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Imputation of the continuous 
arterial line blood pressure 
waveform from non‑invasive 
measurements using deep learning
Brian L. Hill1, Nadav Rakocz1, Ákos Rudas2, Jeffrey N. Chiang2, Sidong Wang3, Ira Hofer4, 
Maxime Cannesson4,6 & Eran Halperin1,2,4,5,6*

In two‑thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure 
(ABP) is monitored non‑invasively but intermittently using a blood pressure cuff. Since even a few 
minutes of hypotension increases the risk of mortality and morbidity, for the remaining (high‑risk) 
patients ABP is measured continuously using invasive devices, and derived values are extracted from 
the recorded waveforms. However, since invasive monitoring is associated with major complications 
(infection, bleeding, thrombosis), the ideal ABP monitor should be both non‑invasive and continuous. 
With large volumes of high‑fidelity physiological waveforms, it may be possible today to impute 
a physiological waveform from other available signals. Currently, the state‑of‑the‑art approaches 
for ABP imputation only aim at intermittent systolic and diastolic blood pressure imputation, 
and there is no method that imputes the continuous ABP waveform. Here, we developed a novel 
approach to impute the continuous ABP waveform non‑invasively using two continuously‑monitored 
waveforms that are currently part of the standard‑of‑care, the electrocardiogram (ECG) and photo‑
plethysmogram (PPG), by adapting a deep learning architecture designed for image segmentation. 
Using over 150,000 min of data collected at two separate health systems from 463 patients, we 
demonstrate that our model provides a highly accurate prediction of the continuous ABP waveform 
(root mean square error 5.823 (95% CI 5.806–5.840) mmHg), as well as the derived systolic (mean 
difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference − 2.497 ± 3.785 mmHg) 
compared to arterial line measurements. Our approach can potentially be used to measure blood 
pressure continuously and non‑invasively for all patients in the acute care setting, without the need 
for any additional instrumentation beyond the current standard‑of‑care.

Each year in the United States, 5.7 million patients are admitted to an intensive care unit (ICU) and nearly 50 mil-
lion patients undergo surgery. Hypotension and hypertension in the ICU and perioperative period are associated 
with adverse patient outcomes including  stroke1, myocardial  infarction2, acute kidney  injury3, and  death4. Recent 
studies even suggest that only a few minutes of hypotension in the acute care setting increases the incidence of 
these  complications5. These observations strongly suggest that continuous blood pressure monitoring is critical 
in the acute care setting to identify periods of hypertension and/or hypotension as early as possible. Today, the 
gold standard for blood pressure monitoring is the invasive arterial line, a small catheter inserted into an artery, 
which enables continuous blood pressure  monitoring4. However, this technique is highly invasive and is associ-
ated with significant complications such as bleeding, hematoma, pseudoaneurysm, infection, nerve damage, and 
distal limb  ischemia6, 7, and thus it is only applied to very high-risk patients.

On the other hand, the widely used non-invasive blood pressure monitoring system using cuff-based devices 
is both inaccurate and intermittent, only allowing for the monitoring of blood pressure every three or five 
 minutes8. More recently, devices allowing for continuous and non-invasive blood pressure monitoring have 
been introduced. These devices, however, are sensitive to patient movement, they are expensive, and they cause 
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continuous pressure on the finger that can interfere with blood  circulation9. Additionally, the accuracy of the 
device can deteriorate in patients with severe vasoconstriction, peripheral vascular disease, or distorted fingers 
due to  arthritis10.

The need for measuring the continuous blood pressure non-invasively suggests that the physiological wave-
form of the blood pressure should be imputed from other data. However, previous attempts at blood pressure 
imputation have primarily focused on the imputation of discrete systolic and diastolic blood pressure measure-
ments taken intermittently by  cuff11–14 or at the resolution of a  heartbeat15–17, while high-risk patients need to 
be monitored using the continuous arterial line blood pressure waveform, and thus current methods are not 
adequate for usage in critical care settings. Moreover, many of the previously-studied cohorts consisted of healthy 
patients at rest, and therefore the blood pressure variability is not as dynamic compared to patients in the ICU. 
This calls into question the utility of these approaches in real life settings. Finally, many of the existing methods 
developed and tested their models in the same set of patients by training the model on an earlier part of each 
patient record and testing the model on the remaining data. Additionally, the number of patients used was often 
only several dozen, all coming from the same health system. This calls into question the generalizability of the 
models to unseen patients. For example, Sideris et al. impute the arterial blood pressure waveform by training 
the model on the same patient for which arterial blood pressure waveforms are  provided18. However, such a 
scenario is not clinically useful, since applying such an approach will require invasive monitoring of the patients 
for at least part of the time.

In this paper, we present the development, training, and validation of a novel non-invasive and continuous 
deep learning method for predicting the arterial blood pressure waveform using the ECG waveform, the pulse 
oximeter (PPG) waveform, and non-invasive blood pressure cuff measurements. These measurements are col-
lected as part of the current standard-of-care, and therefore no additional patient monitoring devices are needed. 
Our method leverages a well-known deep learning model architecture originally designed for image segmentation 
(V-Net19), and we adapted it for 1D physiological waveform signals. A key aspect of our preprocessing pipeline 
includes a manual labeling of PPG quality in a large subset of the training data to improve the signal-to-noise 
ratio and remove artifacts. The manual labeling was used to train a deep neural network to predict the signal 
quality of the waveform, resulting in a high-quality preprocessing pipeline that can be used beyond the scope 
of this study. We demonstrate that the modified 1D V-Net approach provides a highly accurate prediction of 
continuous arterial blood pressure waveform (root mean square error 5.823 (95% CI 5.806–5.840) mmHg), as 
well as the derived systolic (mean difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference 
− 2.497 ± 3.785 mmHg).

As opposed to previous studies, here we show that the modified 1D V-Net approach successfully generalizes 
to new patients. Particularly, we validate the approach on non-healthy populations from ICUs in two different 
health systems, and our training and validation cohorts include different sets of patients.

Results
Description of dataset and features. Two separate cohorts of ICU patients were used in this study to 
train and validate the method. The first cohort consisted of randomly sampled ICU patients from the Medical 
Information Mart for Intensive Care version III (MIMIC-III)20 waveform database who had ECG waveforms, 
photo-plethysmographic (PPG) waveforms, arterial blood pressure (ABP) waveforms, and at least one non-inva-
sive blood pressure measurement. After exclusion of patients with insufficient data, the remaining 264 patients 
were then randomly separated into disjoint training and testing sets, with 175 and 89 patients, respectively (see 
Methods). The MIMIC dataset was used for primary training of the model. The second cohort of patients con-
sisted of 115 ICU patients (after excluding patients with invalid records, see Methods) from the UCLA Health 
hospital system who had ECG, PPG, and ABP waveform records. These patients were randomly separated into 
two disjoint groups: 28 patients for secondary fine-tuning (calibration) of the MIMIC-based model, and 87 
patients for testing the method. Summary cohort demographic information is shown in Table 1.

The ECG and PPG waveforms, the most recent NIBP measurements, the time since the most recent NIBP 
measurement, the pulse arrival time, and the heart rate were used as input to a deep learning model that was 
trained to predict the continuous blood pressure waveform that occurred during the timeframe of the input 
window. An example window of ECG and PPG waveforms used as input to the algorithm is shown in Fig. 1. The 
true blood pressure waveform and the predicted waveform that corresponds to the window shown in Fig. 1 are 

Table 1.  Cohort characteristics of MIMIC and UCLA data.

Characteristic MIMIC (n = 309) UCLA (n = 150)

Male, No. (%) 178 (56.9) 80 (53.3)

Age, mean (SD), years 63.4 (16.2) 46.5 (20.1)

BMI, mean (SD), kg/m2 30.3 (9.3) 24.9 (4.7)

Height, mean (SD), cm 168.7 (10.4) 172.8 (11.1)

Weight, mean (SD), kg 85.0 (25.6) 73.8 (19.0)

Systolic BP, mean (SD), mmHg 106.4 (13.5) 102.6 (11.9)

Diastolic BP, mean (SD), mmHg 57.9 (11.5) 54.1 (9.1)

Mean BP, mean (SD), mmHg 74.8 (12.1) 71.3 (8.9)
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shown in Fig. 2a. Figure 2b,c show examples of how the predicted ABP waveform compares to the arterial line 
for much longer timeframes.

Waveform quality evaluation. One of the unique features of our approach is that it provides a predic-
tion of the continuous blood pressure waveform, and not simply summary statistics such as systolic or diastolic 
blood pressure in a window. To evaluate the quality of the waveform generated by 1D V-Net, we compared the 
predicted ABP waveform to the ground-truth ABP waveform obtained from the arterial line. Time was split into 
windows of constant duration (32 s). For measuring the method performance, we used the root mean square 
error (RMSE) and the correlation between the true and the predicted signals within each window. As shown 
in Table 2, for both cohorts, we observed a low RMSE value (MIMIC RMSE 5.823 mmHg, 7.8% of true MAP; 
UCLA RMSE 6.961 mmHg, 9.8% of true MAP) when comparing the true and predicted waveforms. Addition-
ally, the correlation between the arterial line waveform and the 1D V-Net predicted waveform was high across 
both sets of patients (MIMIC correlation 0.957, UCLA correlation 0.947) (see Table 3).

As an additional waveform quality analysis, we compared the systolic and diastolic values derived from 
the arterial line and the predicted ABP waveforms. For each heartbeat in a window, we computed the systolic 
and diastolic blood pressure, and compared those values to the imputed blood pressure waveform generated 
by our algorithm. In Fig. 3, Bland–Altman plots were used to show the differences between the predicted and 
true measurements across a range of blood pressure values (see Methods) for each patient in the MIMIC test 
set (Fig. 3a) and UCLA test set (Fig. 3b). The algorithm’s predicted waveform accurately tracks the true blood 
pressure values in both the MIMIC cohort (mean difference systolic BP 4.297 ± 6.527 mmHg, diastolic BP mean 
difference − 3.114 ± 4.570 mmHg) and the UCLA cohort (mean difference systolic BP 2.398 ± 5.623 mmHg, 
diastolic BP − 2.497 ± 3.785 mmHg). In both cohorts, the 1D V-Net model performance meets the Association 
for the Advancement of Medical Instrumentation (AAMI) criteria with mean differences less than 5 ± 8 mmHg.

Method comparison. Next, we compared the performance of 1D V-Net with the performance of the long 
short-term memory (LSTM) model described in Sideris et al. and with PPG scaling. PPG scaling uses the PPG 
waveform as a template shape and scales the magnitude of the PPG signal in a given window to match the most 
recent systolic and diastolic NIBP measurements. We observe that 1D V-Net achieves the lowest RMSE and the 
highest correlation across both cohorts (see Tables 2 and 3) and, additionally, the PPG scaling performs better 
than the LSTM model for both metrics. To demonstrate the improvement in the imputed waveform quality, in 
Supplemental Fig. 4 we compared the residual error for PPG scaling and 1D V-Net in a 4-s window. The wave-
form generated by the 1D V-Net model provides not only a more accurate prediction of the systolic and diastolic 
values, but also the overall waveform shape compared to the PPG scaling.

Table 4 contains the distribution of differences between the true and predicted systolic and diastolic BP for 
each method across both cohorts (see also Supplemental Figs. 1, 2, 3 for the Bland–Altman plots that correspond 
to Table 4). In the MIMIC cohort, the PPG scaling method (mean difference systolic BP 6.133 ± 6.870 mmHg, 
diastolic BP mean difference − 4.848 ± 4.975 mmHg) performed better than the LSTM model (mean differ-
ence systolic BP 11.474 ± 13.020 mmHg, diastolic BP mean difference − 12.821 ± 11.174 mmHg), and 1D V-Net 
outperformed both of the other methods. Similarly, in the UCLA cohort, the PPG scaling method (mean dif-
ference systolic BP 2.668 ± 5.692 mmHg, diastolic BP mean difference − 3.595 ± 3.978 mmHg) was more accu-
rate than the LSTM model (mean difference systolic BP 8.899 ± 11.418 mmHg, diastolic BP mean difference 
− 15.620 ± 9.154 mmHg), and 1D V-Net outperformed both methods. Notably, all three methods underestimate 
the systolic blood pressure, and overestimate the diastolic blood pressure on average. This is likely a result of the 

Figure 1.  Examples of input waveforms for 1D V-Net model. (a) 4-s sample of electrocardiogram (ECG) 
waveform and (b) a 4-s sample photo-plethysmograph (PPG) waveform.
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Figure 2.  Example ground truth & predicted waveforms. (a) 4-s window (for the input data shown in Fig. 1) 
and > 3 h records (b,c). The true continuous blood pressure waveform is shown above in green, and the 
predicted blood pressure waveform shown below in red.
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Table 2.  Root mean square error (mean (95% CI)) for each cohort.

Method MIMIC UCLA

PPG scaling 6.895 (6.876–6.914) 9.108 (9.078–9.137)

Sideris et al 13.940 (13.901–13.978) 13.111 (13.072–13.151)

1D V-Net 5.823 (5.806–5.840) 6.961 (6.937–6.985)

Table 3.  Correlation (mean (95% CI)) between true and predicted blood pressure for each cohort.

Method MIMIC UCLA

PPG Scaling 0.938 (0.938–0.938) 0.926 (0.925–0.926)

Sideris et al 0.939 (0.939–0.939) 0.940 (0.940–0.940)

1D V-Net 0.957 (0.957–0.957) 0.947 (0.947–0.948)

Figure 3.  Bland–Altman plots for the MIMIC and UCLA ICU test cohorts. Systolic BP measurements per 
patient (left), and Diastolic BP measurements per patient (right) using a thirty-two second window; horizontal 
error bars represent the standard deviation of the blood pressure values, vertical error bars represent the 
standard deviation of the differences; solid lines indicate the mean difference values, dashed lines indicate the 
mean difference values +/− 1 and 2 times the standard deviation of the differences. Results for MIMIC are 
shown in (a), and UCLA in (b).
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“regression to the mean” effect, which would cause predicted systolic values to trend downward to mean blood 
pressure, and diastolic values to trend upward to the mean blood pressure.

Dependence of model on NIBP measurements. As the model is intermittently calibrated with NIBP 
measurements, we wanted to measure the error as a function of time since the most recent NIBP value was 
obtained. Since the LSTM model does not rely on NIBP measurements at all, the RMSE remains relatively con-
stant over time. However, the LSTM model has the highest RMSE of all methods (13.940 (95% CI 13.901–13.978) 
mmHg for MIMIC, 13.111 (95% CI 13.072–13.151) mmHg for UCLA). Both the PPG Scaling and 1D V-Net do 
see a minor increase in error as time from the NIBP measurement increases (see Supplemental Figs. 5 and 6 for 
MIMIC and UCLA cohorts, respectively). However, our algorithm achieves a lower RMSE compared to both 
the Sideris et al. model (mean difference 8.05 ± 0.45 for MIMIC, 6.13 ± 0.27 for UCLA) and PPG Scaling (mean 
difference 1.07 ± 0.05 for MIMIC, 2.14 ± 0.02 for UCLA) across all time points.

Discussion
We have presented a novel method for imputing the arterial blood pressure waveform that is continuous, non-
invasive, accurate, and does not require any additional hardware beyond what is standard monitoring in the 
acute care setting (ECG, pulse oximeter, non-invasive blood pressure cuff). This predicted waveform would allow 
clinicians to monitor blood pressure continuously in patients that otherwise receive blood pressure measurement 
intermittently. With this continuous and non-invasive monitoring, clinicians would be able to rapidly identify 
changes in patient state and intervene, which is crucial when even a short span of hypotension or hyperten-
sion can lead to poor health outcomes. Additionally, we have developed a preprocessing pipeline that leverages 
machine learning to identify windows containing low-quality signals with high precision and sensitivity. The 
preprocessing pipeline can be generally useful in applications that utilize physiological waveforms.

Our approach leverages the V-Net deep learning architecture (see Supplementary Note 1), which has been 
previously used successfully for image segmentation. Deep learning techniques have led to the development of 
many predictive models focusing on diagnostic applications in  medicine21–24, resulting in promising applications 
including diagnosis tools for diabetic  retinopathy21, skin  cancer22 and arrhythmia detection using electrocardio-
grams (ECG)24. Notably, the majority of methods using deep learning in medicine have focused on classification 
problems, such as diagnosis, and not regression. Our approach differs from previous approaches, since it provides 
regression results as opposed to diagnosis, and to the best of our knowledge, the modified 1D V-Net approach 
has never been applied to physiological waveforms in this context.

The vast majority of ICU patients would benefit from the proposed system. Since two-thirds of patients in 
the ICU do not receive continuous blood pressure monitoring, imputing the ABP waveform allows clinicians to 
better monitor these patients without the need for any additional devices. The proposed system utilizes meas-
urements that are currently part of the standard of care for all ICU patients, and therefore would not disrupt the 
current clinical workflows. Furthermore, in the remaining one-third of patients that do receive invasive blood 
pressure monitoring, the imputed waveform can be utilized as a secondary data source in case of instrument 
failure or technical artifacts, or might obviate the need for an invasive monitor that may cause complications.

An additional advantage of a continuous blood pressure monitoring system based on machine-learning soft-
ware is that the model has the potential to be further improved over time with additional training data. Hospitals 
will continue to collect data on patients that undergo invasive blood pressure monitoring and this data can be 
used to update the model. This would allow the model to learn any hospital-specific instrumentation or patient 
population differences. For device-based continuous and non-invasive blood pressure monitoring, the perfor-
mance is most often fixed at the time of deployment and cannot be updated or improved over time. Therefore, 
a machine-learning based software approach is at an advantage.

While other computational methods for predicting beat-to-beat blood pressure measurements have been 
developed, they predict only the systolic/diastolic blood pressure measurements and not the actual continuous 
waveform. Methods for imputation of systolic and diastolic blood pressure non-invasively utilize handcrafted 
features including pulse transit  time12, 15, heart  rate12, 15, 16, perfusion  index12, stiffness  index12, reflection  index15, 
systolic/diastolic  volume15, and PPG intensity  ratio17. These features are then used as input to machine learning 
 models11–18. The arterial blood pressure waveform can be used to estimate important cardiac parameters such as 
stroke volume (SV), cardiac output (CO), cardiac power output (CPO), vascular resistance, and pulse pressure 
variation, which can only be calculated using the ABP waveform, not the beat-to-beat measurements. Measure-
ments like CPO are clinically relevant, and have been shown to be predictive of outcomes such as  mortality25, 26. 

Table 4.  Bland–Altman accuracy and precision (mean (95% CI) +/− SD (95% CI)) for each cohort.

Method MIMIC UCLA

Systolic BP

PPG Scaling 6.133 (6.128–6.139) ± 6.870 (6.864–6.876) 2.668 (2.662–2.674) ± 5.692 (5.684–5.699)

Sideris et al 11.474 (11.462–11.486) ± 13.020 (13.011–13.029) 8.899 (8.887–8.912) ± 11.418 (11.409–11.427)

1D V-Net 4.297 (4.291–4.303) ± 6.527 (6.522–6.533) 2.398 (2.392–2.404) ± 5.623 (5.616–5.629)

Diastolic BP

PPG Scaling − 4.848 (− 4.852–4.843) ± 4.975 (4.970–4.981) − 3.595 (− 3.600–3.591) ± 3.978 (3.973–3.983)

Sideris et al − 12.821 (− 12.831–12.811) ± 11.174 (11.166–11.182) − 15.620 (− 15.630–15.610) ± 9.154 (9.146–9.162)

1D V-Net − 3.114 (− 3.118–3.110) ± 4.570 (4.565–4.576) − 2.497 (− 2.501–2.493) ± 3.785 (3.781–3.789)
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Additionally, the imputed blood pressure waveform can be used as input to predictive algorithms which use the 
arterial blood pressure waveform as input, such as predicting hypotensive events up to 15 min before they  occur27. 
Another limitation of previous studies is the limited number of patients used to train and evaluate models. The 
small sample sizes, most often only several dozen patients and from a single health system, calls into question 
the generalizability of the methods. To demonstrate the wide applicability of our proposed method, we used data 
from over four hundred patients and two separate health systems to show that our model successfully predicts 
the continuous blood pressure waveform in new patients.

Methods
This manuscript follows the “Guidelines for Developing and Reporting Machine Learning Predictive Models in 
Biomedical Research: A Multidisciplinary View”28.

Study participants and sampling procedures. The first retrospective, de-identified dataset consisted of 
309 randomly sampled ICU patients with ECG (lead II) waveforms, photo-plethysmographic (PPG) waveforms, 
arterial blood pressure (ABP) waveforms, and at least one non-invasive blood pressure measurement from the 
MIMIC-III waveform  database20, 29 matched subset. The 309 patients were randomly divided into a training set 
(206 patients, 66% of the cohort) and a testing set (103 patients, 33% of cohort). Of these patients, 31 patients 
from the training set and 14 from the testing set were removed because none of the data were found to pass the 
quality filtering process (see Dataset Creation), leaving 175 patients in the training set and 89 in the testing set. 
The second retrospective dataset consisted of 150 randomly sampled UCLA ICU patients with recorded ECG, 
PPG, and ABP waveforms. The UCLA dataset was divided into 40 patients for calibrating the model, and 110 
patients for testing the model. Of these patients, 12 were removed from the calibration set and 23 were removed 
from the testing set due to issues with waveform data quality, for a final training set of 28 patients and testing 
set of 87 patients.

The ABP waveform prediction model was first trained using patients from the MIMIC training set, and 
model performance results were computed using patients from the held-out MIMIC testing set. Then, the model 
parameters were fine-tuned using patients from the UCLA calibration set, and model performance results were 
computed using patients from the held-out UCLA testing set.

Dataset creation. Demographic data. Cohort demographic data were extracted for the MIMIC patients 
using the MIMIC clinical database. The features extracted included patient age, height, weight, BMI and sex. For 
de-identification, patients older than 90 have their age encoded as 300 in the clinical database. Since we do not 
know the exact age of these patients, we set their age to 90 years old. The same demographic information for the 
UCLA patients was retrieved from the UCLA Clinical Data Mart, a data warehouse system that extracts data 
from UCLA’s electronic medical record system (EPIC Systems, Madison, WI, USA). As was done for the MIMIC 
data, any UCLA patients older than 90 years had their age set to a maximum of 90 years for de-identification 
purposes.

Normalization of waveforms. In both cohorts, if the signal sampling rate was greater than 100 Hz, each wave-
form signal was downsampled to 100 Hz. Each signal was low-pass filtered with a cutoff frequency of 16 Hz to 
remove high-frequency noise. Since the range of the ECG and PPG signals differed for each patient, we scaled 
each 32-s window by subtracting the running median and dividing by the difference between the upper and 
lower quartiles.

Derived non‑invasive blood pressure. Intermittent non-invasive blood pressure (NIBP) measurements were 
extracted for each patient from the MIMIC-III database. However, since NIBP measurements were only 
recorded, on average, once per hour, the frequency of non-invasive blood pressure measurement was insuffi-
cient. Therefore, we created derived NIBP measurements by sampling the invasive blood pressure waveform (i.e. 
median systolic, diastolic BP, and mean ABP in a 4-s window) every 5 min to simulate the frequency of NIBP 
measurement that would be used when deploying the algorithm in practice. Since the derived non-invasive 
blood pressure was measured every 5 min, but the waveforms were sampled at 100 Hz, we used the most recent 
derived NIBP measurement to fill in missing NIBP values. As an additional feature, we also included the time (in 
milliseconds) from the most recent NIBP measurement to each sample in our input window.

Correction of signal drift. As mentioned by the authors of the MIMIC  dataset30, issues with clock synchroniza-
tion can cause waveform signals to drift. We corrected for signal drift between the PPG signal and the arterial 
blood pressure signal by computing the cross-correlation of the PPG signal under consideration with the arterial 
blood pressure signal. Once the cross-correlation was computed, the location of the highest cross-correlation 
was used to correct the PPG signal drift by shifting the signal in time, up to a maximum of 4 s in either direction.

Creation of valid windows. After completing the above preprocessing steps, we selected valid 32-s windows 
from the record using a sliding window approach with a 16-s step size. A window size of 32 s was chosen since 
it is long enough to give temporal context for several heartbeats, yet short enough to ensure that there would be 
a sufficient number of windows that did not contain artifacts. See Table 5 for filtering rate across each cohort. 
For each 32-s window, the following process was used to determine whether the window will be included in the 
development or validation of the algorithm.
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Filtering of windows with artifacts. Each waveform (ECG, PPG, ABP) was checked for signal quality and win-
dows with technical artifacts or invalid parameters were removed. Windows were excluded if they met any of 
the following criteria for the ECG or PPG data: the variance of the signal was less than a small value (1e−4 for 
ECG and PPG), the number of peaks in a window was greater than a threshold (4 peaks/sec × 32 s for both ECG, 
PPG; 4 peaks/sec results in maximum allowable HR of 240 beats/min), or the number of peaks in a window was 
less than a threshold (0.5 peak/sec × 32 s for ECG, PPG; 0.5 peak/sec results in minimum allowable HR of 30 
beats/min).

For the arterial blood pressure waveform, windows were excluded if they met any of the following criteria: 
the mean signal value was less than 30 mmHg or greater than 200 mmHg, the maximum signal value was greater 
than 300 mmHg or less than 60 mmHg, the minimum signal value was less than 20 mmHg, the variance of the 
signal was less than 80, we could not find any systolic or diastolic blood pressure values using the “find_peaks” 
function from the  scipy31 Python package, the difference between two consecutive systolic or diastolic values 
was greater than 50 mmHg, the waveform signal was flat (i.e. did not change value for 2 or more consecutive 
samples), a pulse pressure value in the window was greater than 70 mmHg, the difference between the systolic 
BP and the most recent NIBP was greater than 40 mmHg, or the time delay between a diastolic blood pressure 
measurement and the subsequent systolic blood pressure measurement was greater than 0.5 s.

If a window contained signals that passed all of the above criteria, we performed two additional filtering 
steps, and excluded windows that failed either of these criteria: the number of PPG peaks was different than the 
number of arterial blood pressure peaks, or the mean absolute time difference between arterial blood pressure 
peaks and PPG peaks was greater than 0.15 s (after correcting for signal drift). Finally, outlier windows were 
excluded if the mean ECG, PPG, or ABP signal in the window was greater than the 99.9% quantile or less than 
the 0.01% quantile.

Assuming a window under consideration passed the above criteria, it was included in our training or testing 
dataset. The input features were then scaled to have a mean of zero and standard deviation of one using a run-
ning mean and standard deviation.

Filtering with PPG quality index. Since the quality of the PPG waveform is crucial to the performance of our 
algorithm, we developed an additional filtering step to remove windows containing artifacts in the PPG signal. A 
CNN model was trained to classify four-second PPG windows as “valid” or “invalid” using the PPG waveform as 
input. To train the model, 4000 four-second PPG windows from the 206 patients in the MIMIC training set were 
hand-labeled (by B.L.H.) as “valid” (2682, 67.1%) if the window was free of artifacts, or “invalid” (1318, 32.9%) 
if the window contained artifacts, using visual inspection. From these 4000 windows, we randomly sampled a 
subset of 100 windows and an expert clinician (M.C.) then labeled the windows to estimate the initial classifica-
tion quality. In 94% of the sampled windows, the clinician’s classification matched the initial labeling (Cohen’s 
kappa: 0.857). We then trained a 3 layer CNN model (see Supplemental Note 2 for additional details) on 70% 
of the patients to predict the window classification. The model’s predicted probability of being a valid window 
was then used as a quality index (QI) to exclude windows highly likely to contain artifacts. The remaining 30% 
of patients (separate from the training patients) from the MIMIC training set were held out for model valida-
tion. The quality index threshold for filtering was chosen as the minimum threshold (value: 0.811) achieving a 
positive predictive value (precision) of at least 0.95 in the validation set. This method of setting the threshold 
was chosen to reduce the number of windows containing artifacts (false positives) when training and testing the 
ABP waveform prediction models, while minimizing the threshold to be as sensitive as possible. Since the ABP 
waveform prediction model uses thirty-two second windows as input, yet the PPG QI model uses four-second 
windows, the PPG QI model was applied to the eight non-overlapping four-second windows contained within a 
thirty-two second window, generating a total of eight PPG QI values per window. The minimum PPG QI value 
in a thirty-two second ABP prediction window was used to determine if the signal quality was greater than or 
less than the PPG QI filtering threshold.

Table 5.  Window filtering statistics for each cohort.

MIMIC UCLA

Total minutes, No., mins 1,535,413 240,241

Valid minutes, No., mins 115,388 35,601

Total heartbeats, No 9,791,870 2,935,846

Total windows per patient, median (IQR) 8376. (4509.3–16,656.3) 4087.0 (2627.5–5414.5)

Valid windows per patient, median (IQR) 411.5 (90.8–1076.0) 254.0 (67–743)

Total record length per patient, median (IQR), mins 4467.2 (2404.9–8883.3) 2179.7 (1401.3–2887.7)

Valid record length per patient, median (IQR), mins 219.5 (48.4–573.9) 135 (35.7–396.5)

Median (IQR), % 4.8 (1.1–12.9) 8.5 (2.2–24.9)

Mean (SD), % 9.6 (12.4) 15.5 (17.3)

Min/Max % 0.01/63.8 0.02/71.5
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Waveform features. To improve the ABP waveform imputation we included two features derived from the 
non-invasive signals that have been previously shown to be predictive of blood pressure values: pulse arrival 
time (PAT) and heart rate (HR)12, 15, 16. Calculation of the pulse arrival time was achieved by first identifying the 
ECG R wave using the peak finding algorithm implemented in the  scipy31 Python package, and then identifying 
the PPG systolic peaks using the peak finding algorithm. The number of seconds between the ECG R wave peak 
and the subsequent PPG systolic peak were then calculated. PAT values were excluded from a window if the 
value was deemed to be unreasonably small (< 0.1 s) or unreasonably large (> 1.0 s). Finally, for each window, the 
median (log-transformed) and standard deviation of the PAT were used as two additional input feature channels. 
If PAT values were excluded or unavailable, the missing values were imputed using the median observed value.

Additionally, the HR was calculated for each window using the PPG signal. The scipy peak finding algorithm 
was similarly used to detect the PPG systolic peaks. Then, the number of these peaks found in a given window 
was divided by the window length (in seconds) and multiplied by the number of seconds in a minute to give 
the resulting HR in beats per minute. The HR was also included as an additional input feature channel for each 
window. Any missing HR values were imputed using the median observed value.

Comparison with other methods. The performance of two other methods were used as a comparison: PPG scal-
ing and the LSTM model of Sideris et al.18.

PPG scaling. Previous work has shown the utility of the PPG signal for predicting blood pressure 
 measurements11–18. These approaches use manual feature  extraction11, 12, 14, 17 or learn features from the data 
using machine learning  methods13, 15, 16, 18. Since the PPG waveform is correlated with the ABP waveform, one 
approach for predicting the ABP waveform uses the PPG waveform as a template shape and scales the magnitude 
of the PPG signal in a given window to match the most recent systolic and diastolic pseudo-NIBP measure-
ments. Specifically, the PPG waveform is stretched such that the maximum value in the window is equal to the 
most recent systolic NIBP measurement, and the minimum value in the window is equal to the most recent 
diastolic NIBP measurement. The PPG window was scaled using the transformation

LSTM model. Sideris et  al.18 proposed training a patient-specific LSTM model (i.e. one model per patient) 
to impute the ABP waveform, using the PPG signal from the same window of time as input. While the results 
were promising, a critical issue is that the model requires that each patient first receive invasive blood pressure 
monitoring so a patient-specific model can be trained. However, this means that only a fraction of the patient 
population can benefit from such a model (the subpopulation that receives invasive blood pressure monitoring), 
and only after they have already undergone invasive monitoring. Therefore, the algorithm may not generalize 
to the majority of the patient population who do not receive invasive monitoring. To fairly compare the LSTM 
model to our proposed model, we trained the model as described in the paper, using 128 nodes as a default since 
the number of nodes was not described.

Algorithm development. We developed a deep learning model that takes as input a window of two signals, ECG 
and PPG, and several constant values encoded as additional channels by repeating the value for each timestep: 
the most recent non-invasive systolic, diastolic, and mean blood pressure measurements prior to the window, 
the time since the most recent NIBP measurement, the median and standard deviation of the pulse arrival time, 
and heart rate. The model is trained to minimize the residual difference between the PPG scaling method and 
the true ABP waveform to compensate for the difference in waveform morphology, as well as the change in BP 
over time. This forces the network to focus on windows where the PPG scaling significantly differs from the ABP 
waveform, and therefore improve on the PPG scaling method. With enough data and a large enough model, the 
neural network should be able to similarly learn the scaling method. However, to accelerate the learning process 
we designed the method to learn the residual error. The model output is a prediction of the residual difference 
between the continuous ABP waveform and the baseline PPG scaling waveform, and this predicted residual dif-
ference is added to the PPG scaling waveform to generate the 1D V-Net waveform prediction. The deep learning 
model architecture was based on the V-Net CNN architecture, which has been proven to be useful in the field 
of image  segmentation19 (see Supplemental Note 1 for description). However, instead of 2D or 3D image seg-
mentation, we leveraged the V-Net architecture for 1D signal-to-signal transformation. The motivation behind 
the V-Net architecture is that it learns a compressed representation of the input data to identify global features, 
and then reconstructs the signal from this representation. During the reconstruction process, local features are 
learned to modify the waveform at a finer scale. Our architecture is the same as described in the V-Net  paper19, 
except instead of 3D volumes with multiple channels our data is represented as a 1D signal with multiple chan-
nels. Otherwise, the architecture (number of layers, convolutions per layer, kernel size, etc.) remained the same. 
An additional L2 penalty was added to the activation of the final network layer to force the network to prioritize 
modification of the PPG scaling residual waveform.

To train the network, we used a custom loss function consisting of two parts. The first was the mean squared 
error between the true ABP waveform and the predicted waveform, which forces the network to learn an accu-
rate prediction of the entire waveform. The second part of the loss was the mean squared error between the true 
and predicted waveforms at the locations of the systolic and diastolic points, to encourage the network to be 
particularly accurate at these locations.

PPGscaled = (PPG −min(PPG))
NIBPsys − NIBPdias

max(PPG)−min(PPG)
+ NIBPdias
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The deep-learning model was implemented using  Keras32 and was trained for a maximum of 100 epochs 
using random weight initialization and the  Nadam33 optimizer with default parameters beta1 of 0.9, beta2 of 
0.999. The learning rate used was 0.001 with a schedule decay of 0.004, and the mini-batch size was 32. For the 
last layer of the network, an L2 activation penalty with weight 0.0005 was added. Ten percent of the training 
data was held out for validation, and these data were used for choosing hyperparameters. If the validation loss 
did not improve after 8 epochs, the model training process was stopped early.

Algorithm evaluation. Bland–Altman. To evaluate the agreement between the gold standard invasive 
blood pressure measurements (the arterial catheter) and the DNN predictions, we used the Bland and Altman 
 method34 as this is the standard method for comparing the agreement of two medical devices. Accuracy and 
precision of the predictions were described as the mean ± standard deviation of the differences between the 
predicted and true blood pressure values, and the differences are considered acceptable by the Association for 
the Advancement of Medical Instrumentation (AAMI) criteria if less than 5 ± 8 mmHg. The method was imple-
mented as follows. For each window under consideration, we extracted the systolic and diastolic blood pressure 
measurements from the ABP waveform using the peak finding algorithm described previously. These measure-
ments were used as the gold standard reference values. We then used the peak finding algorithm on the DNN-
generated waveform to determine the systolic and diastolic blood pressure measurements and used these as the 
comparison values. If the number of systolic or diastolic points identified by the peak finding algorithm differed 
between the true and predicted waveforms, we performed local alignment by minimizing the sum of the differ-
ences between the indices of the true and predicted waveform points. We then took the difference between the 
reference blood pressure measurement and the predicted blood pressure measurement pairs, and plotted these 
differences as a function of the average of the reference and predicted value pairs. The 95% confidence intervals 
(CI) were calculated using bootstrapping.

Waveform metrics. Two metrics were used to quantitatively compare the quality of the predicted waveform and 
the true ABP waveform: root mean square error (RMSE) and correlation. These values were calculated for all 
windows per patient. The 95% confidence intervals (CI) were calculated using bootstrapping.

Error as a function of time since NIBP measurement. RMSE was calculated as a function of time from the most 
recent NIBP measurement. The time between the window and the most recent NIBP measurements were binned 
into ten second intervals, and for each bin the mean and SD of the RMSE between the true and predicted wave-
forms was calculated.

Ethical approval and patient consent. The institutional review board (IRB) of the Massachusetts Institute of 
Technology (Cambridge, MA) and Beth Israel Deaconess Medical Center (Boston, MA) approved the use of 
MIMIC-III for research, and the requirement for individual patient consent was waived because the project did 
not impact clinical care and all protected health information was de-identified20. Retrospective data collection 
and analysis was approved by the UCLA IRB. All research was conducted in accordance with the tenets set forth 
in the Declaration of Helsinki.

Data availability
Access to the MIMIC-III database can be requested at https:// mimic. physi onet. org/. The UCLA datasets gener-
ated during and/or analyzed during the current study are not publicly available due to institutional restrictions 
on data sharing and privacy concerns.
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