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ABSTRACT

The dynamics of precipitation and coarsening reactions
in a binary Ising lattice are studied using a simulation
techniques The dinitial random configuration represents
equilibration at a very high temperature. Following a
quench to the reaction temperature below the miscibility
gap, the decomposition proceeds by atomic interchanges of
matrix and impurity atoms. The probability of such dinter-
changes depends on the reaction temperature as also the
local environ of the particular atom pair that is dinter=-
changing. Both the excess energy <éw%a)> and the average
clustery size <n> are found to follow simple power law rela-

-h

tions with time, <%w%a)>st and <n>=t%, For the square

lattice, Binder’s cluster diffusion and coagulation mechan-



i1

ism 1s seen to dominate the coarseninig reactions at early

times, in agreement with the studies of Lebowitz et al. The

early time exponent (a) correspondingly has a value close to

0.2 However, at later times, the mechanism changes over to

a Lifshitz and Slozov atom by atom transfer mechanism, as

the cluster size Dbecomes larger. The mnature of this

changeover 1s seen to depend primarily on the temperature;

the two regions overlap at higher temperatures and are

separated by a long incubation period at lower temperatures.

The different regions are closely associated with the rela-

tive bond type populations which reach asymptotic values as

Lifshitz Slozov coarsening stage begins.
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INTRODUCTION

A variety of important metallurgical phenomena are con-

trolled by the nature and kinetics of precipitation reac-

tions and precipitate coarsening processes. The relevant

phenomena include precipitation hardening and aging

processes Iin alloys and void formation and swelling in irra-

diated materials. Coarsening 1s driven by the eventual

decrease of surface free energy and the final stage of coar=-

sening would be a single precipitate with an interphase of

minimum possible energy. Interestingly, this stage is never

reached in times that concern practical materials, so usu-

ally the kinetics rather than the equilibrium ave of more

importance. Also, the most striking influence on properties

is often sees during the first stages of precipitation

unless the precipitates contain only a few atoms or unit

cells and the precipitate distribution is far from equili-

brium, necessitating a thorough understanding of the initial

stages of precipitation and coarsening reactions.
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Theoretical analysislﬁﬁ‘have given useful dinsights into
these processes. These theories are based on free energy
vs. composition plots and are basically continpuum in nature

and assume quasi-equilibrium conditions.

The coarsening process is simplest in its late stages,
when the particles are large and essentially immobile and
classic "Ostwald ripening®™ occurs through single atom diffu-
sion between clusterse. The net mass transport is to the
larger particles so as to decrease the total surface energy
of the system. The rate of mass transport may be controlled
either by surface reactions (dissolution or adsorption) or
by diffusion in the bulk. The latter case has been analy=zed
in detail by Lifshitz and Slozov3 and will be denoted "LS

coarsening” in the following.

The Lifshitz=Slozov analysis predicts that both the
excess energy <éméab> where éq) is the equilibrium value of
the energy, and the average cluster size <n> will obey sim-

ple power laws 1in time:



The analysis also provides a scaling law which establishes

the distribution of cluster sizes about the expected value

<n>e It hence predicts a very simple <coarsening behaviour

which can be easily understood.

There are, however, assumptions inherent to the LS

analysis which confine it to the later stages of coarseniungs.

These include the neglect of particle geometry and the

assumption of particle immobility. While recent work seems

to estabhlish that the LS assumption of spherical geometry 1is

15

not critical te their result™ ™, the assumption of a size-

independent surface tension is critical and, as we shall

discuss further below, is not likely to hold for small pre-

cipitates in crystalline solids. The assumption of particle

immobiliry d4s also dinvalid when the particle size is small.

Small clusters of atoms can diffuse at an appreciable rate

while vremaining dntact and may contribute to coarsening by

coagulation directly with one another.
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The process of coarsening through the diffusion and
direct coagulation of clusters was studied in detail by
Binderée While Binder analysis is not free of assumptions,
these do not explicitly constrain the sizes; shapes, or dis-
tributions of the clusters. However since the cluster dif-

nmlmles9 Binder process

fusivity decreases with size as
should become less dominant at later times. Binder also

obtains simple power laws for the time dependence of the

excess energy and the average cluster size. These are

<n> = Cto 1.3

<é-€ > = pt P T.4

where 2a = 0.4-0.5 and b = 0.2-0.25, for the two-dimesnional

caseo.

While the Binder and Lifshitz-Slozov analyses span a
good part of the coarsening behaviour of real solids, the
restrictions imposed by the assumptions wunderlying these
theoretical models are not entirely clear, nor are their

limits of applicability obvious. With the development of



computer techniques it has become possible to conduct direct
computer simulation studies of coarsening in idealized sys-
tems, such as the Ising lattice in two or three dimen-
Sion58w13o The computer studies have the disadvantage that
they treat model rather than real systems, but have the com=~
pensating advantage that they represent clear-cut "experi-
ments” which may be used to test the applicability of the

theories and to investigate interesting aspects of the coar-

sening process in detail.

Computer simulation studies have shown the dominance of
the cluster «coagulation mechanism in the early stages of
coarsening10 and have revealed slope changes in the plots of
excess energy against time which dindicate the expected shift
to LS coarsening behaviour in the later stages. These ecar-
lier researches are extended in the computer simulation stu-
dies reported below, which focus on the simple case of a
two~dimensional Ising lattice and attempt a reasonably

comprehensive exploration of coarsening behaviour as a func-



tion of time, temperature and composition-

The binary Ising lattice was the most obvious choice
for out model, since its equilibrium properties (in the
absence of an external field) have been very well character-
ized. We began this résearch project with a view to charac-
terizing the kinetics of precipitation aund coarsening reac-
tions 1in our model lattice. The results of the above men-
tioned theories should certainly be applicable to our simple
model since the requirements of these theories are more than
satisfied here. Hence the results obtained in our simula-
tions can be used as a straight forward test of the applica-~

bility of these theories.

The model used for the computer simulation will be
described in Chapter 2. A simple exchange model where atoms
of two types, initially distributed randomly on a lattice,
redistribute themselves in discrete steps of atomic inter-
changes forms the basis of the simulation. The probabilities

of atomic dnterchanges are controlled by global variables



{such as temperature) and more dimportantly by the 1local

environ of the atom paire. The local environ dis limited in

our studies to the first nearest mneighbours of the atomns

involved, but can be easily extended to include second or

third nearest neighbours as well. VWhether the rtesulting

redistribution of atoms leads to clustering or ordering

depends upon whether the interaction energy of the atoms of

two types is positive or negative.

Study of this model and its characterization in terms

of i1ts coarsening behaviour forms the subject matter of this

research project, detailed in Chapter 3.

In Chapter 4 the computer simulation technique, whereby

the process described by our physical model 1s put into

action is described. Although the process as described in

Chapter 2 can be directly translated into a code, this is

not a good way of doing it because of the enormous amount of

time needed for the simulation run. A deeper look into our

own physical model shows shortcuts which can be used
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beneficially to increase the program speed. Further the
idiosyncracies of the computer must alsoc be considered and

constructively used in this respecto.

The results of our simulation work and discussions form
the subject matter of Chapter 5. The first section describes
the basic four stage reaction that the decomposition fol=
lows. In the initial relaxation stage a large amount of lat-
tice energy is decreased rvesulting from the formation of
small clusters of upto 10 atoms. In the second stage there
is a diffusive movement of these small clusters, leading to
their eventual coagulation and coarsening. Such diffusive
movement of clusters becomes less important as their size
increasess This marks the beginning of stage 3. In this
stage the surface profile of the clusters reaches an equili-
brium. In stage 4 or steady state the coarsening reaction is
mainly by atom by atom transfer mechanism or Lifshitz and
-S1lozov mechanism. Sections 2, 3 and 4 discuss the effects

of temperature, lattice type and composition on this basic



four stage coarsening reactions. The characterization of

cluster properties, including thedir distributions 1is dealt

with in section 5.

Finally in Chapter 6 the results are summarized and

conclusions are drawno.
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MODEL

The simplest realistic case of a binary Ising lattice
with nearest mneighbour dnteractions only in zero magnetic
field is chosen. The two spins are taken to represent the
two types of atoms A and B. Under this assumption the ther-
modynamics of the lattice are known to be governed by the
lattice type and by the interaction parameter

J = EAB-ﬁl/Z(EAA - EBB> IT.1
where Eij is the energy of a bond between atoms of types 1

and j. The total number of atom pairs in the lattice is

N = 1/2Noz 1I1.2
where Z 1is the number of nearest neighbours of an atom. 1f
N is the number of AB atom pairs, then the relative energy

AB

per bond (atom pair) is in units of J,

€ = o IT.3

For any given distribution of A and B atoms (spins), the

energy of the lattice is given by

E = = 3
1,30y

3 IT. 4
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in terms of 34 and 1., the occupation numbers (+1 for A and
-1 for B) and the sum is taken over the nearest neighbour
atoms only. This type of interaction leads at low tempera=-
tures either to a phase segregation when J>0 (corresponding
to an excess attraction between atoms of the same type) or
to ordering when J<0 (corresponding to an excess attraction

between atoms of the opposite type).

The equilibrium properties for this model have been
very well characterized. In fact, exact analytical results
for partition function, critical temperature, phase diagran
etce., are available for certain two dimensional lattices.
Numerical methods have been developed for cases (such as 3d)
which are not yet amenable to analytical calculations. All

. ; 8
these have been extensively reviewed .

For the case of square lattice, the critical tempera-

ture is given by

kTC = 2.4147 IT.5

and the phase diagram 1s given by :



] D=

4 1/8
1 16x
C(phase) = =3 |l=——r—"m— +1 I11.6
2 (1GX2)4

where x = exp(-2J/kT).

Similarly for the case of the two dimensional hexagonal

lattice (triangular lattice) we have

kTC = 3.,2435J I1.6

1/8
1 16X6
C(phase) = ={|1 - + 1 IT.7

2 (1+3x2) (1-x2)3

It is important to see that the square lattice is symmetri-
cal with respect to J or =-J. That is it has the same phase
diagram for the ordering and clustering cases. For the case
of the hexagonal lattice Tc = 0 for J<0. That is no order-
disorder transformation exists for this case. However, it
shows a clustering behaviour with the above phase diagram

and TC for J>0.

Having based ourselves on this model with well charac-
terized equilibrium properties, we can study the kinetics of

clustering or ordering reactions by developing the dynamic
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aspects of the model. 1In this research project, the basic

diffusion step 1s taken to be interchange of nearest mneigh-

bour atoms. Further this dinterchange is assigned a proba=~

bility P based on the temperature T and the energy change AFE

resulting from such an iInterchange. VWe are now ready to

study the kinetics of the clustering or ordering reactions.

In 1real systems such reactions are studied by quenching

specimens equilibrated at high temperature to the reaction

temperature, and following the changes in the specimen. In

our model also a similar study can be done.,

The A and B atoms are dnitially distributed randomly

over the lattice sites. This random distribution in our

model represents equilibration at/above a very high tempera-

ture where the configurational entropy is dominant. (For an

infinite lattice and for an infinite lattice only, this tem-

perature is infinite). When the lattice is quenched from

this high temperature to some low temperature the atoms will

assume a counfiguration of lower energy as dictated by the
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thermodynamics. The reaction will be edither a clustering or

an ordering reaction depending on whether the energy of the

A-B dinteraction is such that the atoms have an energetic

preference for the neighbours of 1ike kind (J>0) or for

neighbours of wunlike kind(J<0). Jump probabilities are

assigned to different atom exchanges based on the reaction

temperature and the energy change AE of the system. The

reaction is then allowed to proceed (jump by jump) as per

the probabilities, and the properties of the system are fol=

lowed kinetically.

The amenability of our model to computer simulation is

now very clear from the description of the dynamics of the

model ahoves In fact, the steps above, followed as such,

can form the basis of a Monte Carlo type simulation. The

details of the computer simulation technique will be

described in Chapter 4.
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Exchange Probability:

Consdider an exchange of atoms at lattice positions j

and 1 (3 and 1 are nearest neighbours of each other). The

initial energy before exchange is given by

1i,e -
E = me .
initial 2 @%% + 25,0, + X) II.8
i k
where Dy = depending on whether there is an A or a B atom

at that site, 1 and k are the sums over the nearest neigh-
bour sites of j and 1, and X represents similar sums over
the other lattice siteses The final energy after exchange is

gsimilarly

.| = .,
Bfinal = ”’ZJ[?%% Tty Y X} It.9

The energy change

AE4 * Frinatl ~ Einitial
- -Lilsg + S + L33 + 3 I1.10
271419y R 2712017y DrBy
i k i k
= - 53|gn, (pymn) + S
7 i-ai Ql Qj §9k<9j“’ml)

That 1is

1 - -
AEjl = —va(l;lnr;j)[ar;i - zgk] T1.11
i k
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It is clearly seen from this formula that the energy change

for the reverse jump AElj = ﬁQEjle

The exchange probability should depend on this energy
change Aﬁjl’ as also on the tempervature T. Many different
expressions have been used for the probability lee In

their original paper Metropolis et alag used

le = 1 ,AEjl_iO
I1.12
le = exp(ﬁ&Ejl/kT) sAﬂjl>O
In our model we use
exp(ﬁQEjI/kT)
= I7T.13

P,
i 1+ exp(AEjl/ijE
for both AEjl;o and AEj1>O° A recent study has shown that

our choice yields greater stability and faster conver-

10
gence’ o

Using the velationship between J and TC (for example

J = 098814kTC for square lattice), we can eliminate J from

Qﬁjlg Further the temperature T can be expressed in the

dimensionless units of T/Tce The jump probability then

J

takes on the simple form



-] 7=

P .= —S e TI.14

where,

J
B = kT

real

(+)
= 0.8814 E)

0.8814

T, . ,
dimensionless

0.8814

IT.15

. co T

le represents the probability of exchange per unit time,
and hence 1s directly related to the rate of exchange. In
other words, these probabilities can be used to keep track
of the time of the reaction. This will be discussed in
Chapter 4. The equations governing the kinetics of evolu-
tion of the Dbinary Ising lattice may be cast into a form
which is particularly well suited for computer simulation
studies. Chapter 4 will discuss this important topic of
correlation of the simulation with the model presented here.

The formulations presented follow that previously used in



~18-

the kinetic analysis of thermally~activated deformation

20,21

19 A . .
processes and martensitic transformations and is

drawvn largely from Fellerzza
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PURPOSE AND SCOPE OF THE

PRESENT INVESTIGATION

The theoretical treatments of coarsening generally con=

sider steady state, or very late stages of coarsening, where

the coarsening rate is surface reaction controlled or diffu-

sion controlled. The latter has been analyzed in detail by

Lifshitz and Slozov and is conveniently called Lifshitz-

Slozov or LS mechanism. Coarsening here occurs by mass tran-

gsport by single atom diffusion between clusters, driven by

the eventual decrease in total surface energy.

Recently Binder has analyzed the coarsening of clusters

by Binder’s wmechanism : diffusion and coagulation of clus-

ters. Here atoms of clusters move around in the cluster

itself either through the cluster or through the matrix,

leading to a random walk and eventual coagulation of clus-

ters. Depending on whether the cluster diffusion is by

movements of atoms through the bhody of the cluster or
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through its volume, the diffusivity of a cluster of size n,

. -1 =1.5
varles as n or n

« Thus the Binder’s mechanism should

become less dimportant as the average cluster size <n>

increases.

The generalized features of the clusters which are of
importance in initial stages 1is not considered in these
theories. For example the LS8 analysis assumes that the
interfacial energy is independent of the cluster size. This
assumption is questionable at small cluster sizes, and the
simulation results indicate that the cluster surface energy
levels off after some cluster size. The LS theory also
assumes spherical particles (disotopic surface tensions), but
this assumption is not critical, as long as particles have

their equilibrium shapeslls

Both the Binder and the LS mechanisms predict simple
power laws for the variation of excess energy <<€ - écj> and

the average cluster size as follows:
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<n> = ot III&}.

<n> = t I11.2

where:

L8~ g = 0666; b

]

0.33

Binder—a = 0.4 - 0.53 b = 0.2 - 0.25

It is thus possible to follow these mechanisms by following
the slopes of <n> vs t or <4w€a)> vs t curves. In addition,
in our simulation approach, we have the further advantage of
being able to actually trace through the atomic steps and be
able to interpret the former results ohbjectively. This
advantage is especially significant at the small cluster
sizes, since then the assumptions of neither theory (espe-~

cially regarding the geometry of clusters) are satisfied,

Previous studies of this type have shown that Binder’s
mechanism dominates at the early stages of the process for
the 2-d case7e It has also been pointed out that for the
3-4 case the LS mechanism should prevail at earlier times

than 25d6e A slope change to a higher value corresponding
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to the LS mechanism at late stages in the <<€-< > vs t plots
also has been reported7e However, percolation effects

hinder a meauingful study of the cluster sizes in 3-=d.

This dinvestigation was begun with the objective of
studying and characterizing the kinetics of clustering reac-
tions in a binary Ising lattice. The method of approach
used dis the direct computer simulation of the atomic diffu-~

sion process. The following topics are covered:

(1) Square lattice

(a) the basic coarsening reaction

(b) effect of process parameters such as T, composi-

tion on (a)

(2) Hexagonal lattice

Simulation and comparison with (1)

The phase diagram of the two=-dimensional square Ising

lattice is plotted in Figure 1. The figure also contains a
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Fig.1l.

0.5 1.O

XBL789-5834

Phase diagram of the binary Ising square lattice,
indicating the points of simulation reported here.
The dotted line shows the limit of metastability,
assuming a freﬁ energy 4density of the form
f(CCr = A(C»CCT) +B(chcr) +£(C ) where C., 1is
the concentration at the phase boundarys
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plot of spinodal limits, or inflection points of the free
energy of a hypothetical lattice of homogeneous composition,
computed under the approxdimation that the free energy within
the miscibility gap dis given by the fourth order polyno=-

miallsz

% % *
F(e) = Fle )+A(c-c ) 4B (cmc)? I1T.3

e e e
This polynomial approxiamation is known to be dinaccurate at
bery low teumperature (the spinodal curve must join the
equilibrium curve at t=0), but gives a reasonable approxima-

tion over much of the temperature range.

The qualitative behaviour of the system can be
predicted from the equilibrium phase diagram. If the binary
solution is equilibrated at very high temperature, the A and
B atoms will be randovly distributed over its lattice sites.
If the system 1s then quenched to a temperature within the
miscibility gap, the lattice will Dbegin to decompose to
create A~ and B-rich phases having the cowmpositions C:(T)

% % *
and cae(T) = <1”Cme(T)) given by equation I1.6.
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Continuum arguments L6 suggest that the mechanism of
decomposition is sensitive to the location of the image
point of the system relative to the spinodal curve. If the
system 1s quenched to a point outside the spinocdal on the
A«rich side, the anticipated mode of decomposition is
through the nucleation and growth of distinct particles of
% %

concentration Cy {(T) while, 4f the quench 1is to a point
within the spinodal, the decomposition may happen through
the continuous development of concentration WwWaves. While
the distinction between these two decomposition mechanisns
is not as well defined in an atomistic model as in a contin-
uum one?ﬂ9 the computer experiments in the present research
involved quenches to points outside the spinodal gap to

preserve a clear nucleation-and- growth decomposition

mechanism.

It should be noted that our simulation does not include
the effect (or even the presence) of vacancies. The basic

diffusion mechanisnm used 1s not the vacancy mechanism but



7
the exchange mechanism. This 1is only done for speeding up
the simulation process, and the inclusion of wvacancies is

not beyond the limits of the model or code.

Also, the important effect of elasticity is completely
ignored in this model. This is justifiable only at the very
early stages when the surface energy 1is high. Unfortunately
the effect of elasticity cannot be accounted for in an easy
way due to its long range natureos Alternate methods are
available, both for continuum and semi-continuum simula-

tions, that include the elasticity effect.
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SIMULATION TECHNIQUES AND

CORRELATION WITH MODEL

Ve will first describe a simulation code following
exactly the processes described in chapter 2, and then

improvements over this code can be discussed.

First of all, the results <Tc’ phase diagram) of the
exact calculations of equilibrium properties are all for an
infinite lattice. Since din the computer we can only use fin-
ite lattices, this will introduce boundary effects in these

equilibrium properties.

In the simulation of an isolated system the whole sys-
tem can be observed directly and there is no need to con-
sider what happens outside. However for our case of an
infinite system the computer observation of the kinetics of
our finite lattice is just a simulated sampling of a finite
group or sample of particles from the infinite system. The

sample particles din the finite lattice interact with parti=-
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cles outside, and this dinteraction must somehow be incor-

porated into the simulation. The simplest means of allowing

for the interaction is to consider the sample finite lattice

to be replicated to fill space. The particles at or the near

the boundary of the sample interact with the particles of

the adjacent veplicated samples. For the purposes of comput-

ing this dinteraction these outer particles may be taken as

the equivalent inner particles of the actual sample. Since

our model <considers nearest neighbour dinteractions only,

this representation of the infinite system should be ade-

quateo.

The imposition of this periodic structure on the infin-

ite system has in fact replaced that part of the infinite

system outside the sanple by boundary conditions on the sur-~

face of the sample. This type of boundary conditions is gen-

erally referred to as Periodic Boundary conditions.

Having defined our basis as a finite lattice with

periodic boundary conditions, we can now go on to describe



the simulation procedure-

Simple Monte Carlo Simulation:

The lattice 4s initially filled up randomly with the A
and B atoms of a given composition. This is accomplished by
initially setting all the sites to +1 and then setting a
fraction ¢ of the sites chosen randomly to ~1l. Here ¢ is
the fraction of B atoms, sites with +1 represent A atoms and
sites with -1 represent B atoms. The dnitial random distri-
bution represents equilibration at a very high temperature.
[For statistical purposes, each time a different initial

random distribution is chosenl].

The Monte Carlo simulation then counsists of the follow-

. 12
ing steps T

(1) choose and atom at random (from among all the atoms),

say at loecation j.

(2) choose a neighbouring atom at random from among the

nearest neighbours of j, say at location 1.



(3)

(4)

(5)

30
This establishes a randomly chosen atom pair j = 1 to

be exchanged (or bond to be flipped).

determine the exchange probability Pil

exp (*BAY}J 1)

P, = IVel
il 1+ expwﬁéﬁjl)
where
B = 0.8814/T
dimensionless reaction
T “ temperature
- Treal/Tc
1 - -
Anjl = Eﬂf(glﬁt}j ){%Qimzuk}
i k
gizvalue of site 1
where 1 = nearest neighbours of j

k = nearest neighbours of k

The temperature of the reaction is thus incorporated in

out model through the probability P.

Generate a random number R, O<R<l. Exchange j and 1 if

R<P. In other words, exchange j and 1 with probability

Repeat steps 1l=4.

We see that in each trial one exchange is tried. As



exchanges proceed, the lattice structure changes dynamically

towards the equilibrium structure. One trial per each lat-
7 . 2 k3 * ]

tice site measures one unit of time. Thus by keeping track

of the number of trials (time) the reaction can be followed

in real time, and the kinetics can be studied.

This approach was used for studying ordering reactiouns

as early as 195913, and has recently gained importance in

14-19

the study of clustering reactions Vhereas in the

former case 1t was mainly used to study the equilibrium pro-
perties, in the latter case it is used to study the kinetics

of clustering. Previous studies on this subject have been

summarized in detail by Binder et a17~ A recent study has

employed this approach to study the kinetics of ordering

] . 20
reactions N

#%ince the exchange probability of An =0 exchanges 1is 0.5, the
average time between such exchanges would be two time units. Con-
sidering the diffusion coefficient D (at the reaction temperature)
in the limit of zero concentration of B atoms (where all the ex-
changes would7be of An =0) we see that for a square lattice, 1
time unit = a”" x 8D, where a 1is the lattice parameter.



Modified Monte Cavrlo Technique:

There are two basic drawbacks in the tregular Monte

Carlo method:

(1) It considers many unnecessary exchanges =— those that

lead to no change in the energy or microstructure.

(2) Since the exchange probabilities are all <1, a few tri=-

als are needed before an exchange occurs. Further as

time increases, and as more and more atoms reach lower

energy positions, the average Jjump probability goes

down. From the programming point of view this means

that more and wore jumps have to be tried before one

succeeds, and the simulation becomes very slow.

These drawbacks were overcome as follows H The first

one wasg overcome by suitably modifying the program to avoid

unnecessary exchanges by considering only those exchanges

that lead to a change in microstructure = only AB bond

interchanges need to be considered (with appropriate provi-
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sion for a stochastic time variable).

e secon awback was overcome by observing tha ‘or
The second drawback b bserving that €

each «c¢rystal structure there are only a few possible confi-

gurations of AB bonds, heunce only a few possible values of

An and hence only a few possible values of P, The possible

jump configurations can thus be classified into types of

identical exchange probability and selected for exchange

directly, with probability weighted by the vpopulation of

each type. That means, in each trial one exchange occurs.

This method of simulation is much faster than the vegular

me thod .

In the square lattice there are seven different types

of AB bond configurations and these are exemplified in Table

I. The number of types of AB bond configurations possible

in a few other crystal structures 1is shown in Table IT.

In the following pages we give a brief description of

the formulation of the model in a way amenable to fast com=



-3l -

TABLE I. Bond Classification

Probability of Ni/ZNi
Type of Example of Change in occurrence at ¢
bond configuration energy AE on T =% and or
. . C=0.2
(i) exchanges/J concentration C «
;)
A B
4 4
1 A-B~A-B -12 4¢™ (1-C) 0.41
A B
A B 12[¢°(1-0)°
2 A-B~A-A -8 + 03(1uc)5] 5.2
A B
A B 121c®(1-0)?
3 B-B-A-A -4 + ¢ (1-0)% 23.4
A B +36C4(1-=c)4
7 7
B A 4ICT(1-C) +C(1-0) "]
4 A-B-A-A 0 + 3607 (1-C° +C2(1-0)°1  41.9
A B
B A 12[c6(1«c)2
5 A-B-A-B +4 + c?(1-0)° 23.4
B A +3604(1-~c)4
B A 12[¢” (1-¢)°>
6 A-B-A-A +8 + 3105 5.2
B A
B A
4 4
7 B-B~A-~A +12 4C (1=0) 0.41

B A




TABLE TITI.

Crystal Structure

Number of Types
of AB Bonds

Square

Hexagonal

Simple cubic

Body centered cubic

Face centered cubic

Hexagonal close packed

11

11

11

~35-



=36

puter simulation.

Exchange of a single atom pair:

Since exchanges of like atoms leave the microstucture
unchanged, we need consider only exchanges involving pairs
of unlike atoms. Let Aﬁd be the change in the total energy
of the system if dth unlike pair is interchanged; by equa-
tion II.3 Aﬁdi is simply proportional to the net change in
the number of AB bonds caused by the exchange. The proba-
bility that an exchange will be successfully accomplished in
a single activation trial depends on the temperature and
also on whether an activation berrier, AE*, opposes the
exchange- In the present work we treat a system for which

AE* = 0.

An attempted atom exchange has two possible coutcomes: a

success, with relative Boltzmann probability

]

p; = eXP(ﬁAEd/T) V.

and a failure, with relative probability
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£
Pq

The normalized probability of exchange in a single trial is

= l IVeB

then

be = exp(=AB/T)/[1+exp(-AE /1)1

1 IV.4

il

[Hexp(md/m 17

For completeness we note that when the activation energy,
AE%, is non=-zero and greater than Aﬁd a slightly different
probability applies. Adopting the assumptions that
AE*>2AEd, an@ the E is a linear function of displacement
along the configuration coordinate describing the exchange,
and the AE*¥ has its maximum at the half-way point of the
exchange, the relative probability for success becomes

p§ = expw(l/T)[AE*+1/ZAEd}s V.5

with which

Py = [1+exp(l/T)QQE*+1/LQEd)]El V.6

Given the probability pd that the dth pair exchanges on
a single attempt, the probability that no exchange has

occured after j attempts 1s
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Py (3) = (lmpd)j V.7

Let the exchange trials occur vrandoomly in time with
expected frequency pey unity of time. Defining the dimen-
sionless time
t* = ¥t IV.8
the probability that there will be exactly j trials in time
t* is
py(ex) = (307 e dexp (o) Iv.9
The probability that the dth pair will not have exchanged

after the time t¥* is then

18

R (E*) - jigf(j!)_1<t*)jexp(~t*)l(1“Pd)j
IV.10

it

exp(wpdt*)

provided that no other atom in the immediate vicinity of the

dth

pair has changed 1n type, 1i.e., that Aﬁd remains con-

stant over the dnterval t%.

The lifetime of a confipuration:

The exchange of an AB pair within the lattice will per-

turb the energies of atoms in its immediate coordianation
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shell, and will hence change the exchange probabilities for
AB pairs dnvolving these atoms. The statistics of thermal
activation are, therefore, simpler 1f the statistical ele~
ment is taken to be the configuration of atoms over the lat-
tice rather than the individual AB pair, where a configura-
tion (4q) is specified by giving the type of the atom, A or
B, present at each lattice site. The successful exchange of

any AB pair changes the coufiguration.

The 1ifetime of a particular configuration (g) may be

easily computed. Let g contain NAB binary pairs denoted

A = loooscoossN The probability that none of these pairs

AB®
has exchanged in a time, t*, after the configuration is

established, i.e., that the counfiguration survives for time

greater than t*, is

Nag

? Rd(t*)

i

Rq(t*)

= exp(‘“/\gt*) IVv.11

where the activation parameter, Aq’ is

I
N T &7y V.12
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The probability, pq(t*)dt*9 that the first exchange in the
configuration ¢ occurs during the time dinterval (t*,t*4+dt*)

is governed by the function

&%
* = A *
P (%) 6t*[ﬁq(t )]
Ivﬁlg
= A ~A_t*
qexp( Aq )
It follows that the expected lifetime of ¢q 1is
<tk> = ,/\"'“1 IVel4
q q
with variance
oF = <t#®> _cpxs? o= AT? 1V.15
q q q q

The transformation path and kinetics:

Fgquations IV.13 = IV.15 govern the lifetime of the con-
figuration (q) without reference to the specific exchange
which occurs. The probability that a particular pair, o, is
that which exchanges first may be easily computed (or

inferred) and 1is

Byqla) = Pyl IV.16

The occurance of the exchange creates a mnew configuration,

q+l, and resets the statistical clock. The lifetime of con=-
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figuration q+1 is then determined by using the appropriate

value of the activation parameter, A in equations IV.13

q+1’

~ IV.15.

Let the solution evolve through a sequence of r 9opair
exchnages. Fach exchange establishes a new rest configura-
tion of the solution. The sequence, gq=leosec.r, defines the
"transformation path™. The statistical process through
which the transformation path is chosen may easily De shown
to be Markovian22 from which it follows that the expected

time to pass through the configuration g=l.cesor 1is

T
<E*> = S <rF> 1v.17
q=1 4

with standard deviation

)
o” = 3 & 1v.18
g=1 1

If r is large the times are normally distributed according

to the relation

2
q

where p(t*) dis the distribution function for the time to

9 1
p(t*) = (ZPiﬁg) /ZGXP“[(t**<t*>)26’] IV.19
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reach the r configuration.

It follows from equations IV.17 - IV.19 that the kinet~-
ics of evolution of the model binary solution are determined
once the sequence of confugurations through which the solu-
tion passes is known. Each of these differs from its prede-
cessor through a single binary exchange which is determined
statistically by equation IV.1l6. Hence a computer simula-
tion of the evolutionary process need only determine the
probabilities, pd, and their sum, Aq’ for each configuration
along the evolutionary path. Given a particular configura-
tion, a vtandom number may then be chosen and used in con~
junction with equation IV.16 to select a specific AB pair

for exchange.

Specification to the Binary Ising Lattice:

The computation of the exchange probabilities, pd9 and

their sum, A is particularly simple when the model system

q9

is a binary Ising lattice, since the energy of an atom in a
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binary Ising lattice is determined by the identity of its
nearest neighbors. The exchnage energy, Aﬂd; for a pair in
an Ising lattice may have one of only a few discrete values,
which corresgpond to the energetically distinguishable ways

of

choosing the nearest neighbours of the A and B atoms in
the pair. In a two dimensional square lattice, for example,
there are only seven possible wvalues of AEde These are
presented in Table I, together with their occuvance possi-
bilities idn a random configuration of mean councentration, c.
Tt may be shown in general that the number of distinct types
of A=B pairs is odd since, 1f a particular exchange causes
the energy change Aﬁd“ its reverse will change the enevgy by

ﬁQEd and sgince there is always a possible configuration of

the pair for which Aﬁd = 0,

Let there be m energetically distinguishabhle types of

AB pairs in an Ising lattice. Let @i be the exchange enevgy
. th . . , . .

for the i type; éi is an integer 1f measured in units of

the interaction parameter, J. The exchange probability for
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the ith pailr type is then

P, o= [l+exp(<, /1)1 IV.20

when T is also given in units of J/k. The probabilities Pi

are functions of temperature onlye.

The number of pairs of type i dn the qth configura-

tions, Ni(q), may be expressed in terms of the energy, <«(q),
of the configuration IT.3:

N, (q) = N<(q)F,(q) 1V.21
where Fi(q) is the fraction of the AB pairs which is of type

(1) The activation parameter, Aq’ may then be written

m
A = S P.N,(q)

d i=1 7 F
IV.22

m

= N%(q).z P.F, ()

i=1

Since <t7'<‘>q = A;l, it follows that the mean residence time

in the configuration q varies dinversely with the size of the

system, N, and with its energy, <{(q).

As the solution approaches asymptotically ¢to its

(dynamic) equilibrium state, the energy will approach its
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equilibrivm wvalue, éO(T)9 and the pair fractions will
approach asymptotic values, ‘F‘;(T)9 which are functions of
temperature only. In this case Aq takes only values near to
the equilibrium value

ATy = NG (T)SP E0(T) V.23

0 0 i i
If, as we shall see is often the case, the opair fractions
approach thedir asymptotic values before the energy 1is
equilibrated, then the activation parameter subsequently

obeys the simple relation

Aq - (éq/éo>Ao> 1V.24

and the activation time becomes simply proporticnal to the

inverse of the energy.

The probability that the first pair to exchange in the

qth configuration is of type (1) is given by

fi

5, () Ny ()P /A,

IvV.25

it

PP, (q) /2P T, (q)

which becomes configuration-independent when the pair frac-
tions thave relaxed into their asymptotic values. Each par-

ticular pair of type (i) is equally likely to be the pair
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exchanged.

Topological Representation of Lattices:

The basic computer software has only the capabilities

of representing one dimensional, two dimentional square or

three dimensional simple cubiec lattices directly. Alternate

methods need to be found for the representation of other

lattices.

As an example consider the representation of the (100)

plane of an FCC system in the computer. The easiest way 1is

to have a two dimensional array, with alternate words filled

with 1°s and 0°s, as shown pictorially in Figure 2. The

grid of 1°s now represents the (100) plane of FCC, and the

grid of 0°s is neglected. This way of representation is one

possible way but certainly not the most efficient. For

example a lot of computer memory, 507 of the lattice in this

case, is wasted. Further, recognition of a row or column

1

without referring to it as "o0dd"™ or "even" becomes diffi-
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A possible representation in the computer
the (100) plane of an FCC systems
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cult. Also there are other problems associated with having

meaningful boundary conditions-.

These problems can be overcome by means of <certain
topological transformations which transform more complex
lattices into equivalent basic one dimensional, two dimen-

sional square or three dimensional simple cubic lattices.

The topological transformation of the two dimensional
hexagonal lattice dinto the equivalent square lattice is
shown in Figure 3. When the simulation has proceeded, and a
microstructure of the lattice 1s needed, an dinverse topolog-
ical transformation on the equivalent square lattice yields

the corresponding triangular lattice.

From the simulation point of view it takes much less
computer time to reference a one dimensional array than a
two or three dimensional arravs. This makes 1t worthwhile
to transform the ¢two or three dimensional arrays into one

=

dimensional lattice representations. The transformation of
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(a) (b)

XBL794-6144

Figa3. Topological transformation of the two dimensional

hexagonal lattice into an equivalent square lat-
ticea
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a square lattice to one dimensions 1is very straightforward,

as shown pictorially in Figure 4. This seemingly simple

transformation made the code as much as 50% faster in execu=-

tion, dincluding the extra time taken for the transformations

The transformation of the hexagonal lattice 1s acconm-

plished in two steps. First 1t is transformed into an

equivalent square lattice and then into an equivalent one

dimensional lattice.

An example of topologically transforming an FCC lattice

into an equivalent simple cubic lattice is shown in Figure

5. The simple cubic lattice is then transformed into the

corresponding equivalent square lattice and then transformed

again into the topologically equivalent one dimensional lat-

ticeo.

This way of transforming all lattices into their

equivalent one dimensional lattice representation has an

important use. This has made it possible for writing an



Transformation of a square lattice into a
logically equivalent one dimensional lattice.

XBL 794-6145.

topo=-

ngm
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-6143

XBL 794

topologi-

Transformation of an FCC lattice into a

SG

Figo

cally equivalent simple cubic lattice.
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universal code which can perform simulation experiments on

many different crystal lattice structures.

The Flow Chart of the code is shown in Figure 6.
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XBL 794-9352

Figebe Flow chart of the computer code.
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RESULTS AND DISCUSSIONS

Figure 1 shows the phase diagram of a binary Ising lat-

tice dindicating the points of simulation reported here.

Most of the simulations for sguare lattice were conducted on

a B80x80 or 120x 120 atom lattices, and for hexagonal lattice

on 80x%x 80 atom lattices. The data taken during the simula-

tion dincluded plots of the microstructure, and of the

energy, the mean cluster size, and the pair type fractions

as functions of times

Equilibrium

The equilibrium, or asymptotic state of the binary

Ising lattice was studied as a function of temperature by

aggregating the B atoms into a square in the center of the

array and letting the aggregate relax through atom exchanges

at the temperature of interest until the energy and the pair

type fracctions became sensibly independent of time. Exam-

ples of the equilibrium configurations obtained in this way
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are shown in Figure 7. The values of the energy, activation
parameter, and the pair type fractions obtained are

presented for the several temperatures tested in Table IITI.

It will be noted from Figure 7 that the initial square
is essentially preserved at low temperatures, through there
is some roughening of the periphery of the square which, as
expected, 18 most pronounced at the corners. At very low
temperatures the equilibrium defect density 1s too small to
be represented in an array of the size used here and no true
equilibrium is obtained. At higher temperatures (T>095TC)
the surface Dbecomes progressively rougher and solute atoms
are seen in significant population both in the B-rich square

and within the A-rich matrix.

It 1s also clear from the micrographs shown in Figure 7
that, at least for TiOa9TC, the vast majority of the AR
bonds present in the system are located in the dinterface of
the B-rich square; relatively few are associated with solute

atoms in the two bulk phases. The equilibrium values of the
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pair type fractions presented in Table III are hence associ-

ated with, and determined by, the equilibrium of the inter-

facial regions

The Kinetics of Precipitation and Coarsening:

The kinetics of evolution of a square 120x120 TIsing
lattice which dinditially contains a random distribution of B
atoms, CBE 0.2, are given 1in Figures 8 and 9, and in Tables
IV and V. Figure 8 contains plots of the average cluster
size <n> as a function of time and temperature. For the
purposes of this plot, a cluster is defined to be a semi-
compact group of five or more atoms. Figure 9 shows similar
plots of the change in excess energy <%wéa)>9 with time and
temperature, where the reference values éO(T) are taken from
Table III. Most of the curves in both figures contain two
segments having nearly constant slope. The slopes of these
segments are presented in Tables IV and V. The slopes of
the short-~time segments are compared to the prediction by

Binder6 for <coarsening through the direct coagulation of
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TABLE IIT.

PROPERTIES AT EQUILIBRIUM

7
T/TC Ea log (1/Fi) E FiP,
i=1
i=1 i=2 i=3 i=4 i=5 i=6 =7
0.2 0.016 11.5 8.9 5.4 1.72 1.54 1.25 .05 0.0095
0.3 0.0163 7.7 6.1 3.8 1.63 1.27 0.95 .09 0.012
0.4 0.018 6.0 4.4 2.8 1.34 0.87 0.57 .26 0.027
0.6 0.035 4.6 3.1 1.9 0.47 0.63 0.59 . 80 0.193
0.8 0.072 4.0 2.7 1.6 0.31 0.60 0.80 .20 0.30
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XBL 782-4575

Plots of average cluster size <n> veg.

20% B alloy at various temperatures. Note that

the same dimensionless diffusivity is used for all
the temperatures.

time for a
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XBL 798-679I
Figo.9. Plots of excess energy <€méqb> vs. time for a 20%

B alley at various temperatures.
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TABLE IV. TExponent a of <n> = t°
0.3T 0.4T 0.6T ., 8T
c c c
20%B (square lattice)
LS 0.38 0.40 0.48 53
Intermediate 0.10 0.13 - -
Binder 0.24 0.27 0.27 30
10%B (square lattice)
LS 0. 40 0.46 0.48 .67
Intermediate 0.20 0.20 - -
Binder 0.25 0.26 0.29 .37
20%B (hexagonal lattice)
LS — 0.53 0.35 .39
Intermediate - 0.18 - -
Binder - 0.28 0.31 .31




TABLE V. Exponent b of <g -g >

0.4T 0.6T
C C

20% (sguare lattice)

LS 0.26 0.26
Intermediate 0.12 —_—
Binder 0.16 0.15

10%B (square lattice)
LS 0.32 0.30
Intermediate 0.12 -

Binder 0.18 0.17
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clusters. The slopes of the long-time segments are compared
to the prediction by Lifshitz and Slozov3 for coarsening
through single-atom diffusion. The agreement appears vrea-

sonable, but is inexact.

The results of two other series of simulations are also
shown. Experiments on square arrays having CB - 0.1 yielded
reaction curves similar to those shown in Filgures 8 and 9.
The slopes of the straight line segments of these curves are
included in Tables IV and V. The precipitation and coarsen-
ing reaction in an BO0*80 lattice of hexagonal symmetry with
CB «0.2 was also simulated to indicate the influence of lat-
tice geometry. A plot of the mean cluster size as a func-
tion of time and temperature for this case is included as

Figure 10.

Mechanistic Interpretation:

l. Basic Coarsening Reaction

Our results indicate that in the most general case the
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Plots of average cluster size <n> vs. time for a
80*#80 hexagonal lattice of 20% B concentrations
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precipitation and coarsening reaction follows four stages.
(a) Initial Relaxation: Soon after the quench frowm the
infinite temperature, the system tends to relax to a lower
energy state. The solution is decomposed into A-rich and
B-rich phases and precipitation occurs. An example of this
stage of the reaction is shown in Figure 11. Figure 1lla
shows the initial random configuration of a 20% B atom lat-
tice, and Figure 11b shows the configuration after relaxa-
tion for 89 time units at O.BTC, [The location of A atoms
are left vacant and the locations of B atoms are represented
by dots]. Defining the precipitate to be a cluster of B
atomeg connected by nearest neighbor bonds, we see that in
Figure 11b most of the B atoms have joined one or the other
of the precipitates. Monomers and transient clusters such
as dimers and trimers can be interpreted as dissolved in the
matriz and show nearly equilibrium <concentrations even at
this early time. In fact it can be said that the phase

separation reaction, as dictated by the phase diagram is



SQUARE LATTICE T=0.8TC C=0.2

. 9308

TIME = 0 AB JUMPS « o ENERGY

¥BL 7810-12103

Fig.11. Time evolution of a 120%120 square lattice of 20%
B concentration at 0.8T . (a) Initial random con=-
figuration; (b) configuration after 89 time units

and (c) configuration after 1341 time units.
¥BL 7810-12103

v,,gg.a,
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esgentially complete at this stage. This 1is seen in Table
VI For coumparison see Figure llc which is a late time pic-

ture.

Once the phase separation reaction is essentially com=
plete the dominant reaction becomes particle coarsening, a
process which 1s initially dominated by the diffusion and
direct coagualation of the clusters as suggested by Binder6e
Examples of cluster coagulation during the early stages of
cocarsening are shown in Figure 12, which contains four
"gnap-shots'" of the configuration of the square lattice of C

= (0.,1B during reaction at OQBTCe

Cluster coagulation has its source in the mobility of
distinct clusters. A motion of the center of mass of the
cluster may be caused either by the movement of atoms over
its surface, which is expected to be the primary mechanism
at low temperature or by the dissolution and re-depositions
of atoms which should be dominant at higher temperatures.

The mobility of a cluster decreases with its size with the
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Equilibrium Fraction Concentration
of B atoms in the in matrix
Concentration T/TC matrix (from after
phase diagram) 10,000 jumps
0.1 0.8 0.2129 0.2
0.1 0.6 0.056 0.06
0.1 0.4 0.0028 0.003
0.1 0.3 0.00179 0.002
0.2 0.8 0.12876 0.14
0.2 0.6 0.025 0.025
0.2 0.4 0.001276 0.0013
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SQUARE LATTICE T=0.3TC C=0.2

BHBEOY - 8389 FHR ©88249.8 AR JUNPS = 1880000 BHEROY - 8738
e T L

FIHE = G834.3 AB UHPI =  BOOGOD

TIMB =B4488.0 AD JUMPS = 5000000 BHRROY = 8148

XBL 7810-12100

Fig.12. Snapshots during the time evoultion of a 120%120
square lattice of 20% B concentration at 0.3 T
showing cluster diffusion and coagulation mechan-
ism for example din regions marked with big cir-
cles. Notice also the atom by atom transfer
mechanism, such as in the area marked with the

small circles.
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result that the contribution to the overall coarsening rate
due to cluster coagulation decreases in importance relative
to that from normal Ostwald ripening, which eventually

hecomes the dominant mechanisme.

Binder&s6 analysis of coarsening through the cluster
coagulation mechanism suggests that the rate of coarsening
will be logarithmic (equation TI.3) with a time exponent
whose value depends on the dominant mechanism of cluster
mobility: 0.4 for surface diffusion and 0.5 for volume dif-
fusion control- The simulation results show nearly loga-
rithmic behavior during the cluster coagulation phase, and
indicate a somewhat Thigher slope at higher temperature,
which closer analysis suggests may be associated with an
increasing contribution of wvolume diffusion to cluster
mobhility. The slopes are, however, somewhat smaller than
what Binder predicts. The source of the discrepancy may lie
in the discrete lattice. Particularly in the case of a

square lattice, in which the nearest neighbors of a lattice



=7 1=

site are not nearest neighbours of one another, the lattice
imposes <constraints on atom mobillity over the surface of
small clusters which causes surface diffusion to be more
difficule than continuum analysis would suggesto. The
discrete lattice constraint is less important when the lat-
tice is hexagonal, and our simulation data (Figure 10) does
show a more pronounced coarsening due to cluster coagula-

tion, at a higher time exponent, in this case.

(¢) Transition stage: This stage is characterized by a
very small coarvsening rate, especially significant at low
temperatures. The reaction rate is basically controlled by
the dissolution of atoms at precipitate surfaces. The seven
different types of bonds (see Tabhle I) reach constant rela-
tive populations Ni/ENi at the end of the transition stage.
As an example, the variation of NA/ENi with time is plotted
on Figure 13, superimposed on the <n> vs time plot. These

constant relative populations depend on the temperature, and

at dinfinite temperature they depend only on concentration,
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XBL 78116093
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log<n>

Fig.13. Plot of average cluster size <n> vs. time for a
120%#120 square lattice of 20% B concentration at a
reduced temperature of OeéTC@ Also shown is the
corresponding values of relative bond population
of bonds of type 4 (see Table I).
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as listed in Table I. Figure 14 shows the relative popula-

tions of all the seven types of bonds for a temperature of

04T and it is seen that they all tend to reach asymptotic

levels as the transition stage starts to end. From this fig-

ure we can also conclude that the Binder reaction is basi~-

cally occuring at a time when the bonds have not reached

their asymptotic relative populations, and these relative

populations are dynamically changing.

(d) Lifshitz and Slozov coarsening: This is the wusual

Ostwald ripening occuring through atom by atom transfers

from clusters to clusters, with diffusion through the matrix

controlling the rate. This mechanism becomes predominant in

the very late stages of the coarseing reaction and occurs at

a rate faster than either (b)) or (c).

A clearcut distinction into these four stages is not

possible and thevre is always an overlap. The extent of

overlap 1s temperature dependant and will be treated 1in a

later section. The precipitates in the early stages are
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clearly non-spherical, and there exists a tendency towards

spherodization as the reaction proceeds. Long thin clusters

sometimes split into two or more in thedir efforts to sphero-

dize. Sometimes a group of B atoms separate from a big

cluster. These can then either redissolve in the matrix and

redeposit on the surrounding clusters (LS mechanism) or can

diffuse as a unit to join another <cluster (Binder mechan=-

ism) . This type of overlap of mechanisms occurs almost at

all times. Although the predominant mechanism is determined

by the average cluster size, the path chosen by a particular

cluster depends on 1its own size and its local environmeunt.

2. Effect of Temperature

(a) Effect on overall kinetics: In this section we

discuss the modifications in the general four stage coarsen-—

ing scheme effected by temperature. Figure 8 shows the

plots of average cluster size <n> vs time at various tem=

peratures for a 20%Z B atom alloy of 14400 atomss Table IV

and V gives the exponents a and b (equation I.l) at early,
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intermediate and late times. Whereas at medium temperatures

all the four stages are present, at high temperatures stage

3 is absent, and at very low temperatures stage 4 is absent.

At  higher temperatures the change from Binder’s to LS

mechanism is rather gradual, both mechanisms overlapping

over a wide range of times. At lower temperatures the two

mechanisms are completely separated by a region of stage 3

with a slope lower than for either of the mechanisms; at

short times 807 of the reaction is cluster diffusion and

coagulation, and at long times 80% of the reaction is LS

typeo Further, the dimensionless time taken to reach

steady—-state or LS coarsening increases as we go down in

temperature, with stage 3 extending further and further.

All these changes in kinetics with temperature stem

from changes in (i) <cluster geometry, (ii) relative jump

prohability, and (1ii) watrix concentration of solute.

(i)Y Cluster geometry:
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At high temperatures the clusters are vrather diffuse,
and seldom possess well defined boundaries until they reach
larger sizes. The clusters at low temperatures are on the
other hand much more compact. Figures 15 a and 15b show the
microstructures of a 207 B atom alloy in a square lattice at
low (OQQTC) and high (OsSTC) temperatures. At roughly the
same time after quench (since we use dimensionless dif-
fusivities, the actual times at the low temperature would be
much longer), the critical cluster size (which keeps on
changing with time) 1is much smaller at the low temperature,
and this leads to a high population of small sized clusters
at TﬁoaéTC (Figure 15a). Further for OaaTC the equilibrium
concentration in the matrix is much lower, as should be evi-

dent from the phase diagram.

More localized effects are observed at the lower tem-
peratures. Each cluster tries to expose the face of lowest
energy and this results in most of the clusters having (100)

faces (which have only one exposed bond per surface atom).
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The average number of surface bonds per surface atom for an
average cluster size of 60 atoms 1is about 1.6 for Oe8Tc and
only 1.35 for Oe4TCa These numbers are for surfaces met
with din ouy simulations. More precise numbers at any tem-
perature can be obtained by studying the equilibrium profile
of an dinitially straight infinite edge, in equilibrium with
the equilibrium solute <concentration at that temperature

(obtained from the phase diagram).

The geowetry of clusters at low temperatures has two

important consequences:

(1) The geometrical relationship between the cluster volume
and the cluster surface area ( surface area o n(dmi)/d
where d is the dimesionality) depends on the cluster com-
pactness, and since the heart of the clusters are usually
compact, on the cluster size. In other words, this geometry~
ical relationship dis satisfied at a much smaller cluster
gize at lower temperatures. For example, for T:OQQTC

, n has

to be >90 for this relation to be valid, whereas at OeéTC it



~80~

is valid for n>10.

(2) The second more important consequence of geometry is its

effect on cluster reactivityo. Clusters with straight edges

and sharp corners (i.e. square or rectangular clusters) are

virtually inactive, until they gain an atom from some other

cluster or, less commonly, lose an atom to the matrix, at

which time they become "hyperactive", and they diffuse, dis-

solve, or change shape very dynamically wuntil they again

reach an inactive configuration. (This aspect was seen very

well in the computer generated movies). At very low tem-

peratures, all the clusters become inactive, whether rec-

tangular or not. The resulting low reactivity at low tem=

peratures results in the prolongation of stage 3 of the

reactione. As the temperature is increased, iees as the

clusters become wmore and more diffuse, and the matrix con=-

centration of solute increases, stage 3 becomes shorter, and

finally disappears.



(1i) Relative jump probabilities:

The basic step in the coarsening reaction in our wmodel
is bond interchange. There are several types of bonds
(seven types for the square lattice) with different values
of interchange energy /\f associated with their interchange
(see Table I). The coarsening reaction is controlled by the
probabilities of each of these types of bonds (this depends
on the temperature and AE) and on their relative popula-
tionse. Figure 16 shows the actual number of bonds that
interchange with energy change AE per interchange. Whereas
low energy jumps are not very sensitive to temperature, high
energy jumps are "extremely' sensitive. It 1is seen from the
figure that 947 of the jumps are of AE=0 at OeBTC compared
to 53% at T:Oa8TC° Comparatively, the population of the
bonds of these types are 157 and 20% of the total bonds.
The zero energy jumps correspond to either single atom move-
ment on the cluster or single atom diffusion. For the case

of Oa3Tc9 it is 97% single atom movement of the cluster dur-
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ing stage 3 leading to some extent of cluster spherodiza-
tion. Cluster diffusion, which usually involves high energy
jumps, is lessened in thils stage due to many clusters becom-
ing inactive. The swall diffusivity that still exists 1is
responsible for the small extent of <coarsening in this

stage.

(iid) Matrix concentration of solute:

The solubility of the precipitate plays an important
role in the coarsening reaction. For the Ising model the
equilibrium concentration of solute atoms in the matrix
keeps decreasing for T below TC9 and 1is nearly zero below
about OeéTC for the square lattice. Both the LS and Binder
mechanisms work on the presumption of soluble precipitates.
If the precipitates are nearly insoluble, atoms cannot leave
the precipitate, and <coarsening by the LS mechanism is
extremely slow. Due to the compact geometry of the precipi-
tates associated with low solubility, Binder’s mechanism

also bhecomes inoperative. Thus at very low temperatures we
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don”t expect to see any significant amount of coarsening

after the iInitial stages.

At somewhat higher temperatures, Binder’s mechanism
becomes operative at small cluster sizes, but clusters of
larger size become inactive 1.e. Binder’s mechanism decays.
Due to the compact geometry of clusters and the low solubil~
ity, we have a situation whevre dissolution of atoms from the
precipitate to the matrix is a difficult step. This leads
to a "solubility controlled" coarsening. However, mnot all
the clusters are completely inactive. Even clusters that
are nearly square have or develop active <centres such as
kinks and double kinks which enable them to be more active
in those regions. This leads at late times to a combination

of "solubility controlled™ (SC) and LS coarsening to occur.

(b) Effect of temperature on reaction rate: The role
played by the geometry can be understood by separating it
from (ii) and (iidi). We can calculate the jump probabili-

ties for each temperature and also the rvelative population



of bonds, from which the expected reaction rate can be cal-

culated. It is expected that the reaction rate will be dif-

ferent than the calculated rate: (1) at early times, because

the initial bond populations are those typical of T=w and

it takes time to reach those typical of the experimental

tempevrature; (2) at low temperatures, because geometrical

restraints prevent or delay the reaching of steady state

relative bond populations.

The reaction rate can be measured in terms of t%, the

time vequired for an AB exchange, which depends on the popu-

lation of AB bonds and on the relative probability of an AB

type jump vs an AA or BB type jump. The number of AB

exchanges per unit time given by 1/t* would be a good meas~

ure of the system reactivity R*, since only such exchanges

change the energy or microstructure of the svstem,

Based on the assumption that the bonds have reached

constant asymptotic relative populations (typical of each

temperature) in accordance with the energiles associated with
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them, we can calculate the expected time per AB bond jump as

N -1
t* = §Miﬁiw > NiPi V.l
“total 1

where Pi are the jump probabilities of the types i=1,7 and

N is the total number of AB bonds, N

AR is the total

total
number of bonds in the system and Ni is the partition factor
which gives the fraction of the NAB bonds in the wvarious
types. This formula predicts that at infinite temperature,
t*=1/f where f is the fraction of bonds of the AB type,
f=c(l-c), ¢ being the impurity concentration. At any lower
temperature, t* 1is greater than this value. [If we had a
highly supersaturated solution, we can have t*<<1/f as hap-
pens at the beginning of the reaction. As time dincreases,
t* reaches values typical of each temperature]. At infinite
temperature Ni is independent of the energy associated with
each bond type, and depends oly on the multiplicity of the
bond type (which dn turn depends on the impurity concentra-
tion ad the lattice geometry). The calculations of Ni at

infinite temperature and their values for a concentration of
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0.2 are given iIin Table I. At any other temperature, the

values of N, are modified by a factor o exp (AE/RTY .

Figure 17 shows the plots of t* vs T after 12{106 and
SX106 exchanges. The prediction given by equation (1) is
also givens The expected deviations of the simulation

results from the calculated values are observed in the fig-
ure. The deviations at lower temperatures can be explained

by reference to Figure 16« Although N, _/N

AB keeps

total

decreasing with temperature and the partition among the

seven types of these N bonds does tend to favor the lower

AB
energy types as we lower the temperature, at very low tem=
peratures the system finds itself in a high energy position
(NAB/Ntotal>>éa)) which favors AE=0 bonds profusely. This
means that the Jjump keeps occuring at higher frequencies,
but NAB does not decrease. Thus the system is frozen in a
local state of neutral equildibrium of high energy and high

reactivity, escape from which dis difficult because of

geometric restraints. When it does escape and move towards
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the equilibrdium state, the t#* should follow the <calculated

curve .

When the systewm is quenched from infinite temperature

to the reaction temperature it tries to (1) equilibrate the

compositions (2) equilibrate the relative bond populations

(surface profile); and (3) "minimize" energy. Equilibrium

of composition is achieved at very short times at all tem-

peratures. BEquilibrium of relative bond populations is

achieved at short times at higher temperatures but takes

longer at lower temperatures. There is thus a competition

between (2) and (3) at lower temperatures.

The reactivity R* of the system (=1/t*) keeps decreas~-

ing with time. When the system enters the equilibrium state

(which is dynamic) the reactivity reaches a constant value.

By starting out with the equilibrium state at T=0 (lowest

energy state) and equilibrating at the reaction temperature,

this final reactivity can be found. The reactivity at any

time during coarsening at that temperature starting from the
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random initial configuration is them given approximately by

zwmcha)o On Figure 18 the energy values (starting from the

energy for random distribution) and the corresponding t*
values obtained from simulation are shown as data bars. The
continuous curves are the t* wvalues calculated from
t*zl/R*zém/(e@me)e That 1is, the continuous curves indi-
cate the t* wvalues when the partition of bonds into types
reaches a steady value, corregponding to the distribution in
the equilibrium state. The point where the data bars reach
the continuous curve signifies the time when the bond popu-
lations have reached a steady state, since the same distri-
bution of bonds into types can be expected to be maintained
through to the equilibrium state. When steady state bond
populations are reached, the system is now only trying to
reach "minimum energy" state, and this signifies the end of

stage 3.

Figure 14 shows the relative bond populations for OeATC

for a concentration of 0.2, The equilibrium values are also
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indicated on the plot. It is cleavrly seen that the relative
bond populations (Fi) asymptote to the equilibrium values.
More significant than Fi are Fipi values which actually
determine the probability of jump of the various types, as
also EFiPi which determines the overall Jjump probability.
Figure 19 and figure 20 show the values of FiPi vse. time for
a 20%B atom alloy at OQBTC and OQATCe The equilibrium

values are also indicated. We can see that the equilibrium

values of FiPi satisfy the relation:

FiPi = F(8“i)P(8“i) Vaz

This is understandable because bonds of type i1 yield bonds
of type (8-1) upon dnterchange, and at equilibrium these
rates of interchange must be equal. During the kinetic evo-
lution 41f we take the (ime average over long periods of

time, the relationship

= i=7
2 F.P, > X F,P. Ve3
oy L 1=y Ce i d

is satisfied, which yields the eventual decrease in energy.

This inequaldity gradually diminishes and as equildibrium is
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approached, the two sides of equation V.3 become equal.

Figure 21 shows the values of EFiPi for wvarious tem=
peratures for an alloy of 20%B atoms. The equilibrium
values are also indicated. EFiPi decreases continually with
time, asymptoting to the equilibrium value. That is the
reactivity of the system keeps on decreasing until it
reaches that of the equilibrium state. It 1s observed in
Figure 18 that the asymptotic value of EFiPi is in fact
lower than the equilibrium wvalue forx 098TC as also for
()eé’fi'.‘cfa If we go back to Figure 10 we see that the asymp-
totic values of FiPi for OSSTC all are close to the equili~
brium values, except for i=4 (zero energy exchange), which
is lower than the equilibrium value. This effect 1is thus
the caused hy an underpopulation‘of bonds of type 4. This
can be understood 1if we consider the population of A atoms
in B clusters. At equilibrium, when there is a single big B

cluster, you do have A atoms inside the B cluster which con=-

tribute to type 4 bonds (each A atow floating in a B cluster
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gives four type 4 bonds). Whereas when the cluster sizes

are smaller, as happens to be the case at earlier times, the

A atoms are present in lesser concentrations in the B clus-

ters, and thus the relative concentration of type 4 bonds is

lower than at equilibrium. important at lower temperatures

because the equilibrium concentration of A atoms in B clus-

ters is i1tself small.

3. Effect of Composition

The general <coarsening behaviour remains largely
unchanged after changes in composition. However, composi~
tion has these four effects: (a) Higher composition means a
bigger difference between the infinite temperature state and
the experimental temperature state, and hence increases the
initial relaxation period. (b) The cluster diffusion
mechanism seems to be more predominant at higher composi-
tions. (¢) Table VII shows the slopes of <n>=t? for 107 B
and 20% B case at yvoughly the same time range- In the case

of 10% B, a higher fraction of B atoms are in the matrix,
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aiding the freer flow of atoms Dbetween the vparticles, as
also their diffusion. Thus the slopes are somewhat higher
for the 107 case than for the 20% case. It is tempting to
conclude that the reason for this could be because with 10%
B the LS assumption of  widely dispersed precipitates is
better satisfied, However, Ardell’s analysiss argues that
the time exponent does not depend on the volume fraction of
the precipitates (d) Steady state bond populations are

reached much faster at lower concentrationse.

4. Effect of Lattice Type

One other lattice type, the hexagonal lattice, was

simulated. The phase diagram for the two dimensional hexag-

onal lattice and the two dimensional square lattice are

roughly the same (very close to each other) in the nearest

neighbor case. Hence there would not be much difference in

equilibrium properties determined by the phase diagram.

However 1t is geometrically different from the square lat-

tice: the nearest mneighbors of a hexagonal lattice are
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nearest neighbors of each other, which is not the case with
square lattice. This will affect the kinetics to sone
extent. (This fact also makes the number of bond types only
7 dinstead of 13 although there are 6 nearest neighbors for

each atom).

The hexagonal lattice also shows the same four stage
behaviour as the square lattice. Figure 10 shows an example
of the <n> vs time curve for a hexagonal lattice. Some
interesting differences between the square and hexagonal

lattices are:

(1) Very soon in the simulation, the B atoms form into many
small clusters, whereas it takes more time for this to
happen in the square lattice. This is to be expected

since hexagonal lattice has more nearest neighbors.

(2) The bond type frequency peak moves to type 7 after as
few as 2000 jumps. This does not hapven in the case of

the square lattice even after 106jumps for many caseso.
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The geometry of the hexagonal lattice provides the pos-
sibilicty of cluster diffusion by zero energy jumps.
For example a 2 atom cluster can diffuse without any
high energy jumps here which is impossible in a square

lattdices This factor has these effects:

(a) DBinder’s mechanism is more predominant at early
times, the slopes corresponding much more closely

to the predicted ones.

(b) The smallest cluster unit during the frozen period
at very low temperatures becomes 3 instead of 2

atomse.

c) Cluster sphervodization can be observed more
clearly 1in the hexagonal lattice. The slopes in
stage 3 in general are higher than for the square

lattices

The effects of temperature and composition have not

been studied dn detail for the hexagonal lattice, but
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the trend seems to be similar to that of the square

lattice.

CONCLUSIONS

(1) Both excess energy <<~éa)> and the average cluster size

<n> are found to obey simple power law rvrelationships with

time, <4eéa)>atwb,<n>gta, the exponents corresponding to LS

mechanism at very late times.

(2) The general case of precipitation and coarsening in

binary Ising square lattice follows four stages:

(i) initial relaxation

(i1i) Binder’s mechanism (cluster coagulation)

(idii)transition stage — cluster coagulation declines

(iv) LS and SC mechanisms set in, Ostwald ripening by

diffusional processes.

(3) Temperature affects the general four stage mechandism in
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such a way that at very high or very low temperatures only

three stages are seen. At high temperatures stage ({iii) is

almost absent and stages (i1) and (iv) overlap very muchy

as the temperature is lowered, stage (1ii) becomes longer,

and at very low temperatures stage (iv) is not reached in

reasonable experimental time.

(4) Temperature alsc affects cluster geometry, the clusters

being more compact and faceted at lower temperatures.

(5) Low temperature simulations, where solubility dis low

never reach significant coarsening rates, although the

dimensionless diffusivity is the same as that at high tem-

peratures. This suggests that clusters with very low solu-

bility can resist coarsening.

{6) Temperature 1is also seen to affect the time taken to

reach the constant asymptotic bond=-type populations. This

explains the unusual behaviour of t#* (average time between

successive AB interchanges) with temperature.
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(7) Although composition does not affect the general coar-

sening behaviour, a higher composition makes the particle

growth kinetilecs a little sluggish. Also, the cluster diffu-

sion and coagulation mechanism is seen to be more predom=-

inant at higher compositionso.

(8) The coarsening kinetics on a hexagonal lattice are very

similar to those on a squavre lattice.
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FIGURE CAPTIONS

Phase diagram of the binary Ising square lattice,
indicating the points of simulation reported here.
The dotted line shows the limit of metastability,
assuming a freﬁ energy ,density of the form
£(C = A(C~C_ _Y"+B(C=C ) '+£f(C_ _) where C isg
cT cT T cr

the coOncentration at the phase boundary.

XBL 789-5834

A possible representation in the computer (b) of
the (100) plane of an FCC system.
XBL 795-6201

Topological traunsformation of the two dimensional
hexagonal lattice into an equivalent square lat=-
tice.

xbl 794-6144

Transformation of a square lattice into a topo-
logically equivalent one dimensional lattice.
xbl 794-6145

Transformation of an FCC lattice into a topologi=-
cally equivalent simple cubic lattices
xbl 794-6143

Flow chart of the computer code.
xbl 794-9352

Equilibrium structure of a 114*%114, 207 square
lattice at different temperatures,

-3

Plgts of average cluster size <n> vs. time for a
207 B alloy at various temperatures. Note that
the same dimensionless diffusivity is used for all

~the temperatures.

XBL 782-4575

Plots of excess energy <<=<€ > vs. time for a 20%
B alloy at various temperatutres.
XBL 798-6791
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Plots of average cluster size <n> vs. time for a
80#%80 hexagonal lattice of 20% B concentration.
XBL 7811-6133

Time evolution of a 120%120 square lattice of 207
B concentration at 0.8T . (a) Initial random con-
figuration: (b) configu%ation after 89 time units
and (c¢) configuration after 1341 time units.

XBL 7810-12103

Snapshots during the time evolution of a 120%120
square lattice of 20% B concentration at 0.3 T
showing cluster diffusion and coagulation mechdnism
for example, in regions marked with big circles.
Notice, also, the atom by atom transfer mechanism,
such as 1in the area marked with the small circles,
XBL 7810-12100

Plot of average cluster size <n> vs. time for a
120%120 square lattice of 20%Z B concentration at a
reduced temperature of 0.4T. Also shown is the
corresponding values of relative bond population of
bonds of type 4 (see Table I).

XBL 7811-6093

Plots of jump type fractions vs., time for a 20% B
alloy at 0.4 T .
¢ XBL 798-11038

Microstructure of a 20% B alloy at roughly the same
time after quench to (a) 0.4 T and (b) 0.8 7T
¢ XBL 7810512012

Plots showing the fractional number of AB jumps of
different types vs. the energy change involved in
these jumps at 0.3 T and 0.8 T . The numbers by
the plots indicate tfie ratio of®AB jumps of AE=0
to AB jumps of AEF0,

XBL 785-5053

The average time between successive AB jumps (t*)
vs. temperature after 1 x 10 and 5 x 10% AB Jjumps.
The data bars sare simulation data, the continuous
curves are obtained from asymptotic bond populations
and the dotted curves indicate the deviation.

XBL 785-5053

The average time between successive AB jumps (t*)
vs. the number of AB bonds in the lattice (N,_).
. . L AB
The data bars are simulation data, the continuous
curves are obtained from asymptotic bond popula-
tions and the dotted curves indicate the deviations.
XBL 785-5055
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Fig., 19. Plot of FePi ve. time for a 20% B alloy at 0.8 T .
* XBL 798-11040

Fig. 20. Plot of F,P, ve. time for a 207 B alloy at 0.4T .
ot XBL 798-11639

Fig. 21. Plot of 2 F P, vs. time for a 20%Z B alloy at dif-

ferent temp%raturese
XBL 798-6770








