
UCLA
UCLA Electronic Theses and Dissertations

Title
Curiosity-driven Agent In Sparse Reward Environment

Permalink
https://escholarship.org/uc/item/0dc2n0j0

Author
Guo, Yaowei

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dc2n0j0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Curiosity-driven Agent

In Sparse Reward Environment

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Yaowei Guo

2021

ABSTRACT OF THE THESIS

Curiosity-driven Agent In Sparse Reward Environment

by

Yaowei Guo

Master of Science in Computer Science

University of California, Los Angeles, 2021

Professor Song-Chun Zhu, Chair

 In many reinforcement learning scenarios such as many game environments or real life

situations, the rewards are usually very limited and sparse. This kind of tasks are always difficult

for agent to learn and explore. In fact, dealing with sparse reward environments has always been

a challenge in reinforcement learning. In this work, we aim to study the agent driven by curiosity

that can handle tasks with sparse rewards using a self-supervised method. We also want to test

the possibility about agents driven by their intrinsic curiosity being able to explore the

environment and generate reward by themselves. As a result, curiosity makes agents more

intelligent. In the later experiments, we test two curiosity based RL methods in three different

games and demonstrated that curiosity could indeed achieve very impressive performance in

sparse reward game environment.

ii

The thesis of Yaowei Guo is approved.

Yingnian Wu

Demetri Terzopoulos

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2021

iii

To my family and friends.

Thank you for all your support and confidence.

iv

TABLE OF CONTENT

List of Figures . vii

Acknowledgements . ix

1 Introduction . 1

2 Related Works . 4

3 Algorithm and Methodology . 6

 3.1 Intrinsic Curiosity Module . 7

 3.2 Random Network Distillation . 11

 3.3 Diversity . 13

4 Experiments and Results . 15

 4.1 Atari Breakout . 16

 4.1.1 Breakout’s RND Atari Simulator RAM Input 17

 4.1.2 Breakout’s ICM Image Input . 19

 4.2 Montezuma‘s Revenge . 21

 4.2.1 Montezuma RND Atari Simulator RAM Input 22

 4.2.2 Montezuma ICM Image Input. . 24

 4.3 Super Mario Bros. 25

 4.3.1 Mario Using ICM Method . 27

 4.3.2 Mario Using RND Method. . 29

5 Discussion . 31

 5.1 Challenges in Curiosity-based method . 31

v

 5.2 Introducing Human Prior . 33

 5.3 Other internal motivations . 33

6 Conclusion . 35

Bibliography . 36

vi

LIST OF FIGURES

1.1 Some RL tasks that have very limited or even absent extrinsic reward. Agent in these

tasks treats curiosity as intrinsic motivation and tries to solve the problem only with

intrinsic reward. In later chapter we will see that curiosity-driven agent could achieve

very impressive results in sparse reward environments. 2

3.1 An example about how we can take curiosity into account. In the figure, state and action

 are inputs at time . is the reward provided by environment at time , and is the

reward generated by Intrinsic Curiosity Module(ICM), a curiosity based reinforcement

learning method which we are going to discuss in this chapter. is the goal of

algorithm that maximizes the sum of and . . 8

3.2 While the agent is interacting with the environment, an inverse dynamics model is trained

on the task of predicting the action of the agent given the current state and the next

state . This inverse dynamics model learned to effectively encode the states into

feature vectors, which is of much lower dimension. 10

3.3. Graph that shows the structure of target network and predictor network. Target network

which encodes feature space information of all states is randomly initialized and never

update. It takes next state as input and output corresponding feature space .

Predictor network is trained to approximate target network. It takes as input and tries

st

at t rt t rti

R(t)

rt rti

at st

st+1

st+1 ft+1

st+1

vii

 to predict the target network’s output . Intrinsic reward will be the MSE of and

. 12

3.4 Screenshot that shows DIAYN’s ability of imitating human performance. When DIAYN

playing Super Mario Bros, agent is able to develop skill “jump” in order to collect coin

like human. Although “jump” is not a necessary skill at current position, DIAYN also

considers this skill as useful. 14

4.1 Breakout uses either an array of shape (210, 160, 3) RGB image or 128 bytes RAM of

Atari machine as the game screen. Every action is repeatedly performed for a duration of

 frames, where is uniformly sampled from {2, 3, 4}. Player controls the horizontally

movable paddle to avoid the ball from touching the bottom of the screen and tries to hit

the bricks as much as possible. . 16

4.1.1 The result of playing Breakout game using RAM input. First two graphs show the reward

per episode and total reward for 1500 episode, and the last graph shows the number of

action that agent takes per episode. 18

4.1.2 The result of playing Breakout game using Image input. First two graphs show the reward

per episode and total reward for 350 episode, and the last graph shows the number of

action that agent takes per episode. 19

̂ft+1 rti ft+1

̂ft+1

k k

viii

4.2 Same as Atari Breakout, Montezuma uses either RGB image or Atari RAM as screen.

Agent controls the character to reach the key position, while avoid character touching

traps and enemies. . 21

4.2.1 The result of playing Montezuma game using RAM input. First two graphs show the

reward per episode and total reward for 70 episode, and the last graph shows the number

of action that agent takes per episode. . 23

4.2.2 The result of playing Montezuma game using image input. First two graphs show the

reward per episode and total reward for 380 episode, and the last graph shows the number

of action that agent takes per episode. . 24

4.3 Super Mario Bros only takes image as input. Mario's game environment is much more

complicate than previous two games. Agent will need to control the character to discover

and reach the goal position, while interacting with other items, traps, and enemies during

the game. . 26

4.3.1 The result of playing Super Mario Bros game in ICM algorithm. First two graphs show

the reward per episode and total reward for 900 episode, and the last graph shows the

number of action that agent takes per episode. . 28

4.3.2 The result of playing Super Mario Bros game in RND algorithm. First two graphs show

the reward per episode and total reward for 250 episode, and the last graph shows the

number of action that agent takes per episode. . 29

ix

ACKNOWLEDGEMENTS

 I would like to thank professor Song-Chun Zhu as being the committee chair and

supervised my thesis. During my graduate study, I have learned a lot from professor Zhu’s

lectures.

 I would like to thank professor Yingnian Wu. His lectures brought me into the field of

machine learning. The great amount of knowledge he taught me in reinforcement learning area is

crucial for me to accomplish this work. Without professor Wu’s careful instruction, it is

impossible for me to finish my thesis.

 I would like to thank professor Demetri Terzopoulos. The knowledge I learned from his

lectures also helps me a lot when writing up this work. It has been a great honor for me to have

the opportunity to become a student of these preeminent professors.

 I would like to thank Xu Xie as being my mentor throughout my research life. Xu taught

me how to think and work as a researcher through tremendous conversations I had with Xu. It

has been a great honor for me to work with Xu during my graduate study.

 This draft of this work is based on a project I did with Victor Zhang, Ziheng Xu and

Ximing Chen. I would like to thank to their contributions towards formulating the problem and

conducting the experiment. The discussion we had helped me a lot when accomplishing this

work.

x

CHAPTER 1

Introduction

 In these years, research on reinforcement learning problem has achieved very impressive

results in training agents to accomplish a variety of complex tasks, especially in environments

that can provide abundant and uninterrupted rewards for agents to learn and maximize. This kind

of task can be found in many Atari games and robot controlling problems [1, 2]. In general, agent

dealing with this kind of problem can model the environment as a Markov Decision

Process(MDP), and then manage to update policies to maximize the long-term reward given by

the environment. However, in many games and real-life environments, the reward function given

by outside environment is very sparse, completely non-existent, or needs to be carefully designed

by researchers. In this case, the agent could hardly update the policy without receiving any

feedback. On the other hand, it is always not feasible or scalable for researcher to manually craft

enough reward for agent in those environments since the amount of reward that agent needs in

order to explore environment and update policy is often tremendous. As a result, designing agent

that can handle sparse reward environment has always been a problem in reinforcement learning.

1

 To help solve this problem, we want to investigate the situation where curiosity and

diversity functions are used as the intrinsic rewards and drives the agent to gain better perception

of the RL problem. Figure 1.1 shows many situations that curiosity-driven agent only uses

intrinsic reward to explore novel environments. In addition, we also want to investigate the

effectiveness about how agent driven by curiosity gets familiar with and explores the

environment. Virtual agents can thus be trained in new environments in a self-supervised way,

and does not require hand-crafted reward functions.

2

Figure 1.1: Some RL tasks that have very limited or even absent extrinsic reward. Agent in

these tasks treats curiosity as intrinsic motivation and tries to solve the problem only with

intrinsic reward. In later chapter we will see that curiosity-driven agent could achieve very

impressive results in sparse reward environments.

 The idea of using curiosity to learn is not a new idea [3]. In fact, the real world that

human lives in are such a sparse reward environment that human needs to discover new stuffs

and adapt new knowledges in every minute. Developmental psychology researches have long

proposed curiosity as a crucial motivation for humans learning and exploring new environments

[4], especially in young children. Young children actively learn about the world by exploring it,

without specific task or goal in mind. The commonsense skills developed by young children are

important for many tasks later on. However, the lack of these commonsense skills is one of the

biggest roadblock for current AI systems.

 In this work, we test the performances of two curiosity based RL algorithms: Intrinsic

Curiosity Module(ICM) and Random Network Distillation(RND) on three sparse reward game

environments: Atari Breakout, Montezuma‘s Revenge, and Super Mario Bros with two kind of

inputs: image input and Atari Simulator RAM input respectfully. In ICM, agent mainly learns

from intrinsic reward to update, and seldom receives any extrinsic reward from outside

environment. On the other hand in RND, agent receives both intrinsic and extrinsic rewards

although extrinsic rewards may always absent, and the total reward is the weighted average of

these two. We compare the results of both ICM and RND methods and show that 1) intrinsic

reward generated by curiosity helps agent to explore the environment in sparse reward problem.

2) The use of RND method has positive effect on performance than vanilla ICM method.

3

CHAPTER 2

Related Works

 The study of using intrinsic motivation to drive agent to explore environment is not a new

concept in reinforcement learning [5, 6]. According to researchers, there are two main

advantages of agent driven by intrinsic motivation: firstly, agent driven by intrinsic reward tend

to discover new states during actions [11, 12]. Secondly, agent would try to move to states that

could decrease the error since agent is able to predict the environment state change to a certain

extent after it takes actions [13].

 Curiosity as a typical class of intrinsic motivation has also been studied to solve sparse

reward problem by many researchers [7, 8]. These works show that curiosity serves as an

important factor for agent to get familiar with environment. In addition, curiosity could also

helps agent adapt to new environment faster after agent had gained some perception to the task.

This has been shown in many game scenarios that agent is able to learn faster in new level after

it completes previous level.

 In addition to curiosity, other types of intrinsic reward of agent such as surprise and

diversity are also proposed in other works [9, 10]. In these works, agent learn variety of different
4

policies by exploring different parts of environments. Therefore when agent encounter novel

scenarios later, agent could reuse the set of policies already learned to accelerate the training

process in new scenarios.

 Two methods that are used in curiosity-driven agent are Intrinsic Curiosity Module(ICM)

[7] and Random Network Distillation(RND) [14], which we are going to discuss in this work. In

general, total reward of the agent is the weighted sum of both intrinsic and extrinsic rewards;

however, extrinsic rewards would always be zero in sparse reward environment. Agent will try to

maximize the long term total reward while curiosity encouraging agent to reach new states

throughout exploration.

5

CHAPTER 3

Algorithm and Methodology

 Before we step into the discussion of curiosity-driven method, let us first briefly review

the format of reinforcement learning problem. In principle, at each time step , agent interacts

with environment to get a current state , an action , and a reward . Agent will then try to

perform the next available action to reach new state and receive new reward at next

time step. This action was determined based on the learned policy , which is a conditional

distribution over the set of actions given the set of states . Therefore the goal of RL algorithm

is to learn a set of policies that maximize the cumulative reward.

 The idea of using curiosity to training is not new. However, there has been few

computationally feasible models. Under the MDP and RL framework, the goal of exploration is

to learn the transition model of the world . To courage agent exploring novel states,

we generate large intrinsic rewards for unexplored states, and train existing RL frameworks with

a weighted average of the intrinsic rewards and extrinsic rewards. In the rest of this section, we

will discuss several relevant framework proposed in literature.

t

st at rt

at+1 st+1 rt+1

at+1 π

A S

π

P(st+1 |st, at)

6

3.1 Intrinsic Curiosity Module

 One framework of curiosity-based intrinsic reward is the Intrinsic Curiosity Module

(ICM) proposed by [7]. A very simple architecture of ICM is shown in Figure 3.1. When dealing

with the problem, curiosity-driven agent not only receives the intrinsic reward generated by

ICM, but also may receives extrinsic reward to a certain extent from outside environment

occasionally. Therefore the total reward will be the sum of both intrinsic reward and extrinsic

reward over time :

 (3.1)

In this equation, is the total reward, is the extrinsic reward provided by environment, and

 is the intrinsic reward generated by ICM. It is also worth to note that most of the time would

be zero in sparse extrinsic reward problem. In fact, when we train agent with ICM in next section

we will show that during learning process cases where is not zero is so rare that agent actually

learns only from . Nevertheless the agent is still able to achieve handsome result without

extrinsic reward.

 According to [7], at each time step , agent will try to perform action chosen from the

policy . The goal of agent is to learn the policy that maximize the expected total reward over

time through following equation:

 (3.2)

where is current state and is the parameter of policy which we want to optimize.

t

R(t) =
T

∑
t=1

(rt + ri
t)

R(t) rt

rti rt

rt

rti

t at

π

t

max
θP

𝔼π(st,θP)[R(t)]

st θP π

7

 In order to courage agent to explore novel states, one intuitive method is to give states

that are hard to predict higher intrinsic reward. In other word, we want to tie a direct proportion

between and prediction error:

 (3.3)

However, not all of the unpredictable states are important to agent. For example the changes of

background cloud in Super Mario game, although hard to predict, is irrelevant with agent’s

rti

ri
t ∝ ̂st+1 − st+1

8

Figure 3.1: A graph that shows the very basic structure of ICM. In the figure, state and action

 are inputs at time . is the reward provided by environment at time , and is the reward

generated by Intrinsic Curiosity Module(ICM), a curiosity based reinforcement learning

method which we are going to discuss in this chapter. is the goal of algorithm that

maximizes the sum of and .

st

at t rt t rti

R(t)

rt rti

movement, which does not worth agent to pay much curiosity. As a result, how to make sure

prediction error worth agent’s curiosity is a question that need consideration.

 In ICM, curiosity is formulated as the prediction error of the next state in the feature

space according to [7]. , which is the prediction of feature space of state , is computed

by:

 (3.4)

giving current feature space , action , parameter as inputs and computed using forward

dynamics model . is learned to minimize the loss of prediction error .

 is computed by the MSE of prediction loss:

 (3.5)

where is a scaler and denotes the mapping from raw sensory space to feature space. The

reason for mapping the observation state to the feature state is that prediction error on raw

sensory data for example pixels is highly subject to the the stochastic nature of the environment.

Feature space is a layer of abstraction that can help reduce the noise.

 The particular features chosen in ICM is the inverse dynamics model . The mapping is

trained with a separate task of predicting the current action , given the current state and the

next state :

 (3.5)

[7] introduces parameter which tries to minimize the loss between and . We want our

predicted to be close to since it indicates that feature space are highly predictable and are

related to the agent’s action. On the other hand, large difference between and probably

̂ϕ(st+1) st+1

̂ϕ(st+1) = f (ϕ(st), at; θF)

ϕ(st) at θF

f θF | | ̂ϕ(st+1) − ϕ(st+1) | |2
2

rti

ri
t =

η
2

| | ̂ϕ(st+1) − ϕ(st+1) | |2
2

η > 0 ϕ

g

at st

st+1

̂at = g(st, st+1; θI)

θI ̂at at

̂at at

̂at at

9

illustrates that the state change after performing action is unpredictable, perhaps the

environmental changes. The goal of this inverse dynamics task is to reduce the influence of the

elements in the environment that are not very relevant to the agent's actions. See Figure 3.2 as

illustration about determining meaningful features.

 The combination of forward and inverse dynamic models make sure that agent only

curious about the environment states changes which are relevant to its actions, instead of paying

attention to other changes such as background alternations which do not affect agent’s action.

The goal of ICM is to learn the three parameters mentioned above: , , and . tries to

maximize the expected total reward through policies, while and try to minimize the loss of

forward and inverse dynamic models. In next section, we will discuss our experiments with ICM

method on three RL game environments.

θP θF θI θP

θF θI

10

Figure 3.2: while the agent is interacting with the environment, an inverse dynamics model is

trained on the task of predicting the action of the agent given the current state and the next

state . This inverse dynamics model learned to effectively encode the states into feature

vectors, which is of much lower dimension.

at st

st+1

3.2 Random Network Distillation

 As mentioned above, ICM tends to pay more curiosity on next states that are novel and

hard to predict. Therefore ICM might encounter problems in environments that always change

dramatically. One problem of the ICM framework is the "noisy-TV problem". While exploring

the world, if the agent encounters a TV is randomly changing channels, the agent would stay in

front of the TV and not explore other parts of the world, because the next state of this stochastic

changing TV is very difficult for agent to predict, therefore curiosity for the content on the TV

generates a very large intrinsic reward for the agent.

 One framework proposed to alleviate this problem is the Random Network Distillation

(RND) framework proposed by [14]. The overall formulation is the same as ICM, but instead of

using inverse dynamics features, RND uses random features. The architecture is quite simple. A

target network that encodes the feature space information of states is randomly initialized in the

beginning of the training process, and its weights are never updated. A second network called the

prediction network is trained over time to approximate the target network, and the prediction

error is used as the intrinsic reward for the agent.

 Because the target network stays the same, the feature space information generates from

target network will also stay the same. If the agent has explored a certain state, the prediction

network has seen the output of the target network. The prediction error for this explored would

be small, and the intrinsic reward would be small as well. For unfamiliar states, the prediction

error and intrinsic reward would be large. Figure 3.3 [15] shows the overall architecture of target

network and prediction network.

11

RND then calculates the intrinsic reward as the MSE of and :

 (3.6)

while predictor network will try to minimize the loss of this prediction error.

 The behind logic of both ICM and RND are same: both algorithms tend to encourage

agent to explore novel states. They pay much curiosity and give large intrinsic rewards to states

that have not visited before and are hard to predict, while only putting small intrinsic reward on

rti ft+1
̂ft+1

ri
t = | | ̂ft+1 − ft+1 | |2

2

12

Figure 3.3: Graph that shows the structure of target network and predictor network. Target

network which encodes feature space information of all states is randomly initialized and never

update. It takes next state as input and output corresponding feature space . Predictor

network is trained to approximate target network. It takes as input and tries to predict the

target network’s output . Intrinsic reward will be the MSE of and .

st+1 ft+1

st+1

̂ft+1 rti ft+1
̂ft+1

previously visited states which are highly predictable. However, unlike ICM, the predictor

network of RND is trained to predict the feature space information from target network instead

of directly predicting next state. Therefore RND can make sure it gives higher intrinsic reward to

state that its feature space information is meaningful, no matter whether the state itself is

predictable or not. Through minimizing the prediction loss, the predictor network can better

approximate the feature space information from target network and pay less curiosity to those

“noisy states”. Therefore RND is able to alleviate the effect of noisy-TV problem. In next

section, we will present our experiment results with RND method on three RL game

environments and compare the outputs with that of vanilla ICM method.

3.3 Diversity

 Another related framework is proposed by [10] that called Diversity is All You

Need(DIAYN) which uses diversity as intrinsic motivation for agent. DIAYN connects

reinforcement learning with information theory, and enables intelligent virtual agents to develop

skills without an external reward function. New skills emerge from maximizing an information

theoretic objective. In this work, the agents are first trained without any task to learn a set of

skills. Each skill is essentially a different policy. The agents try to develop a set of skills, where

each skill is as different as possible from others by exploring drastically different parts of the

state space. Then, for different tasks, the set of skills can be reused to accelerate training. In

addition, developing diverse skills can also help agent to distinguish and avoid noisy states,

which makes skills more useful.

13

 One main advantage of using diversity as intrinsic reward is to imitate experts. Figure 3.4

shows this feature when agent learns to play Super Mario. Just like human player, agent learns to

“jump” under the coin block to collect coin although this action does not directly help agent

solve the level.

14

Figure 3.4: Screenshot that shows DIAYN’s ability of imitating human performance. When

DIAYN playing Super Mario Bros, agent is able to develop skill “jump” in order to collect coin

like human. Although “jump” is not a necessary skill at current position, DIAYN also considers

this skill as useful.

CHAPTER 4

Experiments and Results

 As we discussed in previous section, we experimented both ICM and RNG algorithms in

three different game environments: Atari Breakout, Montezuma, and Super Mario Bros. In order

to compare the performance of these two algorithms, we have two different type of inputs for the

first two games: the classic image input, and the Atari Simulator RAM input.

 The model for image input is much more complicated, and training each episode is

slower. The models that use Atari Simulator RAM as input is much simpler, since the RAM is

only 128 bytes, but we need to design and tune each model. Some hyper parameter we use in

both ICM and RND are learning rate being , being 0.99, and being 0.95 with batch size

equals 128. In most of the experiments we get handsome results after we train the agent within

1K episodes. In ICM we use a three convolution layers network with channel sizes equal 32, 64,

64, kernel sizes equal 8, 4, 3, and strides equal 4, 2, 1 respectively. After that, we add a fully

connected layer to connect feature size with output size. In RND we use network structure of 4

layers fully connected network, with dimension: state size -> 256 -> 256 -> 256 -> action size,

where state size and action size are the dimensions of each state and action. Each layer we use a

1e − 4 γ λ

15

linear transformation on inputs. For the forward activation, we use ReLU to build the network

that maps state to action.

4.1 Atari Breakout

 We start with using two algorithms to play Atari Breakout, shown in Figure 4.1. Atari

Breakout is a very classic arcade game in RL. Compared with later two RL games, Atari

Breakout can provide explicit and dense extrinsic reward as feedback to agent to guide its future

movement. Therefore for experiment results we would like to pay more attention on the intrinsic

16

Figure 4.1: Breakout uses either an array of shape RGB image or 128 bytes RAM

of Atari machine as the game screen. Every action is repeatedly performed for a duration of

frames, where is uniformly sampled from . Player controls the horizontally movable

paddle to avoid the ball from touching the bottom of the screen and tries to hit the bricks as

much as possible.

(210,160,3)

k

k {2,3,4}

reward generated by two algorithms, and how agent explores environment driven by intrinsic

reward. The control of this game is relatively simple since it only supports two directions as

agent's action in order to move paddle horizontally.

 For Breakout, we run the agent with 16 parallel environment to avoid spending numerous

time on training. We set the maximum steps per episode to 4500, which means the agent can

perform as much as 4500 actions before it dies in each episode. This mainly prevents agent stuck

in irrelevant states forever such as encounters Noisy-TV problem. For our expectation, we would

like to see agent survive as long as possible as well as maximizing the score.

4.1.1 Breakout’s RND Atari Simulator RAM Input

 We first run RND algorithm on Breakout game with RAM input for 1500 episodes. The

results are shown in Figure 4.1.1. We can observe that the intrinsic reward reaches its maximum

in first several episodes, and becomes smaller and smaller as episode increases. While the

intrinsic reward tend to vanish around 800 episodes, and does not move much after that. We

think the reason is that the game environment of Breakout is relatively simple. There are only

two actions that agent can take, which indicates that few episodes is enough for agent to get

familiar with game environment. However, this illustrates that RND method learns very fast as

well, and tends to explore new states rapidly. It is also worth to note that RND method is able to

distinguish noisy states since intrinsic reward decreases after agent has explored the entire game

environment.

17

 The second graphs shows the total reward per episode of agent. We can observe that total

reward increase linearly in general; however, it exhibits the high-variance, even after 1000

episodes the learned policy can be unstable. As we mentioned before, Breakout can provide

efficient extrinsic reward, which explains linear growth of total reward. The last graph shows

how many movements the agent takes in each episodes. Since the agent is able to perform one

movement every four frames, it also indicates the how long does the agent survive in each

episode. We can observe that in general the step number increase as episode number increase,

which illustrates the success of RND algorithm in Atari Breakout game.

 If we connect the first graph with the third graph. We could see that intrinsic reward

nearly disappears after 1000 episodes. Meanwhile the step number that agent performs also stop

increasing after 1000 episodes. This emphasizes that intrinsic reward plays a crucial role for

agent’s survival. As a result, after training for 4 hours, RND is able to captures 52 score in first

level. We believe that RND method can achieve better result if we keep our training.

18

Figure 4.1.1: The result of playing Breakout game using RAM input. First two graphs show the

reward per episode and total reward for 1500 episode, and the last graph shows the number of

action that agent takes per episode.

4.1.2 Breakout’s ICM Image Input

 We then run ICM algorithm on Atari Breakout game with image input for 350 episodes.

The results are shown in Figure 4.1.2. The first two graphs, we can observe that intrinsic reward

shows an shape: it decreases from its first high peak in first 150 episodes; then it drops into a

valley and vibrates around 0.02 in next 100 episodes; in the last 100 episodes the intrinsic reward

starts to increase to the second high peak. Overall, the variation of the reward is very large(from

above 0.1 to almost 0).

 However, the performance of ICM method differs from that of RND method

dramatically. If we compare first graph of two methods, we can observe that intrinsic reward

generated by ICM is much higher than intrinsic reward of RND(0.1 vs. 0.008). The discrepancy

between values of intrinsic rewards may also tell the difference between two methods about how

they calculate intrinsic reward. We now know that ICM tends to provide much more intrinsic

U

19

Figure 4.1.2: The result of playing Breakout game using Image input. First two graphs show

the reward per episode and total reward for 350 episode, and the last graph shows the number

of action that agent takes per episode.

reward to agent than RND, and it is no doubt that agent driven by ICM can learn and explore

faster giving more abundant intrinsic reward. As a result, ICM is able to capture 33 score after

only training 350 episodes, which is much better than RND from the output score’s point of

view(remember that RND achieves 52 score after training 1500 episodes). The reason of why we

stop training at 350 episodes is that training ICM requires much more time than training RND. In

fact, training ICM for 350 episodes already takes us 4 hours. From the training time’s point of

view, RND outplays ICM. The tradeoff between output score and training time need careful

consideration when selecting algorithm.

 It is also worth to note that ICM hardly learns from extrinsic reward. This can be seen

from the second graph of Figure 4.1.2 that the difference between total reward and intrinsic

reward of ICM can be negligible. The reason might be that ICM focuses on sparse reward

environment where extrinsic reward is always missing. We believe that this phenomenon will

only appear in Breakout game. In later two more complex game environments where extrinsic

reward is sparse, total reward of both algorithms will be very close to intrinsic reward, and agent

will only learn from intrinsic motivation.

 From the third graph we can observe that the step count of ICM is very high. Agent in

many episodes performs thousands of actions, which almost reaches the maximum 4500 steps

per episode. This might also explains the long training time of ICM. We guess the reason of this

high step count is that the simulator may be unresponsive during some episodes the game, and

caused the step count to be very high; however, one other explanation is that agent might

encounter Noisy-TV problem in the game and sticks in certain states.

20

4.2 Montezuma‘s Revenge

 Unlike Atari Breakout, the game environment of Montezuma is much more complex.

Montezuma is a very classic hard exploration problem in RL, and there are a number of papers

experiment on Montezuma. This game has sparse extrinsic reward, and the number of action that

agent can perform exceeds two. The screen of Montezuma is shown in Figure 4.2. A feature that

Montezuma differs from other games is that the game environment of Montezuma could switch

entirely by agent entering different rooms. The number of rooms that agent entering during the

21

Figure 4.2: Same as Atari Breakout, Montezuma uses either RGB image or Atari RAM as

screen. Agent controls the character to reach the key position, while avoid character touching

traps and enemies.

game has always been an important measurement of agent’s ability about exploring new

environment, and has been studied by many researchers. In our experiment, we are also

interested in the ability of ICM and RND exploring novel states.

 Agent need to collect 23 keys which are distributed in different rooms in total to get into

next level, which means during exploration, agent will not receive any extrinsic reward before it

reaches any key position. Therefore intrinsic reward plays a significant role for agent learning to

play Montezuma. In this game, we run the agent with 64 parallel environments and still set the

maximum steps per episode to 4500.

4.2.1 Montezuma RND Atari Simulator RAM Input

 We first run RND algorithm on Montezuma game with RAM input for 70 episodes. The

results are shown in Figure 4.2.1. From the first graph we can observe that the intrinsic reward

decreases dramatically in first 5 episodes; however, it then begins to increase linearly in later

episodes. We believe the intrinsic reward will still continue to grow after 70 episodes. We then

look at the third graph, the step number per episode of RAM input version shows an unusual

sharp peak in first 20 episodes, and then it starts to vibrate around 1300 in the remaining

episodes. These results show that the increase of episode number does not connect directly with

agent's survival time; however, after training more episodes agent is able to achieve higher score

through same number of actions. The linear growth of intrinsic reward of first graph tells us that

agent learns from intrinsic reward and explores new rooms continuously. As a result, the

performance of RND is very impressive. We observe that agent explores 12 different rooms and

22

collects 6 keys robustly and smoothly in No.70 episode. The actions of RND method is very

close to human player. Agent shows a very strong sense of purpose when traveling around

different rooms, as well as behaves strategically when collecting keys and avoiding enemies.

 We can observe that the difference between intrinsic reward and total reward is negligible

from the second graph, which is coherent with our expectation that extrinsic reward being absent.

This illustrates that agent is able to achieve very handsome result with only intrinsic reward in

sparse reward environment. In fact, we spend 5 hours training the agent for 70 episodes;

however, agent manages to capture 7100 scores after only 70 episodes, which is better than a

number of human players. We absolutely believe that RND has the ability to capture higher score

if we continue the training process.

23

Figure 4.2.1: The result of playing Montezuma game using RAM input. First two graphs show

the reward per episode and total reward for 70 episode, and the last graph shows the number of

action that agent takes per episode.

4.2.2 Montezuma ICM Image Input

 We then run ICM algorithm on Montezuma's Revenge with image input for 380 episodes.

The results are shown in Figure 4.2.2. We can observe that the results are entirely different from

that of RAM input. The highest peak of intrinsic reward is at episode 0, and it decreases

dramatically to 0 in around 100 episodes. However, the intrinsic reward starts to increase after

250 iteration, then begin to vibrate between 0 to 0.04. In addition, the step graph of Montezuma

also seems entirely different from that of Breakout game. The step number remains around 500

in first 150 episodes, and then starts to jump sharply to some unusual high peak occasionally.

This indicates that agent performs much more actions at some episodes than others.

 If we compare the intrinsic reward of ICM with that of RND from the first graph, we can

see that RND provides much higher intrinsic reward. Even the lowest point of RND is higher

than the highest point of ICM(0.09 vs. 0.08). In addition, from 100 to 250 episodes, the intrinsic

reward of ICM drops nearly to 0. In this case that agent could hardly receive extrinsic reward,

24

Figure 4.2.2: The result of playing Montezuma game using image input. First two graphs show

the reward per episode and total reward for 380 episode, and the last graph shows the number

of action that agent takes per episode.

which can bee seen from the second graph, we think that agent drive by ICM learns and explores

much slower than agent driven by RND. As a result, we only observe that agent explores 5

different rooms and collects 2 keys before it dies in No.380 episode. It is also worth to mention

that instead of moving purposeful like RND, agent driven by ICM moves randomly in each

room. It spends nearly 10 seconds jumping up and down in first room, which is difficult for us to

find out the goal of agent’s movement.

 The steps per episode graph in Figure 4.2.2 also explains the difference between ICM and

RND. ICM takes around 600 steps in average in each episode, which is much fewer than the

average steps number of RND(RND takes around 1200 steps in average). Fewer steps number

implies not only that agent drive by ICM lives shorter, but also that agent discovers less rooms

during the game. We also guess that agent might encounter Noisy-TV problem during training

since the step number is extremely high at some episodes.

 Admittedly, Montezuma's Revenge is a famous hard exploration problem in RL. Agent

has to discover the key positions by it self through exploring different rooms. We train ICM for

11 hours, and ICM is able to capture 2500 scores in 380 episode. Although much lower than

RND, the performance of ICM is still acceptable.

4.3 Super Mario Bros

 The third game environment of our experiment is the famous Super Mario Bros. The

screen of Mario is shown in Figure 4.3. Like Montezuma, Mario also has complex roles and

environments. Mario game has a number of items, traps, and enemies that could interact with

25

character, which means the agent has to distinguish wither a state is useful or irrelevant for

completing current level. In addition, unlike previous games, the goal will not be displayed in the

game screen when the game starts. Agent need to move forward to discover the goal itself. The

action that agent can perform may also change as agent interacts with different type of items.

 As we mentioned before, there are a number of actions that are not indispensable for

agent and does not help agent complete the level directly such as collecting coins; however, we

would still like to courage agent to perform these actions. In consideration of the complex nature

of Super Mario Bros, we do not put any extrinsic reward in game environment. Agent will need

26

Figure 4.3: Super Mario Bros only takes image as input. Mario's game environment is much

more complicate than previous two games. Agent will need to control the character to discover

and reach the goal position, while interacting with other items, traps, and enemies during the

game.

to learn to play the game from intrinsic reward only. In the other word, curiosity is the only

weapon for agent to survive. For game setting, we run the agent with 32 parallel environments

and increase the maximum steps per episode to 30000 due to the difficulty of this game.

4.3.1 Mario Using ICM Method

 We first let the agent learn the game using ICM algorithm. After more than 900 episodes,

agent still stuck at the first level. The results of intrinsic reward and steps number are shown in

Figure 4.3.1. We can observe that the results are very different from previous two games. The

intrinsic reward quickly drops to 0 in the first 50 episodes, and remains at 0 all the way to almost

the end. On the other hand, third graph shows that in most episodes, agent does not perform

many useful movement and die very rapidly; however, it seems that agent suddenly knows how

to "play" this game in the last 20 episodes although it does not move far from the beginning

position. This unusual phenomenon does not appear in previous two games.

 In reality, we think that ICM method may not be a proper algorithm for Super Mario

Bros. The first graph has clearly shows that ICM actually does not provide enough curiosity and

intrinsic reward for agent to learn to play this game. Agent prefers jumping up and down instead

of moving forward during training. Even if in some episodes that agent starts to move forward,

agent seems to be unaware of any other items in game environment. Agent does not try to

interact with coin blocks, does not take any actions to kill or avoid enemies and obstacles, and

does not know to jump intentionally to cross gaps. The only thing that agent does is jumping all

the time unintentionally, since jumping is the only actions that agent could perform instead of

27

moving forward. We think the reason of this poor performance is that the game environment of

first level does not provide enough curiosity that motivates agent to explore. In Montezuma, the

size of each room is relatively small, and agent could easily explore new rooms driven by its

curiosity. On the other hand, in Super Mario, we only have one big “room” in each level so that

agent need to keep moving forward in order to generate extra curiosity.

 We think that in the early stage of training, agent has indeed tried to move forward to

explore new environment. This has been proved in Figure 4.3.1 that both intrinsic reward and

step number of first 50 episodes are high enough to generate curiosity. However, after killed by

enemies and gap or realizing that interacting with collectable items does not help agent to reach

the target, agent might think moving forward is not the right method and stop performing this

action, which falls in a vicious circle that agent will not receive any intrinsic reward and

curiosity by not moving forward. In conclusion, the logic and structure of ICM need to be further

improved in order to achieve better result in Super Mario Bros.

28

Figure 4.3.1: The result of playing Super Mario Bros game in ICM algorithm. First two graphs

show the reward per episode and total reward for 900 episode, and the last graph shows the

number of action that agent takes per episode.

4.3.2 Mario Using RND Method

 We then let the agent learn the game using RND algorithm. This time agent is able to

move forward smoothly and manage to complete Stage 1 in 250 episodes. The results of intrinsic

reward and steps number are shown in Figure 4.3.2. We can observe that the general trends of

both intrinsic reward and step number are coherent with that of previous games. The intrinsic

reward roughly decrease as episode number increase. On the other hand, third graph shows that

step number vibrates among 1000 no matter how episode number changes. These results are very

close to what we observe in previous games.

 By contrast, the performance of RND is much better than the performance than ICM. The

first graph shows the intrinsic reward generated by RND throughout the training process. We can

see that agent continuously explores new environment. After training for 250 episodes, RND is

able to complete the first level without dying and advance to half of second level, which is very

29

Figure 4.3.2: The result of playing Super Mario Bros game in RND algorithm. First two graphs

show the reward per episode and total reward for 250 episode, and the last graph shows the

number of action that agent takes per episode.

impressive compared to the progress of ICM. The third graph indicates that RND method lives

longer than ICM as well. Contrast to ICM that agent usually sticks at the starting position, the

step number of RND vibrates mainly between 400 to 1800 which is much more natural and

behaves more like human player. Moreover, we observe that agent interacting with other items in

game environment during moving. We see that agent not only manages to hit bricks to collect

coins and mushrooms, but also steps on the top of enemies to kill them. The greatest surprise of

all is that agent has entered a hidden room by squatting down on the top of the green pipe in first

level. Although we could not arrive at a conclusion that agent performs those actions

intentionally since it does not try to collect all the collectable items during journey, we still think

that this result is satisfactory enough and believe that RND could achieve better performance if

we continue the training process.

 In conclusion, the results show that RND performs better than ICM in both output score

and training time in the later two game environments. We consider the reason might be that both

Montezuma and Super Mario have complex environments which require agent to acquire ability

to explore novel environment intensely. RND undoubtedly meets this requirement better than

ICM, which indicates the positive advantage of adding the predictor network on the top of

vanilla ICM structure. In next section, we will present further discussion about some challenges

we face in curiosity-driven agent and how we might improve the performance.

30

CHAPTER 5

Discussion

 In this section, we will present some challenges we face of using curiosity as intrinsic

motivation as well as discuss some ideas that might potentially improve the performance of

curiosity-driven agent.

5.1 Challenges in Curiosity-based method

 As introduced previously, human, as well as other living beings, first observes the

environment, then gets familiar with it, and finally take actions to achieve certain goal. Real life

situations are undoubtedly more complex than game environments. Therefore agent requires

some kind of motivation, such as curiosity, to firstly explore and learn the environment before

they discover the method to solve the problems.

 However, not all the tasks can be solved by curiosity alone. In addition to curiosity, we

still need to set a goal for agent. Without a specific, or say long-term goal, stuffs that agent

31

explored driven by its intrinsic curiosity could just be useless and meaningless rewards. Agents

might be able to learn and explore everything that seems to be novel or unusual to them, but

those learned knowledge can barely help them solve the problems. In fact, agent might not need

to learn everything in the environment. It might only requires a subset which shall be sufficient

for agent to achieve the goal.

 For most of the time, agents have to determine which is more important between

exploring the environment and accomplishing the task. For instance the Super Mario experiment,

agent driven by the curiosity is able to finish the first level through simply moving forward.

However, if we consider the Noisy-TV problem in first level, we are not sure whether agent

would stop in front of and start to watch TV instead of keep going forward, according to its

intrinsic curiosity. It is hard to determine the importance between exploring more states to fulfill

its curiosity and capturing the ultimate goal. The tradeoff between these two need further

consideration.

 Moreover, real life situations are more complex and unpredictable than game

environments where the environment and ultimate goal in real life are always not being defined

clearly. In real life situations, states are more unpredictable and environment could always be

changing so that the exploration done before might be useless.

 In addition, the performance of curiosity driven method remains unknown in multi-agents

scenario where agents could interact with each other. Agents driven by curiosity could be curious

about other agents and might prefer to exchange information with others to accelerate their

exploring process. The competition and collaboration between curiosity-driven agents remains an

interesting topic for future researchers.

32

5.2 Introducing Human Prior

 One possible idea of improvement we can try is to incorporate some human prior as

suggested by [8]. Reinforcement learning algorithms do not understand the semantic meaning of

the pixels on the screen, and need to learn everything from scratch. Humans start the game with a

lot of prior knowledge of the game. For example, the ladder can be climbed to travel vertically,

or the snake should often be avoided. This kind of knowledge allow humans to quickly achieve

great results in the games.

 Another advantage of incorporating prior knowledge is that agent can acquire stronger

ability in imitating human behavior. Agent can display more efficient actions and the movements

of agent could be more purposeful as well. In addition, human could also control the agent’s

learning preference by having human intentionally provides certain prior knowledge so that

agent is able to deal with complex tasks more handy.

5.3 Other internal motivations

 In addition to curiosity, there are other intrinsic motivation that could used in RL as well.

One motivation we discuss here is hindsight. Hindsight is not a new idea in RL problem. There

are many back propagation methods take use of the idea of hindsight to learn from error. For us

human, the idea of hindsight also appears in our everyday life. Unlike curiosity that is often used

to get familiar with the environment, in real life situation we often feel regret doing something

wrong and start to blame ourself to learn from the error. Then in next time we will know that

33

what should be the correct way to solve the problem. This idea of hindsight could be

incorporated with curiosity for agent’s learning process.

 In RL game environment, agent with the idea of hindsight could realize that certain

actions will result in losing its life. Then after learning from the error, agent will try to explore

the environment to figure out the correct actions that can help itself achieve higher score.

Combining curiosity with hindsight not only enables agent to explore new states efficiently but

also courages agent to discover correct actions to reach the final goal.

34

CHAPTER 6

Conclusion

 In this work, we have seen how curiosity could affect the performance of agents in sparse

reward environments. Curiosity is an important factor that motivates and gives agents an intrinsic

reward to explore and get familiar with the environment. Especially in those situations where the

extrinsic rewards are absent or long-term, curiosity gives the agents short-term immediate

rewards throughout the progress that help them build the concepts of the surrounding

environment. During the experiment, we have observed that how Random Network Distillation

could influence the results in a positive way when compared to the vanilla Intrinsic Curiosity

Module method. However, curiosity itself alone might not be the only intrinsic motivation for

human, in future work we will try to combine other internal rewards with curiosity to further

improve the performance.

35

BIBLIOGRAPHY

[1] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel,
Bellemare, Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski,
Georg, et al. Human-level control through deep reinforcement learning. Nature, 2015.

[2] Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom,
Tassa, Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep
reinforcement learning. ICLR, 2016.

[3] Ryan, Richard; Deci, Edward L. Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary Educational Psychology, 2000.

[4] Silvia, Paul J. Curiosity and motivation. In The Oxford Handbook of Human Motivation,
2012.

[5] Oudeyer, Pierre-Yves and Kaplan, Frederic. What is intrinsic motivation? a typology of
computational approaches. Frontiers in neurorobotics, 2009.

[6] Oudeyer, Pierre-Yves, Kaplan, Frdric, and Hafner, Verena V. Intrinsic motivation systems
for autonomous mental development. Evolutionary Computation, 2007.

[7] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (ICML), 2017.

[8] R. Dubey, P. Agrawal, D. Pathak, T. L. Griffiths,and A. A. Efros. Investigating human
priors forplaying video games. In ICML, 2018.

[9] Sun, Yi, Gomez, Faustino, and Schmidhuber, Jurgen. Planning to be surprised: Optimal
bayesian exploration in dynamic environments. In AGI, 2011.

[10] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning
diverse skills without a reward function. 2018.

[11] Bellemare, Marc, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David, and
Munos, Remi. Unifying count-based exploration and intrinsic motivation. In NIPS, 2016.

[12] Lopes, Manuel, Lang, Tobias, Toussaint, Marc, and Oudeyer, Pierre-Yves. Exploration in
model-based reinforcement learning by empirically estimating learning progress. In
NIPS, 2012.

36

[13] Houthooft, Rein, Chen, Xi, Duan, Yan, Schulman, John, De Turck, Filip, and Abbeel,
Pieter. Vime. Variational information maximizing exploration. In NIPS, 2016.

[14] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network
distillation. 2018.

[15] T. Simonini. Random Network Distillation: a new take on Curiosity-Driven Learning. In
data from the trenches, 2019.

37

