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Early evolution of beetles regulated by 
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Edmund A Jarzembowski1,7, Xiangdong Zhao1,2, Bo Wang1*

1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of 
Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, 
Chinese Academy of Sciences, Nanjing, China; 2University of Chinese 
Academy of Sciences, Beijing, China; 3Institute of Vertebrate Paleontology and 
Paleoanthropology, Chinese Academy of Sciences, Beijing, China; 4Department of 
Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, United 
States; 5Palaeontological Institute, Russian Academy of Sciences, Moscow, Russian 
Federation; 6Institute of Geology and Paleontology, Linyi University, Linyi, China; 
7Department of Earth Sciences, Natural History Museum, London, United Kingdom

Abstract The end- Permian mass extinction (EPME) led to a severe terrestrial ecosystem collapse. 
However, the ecological response of insects—the most diverse group of organisms on Earth—to the 
EPME remains poorly understood. Here, we analyse beetle evolutionary history based on taxonomic 
diversity, morphological disparity, phylogeny, and ecological shifts from the Early Permian to Middle 
Triassic, using a comprehensive new dataset. Permian beetles were dominated by xylophagous 
stem groups with high diversity and disparity, which probably played an underappreciated role in 
the Permian carbon cycle. Our suite of analyses shows that Permian xylophagous beetles suffered a 
severe extinction during the EPME largely due to the collapse of forest ecosystems, resulting in an 
Early Triassic gap of xylophagous beetles. New xylophagous beetles appeared widely in the early 
Middle Triassic, which is consistent with the restoration of forest ecosystems. Our results highlight 
the ecological significance of insects in deep- time terrestrial ecosystems.

Editor's evaluation
The study proposes a new evolutionary- ecological scenario for Late Paleozoic and early Mesozoic 
beetles, supported by the summary of all available knowledge about early beetle fossils, including 
analyses of their taxon and morphological diversity and phylogenetic relationships. The effects of 
xylophagous beetles during the Paleozoic may have played a fundamental role in global biochemical 
cycles. The results advance our understanding of the evolutionary success of beetles and the many 
ways in which large environmental changes may affect biodiversity in general.

Introduction
The end- Permian mass extinction (EPME; approximately 252 million years ago) was the most severe 
extinction event in the Phanerozoic (Benton and Newell, 2014). The EPME was primarily caused by 
the eruption of the Siberian flood basalts (Burgess and Bowring, 2015; Fielding et al., 2019), which 
generated excessive emissions of thermogenic methane, CO2, and SO2 that cascaded rapid global 
warming (Wu et al., 2021; Black et al., 2018), oceanic acidification and anoxia/euxinia (Schobben 
et al., 2020), aridification and other shifts in the hydrological cycle (Sun et al., 2012), acid rain (Black 
et al., 2014), wildfires (Shen et al., 2011), and ozone destruction (Benca et al., 2018). The response 
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of terrestrial ecosystems to the EPME is quite heterogeneous, probably due to biotic, topographic, 
and latitudinal differences (Fielding et al., 2019; Zhao et al., 2020; Dal Corso et al., 2020). More-
over, how terrestrial ecosystems were affected during the EPME is still highly controversial (Benton 
and Newell, 2014; Gastaldo, 2019). Terrestrial tetrapods and plants are considered to have been 
severely affected by the EPME mostly based on diversity and taxonomic composition (Benton and 
Newell, 2014; Viglietti et  al., 2021); however, such mass extinction was questioned by a more 
comprehensive dataset of plant macro- and microfossils (Gastaldo, 2019; Nowak et al., 2019). Simi-
larly, Permian insects are thought to have suffered a significant extinction (Labandeira and Sepkoski, 
1993; Béthoux et al., 2005; Labandeira, 2005; Condamine et al., 2020; Condamine et al., 2016), 
but this was not supported by other molecular phylogenetic and fossil record analyses (Ponoma-
renko, 2016; Dmitriev et al., 2018; Montagna et al., 2019; Schachat et al., 2019). In addition, the 
ecological response of insects to the EPME remains poorly understood (Benton and Newell, 2014; 
Schachat et al., 2021).

Beetles (Coleoptera) are the most speciose group of extant insects (Stork, 2018), with a strati-
graphic range dating back to at least the lowest Permian (Ponomarenko, 2016; Kirejtshuk et al., 
2013). They have a rich fossil record since the Permian and display a wide array of lifestyles (Figure 1; 
Ponomarenko, 1969; Ponomarenko, 2003). Their fossil record thus offers a unique and comple-
mentary perspective for studying the ecological response of insects to the EPME. The evolutionary 
history of Coleoptera has been widely investigated through molecular phylogenetic analyses 
(Condamine et al., 2016; McKenna et al., 2019; Zhang et al., 2018), morphological phylogenetic 
analyses (Beutel et al., 2008; Beutel et al., 2019), and fossil record analyses (Ponomarenko, 2003; 
Ponomarenko, 2016; Smith and Marcot, 2015). Although a long- term Palaeozoic- Mesozoic turn-
over of beetle assemblages is supported by almost all analyses, the detailed ecological response to 
the EPME and its explanatory mechanisms remain unclear. Most of the Permian and Triassic beetles 

Figure 1. Examples of Permian beetles. (A and B) Tshekardocoleidae, Moravocoleus permianus Kukalová, 1969, photograph and reconstruction. (C 
and D) Permocupedinae, Permocupes sojanensis Ponomarenko, 1969, photograph and reconstruction. (E) Tshekardocoleidae, Sylvacoleus richteri 
Ponomarenko, 1963, elytra photograph. (F) Taldycupedinae, Taldycupes reticulatus Ponomarenko, 1969, elytra photograph. Scale bars represent 1 mm.

https://doi.org/10.7554/eLife.72692
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belong to stem groups (extinct suborders or families; Figure 1), and thus they show character combi-
nations and evolutionary history that cannot be inferred or predicted from phylogenetic analysis of 
modern beetles. In particular, two problems were ignored by previous analyses. First, phylogenetic 
relationships of some key fossils remain poorly resolved, particularly in their evolutionary relationships 
to modern taxa. Second, there are two complementary taxonomic systems for Permian and Triassic 
beetles: one is artificial formal taxa (based on isolated elytra that cannot be definitely classified into 
any natural group), and the other is the natural taxonomy (commonly based on more complete fossils 
including bodies and elytra). The formal taxa, like trace fossil taxa, lack comprehensive phylogenetic 
data (Ponomarenko, 2004), and thus they cannot be used unreservedly for biodiversity and phyloge-
netic analyses, but can be helpful in the morphospace analysis. These issues cloud the temporal reso-
lution of coleopteran biodiversity in deep time and complicate the evolutionary trajectory of beetles 
but can be overcome through a combination of multiple analytical methods. Therefore, taxonomic 
diversity, morphological disparity, and ecological shifts are best evaluated jointly to better understand 
how the EPME has shaped the evolutionary history of beetles.

Here, we compile an updated database of beetles from the Early Permian to Middle Triassic based 
on the taxonomic revision of fossils (including formal taxa). We analyse the evolution of taxonomic 
diversity, morphological disparity, and palaeoecological shifts of beetles from the Early Permian to 
Middle Triassic through phylogenetic and palaeoecological reconstructions and morphospace anal-
yses of fossil material. Our results suggest that xylophagous (feeding on or in wood) beetles prob-
ably played a key and underappreciated role in the Permian carbon cycle and that the EPME had a 
profound ecological influence on beetle evolution. These results provide new insights into the ecolog-
ical role of insects in deep- time terrestrial ecosystems and the ecological response of insects to defor-
estation and global warming.

Results
Taxonomic diversity
We compiled an updated database of beetles (21 families, 125 genera, and 299 species) from the Early 
Permian to Middle Triassic based on the taxonomic revision of natural and formal taxa (Figure 2—
source data 1). Our database contains 18 families, 109 genera, and 220 species of natural taxa. There 
is a steady increase of families from the Early Permian to Middle Triassic, which is consistent with the 
result of Smith and Marcot, 2015, whose analyses were only conducted at the family level. The diver-
sity of natural taxa displays almost the same trajectory at both species and genus levels (Figure 2C 
and E). The diversity is roughly stable in the Early Permian (Cisuralian), mainly represented by Tshekar-
docoleidae (Figure  1), increases rapidly in the Middle Permian (Guadalupian) and Late Permian 
(Lopingian), with the rise of the major clades Permocupedidae (Permocupedinae and Taldycupedinae) 
and Rhombocoleidae. Subsequently, it plunges in the Early Triassic and recovered gradually from the 
Anisian (early Middle Triassic). In the Ladinian (late Middle Triassic), the diversity clearly exceeds that 
of the Late Permian (Figure 2C and E). From the Middle Triassic, the Permian coleopteran assemblage 
characterized by Tshekardocoleidae, Permocupedidae, and Rhombocoleidae is completely replaced 
by a Triassic assemblage dominated by Cupedidae, Phoroschizidae and Triaplidae.

Our database also contains 3 families, 17 genera, and 79 species of formal taxa. A considerable 
proportion of Permian beetles belong to such taxa (Permosynidae, Schizocoleidae, and Asiocoleidae). 
These formal taxa mostly belong to stem groups, but some should probably be attributed to the two 
extant suborders Adephaga and Polyphaga. Both species and genus- level diversities of formal taxa 
show a gradual increase from the Middle to Late Permian, but decrease distinctly from the Triassic 
(Figure  2—figure supplement 1). The mixed taxa diversity (combining natural and formal taxa) 
displays the same trajectory to that of natural taxa at both species and genus levels (Figure 2D and F).

Phylogeny
We carried out a phylogenetic analysis based on 93 adult and larval characters across 15 natural taxa 
representing all natural families of Coleoptera from the Early Permian to Middle Triassic (Figure 3—
source data 1). Our parsimony analysis result is consistent with a previous analysis (Beutel et al., 2008), 
and confirms that Tshekardocoleidae, Permocupedidae (Permocupedinae and Taldycupedinae), and 
Rhombocolediae are the stem group of Coleoptera (Figure 3A, Figure 3—figure supplement 1).

https://doi.org/10.7554/eLife.72692
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Figure 2. Diversity of Coleoptera from the Early Permian to Middle Triassic. Natural taxa and mixed taxa (natural taxa and formal taxa) are counted at 
family, genus, and species levels separately. (A) Family- level diversity of natural taxa. (B) Family- level diversity of mixed taxa. (C) Genus- level diversity of 
natural taxa. (D) Genus- level diversity of mixed taxa. (E) Species- level diversity of natural taxa. (F) Species- level diversity of mixed taxa. Abbreviations: P1, 
Early Permian; P2, Middle Permian; P3, Late Permian; T1, Early Triassic; T2, Middle Triassic.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.72692


 Research article     Evolutionary Biology

Zhao et al. eLife 2021;10:e72692. DOI: https:// doi. org/ 10. 7554/ eLife. 72692  5 of 16

Morphological disparity
We chose beetle elytra—hardened forewings primarily serving as protective covers for the hindwings 
and body underneath—to perform the morphological disparity analysis for three reasons: (1) elytra 
are the most commonly preserved fossils of Palaeozoic and Mesozoic beetles, and they are easily 
accessible in the literature and in online databases; (2) Permian and Triassic elytra display complex 
morphological structure (Ponomarenko, 1969); (3) elytra morphology has long been studied in rela-
tion to taxonomic diversity of living and extinct beetles (Ponomarenko, 2004; Tong et al., 2021).

We assembled two discrete character matrices (at species and genus levels) based on 35 charac-
ters of 197 genera and 346 species (including undetermined species and unnamed specimens) for 
morphological disparity analyses (Figure 4—source data 1). The taxa were ordinated into a multivar-
iate morphospace using both principal coordinates analysis (PcoA) and non- metric multidimensional 
scaling (NMDS) with two distance metrics, including the generalized Euclidean distance (GED) and 
maximum observable rescale distance (MORD). We chose both sum of variance (sov) and product of 
variance (pov) as the proxy for morphological disparity due to their robustness in sample size (Simões 
et al., 2020). The use of discrete characters produces results that have non- metric properties, but this 
approach can be used to elucidate broad patterns of similarities and clustering within multidimen-
sional space (Lloyd, 2016; Deline et al., 2018).

The patterns of morphospace occupation of beetles in different time- bins are shown in three- 
dimensional plots delimited by combinations of the first three axes of the PcoA and NMDS results 

The online version of this article includes the following figure supplement(s) for figure 2:

Source data 1. Fossil coleoptera database.

Figure supplement 1. Diversity of Coleoptera formal groups from the Early Permian to Middle Triassic.

Figure 2 continued

Figure 3. Ecological shifts of Coleoptera from the Early Permian to Middle Triassic. (A) Simplified phylogeny of Coleoptera from the Early Permian to 
Middle Triassic. Thick lines indicate the known extent of the fossil record. The branches representing stem groups are shown in red. The ‘dead clade 
walking’ pattern is symbolized by the dashed line. For details of the phylogenetic analysis, see Figure 3—figure supplement 1. (B) Genus percentage 
of xylophagous groups from the Early Permian to Middle Triassic. Yellow graded band represents the ‘coal gap’.

The online version of this article includes the following figure supplement(s) for figure 3:

Source data 1. Character state matrix for the phylogenetic analysis.

Figure supplement 1. Strict consensus tree of three most parsimonious trees of Coleoptera.

https://doi.org/10.7554/eLife.72692
https://gg0.chn.moe/extdomains/en.wikipedia.org/wiki/Forewing
https://gg0.chn.moe/extdomains/en.wikipedia.org/wiki/Hindwing
https://fanyi.baidu.com/#en/zh/robustness
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based on MORD metrics (Figure 4A, Figure 4—figure supplement 1). The morphological disparity 
results of two ordination methods within the MORD and GED matrix shows the same trajectory at both 
genus and species levels. The evolutionary pattern of morphological disparity is robust in different 
disparity metrics. Disparity is low in the Early Permian, with a significant increase during the Middle 
Permian. It is roughly stable in the Middle and Late Permian, subsequently showing a distinct plunge 
in the Early Triassic, slightly recovering in the Middle Triassic but is still significantly lower than in the 
Middle and Late Permian (Figure 4, Figure 4—figure supplements 1–8).

Discussion
Our results demonstrate that beetles display a steady accumulation of taxonomic diversity throughout 
the Permian (Figure 2). The earliest definite beetles are Tshekardocoleidae (including the genus Cole-
opsis) from the Early Permian of Germany, Czech Republic, USA, and Russia (Figure 1), although the 
origin of Coleoptera is dated to the Carboniferous by molecular phylogenetic analysis (McKenna 
et al., 2019; Zhang et al., 2018; Toussaint et al., 2016). The coleopteran diversity radiation in the 
Middle Permian is consistent with an expansion of morphological disparity, corresponding to the 
appearance of multiveined, smooth, and striate elytra as well as some other patterns (Figure  4, 
Figure 4—figure supplement 1). Taxonomic diversity and morphological disparity were decoupled 
during the Late Permian when taxonomic diversity increased but morphological disparity was almost 
stable (Figures 2 and 4). The abrupt Middle Permian increase of coleopteran morphological disparity 
conforms to the early burst model of clade disparity commonly arising early in radiations (Simões 
et al., 2020; Hughes et al., 2013).

The Permian coleopteran assemblage was dominated by stem groups including Tshekardocoleidae, 
Permocupedidae (Permocupedinae and Taldycupedinae), and Rhombocolediae in terms of richness 
and abundance. These ancient beetles were most likely xylophagous because they display a progna-
thous head, a characteristic elytral pattern with window punctures, a cuticular surface with tubercles 
(or scales), and a plesiomorphic pattern of ventral sclerites, very similar to the extant wood associated 
archostematans (Figure 1; Kirejtshuk et al., 2013; Ponomarenko, 1969). Moreover, Permian trace 
fossils showing wood boring provide convincing evidence for the xylophagous habit of these ancient 
beetles (Naugolnykh and Ponomarenko, 2010; Feng et al., 2019). Aquatic or semi- aquatic beetles 
including Phoroschizidae and Ademosynidae, belonging to the suborder Archostemata, first appeared 
in the Middle Permian and diversified in the Late Permian (Ponomarenko, 2003). The three other 
suborders of Coleoptera, comprising Polyphaga, Adephaga, and Myxophaga, most likely evolved by 
the Late Permian, but definite fossils are rare at this time.

Permian beetles probably played an important ecological role in forest ecosystems because most 
Permian beetles were most likely xylophagous insects that consumed living and dead woody stems 
(Figure 3). Some Permian xylophagous beetles fed on living wood tissues (Feng et al., 2017; Feng 
et al., 2019), which likely reduced tree productivity and could have caused extensive tree mortality. 
Insect- mediated tree mortality is known to result in large transfers of carbon from biomass to dead 
organic matter (Seidl et al., 2018; Fei et al., 2019). The other Permian xylophagous beetles were 
likely saproxylic (feeding on dead wood) (Ponomarenko, 2003), and they could also impact terres-
trial carbon dynamics by accelerating wood decomposition (Ulyshen, 2018). Saproxylic animals first 
appeared in the Devonian and are mainly represented by small invertebrates such as oribatid mites, 
until the Permian (Labandeira et al., 1997; Labandeira, 2007). Whereas grazing by micro- and meso- 
invertebrates (nematodes, collembolans, enchytraeids and oribatid mites) did not significantly affect 
wood decomposition, consumption by macro- invertebrates (dominated by saproxylic beetles and 
termites in modern ecosystems) significantly sped up wood decomposition (Tapanila and Roberts, 
2012). In addition to those that directly facilitated decomposition by consuming wood, Permian 
saproxylic beetles are likely to have had a variety of indirect effects on decomposition, including 
creating tunnels that facilitate the movement of fungi into wood (Naugolnykh and Ponomarenko, 
2010; Feng et al., 2017), and vectoring fungi and other decay organisms on or within their bodies, 
like their extant counterparts (Ulyshen, 2016). In conclusion, Permian beetles that feed on living and 
dead wood probably could impact terrestrial carbon dynamics by reducing forests’ carbon sequestra-
tion capacity, and by converting live materials to dead organic matter and subsequent decomposition.

The oxygen concentration of the atmosphere began to rise in the early Palaeozoic, probably 
with a peak in the Carboniferous and large decline from the beginning of the Permian (Dahl et al., 

https://doi.org/10.7554/eLife.72692
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Figure 4. Morphospace comparisons of Coleoptera from the Early Permian to Middle Triassic. (A) Morphospace three- dimensional (3D) plot ordinated 
by principal coordinates analysis (PcoA), maximum observable rescale distance (MORD) matrices, based on species- level dataset. (B and C) Disparity 
comparisons ordinated by PcoA, MORD matrices, based on species- level dataset, proxy by pov and sov. Abbreviations: pov, product of variance; sov, 
sum of variance; P1, Early Permian; P2, Middle Permian; P3, Late Permian; T1, Early Triassic; T2, Middle Triassic.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.72692
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2010; Berner, 2009; Krause et al., 2018). The reason for this plunge was attributed to a tectonic- or 
climate- driven reduction in the extent of coal swamps (Berner and Canfield, 1989) or to the evolution 
of lignin- consuming fungi (Floudas et al., 2012). However, global recoverable coal is only equivalent 
to a few percent of the oxygen budget in the atmosphere, and thus cannot account for the large 
drop of atmospheric oxygen (Nelsen et al., 2016). Furthermore, lignin- consuming fungi may have 
been present before the Carboniferous (Nelsen et al., 2016). Recently, a new geochemical model 
proposed that the development of Permian terrestrial herbivores may have limited transport and 
long- term burial of terrestrial organic compounds in marine sediments, resulting in less organic carbon 
burial and attendant declines in atmospheric oxygen (Laakso et al., 2020). Herbivorous insects and 
amniotes are thought to be the major herbivorous animals during the Permian and thus are consid-
ered to be the most important drivers of the Permian change in biogeochemical cycles of carbon 
(Laakso et al., 2020). However, Permian herbivorous amniotes mainly fed on leaves, stems, roots, 
and rhizomes (Sues and Reisz, 1998; Pearson et  al., 2013) and could normally digest cellulose 
by fermentation but could not consume lignin, as in extant herbivorous vertebrates (Pearson et al., 
2013). The majority of terrestrial plant biomass is stored in forest woody tissue consisting of decay- 
resistant lignin (Hibbett et al., 2016; Bar- On et al., 2018). In modern forests, the total carbon stock 
in woody tissue (including living and dead wood) is approximately 340 Pg carbon, much more than 
72 Pg carbon in roots (below ground), 43 Pg carbon in foliage, and 43 Pg carbon in litter (Reich et al., 
2014; Pan et al., 2011). In extant forest ecosystems, insects may account for 29%  of the total carbon 
flux from dead wood and thus they have a functional importance in the decomposition of dead wood 
and the carbon cycle (Seibold et al., 2021). During the Permian, beetles were probably the dominant 
consumers of woody tissue, while a few other insect groups may have sometimes fed on dead wood 
(such as stem dictyopterans and protelytropterans) (Grimaldi and Engel, 2005). Permian beetles had 
probably evolved close interactions with various microorganisms, especially lignin- consuming fungi 
(Nelsen et al., 2016), which also accelerated the decomposition of dead wood. The Early Permian 
onset of the decrease in oxygen concentrations is consistent with the origin and radiation of the xylo-
phagous beetles in the fossil record. Therefore, we propose that Permian xylophagous beetles could 
have been responsible for at least part of the change in Permian biogeochemical cycles in Laakso’s 
model (Laakso et al., 2020).

As the most taxonomically and functionally diverse group of living organisms on Earth (Stork, 
2018), extant insects have significant effects on terrestrial carbon and nutrient cycling by modulating 
the quality and quantity of resources that enter the detrital food web (Belovsky and Slade, 2000; 
Kurz et al., 2008; Yang and Gratton, 2014; Seibold et al., 2021). However, the effects of insects 
on terrestrial ecosystems in deep time have been viewed as unimportant or overlooked (Doughty, 
2017). Permian beetles were among the principal degraders of wood and played a fundamental role 

The online version of this article includes the following figure supplement(s) for figure 4:

Source data 1. Fossil character matrix for the morphospace analysis.

Source data 2. Result of permutation test for morphological disparity.

Figure supplement 1. Morphospace comparisons of Coleoptera from the Early Permian to Middle Triassic, maximum observable rescale distance 
(MORD) matrices, proxy by pov and sov.

Figure supplement 2. Morphospace comparisons of Coleoptera from the Early Permian to Middle Triassic, based on genus- level disparity analyses of 
generalized Euclidean distance (GED) matrices, proxy by pov and sov.

Figure supplement 3. Morphospace comparisons of Coleoptera from the Early Permian to Middle Triassic, based on species- level disparity analyses of 
generalized Euclidean distance (GED) matrices, proxy by pov and sov.

Figure supplement 4. Permutation tests with sample size corrected (maximum observable rescale distance [MORD]).

Figure supplement 5. Permutation tests with sample size corrected (generalized Euclidean distance [GED]).

Figure supplement 6. Disparity comparison and permutation tests with sample size corrected, under ordination method of principal coordinates 
analysis (PcoA), assuming that the age of the Grès à Voltzia specimens is Early Triassic.

Figure supplement 7. Disparity comparison and permutation tests with sample size corrected, under ordination method of non- metric 
multidimensional scaling (NMDS), assuming that the age of the Grès à Voltzia specimens is Early Triassic.

Figure supplement 8. Shepard ‘goodness- of- fit’ stress plot.

Figure 4 continued

https://doi.org/10.7554/eLife.72692
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in deep- time carbon and nutrient cycling and niche creation. Insects may have been one of the major 
regulating factors of forest ecosystems at least from the Permian.

Our results show that both the taxonomic diversity and morphological disparity dropped dramat-
ically during the Early Triassic (Figures 2 and 4). Combined with the phylogenetic results (Figure 3), 
our suite of analyses yields a clear ecological signal from beetles across the Permian/Triassic boundary: 
all xylophagous stem- group beetles become extinct near the Permian- Triassic boundary or abruptly 
decreased in the Early Triassic (a pattern called ‘dead clade walking’; Barnes et  al., 2021), while 
aquatic phoroschizid and ademosynid lineages crossed the Permian/Triassic boundary and diversi-
fied in the Middle Triassic. Coleoptera recovered in taxonomic diversity during the Middle Triassic 
by the rise of new predatory and herbivorous groups, synchronized with the recovery of terrestrial 
ecosystems (Zhao et al., 2020). However, the morphological disparity is significantly lower than that 
of the Middle and Late Permian due to the lack of stem- group beetles that possess complex elytra 
structures (Figure 4, Figure 4—figure supplement 1). Polyphagan groups increased in taxonomic 
diversity during the Middle Triassic, which is a transitory epoch from a Palaeozoic stem- group beetle 
assemblage to a Mesozoic polyphagan- dominated assemblage.

Xylophagous groups are absent or rare in Early Triassic coleopteran assemblages, becoming wide-
spread again from the Middle Triassic, mainly represented by more derived archostematans (such 
as Cupedidae) and polyphagans (Ponomarenko, 2003). This gap in xylophagous beetles coincided 
chronologically with the gap in coal deposition (‘coal gap’), a time during which peat- forming forests 
were rare or absent (Figure 3B), extending across at least the entire Early Triassic (Benton and Newell, 
2014; Retallack et al., 1996; Nowak et al., 2020; Zhao et al., 2020). During the latest Permian and 
earliest Triassic, gymnosperm- dominated forests abruptly collapsed (Vajda et  al., 2020) and were 
replaced by other biomes (such as isoetalean- dominated herbaceous heathlands; Feng et al., 2020) 
in most areas due to extreme conditions including aridity (Sun et al., 2012), wildfires (Shen et al., 
2011), and ozone destruction (Benca et al., 2018). In some regions, the plant extinction was less 
severe, or the recovery was rapid (Hochuli et  al., 2010), or there may have been multiple crises 
during the Early Triassic (Schneebeli- Hermann et al., 2017), but even short- term ecosystem disrup-
tion could have led to extinctions among xylophagous beetles. Previous studies have not provided a 
clear picture of insect evolution in response to possible environmental stresses, nor of their response 
to the EPME (Benton and Newell, 2014). Our results show for the first time that the demise of most 
forests (deforestation event; Vajda et al., 2020) most likely resulted in the extinction of most Palaeo-
zoic xylophagous beetles, analogous to the extinction of tree- dwelling birds and mammals resulting 
from end- Cretaceous deforestation (Field et al., 2018; Hughes et al., 2021).

Our results reveal an Early Triassic gap in xylophagous beetles, suggesting that early archaic beetles 
experienced the severe ecological consequences of end- Permian deforestation. Extant insects are 
suffering from dramatic declines in abundance and diversity largely due to the anthropogenic defor-
estation and global warming (van Klink et al., 2020; Wagner et al., 2021). However, xylophagous 
insects have been largely neglected in studies of the current extinction crisis (van Klink et al., 2020). 
In particular, the diversity and abundance of xylophagous beetles are extremely sensitive to climate 
change and can also entail forest collapse and carbon cycle disturbance (Kurz et al., 2008; Fei et al., 
2019; Šamonil et al., 2020). Our findings may help to better understand future changes in insect 
diversity and abundance and its consequences faced with global environmental change.

Materials and methods
Diversity analysis
We compiled an updated database of all coleopteran species from the Early Permian to Middle Triassic 
from published literature in the early 1800s through to early 2020. In addition, we incorporated data 
from other open access database projects, including the Fossil Insect Database (EDNA) and Paleobi-
ology Database (PBDB). We re- examined all published occurrences and taxonomy of Coleoptera from 
the Early Permian to Middle Triassic (Figure 2—source data 1). We standardized and corrected for 
nomenclatural consistency of all taxa using a classification of extinct beetle taxa above the genus rank 
(Bouchard et al., 2011). The data were filtered and cleaned by removing or reassigning illegitimate, 
questionable, and synonymous taxa and converting local to global chronostratigraphic units (Supple-
mentary file 1).

https://doi.org/10.7554/eLife.72692
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We allocated fossil species into 12 stage- level time- bins covering the Early Permian- Middle Triassic 
interval (from the Asselian to Ladinian, 298–237 Ma). Considering the short duration of the Induan and 
Olenekian stages, we combined both stages into one time- bin. The formal taxa were erected based 
only on isolated elytra that cannot be classified definitely into any natural group. Thus, we separately 
counted the diversity of natural, formal, and mixed groups (Figure 2, Figure 2—figure supplement 
1). The species Coleopsis archaica was attributed to Tschekardocoleidae by Kirejtshuk et al., 2013, 
but was later elevated to a new family Coleopseidae by Kirejtshuk, 2020. We followed the former 
opinion because it is premature to erect a family without a detailed cladistic analysis. We determined 
the stratigraphical ranges of families, genera, and species as the maximum and minimum ages in 
stage- level time- bins. All diversity was calculated using the range- through method.

Phylogenetic analysis
In light of the new taxa and characters available for further testing the phylogenetic status of ancient 
stem- group beetles, we reconstructed the phylogenetic relationships among the stem groups by 
incorporating the presently described new taxa and revised characters coding into the previous 
dataset (Beutel et al., 2008). The morphological characters used for phylogenetic analysis comprise 
93 adult and larval characters (Figure 3—source data 1). Unknown characters were coded as ‘?’. The 
taxon sampling contains two megalopterans as outgroups (Sialis and Chauliodes) and 13 coleopteran 
ingroup taxa (five extant and eight extinct) representing all four coleopteran extant suborders and 
their stem groups (Supplementary file 2). Compared to previous character matrices, we added the 
subfamily Taldycupedinae and three new characters (Supplementary file 3). The matrix was analysed 
in TNT version 1.1, through parsimony analysis and using traditional search (Goloboff et al., 2008). 
All characters were equally weighed and unordered (1000 replicates and 1000 trees saved per repli-
cation). Bootstrap values, consistency index, and retention index were provided (Figure 3—figure 
supplement 1).

Morphospace analysis
We performed morphospace analyses with our newly assembled discrete character matrices 
(Figure 4—source data 1; Supplementary file 4). The analyses were performed using the free soft-
ware R. 4.0.4. Both the MORD matrix and GED matrix were calculated based on two discrete char-
acter matrices (Lloyd, 2016; Wills, 1998). Recent research has revealed that the GED matrix creates 
a systematic bias in cases with a high percentage of missing data, and the MORD matrix can provide 
greater fidelity under these circumstances (Lloyd, 2016; Lehmann et al., 2019). We then ordinated 
all taxa into a multivariate morphospace with both PcoA and NMDS.

For PcoA, we used the function ‘ordinate cladistic matrix’ in package ‘Claddis’ with a cailliez 
method to correct the negative eigenvalues (Lloyd, 2016). Two disparity matrices were used to eval-
uate the volume of the morphospace, including the sum and product of the variances (Wills et al., 
2016). The product metrics was normalized by taking the nth root (n equals the number of axes used 
for calculating disparity metrics). We used the scores on all axes that together comprise 90 % of total 
variance to calculate those disparity metrics. We chose a permutation test (two- tailed) to test the null 
hypothesis of no difference between insect disparity of different time- bins. Each test run used 5000 
replications. The test statistic was obtained by using the disparity metric of an older time- bin to minus 
that of a younger time- bin. If the proportion in the null distribution greater than the observed value 
of the test statistic is smaller than 0.025, the insect disparity of an older time- bin was considered 
significantly larger than that of a younger time- bin, and if the proportion was greater than 0.975, the 
insect disparity of a younger time- bin was considered significantly larger than that of an older time- bin 
(Figure 4—source data 2).

We also performed permutation tests with sample size corrected. For two design groups with 
different sample sizes, we first performed subsampling of the group with more samples to obtain 
equal sample sizes. Based on the newly obtained two groups with equal sample sizes, we calculated 
the observed value of the test statistic. Then we randomly permutated those species into different 
groups once and calculated a test statistic. We repeated this procedure (subsampling and permuta-
tion) 10,000 times and obtained a null distribution plus a group of observed values. We then calcu-
lated a set of proportions greater than the observed values in the null distribution. By analogy, if the 
median of the proportions is equal to or smaller than 0.025, the insect disparity of an older time- bin is 

https://doi.org/10.7554/eLife.72692
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significantly larger than that of a younger time- bin. If the median proportion is considered significantly 
greater than 0.975, the insect disparity of a younger time- bin is larger than that of an older time- bin 
(Figure 4—figure supplements 4–7).

For NMDS, we used the function ‘metaMDS’ in package ‘vegan’ with the number of dimen-
sion settings to 3 (Dixon, 2003). Both non- metric fit and linear fit were very high (larger than 
0.90; Figure 4—figure supplements 4–7) and the stresses were smaller than 0.2, which implies 
that the ordinations are relatively good. Then we repeated all the previous analyses with this 
NMDS morphospace and acquired a similar result. The two disparity metrics of each time- bin 
were calculated based on two different distance matrices and two different ordination methods 
(Figure 4, Figure 4—figure supplements 1–5). The distribution was simulated under 500 boot-
straps. Thirty- one undetermined specimens from the Grès à Voltzia Formation (Lower/Middle 
Triassic boundary, France) were included in our database and their age was attributed to the early 
Middle Triassic in our analysis (Figure 4, Figure 4—figure supplements 1–5). Considering that 
the age of these specimens is controversial, we repeated all our analyses assuming that the age of 
these specimens is Early Triassic; the result is consistent with the previous one (Figure 4—figure 
supplements 6 and 7).
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