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 In many reinforcement learning scenarios such as many game environments or real life 

situations, the rewards are usually very limited and sparse. This kind of tasks are always difficult 

for agent to learn and explore. In fact, dealing with sparse reward environments has always been 

a challenge in reinforcement learning. In this work, we aim to study the agent driven by curiosity 

that can handle tasks with sparse rewards using a self-supervised method. We also want to test 

the possibility about agents driven by their intrinsic curiosity being able to explore the 

environment and generate reward by themselves. As a result, curiosity makes agents more 

intelligent. In the later experiments, we test two curiosity based RL methods in three different 

games and demonstrated that curiosity could indeed achieve very impressive performance in 

sparse reward game environment. 
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CHAPTER 1 

Introduction 

 In these years, research on reinforcement learning problem has achieved very impressive 

results in training agents to accomplish a variety of complex tasks, especially in environments 

that can provide abundant and uninterrupted rewards for agents to learn and maximize. This kind 

of task can be found in many Atari games and robot controlling problems [1, 2]. In general, agent 

dealing with this kind of problem can model the environment as a Markov Decision 

Process(MDP), and then manage to update policies to maximize the long-term reward given by 

the environment. However, in many games and real-life environments, the reward function given 

by outside environment is very sparse, completely non-existent, or needs to be carefully designed 

by researchers. In this case, the agent could hardly update the policy without receiving any 

feedback. On the other hand, it is always not feasible or scalable for researcher to manually craft 

enough reward for agent in those environments since the amount of reward that agent needs in 

order to explore environment and update policy is often tremendous. As a result, designing agent 

that can handle sparse reward environment has always been a problem in reinforcement learning. 

  
1



 

 To help solve this problem, we want to investigate the situation where curiosity and 

diversity functions are used as the intrinsic rewards and drives the agent to gain better perception 

of the RL problem. Figure 1.1 shows many situations that curiosity-driven agent only uses 

intrinsic reward to explore novel environments. In addition, we also want to investigate the 

effectiveness about how agent driven by curiosity gets familiar with and explores the 

environment. Virtual agents can thus be trained in new environments in a self-supervised way, 

and does not require hand-crafted reward functions. 

2

Figure 1.1: Some RL tasks that have very limited or even absent extrinsic reward. Agent in 

these tasks treats curiosity as intrinsic motivation and tries to solve the problem only with 

intrinsic reward. In later chapter we will see that curiosity-driven agent could achieve very 

impressive results in sparse reward environments.



 The idea of using curiosity to learn is not a new idea [3]. In fact, the real world that 

human lives in are such a sparse reward environment that human needs to discover new stuffs 

and adapt new knowledges in every minute. Developmental psychology researches have long 

proposed curiosity as a crucial motivation for humans learning and exploring new environments 

[4], especially in young children. Young children actively learn about the world by exploring it, 

without specific task or goal in mind. The commonsense skills developed by young children are 

important for many tasks later on. However, the lack of these commonsense skills is one of the 

biggest roadblock for current AI systems.  

 In this work, we test the performances of two curiosity based RL algorithms: Intrinsic 

Curiosity Module(ICM) and Random Network Distillation(RND) on three sparse reward game 

environments: Atari Breakout, Montezuma‘s Revenge, and Super Mario Bros with two kind of 

inputs: image input and Atari Simulator RAM input respectfully. In ICM, agent mainly learns 

from intrinsic reward to update, and seldom receives any extrinsic reward from outside 

environment. On the other hand in RND, agent receives both intrinsic and extrinsic rewards 

although extrinsic rewards may always absent, and the total reward is the weighted average of 

these two. We compare the results of both ICM and RND methods and show that 1) intrinsic 

reward generated by curiosity helps agent to explore the environment in sparse reward problem. 

2) The use of RND method has positive effect on performance than vanilla ICM method. 
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CHAPTER 2 

Related Works 

 The study of using intrinsic motivation to drive agent to explore environment is not a new 

concept in reinforcement learning [5, 6]. According to researchers, there are two main 

advantages of agent driven by intrinsic motivation: firstly, agent driven by intrinsic reward tend 

to discover new states during actions [11, 12]. Secondly, agent would try to move to states that 

could decrease the error since agent is able to predict the environment state change to a certain 

extent after it takes actions [13]. 

 Curiosity as a typical class of intrinsic motivation has also been studied to solve sparse 

reward problem by many researchers [7, 8]. These works show that curiosity serves as an 

important factor for agent to get familiar with environment. In addition, curiosity could also 

helps agent adapt to new environment faster after agent had gained some perception to the task. 

This has been shown in many game scenarios that agent is able to learn faster in new level after 

it completes previous level. 

 In addition to curiosity, other types of intrinsic reward of agent such as surprise and 

diversity are also proposed in other works [9, 10]. In these works, agent learn variety of different 
4



policies by exploring different parts of environments. Therefore when agent encounter novel 

scenarios later, agent could reuse the set of policies already learned to accelerate the training 

process in new scenarios. 

 Two methods that are used in curiosity-driven agent are Intrinsic Curiosity Module(ICM) 

[7] and Random Network Distillation(RND) [14], which we are going to discuss in this work. In 

general, total reward of the agent is the weighted sum of both intrinsic and extrinsic rewards; 

however, extrinsic rewards would always be zero in sparse reward environment. Agent will try to 

maximize the long term total reward while curiosity encouraging agent to reach new states 

throughout exploration. 

5



CHAPTER 3 

Algorithm and Methodology 

 Before we step into the discussion of curiosity-driven method, let us first briefly review 

the format of reinforcement learning problem. In principle, at each time step , agent interacts 

with environment to get a current state , an action , and a reward . Agent will then try to 

perform the next available action  to reach new state  and receive new reward  at next 

time step. This action  was determined based on the learned policy , which is a conditional 

distribution over the set of actions  given the set of states . Therefore the goal of RL algorithm 

is to learn a set of policies  that maximize the cumulative reward. 

 The idea of using curiosity to training is not new. However, there has been few 

computationally feasible models. Under the MDP and RL framework, the goal of exploration is 

to learn the transition model of the world . To courage agent exploring novel states, 

we generate large intrinsic rewards for unexplored states, and train existing RL frameworks with 

a weighted average of the intrinsic rewards and extrinsic rewards. In the rest of this section, we 

will discuss several relevant framework proposed in literature. 

t

st at rt

at+1 st+1 rt+1

at+1 π

A S

π

P(st+1 |st, at)
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3.1 Intrinsic Curiosity Module 

 One framework of curiosity-based intrinsic reward is the Intrinsic Curiosity Module 

(ICM) proposed by [7]. A very simple architecture of ICM is shown in Figure 3.1. When dealing 

with the problem, curiosity-driven agent not only receives the intrinsic reward generated by 

ICM, but also may receives extrinsic reward to a certain extent from outside environment 

occasionally. Therefore the total reward will be the sum of both intrinsic reward and extrinsic 

reward over time :      

                (3.1) 

In this equation,  is the total reward,  is the extrinsic reward provided by environment, and 

 is the intrinsic reward generated by ICM. It is also worth to note that most of the time  would 

be zero in sparse extrinsic reward problem. In fact, when we train agent with ICM in next section 

we will show that during learning process cases where  is not zero is so rare that agent actually 

learns only from . Nevertheless the agent is still able to achieve handsome result without 

extrinsic reward. 

 According to [7], at each time step , agent will try to perform action  chosen from the 

policy . The goal of agent is to learn the policy that maximize the expected total reward over 

time  through following equation: 

                (3.2) 

where  is current state and  is the parameter of policy  which we want to optimize. 

t

R(t) =
T

∑
t=1

(rt + ri
t )

R(t) rt

rti rt

rt

rti

t at

π

t

max
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𝔼π(st,θP)[R(t)]

st θP π
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 In order to courage agent to explore novel states, one intuitive method is to give states 

that are hard to predict higher intrinsic reward. In other word, we want to tie a direct proportion 

between  and prediction error: 

                              (3.3) 

However, not all of the unpredictable states are important to agent. For example the changes of  

background cloud in Super Mario game, although hard to predict, is irrelevant with agent’s 

rti

ri
t ∝ ̂st+1 − st+1
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Figure 3.1: A graph that shows the very basic structure of ICM. In the figure, state  and action 

 are inputs at time .  is the reward provided by environment at time , and  is the reward 

generated by Intrinsic Curiosity Module(ICM), a curiosity based reinforcement learning 

method which we are going to discuss in this chapter.  is the goal of algorithm that 

maximizes the sum of  and .
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movement, which does not worth agent to pay much curiosity. As a result, how to make sure 

prediction error worth agent’s curiosity is a question that need consideration.  

 In ICM, curiosity is formulated as the prediction error of the next state in the feature 

space according to [7]. , which is the prediction of feature space of state , is computed 

by: 

                    (3.4) 

giving current feature space , action  , parameter  as inputs and computed using forward 

dynamics model .  is learned to minimize the loss of prediction error .

 is computed by the MSE of prediction loss:  

                       (3.5) 

where  is a scaler and  denotes the mapping from raw sensory space to feature space. The 

reason for mapping the observation state to the feature state is that prediction error on raw 

sensory data for example pixels is highly subject to the the stochastic nature of the environment. 

Feature space is a layer of abstraction that can help reduce the noise. 

 The particular features chosen in ICM is the inverse dynamics model . The mapping is 

trained with a separate task of predicting the current action , given the current state  and the 

next state : 

                      (3.5) 

[7] introduces parameter  which tries to minimize the loss between  and . We want our 

predicted  to be close to  since it indicates that feature space are highly predictable and are 

related to the agent’s action. On the other hand, large difference between  and  probably 

̂ϕ(st+1) st+1

̂ϕ(st+1) = f (ϕ(st), at; θF)

ϕ(st) at θF

f θF | | ̂ϕ(st+1) − ϕ(st+1) | |2
2

rti
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η
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illustrates that the state change after performing action is unpredictable, perhaps the 

environmental changes. The goal of this inverse dynamics task is to reduce the influence of the 

elements in the environment that are not very relevant to the agent's actions. See Figure 3.2 as 

illustration about determining meaningful features. 

 The combination of forward and inverse dynamic models make sure that agent only 

curious about the environment states changes which are relevant to its actions, instead of paying 

attention to other changes such as background alternations which do not affect agent’s action. 

The goal of ICM is to learn the three parameters mentioned above: , , and .  tries to 

maximize the expected total reward through policies, while  and  try to minimize the loss of 

forward and inverse dynamic models. In next section, we will discuss our experiments with ICM 

method on three RL game environments. 

θP θF θI θP

θF θI
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Figure 3.2: while the agent is interacting with the environment, an inverse dynamics model is 

trained on the task of predicting the action of the agent  given the current state  and the next 

state . This inverse dynamics model learned to effectively encode the states into feature 

vectors, which is of much lower dimension. 
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3.2 Random Network Distillation 

 As mentioned above, ICM tends to pay more curiosity on next states that are novel and 

hard to predict. Therefore ICM might encounter problems in environments that always change 

dramatically. One problem of the ICM framework is the "noisy-TV problem". While exploring 

the world, if the agent encounters a TV is randomly changing channels, the agent would stay in 

front of the TV and not explore other parts of the world, because the next state of this stochastic 

changing TV is very difficult for agent to predict, therefore curiosity for the content on the TV 

generates a very large intrinsic reward for the agent.  

 One framework proposed to alleviate this problem is the Random Network Distillation 

(RND) framework proposed by [14]. The overall formulation is the same as ICM, but instead of 

using inverse dynamics features, RND uses random features. The architecture is quite simple. A 

target network that encodes the feature space information of states is randomly initialized in the 

beginning of the training process, and its weights are never updated. A second network called the 

prediction network is trained over time to approximate the target network, and the prediction 

error is used as the intrinsic reward for the agent.  

 Because the target network stays the same, the feature space information generates from 

target network will also stay the same. If the agent has explored a certain state, the prediction 

network has seen the output of the target network. The prediction error for this explored would 

be small, and the intrinsic reward would be small as well. For unfamiliar states, the prediction 

error and intrinsic reward would be large. Figure 3.3 [15] shows the overall architecture of target 

network and prediction network. 

11



RND then calculates the intrinsic reward  as the MSE of  and : 

                (3.6) 

while predictor network will try to minimize the loss of this prediction error. 

 The behind logic of both ICM and RND are same: both algorithms tend to encourage 

agent to explore novel states. They pay much curiosity and give large intrinsic rewards to states 

that have not visited before and are hard to predict, while only putting small intrinsic reward on 

rti ft+1
̂ft+1

ri
t = | | ̂ft+1 − ft+1 | |2

2
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Figure 3.3: Graph that shows the structure of target network and predictor network. Target 

network which encodes feature space information of all states is randomly initialized and never 

update. It takes next state  as input and output corresponding feature space . Predictor 

network is trained to approximate target network. It takes  as input and tries to predict the 

target network’s output . Intrinsic reward  will be the MSE of  and . 
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previously visited states which are highly predictable. However, unlike ICM, the predictor 

network of RND is trained to predict the feature space information from target network instead 

of directly predicting next state. Therefore RND can make sure it gives higher intrinsic reward to 

state that its feature space information is meaningful, no matter whether the state itself is 

predictable or not. Through minimizing the prediction loss, the predictor network can better 

approximate the feature space information from target network and pay less curiosity to those 

“noisy states”. Therefore RND is able to alleviate the effect of noisy-TV problem. In next 

section, we will present our experiment results with RND method on three RL game 

environments and compare the outputs with that of vanilla ICM method. 

3.3 Diversity 

 Another related framework is proposed by [10] that called Diversity is All You 

Need(DIAYN) which uses diversity as intrinsic motivation for agent. DIAYN connects 

reinforcement learning with information theory, and enables intelligent virtual agents to develop 

skills without an external reward function. New skills emerge from maximizing an information 

theoretic objective. In this work, the agents are first trained without any task to learn a set of 

skills. Each skill is essentially a different policy. The agents try to develop a set of skills, where 

each skill is as different as possible from others by exploring drastically different parts of the 

state space. Then, for different tasks, the set of skills can be reused to accelerate training. In 

addition, developing diverse skills can also help agent to distinguish and avoid noisy states, 

which makes skills more useful. 
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 One main advantage of using diversity as intrinsic reward is to imitate experts. Figure 3.4 

shows this feature when agent learns to play Super Mario. Just like human player, agent learns to 

“jump” under the coin block to collect coin although this action does not directly help agent 

solve the level. 
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Figure 3.4: Screenshot that shows DIAYN’s ability of imitating human performance. When 

DIAYN playing Super Mario Bros, agent is able to develop skill “jump” in order to collect coin 

like human. Although “jump” is not a necessary skill at current position, DIAYN also considers 

this skill as useful. 



CHAPTER 4 

Experiments and Results 

 As we discussed in previous section, we experimented both ICM and RNG algorithms in 

three different game environments: Atari Breakout, Montezuma, and Super Mario Bros. In order 

to compare the performance of these two algorithms, we have two different type of inputs for the 

first two games: the classic image input, and the Atari Simulator RAM input. 

 The model for image input is much more complicated, and training each episode is 

slower. The models that use Atari Simulator RAM as input is much simpler, since the RAM is 

only 128 bytes, but we need to design and tune each model. Some hyper parameter we use in 

both ICM and RND are learning rate being ,  being 0.99, and  being 0.95 with batch size 

equals 128. In most of the experiments we get handsome results after we train the agent within 

1K episodes. In ICM we use a three convolution layers network with channel sizes equal 32, 64, 

64, kernel sizes equal 8, 4, 3, and strides equal 4, 2, 1 respectively. After that, we add a fully 

connected layer to connect feature size with output size. In RND we use network structure of 4 

layers fully connected network, with dimension: state size -> 256 -> 256 -> 256 -> action size, 

where state size and action size are the dimensions of each state and action. Each layer we use a 

1e − 4 γ λ
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linear transformation on inputs. For the forward activation, we use ReLU to build the network 

that maps state to action. 

4.1 Atari Breakout 

 We start with using two algorithms to play Atari Breakout, shown in Figure 4.1. Atari 

Breakout is a very classic arcade game in RL. Compared with later two RL games, Atari 

Breakout can provide explicit and dense extrinsic reward as feedback to agent to guide its future 

movement. Therefore for experiment results we would like to pay more attention on the intrinsic 
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Figure 4.1: Breakout uses either an array of shape  RGB image or 128 bytes RAM 

of Atari machine as the game screen. Every action is repeatedly performed for a duration of  

frames, where  is uniformly sampled from . Player controls the horizontally movable 

paddle to avoid the ball from touching the bottom of the screen and tries to hit the bricks as 

much as possible. 

(210,160,3)

k

k {2,3,4}



reward generated by two algorithms, and how agent explores environment driven by intrinsic 

reward. The control of this game is relatively simple since it only supports two directions as 

agent's action in order to move paddle horizontally.  

 For Breakout, we run the agent with 16 parallel environment to avoid spending numerous 

time on training. We set the maximum steps per episode to 4500, which means the agent can 

perform as much as 4500 actions before it dies in each episode. This mainly prevents agent stuck 

in irrelevant states forever such as encounters Noisy-TV problem. For our expectation, we would 

like to see agent survive as long as possible as well as maximizing the score. 

4.1.1   Breakout’s RND Atari Simulator RAM Input 

 We first run RND algorithm on Breakout game with RAM input for 1500 episodes. The 

results are shown in Figure 4.1.1. We can observe that the intrinsic reward reaches its maximum 

in first several episodes, and becomes smaller and smaller as episode increases. While the 

intrinsic reward tend to vanish around 800 episodes, and does not move much after that. We 

think the reason is that the game environment of Breakout is relatively simple. There are only 

two actions that agent can take, which indicates that few episodes is enough for agent to get 

familiar with game environment. However, this illustrates that RND method learns very fast as 

well, and tends to explore new states rapidly. It is also worth to note that RND method is able to 

distinguish noisy states since intrinsic reward decreases after agent has explored the entire game 

environment. 
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 The second graphs shows the total reward per episode of agent. We can observe that total 

reward increase linearly in general; however, it exhibits the high-variance, even after 1000 

episodes the learned policy can be unstable. As we mentioned before, Breakout can provide 

efficient extrinsic reward, which explains linear growth of total reward. The last graph shows 

how many movements the agent takes in each episodes. Since the agent is able to perform one 

movement every four frames, it also indicates the how long does the agent survive in each 

episode. We can observe that in general the step number increase as episode number increase, 

which illustrates the success of RND algorithm in Atari Breakout game. 

 If we connect the first graph with the third graph. We could see that intrinsic reward 

nearly disappears after 1000 episodes. Meanwhile the step number that agent performs also stop 

increasing after 1000 episodes. This emphasizes that intrinsic reward plays a crucial role for 

agent’s survival. As a result, after training for 4 hours, RND is able to captures 52 score in first 

level. We believe that RND method can achieve better result if we keep our training. 
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Figure 4.1.1: The result of playing Breakout game using RAM input. First two graphs show the 

reward per episode and total reward for 1500 episode, and the last graph shows the number of 

action that agent takes per episode. 



4.1.2   Breakout’s ICM Image Input 

 We then run ICM algorithm on Atari Breakout game with image input for 350 episodes. 

The results are shown in Figure 4.1.2. The first two graphs, we can observe that intrinsic reward 

shows an  shape: it decreases from its first high peak in first 150 episodes; then it drops into a 

valley and vibrates around 0.02 in next 100 episodes; in the last 100 episodes the intrinsic reward 

starts to increase to the second high peak. Overall, the variation of the reward is very large(from 

above 0.1 to almost 0). 

 However, the performance of ICM method differs from that of RND method 

dramatically. If we compare first graph of two methods, we can observe that intrinsic reward 

generated by ICM is much higher than intrinsic reward of RND(0.1 vs. 0.008). The discrepancy 

between values of intrinsic rewards may also tell the difference between two methods about how 

they calculate intrinsic reward. We now know that ICM tends to provide much more intrinsic 

U
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Figure 4.1.2: The result of playing Breakout game using Image input. First two graphs show 

the reward per episode and total reward for 350 episode, and the last graph shows the number 

of action that agent takes per episode. 



reward to agent than RND, and it is no doubt that agent driven by ICM can learn and explore 

faster giving more abundant intrinsic reward. As a result, ICM is able to capture 33 score after 

only training 350 episodes, which is much better than RND from the output score’s point of 

view(remember that RND achieves 52 score after training 1500 episodes). The reason of why we 

stop training at 350 episodes is that training ICM requires much more time than training RND. In 

fact, training ICM for 350 episodes already takes us 4 hours. From the training time’s point of 

view, RND outplays ICM. The tradeoff between output score and training time need careful 

consideration when selecting algorithm. 

 It is also worth to note that ICM hardly learns from extrinsic reward. This can be seen 

from the second graph of Figure 4.1.2 that the difference between total reward and intrinsic 

reward of ICM can be negligible. The reason might be that ICM focuses on sparse reward 

environment where extrinsic reward is always missing. We believe that this phenomenon will 

only appear in Breakout game. In later two more complex game environments where extrinsic 

reward is sparse, total reward of both algorithms will be very close to intrinsic reward, and agent 

will only learn from intrinsic motivation. 

 From the third graph we can observe that the step count of ICM is very high. Agent in 

many episodes performs thousands of actions, which almost reaches the maximum 4500 steps 

per episode. This might also explains the long training time of ICM. We guess the reason of this 

high step count is that the simulator may be unresponsive during some episodes the game, and 

caused the step count to be very high; however, one other explanation is that agent might 

encounter Noisy-TV problem in the game and sticks in certain states. 
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4.2 Montezuma‘s Revenge 

 Unlike Atari Breakout, the game environment of Montezuma is much more complex. 

Montezuma is a very classic hard exploration problem in RL, and there are a number of papers 

experiment on Montezuma. This game has sparse extrinsic reward, and the number of action that 

agent can perform exceeds two. The screen of Montezuma is shown in Figure 4.2. A feature that 

Montezuma differs from other games is that the game environment of Montezuma could switch 

entirely by agent entering different rooms. The number of rooms that agent entering during the 
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Figure 4.2: Same as Atari Breakout, Montezuma uses either RGB image or Atari RAM as 

screen. Agent controls the character to reach the key position, while avoid character touching 

traps and enemies.  



game has always been an important measurement of agent’s ability about exploring new 

environment, and has been studied by many researchers. In our experiment, we are also 

interested in the ability of ICM and RND exploring novel states. 

 Agent need to collect 23 keys which are distributed in different rooms in total to get into 

next level, which means during exploration, agent will not receive any extrinsic reward before it 

reaches any key position. Therefore intrinsic reward plays a significant role for agent learning to 

play Montezuma. In this game, we run the agent with 64 parallel environments and still set the 

maximum steps per episode to 4500. 

4.2.1   Montezuma RND Atari Simulator RAM Input 

 We first run RND algorithm on Montezuma game with RAM input for 70 episodes. The 

results are shown in Figure 4.2.1. From the first graph we can observe that the intrinsic reward 

decreases dramatically in first 5 episodes; however, it then begins to increase linearly in later 

episodes. We believe the intrinsic reward will still continue to grow after 70 episodes. We then 

look at the third graph, the step number per episode of RAM input version shows an unusual 

sharp peak in first 20 episodes, and then it starts to vibrate around 1300 in the remaining 

episodes. These results show that the increase of episode number does not connect directly with 

agent's survival time; however, after training more episodes agent is able to achieve higher score 

through same number of actions. The linear growth of intrinsic reward of first graph tells us that 

agent learns from intrinsic reward and explores new rooms continuously. As a result, the 

performance of RND is very impressive. We observe that agent explores 12 different rooms and 
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collects 6 keys robustly and smoothly in No.70 episode. The actions of RND method is very 

close to human player. Agent shows a very strong sense of purpose when traveling around 

different rooms, as well as behaves strategically when collecting keys and avoiding enemies.  

 We can observe that the difference between intrinsic reward and total reward is negligible 

from the second graph, which is coherent with our expectation that extrinsic reward being absent. 

This illustrates that agent is able to achieve very handsome result with only intrinsic reward in 

sparse reward environment. In fact, we spend 5 hours training the agent for 70 episodes; 

however, agent manages to capture 7100 scores after only 70 episodes, which is better than a 

number of human players. We absolutely believe that RND has the ability to capture higher score 

if we continue the training process. 
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Figure 4.2.1: The result of playing Montezuma game using RAM input. First two graphs show 

the reward per episode and total reward for 70 episode, and the last graph shows the number of 

action that agent takes per episode. 



4.2.2   Montezuma ICM Image Input 

 We then run ICM algorithm on Montezuma's Revenge with image input for 380 episodes. 

The results are shown in Figure 4.2.2. We can observe that the results are entirely different from 

that of RAM input. The highest peak of intrinsic reward is at episode 0, and it decreases 

dramatically to 0 in around 100 episodes. However, the intrinsic reward starts to increase after 

250 iteration, then begin to vibrate between 0 to 0.04. In addition, the step graph of Montezuma 

also seems entirely different from that of Breakout game. The step number remains around 500 

in first 150 episodes, and then starts to jump sharply to some unusual high peak occasionally. 

This indicates that agent performs much more actions at some episodes than others. 

 If we compare the intrinsic reward of ICM with that of RND from the first graph, we can 

see that RND provides much higher intrinsic reward. Even the lowest point of RND is higher 

than the highest point of ICM(0.09 vs. 0.08). In addition, from 100 to 250 episodes, the intrinsic 

reward of ICM drops nearly to 0. In this case that agent could hardly receive extrinsic reward, 
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Figure 4.2.2: The result of playing Montezuma game using image input. First two graphs show 

the reward per episode and total reward for 380 episode, and the last graph shows the number 

of action that agent takes per episode. 



which can bee seen from the second graph, we think that agent drive by ICM learns and explores 

much slower than agent driven by RND. As a result, we only observe that agent explores 5 

different rooms and collects 2 keys before it dies in No.380 episode. It is also worth to mention 

that instead of moving purposeful like RND, agent driven by ICM moves randomly in each 

room. It spends nearly 10 seconds jumping up and down in first room, which is difficult for us to 

find out the goal of agent’s movement. 

 The steps per episode graph in Figure 4.2.2 also explains the difference between ICM and 

RND. ICM takes around 600 steps in average in each episode, which is much fewer than the 

average steps number of RND(RND takes around 1200 steps in average). Fewer steps number 

implies not only that agent drive by ICM lives shorter, but also that agent discovers less rooms 

during the game. We also guess that agent might encounter Noisy-TV problem during training 

since the step number is extremely high at some episodes. 

 Admittedly, Montezuma's Revenge is a famous hard exploration problem in RL. Agent 

has to discover the key positions by it self through exploring different rooms. We train ICM for 

11 hours, and ICM is able to capture 2500 scores in 380 episode. Although much lower than 

RND, the performance of ICM is still acceptable.  

4.3 Super Mario Bros 

 The third game environment of our experiment is the famous Super Mario Bros. The 

screen of Mario is shown in Figure 4.3. Like Montezuma, Mario also has complex roles and  

environments. Mario game has a number of items, traps, and enemies that could interact with 
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character, which means the agent has to distinguish wither a state is useful or irrelevant for 

completing current level. In addition, unlike previous games, the goal will not be displayed in the 

game screen when the game starts. Agent need to move forward to discover the goal itself. The 

action that agent can perform may also change as agent interacts with different type of items. 

 As we mentioned before, there are a number of actions that are not indispensable for 

agent and does not help agent complete the level directly such as collecting coins; however, we 

would still like to courage agent to perform these actions. In consideration of the complex nature 

of Super Mario Bros, we do not put any extrinsic reward in game environment. Agent will need 
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Figure 4.3: Super Mario Bros only takes image as input. Mario's game environment is much 

more complicate than previous two games. Agent will need to control the character to discover 

and reach the goal position, while interacting with other items, traps, and enemies during the 

game. 



to learn to play the game from intrinsic reward only. In the other word, curiosity is the only 

weapon for agent to survive. For game setting, we run the agent with 32 parallel environments 

and increase the maximum steps per episode to 30000 due to the difficulty of this game. 

4.3.1   Mario Using ICM Method 

 We first let the agent learn the game using ICM algorithm. After more than 900 episodes, 

agent still stuck at the first level. The results of intrinsic reward and steps number are shown in 

Figure 4.3.1. We can observe that the results are very different from previous two games. The 

intrinsic reward quickly drops to 0 in the first 50 episodes, and remains at 0 all the way to almost 

the end. On the other hand, third graph shows that in most episodes, agent does not perform 

many useful movement and die very rapidly; however, it seems that agent suddenly knows how 

to "play" this game in the last 20 episodes although it does not move far from the beginning 

position. This unusual phenomenon does not appear in previous two games. 

 In reality, we think that ICM method may not be a proper algorithm for Super Mario 

Bros. The first graph has clearly shows that ICM actually does not provide enough curiosity and 

intrinsic reward for agent to learn to play this game. Agent prefers jumping up and down instead 

of moving forward during training. Even if in some episodes that agent starts to move forward, 

agent seems to be unaware of any other items in game environment. Agent does not try to 

interact with coin blocks, does not take any actions to kill or avoid enemies and obstacles, and 

does not know to jump intentionally to cross gaps. The only thing that agent does is jumping all 

the time unintentionally, since jumping is the only actions that agent could perform instead of 
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moving forward. We think the reason of this poor performance is that the game environment of 

first level does not provide enough curiosity that motivates agent to explore. In Montezuma, the 

size of each room is relatively small, and agent could easily explore new rooms driven by its 

curiosity. On the other hand, in Super Mario, we only have one big “room” in each level so that 

agent need to keep moving forward in order to generate extra curiosity.  

 We think that in the early stage of training, agent has indeed tried to move forward to 

explore new environment. This has been proved in Figure 4.3.1 that both intrinsic reward and 

step number of first 50 episodes are high enough to generate curiosity. However, after killed by 

enemies and gap or realizing that interacting with collectable items does not help agent to reach 

the target, agent might think moving forward is not the right method and stop performing this 

action, which falls in a vicious circle that agent will not receive any intrinsic reward and 

curiosity by not moving forward. In conclusion, the logic and structure of ICM need to be further 

improved in order to achieve better result in Super Mario Bros. 
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Figure 4.3.1: The result of playing Super Mario Bros game in ICM algorithm. First two graphs 

show the reward per episode and total reward for 900 episode, and the last graph shows the 

number of action that agent takes per episode. 



4.3.2 Mario Using RND Method 

 We then let the agent learn the game using RND algorithm. This time agent is able to 

move forward smoothly and manage to complete Stage 1 in 250 episodes. The results of intrinsic 

reward and steps number are shown in Figure 4.3.2. We can observe that the general trends of 

both intrinsic reward and step number are coherent with that of previous games. The intrinsic 

reward roughly decrease as episode number increase. On the other hand, third graph shows that 

step number vibrates among 1000 no matter how episode number changes. These results are very 

close to what we observe in previous games. 

 By contrast, the performance of RND is much better than the performance than ICM. The 

first graph shows the intrinsic reward generated by RND throughout the training process. We can 

see that agent continuously explores new environment. After training for 250 episodes, RND is 

able to complete the first level without dying and advance to half of second level, which is very 
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Figure 4.3.2: The result of playing Super Mario Bros game in RND algorithm. First two graphs 

show the reward per episode and total reward for 250 episode, and the last graph shows the 

number of action that agent takes per episode. 



impressive compared to the progress of ICM. The third graph indicates that RND method lives 

longer than ICM as well. Contrast to ICM that agent usually sticks at the starting position, the 

step number of RND vibrates mainly between 400 to 1800 which is much more natural and 

behaves more like human player. Moreover, we observe that agent interacting with other items in 

game environment during moving. We see that agent not only manages to hit bricks to collect 

coins and mushrooms, but also steps on the top of enemies to kill them. The greatest surprise of 

all is that agent has entered a hidden room by squatting down on the top of the green pipe in first 

level. Although we could not arrive at a conclusion that agent performs those actions 

intentionally since it does not try to collect all the collectable items during journey, we still think 

that this result is satisfactory enough and believe that RND could achieve better performance if 

we continue the training process. 

 In conclusion, the results show that RND performs better than ICM in both output score 

and training time in the later two game environments. We consider the reason might be that both 

Montezuma and Super Mario have complex environments which require agent to acquire ability 

to explore novel environment intensely. RND undoubtedly meets this requirement better than 

ICM, which indicates the positive advantage of adding the predictor network on the top of 

vanilla ICM structure. In next section, we will present further discussion about some challenges 

we face in curiosity-driven agent and how we might improve the performance. 
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CHAPTER 5 

Discussion 

 In this section, we will present some challenges we face of using curiosity as intrinsic 

motivation as well as discuss some ideas that might potentially improve the performance of 

curiosity-driven agent. 

5.1 Challenges in Curiosity-based method 

 As introduced previously, human, as well as other living beings, first observes the 

environment, then gets familiar with it, and finally take actions to achieve certain goal. Real life 

situations are undoubtedly more complex than game environments. Therefore agent requires 

some kind of motivation, such as curiosity, to firstly explore and learn the environment before 

they discover the method to solve the problems. 

 However, not all the tasks can be solved by curiosity alone. In addition to curiosity, we 

still need to set a goal for agent. Without a specific, or say long-term goal, stuffs that agent 
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explored driven by its intrinsic curiosity could just be useless and meaningless rewards. Agents 

might be able to learn and explore everything that seems to be novel or unusual to them, but 

those learned knowledge can barely help them solve the problems. In fact, agent might not need 

to learn everything in the environment. It might only requires a subset which shall be sufficient 

for agent to achieve the goal. 

 For most of the time, agents have to determine which is more important between 

exploring the environment and accomplishing the task. For instance the Super Mario experiment, 

agent driven by the curiosity is able to finish the first level through simply moving forward. 

However, if we consider the Noisy-TV problem in first level, we are not sure whether agent 

would stop in front of and start to watch TV instead of keep going forward, according to its 

intrinsic curiosity. It is hard to determine the importance between exploring more states to fulfill 

its curiosity and capturing the ultimate goal. The tradeoff between these two need further 

consideration.  

 Moreover, real life situations are more complex and unpredictable than game 

environments where the environment and ultimate goal in real life are always not being defined 

clearly. In real life situations, states are more unpredictable and environment could always be 

changing so that the exploration done before might be useless.  

 In addition, the performance of curiosity driven method remains unknown in multi-agents 

scenario where agents could interact with each other. Agents driven by curiosity could be curious 

about other agents and might prefer to exchange information with others to accelerate their 

exploring process. The competition and collaboration between curiosity-driven agents remains an 

interesting topic for future researchers. 
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5.2 Introducing Human Prior 

 One possible idea of improvement we can try is to incorporate some human prior as 

suggested by [8]. Reinforcement learning algorithms do not understand the semantic meaning of 

the pixels on the screen, and need to learn everything from scratch. Humans start the game with a 

lot of prior knowledge of the game. For example, the ladder can be climbed to travel vertically, 

or the snake should often be avoided. This kind of knowledge allow humans to quickly achieve 

great results in the games. 

 Another advantage of incorporating prior knowledge is that agent can acquire stronger 

ability in imitating human behavior. Agent can display more efficient actions and the movements 

of agent could be more purposeful as well. In addition, human could also control the agent’s 

learning preference by having human intentionally provides certain prior knowledge so that 

agent is able to deal with complex tasks more handy. 

5.3   Other internal motivations 

 In addition to curiosity, there are other intrinsic motivation that could used in RL as well. 

One motivation we discuss here is hindsight. Hindsight is not a new idea in RL problem. There 

are many back propagation methods take use of the idea of hindsight to learn from error. For us 

human, the idea of hindsight also appears in our everyday life. Unlike curiosity that is often used 

to get familiar with the environment, in real life situation we often feel regret doing something 

wrong and start to blame ourself to learn from the error. Then in next time we will know that 
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what should be the correct way to solve the problem. This idea of hindsight could be 

incorporated with curiosity for agent’s learning process. 

 In RL game environment, agent with the idea of hindsight could realize that certain 

actions will result in losing its life. Then after learning from the error, agent will try to explore 

the environment to figure out the correct actions that can help itself achieve higher score. 

Combining curiosity with hindsight not only enables agent to explore new states efficiently but 

also courages agent to discover correct actions to reach the final goal. 
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CHAPTER 6 

Conclusion 

 In this work, we have seen how curiosity could affect the performance of agents in sparse  

reward environments. Curiosity is an important factor that motivates and gives agents an intrinsic 

reward to explore and get familiar with the environment. Especially in those situations where the 

extrinsic rewards are absent or long-term, curiosity gives the agents short-term immediate 

rewards throughout the progress that help them build the concepts of the surrounding 

environment. During the experiment, we have observed that how Random Network Distillation 

could influence the results in a positive way when compared to the vanilla Intrinsic Curiosity 

Module method. However, curiosity itself alone might not be the only intrinsic motivation for 

human, in future work we will try to combine other internal rewards with curiosity to further 

improve the performance. 
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