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ABSTRACT: An experimental protocol to achieve the Meer-
wein−Ponndorf−Verley (MPV) reduction of ketones under
mildly basic conditions is reported. The transformation is tolerant
of a range of ketone substrates, including O- and S-containing
heterocycles, is scalable, and shows potential to be used as a
platform to access enantioenriched products. These studies
provide a general method for achieving the reduction of ketones
under mildly basic conditions and offer an alternative protocol to
more well-known Al-based MPV reduction conditions.

The Meerwein−Ponndorf−Verley (MPV) reaction is an
important and powerful tool for the reduction of ketones

and aldehydes because of its chemoselectivity, mild reaction
conditions, scalability, and low operational cost.1 Discovered
nearly a century ago,2 the traditional MPV reduction employs an
aluminum alkoxide catalyst generated from a secondary alcohol
(most commonly isopropanol) to achieve the reversible transfer
hydrogenation of carbonyl substrates (Figure 1).3 This
venerable reaction has been featured in the syntheses of several
natural products4 and spurred numerous experimental5 and

computational studies.6 Despite the synthetic utility of the
traditional MPV reduction, several drawbacks exist. These
include long reaction times, the need for a large excess of
reducing agent, competing side reactions such as aldol
condensation and the Tishchenko reduction of aldehydes, and
low enantioselectivities in the case of intermolecular asymmetric
variants.1,3 Methodological advances to address these limita-
tions include the use of additives,7 microwave irradiation,8 and
the development of novel aluminum,9 organoboron,10 andmetal
alkoxide catalysts (i.e., transition11 and lanthanide12). A
particularly efficient aluminum siloxide catalyst has been
reported by the Krempner group.9c

A largely unexplored approach to the MPV-type reduction of
carbonyls uses simple alkali metal alkoxides (Figure 1).13,14 This
variant of the MPV reaction has several benefits including its
avoidance of transition and main group metal catalysts,
operational simplicity, and compatibility with heteroatoms
known to inhibit metal catalysis.3,13 Specifically, isopropoxide
catalysts generated from strong alkali bases, such as NaOH13a

and KOH13b and milder bases such as K3PO4,
13c have been

employed in the reduction of aldehydes and ketones. Never-
theless, a number of limitations of the base-mediated MPV
reduction remain unaddressed including a limited scope and the
reliance on i-PrOH as the solvent and hydride source.15

Additionally, no examples of stereoselective base-mediated
MPV reactions exist. We report the use of a simple potassium
alkoxide reductant, generated in situ from the corresponding
alcohol and K3PO4, for the reduction of a wide range of aromatic
ketones. This methodology is tolerant of heterocycles, is
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Figure 1. Traditional MPV reduction of ketones and base-mediated
variant (prior studies).
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scalable, and shows potential for the asymmetric reduction of
alkyl−aryl ketones.
To initiate our studies, we examined the reduction of

dihydrochalcone (1) using alkyl−alkyl secondary alcohols and
K3PO4, a readily available and mild base (Table 1).16 Subjecting

1 to catalytic K3PO4 using isopropanol or 3-pentanol (3, 2.5
equiv) in 1,4-dioxane at 80 °C provided none of the desired
alcohol product 2 (entries 1 and 2).16−18 Owing to the potential
reversibility of the reaction,1a−c,16 we turned to the use of aryl−
alkyl reductants to bias the reaction equilibrium. Importantly,
this class of alcohols enabled greater control of the redox
properties of the reductant. We evaluated alcohol 4 and the
more electron-rich derivative 5 as reductants,19 anticipating that
the stability of the respective aryl ketone and doubly vinylogous
amide byproducts would drive the forward reaction to yield 2.
Gratifyingly, the use of 2.5 equiv of 4 or 5 provided 2 in 40% and
61% yield, respectively (entries 3 and 4). Employing reductant 5
at 120 °C furnished desired product 2 in 92% yield (entry 5).
Finally, alcohol 2 was obtained in near-quantitative yield by
utilizing excess base (entry 6).
With optimized conditions in hand, we examined a range of

aryl ketone substrates in the reduction (Figure 2). Linear and α-
branched substrates smoothly underwent reduction, giving rise
to alcohols 2 and 6−8 in good yields. Of note, steric bulk on the
alkyl substituent of the ketone was tolerated, as shown by the
successful reduction of tert-butyl phenyl ketone to furnish
alcohol 8 in 83% yield. The reduction of α-tetralone to give α-
tetralol (9) in 86% yield demonstrates competence of a cyclic
ketone substrate in this transformation. Notably, we found that
electron-rich aromatic ketones and those highly decorated with
heteroatom substituents underwent facile reduction, as
demonstrated by the formation of alcohols 10 and 11 in 81%
and 87% yield, respectively. Finally, both electron-rich and
electron-deficient benzophenone derivatives were suitable
substrates, as shown by the production of alcohol products 12
and 13 in good yields.

We next set out to evaluate the reactivity of a number of
heterocyclic ketone substrates, as only a few examples of base-
mediated MPV reductions of heterocyclic ketones have been
previously reported (Figure 3).20 Benzofuran- and dibenzofur-

Table 1. Optimization of Reaction Conditions

aGeneral conditions unless otherwise stated: substrate 1 (1.0 equiv,
0.10 mmol), K3PO4 (0.50−4.0 equiv), reductant (2.5 equiv), and 1,4-
dioxane (1.0 M) heated at 80−120 °C for 16 h in a sealed vial under
an atmosphere of N2. Yields determined by 1H NMR analysis using
1,3,5-trimethoxybenzene as an external standard.

Figure 2. Scope of the base-mediated MPV reduction of aromatic
ketones. Conditions: substrate (1.0 equiv, 0.10 mmol), K3PO4 (4.0
equiv), reductant (2.5 equiv), and 1,4-dioxane (1.0 M) heated at 120
°C for 16 h in a sealed vial under an atmosphere of N2. Unless otherwise
noted, yields reflect the average of two isolation experiments. a Yield
determined by 1H NMR analysis using hexamethylbenzene as an
external standard. b Reaction heated at 80 °C for 16 h.

Figure 3. Scope of the base-mediated MPV reduction of hetero-
aromatic ketones. Conditions: substrate (1.0 equiv, 0.10 mmol), K3PO4
(4.0 equiv), reductant (2.5 equiv), and 1,4-dioxane (1.0 M) heated at
120 °C for 16 h in a sealed vial under an atmosphere of N2. Unless
otherwise noted, yields reflect the average of two isolation experiments.
a Yield determined by 1HNMR analysis using hexamethylbenzene as an
external standard. b Reaction heated at 130 °C for 16 h.
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an-containing ketones underwent reduction to provide alcohols
14 and 15 in 73% and 76% yield, respectively. Benzodioxole and
benzodioxane moieties were also well tolerated, as seen by the
formation of alcohols 16 and 17 in good yields. Lastly, ketones
bearing thiophenes were successfully employed, as judged by the
formation of benzothiophene 18 and tetrahydrobenzothiophene
19 in 70% and 73% yield, respectively.21

As a demonstration of the utility of the base-mediated MPV
reduction of ketones, we performed the additional studies
shown in Figure 4. In the first, we performed a gram-scale

reduction of acetyldibenzofuran 20.22 Carrying out the reaction
at 130 °C for 24 h delivered alcohol 15 in 66% yield, thus
demonstrating the scalability of this methodology. Next, we
questioned whether this reaction could be used for the synthesis
of enantioenriched alcohols. Toward this end, we performed the
reduction of phenylcyclohexyl ketone 21 using enantioenriched
(R)-5. This proceeded to give alcohol (S)-6 with 50%
stereochemical transfer (96% ee of (R)-5 → 48% ee (S)-6).
This result underscores the potential of the base-mediated MPV
reduction to generate enantioenriched products.1e,12d,23

In summary, we have developed the base-mediated MPV
reduction of aromatic and heteroaromatic ketones.24 This
methodology employs the simple combination of K3PO4 as a
mild base and secondary alcohol 5 as the reductant. The
transformation is tolerant of a range of ketone substrates,
including O- and S-containing heterocycles, and avoids the
hydride source being used as the solvent. The reduction has
been demonstrated on gram scale and shows potential to be used
as a platform to provide enantioenriched products. These
studies provide a general platform for achieving the reduction of
ketones under mildly basic MPV conditions and offer an
alternative protocol to the more classic Al-based MPV
reduction. We hope this study will enable the greater utilization
of the uncommon base-mediated variant of the MPV reduction
in chemical synthesis.
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