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SUMMARY

Longitudinal data sets from certain fields of biomedical research often consist of several

variables repeatedly measured on each subject yielding large number of observations.

This characteristic complicates the use of standard longitudinal modeling strategies, such

as random effects models and marginal models, where rigorous assumptions on intra-

subject correlation structure are required. An innovative way to model the data is to apply

functional regression analysis, an emerging statistical approach in which observations of

the same subject are viewed as a sample from a functional space. No assumptions are

needed for the intra-subject correlation structure. Shen and Faraway (Satistica Sinica

2004; 1239-1257) introduced an F test for linear models with functional responses. This

paper illustrates how to apply this F test and functional regression analysis to the setting

of longitudinal data where intra-subject repeated measures are viewed as discrete samples

from an underlying curve with continuous function forms. A smoking cessation study for

methadone-maintained tobacco smokers is analyzed for demonstration. In estimating the

treatment effects, the functional regression analysis provides meaningful clinical

interpretations, and the functional F test provides consistent results supported by a

random-effects linear regression model.

KEY WORDS:    Functional F Test; Functional Data Analysis; Functional Regression

Analysis; Longitudinal Data Analysis.
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1    INTRODUCTION

In biomedical research with longitudinal studies, subjects are repeatedly measured for a

set of characteristics so that time-varying causal relationships between the responses and

explanatory variables of interest can be modeled, e.g., growth trajectory and disease

progression [1]. Intra-subject correlation across repeated measurements is of concern

when considering approaches for longitudinal data analysis.  When the correlation and

mean structures are relatively simple or can be assumed to be certain parametric forms,

satisfactory performance can be anticipated using standard longitudinal modeling

strategies e.g., mixed effects models, marginal models, and Markov transition models [2].

In certain fields of study, such as substance abuse, environmental, and public health

research, repeated measures are sometimes collected at high frequencies over long

periods of time. For example, in a 12-week smoking cessation study, carbon monoxide

levels were collected three times weekly on each methadone-maintained tobacco smoker

[3]. To analyze such longitudinal data with large-scale time grids, it is often insufficient

to assume a linear or polynomial form of the mean structure, a compound symmetric or

autoregressive pattern of the covariance matrix, or a Markov process with stable

transitional probabilities. Other multivariate-observation approaches, such as hierarchical

models, latent variable models, and structure equation models, involve many parameters

with unverifiable assumptions [4-6]. As of yet, there are few alternatives that successfully

address the unique problems presented by data collected in longitudinal studies with high

dimensionality. This paper evaluates a recently developed method of functional data

analysis for this purpose.



4

In the emerging statistical research field, functional data analysis refers to a

collection of strategies for analyzing functional data sets, such as curves, images, or

shapes [7]. To a study observing seated automobile drivers’ body motion patterns [8, 9],

and to a study of urinary metabolites and a progesterone data set [10], various strategies

of functional regression analysis have been applied.

Until very recently, functional data analysis and longitudinal data analysis have

been viewed as distinct enterprises [11]. For longitudinal data with dense time grids, one

could understand within-subject repeated measures as discrete samples from a functional

curve over the studied time interval. A curve for each subject’s response can be obtained

via various smoothing techniques in connecting the discrete data points [12] and these

individual subject response curves can be tested using functional data analysis. The

approach to using functional data analysis provides an alternative with innovative

insights to the practice of longitudinal data analysis. Unlike the using of long-form to

represent longitudinal data in computer procedures fitting standard longitudinal models

(e.g., PROC Mixed in SAS), functional regression analysis does not change the original

wide-form format of the data structure, and thus is more intuitive to data analysts. With

time-dependent coefficients, functional regression analysis captures the time-varying

exposure-response relationship, thus providing a simpler data structure with intuitive

interpretations. A time series plot of the estimated coefficient function vividly reveals

how the effect of a predictor can change along the time axis. Most importantly, functional

regression analysis draws more robust conclusions as it has features similar to

nonparametric methods, requiring few assumptions on the intra-subject error correlation

structure and mean structures for the studied population.
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2. FUNCTIONAL LINEAR REGRESSION MODELS

A longitudinal study, usually collects continuous repeated measures, { )( iji ty ; ni ,...,1= ,

mj ,...,1= }, on a time grid, { mtt ,...,1 }, that is either exactly or approximately the same

for all n  subjects. One may restrict the same number of repeated measures to be collected

on each subject. Ideally, these repeated measures can be viewed as discrete samples from

a continuous response curve, )(tyi . In this setting, a functional linear regression model

has the form of

                                              )()()( ttxty i
T
ii εβ += ,

where T
ipii xxx ),...,( 1=  is a vector of fixed covariates or predictor variables,

T
p ttt ))(),...,(()( 1 βββ =  is a vector of coefficient functions, and )(tiε  is an error function

of Gaussian process with mean zero and unknown covariance function

))(),(cov(),( tstsr ii εε= . Note that )(tiε  and )(tkε  are independent to each other when

ki ≠ .

The coefficient function )(tβ  can be estimated by the least squares method,

which leads to

)()()(ˆ 1 tYXXXt TT −=β ,

where T
nxxX ),...( 1=  is the model matrix and T

n tytytY ))(),...(()( 1=  is the vector of

response functions.  The predicted (or fitted) responses are )(ˆ)(ˆ txty T
ii β=  and the
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residuals are )(ˆ)()(ˆ tytyt iii −=ε . The residual sum of squares is =rss

∑ ∫=
−

n

i ii dttyty
1

2))(ˆ)(( .

In reality, only a finite number of measures (i.e., )( iji ty ’s) exist for the i th

response curve (i.e., )(tyi ). To apply functional regression analysis to discrete

observational data, Shen and Faraway [9] recommended analyzing the un-smoothed raw

data directly over a common grid of time for different subjects. Otherwise, one may

reconstruct the response curve from the observed data points to get estimates of )(tyi

over a common grid { jt ; mj ,...,1= } via proper smoothing techniques, e.g., model-based

cross-validation methods [12], kernel-based or spline-based nonparametric regression

methods [13], and robust methods such as LOWESS [14]. The choice of different

smoothing techniques would have little impact on the analysis if there are plentiful

underlying response curves (i.e., )(tyi ’s) with quite smooth functional forms.

2.1.  A Functional F Test for Hypothesis Testing and Model Selection

An important inference problem is to compare two nested linear models, ω  and Ω ,

where q=)dim(ω , p=Ω)dim( , and model ω  results from a linear restriction on the

parameters of model Ω . There are relatively few satisfactory solutions available in the

statistical literature to this situation. Ramsay and Silverman [7] suggested a naive

approach by examining the point-wise F statistics on each time point for testing )(tβ .

This carries a serious problem with multiple-comparison and if Bonferroni corrections

were applied to the significance level, power would be significantly compromised
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considering that repeated measures are often strongly correlated. As pointed out by

Faraway [8], traditional multivariate test statistics are inappropriate due to the influence

of unimportant variation directions..

To overcome these issues, Shen and Faraway [9] proposed a functional F test.

Define

                                                        
)/(

)/()(
pnrss

qprssrss
F

−

−−
=

Ω

Ωω ,

where Ωss and rrssω  are residual sum of squares under models ω  and Ω , respectively.

The null distribution of this statistic is ∑∑
∞

= −

∞

= −−−
1

2
)(1

2
)())/()((

k pnkk qpk rrqppn χχ ,

where 021 ≥≥≥ Krr  are eigenvalues of the covariance function ),( tsr  and all the 2χ

random variables are independent of each other. This null distribution can be effectively

approximated by an ordinary F distribution with degrees of freedoms )]([1 qpdf −= λ

and )]([2 pndf −= λ , where 

€ 

λ = ( rkk=1

∞

∑ )2 / rk
2

k=1

∞

∑  is the degrees-of- freedom-

adjustment-factor [9] and ][⋅  represents the operator to get the largest integer.

In practice, when repeated measures are observed on an evenly spaced time grid

{ mtt ,...,1 }, we should replace the integration with summation, compute

∑ ∑= =
−=

n

i

m

k kiki mtytyrss
1 1

2 /))(ˆ)((  and estimate the degrees-of-freedom-adjustment-

factor by trace(E)2/trace(E2), where E is the empirical covariance matrix computed from

the alternative or full model.

It is important to note that the functional F test statistics make sense when the grid

size m  becomes large, while most multivariate test statistics [15, 16] would fail. Other

important work addressing the functional testing problem was provided by Fan and Lin
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[17], Eubank [18], and Abramovich et al. [19], but they only considered ANOVA type

models and their test statistics were formed by orthogonal (Fourier or Wavelets)

expansion coefficients of response curves. Eubank [18] proved that among different ways

of combining the coefficients into a test statistic, the 2L  norm, a simple sum of the

squared coefficients, is asymptotically equivalent to the uniformly most powerful test

when the grid size m  goes to infinity. This result provides important evidence that the

functional F-test statistic, which uses 2L  norm of the residual curves, is not only

computationally cheaper but also more powerful than other methods.

Model selection is an important issue in regression analysis. Stepwise model

selection requires an easy way of calibrating the p-value of a predictor in the full model,

i.e., to test the null hypothesis “ 0)(:0 =tH jj β  for pj ,...,1= ” against the full model

hypothesis “ )()()(:1 ttXtYH εβ += .” To test these hypotheses, one can fit each null

model jH0  separately for pj ,...,1= , and then use functional F statistics

)/(1

10

pnrss
rssrss

F j
j −

−
=  to make a decision on accepting or rejecting the null model. As shown

by Shen and Faraway [9], it is indeed unnecessary to fit all the p  null models, because

jF  can be derived from quantities obtained directly from the fitting of the full model 1H ,

i.e.,

,
)(

)(ˆ)(

1
1

2

rssXX

dttpn
F

jj
T

j
j −

∫−
=

β

where 1)( −
jj

T XX  denotes the thj  diagonal element of 1)( −XX T , )(ˆ tjβ  is the estimate of

)(tjβ , and rss1 is the residual sum of squares under the full model 1H .  In practice, the
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operation of integration is replaced by that of summation. The null distribution of the

functional F statistic 

€ 

Fj  can be approximated by an ordinary F distribution with degrees

of freedom ][1 λ=df  and ])[(2 λpndf −= , where 

€ 

λ  is the degrees-of-freedom-

adjustment-factor.

2.2. Diagnostic Check

It is important to identify outliers and highly influential curves (subjects) since including

them in the analysis may give misleading results. As in the context of traditional linear

regression for scalar responses, we define jackknife residuals and Cook statistics for

functional regression.  Let TT XXXXH 1)( −= be the hat matrix and define leverage iih  as

the diagonal entry of H . Define studentized residual as

)/()1(

)(ˆ 2

pnrssh

dtt
s

ii

i

i
−−

=
∫ ε

,

and jackknife residual as

)]1/(][)(1[

)(ˆ

)(
1

)()(

2
)(

−−+
=

−

∫
pnrssxXXx

dtt
J

iii
T
i

T

i

i

i

ε
,

where )(iX  is the X  matrix with the thi  row deleted, )(ˆ2)( tiε  is the thi  residual from the

model without the thi  curve, and )(irss  is the residual sum of squares from the model

without the thi  curve.  Define Cook statistics as

p
pn

rss

dtttXXtt
D i

TT
i

i
−

⋅
−−

= ∫
))(ˆ)(ˆ)(())(ˆ)(ˆ( )()( ββββ

,



10

where )(ˆ )( tiβ  is the estimate of )(tβ  computed without the thi  curve. The null

distribution of jackknife residuals can be approximated by an ordinary F distribution with

degrees of freedom ][1 λ=df  and ])1[(2 λ−−= pndf , which can be used to detect

outliers.

Shen [20] showed that jackknife residuals and Cook statistics can be computed

directly from the studentized residuals and leverages as follows:

                          2

1

i
ii spn

pnsJ
−−

−−
=   and  

ii

iii
i h

h
p
sD

−
⋅=
1

2

.

3. APPLICATION TO A SMOKING CESSATION CLINICAL TRIAL

A 12-week clinical trial was performed to evaluate relapse prevention (RP) and

contingency management (CM) as smoking cessation therapies for methadone-

maintained tobacco smokers [3]. A total of 174 subjects were randomly assigned to one

of four treatment conditions  (Control; RP-only; CM-only; RP + CM). All subjects

received nicotine replacement therapy in addition to their assignment to behavioral

therapies: RP and/or CM. The repeated measures of most interest in this study were

breath samples collected three times weekly, which were analyzed for carbon monoxide

levels (parts per million) to indicate recent tobacco smoking abstinence. The observed

carbon monoxide levels and their mean profiles for each group are depicted in Figure 1.

Participants’ age ( Age ), baseline carbon monoxide levels (BaseCO ), and numbers of

nicotine patches ( Patches ) were recorded as other predictors along with treatment

conditions. This data set has been analyzed using standard linear mixed effects models,
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which provide some known results that can be used to evaluate the performance of

functional regression analysis.

                                                  <<Insert Figure 1>>

For significance testing, an insufficient approach was first applied to compare the

carbon monoxide levels across treatment conditions on any given time point using the

method of ANOVA [7]. As depicted by Figure 2, at eight points significantly different

carbon monoxide levels were indicated by the point-wise ANOVA with p-values smaller

than 0.001. Because of the problem of “multiple comparison” [21], a significance level of

0.001 was used instead of the usual level of 0.05. Although this method provides some

useful information in comparing the responses between treatment conditions, it is

relatively limited in making inferences on the overall treatment efficacy. There is no

simple way of combining these multiple p-values. Moreover, the point-wise ANOVA

ignored the patterns showing that the average carbon monoxide levels were almost

consistently lower for the treatment conditions involving contingency management.

Therefore, the challenge for this simple method is how to combine these tests to achieve a

powerful overall test. Another “time-naïve” approach is to compress the intra-subject

repeated measures into a composite score, such as a mean level of carbon monoxide for

each smoker. Using this method, a significant difference ( 04.53
170 =F  and p-value=0.002)

between conditions was observed. A problem with this aggregation approach, however, is

that it erodes both statistical power and validity [22]. This testing method requires that

missing data must be “missing completely at random," which is usually too rigorous. As
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discussed by Yang and Shoptaw [23], there is evidence that missing values in this carbon

monoxide level data were not missing complete at random.

<<Insert Figure 2>>

Because 20% of the carbon monoxide levels were missing due to either

occasional omission or to premature withdrawal, multiple imputation [24] was applied.

After a logarithmic transformation, repeated carbon monoxide levels for each participant

could be assumed to be multivariate normally distributed. Specifying a normal prior

distribution and an inverted Wishart distribution for the covariance matrix, we conducted

multiple imputation using an iterative procedure called data augmentation, which was

originally proposed by Schafer [25]. This process consists of two steps on each iterate. In

the imputation step, for each person, we draw imputations of missing values conditionally

on the observed values using a conditional normal distribution with parameters drawn in

the previous iteration. In the parameter estimation step, new parameters on the mean and

covariance of the multivariate normal distribution are updated, given the complete data

set with current imputed values. Repeating these two steps until the procedure converged,

four sets of imputations were obtained with an interval of 500 iterations, yielding four

complete data sets, each with different imputations of the missing values. For each

complete data set, the full model, including all the interesting predictors, was fitted using

the method of least squares estimation,

                          
)()()()(

)(*)()()()(

654

3210

ttPatchestAgetBaseCO
tRPCMtRPtCMtty
εβββ

ββββ

+⋅+⋅+⋅+

⋅+⋅+⋅+=

where 1=CM  (or 0) indicates whether a subject received contingency management (or

not), 1=RP  (or 0) indicates whether a subject received relapse prevention (or not), and
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RPCM *  is an interaction term. In this coding scheme, the control group was coded as

“ 0=CM  and 0=RP ,” and the RP+CM groups was coded by “ 1=CM  and 1=RP .”

Since there was little difference between the four imputed data sets, the fitted curves for

the coefficient functions were plotted in Figure 3 for the first imputed data set. The fitted

coefficient functions of RP and Age are close to the zero function, indicating that the

treatment effect of the relapse prevention and the age effect are negligible. Further, the

interaction term CM*RP is not significant, indicating that contingency management does

not interact with relapse prevention. Regression coefficient functions for CM and Patches

are negative-valued throughout, suggesting favorable effects of contingency management

and nicotine patch replacement. By contrast, the positive-valued coefficient function of

the baseline carbon monoxide level implied that the higher the baseline carbon monoxide

level, the more difficult to achieve tobacco abstinence.

<<Insert Figure 3>>

The functional F test statistics and their p-values of each predictor in this model

are listed in Table 1. For all four complete data sets, only the terms, CM , BaseCO , and

Patches  are significant at significance level of 05.0=α . After removing insignificant

terms ( RP , RPCM * , and Age ), the reduced model was fitted to the imputed data sets.

The functional F test statistics and their p-values for the remaining terms were obtained

(see Table 2).

<<Insert Table 1>>

<<Insert Table 2>>
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As expected, all predictors were significant at 01.0=α  level this time. Since all

the four data sets consistently supported the same results, we accept this three-predictor

functional regression model as the final model to make inferences:

                 )()()()()()( 3210 ttPatchestBaseCOtCMtty εββββ +⋅+⋅+⋅+= ,

where the subscript indicating subjects is suppressed. The fitting of this model indicated

that, after adjusting for the baseline levels ( BaseCO ) and number of nicotine patches

applied (Patches ), contingency management turned out to be significantly effective in

helping this specific group of smokers achieving tobacco abstinence during treatment.

To check diagnostics for the above selected model, jackknife residuals and Cook

statistics for all the imputed data sets were computed. The charts of these statistics from

the first imputed data set are shown in Figure 4. The jackknife residuals for the

participants numbered 92 and 93 are bigger than the critical value of the functional F

distribution at significance level of 05.0=α . Therefore, these two smokers may be

declared as outliers. The record associated with the subject numbered 92 is also a highly

influential point according to the Cook statistics. Checking the original records, both

points with unusually high values for most of the observations were noted. After

excluding these two “outliers,” we re-analyzed the data using the above models and

found consistent results.

<<Insert Figure 4>>

We also analyzed the four complete data sets after imputation by a linear mixed

effects model with random intercept to model heterogeneities across subjects:

ijiiiiij uPatchesAgeBaseCORPCMRPCMy εβββββββ ++⋅+⋅+⋅+⋅+⋅+⋅+= 6543210 *
,



15

where ijy  stands for the thj  carbon monoxide level of the thi  smoker, CM , RP ,

CMRP * , BaseCO , Age , and Patches  are fixed effects that are common for all

observations on the same subject, ),0(~ 2
ui Nu σ  is the random intercept effect explaining

the heterogeneity across subjects,  and ijε ’s are identically independently distributed

normal random errors. Consistent conclusions were observed by fitting this linear mixed

effects model. CM (p-value<0.01) is significant while RP and CM*RP are not significant.

Age (p-value=0.43) is not significant while BaseCO  (p-value<0.01) and Patch  (p-

value<0.01) are significant.

As seen in this example, the scalar linear mixed effects model and the functional

regression model differ in at least two ways. First, in the mixed effects models the fixed

effects (i.e., β ) are time independent, while in the functional regression model the effects

(i.e., )(tβ ) are functions over time. Second, the mixed effects model assumes compound

symmetry error correlation structure within each smoker, while the functional regression

model assumes no specific simple forms on the intra-subject correlation structure. Thus,

the functional regression model is more flexible and the conclusions drawn are more

robust in general. The time series plots of the estimated coefficient functions in Figure 3

for the functional regression model provide more vivid information with intuitive clinical

interpretation than the point estimates of the effects of CM , RP , CMRP * , BaseCO ,

Age , and Patches  in the mixed effects model. For example, there appears to be a

slightly increasing negative effect of Patches  over time. Although functional regression

analysis and scalar linear mixed effects models supported no strong overall age effect, a

negative influence of age on carbon monoxide levels (higher ages associate with lower
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carbon monoxide levels) was noticed starting the eighth week. It appeared that older

smokers stayed longer in the study, and the longer they stayed, the more likelihood they

were to achieve smoking abstinence as measured using carbon monoxide levels.

4. DISCUSSION

As a companion to the work of Shen and Faraway [9], this paper demonstrates the

functional F test for functional regression analyses using a longitudinal data analysis with

a fairly large number of repeated observations measured on each object. The functional F

test for functional linear regression models is appropriate for evaluating effectiveness of

experimental conditions. Application of the technique to a longitudinal trial of smoking

cessation techniques indicates that the use of functional regression analysis is a valid and

promising alternative to traditional longitudinal modeling strategies.

Functional regression analysis also provides researchers in longitudinal study of

biomedical and social-economic topics a promising alternative to gain deeper

understanding of effects of interventions. Compared with traditional random-effects and

marginal models, functional regression analysis treats data from the same participant as a

single observation in a functional space and provides a natural and simpler data structure.

Functional regression analysis also requires fewer restrictions on the intra-subject

correlation structure, thus should be more robust to any violation of such assumptions.

Missing values or unbalanced longitudinal data can be handled easily by applying

smoothing techniques that do not require a common fixed time-grid. Additionally,
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functional regression coefficients provide both intuitive and time-dependent estimators

thereby yielding insights for studying time-varying relationships.

Similar ideas on the functional F test could be traced to Box [26], where the

property of the F-test statistic in the two-way ANOVA for correlated data was studied in

detail. Other ways of functional data analysis were provided by Fan and Lin [17], who

used adaptive Neyman or thresholding tests on the Fourier or wavelet expansion

coefficients of the estimated parameter function in order to compare groups of curves.

Recently, these testing methods have been further extended by Nie [27] within the setting

of functional regression analysis. As suggested by Eubank [18], these transform-based

methods are complicated and may not ultimately boost power. Since the functional

regression model, restricted to the finite time grid, becomes a standard multivariate

problem, it is natural to try multivariate-based tests. Shen [20] carefully compared the

performance of the functional F test with a traditional multivariate likelihood ratio test

and its variation, such as a B-spline coefficient test, and found that the functional F test

had at least the following advantages: (i) it works when the grid size becomes large; (ii) it

is stable and not easily influenced by unimportant variation directions; (iii) it is always

fairly powerful; and (iv) it is computationally cheap. These reasons provide strong

rationale for applying functional regression analysis with functional F test in practice.

A limitation of functional regression analysis in this paper is that it models

repeated measures that are assumed of Gaussian distribution. Although the large sample

theory ensures the use of functional regression analysis in wider applications, more

specific forms of functional models and functional F test statistics need to be developed

for other types of longitudinal data. Another limitation of the functional regression
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analysis for longitudinal data analysis comes from missing data problems, which are

common in practice. In the smoking cessation data, missing data were assumed

“ignorable” [24], so that multiple imputations could be created using an MCMC

algorithm proposed by Schafer [25]. When assuming such a process, analyses based only

on observed data, while ignoring missing values, would provide unbiased estimates. If

missing data are ignorable, they can be interpolated or extrapolated from the underlying

continuous functional curves in functional regression analysis. Unfortunately, this

assumption of ignorability could not be verified in this smoking cessation study without

follow-up investigations. It is urgent that functional regression analysis or functional data

analysis be developed to analyze longitudinal data sets with non-ignorable missing

values.
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Table 1. Observed functional F test statistics (and P-values) for each covariate

Data Set Intercept CM RP CM*RP BaseCO Age Patches
Impute 1 98.9(*) 5.98(*)  0.89(.45) 1.11(.34) 24.8(*) 1.25(.29) 24.9(*)
Impute 2 98.0(*) 4.89(*) 0.78(.51) 1.17(.32) 24.2(*) 1.83(.14) 21.6(*)
Impute 3 104.5(*) 5.99(*) 0.71(.54) 1.07(.36) 26.1(*) 1.18(.32) 30.9(*)
Impute 4 96.2(*) 5.01(*) 0.91(.43) 1.29(.28) 25.7(*) 1.05(.37) 24.8(*)

Note: * P-values are smaller than 0.01.

Table 2. Functional F test statistics for each covariate in the final functional
regression model

Data Set Intercept CM BaseCO Patches

Impute 1 254.6 14.71 25.1 27.3
Impute 2 239.3 13.75 24.7 24.0
Impute 3 272.0 15.35 26.6 33.4
Impute 4 250.7 14.04 26.3 26.8

                        Note: All p-values are smaller than 0.01
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FIGURE CAPTIONS

Figure 1. Mean levels of the carbon monoxide across the treatment groups.  For each

plot, the y-axis indicates log(1+y) transform of the original level of carbon monoxide

(p.p.m.), the x-axis indicates number of clinic visit for study participants (1, …, 36). Both

individual profiles and the mean profile are plotted for each of the four treatment

conditions: Control, RP-only, CM-only, and RP+CM (RP=Relapse Prevention,

CM=contingency Management).

Figure 2. The average and standard deviation (SD) curves for the log-scaled carbon

monoxide levels.  On this plot, the four mean curves of the log-scaled carbon monoxide

levels and the corresponding point-wise standard errors are drawn for each of the four

treatment conditions: Control, RP-only, CM-only, and RP+CM (RP=Relapse Prevention,

CM=Contingency Management). Vertical bars indicate the estimated standard errors of

average carbon monoxide levels. The stars (“*”) over the x-axis mark the time points

(i.e., visit numbers) where the carbon monoxide levels are significantly different

indicated by a point-wise ANOVA (P-value<0.001). Y-axis indicates values of carbon

monoxide levels after log(1+y) transform. X-axis represents number of clinic visit for

study participants (1 ,…, 36).

Figure 3.  Estimated regression coefficient functions in functional regression analysis for

the first imputed data set.  The top panel shows the regression coefficient functions

corresponding to effects of CM treatment, RP treatment and their interaction (CM*RP);

the bottom panel depicts the regression coefficient functions corresponding to baseline
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carbon monoxide level (BaseCO), smoker’ age (Age), and number of nicotine patches a

smoker has received during the study (Patches). Y-axis indicates values of regression

coefficients and x-axis indicates number of clinic visit for each smoker (1, …, 36).

Figure 4.  Diagnostics for the first imputed data set.  The left panel draws jackknife

residuals and the right panel depicts Cook statistics calculated from the functional

regression model including three predictors: CM, Baseco, and Patches. In both plots, the

x-axis corresponds to the labels of the 174 participants in the study. The y-axis

corresponds to either the values of jackknife residuals or Cook statistics. Two subjects

(numbered 92 and 93) have jackknife residuals noticeable high and one subject

(numbered 92) associates with the highest Cook statistics.
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Figure 1. Mean plots of the carbon monoxide levels across the treatment groups
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Figure 2.  Average and SD curves for the log-scaled carbon monoxide levels

Note:  (1) The vertical bars indicate the estimated standard errors for the average carbon
monoxide levels. (2) The stares over the x-axis indicates the time points where the p-
value of the point-wise ANOVA is smaller than 0.001.
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Figure 3. Estimated Regression Coefficient Functions in the Functional Regression
Analysis
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Figure 4.  Diagnostics for the First Imputed Data Set




