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KINETI S OF CLUSTERING REACTIONS 

E.S.Pundarika 

Department of Materials Science and Mineral Engineering 
and Materials and Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

The dynaMics of precipitation and coarsening reactions 

rt binary Ising lattice are studied using a simulation 

technique. The initial random configuration represents 

equilibration at a very high temperature. Follo'lving a 

quench to the reaction temperature below the miscibility 

gap, the decomposition proceeds by atomic interchanges of 

matrix and impurity atoms. The probability of such inter~ 

changes depends on the rea c t :Lon 

local environ of the particular atom 

changing. Both the excess energy 

temperature as also the 

pair that 

<~-~ > and 
co 

is inter-

the average 

cluster size <n> are found to follow simple power law rela-

t ions with time, and < n> = t a. For the square 

lattice, Binder's cluster diffusion and coagulation mechen-



i i 

ism is seen to dominate the coarseninig reactions at early 

times, in agreement with the studies of Lebowitz et al. The 

early time exponent (a) correspondingly has a value close to 

0. 2. However, at later times, the mechanism changes over to 

a Lifshitz and Slozov atom by atom transfer mechanism, as 

the cluster size becomes larger. The nature of this 

changeover is seen to depend primarily on the temperature; 

the two regions overlap at higher temperatures and are 

separated by a long incubation period at lower temperatures. 

The different regions are closely associated with the rela-

tive bond type populations which reach asymptotic values as 

Lifshitz Slozov coarsening stage begins. 
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A variety of important metallurgical phenomena are con-

trolled hy the nature and kinetics of precipitation reac-

tions and precipitate coarsening processes. The relevant 

phenomena include precipitation hardening and aging 

processes in alloys and void formation and swelling in irra-

diated materials. Coarsening is driven by the eventual 

decrease of surface free energy and the final stage of coar-

sening would be a single precipitate with an interphase of 

minimum possible energy. Interestingly, this stage is never 

reached in times that concern practical materials, so usu-

ally the kinetics rather than the equilibrium are of more 

importance. Also, the most striking influence on properties 

is often sees during the first stages of precipitation 

unless the precipitates contain only a few atoms or unit 

cells and the precipitate distribution is far from equil i-

brium, necessitating a thorough understanding of the initial 

stages of precipitation and coarsening reactions. 



Theoretical 
. l- 6 analys1s have given useful insights into 

these processes. These theories are based on free energy 

vs. composition plots and are basically continuum in nature 

and assume quasi-equilibrium conditions. 

The coarsening process is simplest in its late stages, 

when the particles are large and essentially immobile and 

classic "Ostwald ripening" occurs through single atom diffu-

sion between clusters. The net mass transport is to the 

larger particles so as to decrease the total surface energy 

of the system. The rate of mass transport may be controlled 

either by surface reactions (dissolution or adsorption) or 

by diffusion in the bulk. The latter case has been analyzed 

in detail by Lifshitz and Slozov 3 and will be denoted "LS 

coarsening" in the follo\ving. 

The Lifshitz-Slozov analysis predicts that both the 

excess energy <4-4 > where 4 is the equilibrium value of m m 

the energy, and the average cluster size <n> will obey sim-

ple power laws in time: 



I.l 

<-<-<(, > = B t 
-b I. 2 

ro 

The analysis also provides a scaling law which establishes 

the distribution of cluster sizes about the expected value 

<n>. It hence predicts a very simple coarsening behaviour 

which can be easily understood. 

There are, however, assumptions i.nheren t to the 

analysis which confine it to the later stages of coarsening. 

These include the neglect of particle geometry and the 

assumption of particle immobility. While recent work seems 

to establish that the LS assumption of spherical geometry is 

not critical to h . 1 15 t .elr resu t , the assumption of a size-

independent surface tension is critical and, as we shall 

discuss further below, is not likely to hold for small pre-

ci.pitates in crystalline solids. The assumption of particle 

immobility is also invalid when the particle size is small. 

Small clusters of atoms can diffuse at an appreciable rate 

while remaining intact and may contribute to coarsening by 

coagulation directly with one another. 



The process of coarsening through the diffusion and 

direct coagulation of clusters ~vas studied in detail by 

Binder 6 • While Binder analysis is not free of assumptions, 

these do not explicitly constrain the sizes, shapes, or dis-

tributions of the clusters. However since the cluster d if-

fusivity decreases with size as -1-1.5 
n B i nd e r pro c e s s 

should become less dominant at later times. Binder also 

obtains simple po~ver laws for the time dependence of the 

excess energy and the average cluster size. These are 

where a 

case. 

<n> 

-b 
= Dt 

0.4-0.5 and b = 0.2-0.25, for the 

vfuile the Binder and Lifshitz-Slozov 

I. 3 

I. 4 

two-dimesnional 

analyses span a 

good part of the coarsen in g be h a v i our o f rea 1 so lid s , the 

restrictions imposed by the assumptions underlying these 

theoretical models are not entirely clear, nor are their 

limits of applicability obvious. With the development of 



computer techniques it has become possible to conduct direct 

computer simulation studies of coarsening in idealized sys~ 

t ems, such as the Ising lattice in two or three dimen-

. 8-13 
S lOnS The computer studies have the disadvantage that 

they treat model rather than real systems, but have the com~ 

pensating advantage that they represent clear-cut "experi-

ments" which may be used to test the applicability of the 

theories and to investigate interesting aspects of the coar-

sening process in detail. 

Computer simulation studies have shown the dominance of 

the cluster coagulation mechanism in the early stages of 

coarsening
10 

and have revealed slope changes in the plots of 

excess energy against time which indicate the expected shift 

to LS coarsening behaviour in the later stages. These ear~ 

lier researches are extended in the computer simulation stu-

dies reported below, which focus on the simple case of a 

two-dimensional Ising lattice and attempt a reasonably 

comprehensive exploration of coarsening behaviour as a func-



tion of time, temperature and composition. 

The binary Ising lattice was the most obvious c ho ice 

for out model, since its equilibrium properties (in the 

absence of an external field) have been very well character-

ized. We began this research project with a view to charac-

terizing the kinetics of precipitation and coarsening reac-

t ions in our model lattice. The results of the above men-

tioned theories should certainly be applicable to our simple 

model since the requirements of these theories are more than 

satisfied here. Hence the results obtained in our simula-

tions can be used as a straight forward test of the applies-

bility of these theories. 

The model used for the computer s im u 1 at ion -.;vi 11 be 

described in Chapter 2. A simple exchange model where atoms 

of two types, initially distributed randomly on a lattice, 

redistribute themselves in discrete steps of atomic inter-

changes forms the basis of the simulation. The probabilities 

of a tom ic i.nterchanges are controlled by global variables 



(such as temperature) and more importantly by the local 

environ of the atom pair. The local environ is limited in 

our studies to the first nearest neighbours of the atoms 

involved, but can be easily extended to include second or 

third nearest neighbours as wel.l. Hhether the resulting 

redistribution of atoms leads to clustering or ordering 

depends upon whether the interaction energy of the atoms of 

two types is positive or negative. 

Study of this model and its characterization in terms 

of its coarsening behaviour forms the subject matter of this 

research project, detailed in Chapter 3. 

In Chapter 4 the computer simulation technique, whereby 

the prOC(';SS described by our physical model is put into 

action is described. Although the process as described in 

Chapter 2 can be directly translated into a code, this is 

not a good way of doing it because of the enormous amount of 

time needed for the simulation run. A deeper look into our 

oHn physical model shows shortcuts which can be used 



beneficially to increase the program speed. Further the 

idiosyncracies of the computer must also be considered and 

constructively used in this respect. 

The results of our simulation work and discussions ~arm 

the subject matter of Chapter 5. The first section describes 

the hasic four stage reaction that the decomposition fol-

lows. In the initial relaxation stage a large amount of lat-

tice energy is decreased resulting from the formation of 

small clusters of upto 10 atoms. In the second stage there 

is a diffusive movement of these small clusters, leading to 

their eventual coagulation and coarsening. Such diffusive 

movement of clusters becomes less important as their size 

increases. This marks the beginning of stage 3. In this 

stage the surface profile of the clusters reaches an equili-

brium. In stage 4 or steady state the coarsening reaction is 

mainly by atom by atom transfer mechanism or Lifshitz and 

Slozov mechanism. Sections 2, 3 and 4 discuss the effects 

of temperature, lattice type and composition on this basic 



four stage coarsening reaction. The characterization of 

cluster properties, including their distributions is dealt 

with in section 5. 

Finally in Chapter 6 the results are summarized and 

conclusions are drawn. 



MODEL 

The simplest realistic case of a binary Ising lattice 

with nearest neighbour interactions only in zero magnetic 

field is chosen. The two spins are taken to represent the 

two types of atoms A and B. Under this assumption the ther-

modynamics of the lattice are known to be governed by the 

lattice type and by the interaction parameter 

I I. 1 

where Eij is the energy of a bond between atoms of types i 

and j • The total number of atom pairs in the lattice is 

N = l/2N Z 
0 

I I. 2 

where Z is the number of nearest neighbours of an atom. If 

NAB is the number of AB atom pairs, then the relative energy 

per bond (atom pair) is in units of J, 

II. 3 

For any given distribution of A and R a toms (spins), the 

energy of the lattice is given by 

E -J 
IL4 
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in terms of ryi and ~j, the occupation numbers (+1 for A and 

~1 for B) and the sum is taken over the nearest neighbour 

atoms only. This type of interaction leads at low tempera-

tures either to a phase segregation when J>O (corresponding 

to an excess attraction between atoms of the same type) or 

to ordering when J<O (corresponding to an excess attraction 

between atoms of the opposite type). 

The equilibrium properties for this model have been 

very well characterized. In fact, exact analytical results 

for partition function, critical temperature, phase diagram 

etc. , are available for certain two dimensional lattices. 

Numerical methods have been developed for cases (such as 3d) 

which are not yet amenable to analytical calculations. All 

h h b . 1 . ,8 t ese ave een extens1ve y rev1ewec, • 

For the case of square lattice, the 

ture is given by 

kT = 2.414J c 

and the phase diagram is given by 

critical tempera~ 

II. 5 



C(phase) IL6 

~vher e x exp(~2J/kT). 

Similarly for the case of the two dimensional hexagonal 

lattice (triangular lattice) we have 

C(phase) 

kT = 3.2435J c IL6 

I I. 7 

It is iMportant to see that the square lattice is symmetri-

cal with respect to J or -J. That is it has the same phase 

diagram for the ordering and clustering cases. For the case 

of the hexagonal lattice T 
c 

0 for J<O. That is no order-

disorder transformation exists for this case. However, it 

shows a clustering behaviour with the above phase diagram 

and T for J>O. 
c 

Having based ourselves on this model with well charac-

terized equilibrium properties, we can study the kinetics of 

clustering or ordering reactions by developing the dynamic 



aspects of the model. In this research project, the basic 

diffusion step is taken to be interchange of nearest neigh-

bour atoms. Further this interchange is assigned a proba 

bility P based on the temperature T and the energy change ~E 

resulting from such an interchange. We are now ready to 

study the kinetics of the clustering or ordering reactions. 

In real systems such reactions are studied by quenching 

specimens equilibrated at high temperature to the reaction 

temperature, and following the changes in the specimen. In 

our model also a similar study can be done. 

The A and B atoms are initially distributed randomly 

over the lattice sites. This random distribution in our 

model represents equilibration at/above a very high tempera-

ture where the configurational entropy is dominant. (For an 

infinite lattice and for an infinite lattice only, this tern-

perature is infinite). Hhen the lattice is quenched from 

this high temperature to some low temperature the atoms will 

assume a configuration of lower energy as dictated by the 



thermodynamics. The reaction will be either a clustering or 

an ordering reaction depending on whether the energy of the 

A-B interaction is such that the atoms have an energetic 

preference for the neighbours of like kind (J>O) or for 

neighbours of unlike kind ( J < 0) • Jump probabilities are 

assigned to different atom exchanges based on the reaction 

temperature and the energy change ~E of the system. The 

reaction is then allowed to proceed (jump by jump) as per 

the probabilities, and the properties of the system are fol-

lowed kinetically. 

The amenability of our model to computer simulation is 

now very clear from the description of the dynamics of the 

model above. In fact, the steps above, fo llo\ved as such, 

can form the basis of a Monte Carlo type simulation. The 

details of the computer simulation technique will be 

described in Chapter L;. 
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Consider an exchange of atoms at lattice positions j 

and 1 (j and 1 are nearest neighbours of each other). The 

initial energy before exchange is given by 

I I. 8 

~.;rh ere t} • 
1 

depending on whether there is an A or a B atom 

at that site, i and k are the sums over the nearest neigh-

hour sites of j and 1, and X represents similar sums over 

the other lattice sites. The final energy after exchan?e is 

s im il a rl y 

E 
final 

The energy change 

That is 

flE. 1 ]. 
= E - E final initial 

I I. 9 

I I. 1 0 

I I. 11 



It is clearly seen from this formula that the energy change 

for the reverse jump ~Elj ~f1E. 1. 
J 

The exchange probability should depend on this energy 

change /:1Ejl' as also on the temperature T. Many different 

expressions have been used for the probability In 

their original paper Metropolis et a1. 9 used 

1 

ex p ( ~.LlE j 1 ; k T) 

In our model we use 

,/:1E. 1 <0 
J -

.~Ej 1 >0 
I I. 1 2 

I I. 13 

A recent study has shown that 

our choice yields greater stability and faster conver~ 

10 gence 

Using the relationship between J and T 
c 

(for example 

J o. 8814kT for square lattice), we can eliminate J from c 

Further the temperature T can be expressed in the 

dimensionless units of T/T • 
c 

takes on the simple form 
J 

The jump probability then 



\vhere, 

P.l 
J 

fln j l 

0.8814 
~~~~.-

T 

E. 1 
tc}~ 
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I I. 1 4 

I I. 15 

Pjl represents the probability of exchange per unit time, 

and hence is directly related to the rate of exchange. In 

other words, these probabilities can be used to keep track 

of the time of the reaction. This will be discussed in 

Chapter 4. The equations governing the kinetics of evolu-

t:ion of the binary Ising lattice may be cast into a form 

which is particularly well suited for computer s im u l at ion 

studies. Chapter 4 will discuss this important topic of 

correlation of the simulation with the model presented here. 

The formulations presented follow that previously used in 
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the kinetic analysis of thermally-activated deformation 

19 processes and martensitic . 20 21 transformat1ons • and i.s 

drawn largely from Feller 22 • 



PURPOSE AND SCOPE OF THE 

The theoretical treatments of coarsening generally con-

sider steady state, or very late stages of coarsening, where 

the coarsenin~ rate is surface reaction controlled or diffu-

s ion controlled, The latter has been analyzed in detail by 

Lifshitz and Slozov and is conveniently called Lifshitz-

Slozov or LS mechanism. Coarsening here occurs by mass tran-

sport by single atom diffusion between clusters, driven by 

the eventual decrease in total surface energy. 

Recently Binder has analyzed the coarsening of clusters 

by Binder's mechanism diffusion and coagulation of clus-

ters. Here atoms of clusters move around in the cluster 

itself either through the cluster or through the matrix, 

leading to a random walk and eventual coagulation of clus-

ters. Depending on \vhether the cluster diffusion is by 

movements of atoms through the body of the cluster or 
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through its volume 9 the diffusivity of a cluster of size n, 

varies 

become 

-1 
as n 

1 es s 

increases. 

-1.5 or n 

important 

Thus the Binder's mechanism 

as the average cluster 

The generalized features of the clusters which 

should 

size <n> 

are of 

importance in initial stages is not considered in these 

theories. For example the LS analysis assumes that the 

interfacial energy is independent of the cluster size. This 

assumption is questionable at small cluster sizes, and the 

simulation results indicate that the cluster surface energy 

levels off after some cluster size. The LS theory also 

assumes spherical particles (isotopic surface tensions) 9 but 

this assuBption is not critical, as long as 

11 their equilibrium shapes • 

Both the Binder and the LS mechanisms 

particles have 

predict simple 

power laws for the variation of excess energy <~ - ~ > and 
m 

the average cluster size as follows: 
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I I I. 1 

<n> = t 
-b I I I. 2 

"?here: 

LS- a 0.66; b 0. 3 3 

Binder- a o.4- o.s; b 0.2- 0.25 

It is thus possible to follow these mechanisms by following 

the slopes of <n> vs tor <~-~ > vs t curves. 
ro 

In addition, 

in our simulation approach, we have the further advantage of 

being able to actually trace through the atomic steps and be 

able to interpret the former results objectively. This 

advantage is especially si9;nificant at the small cluster 

sizes, since then the assumptions of neither theory (espe-

cially regarding the geometry of clusters) are satisfied. 

Previous studies of this type have shown that Hinder's 

mechanism dominates at the early stages of the process for 

case 

6 
than 2~d • 

It has also been pointed out that for the 

the LS mechanism should prevail at earlier times 

A slope change to a higher value corresponding 
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to the LS mechanism at late stages in the <~-~ > vs t plots 
ro 

also has been 7 reported • percolation effects 

hinder a meaningful study of the cluster sizes in 3-d. 

This investigation was begun with the objective of 

studying and characterizing the kinetics of clustering reac-

tions in a binary Ising lattice. The method of approach 

used is the direct computer simulation of the atomic diffu-

sion process. The following topics are covered: 

(1) Square lattice 

(a) the basic coarsening reaction 

(b) effect of process parameters such as T, compos i-

tion on (a) 

(2) Hexagonal lattice 

Simulation and comparison with (1) 

The phase diagram of the two-dimensional square Ising 

lattice is plotted in Figure L The figure also contains a 



• 

• 
0.6 • 

T/rc 

0.4 
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I 
0 
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Phase diagram of the binary Ising square lattice, 
indicating the points of simulation reported here. 
The dotted line shows the limit of metastability, 
assuming a fre2 energy 

4
density of the form 

f(C ) "" A(C-C ) +B(C-C ) +f(C ) where C is cr cr cr cr cr 
the concentrat1on at the phase boundary. 



plot of spinodal limits, or inflection points of the free 

energy of a hypothetical lattice of homogeneous composition, 

computed under the approximation that the free energy within 

the miscibility gap is given by the fourth order polyno-

. 115 m 1.a : 

* * 2 * 4 F(c) = F(c )+A(c~c ) +B(c~c ) 
e e e 

I I I. 3 

This polynomial approxiamation is known to be inaccurate at 

bery low temperature (the spinodal curve must join the 

equilibrium curve at t=O), but gives a reasonable approxima-

tion over much of the temperature range. 

The qualitative behaviour of the system can be 

predicted from the equilibrium phase diagram. If the binary 

solution is equilibrated at very high temperature, the A and 

B atoms will be randomly distributed over its lattice sites. 

If the system is then quenched to a temperature within the 

miscibility gap, the lattice will begin to decompose to 

create A- and B-rich phases having the compositions 

** and c ( T) 
-e 

* (l~c (T)) given by equation II.6. 
-e 

* c ( T) 
e 



~25 

Continuum arguments 
16 suggest that the mechanism of 

decomposition is sensitive to the location of the image 

point of the system relative to the spinodal curve. If the 

system is quenched to a point outside the spinodal on the 

A-rich side, the anticipated mode of decomposition is 

through the nucleation and growth of distinct particles of 

** concentration c (T) while, if the 
e 

quench is to a point 

with in the spinodal, the decomposition may happen through 

the continuous development of concentration waves. V.Jh il e 

the distinction between these two decomposition mechanisms 

is not as well defined in an atomistic model as in a contin-

uum 1 7 one the computer experiments in the present research 

involved quenches to points outside the spinodal gap to 

preserve a clear nucleation-and- growth decomposition 

mechanism. 

It should be noted that our simulation does not include 

the effect (or even the presence) of vacancies. The basic 

diffusion mechanism used is not the vacancy mechanism but 
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the exchange mechanism. This is only done for speeding up 

the simulation process, and the inclusion of vacancies is 

not beyond the limits of the model or code. 

Also, the important effect of elasticity is completely 

ignored in this model. This is justifiable only at the very 

early stages when the surface energy is high. Unfortunately 

the effect of elasticity cannot he accounted for in an easy 

way due to its long range nature. Alternate methods are 

available, both for continuum and semi-continuum simula-

tions, that include the elasticity effect. 
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SIMULATION TECHNIQUES. AND 

CORRELATION 

We will first describe a simulation code 

exactly the processes described in chapter 2, and then 

improvements over this code can be discussed. 

First of all, the results (T , phase diaRram) c of the 

exact calculations of equilibrium properties are all for an 

infinite lattice. Since in the computer we can only use fin-

ite lattices, this will introduce boundary effects in these 

equilibrium properties. 

In the simulation of an isolated system the whole sys-

tern can be observed directly and there is no need to con-

sider what happens outside. However for our case of an 

infinite system the computer observation of the kinetics of 

our finite lattice is just a simulated sampling of a finite 

group or sample of particles from the infinite system. The 

sample particles in the finite lattice interact with parti-
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c les outside, and this interaction must somehow be incor~ 

porated into the simulation. The simplest means of allowing 

for the interaction is to consider the sample finite lattice 

to be replicated to fill space. The particles at or the near 

the boundary of the sample interact with the particles of 

the adjacent replicated samples. For the purposes of comput-

ing this interaction these outer particles may be taken as 

the equivalent inner particles of the actual sample. Since 

our model considers nearest neighbour interactions only, 

this representation of the infinite system should be ade-

quate. 

The imposition of this periodic structure on the infin-

ite system has in fact replaced that part of the infinite 

system outside the sample by boundary conditions on the sur-

face of the sample. This type of boundary conditions is gen~ 

erally referred to as Periodic Boundary conditions. 

Having defined our basis as a finite lattice with 

periodic boundary conditions, we can now go on to describe 



the simulation procedure. 

~~ Honte ~C-~~·~o Simulation: 

The lattice is initially filled up randomly with the A 

and B atoms of a given composition. This is accomplished hy 

initially setting all the sites to +1 and then setting a 

fraction c of the sites chosen randomly to ~1. Here c is 

the fraction of B atoms, sites with +1 represent A atoms and 

sites with -1 represent B atoms. The initial random distri-

hution represents equilibration at a very high temperature. 

[For statistical purposes, each time a different initial 

random distribution is chosen). 

The Monte Carlo simulation then consists of the follow-

. 1 2 
1.ng steps 

(1) choose and atom at random (from among all the atoms), 

say at location j. 

( 2) choose a neighbouring atom at random from among the 

nearest neighbours of j, say at location 1. 



( 3) 

( 4) 

~3 0-· 

This establishes a randomly chosen atom pair j ~ 1 to 

be exchanged (or bond to be flipped). 

determine the exchange probability P.
1 J 

where 

T 

0.8814/T 

dimensionless reaction 

temperature 

T IT real c 

~.=value of site i 
:t 

where i 

k 

nearest neighbours of j 

nearest neighbours of k 

IV. 1 

The temperature of the reaction is thus incorporated in 

out model through the probability P. 

Generate a random number R, O<R<l. Exchange j and 1 if 

R<P. In other words, exchange j and 1 with probability 

p. 

(5) Repeat steps 1~4. 

We see that in each trial one exchange is tried. As 



exchanges proceed, the lattice structure changes dynamically 

towards thP equilibrium structure. One trial per each lat~ 

* tice site measures one unit of time. Thus by keeping track 

of the number of trials (time) the reaction can be folloHed 

in real tirne, :-:tnd the kinetics can be studied. 

This approach was used for studying ordering reactions 

as e.arly as 1959 13 , and has recently gained importance in 

the study of clustering 
. 1 4~ l 9 

react1ons • \Ihereas in the 

for~er case it was mainly used to study the equilibrium pro-

perties, in the latter case it is used to study the kinetics 

of clustering. Previous studies on this subject have heen 

summarized in detail by Binder et a1 7 . A recent stuoy has 

employed this approach to stuoy the kinetics of ordering 

. 20 reacttons • 

nee t e exc ange ~i~£56ility of ~n =0 exchanges is 0.5, the 
average time between such exchanges would be two time units. Con­
sidering the diffusion coefficient D (at the reaction temperature) 
in the limit of zero concentration of B atoms (where all the ex­
changes would 2be of ~n aQ) we see that for a square lattice, 1 
time unit= a-x8D, Hhere a is the lattice parameter. 



Modified Monte _Carlo Technig,ue: 

There are two basic drawbacks in the regular Monte 

Carlo method: 

( 1 ) It considers many unnecessary exchanges those that 

lead to no change in the energy or microstructure. 

(2) Since the exchange probabilities are all ~1, a few tri-

als are needed before an exchange occurs. Further as 

time increases, and as more and more atoms reach 

energy positions, the average jump probability goes 

down. From the programming point of view this means 

that more and more jumps have to be tried before one 

succeeds, and the simulation becomes very slow. 

These drawbacks were overcome as follows The first 

one was overcome by suitably modifying the program to avoid 

unnecessary exchanges by considering only those exchanges 

that 1 ead to a change in microstructure - only AR bond 

interchanges need to be considered (with appropriate pro vi-



sion for a stochastic time variable). 

The second drawback was overcome by observing that for 

each crystal structure there are only a few possible confl-

gurations of AB bonds, hence only a few possible values of 

and hence only a few possible values of P. The possible 

jump configurations can thus be classified into types of 

identical exchange probability and selected for exchange 

d i r e c t 1 y , '" i t h p rob a b i 1 i t y lv e i g h ted by the population of 

each type. That means, in each trial one exchange occurs. 

This method of simulation is much faster than the regular 

method. 

In the square lattice there are seven different types 

of AB bond configurations and these are exemplified in Table 

I. The number of types of AB bond configurations possible 

in a few other crystal structures is shown in Table II. 

In the following pages we give a hrief description of 

the formulation of the model in a way amenable to fast com 



TABLE L Bond Classification 

Probability of Ni/l:Ni 
Type of Example of Change in occurrence at for bond configuration energy Lm on T = 00 and c = 0. 2 (i) exchanges/J concentration c 

(N.) 
X 

l 

A B 

1 A~B-A~B ~12 4c 4 (l~c) 4 0.41 

A B 

A B 12[c5(1-C) 3 

2 A~ B-A-A -8 + c3(1-c) 5] 5.2 

A B 

A B 12[c6(1-c) 2 

3 B-B-A-A -4 + c2(1-c) 6] 23.4 

A B +36c4 (1-c) 4 

B A 4[C 7(1-C) +C(l-c) 7J 

4 A-B-A-A 0 + 36[C5(1-C3 +C3(1-C) 5] 41.9 

A B 

B A 12[C6(1-c) 2 

5 A-B-A-B +4 + c2(1-c) 6] 23.4. 

B A +36C4(1-c) 4 

B A 12[C5(1-c) 3 

6 A-B-A-A +8 + c3(1-C) 5] 5.2 

B A 

B A 

7 B-B-A-A +12 4c4(1-c) 4 0.41 

B A 



TABLE II. 

Crystal Structure 
----------------------

Square 

Hexagonal 

Simple cubic 

Body centered cubic 

Face centered cubic 

Hexagonal close packed 

Number of Types 
of AB Bonds 

7 

7 

11 

15 

11 

11 
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puter simulation. 

Exchang~ of a single atom Rair: 

Since exchanges of like atoms leave the microstucture 

unchanged, we need consider only exchanges involving pairs 

of unlike atoms. Let uE~ be the change in the total energy 

of the system if ~th unlike pair is interchanged; by equa-

tion II.3 uE~i is simply proportional to the net change. in 

the number of AB bonds caused by the exchange. The proba~ 

bility that an exchange will be successfully accomplished in 

a single activation trial depends on the temperature and 

also on whether an activation berrier, uE*, opposes the 

exchange. In the present work we treat a system for which 

An attempted atom exchange has two possible outcomes: a 

success, with relative Boltzmann probability 

p~ "" exp(~flE~/T) 

and a failure, with relative probability 

IV.2 
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f 
pc( "' 1 IV.3 

The normalized probability of exchange in a single trial is 

then 

~1 
exp(~~Ec(/T)/[l+exp(~~Ec(/T)] 

[ l+exp (/1Ec(/ T)] 
~1 

IV.4 

For completeness we note that when the activation energy, 

is non~zero and greater than ~Ec( a slightly different 

probability applies. Adopting the assumptions that 

~E*>>~Ec(' and the E is a linear function of displacement 

along the configuration coordinate describing the exchange, 

and the /1E* has its maximum at the half~way point of the 

exchange, the relative probability for success becomes 

IV.5 

with which 

-1 
pc( "' [ l+exp ( 1 /T) (/1E*+l I 2./j,Ec()] IV. 6 

Given the probability pc( that the c(th pair exchanges on 

a single attempt, the probability that no exchange has 

occured after j attempts is 



IV.? 

Let the exchange trials occur randoomly in time with 

expected frequency per unity of time. Defining the dimen-

sionless time 

t* "" :itt rv.s 

the probabi.lity that there wi.ll be exactly j trials in time 

t* is 

-1 . 
p.(t*) = (j!) (t*)Jexp(-t*) 

J 
rv.g 

The probability that the dth pair will not have exchanged 

after the time t* is then 

IV.lO 

provided that no other atom in the immediate vicinity of the 

dth pair has changed in type, i.e., that /:;,.Ed remains con-

stant over the interval t*· 

of a configuration: 

The exchange of an AB pair within the lattice will per-

turb the energies of atoms in its immediate coordianation 



shell, and will hence change the exchange probabilities for 

AB pairs involving these atoms. The statistics of thermal 

activation are, therefore, simpler if the statistical ele~ 

ment is taken to be the configuration of atoms over the lat-

tice rather than the individual AB pair, where a configura-

t ion ( q) is specified by giving the type of the atom, A or 

B, present at each lattice site. The successful exchange of 

any AH pair chan~es the configuration. 

The lifetime of a particular configuration (q) may be 

easily computed. Let q contain NAB binary pairs denoted 

I. ....•.. NAB" The probability that none of these pairs 

has in a time, t*, after the configuration is 

established, i.e., that the configuration survives for 

greater than t*, is 

R (t*) 
q 

NAB 

n Rc<Ct*) 
1 

ex p (-I\ t * ) 
q 

where the activation parameter, 1\q, is 

IV, l l 

IV, 1 2 



The probability, p (t*)dt*, that the first exchange 
q 

in 
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the 

configuration q occurs during the time interval (t*,t*+dt*) 

is governed by the function 

S* 
6 t * [Ilq ( t * ) J 

A exp(-A t*) q q 

It follows that the expected lifetime of q is 

with variance 

(j2 
q 

<t*> 
q 

The transformation~ and kinetics: 

IV.l3 

IV. 1 4 

IV. 15 

Equations IV.l3- IV.l5 govern the lifetime of the con-

figuration ( q) without reference to the specific exchange 

which occurs. The probability that a particular pair, d, is 

that which exchanges first may be easily computed (or 

inferred) and is 

IV. 16 

The occurance of the exchange creates a new configuration, 

q+l, and resets the statistical clock. The lifetime of con-



figuration q+l is then determined by using the appropriate 

value of the activation parameter, /\q+l' in equations IV.13 

~ IV.JS. 

Let the solution evolve through a sequence of r nair 

exchnages. Each exchange establishes a new rest configura-

tion of the solution. The sequence, q~l •••••• r, defines the 

"transformation path". The statistical process through 

which the transformation path is chosen may easily be s h 01:vn 

to be '1 k . 22 · , ar ov1an from which it follows that the expected 

time to pass through the configuration q=l ••••• r is 

<t*> 

with standard deviation 

2 
d'" 

If r is large the times are normally distributed 

to the relation 

? - 1;2 ? 2 
p ( t * ) "' ( 2 P . cr-·- ) ex p- [ ( t '~- < t * > ) ~ <Y I 

1 q q 

where p(t*) is the distribution function for the 

IV. 17 

IV. I 8 

according 

IV. 1 9 

time to 



h h th f" . reac t e r con.1gurat1on. 

It follows from equations IV.l?- IV.19 that the kinet 

ics of evolution of the model binary solution are determined 

once the sequence of confugurations through which the solu-

tion passes is known. Each of these differs from its prede-

cessor through a single binary exchange which is determined 

statistically by equation IV.l6. Hence a computer simula-

tion of the evolutionary process need only determine the 

probabilities, pc(, and their sum, 1\q• for each configuration 

along the evolutionary path. Given a particular configura-

t ion, a random number may then be chosen and used in con-

junction with equation IV.16 to select a specific AB pair 

for exchange. 

Specification o 

The computation of the exchange probabilities, pc(' and 

their sum, 1\q• is particularly simple when the model system 

is a binary Ising lattice, since the energy of an atom in a 



binAry Ising lattice is determined by the identity of its 

nearest neighbors. The exchnage energy, ~E«, for a pair in 

an Ising lattice may have one of only a few discrete values, 

which correspond to the energetically distinguishable ways 

of choosing the nearest neighbours of the A and R atoms in 

the pair. In a two dimensional square lattice, for exa~ple, 

there are only seven possible values of ~E«. These are 

presented in Table I, together with their occurance possi~ 

hilities in a random conf uration of ~ean concentration, c. 

It may be shown in general that the number of distinct types 

of A-B pairs is odd since, if a particular exchange causes 

the energy change ~Ed. its reverse will change the energy by 

since there is always a possible configuration of 

the pair for which ~Ed 0. 

Let there hem energetically distinguishAble types of 

AB pairs in an Ising lattice • Let ~i be the exchange energy 

for the 
. th 
l type; 4. is an integer if measured 

l 
in units of 

the interaction parameter, J. The exchange probability for 



h . th . . th t e 1 pa1r type 1s en 

P. = 
1 

~1 
[ 1 +ex p ( ~ . IT) ] 

l 
IV.20 

when T is also given in units of J/k. The probabilities P. 
l 

are functions of temperature only. 

The number of pairs of type i in the th q configura-

t ions, N. (q), may be expressed in terms of the energy, ~(q), 
1 

of the configuration II.3: 

IV, 21 

where F.(q) is the fraction of the AB pairs which is of type 
1 

( i) • The activation parameter, A , may then be written 
q 

m 
~ P.N.(q) 

. 1 l 1 
1"" 

m 
N~(q) ~ P.F.(q) 

i'-" 1 1 1 

Since <t*> it follows that the mean residence 
q 

IV.22 

time 

in the configuration q varies inversely with the size of the 

system, N, and with its energy, ~(q). 

As the solution approaches asymptotically to its 

(dynamic) equilibrium state, the energy will approach its 



equilibrium value, ~ ( T) • 
0 

and the pair fractions vJi 1 l 

approach asymptotic values, F~(T), which are funetions of 
l 

temperature only. In this case Aq takes only values near to 

the equilibrium value 

IV. 2 3 

If, as we shall see is often the case, the pair fractions 

approach their asymptotic values before the energy is 

equilibrated, then the activation parameter subsequently 

obeys the simple relation 

IV.24 

and the activation time becomes simply proportional to the 

inverse of the energy. 

The probability that the first pair to exchange in the 

th 
q configuration is of type (i) is given by 

l)i(q) N.(q)P./A 
l l q 

IV. 2 5 

which becomes configuration independent when the pair frac-

tions have relaxed into their asymptotic values. Each par-

ticular pair of type (i) is equally likely to be the pair 



exchanged. 

Topological !epresentation 

The basic computer software has only the capabilities 

of representing one dimensional~ t~;>Jo dimentional square or 

three dimensional simple cubic lattices directly. Alternate 

methods need to be found for the representation of other 

lattices. 

As an example consider the representation of the (100) 

plane of an FCC system in the computer. The easiest way is 

to have a two dimensional array, with alternate words filled 

with 1' s and 0 ' s ~ as shown pictorially in Figure 2. The 

grid of l's now represents the (100) plane of FCC, and the 

grid of O's is neglected. This way of representation is one 

possible way but certainly not the most efficient. For 

example a lot of computer memory, 50% of the lattice in this 

c a s e , i s \v a s t e d • Further, recognition of a row or column 

without referring to it as "odd" or "even" becomes diffi-



0 0 

0 

0 0 

0 

0 0 

0 

0 0 

Fig • 2. 

0 I 0 I 0 I 0 

0 0 0 I 0 I 0 I 

0 0 I 0 I 0 I 0 

0 0 0 I 0 I 0 I 

0 0 I 0 I 0 I 0 
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0 0 I 0 I 0 0 

(a) ( 

X 79 6 

A possible representation in the computer (b) of 
the (100) plane of an FCC system. 

0 

0 

0 

I 
.!>­
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I 



cult. Also there are other problems associated with having 

meaningful boundary conditions. 

These problems can be overcome by means of certain 

topological transformations which transform more complex 

lattices into equivalent basic one dimensional, two d imen~ 

sional square or three dimensional simple cubic lattices. 

The topological transformation of the two dimensional 

hexagonal lattice into the equivalent square lattice is 

shown in Figure 3. When the simulation has proceeded, and a 

microstructure of the lattice is needed, an inverse topolog-

ical transformation on the equivalent square lattice yields 

the corresponding triangular lattice. 

From the simulation point of view it takes much less 

computer time to reference a one dimensional array than a 

two or three dimensional arrays. This makes it vto rthwh ile 

to transform the two or three dimensional arrays into one 

dimensional lattice representations. The transformation of 



Fig • 3. 
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(a) ( 

XBL 794-6144 

Topological transformation of the two dimensional 
hexagonal lattice into an equivalent square lat­
tice. 



a square lattice to one dimensions is very straightforward, 

as shown pictorially in Figure This seemingly simple 

transformation made the code as much as 50% faster in execu-

tion, including the extra time taken for the transformation. 

The transformation of the hexagonal lattice is accom-

plished in two steps. First it is transformed into an 

equivalent square lattice and then into an equivalent one 

dimensional lattice. 

An example of topologically transforming an FCC lattice 

into an equivalent simple cubic lattice is shown in Figure 

5. The simple cubic lattice is then transformed into the 

corresponding equivalent square lattice and then transformed 

again into the topologically equivalent one dimensional lat-

tic e. 

This way of transforming all lattices into their 

equivalent one dimensional lattice representation has an 

important use. This has made it possible for writing an 



Fig . 4. 

(a) 

X 794-6145 

Transformation of a square lattice into a topo­
logically equivalent one dimensional lattice. 

V1 
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Fig • 5. 
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XB L 794-61 

Transformation of an FCC lattice into a 
cally equivalent simple cubic lattice. 

topologi-
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universal code which can perform simulation experiments on 

many different crystal lattice structures. 

The Flow Chart of the code is shown in Figure 6. 



I U 
1 CRYSTAL TYPE 

AND SIZE: 
._ !W~'i Ctld'ff~ti.f> '-<~tmo 

- f'A<:,g '-!i:O!Tflt€1) "-"Iii''-

2 DIMENSIONLESS TEM RATURE 

3 FRACTION OF 8 ATOMS 
4 NUMBER OF AB EXCHANGES 

CALCULATE POPULATION ANO EXCHANGE PRO 
Of £AC H TYPE.. DETERMINE TH£ TYP£ TO 
£XCHANGE AND SELECT A BONO AT RANDOM 

I THE CHOSEN BOND AN 

u 0 A T THE N£ IGHBOR AND TYPE 

PRIN MICROSTRUCTURE 

XBL 794-9352 

Fig • 6. Flow chart of the computer code. 
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RESULTS AND DISCUSSIONS 

Figure 1 shows the phase diagram of a binary Ising lat-

t i.e e indicating the points of simulation reported here. 

Most of the simulations for square lattice were conducted on 

a 80x 80 or 120x 120 atom lattices, and for hexagonal lattice 

on 80x80 atom lattices. The data taken during the si.mula-

t ion included plots of the microstructure, and of the 

energy, the mean cluster size, and the pair type fractions 

as functions of time. 

Equilibrium 

The equilibrium, or asymptotic state of the binary 

Ising lattice vlas studied as a function of temperature by 

aggregating the B atoms into a square in the center of the 

array and letting the aggregate relax through atom exchanges 

at the temperature of interest until the energy and the pair 

type fraccti.ons became sensibly independent of time. Exam-

ples of the equilibrium configurations obtained in this way 
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are shown in Figure 7. The values of the energy, activation 

parameter, and the pair type fractions obtained are 

presented for the several temperatures tested in Table III •. 

It will be noted from Figure 7 that the initial square 

is essentially preserved at low temperatures, through there 

is some roughening of the periphery of the square which, as 

expected, is most pronounced at the corners. At very low 

temperatures the equilibrium defect density is too small to 

be represented in an array of the size used here and no true 

equilibrium is obtained. At higher temperatures (T>O.ST ) 
c 

the surface becomes progressively rougher and solute atoms 

are seen in significant population both in the B-rich square 

and within the A-rich matrix. 

It is also clear from the micrographs shown in Figure 7 

that, at least for T<0.9T , 
~ c the vast majority of the AB 

bonds present in the system are located in the interface of 

the B-rich square; relatively few are associated with solute 

atoms in the two bulk phases. The equilibrium values of the 



Fig • 7. 

1 lllllr I tl 21r 

1 11 :nr I U 41r 

1=0 6lr I=!J Air 

XBB '796 0 7951 

Equilibrium structure of a 114*114, 
lattice at different temperatures. 

20% square 



pair type fractions presented in Table III are hence associ~ 

ated with, and determined by, the equilibrium of the inter-

facial region. 

The Kinetics of and Coarsening: 

The kinetics of evolution of a square 120xl20 Ising 

lattice which initially contains a random distribution of B 

atoms, CB- 0.2, are given in Figures 8 and 9, and in Tables 

IV and v. Figure 8 contains plots of the average cluster 

size <n> as a function of time and temperature. For the 

purposes of this plot, a cluster is defined to be a semi~ 

compact group of five or more atoms. Figure 9 shows similar 

plots of the change in excess energy <~-~ >, 
co with time and 

temperature, where the reference values ~ 0 (T) are taken from 

Table III. Most of the curves in both figures contain two 

segments having nearly constant slope. The slopes of these 

segments are presented in Tables IV and V. The slopes of 

the short~time segments are compared to the prediction by 

Binder 6 for coarsening through the direct coagulation of 







5 

log <n> 

Fig • 8. 

-59-

SQUARE LATTICE 

20%8 

T/Tc 
--

0 0.8 
6, 0.6 
0 0.4 
\/ 0.3 
0 0.2 
() 0.1 

log TIME 

XBL 782-4575 

Plots of average cluster size <n> vs. time for a 
20% B alloy at various temperatures. Note that 
the same dimensionless diffusivity is used for all 
the temperatures. 



Fig • 9. 

T/Tc 
2 

--- 0.3 
-®- 0.4 

log Time 

XBL 

Plots of excess energy <~~~ > vs. time for a 20% 
B alloy at various temperat~res. 



TABLE 
-----~·----

LS 

Intermediate 

Binder 

LS 

Intermediate 

Binder 

LS 

Intermediate 

Binder 

IV. Exponent a of <n> 

0.3T 0.4T 
c c 

20%B (square lattice) 

0.38 0.40 

0.10 0.13 

0. 24 0' 2 7 

10%B (square lattice) 

0. 40 

0.20 

0.25 

0.46 

0.20 

0' 26 

20%B (hexagonal lattice) 

0. 53 

0.18 

0.28 
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a 
t 

0.6T 0.8T 
c c 

0.48 0.53 

0.27 0.30 

0.48 0' 6 7 

0.29 0.37 

0.35 0. 39 

0. 31 0.31 



TABLE V. 

LS 

Intermediate 

Binder 

LS 

Intermediate 

Binder 

Exponent b of <s -E > 

0,4T 
c 

()() 

0.6T 
c 

20% (square lattice) 

0.26 0.26 

0,12 

0.16 0.15 

l0%B (square lattice) 

0.32 0.30 

0.12 

0.18 0.17 

~b 

0.8T 
c 

0.27 

0.16 

0.31 

0' 16 

-62-
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clusters. The slopes of the long~time segments are compared 

to the prediction by Lifshitz and Slozov 3 for coarsening 

through single-atom diffusion. The agreement appears rea-

sonable, but is inexact. 

The results of two other series of simulations are also 

shown. Experiments on square arrays having CB- 0.1 yielded 

reaction curves similar to those shown in Figures 8 and 

The slopes of the straight line segments of these curves are 

included in Tables IV and v. The precipitation and coarsen-

ing reaction in an 80*80 lattice of hexagonal symmetry with 

CB -0.2 was also simulated to indicate the influence of lat-

tice geometry. A plot of the mean cluster size as a func-

tion of time and temperature for this case is included as 

Figure 10. 

Mechanistic Interpretation: 

1. ~sic Coarsening Reaction 

Our results indicate that in the most general case the 



A 
c: 
v 
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4 

2L---~L_ __ _j ____ ~----~-----L-----L----~--~. 
2 4 6 8 10 

Fig.lO. 

log Time 

X BL 7811-6133 

Plots of average cluster size <n> vs. time for a 
80*80 hexagonal lattice of 20% B concentration. 
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precipitation and coarsening reaction follows four stages. 

(a) Initial Relaxation: Soon after the quench from the 

infinite temperature, the system tends to relax to a lower 

energy state. The solution is decomposed into A-rich and 

B-rich phases and precipitation occurs. An example of this 

stage of the reaction is shown in Figure 11. Figure lla 

shows the initial random configuration of a 20% B atom lat-

tice~ and Figure llb shows the configuration after relax a-

t ion for 89 time units at 0.8T • [The l9cation of A atoms 
c 

are left vacant and the locations of R atoms are represented 

by dots]. Defining the precipitate to be a cluster of B 

atoms connected by nearest neighbor bonds, we see that in 

Figure llb most of the B atoms have joined one or the other 

of the precipitates. Monomers and transient clusters such 

as dimers and trimers can be interpreted as dissolved in the 

matrix and show nearly equilibrium concentrations even at 

this early time. In fact it can be said that the phase 

separation reaction, as dictated by the phase diagram is 
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essentially complete at this stage. This is seen in Table 

VI. For comparison see Figure llc which is a late time pic-

ture. 

Once the phase separation reaction is essentially com-

plete the dominant reaction becomes particle coarsening, a 

process which is initially dominated by the diffusion and 

direct coagualation of the clusters as suggested by Binder 6 • 

Examples of cluster coagulation during the early stages of 

coarsening are shown in Figure 1 2, which contains four 

"snap-shots" of the configuration of the square lattice of C 

O.lB during reaction at 0.3T • 
c 

Cluster coagulation has its source in the mobility of 

distinct clusters. A motion of the center of mass of the 

cluster may be caused either by the movement of atoms over 

its surface, which is expected to be the primary mechanism 

at low temperature or by the dissolution and re-deposit:i.ons 

of atoms which should be dominant at higher temperature. 

The mobility of a cluster decreases with its size with the 
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TABLE VI. 

Equilibrium Fraction Concentration 
of B atoms in the in matrix 

Concentration T/T matrix (from after c phase diagram) 10,000 jumps 

0.1 0.8 0.2129 0,2 

0.1 0.6 0.056 0.06 

0.1 0.4 0.0028 0.003 

0.1 0.3 0.00179 0.002 

0.2 0.8 0.12876 0.14 

0.2 0.6 0,025 0.025 

0,2 0.4 0.001276 0.0013 
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result that the contribution to the overall coarsening rate 

due to cluster coagulation decreases in importance relative 

to that from normal Ostwald ripening, which eventually 

becomes the dominant mechanism. 

Binder's 6 analysis of coarsening through the cluster 

coagulation mechanism suggests that the rate of coarsening 

will be logarithmic (equation I. 3) with a time exponent 

whose value depends on the dominant mechanism of cluster 

mobility: 0.4 for surface diffusion and 0.5 for volume dif~ 

fusion control. The simulation results show nearly loga~ 

rithmic behavior during the cluster coagulation phase, and 

indicate a somewhat higher slope at higher temperature, 

which closer analysis suggests may be associated with an 

increasing contribution of volume diffusion to cluster 

mobility. The slopes are, however, somewhat smaller than 

what Binder predicts. The source of the discrepancy may lie 

in the discrete lattice. Particularly in the case of a 

square lattice, in which the nearest neighbors of a lattice 
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site are not nearest neighbours of one another, the lattice 

imposes constraints on atom mobility over the surface of 

small clusters which causes surface diffusion to be more 

difficult than continuum analysis would suggest. The 

discrete lattice constraint is less important when the lat-

tic e is hexagonal, and our simulation data (Figure 10) does 

show a more pronounced coarsening due to cluster coagula~ 

tion, at a higher time exponent, in this case. 

(c) Transition stage: This stage is characterized by a 

ve.ry small coarsening rate, especially significant at low 

temperatures. The reaction rate is basically controlled by 

the dissolution of atoms at precipitate surfaces. The seven 

different types of bonds (see Table I) reach constant rela-

t ive populations Ni/~Ni at the end of the transition stage. 

As an example, the variation of N 4 /~Ni with time is plotted 

on Figure 13, superimposed on the <n> vs time plot. These 

constant relative populations depend on the temperature, and 

at infinite temperature they depend only on concentration, 
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as listed in Table I. Figure 14 shows the relative popula-

t ions of all the seven types of bonds for a temperature of 

0.4T and it is seen that they all tend to reach asymptotic 
c 

levels as the transition stage starts to end. From this fig-

ure we can also conclude that the Binder reaction is basi-

cally occuring at a time when the bonds have not reached 

their asymptotic relative populations, and these relative 

populations are dynamically changing. 

(d) Lifshitz and Slozov coarsening: This is the usual 

Ostwald ripening occuring through atom by atom transfers 

from clusters to clusters, with diffusion through the matrix 

controlling the rate. This mechanism becomes predominant in 

the very late stages of the coarseing reaction and occurs at 

a rate faster than either (b) or (c). 

A clearcut distinction into these four stages is not 

possible and there is always an overlap. The extent of 

overlap is temperature dependant and will be treated in a 

1 ate r section. The precipitates in the early stages are 
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clearly non-spherical? and there exists a tendency towards 

spherodization as the reaction proceeds. Long thin clusters 

sometimes split into two or more in their efforts to sphero-

d ize. Sometimes a group of B atoms separate from a big 

cluster. These can then either redissolve in the matrix and 

redeposit on the surrounding clusters (LS mechanism) or can 

diffuse as a unit to join another cluster (Binder me chan-

ism) • This type of overlap of mechanisms occurs almost at 

all times. Although the predominant mechanism is determined 

by the average cluster size, the path chosen by a particular 

cluster depends on its own size and its local environment. 

2 • of Temperatur.s:_ 

(a) Effect on overall kinetics: In this section we 

discuss the modifications in the general four stage coarsen-

ing sche~e effected by temperature. Figure 8 shows the 

plots of average cluster size <n> vs time at various tem-

peratures for a 20% B atom alloy of 14400 atoms. Table IV 

and v gives the exponents a and b (equation r.l) at early, 
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intermediate and late times. Whereas at medium temperatures 

all the four stages are present, at high temperatures stage 

3 is absent, and at very low temperatures stage 4 is absent. 

At higher temperatures the change from Binder's to LS 

mechanism is rather gradual, both mechanisms overlapping 

over a wide range of times. At lower temperatures the two 

mechanisms are completely separated by a region of stage 3 

with a slope lower than for either of the mechanisms; at 

short times 80% of the reaction is cluster diffusion and 

coagulation, and at 1 ong times 80% of the reaction is LS 

type. Further, the dimensionless time taken to reach 

steady~state or LS coarsening increases as we go down in 

temperature, with stage 3 extending further and further. 

All these changes in kinetics with temperature stem 

from changes in ( i) cluster geometry, (ii) relative jump 

probability, and (iii) matrix concentration of solute. 

(i) Cluster geometry: 
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At high temperatures the clusters are rather diffuse, 

and seldom possess well defined boundaries until they reach 

larger sizes. The clusters at low temperatures are on the 

other hand much more compact. Figures 15 a and 15b show the 

microstructures of a 20% R atom alloy in a square lattice at 

low (0.4T ) 
c 

and high (0.8T ) temperatures. 
c 

At roughly the 

same time after quench (since we use dimensionless d if-

fusivities, the actual times at the low temperature would be 

much longer) the critical cluster size (which keeps on 

changing with time) is much smaller at the low temperature, 

and this leads to a high population of small sized clusters 

at T=0.4T (Figure 15a). 
c 

Further for 0.4T the equilibrium 
c 

concentration in the matrix is much lower, as should be evi-

dent from the phase diagram. 

More localized effects are observed at the lo~;Je r tern-

peratures. Each cluster tries to expose the face of lowest 

energy and this results in most of the clusters having (100) 

faces (which have only one exposed bond per surface atom). 
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The average number of surface bonds per surface atom for an 

average cluster size of 60 atoms is about 1.6 for O.ST and 
c 

only 1.35 for 0.4T • 
c 

These numbers are for surfaces met 

with in our simulations. More precise numbers at any tern-

perature can be obtained by studying the equilibrium profile 

of an initially straight infinite edge, in equilibrium with 

the equilibrium solute concentration at that temperature 

(obtained from the phase diagram). 

The geometry of clusters at low temperatures has two 

important consequences: 

(1) The geometrical relationship between the cluster volume 

and the cluster surface area { surface area cc n 
(d-1)/d 

where d is the dimesionality) depends on the cluster com-

pactness, and since the heart of the clusters are usually 

compact, on the cluster size. In other words, this geometr-

ical relationship is satisfied at a much smaller cluster 

size at lower temperatures. For example, for T=0.9T , n has 
c 

to be >90 for this relation to be valid, whereas at 0.4T it 
c 



is valid for n>lO. 

(2) The second more important consequence of geometry is its 

effect on cluster reactivity. Clusters with straight edges 

and sharp corners (i.e. square or rectangular clusters) are 

virtually inactive, until they gain an atom from some other 

cluster or, less commonly, lose an atom to the matrix, at 

which time they become "hyperactive", and they diffuse, dis-

solve, or change shape very dynamically until they again 

reach an inactive configuration. (This aspect was seen very 

well in the computer generated movies). At very tern-

peratures, all the clusters become inactive, whether rec-

tangular or not. The resulting low reactivity at low tern-

peratures results in the prolongation of stage 3 of the 

reaction. As the temperature is increased, as the 

clusters become more and more diffuse, and the matrix con-

centration of solute increases, stage 3 becomes shorter, and 

finally disappears. 
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( i i) Relative jump probabilities: 

The basic step i.n the coarsening reacti.on in our model 

is bond interchange. There are several types of bonds 

(seven types for the square lattice) with different values 

of interchange energy tiE associated with their interchange 

(see Table I). The coarsening reaction is controlled by the 

probabilities of each of these types of bonds (this depends 

on the temperature and tiE) and on their relati.ve popula-

t ions • Figure 16 shows the actual number of bonds that 

interchange with energy change tiE per interchange. I··Thereas 

low energy jumps are not very sensitive to temperature, high 

energy jumps are "extremely" sensitive. It is seen from the 

figure that 94% of the jumps are of uE=O at O.JT compared 
c 

to 53% at T~0.8T • 
c 

bonds of these 

Comparatively, the population of the 

types are 15% and 20% of the total bonds. 

The zero energy jumps correspond to either single atom move-

ment on the cluster or single atom diffusion. For the case 

of 0.3T , it is 97% single atom movement of the cluster dur­
c 
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ing stage 3 leading to some extent of cluster spherodiza-

t ion. Cluster diffusion, which usually involves high energy 

jumps, is lessened in this stage due to many clusters becom-

ing inactive. The small diffusivity that still exists is 

responsible for the small extent of coarsening in this 

stage. 

(iii) Matrix concentration of solute: 

The solubility of the precipitate plays an important 

role in the coarsening reaction. For the Ising model the 

equilibrium concentration of solute atoms in the matrix 

keeps decreasing for T below T , and is nearly zero below 
c 

about 0.4T for the square lattice. 
c 

Both the LS and Binder 

mechanisms work on the presumption of soluble precipitates. 

If the precipitates are nearly insoluble, atoms cannot leave 

the precipitate, and coarsening by the LS mechanism is 

extremely slovJ. Due to the compact geometry of the precipi-

tates associated with low solubility, Binder's mechanism 

also becomes inoperative. Thus at very low temperatures we 



don't expect to see any significant amount of coarsening 

after the initial stages. 

At somewhat higher temperatures, Binder's mechanism 

becomes operative at small cluster sizes, but clusters of 

larger size become inactive i.e. Binder's mechanism decays. 

Due to the compact geometry of clusters and the low solubil-

ity, we have a situation where dissolution of atoms from the 

precipitate to the matrix is a difficult step. This leads 

to a "so 1 u b i 1 it y con t r o 11 ed" coarsen in g • However, not all 

the clusters are completely inactive. Even clusters that 

are nearly square have or develop active centres such as 

kinks and double kinks which enable them to be more active 

in those regions. This leads at late times to a combination 

of "solubility controlled" (SC) and LS coarsening to occur. 

{b) Effect of temperature on reaction rate: The role 

played by the geometry can be understood by separating it 

from ( i i) and ( iii) • We can calculate the jump prob ab il i-

ties for each temperature and also the relative population 



of bonds, from which the expected reaction rate can be cal-

eulated. It is expected that the reaction rate will be dif-

ferent than the calculated rate: (1) at early times, because 

the initial bond populations are those typical of T=co and 

it takes time to reach those typical of the experimental 

temperature; ( 2) at low temperatures, because geometrical 

restraints prevent or delay the reaching of steady state 

relative bond populations. 

The reaction rate can be measured in terms of t * • the 

time required for an AB exchange, which depends on the popu-

lation of AB bonds and on the relative probability of an AB 

type jump vs an AA or BB type jump. The number of AR 

exchanges per unit time given by 1/t* would be a good me as-

ure of the system reactivity R*, since only such exchanges 

change the energy or microstructure of the system. 

Based on the assumption that the bonds have reached 

constant asymptotic relative populations (typical of each 

temperature) in accordance with the energies associated with 



them, we can calculate the expected time per AB bond jump as 

t* 
[ 

N ] ~ 1 
5 N.P. 

N l -: l l tota l 

v. 1 

where Pi are the jump probabilities of the types i=l,7 and 

is the to tal number of AB bonds, Ntotal is the total 

number of bonds in the system and N. is the partition factor 
1. 

which gives the fraction of the NAB bonds in the various 

types. This formula predicts that at infinite temperature, 

t*=l/f where f is the fraction of bonds of the AB type, 

f=c(l-c), c being the impurity concentration. At any lower 

temperature, t* is greater than this value. [If we had a 

highly supersaturated solution, we can have t*<<l/f as hap-

pens at the beginning of the reaction. As time increases, 

t* reaches values typical of each temperature]. At infinite 

temperature N. is independent of the energy associated with 
1. 

each bond type, and depends oly on the multiplicity of the 

bond type (which in turn depends on the impurity concentra-

tion ad the lattice geometry). The calculations of N. at 
1. 

infinite temperature and their values for a concentration of 



0.2 are given in Table I. At any other temperature, 

v a 1 u e s of N . are mod if i e d by a fa c tor oc ex p (/:;, E I k T) • 
l 

Figure 17 shows the plots of t* vs T after 

the 

and 

Sx 10 6 exchanges. The prediction given by equation (1) is 

also given. The expected deviations of the s imul at ion 

results from the calculated values are observed in the fig-

ur e. The deviations at lower temperatures can be explained 

by reference to Figure 16. Although N /N AB total keeps 

decreasing with temperature and the partition among the 

seven types of these NAB bonds does tend to favor the lower 

energy types as we lower the temperature, at very lmv tern-

peratures the system finds itself in a high energy position 

profusely. This 

means that the jump keeps occuring at higher frequencies, 

but NAB does not decrease. Thus the system is frozen in a 

1 oc al state of neutral equilibrium of high energy and high 

reactivity, escape from which is difficult because of 

geometric restraints. vlhen it does escape and move to(,vards 
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5 x 106 exchanges 

0.4 0.6 0.8 1.0 
T 

The average time between succ~ssive AB j~mps (t*) 
vs temperature after 1 x 10 and 5 x 10 AB jumps, 
The data bars are simulation data, the continuous 
curves are obtained from asymptotic bond popula­
tions, and the dotted curves indicate the devia­
tion. 



the equilibrium state, the t* should follow the calculated 

curve. 

tfuen the system is quenched from infinite temperature 

to the reac.tion temperature it tries to (1) equilibrate the 

composition; (2) equilibrate the relative bond populations 

(surface profile); and (3) "minimize" energy. Equilibrium 

of composition is achieved at very short times at all tern-

peratures. Equilibrium of relative bond populations is 

achieved at short times at higher temperatures but takes 

longer at lower temperatures. There is thus a competition 

between (2) and (3) at lower temperatures. 

The reactivity R* of the system (~1/t*) keeps decreas-

ing ~dth time. Hh en t h e s y s t em e n t e r s t h e e q u i 1 i h r i u m s t a t e 

(whirh is dynamic) the reactivity reaches a constant value. 

By starting out with the equilibrium state at T=O (lowest 

energy state) and equilibrating at the reaction temperature, 

this final reactivity can be found. The reactivity at any 

time during coarsening at that temperature starting from the 



random initial configuration is them given approximately by 

~~xR 
~ co On Figure 18 the energy values (starting from the 

co 

energy for random distribution) and the corresponding t* 

values obtained from simulation are shown as data bars. The 

continuous curves are the t* values calculated from 

t*=l/R*=« /(<EXR ). 
co co 

That is, the continuous curves ind i-

ca te the t* values when the partition of bonds into types 

reaches a steady value, corresponding to the distribution in 

the equilibrium state. The point where the data bars reach 

the continuous curve signifies the time when the bond popu-

lations have reached a steady state, since the same distri-

button of bonds into types can be expected to be maintained 

through to the equilibrium state. Hhen steady state bond 

populations are reached, the system is now only trying to 

reach "minimum energy" state, and this signifies the end of 

stage 3. 

Figure 14 shows the relative bond populations for 0.4T 
c 

for a concentration of 0.2. The equilibrium values are also 
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indicated on the plot. It is clearly seen that the relative 

bond populations (F.) asymptote to the equilibrium values. 
1 

More significant than Fi are F.P. values which actually 
l l 

determine the probability of jump of the various types, as 

also ~F.P. which determines the overall jump probability. 
1 1 

Figure 19 and figure 20 show the values of F.P. vs. time for 
l 1 

a 20%B atom alloy at O.ST 
c 

and 0.4T • 
c The equilibrium 

values are also indicated. We can see that the equilibrium 

values of F.P. satisfy the relation: 
1 1 

v.2 

This is understandable because bonds of type i yield bonds 

of type ( 8- i) upon interchange, and at equilibrium these 

rates of interchange must be equal. During the kinetic evo-

lution if we take the time average over long periods of 

time, the relationship 

i=3 
~ F.P. > 

i= 1 l l 

i=7 
~ F.P. 

i=S l l 
v.3 

is satisfied, which yields the eventual decrease in energy. 

This inequality gradually diminishes and as equilibrium is 
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approached, the two sides of equation v.J become equal. 

Figure 21 shows the values of ~FiPi for various 

peratures for an alloy of 20%B a toms. The equilibrium 

values are also indicated. ~F.P. decreases continually with 
l l 

time, asymp toting to the equilibrium value. That is the 

reactivity of the system keeps on decreasing until it 

reaches that of the equilibrium state. 

Figure 18 that the asymptotic value of 

lower 

0. 6T • 
c 

than the equilibrium value for 

If we go back to Figure 10 we see 

It is observed in 

~F.P. 
l l 

is in fact 

O.ST as also for 
c 

that the asymp~ 

tot ic values of F.P. for O.BT all are close to the equili-
l l c 

brium values, except for i=4 (zero energy exchange), which 

is lower than the equilibrium value. This effect is thus 

the caused by an underpopulation of bonds of type 4. This 

can he understood if we consider the population of A atoms 

in B clusters. At equilibrium, when there is a single big B 

cluster, you do have A atoms inside the B cluster which con-

tribute to type 4 bonds (each A atom floating in a B cluster 
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gives four type 4 bonds) • Whereas when the cluster sizes 

are smaller, as happens to be the case at earlier times, the 

A atoms are present in lesser concentrations in the B clus-

ters, and thus the relative concentration of type 4 bonds is 

lower than at equilibrium. important at lower temperatures 

because the equilibrium concentration of A atoms in B clus-

ters is itself small. 

3. Eff 

The general coarsening behaviour remains largely 

unchanged after changes in composition. However, composi-

tion has these four effects: (a) Higher composition means a 

bigger difference between the infinite temperature state and 

the experimental temperature state, and hence increases the 

initial relaxation period. (b) The cluster diffusion 

mechanism seems to be more predominant at higher compos!-

t ions • (c) Table VII shows the slopes of <n>=ta for 10% R 

and 20% H case at roughly the same time range. In the case 

of 10% B, a higher fraction of B atoms are in the matrix, 
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aiding the freer flow of atoms between the particles, as 

also their diffusion. Thus the slopes are somewhat higher 

for the 10% case than for the 20% case. It is tempting to 

conclude that the reason for this could be because with 10% 

B the LS assumption of widely dispersed precipitates is 

better satisfied. However, Ardell's analysis 5 argues that 

the time exponent does not depend on the volume fraction of 

the precipitate. (d) Steady state bond populations are 

reached much faster at lower concentrations. 

Effect Lattice ~ 

One other lattice type, the hexagonal lattice, was 

simulated. The phase diagram for the two dimensional hexag-

anal lattice and the two dimensional square lattice are 

roughly the same (very close to each other) in the nearest 

neighbor case. Hence there would not be much difference in 

equilibrium properties determined by the phase diagram. 

However it is geometrically different from the square lat-

tic e: the nearest neighbors of a hexagonal lattice are 
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nearest neighbors of each other, which is not the case with 

square lattice. This will affect the kinetics to some 

extent. (This fact also makes the number of bond types only 

7 instead of 13 although there are 6 nearest neighbors for 

each atom). 

The hexagonal lattice also shows the same four stage 

behaviour as the square lattice. Figure 10 shows an example 

of the <n> vs time curve for a hexagonal lattice. Some 

interesting differences between the square and hexagonal 

lattices are: 

(l) Very soon in the simulation, the B atoms form into many 

small clusters, whereas it takes more time for this to 

happen in the square lattice. This is to be expected 

since hexagonal lattice has more nearest neighbors. 

( 2) The bond type frequency peak moves to type 7 after as 

few as 2000 jumps. This does not happen in the case of 

the square lattice even after I0 6 jumps for many cases. 
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(3) The geometry of the hexagonal lattice provides the pos-

sibility of cluster diffusion by zero energy jumps. 

For example a 2 atom cluster can diffuse without any 

high energy jumps here which is impossible in a square 

lattice. This factor has these effects: 

(a) Binder's mechanism is more predominant at early 

times, the slopes corresponding much more closely 

to the predicted ones. 

(b) The smallest cluster unit during the frozen period 

at very low temperatures becomes 3 instead of 2 

atoms. 

(C) Cluster spherod iza tion can be observed more 

clearly in the hexagonal lattice. The slopes in 

stage 3 in general are higher than for the square 

lattice. 

( 4) The effects of temperature and composition have not 

be en studied in detail for the hexagonal lattice, but 



(1) 

<n> 

time 9 
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the trend seems to be similar to that of the square 

lattice. 

CONCLUSIONS 

Both excess energy <4-4 > and the average cluster size 
CD 

are found to obey simple power law relationships with 

the exponents corresponding to LS 

mechanism at very late times. 

( 2) The general case of precipitation and coarsening in 

binary Ising square lattice follows four stages: 

(i) initial relaxation 

(ii) Binder's mechanism (cluster coagulation) 

(iii) transition stage - cluster coagulation declines 

(iv) LS and SC mechanisms set in, Ostwald ripening by 

diffusional processes. 

(3) Temperature affects the general four stage mechanism in 
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such a way that at very high or very low temperatures only 

three stages are seen. At high temperatures stage (iii) is 

almost absent and stages (ii) and (iv) overlap very much; 

as the temperature is lowered, stage (iii) becomes longer, 

and at very low temperatures stage (iv) is not reached in 

reasonable experimental time. 

(4) Temperature also affects cluster geometry, the clusters 

being more compact and faceted at lower temperatures. 

( 5) Low temperature simulations, where solubility is low 

never reach significant coarsening rates, although the 

dimensionless diffusivity is the same as that at high tern-

peratures. This suggests that clusters with very low solu-

bility can resist coarsening. 

( 6) Temperature is also seen to affect the time taken to 

reach the constant asymptotic bond~type populations. This 

explains the unusual behaviour of t* (average time between 

successive AB interchanges) with temperature. 



(7) Although composition does not affect the general coar 

sen ing behaviour, a higher composition makes the particle 

growth kinetics a little sluggish. Also, the cluster diffu-

s ion and coagulation mechanism is seen to be more predom-

inant at higher compositions. 

(8) The coarsening kinetics on a hexagonal lattice are very 

similar to those on a square lattice. 
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Fig • 2. 

Fig • 3. 
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Fig. 6. 

Fig • 8. 
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FIGURE CAPTIONS 

Phase diagram of the binary Ising square lattice, 
indicating the points of simulation reported here. 
The dotted line shows the limit of metastability. 
assuming a fre~ energy 

4
ctensity of the form 

f(C ) = A(C-C ) +B(C~C ) +f(C ) where C is cr cr cr cr cr 
the concentrat1on at the phase boundary. 

XB L 7 8 9 5 8 3 !+ 

A possible representation in the computer 
the (100) plane of an FCC system. 

(b) of 

XRL 795~6201 

Topological transformation of the two dimensional 
hexagonal lattice into an equivalent square lat­
tice. 

Transformation of a square lattice into a topo­
logically equivalent one dimensional lattice. 

xbl 794-6145 

Transformation of an FCC lattice into a topologi­
cally equivalent simple cubic lattice. 

Flow chart of the computer code. 

Equilibrium structure of a 114*114, 
lattice at different temperatures • 

• s p 

xbl 79!+-6143 

xbl 794-9352 

20% square 

Pllts of average cluster size <n> vs. time for a 
20% B alloy at various temperatures. Note that 
the same dimensionless diffusivity is used for all 
the temperatures. 

XBL 782-4575 

Plots of excess energy <~-~ > vs. time for a 
B alloy at various temperat~res. 

20% 

XBL 798-6791 



Fig. 10. 

Fig. 11. 

Fig, 12. 

Fig, 13. 

Fig. 14, 

Fig. 15 

Fig. 16. 

Fig, 17. 

Fig. 18. 
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Plots of average cluster size <n> vs. time for a 
80*80 hexagonal lattice of 20% B concentration. 

XBL 7811-6133 

Time evolution of a 120*120 square lattice of 20% 
B concentration at O.BT . (a) Initial random con­
figuration; (b) configu~ation after 89 time units 
and (c) configuration after 1341 time units. 

XBL 7810-12103 

Snapshots during the time evolution of a 120*120 
square lattice of 20% B concentration at 0.3 T 
showing cluster diffusion and coagulation mech~nism 
for example, in regions marked with big circles. 
Notice, also, the atom by atom transfer mechanism, 
such as in the area marked with the small circles. 

XBL 7810-12100 

Plot of average cluster size <n> vs. time for a 
120*120 square lattice of 20% B concentration at a 
reduced temperature of 0.4T. Also shown is the 
corresponding values of relative bond population of 
bonds of type 4 (see Table I). 

Plots of jump type fractions vs. 
alloy at 0,4 T . 

c 

XBL 7811-6093 

time for a 20% B 

XBL 798-11038 

Microstructure of a 20% B alloy at roughly the same 
time after quench to (a) 0.4 T and (b) 0.8 T . 

c XBL 7810~12012 

Plots showing the fractional number of AB jumps of 
different types vs. the energy change involved in 
these jumps at 0,3 T and 0.8 T . The numbers by 
the plots indicate tRe ratio ofcAB jumps of ~E=O 
to AB jumps of ~E*O. 

XBL 785-5053 

The average time between successive AB jumps (t*) 
vs. temperature after 1 x 10 6 and 5 x 10 6 AB jumps. 
The data bars are simulation data, the continuous 
curves are obtained from asymptotic bond populations 
and the dotted curves indicate the deviation. 

XBL 785-5053 

The average time between successive AB jumps (t*) 
vs. the number of AB bonds in the lattice (NAB). 
The data bars are simulation data, the continuous 
curves are obtained from asymptotic bond popula­
tions and the dotted curves indicate the deviations. 

XBL 785-5055 



Fig. 19. 

Fig. 20. 

Fig, 21. 

~109~ 

Plot of F,P
1 

vs. time for a 20% B alloy at 0,8 T , 
1 

- XBL 798~110~0 

Plot of F.P. vs, time for a 20% B alloy at 0.4T , 
1 1 XBL 798-11639 

Plot of~ FiPi vs, time for a 20% B alloy at dif~ 

ferent temperatures. 
XBL 798~6770 






