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Abstract. Stanley’s theory of (P, ω)-partitions is a standard tool in combinatorics. It can be
extended to allow for the presence of a restriction, that is a given maximal value for partitions
at each vertex of the poset, as was shown by Assaf and Bergeron. Here we present a variation
on their approach, which applies more generally. The enumerative side of the theory is more
naturally expressed in terms of back stable quasisymmetric functions. We study the space of
such functions, following the work of Lam, Lee and Shimozono on back stable symmetric
functions. As applications we describe a new basis for the ring of polynomials that we
call forest polynomials. Additionally we give a signed multiplicity-free expansion for any
monomial expressed in the basis of slide polynomials.
Keywords. P-partitions, quasisymmetric functions, slide polynomials
Mathematics Subject Classifications. 05E05, 06A07

Introduction

The study of (P, ω)-partitions was initiated by Stanley in his thesis [Sta72] wherein he estab-
lished his fundamental theorem laying the groundwork. Since then (P, ω)-partitions, and several
close cousins thereof, have proven to be very useful in combinatorics. We refer the reader to a re-
cent survey by Gessel [Ges16] where the history is nicely recounted; see also [GR14, Section 5].
Several aspects of (P, ω)-partitions manifest themself in the combinatorics of certain generating
series K(P,ω) which turn out to be quasisymmetric functions. A class that then emerges naturally
is when P is a chain, in which case one obtains Gessel’s fundamental quasisymmetric functions.
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An immediate, and pleasant, consequence of Stanley’s fundamental theorem is that K(P,ω) ex-
pands positively in terms of fundamental quasisymmetric functions, i.e. the expansion involves
nonnegative integer coefficients.

A polynomial analogue of the latter was introduced by Assaf and Searles [AS17] under the
name slide polynomials. These were then realized by Assaf and Bergeron [AB20] in a manner
akin to how fundamental quasisymmetric functions are defined via (P, ω)-partitions. To this end,
the authors in loc. cit. introduced the notion of (P, ω, ρ)-partitions, which are (P, ω)-partitions
in the traditional sense now subject to upper bound constraints imposed by the restriction ρ.
The generating series K(P,ω) from before turn into polynomials K(P,ω,ρ). The natural analogue
of Stanley’s fundamental theorem holds in this restricted setting as well, and Assaf–Bergeron
establish that K(P,ω,ρ) expands positively in terms of slide polynomials when ρ is AB-flag; see
Section 2.2 for the precise definition.

The main purpose of this note is to introduce (P,Φ)-partitions, which are a mild general-
ization of those (P, ω, ρ)-partitions that satisfy the AB-flag condition. They form a class that is
also easier to deal with, leading to simplified proofs. In particular, we find ourselves in the fol-
lowing desirable setting once more—an analogue of Stanley’s fundamental theorem holds and
this allows us to describe the set of (P,Φ)-partitions as a disjoint union of (L,Φ)-partition sets
as L varies over the set of linear extensions of P . This then allows us to express K(P,Φ) as a
sum of the K(L,Φ), each of which either equals a slide polynomial or 0. As a particular instance
of K(P,Φ) we introduce forest polynomials, which are studied in greater detail in the context of
the permutahedral variety in [NT24].

It turns out that the back stable setting is a particularly convenient place to view these results.
By allowing our (P,Φ)-partitions to take values in the negative integers, the polynomials K(P,Φ)

become generating series
←−
K (P,Φ) in the alphabet xi where i < N for some N ∈ Z. The

←−
K (P,Φ)

naturally live inside the space of back stable quasisymmetric functions
←−
QR, which we define

and study in Section 4. In particular we establish that the back stable limits of slide polynomials
form a basis for

←−
QR.

Finally we give an explicit description expressing a monomial in the basis of slide polynomi-
als. It turns out that the coefficients that arise belong to {0,±1}. In other words, this expansion
is signed multiplicity-free.

1. Combinatorial preliminaries

Given a sequence c = (ci)i∈Z of nonnegative integers, we define its support Supp(c) to be the
set of indices i such that ci > 0. We call c an N-vector if Supp(c) is finite. If Supp(c) ⊆ [n] :=
{1, . . . , n} for some positive integer n, we occasionally write c = (c1, . . . , cn) and refer to c as a
weak composition. For any N-vector c, we let |c| :=

∑
i ci denote its weight. The finite sequence

of positive integers obtained by omitting all 0s from c is called a strong composition. Henceforth,
by composition, we shall always mean strong composition. If α = (α1, . . . , αℓ(α)) is a composi-
tion of weight r ⩾ 0, then we denote this byα ⊨ r. Here ℓ(α) is the length ofα. The unique com-
position of weight and length both 0 will be denoted by ∅. We will need two operations on com-
positions– concatenation and near-concatenation. Both take compositions α = (α1, . . . , αp)
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and β = (β1, . . . , βq) as input; the former produces α ·β = (α1, . . . , αp, β1, . . . , βq) whereas the
latter produces (α1, . . . , αp + β1, β2, . . . , βq).

When writing our N-vectors c = (ci)i∈Z we use a vertical bar to distinguish the ‘left half’
(. . . , c−1, c0) and the ‘right half’ (c1, c2, . . . ). For example c = (. . . , 0, 2|0, 1, 2, 0, 2, 0, . . .)
has c0 = 2 separated from c1 = 0 by a vertical bar. We will be particularly interested in N-
vectors supported on the set of positive integers Z+, in which case we will omit the vertical bar
and the zeros left of it.

We denote the set of words in an alphabetA byA∗. We denote the length of any wordw ∈ A∗

by ℓ(w). We let ϵ denote the empty word, i.e. the unique word of length 0. A subset ofA∗ which
we care about is Inj(A), the set of injective words, i.e. words with all distinct letters.

We now proceed to define the ordered alphabet that is relevant for our purposes. It is obtained
by “augmenting” Z.
Definition 1.1. Let Z be the ordered alphabet with letters i[j] where i ∈ Z and j ∈ Z+. We have
a linear order on Z⊔Z given by i < i[1] < i[2] < i[3] < · · · < i+1 for all i. We define the value
of i[j] by val(i[j]) = i.

The order is the lexicographic order on Z× Z+, but the notation will serve to highlight the
prevalent role of the first factor.

There is a natural way to go from Z∗ to Inj(Z): given w in Z∗, one associates a
word W = stan(w) by labeling the occurrences of the same letter i in w from left to right
by i[1], i[2], . . . . For instance w = 1221625 gets mapped to W = 1[1]2[1]2[2]1[2]6[1]2[3]5[1]. This
process is injective, and will be used as our natural embedding

stan : Z∗ ↪→ Inj(Z). (1.1)

2. Revisiting Stanley and Assaf–Bergeron

We first recall the setting and main results of the celebrated theory of (P, ω)-partitions due mainly
to Stanley. We then explain how this theory extends in the presence of a restriction by recalling
pertinent results of Assaf and Bergeron.

In this section (P,⩽P ) is a finite poset. We will interchangeably use P to denote both the
poset as well as the set underlying the poset. We denote the cover relation by ≺P .
Definition 2.1. A P -partition is a function f : P→Z+ such that f(u)⩾f(v) whenever u≺P v.

2.1. Stanley’s theory of (P, ω)-partitions.

The starting point is to fix in addition a bijective labeling ω : P → {1, . . . ,#P}. The pair (P, ω)
then forms a labeled poset. A (P, ω)-partition is a P -partition f such that f(u) > f(v) when-
ever u ≺P v and ω(u) > ω(v). Let Part(P, ω) denote the set of (P, ω)-partitions.

A linear extension L of P is a linear ordering of P extending ⩽P . Thus a linear extension
is a totally ordered set with P as its underlying set. Let Lin(P ) be the set of linear extensions
of P . For example, the (P0, ω0)-partitions for the example illustrated in Figure 2.1 are the func-
tions f : P0 → Z+ that satisfy f(a) ⩾ f(b) and f(c) > f(b). Throughout this note, we depict
strict inequalities using dashed edges in Hasse diagrams.
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Figure 2.1: A labeled poset and its two linear extensions.

Theorem 2.2 (Stanley’s fundamental theorem [Sta72, Theorem 6.2]). We have

Part(P, ω) =
⊔

L∈Lin(P )

Part(L, ω).

For (P0, ω0) in Figure 2.1, the two linear extensions are shown together with their induced
labeling on the right. Theorem 2.2 says that (P0, ω0)-partitions are the functions f satisfying
either f(a) ⩾ f(c) > f(b) or f(c) > f(a) ⩾ f(b), as can be directly checked.

Now for any (P, ω) one can consider the generating function

K(P,ω) =
∑
f

∏
u∈P

xf(u) (2.1)

where the sum is over the set of all (P, ω)-partitions. Then Stanley’s theorem has the following
expansion as an immediate corollary:

K(P,ω) =
∑

L∈Lin(P )

K(L,ω). (2.2)

What makes this particularly useful is that the series K(L,ω) are precisely the fundamental qua-
sisymmetric functions introduced by Gessel [Ges84], as we now detail.

Recall that a series f in the variables xi for i ∈ I , with I an interval in Z, is quasisymmetric
if for any composition α = (α1, . . . , αk) and any subsets {i1 < · · · < ik} and {j1 < · · · < jk}
of I , the coefficients of xα1

i1
· · ·xαk

ik
and xα1

j1
· · ·xαk

jk
in f are the same.

Let x+ denote the set of positively-indexed variables {xi | i ∈ Z+}. Given a subset S
of {1, . . . , r − 1}, the fundamental quasisymmetric function Fr,S ∈ Q[[x+]] is defined by

Fr,S =
∑

1⩽i1⩽···⩽ir
ij<ij+1 if j∈S

xi1 · · ·xir . (2.3)

For instance F3,{1} =
∑

1⩽i1<i2⩽i3
xi1xi2xi3 and F3,{2} =

∑
1⩽i1⩽i2<i3

xi1xi2xi3 . The Fr,S

for r ⩾ 0 and S a subset of {1, . . . , r−1} form a basis of the space of quasisymmetric functions
in x+. Let α = (α1, . . . , αℓ) ⊨ r be the composition corresponding to S ⊆ {1, . . . , r−1} under
the folklore correspondence given by S = {α1, α1 + α2, . . . , α1 + α2 + · · · + αℓ−1}. We will
then use freely the notation Fα to denote Fr,S . For instance F(1,2) = F3,{1} and F(2,1) = F3,{2}.
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Now if L is a chain v1 ≺L · · · ≺L vr with a labeling ω, define

Des(ω) = {i ∈ [r − 1] | ω(vi) > ω(vi+1)}.

If we denote the composition of r corresponding to Des(ω) by αω, then it is easily verified that

K(L,ω) = Frev(αω).

Here rev reverses its input. This shows that the expansion (2.2) expresses any K(P,ω) positively
in the basis of fundamental quasisymmetric functions. For the poset in Figure 2.1, we get the
expansion K(P0,ω0) = F(2,1) + F(1,2).

2.2. Restricted partitions

We now want to constrain P -partitions to be dominated by certain fixed values at each element
of P . Let (P, ω) be a labeled poset.

Definition 2.3. Fix ρ : P → Z+ a map, called a restriction. We define (P, ω, ρ)-partitions as
those (P, ω)-partitions f that satisfy f(u) ⩽ ρ(u) for all u ∈ P .

Let Part(P, ω, ρ) be the set of all (P, ω, ρ)-partitions. Assaf and Bergeron [AB20] have
already considered this extension. We recall some of their results (see Remark 2.6 for easy
comparison). First they note that Theorem 2.2 adapts immediately:

Theorem 2.4 ([AB20, Theorem 3.14]). For any restriction ρ, we have

Part(P, ω, ρ) =
⊔

L∈Lin(P )

Part(L, ω, ρ).

So, for instance, if we impose the restriction ρ(a) = 3, ρ(b) = ρ(c) = 2 for the poset P0 in
Figure 2.1, then Part(P0, ω, ρ) comprises exactly two functions: f(a) = f(c) = 1, f(b) = 2
and f(c) = 1, f(a) = f(b) = 2. The former comes from the linear extension in the middle and
the latter from that on the right.

Definition 2.3 leads to a restricted version of (2.1) allowing us to define generating func-
tions K(P,ω,ρ), which are now polynomials, in the obvious manner. Theorem 2.4 then naturally
gives a restricted version of (2.2) for K(P,ω,ρ).

Now the issue here is that, when L is a linear order, the family of functions K(L,ω,ρ) for
varying ω and ρ is too large, and is in particular not free. There is however a very natural
subfamily that forms a basis of the space of all polynomials, namely the slide polynomials [AS17]
to which we will come back later. A remaining issue is that, for general restrictions ρ, the
expansion of K(P,ω,ρ) is not necessarily positive in the slide basis, cf. [AB20, Example 3.12].

Assaf and Bergeron are thus led to consider a restricted set of restrictions ρ. These are
defined as follows: Say that the restriction ρ is an AB-flag for (P, ω) if the following conditions
hold (cf. [AB20, Definition 4.1]).

(AB1) If u ≺P v, then ρ(u) ⩾ ρ(v);

(AB2) If u ≺P v and ρ(u) > ρ(v), then ω(u) > ω(v).
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Their main result is then the following:

Theorem 2.5. If ρ is an AB-flag for (P, ω), the polynomial K(P,ω,ρ) expands in the slide basis
with nonnegative integral coefficients.

We postpone the definition of slide polynomials to the next section, preferring to define them
via a seemingly different perspective than their original definition [AS17, Definition 3.6].

In order to prove Theorem 2.5, Assaf and Bergeron modify ρ to have it satisfy in addition a
certain “well-labeled” restriction; see [AB20, Section 4]. This modification is needed because
the AB-flag property alone does not transfer to linear extensions as can be easily seen. As
Assaf and Bergeron demonstrate in [AB20, Proposition 4.3], the set of flagged (P, ρ)-partitions
remains unchanged in spite of these modifications. The proof of [AB20, Proposition 4.3] has a
minor gap. To assist the reader following their proof, we note some key aspects and record the
fix. They employ the fact that if one takes the Hasse diagram of any (P, ω) and removes all strict
edges, then the resulting connected components inherit an ordering from P . Note that they start
with an AB-flag but at this stage this plays no role since a constant AB-flag puts no restriction
on ω. As the example in Figure 2.2 shows, we can in fact get two connected components that
are not ordered. That being noted, the removal of strict edges does indeed give a preorder on
the connected components. Now if one considers the induced order, then the AB-flag property
forces all elements of these supercomponents to have the same ρ-values, and the remainder of
their proof goes through.

2

3

1

5

4

Figure 2.2: Counterexample to an argument in the proof of [AB20, Proposition 4.3].

In the next section, we will find a simpler condition on restrictions, which at the same time
is more general than AB-flags and for which (positivity of) the slide expansion will follow im-
mediately.
Remark 2.6. Our setup differs slightly from [AB20]. First, our P -partitions are order-reversing
instead of order-preserving. To go between the two formulations, one simply has to go from a
poset (P,⩽P ) to its opposite (P,⩾P ). Also, the function ω is implicit in their work, since they
consider the set underlying P to be {1, . . . ,#P} already. This allows for compact notation,
but is not well adapted to having different labelings on a given abstract poset. Furthermore, the
forthcoming notion of (P,Φ)-partitions would be cumbersome to use in this setting.
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3. (P,Φ)-partitions

We now define our notion of (P, ω)-partitions with restrictions. Recall the ordered alphabet Z+

from Section 1, given by letters i[j] with i, j ∈ Z+.

Definition 3.1 (Labeled flag Φ). Let P be a poset. A labeled flag on P is an injective func-
tion Φ : P → Z+.

Definition 3.2 ((P,Φ)-partitions). Let (P,Φ) be a poset with a labeled flag. A (P,Φ)-partition
is a function f : P → Z+ such that for any u, v ∈ P :

• f(u) ⩾ f(v) if u ≺P v;

• f(u) > f(v) if u ≺P v and Φ(u) > Φ(v);

• f(u) ⩽ val(Φ(u)).

We denote the set of all (P,Φ)-partitions by Part(P,Φ). An example is given in Figure 3.1.
On the left is the Hasse diagram of the diamond poset with the labeled flag in blue. On the right
are the five (P,Φ)-partitions. The e-labels on the covers may be momentarily ignored.

1[1]

3[1]

3[2]

3[3]
Φ

3

1 2

3

1 1

11

2

1 2

2

1 1

11

3

3

1

1

v2

v1
v3

v4

e1e2

e3 e4

f1 f2 f3

f5f4

Figure 3.1: A poset with labeled flag (P,Φ) and its five (P,Φ)-partitions.

Let us note immediately that the notion of (P,Φ)-partitions is simply a concise way to encode
a class of (P, ω, ρ)-partitions with a certain condition on ρ. Namely, say that ρ is an LF-flag if it
satisfies

(LF) For any u, v ∈ P , ρ(u) > ρ(v) implies ω(u) > ω(v).

Proposition 3.3. Fix a poset P . Then the following hold.

(1) If Φ is a labeled flag, then Part(P,Φ) = Part(P, ω, ρ) for some ω, ρ satisfying (LF).

(2) Conversely, for any ω, ρ satisfying (LF), there exists a labeled flag Φ such that
Part(P,Φ) = Part(P, ω, ρ).
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Proof. For (1), define ω = ω(Φ) as the unique bijection P → {1, . . . ,#P} that satis-
fies ω(u) < ω(v) if and only if Φ(u) < Φ(v). Define also ρ = ρ(Φ) by ρ(u) = val(Φ(u)).

We first claim that ρ is LF-flag. Indeed, we have ρ(u) > ρ(v) if and only
if val(Φ(u)) > val(Φ(v)), which in turn implies that Φ(u) > Φ(v). By the definition of ω
this immediately yields ω(u) > ω(v).

We now claim that Part(P,Φ) = Part(P, ω, ρ). Say f ∈ Part(P,Φ). Then we know that
f(u) ⩽ val(Φ(u)) = ρ(u) for all u ∈ P . Furthermore, u ≺P v implies f(u) ⩾ f(v). Finally
u ≺P v andΦ(u) > Φ(v) implies f(u) > f(v). Now note thatΦ(u) > Φ(v)⇐⇒ ω(u) > ω(v).
It follows that f ∈ Part(P, ω, ρ). The inclusion Part(P, ω, ρ) ⊆ Part(P,Φ) is essentially the
same proof.

For the converse in (2), given ρ an LF-flag define Φ(u) = ρ(u)[ω(u)]. Like before we need
to show that Part(P, ω, ρ) = Part(P,Φ), and only the second condition in Definition 3.2
is not trivial. It follows however readily from the fact that Φ(u) > Φ(v) is here equivalent
to ω(u) > ω(v) because of the condition (LF).

3.1. Comparison with AB-flags

The notion of (P,Φ)-partitions extends the notion of AB-flagged partitions defined in the pre-
vious section:

Proposition 3.4. Let ρ be an AB-flag for (P, ω). Define a labeled flag onP byΦ(u) = ρ(u)[ω(u)].
Then

Part(P, ω, ρ) = Part(P,Φ).

Proof. Elements of both sets are P -partitions that are bounded by ρ. It remains to show that the
strictness conditions are imposed for the same cover relations. Thus the claim we have to prove
is that if u ≺P v, then Φ(u) > Φ(v) if and only if ω(u) > ω(v).

Pick then u, v ∈ P such that u ≺P v. Now Φ(u) > Φ(v) is equivalent to either ρ(u) > ρ(v)
or (ρ(u) = ρ(v) and ω(u) > ω(v)) by definition of the order on Z+. In the latter case, we are
already done. In the former case, condition (AB2) implies ω(u) > ω(v). The converse also
holds since we have necessarily ρ(u) ⩾ ρ(v) by (AB1).

The next example shows that in fact, the notion of (P,Φ)-partitions is strictly more general
than that of AB-flagged partitions.

Example 3.5. Consider (P,Φ) given by the labeled Hasse diagram on the left of Figure 3.1 .
Then Part(P,Φ) consists of the five partitions shown on the right.

Let us consider possible choices of (ω, ρ) such that Part(P, ω, ρ) = {f1, f2, f3, f4, f5} (Note
that we know by Proposition 3.3 that such a choice is always possible). The cover relation e1 is
necessarily strict, otherwise the partition f with constant value 1would be valid. The other cover
relations are necessarily weak since there is a fi with equality for each of them. This imposes a
unique choice for ω, namely ω(vi) = i for i = 1, 2, 3, 4. As for ρ, we must clearly have ρ(v2) = 3
and ρ(v3) ⩾ 3. Then ρ(v1) = 1 is also imposed, since any other choice would make it possible
to switch the value of v1 in f1 from 1 to 2, resulting in a partition f not in the allowed fi’s.
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Now assume in addition that ρ is an AB-flag. By (AB1) the remaining choices for ρ are
ρ(v4)=1 and ρ(v3)=3. This gives us ρ(v3)>ρ(v4) while ω(v3)<ω(v4), contradicting (AB2).
This shows that there are no ω, ρ with ρ an AB-flag such that Part(P,Φ) = Part(P, ω, ρ).

3.2. Slide polynomials

Since (P,Φ)-partitions form a certain class of (P, ω, ρ)-partitions, we have the immediate corol-
lary of Theorem 2.4:

Corollary 3.6. Let (P,Φ) be a poset with a labeled flag. We have

Part(P,Φ) =
⊔

L∈Lin(P )

Part(L,Φ).

We introduce the generating polynomial

K(P,Φ) =
∑

f∈Part(P,Φ)

∏
u∈P

xf(u). (3.1)

Corollary 3.6 gives:
K(P,Φ) =

∑
L∈Lin(P)

K(L,Φ). (3.2)

We will now see that all the (nonzero) K(L,Φ) are slide polynomials which we introduce next.
WriteL = v1 ≺ v2 ≺ · · · ≺ vr. Any (L,Φ)-partition f can be encoded in a sequence (i1, . . . , ir)
with ij = f(vj), while (L,Φ) is encoded in the injective word W = a1 . . . ar ∈ Inj(Z+) by
simply setting ai = Φ(vi). The corresponding generating function K(L,Φ) is thus given by the
explicit series

F(W ) := K(L,Φ) =
∑

i1⩾i2⩾···⩾ir>0
ij>ij+1 if aj>aj+1

ij⩽val(aj)

xi1xi2 · · ·xir . (3.3)

Example 3.7. Consider W = 3[1]3[2]1[1]. Then (3.3) says

F(W ) =
∑

i1⩾i2⩾i3>0

xi1xi2xi3

where 3 ⩾ i1 ⩾ i2 > i3 and i3 ⩽ 1. Thus F(W ) = x2
3x1 + x3x2x1 + x2

2x1.
Note that replacing the 3[2] in the middle by any letter in Z+ larger than 3[2] does not al-

ter F(W ). Finally note that it can be the case that the sum defining F(W ) is empty. For instance,
if W = 1[2]1[1], then F(W ) = 0. This ‘anomaly’ will be fixed when we work in the back stable
setting.

Given a weak composition c with positive support, consider the following word Wc: for
each i>0, let Xi= i[1]i[2] · · · i[ci]. Then Wc=Xi1Xi2 · · ·Xim where i1>i2>. . .>im are the in-
dices i such that ci>0. For instance if c=(0, 2, 4, 0, 1, 0, . . .) then Wc=5[1]3[1]3[2]3[3]3[4]2[1]2[2].
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Definition 3.8 ([AB20]). The slide polynomial Fc is defined as F(Wc).

Proposition 3.9. For any W ∈ Inj(Z+), the polynomial F(W ) is either zero or is equal to Fc

for a unique c.

Proof. The uniqueness of c holds because slide polynomials form a basis of Q[x+]. This is
the content [AS17, Theorem 3.9], and follows readily from a triangular change of basis with
monomials.

Now given W , we must construct a word Wc such that F(W ) = F(Wc). By scanning W
from left to right, let us show one can define such a word in an algorithmic fashion. One has to
find a standard word Wc with the same descents as W , which moreover gives the same upper
bounds. We now explain the construction.

We first construct a wordU inZ∗. IfW is empty, then so isU . IfW ∈ Z+, thenU = val(W ).
Otherwise, say W = w1 . . . wr for r ⩾ 2, with wi pairwise distinct letters in Z+. Suppose
we have scanned letters w1 through wk for 1 ⩽ k < r and constructed a word u1 · · ·uk.
If wk+1 < wk, then uk+1 := min(val(wk+1), uk − 1). If wk+1 > wk, then uk+1 := uk. Re-
peating this we get U = u1 . . . ur ∈ Z∗, a word with nonincreasing letters.

If any letter ui is nonpositive, then F(W ) = 0. Otherwise stan(U) = Wc for a unique N-
vector c with positive support, and by induction one checks that Wc satisfies F(W ) = F(Wc) as
wanted.

We refer to the resulting Wc as RS(W ). For instance, let W = 5[1]6[5]8[3]3[2]3[1]1[2]2[1]3[3].
Then U = 55532111 which in turn means that RS(W ) = 5[1]5[2]5[3]3[1]2[1]1[1]1[2]1[3]. This
equals Wc for c = (. . . , 0|3, 1, 1, 0, 3, 0, . . .). Note that if the last letter in W is replaced by
say 2[3], then one gets F(W ) = 0. This is because Wc = RS(W ) satisfies Supp(c) ⊈ Z+.

The combinatorics explained in the proof are already presented by Reiner and Shimozono in
[RS95, Lemma 8]: the minor differences are that the authors in loc. cit. work from right to left,
and work with Z+ instead of Z+.

3.3. Forest polynomials

We close this section by introducing a novel family of polynomials that forms the core of the
work [NT24] that links the quotient of Q[x1, . . . , xn] by the ideal of positive degree quasisym-
metric polynomials in x1, . . . , xn to the Schubert class expansion of the cohomology class of the
permutahedral variety Permn. We lay some foundations for that work here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2[1]

2[2]

4[1] 7[1] 11[1]
11[2]

ΦF

15

Figure 3.2: An indexed forest with its flag.
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Let S be a finite set of integers. It decomposes uniquely as S = I1⊔ . . .⊔Ik, where each Ij is
a maximal subset of consecutive integers in S. An indexed forest F on S is the data of a rooted
binary tree Tj with |Ij| internal nodes for any j ∈ [k]. Its size |F | is the cardinality of S, and
we represent the latter by unit intervals of the integer line. See Figure 3.2 for an indexed forest
(ignoring the labels in red for now) with |F | = 6. It comprises three trees supported on the
intervals [2, 4], [7], and [11, 12] from left to right.

Let us denote the internal nodes (i.e. everything but the leaves) in F by IN(F ). We will treat
an indexed forest F as a Hasse diagram of a poset (also called F ) with underlying set IN(F ).
What roles do the intervals play? They determine a labeled flag ΦF as follows: for each left
leaf lf , let m be the label of the unit interval to its right. Let v1, . . . , vk be the inner nodes on
the left branch ending at lf , from bottom to top. Then define ΦF (vi) := m[i] for i = 1, . . . , k. In
Figure 3.2 the left leaves have labels 2, 4, 7 and 11, completely determining ΦF as shown in red.

Definition 3.10. The forest polynomial PF ∈ Q[x+] is defined as

PF = K(F,ΦF ).

Explicitly, PF is the sum of monomials
∏

v∈IN(F ) xf(v) over all labelings f : IN(F ) → Z+

satisfying f(v) ⩽ val(ΦF (v)) for all v, and that are weakly increasing down left edges and
strictly increasing down right edges.

Thus PF is the sum of monomials over ‘semi-standard’ increasing labelings of the internal
nodes of the indexed forest F . For example, given the indexed forest F in Figure 3.3 one has

PF =
∑
2⩾a⩾b
4⩾c>b

xaxbxc = x2
2x4 + x1x2x4 + x2

1x4 + x2
2x3 + x1x2x3 + x2

1x3 + x2
1x2 + x1x

2
2.

1 2 3 4 5 6

a

b

c

Figure 3.3: An indexed forest F with c(F ) = (0, 2, 0, 1).

We can obtain the expansion of PF into slide polynomials thanks to (3.2). Note that a
linear extension of the poset F corresponds to a decreasing forest, i.e. a bijective labeling
IN(F )→ {1, . . . , |F |} that is decreasing down edges. Let Dec(F ) be the set of such decreasing
labelings, and for any such labeling ℓ we note W (ℓ) the injective word read from the flag ΦF .
We thus get

PF =
∑

ℓ∈Dec(F )

F(W (ℓ)). (3.4)

Returning to our running example we get two decreasing labelings for the F in Figure 3.3, which
in turn imply the slide expansion

PF = F(2[1]4[1]2[2]) + F(4[1]2[1]2[2]) = F12 + F0201.
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By appealing to a simple bijection between N-vectors and indexed forests we can show that
the set of forest polynomials is a basis for the polynomial ring Z[x+]. Indeed, let c(F ) be the
weak composition given by ci(F ) being the number of nodes on the left branch leading to the leaf
just left of the label i. It is easily seen that the correspondence F 7→ c(F ) is a bijection between
indexed forests and N-vectors supported on Z+. In fact xc(F ) is the revlex leading monomial
in PF , which in turn suffices to show the following:

Theorem 3.11. The set of forest polynomials forms a basis for Z[x+].

4. Back stable version

We shall see that the theory of (P,Φ)-partitions (and (P, ω, ρ)-partitions more generally) be-
comes nicer when we allow P -partitions to take nonpositive values. In the expansion (3.2)
of K(P,Φ), some terms on the right-hand side can be zero. In fact K(P,Φ) itself may be zero, and
this phenomenon leads to some technical investigation in [AB20]. Removing the lower bound
for (P,Φ)-partitions ensures that no term will cancel, leading to a more pleasant theory.

The corresponding generating functions then belong to a certain class of series. We
describe some structural theory of these series, borrowing notation and drawing motivation
from [LLS21]. We also note that some of the series we consider arose naturally in previous
work; see [NT21, Proposition 8.9] and [TWZ22, Section 3].

4.1. Back stable (P,Φ)-partitions

We now consider (P,Φ)-partitions f with the added liberty that f can now take values in Z
instead of Z+.

Definition 4.1 (Back stable (P,Φ)-partitions). Given a poset P , let Φ be an injective func-
tion Φ : P→Z. A back stable (P,Φ)-partition is a function f : P→Z such that for any u, v∈P :

• f(u) ⩾ f(v) if u ≺P v;

• f(u) > f(v) if u ≺P v and Φ(u) > Φ(v);

• f(u) ⩽ val(Φ(u)).

Denote by
←−
K (P,Φ) the corresponding generating function. Note that this is now a homoge-

neous series of degree #P in (xi)i∈Z such that only a finite number of xi for i > 0 occur. Then
Stanley’s fundamental theorem, in the form of Corollary 3.6, holds with no change. For L a
chain, identified as a word W ∈ Inj(Z) as in Section 3.2, let

←−
F (W ) =

←−
K (L,Φ). Then we have

←−
K (P,Φ) =

∑
L∈Lin(P )

←−
F (W ). (4.1)

The series
←−
K (P,Φ) are never zero. In particular, none of the series

←−
F (W ) vanishes in (4.1),

so the right-hand side is an actual summation over all linear extensions. Another advantage is
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that
←−
K (P,Φ) lives inside the vector space of back stable quasisymmetric functions, introduced

in the next subsection. This space comes equipped with several linear maps, which allow for
recovering both the classical story of (P, ω)-partitions and quasisymmetric functions as well as
the polynomial story involving (P,Φ)-partitions developed here.

4.2. Back stable quasisymmetric functions

We work with the set of variables x := {xi | i ∈ Z}. Given b ∈ Z, define x⩽b := {xi | i ⩽ b}.
In the case b = 0, we set x− := x⩽0. Let x+ := {xi|i ⩾ 1}. Let QSym(x⩽b) be the Q-algebra of
quasisymmetric functions in the ordered alphabet x⩽b. The algebra QSym(x−) will be denoted
by QSym.

Let R ⊆ Q[[x]] denote the set of bounded degree formal power series f in x with the property
that there exists an N ∈ Z such that no xi appears in f for i > N .

Definition 4.2. Let f ∈ R. We say that f is back quasisymmetric if there exists a b ∈ Z such that
for any sequence of positive integers (a1, . . . , ak) and any monomial m in x>b, the coefficient
of xa1

i1
· · ·xak

ik
m in f equals that of xa1

j1
· · ·xak

jk
m whenever i1< · · ·<ik⩽b and j1< · · ·<jk⩽b.

Equivalently, f is back quasisymmetric if there exists a b ∈ Z such that f ∈ QSym(x⩽b)⊗
Q[xb+1, xb+2, . . . ].
Remark 4.3. For the reader looking for something in the spirit of [LLS21], the following al-
ternative definition should suffice. Call f ∈ R back quasisymmetric if there exists a b ∈ Z
such that σi(f) = f for all i ⩽ b where σi acts via Hivert’s quasisymmetrizing action [Hiv00,
Section 3].

Let
←−
QR denote the space of back quasisymmetric functions. Clearly, the space

←−
R of back

symmetric functions [LLS21] is a subset of
←−
QR. We have the following analogue of [LLS21,

Proposition 3.1].

Proposition 4.4. We have that
←−
QR = QSym⊗Q[x].

Proof. Both QSym and Q[x] are contained in
←−
QR. Let us show that their abstract tensor product

naturally embeds naturally in
←−
QR. We need to prove that for any linear relation in

←−
QR∑

α,c

uα,cFα(x−)x
c = 0, (4.2)

the coefficients uα,c ∈ Q are all zero. Here α and c run over compositions and N-vectors
respectively. Now fix an N-vector d. After dividing the relation in (4.2) by xd, we get∑

α

uα,dFα(x−) = −
∑
α,c ̸=d

uα,cFα(x−)x
c−d. (4.3)

Now we apply the shift xi 7→ xi+b for b a nonnegative integer, and then set xi = 0 for i ⩽ 0. The
expression Fα(x−)x

c−d becomes Fα(x1, . . . , xb)
∏

i x
ci−di
i+b . As b goes to infinity, this quantity
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goes to zero since c ̸= d. The limit here is the usual one for series, where for any fixed monomial
the coefficients eventually stabilize.

The relation in (4.3) in the limit then gives∑
α

uα,dFα(x+) = 0. (4.4)

We can now conclude that uα,d = 0 for all α by linear independence of fundamental quasisym-
metric functions. Since d was arbitrary, we get the desired result.

Having thus shown
←−
QR ⊇ QSym ⊗ Q[x], we proceed to prove the reverse inclusion.

Let f ∈
←−
QR, so that there exists b ∈ Z such that f ∈ QSym(x⩽b) ⊗ Q[xb+1, xb+2, . . . ]. By

linearity, it is enough to assume that f = Fα(x⩽b)P with P ∈ Q[xb+1, xb+2, . . .]. Say b ⩾ 1.
Write the fundamental quasisymmetric function Fα(x⩽b) as Fα(x− + x1 + · · ·+ xb). We know
(cf. for instance [AFNT15, Section 2.3]) that this expands as

Fα(x⩽b) =
∑

β⊙γ=α or β·γ=α

Fβ(x−)Fγ(x1, . . . , xb). (4.5)

Now suppose b ⩽ −1. Then Fα(x⩽b) = Fα(x− − x0 − · · · − xb+1). This time we know that

Fα(x⩽b) =
∑

β⊙γ=α or β·γ=α

(−1)|γ|Fβ(x−)Fγt(xb+1, . . . , x0). (4.6)

In both cases, this shows that f = Fα(x⩽b)P is an element of QSym⊗Q[x] as wanted.

4.3. Some maps defined on back stable quasisymmetric functions

As in [LLS21, Section 3.4], we consider the evaluation map η0 : Q[x] → Q obtained by set-
ting xi = 0 for all i ∈ Z. In other words, it picks the constant term in a polynomial. It induces
the map 1⊗η0 on QSym⊗Q[x]: it essentially picks out the term in QSym and forgets the poly-
nomial part. Following Lam–Lee–Shimozono, we will abuse notation and refer to this induced
map on

←−
QR by η0 as well.

Let γ :
←−
QR→

←−
QR be the map shifting variables xi 7→ xi+1 for i ∈ Z [LLS21, Section 3.3].

Finally let π+ :
←−
QR → Q[x+] be the truncation map obtained by setting xi = 0 for i ⩽ 0; see

proof of [LLS21, Proposition 3.18]. Note that all of these maps are algebra morphisms, and the
previous two were already employed in the proof of Proposition 4.4.

Proposition 4.5. For any f ∈
←−
QR,

η0(f)(x+) = lim
b→∞

π+(γ
b(f)).

Note that η0(f) lives in QSym(x−). The notation η0(f)(x+) means that we now write it in
the variables x+ using the natural isomorphism between QSym(x−) and QSym(x+). The limit
is the usual one for series, already used in the proof of Proposition 4.4: the coefficients of any
fixed monomial eventually stabilize.
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Proof. By linearity it is enough to prove it for f = gxc with g ∈ QSym, with xc = xa1
i1
· · ·xak

ik
.

Then η0(f) = g if xc = 1 and 0 otherwise. On the other hand, for b large enough
π+(γb(f)) = g(x1, . . . , xb)x

a1
i1+b · · ·x

ak
ik+b. This has limit 0 if any of the ai is nonzero, and g(x+)

otherwise as wanted.

4.4. Back stable slides

We now discuss the back stable slides
←−
F c :=

←−
F (Wc) beginning with establishing that they

belong in
←−
QR. In particular, this would show via (4.1) that

←−
K (P,Φ) ∈

←−
QR as well. To this end,

we will need a result from [TWZ22] that we now recall for the reader’s convenience.
Let c be an N-vector. We let flat(c) denote the sequence formed by the positive entries

in c. Call a decomposition c = d + e where addition is component-wise good if either
flat(c) = flat(d) · flat(e) or flat(c) = flat(d) ⊙ flat(e) holds. Then [TWZ22, Lemma 3.5]
in a special case states that:

Lemma 4.6. Let c be an N-vector such that Supp(c) ⊆ Z+. Then
←−
F c has the following expan-

sion in QSym⊗Q[x+]: ←−
F c =

∑
good c=d+e

Fflat(d)(x−)Fe(x+).

Example 4.7. Let c = (0, 2, 0, 2, 0, 0, . . .). Then flat(c) = (2, 2) and one can easily check that
we have the following five decompositions for (2, 2): ∅ ·(2, 2), (1)⊙(1, 2), (2) ·(2), (2, 1)⊙(1),
(2, 2) ·∅. These in turn translate to five good decompositions and we obtain

←−
F 0202 = F0202(x+) + F1(x−)F0102(x+) + F2(x−)F0002(x+) + F21(x−)F0001(x+) + F22(x−).

Proposition 4.8. For any N-vector c, we have
←−
F c ∈

←−
QR. As a consequence,

←−
K (P,Φ) ∈

←−
QR for

any poset P with labeled flag Φ.

Proof. It suffices to assume Supp(c) ⊆ Z+. Indeed, abuse notation and define γ(c) to be the
N-vector obtained by shifting c once to the right. Then it is clear that for i ∈ Z that

γi
(←−
F c

)
=
←−
F γi(c).

Now note that
←−
QR is closed under shifting.

When Supp(c) ⊆ Z+, then Lemma 4.6 immediately implies that
←−
F c ∈

←−
QR. As for show-

ing
←−
K (P,Φ) ∈

←−
QR, note that it is a sum of back stable slides as in (4.1).

The next result describes the distinguished role played by the back stable slides in
←−
QR. It is

the analogue of [LLS21, Theorem 3.5].

Theorem 4.9. The back stable slides
←−
F c for c an N-vector form a Q-basis of

←−
QR.
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Proof. The linear independence holds for the same reason as in [LLS21]. Indeed the revlex
leading monomial in

←−
F c is xc. We now show that the

←−
F c are spanning.

Pick f ∈
←−
QR. Without loss of generality assume that f ∈ QSym ⊗ Q[x+]: indeed, like

before, this follows from the fact that
←−
QR is closed under shifting.

We know that slide polynomials form a basis for Q[x+], so we may assume that f
has the form f = Fα(x−)F(c1,...,ck). If ci = 0 for all 1 ⩽ i ⩽ k, then we are done. Otherwise
let d = (. . . , 0, α|c1, . . . , ck, 0, . . . ). By [TWZ22, Lemma 3.5] (essentially the statement in
Lemma 4.6) the difference f−

←−
F d is a sum ofFβ(x−)F(a1,...,ak) where a1+· · ·+ak < c1+· · ·+ck.

Induction implies the claim.

Remark 4.10. As the reader may expect at this stage, by allowing our indexed forests to be sup-
ported on Z rather than Z+, we may easily define back stable forest polynomials. The resulting
family of polynomials

←−
PF ∈

←−
QR then expands as a sum of back stable slide polynomials, one

for each element in Dec(F ).
The lemma next saying that slides and fundamental quasisymmetric functions simultane-

ously inhabit
←−
F c is straightforward.

Lemma 4.11. We have η0(
←−
F c) = Fflat(c)(x−). Additionally

π+(
←−
F c) =

{
Fc if Supp(c) ⊆ Z+;
0 otherwise.

Our next result follows from Stanley’s theory again. It gives a shuffle rule for multiplying
back stable slide polynomials. Let c and d be N-vectors. We have Wc and Wd defined as usual.
Define the set of shuffles Wc�Wd where we replace every instance of i[j] in Wd by i[j+ci]. This
shift ensures, amongst other things, that the set of shuffles comprises injective words.

Proposition 4.12. Given N-vectors c and d we have
←−
F c ·
←−
F d =

∑
L∈Wc�Wd

←−
F (L).

Note that each summand on the right-hand side is a back stable slide polynomial. Hitting
the expansion with η0 gives us the usual shuffle product for Fflat(c) · Fflat(d), while applying π+

recovers the rule for slides.

Example 4.13. Let c = (0, 1, 0, 2) and d = (0, 1). Then Wc = 4[1]4[2]2[1] and Wd = 2[1]. We
have that

Wc�Wd = {4[1]4[2]2[1]2[2], 4[1]4[2]2[2]2[1], 4[1]2[2]4[2]2[1], 2[2]4[1]4[2]2[1]}

Consider the L ∈ Wc�Wd from left to right. The corresponding
←−
F (L) are

←−
F (0,2,0,2),

←−
F (1,1,0,2),←−

F (1,2,0,1), and
←−
F (1,3) respectively. So we infer that

←−
F 0102 ·

←−
F 01 =

←−
F 0202 +

←−
F 1102 +

←−
F 1201 +

←−
F 13.
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5. The inverse slide Kostka matrix

We showed in Theorem 4.9 that back stable slide polynomials form a basis of
←−
QR. In view of

Proposition 4.4, another basis is given by the Fα(x−)x
c for any composition α and N-vector c.

In this section we give an explicit change of basis from the first basis to the second. Since we
know how to multiply back stable slide polynomials by Proposition 4.12, it is enough to treat
separately the case of Fα(x−) and xc. Now Fα(x−) is already equal to the back stable slide

←−
F c

with c = (. . . , 0, α|0, 0, . . .), so it remains to express a monomial xc in terms of back stable
slide polynomials.

Recall that we define
←−
F c as

←−
F (Wc), where Wc is a special word attached to c. These

words are precisely the standardizations of nonincreasing words inZ∗, that is words where letters
decrease weakly from left to right. We will use letters C,D,E for nonincreasing words, to recall
that they correspond bijectively to N-vectors c,d, e, but we will not use the latter. We will also
write simply F(C) and

←−
F (C) as no confusion is caused.

LetP denote the set of all nonincreasing words. FixC = C1C2 · · ·Cm ∈ P withCi ∈ Z. By
grouping equal values one may write C = Mm1

1 Mm2
2 · · ·Mmt

t where mi > 0 and Mi > Mi+1

for 1 ⩽ i < t. Fix i ∈ {1, . . . , t}, and let x0 = Mi and Mt+1 = −∞ by convention. Now let

Bi = {x1 · · ·xmi
∈ P | xj+1 ∈ {xj, xj − 1} for 0 ⩽ j ⩽ mi − 1, and xmi

> Mi+1}. (5.1)

This given, define the following set that is crucial for us:

BC = {X1 · · ·X t | X i ∈ Bi for 1 ⩽ i ⩽ t}.

Note that BC ⊆ P by construction. Elements D ∈ BC are completely characterized by the
set SC(D) of indices j such that xj+1 = xj−1 in (5.1). In particular, this allows us to identifyBC

with a distinguished subset of the set of sequences (S1, . . . , St)where eachSi ⊆ {0, . . . ,mi−1}.
Such sequences in turn may naturally be identified as subsets of {0, 1, . . . ,m1 + · · ·+mt − 1}.
In fact, as we shall soon see, this aforementioned association has even further structure; we have
an isomorphism between appropriate posets.

Example 5.1. Let C = 442 = 42 21. Then B1 and B2 equal {44, 43, 33} and {2, 1} respectively.
We thus have

BC = {442, 332, 432, 441, 331, 431}.

Recording the SC(D) as D varies over BC gives us the following subsets of {0, 1, 2}:

{∅, {0}, {1}, {2}, {0, 2}, {1, 2}}.

Note that these subsets give a lower order ideal in the Boolean lattice on subsets of {0, 1, 2}.

We are now ready to state the main result in this subsection. It expresses the mono-
mial x(C) := xC1 · · ·xCm in terms of back stable slides. In particular, the expansion is signed
multiplicity free.
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Theorem 5.2. The back stable slide expansion of x(C) is given by

x(C) =
∑
D∈BC

(−1)|SC(D)|←−F (D). (5.2)

Recall that all words are nonincreasing in this section, so that all
←−
F (D) can be written in the

form
←−
F d immediately. We illustrate the theorem with an example.

Example 5.3. Let C = 442, so that C = Wc with c = (0, 1, 0, 2, 0, . . . ). We already com-
puted BC in Example 5.1. Theorem 5.2 then states:

x2x
2
4 =
←−
F (442)−

←−
F (332)−

←−
F (432)−

←−
F (441) +

←−
F (331) +

←−
F (431)

=
←−
F 0102 −

←−
F 012 −

←−
F 0111 −

←−
F 1002 +

←−
F 102 +

←−
F 1011.

We need some preparation before presenting the proof of Theorem 5.2. We will appeal to
poset-theoretic terminology freely; the reader is referred to [Sta97, Chapter 3] for any undefined
jargon.

Definition 5.4. Let Pm ⊆ P be the set of all nonincreasing words of length m. For C,D ∈ P ,
define D ⩽m C if and only if Di ⩽ Ci for all i and Di > Di+1 whenever Ci > Ci+1.

This makes it clear that (Pm,⩽m) is a poset. In fact it is locally finite, thus we have the
existence of a Möbius function µ. We recall that it is defined on all (D,C) with D ⩽m C
by µ(C,C) = 1 for all C, and whenever D <m C,∑

D⩽mE⩽mC

µ(E,C) = 0. (5.3)

We illustrate a convex subset of P3 in Figure 5.1.
Toward describing the Möbius function of Pm, we will first show that it is a lattice, that is,

any two elements have a join (least upper bound) and a meet (greatest lower bound). It is helpful
to consider an example of a join of two elements, as that will guide the construction that follows.

Consider C = 555322 and D = 664421. Any common upper bound must be component-
wise greater than both C and D. This leads one to propose E ′ = 665422. Now observe
that E ′

2 > E ′
3 yet C2 = C3, and E ′

3 > E ′
4 but D3 = D4. Therefore, whilst E ′ is component-wise

greater than both C and D, we do not have C ⩽m E ′ and D ⩽m E ′. There is an easy fix:
increment E ′

3 and E ′
4 appropriately so that the resulting word does not have strict descents in po-

sitions 2 and 3. Indeed, check that E = 666622 meets these criteria and therefore E = C ∨D.

Proposition 5.5. For any m ⩾ 1, Pm is a lattice.

Proof. Let C,D be two elements of Pm. We will first prove the existence of their join by gen-
eralizing the construction above. Define E ′ ∈ Pm by E ′

i = max(Ci, Di). Let J be the set
consisting of 1 and all i ∈ {2, . . . ,m} such that Ci−1 > Ci and Di−1 > Di. So, for instance,
in the example leading to this proposition, we would have J = {1, 5}. Now define E ∈ Pm by
setting Ei = E ′

jk
where jk the the maximal element of J such that jk ⩽ i.
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Figure 5.1: Hasse diagram of the convex subset of P3 formed by all words below 444 and with
positive letters.

We claim that E is the join of C and D. Let us first check that E is an upper bound for C
andD. Indeed we haveEi ⩾ E ′

i andE ′
i ⩾ Ci, Di, soE is component-wise greater thanC andD.

Second, Ei−1 > Ei implies that i ∈ J by construction, which by definition entails Ci−1 > Ci

and Di−1 > Di. Thus we infer that E ⩾m C,D.
Now let G satisfy G ⩾m C,D. One thus has clearly that Gi ⩾ E ′

i for all i, and since i /∈ J
implies that Gi−1 = Gi, it follows that in fact Gi ⩾ Ei for all i. Now if Gi−1 > Gi, one necessar-
ily has i ∈ J . We have thus Ei = E ′

i = max(Ci, Di) and Ei−1 ⩾ E ′
i−1 = max(Ci−1, Di−1) >

max(Ci, Di) = Ei where the last inequality follows from Ci−1 > Ci and Di−1 > Di. This
shows that G ⩾m E, which completes the proof that any two elements have a join.

We now need to show that any two elements have a meet. This could be done explicitly as
above. We will rather adapt the abstract argument of [Sta97, Proposition 3.3.1] used there in the
case of a finite bounded poset.

LetC,D ∈ Pm. Note first thatC,D always have a common lower boundL: for instance, let k
be the minimal value of all letters occurring in C and D, and pick L = k(k−1) · · · (k−m+1).
Consider the set X of all elements of Pm that lie below C and D and above L. Now X is finite
and contains L, so by the first half of the proof we can define the join M :=

∨
X , i.e. the join

of all elements in X .
By construction M ⩽m C,D. We claim that it is in fact the meet of C and D. Indeed,

let M ′ be any element below C and D. Then M ′ ⩽m M ′ ∨ L, and this join is in X . It follows
that M ′ ⩽m M as wanted. We have thus shown that any two elements admit a join and a meet,
and so Pm is a lattice.

We now compute the Möbius function explicitly:
Proposition 5.6. Let C,D ∈ Pm with D ⩽m C. We have

µ(D,C) =

{
(−1)|SC(D)| if D ∈ BC

0 if D /∈ BC .
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Proof. We will apply the crosscut theorem [Sta97, Corollary 3.9.4], which we can since Pm is a
lattice by Proposition 5.5. We shall need an explicit description for the set GC of coatoms of C
in Pm. We will use C = 555322 ∈ P6 as a running example.

Write C = Mm1
1 Mm2

2 · · ·Mmt
t where mi > 0 and Mi > Mi+1 for 1 ⩽ i < t, as when

we defined BC earlier. Let i such that Mi > Mi+1 + 1, or i = t; we will call such an index
good. For j ∈ {0, . . . ,mi − 1}, define the word Cj

i as the word C where Mmi
i is replaced

with M j
i (Mi − 1)mi−j . Note that, in comparison to C, the word Cj

i has an additional strict
inequality if j > 0. For a good index i, we let GC,i := {Cj

i | 0 ⩽ j ⩽ mi − 1}. For C =
555322 = 533122, the good indices are 1 and 3, and we have GC,1 = {444322, 544322, 554322},
GC,3 = {555311, 555321}. Then as an immediate consequence of the definition of ⩽m we have

GC =
⋃
i good

GC,i.

Now we let
G(D,C) := {J ⊆ GC |

∧
J = D}.

The crosscut theorem then says

µ(D,C) =
∑

J∈G(D,C)

(−1)|J |. (5.4)

If G(D,C) is empty, then we have µ(D,C) = 0.
Assume now that G(D,C) is nonempty, and write D =

∧
J for some J ⊆ GC . Observe the

crucial fact that

(∗) D ∈ BC ⇐⇒ J satisfies |J ∩ GC,i| < Mi −Mi+1 for all good i < t.

In our running example, this says |J ∩ {554322, 544322, 444322}| < 5 − 3 = 2. The observa-
tion (∗) hinges on the fact that the cardinality of the intersection |J ∩ GC,i| forces strict descents
in the corresponding positions in the appropriate substring in

∧
J = D, and that the entries in

this substring must be strictly greater than Mi+1 for the resulting word to belong to BC .
If J satisfies (∗), then it is unique and consists precisely of the elements Cj

i that have a strict
descent in SC(D). Therefore |J | = |SC(D)|, and it follows from (5.4) that µ(D,C) is equal
to (−1)|SC(D| as desired. In fact, BC is naturally identified via D 7→ SC(D) to a lower ideal of a
boolean lattice –as hinted in Example 5.1– and we recover indeed the classical Möbius function
of the latter.

Finally we consider the case where J is such that D =
∧
J /∈ BC . By (∗), there exists a good

index i < t such that |J ∩ GC,i| ⩾ Mi −Mi+1. Pick the minimal such i, and consider i0 > i
the next good index. Note that i0 must exist as t is always a good index by definition. Then
define J ′ = J∆{C0

i0
} where ∆ is the symmetric difference. In our running example, an ele-

ment not in BC is given by D = 433210 =
∧

J where J = {544322, 444322, 555321}. We
have i0 = 3 and thus J ′ = J ∪ {C0

i0
= 555311}. The map χC defined by J 7→ J ′ is clearly

an involution on GC . Moreover, one checks that
∧

J ′ =
∧

J , so χC restricts to an involution
on G(D,C). It follows that the sum in (5.4) is zero, which completes the proof.



combinatorial theory 4 (2) (2024), #4 21

We conclude by establishing the claimed monomial-to-slide expansion.

Proof of Theorem 5.2. Let C ∈ Pm. By definition we have
←−
F (C) =

∑
D⩽mC

x(D). (5.5)

We want to apply Möbius inversion to (5.5), but the sum on the right is infinite. We thus restrict
to the polynomial case temporarily:

F(C) =
∑

D⩽mC,D>0

x(D). (5.6)

Here we take D > 0 to mean that all components of D are strictly positive. By Möbius inversion
we get:

x(C) =
∑

D⩽mC,D>0

µ(D,C)F(D). (5.7)

Note that this is indeed the same Möbius function of the full poset Pm: imposing D > 0 gives
us an upper ideal, which is a convex subset, thereby preserving the Möbius values by (5.3). By
Proposition 5.6, we obtain:

x(C) =
∑

D∈BC ,D>0

(−1)|SC(D)|F(D). (5.8)

This gives us the polynomial case.
Now for i > 0, apply (5.8) to γi(C) = (C1 + i) · · · (Cm + i), and then shift the re-

sulting expansion by γ−i : xk 7→ xk−i. By passing to the limit in the result, we get (5.2)
(for C > 0) since

←−
F (C) is the limit of γ−iF(γi(C)) when i tends to infinity. For general C, one

has γi(C) > 0 for i large enough, and then one concludes using
←−
F (C) = γ−i←−F (γi(C)).
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