< 20 of 50, refractive error exceeding 8 diopters (D) of
the sphere or 3D of the cylinder, or significant retinal or neurological
disease affecting OCT measurements.

Imaging Procedures

The posterior pole algorithm of Spectralis spectral domain OCT
(Heidelberg Engineering) was used to image the macular region and
estimate GCC thickness. The posterior pole algorithm volume scan
spans a 30� � 25� region and consists of 61 B-scans spaced
approximately 120 mm apart. Each B-scan was repeated 9 to 11
times to reduce speckle noise. Segmentation was performed with the
Glaucoma Module Premium Edition, the built-in software of the
Spectralis OCT. After manual correction of incorrect segmentations,
8 � 8 arrays of individual layer thickness measurements at 3� � 3�
superpixels from the central 24� � 24� of the measurement cube
were exported. The GCC thickness was calculated by adding the
macular RNFL, ganglion cell layer, and inner plexiform layer. We
included a 7 � 7 subarray of superpixels in this study, omitting the
most inferior row and the nasal-most column due to high numbers of
reported zeros and observed variability in prior studies.12,23

A Multivariate Hierarchical Longitudinal Model

Our data cleaning methods have been described previously, and we
provide details in the web appendix.13 We inspected profile plots
and empirical summary plots of outcomes for all subjects and all
superpixels.15 We removed zero values as erroneous, and
we identified and removed outliers that caused large
increases/decreases between consecutive measurements; details of
the outlier removal algorithm are given in the web appendix
section titled “Outlier Removal Algorithm for 49 Superpixels.”
Subject profiles in each superpixel that had 2 or more identified
outliers were completely removed from the analysis.

We previously developed a Bayesian normal hierarchical
random-effects model of longitudinal GCC measurements for a
cohort of n subjects indexed by i ¼ 1, ., n.13 Our multivariate
proposed model has 7 parameters for each superpixel: a
population intercept, population slope, subject-specific random
intercept variance, subject-specific random slope variance and
random intercept/slope correlation, and 2 population parameters, a
mean and a variance, to model the subject-specific random residual
variances. We explore a hierarchical random-effects model that
allows information from all superpixels to help estimate these
7 parameters in each individual superpixel. For each subject in
each superpixel, the model has 3 subject-level random effects:
intercept, slope, and residual variance. At each subject visit, there
are subject residuals across superpixels. These random effects and
residuals likely have spatial correlations.

Observations yijk for subject i at time tij are GCC thickness (mm)
in superpixel k from among K superpixels. This model has subject-
specific random intercepts b0ik and random slopes b1ik and subject-
specific residual variances s2ik in superpixel k. There are 7 inter-
pretable population parameters in the kth superpixel: (i) the popu-
lation intercept a0k, (ii) the random intercept standard deviation
(SD) D1=2

00k , (iii) population slope a1k, (iv) the random slope SD
D1=2

11k , (v) the correlation rk ¼ D01kD
�1=2
00k D�1=2

11k between the
random intercepts and slopes, where D01k is the covariance of the
random intercepts and slopes in superpixel k, and (vi and vii) the
population mean smk and SD ssk of the subject-specific residual
SDs sik . For superpixel k and subject i, the model is linear in time,

yijk ¼ a0k þ a1ktij þ b0ik þ b1iktij þ εijk

where εijk w Nð0; s2ikÞ, and each subject follows their own
subject-specific line.



Table 1. The Demographic and Clinical Characteristics of the
Study Sample

Age (years)
Mean (SD) 66.9 (8.5)
Range 39.7e81.2

Gender (%)
Female 70 (63.1%)
Male 40 (36.0%)
Not reported 1 (0.9%)

Ethnicity (%)
Caucasian 59 (53.2%)
Asian 24 (21.6%)
African American 15 (13.5%)
Hispanic 13 (11.7%)

Baseline 10-2 MD (dB)
Median (IQR) �7.6 (�12.0 to �4.1)
Mean (SD) �8.9 (5.9)
Range �25.1 to �0.4

Baseline 24-2 MD (dB)
Median (IQR) �6.7 (�12.3 to �4.3)
Mean (SD) �8.7 (6.1)
Range �26.4 to �0.3

Follow-up (years)
Mean (SD) 3.59 (0.44)
Range 1.94e4.20

Visits per subject
Mean (SD) 7.3 (1.1)
Range 4e10

Signal strength
Mean (SD) 27.8 (3.1)
Range 21e36

Baseline GCC (mm)
Mean (SD) 73.1 (20.1)
Range 37e154

GCC ¼ ganglion cell complex; IQR ¼ interquartile range; MD ¼ mean
deviation; SD ¼ standard deviation.

Mohammadzadeh et al � Multivariate Longitudinal Modeling of Macular GCC
We extended our single superpixel hierarchical model to one
that included superpixel-level random effects for the 7 parameters.
Prior specification and computation used a transformation
(transformed parameters) of the 7 interpretable parameters to make
normal priors more appropriate; an advantage of the Bayesian
paradigm is that transformation back to the interpretable parame-
ters is straightforward, which is discussed in the web appendix.
Each transformed parameter has an unknown global mean and
global SD, and we back-transform to the 7 interpretable parameters
to report inferences.

Initially for the 7 transformed parameters, we set a 7-variate
normal hierarchical prior with unknown mean m and
varianceecovariance matrix S with proper but vague priors for m
and S. The Markov chain Monte Carlo algorithm implemented in
Just Another Gibbs Sampler (JAGS) for this model had poor
convergence. Inspection of the posterior correlations of S sug-
gested that 3 of the 7 transformed parameters a0k, logðD00kÞ, and a
transformed variance parameter logðD11:0kÞ, the remaining random
slope variance after accounting for the correlation with random
intercepts and a function of the random effect variance/covariance
parameters D00k, D11k, and D01k, were highly correlated; on the
other hand, each of the other 4 could be treated as a priori inde-
pendent of each other and of the 3 correlated parameters. We
proceeded to fit this reduced model, and we report these results.
Priors for the mean, variances, and correlations of the parameters
were proper but vague. Details of the prior, parameter trans-
formations, and full model specification are given in the web ap-
pendix. The Bayesian hierarchical model was fit with JAGS using
the R2Jags package in R, and we also estimated correlations and
covariances of random effects and residuals in R.24-26

We fit the model using Markov Chain Monte Carlo with
3 chains of length 150 000 after burn-in of 50 000 and a thinning of
50, producing a posterior sample of size 9000 with satisfactory
convergence. Using our prior published model, we refit individual
data from the 49 superpixels to compare to the results from mul-
tiple superpixel analysis.13

Exploration of Correlations Among Superpixels

Random-effects models and Bayesian methods allow for residual
analysis, which is an important part of model checking and model
development and elaboration.17,27-29 Within a Bayesian frame-
work, we are able to estimate correlations between pairs of
superpixels of subject-specific random intercepts, random slopes,
log residual variances, and subject-visit residuals producing
4 covariance matrices. Given the 7 � 7 ¼ 49 macular superpixels
included in the current analysis, these correlation (covariance)
matrices form a 49 � 49 correlation (covariance) matrix. We
plotted the correlations in a correlogram, constructed as 49 7 � 7
heat maps of the correlations between each superpixel in turn with
all other superpixels.13 Details of the correlation (covariance)
matrix computations are presented in the web appendix.

Principal Component Analyses

We then took the principal component (PC) decomposition, also
known as an eigenvector/eigenvalue decomposition, of the
4 covariance matrices described here and inspected the eigenvec-
tors corresponding to the largest PCs for interpretability. We
plotted the eigenvectors in a set of 7 � 7 labeled heat maps. We
drew scree plots for all 4 PC decompositions; scree plots display
the cumulative variance explained by the PCs as a fraction of the
total variance (sum of the 49 eigenvalues) against the PC’s rank.
Inspection of the eigenvectors, eigenvalues, heat maps of
eigenvectors, and scree plots indicates how to add additional
components to our model.
Results

From a total of 39 935 GCC superpixel measurements, we
removed 7 zeros, 173 single outliers, and 130 observations
from 18 outlying profiles for a total of 310 observations. We
then analyzed 39 625 superpixel measurements in 49 super-
pixels from 815 visits of 111 subjects in a single model. The
median (range) follow-up time was 3.62 (1.94e4.20) years
with an average of 7.3 (range ¼ 4e10) visits per subject.
Table 1 provides a summary of the demographic and clinical
characteristics of the cohort. The average (SD) age and
baseline 10-2 VF mean deviation were 66.9 (8.5) years
and �8.9 (5.9) dB.

Table 2 provides posterior summaries (mean, SD,
95% credible interval) of the global mean and SD
parameters across superpixels of the 7 interpretable
parameters plus correlations between 3 parameters, and
Table S1 lists posterior summaries (mean, SD,
95% credible interval) of the transformed parameter global
means, SDs, and correlations. Posterior means (SDs) for
the most important global parameters were as follows.
Superpixel population intercepts had global mean
thickness of 73.1 (1.9) mm and global SD of 13.3 (1.4)
mm across superpixels. Superpixel population slopes had
3



Table 2. Posterior Summaries of Interpretable Parameters Derived from the Hierarchical Bayesian Model

Parameter Mean SD 2.5% 97.5%

Global means of superpixel parameters across superpixels
Population intercept 73.05 1.91 69.31 76.77
Random intercept SD 14.84 0.81 13.39 16.56
Population slope �0.357 0.041 �0.438 �0.277
Random slope SD 0.845 0.048 0.757 0.945
Correlation between random intercepts and slopes �0.266 0.032 �0.328 �0.202
Mean of random residual SD 1.947 0.038 1.874 2.024
SD of random residual SD 0.741 0.031 0.682 0.805

Global SDs of superpixel parameters across superpixels
Population intercept 13.29 1.37 10.93 16.22
Random intercept SD 5.50 0.77 4.25 7.31
Population slope 0.266 0.030 0.214 0.332
Random slope SD 0.317 0.046 0.243 0.422
Correlation between random intercepts and slopes 0.198 0.021 0.161 0.243
Mean of random residual SD 0.249 0.029 0.199 0.311
SD of random residual SD 0.171 0.029 0.122 0.235

Correlations of superpixel parameters
Population intercept and random intercept SD 0.812 0.041 0.715 0.875
Population intercept and random slope SD 0.739 0.056 0.612 0.829
Random intercept SD and random slope SD 0.845 0.043 0.747 0.914

SD ¼ standard deviation.
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global mean of �0.36 (0.04) microns per year and global
SD of 0.27 (0.03) across superpixels. Figure 1 provides
heat maps of the posterior means of the superpixel-level
population intercepts, slopes, random intercept and slope
SDs, random intercept and slope correlations, and mean and
SD of the random residual SDs. Fig S1 plots posterior
means of the population parameters from the current
model against estimates derived from our original model
based on separate analyses of data from each superpixel.
Correlation Analyses

The correlograms for random intercepts, slopes, log residual
variances, and residuals (Fig S2AeD) demonstrated that
these parameters for any given superpixel tended to be
most highly correlated with neighbors with decreasing
correlations as a function of distance from the index
superpixel. Horizontal (lefteright) correlations were
stronger, often far stronger at larger angular distance than
vertical (upedown) correlations. Vertical correlations were
strongly attenuated across the temporal raphe, but this
effect was not nearly as strong along the nasal horizontal
meridian. Superpixels above the horizontal median
generally showed stronger correlations with other
superpixels located above this median. Superpixels below
the horizontal median showed lower correlations in general.
The parafoveal superpixels (superpixels 4.4, 4.5, 5.4, 5.5)
tended to have lower correlations with other superpixels
than pairs of superpixels beyond the parafoveal area.

The strongest correlations among the 4 parameters of
interest (the 3 random effects and the residuals) were seen
with random intercepts (between 0.7 and 0.9 for virtually all
superpixels for nearest neighbors) (Fig S2A). Correlations
were high across the macula and very high between pairs
4

of superpixels when both were located above or below the
horizontal meridian.

Random slope correlations (Fig S2B) were less strong
than the random intercept correlations, and the strongest
correlations were only seen between neighboring
superpixels and rarely at a separation of even
2 superpixels. Strongest correlation was around 0.6, and
neighboring superpixels tended to have correlations
ranging from about 0.3 to 0.55. Distant superpixels tended
to have weaker correlations (0.1e0.2).

Correlations between the subject log residual SDs
(Fig S2C) were weaker than for the random slope
correlations; the strongest correlations were under 0.4, and
most correlations were less than 0.3. The residual
correlations (Fig S2D) were moderate between near
neighbor superpixels and consistently positive though
small across the entire macula. Residual correlations
were smoother across the entire macula than the 3
random-effects correlations. The patterns of correlations
were similar to the random slopes and log residual SDs.
Eigenvector Analyses

Figure 2 plots the first 4 PCs and gives the percent of
variance explained by each PC for all 4 PC
decompositions. The largest PC for all 4 effects
corresponds to a random global component across the
macula, that is, a grand mean where within a person, the
random intercepts, slopes, log residual SDs, and residuals
all tend to be higher or lower together, though with
somewhat different variances across the macula. The joint
co-variation tended to be stronger above the horizontal
meridian, weaker below, lower near the parafoveal region,
and slightly lower in the periphery.



Figure 1. Heat maps of posterior mean (A) population intercepts, (B) SD of random intercepts, (C) population slopes, (D) SD of random slopes, (E)
correlation between random intercepts and slopes, (F) mean of the random residual SD, and (G) SD of the random residual SD. The white circle indicates
the fovea for visual orientation. SD ¼ standard deviation.
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The second and third largest PCs for random intercepts
and for random slopes correspond to contrasts between su-
perior superpixels above the temporal horizontal meridian
versus inferior superpixels below this meridian and a
contrast between the inner/nasal macula versus the temporal
and peripheral regions. For the random log residual SDs and
5



Figure 2. The 4 largest principal components and percent variance explained from each component of the principal component analysis of the covariances
between (A) random intercepts, (B) random slopes, (C) random log residual SDs, and (D) residuals. The white circle indicates the fovea for visual
orientation. SD ¼ standard deviation.
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for the residuals, the second and third eigenfunctions are
contrasts between upper (lower) central superpixels and
lower (upper) peripheral superpixels.

For the random intercepts, the first 3 PCs explained
51.6%, 22.7%, and 9.6% of the variation across the macula
for a total of 83.9%. The first 3 eigenvalues accounted for
41.6%, 27.0%, and 31.4% of the variation in the random
slopes, log residual SDs, and residuals, respectively. For the
random slopes, log random residual SDs, and residuals, the
first PC explained 30.6%, 17.1%, and 21.8% of the corre-
sponding variations; the second and third components
explained only about 4% to 6% of total variation each.

Figure 3 provides scree plots of the cumulative
percentage of variation explained by all PCs. We found
similar findings using a PC analysis on the correlation
(rather than covariance) matrices; the 4 largest PCs are
displayed in Fig S3, and scree plots of the cumulative
percentage of variation explained by PCs are shown
in Fig S4.
6

Discussion

We recently developed a hierarchical Bayesian
random-effects model to describe longitudinal changes in
thickness measurements in individual macular super-
pixels.13 Previous work in estimating structural rates of
change in the macula has used simple linear regression
using data from a single eye or individual sectors or
superpixels to estimate an individual eye’s rate of change;
such individual estimates are frequently averaged to
calculate population estimates in an ad hoc fashion.12,30-34

As compared with simple linear regression, a random-
effects model provides more precise estimates of individ-
ual eye rates of change using data from the entire cohort.
Random-effects models incorporate population information
to better estimate individual trends and model
subject-specific effects more accurately in longitudinal data.
Therefore, random-effects longitudinal models are



Figure 3. Scree plots of the cumulative percent variance explained by the
principal components from the principal component analysis on the
covariances.
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preferable to simple linear regression for identifying glau-
coma progression based on longitudinal macular thickness
measurements.

Non-Bayesian likelihood approaches to random-effects
models have difficulty with calculating standard errors for
individual rates of changes and typically condition on the
estimated values of uncertain hyperparameters.35,36

Furthermore, likelihood approaches supply standard errors
based on asymptotic approximations, which may not be
valid in small data sets and indeed, are not valid when
random-effect variances are small. In contrast, a Bayesian
approach to modeling longitudinal data provides SDs of
individual and population rates of change and 95% credible
intervals that fully adjust for uncertainty in all parameters
and are valid when variance parameters are small.

The success of our Bayesian hierarchical random-effects
models in modeling longitudinal data from a single super-
pixel for a cohort of glaucoma patients led us to consider
whether jointly analyzing data from all the superpixels
would allow for increased precision in estimating individual
and population rates of change, motivating the current
model. At the same time, previous research suggests that
spatial similarity is not only a matter of physical adjacency
but also involves the underlying biological structure of the
macula.12,22,37 Thus, a very general spatial model such as
our hierarchical random-effects model is definitely worth
considering and should be in the arsenal of anyone
analyzing cross-sectional or longitudinal macular thickness
measures. Typical spatial models in other fields (ecology,
earth science) often have only a single variable measured
over space.38 In contrast, in our data, each eye from our
cohort of 111 subjects supplies a panel of time-varying
spatial data. This allows for a much more detailed and
nuanced understanding of the underlying structure of the
spatial components, again motivating a more general
approach to spatial modeling. The random-effects spatial
structure we consider here is perhaps the most general
spatial structure available not incorporating any
neighborhood structure, though allowing the possibility of
discovering neighborhood structural patterns of correlation.
This framework does not have as much power as, for
example, a spatial conditional autoregressive model would
have for detecting spatial structure, if that model were
known to be appropriate for the data.39

Our current hierarchical random-effects model avoids
model misspecification at the cost of statistical power
potentially provided by a specific spatial model. In fact, our
spatial correlational and PC analyses of the residuals and
random effects show that the spatial correlations are indeed
not well described by a neighborhood structure with a single
correlation parameter as required by the popular conditional
autoregressive model.

An important tool for scientific understanding is to start
with simple models, identify additional modeling structure
(correlations, random effects, time trends) through residual
analysis, and then incorporating this structure into the next
iteration of the model. One iterates again to identify further
structure or confirm that the model seems satisfactory after a
given step.

How to extend the original single superpixel hierarchical
model to a multivariate hierarchical model is a challenging
issue. There are 7 parameters for each superpixel, each of
which could warrant a spatial model. At the subject level,
the 3 random effects per subject (i.e., slopes, intercepts, and
residual variances) can have spatial structure, and finally,
residuals for each subject at each visit merit spatial
modeling. To simplify this daunting task, we proposed a
particular hierarchical Bayesian model for multivariate
longitudinal data, in which multivariate means that we have
multiple observations per subject (eye) at each visit, in
particular, one observation from each of 49 superpixels. Our
proposed model has 7 random effects across superpixels.
This model is a major incremental step on the way to full
modeling of the correlations between local macular thick-
ness measurements at the level of superpixels. We then
undertook residual spatial analysis of the random effects and
residuals.

Our residual analysis extends previous Bayesian and
longitudinal residual analyses.14-19,29 We identified
anatomically interpretable correlational structure in the
random effects and residuals. For the random intercepts,
we found extremely high correlations across the macula;
thus, we expect further improvements to our model would
substantially aid in estimating individual subject random
intercepts. Our planned next steps in model improvement
are to include the largest PC(s) identified in this paper as
additional structure to this model.

The correlation analyses within our Bayesian framework
(Fig S2) provided some interesting findings: The
correlations decreased with increased physical distance
from the superpixel of interest. However, clearly, there
was a sudden drop in the correlation between adjacent
superpixels at the temporal horizontal meridian. This is an
expected finding given the separate course of the superior
and inferior nerve fiber bundles toward the superior and
inferior poles of the optic nerve head.40-43 Conversely, a
similar finding was not observed nasally where there is no
clear-cut anatomical separation between the fiber bundles in
7
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the papillomacular region as no anatomical correlate exists
for the fovea-Bruch’s membrane opening axis.42,43

Bayesian PC analysis across the macula provided
actionable structural and modeling information. Fitting PC
in a Bayesian framework allows for point estimates, SDs,
and 95% credible intervals to be calculated for measures
such as the percent of variation explained by a given PC.
These PCs, while varying in strength from random in-
tercepts to random slopes to random log residual SDs and
residuals, showed remarkable consistency in their shape.

There is no precedent in the glaucoma OCT literature for
exploration of the correlation of macular local thickness
measurements. Such correlations have been investigated
within the central 24� and 10� VFs.44 Asaoka reported that
sectorization of 30-2 and 10-2 VF locations was distinct and
that the identified 10-2 sectors were stable on
bootstrapping.45 Such sectors tended to follow patterns of
central RNFL bundles. This is in agreement with results
reported by Nouri-Mahdavi et al46 based on clustering of
longitudinal point-wise rates of change across 24-2 VFs.

The superpixel-specific posterior means of the 7 super-
pixel parameters from our multivariate model were plotted
against the previously presented single superpixel modeling
in Fig S1.13 This figure uses the same priors developed for 36
central superpixels but provides results on the 49 superpixels
analyzed in this paper. The fact that the points on the 7
8

subplots of Fig S1 generally fall along the unity (x ¼ y) line
is mostly a testament that the prior chosen in our initial
paper was adapted to mimic the priors used in this paper.
The difference between the priors used in our original
model and the priors here is that in the former, we identified
the priors in an ad hoc way, whereas here we estimated the
means and variances of the superpixel parameters in a
principled fashion directly as part of the model.

In summary, we presented an innovative model for
multivariate longitudinal modeling of the macular super-
pixels within which we estimated the global means and SDs
of the superpixel-specific population parameters. PC ana-
lyses then explored underlying patterns in the random ef-
fects and residuals of the model across the macula.
Introduction of subject-specific global random intercepts
and slopes in addition to the superpixel-specific random
effects is expected to improve estimation of both popula-
tion- and subject-level intercepts and slopes. Further model
enhancement may be possible by including cross-superpixel
random effects and correlations to address additional
spatiotemporal relationships within the macular region in
the next iteration of our hierarchical framework. We plan to
utilize these findings to continue to enhance the multivariate
modeling of macular superpixel thickness measurements in
order to provide more accurate estimates of subject and
population longitudinal change over time.
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