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Abstract

Fast and efficient transducers for microwave-optical quantum communication

by

Gregory Alexander Peairs

A quantum network consisting of computational nodes connected by high-fidelity com-

munication channels could expand information-processing capabilities beyond those of

classical networks. Superconducting qubits hold promise for scalable quantum compu-

tation at microwave frequencies, but must operate in an isolated cryogenic environment;

meanwhile, quantum communication over long distances has been demonstrated with

optical photons. A fast, quantum-coherent interface between the two would be a key

element of a large-scale quantum network or distributed quantum computer.

In this thesis, we describe the theoretical basis as well as the practical design and de-

velopment of a device incorporating a silicon optomechanical nanobeam and an aluminum-

nitride-based electromechanical transducer. We find that this class of device has the

potential to approach ideal quantum microwave-optical transduction. Finally, we ex-

perimentally demonstrate classical, continuous-wave operation of such a device with ex-

ternal conversion efficiencies of ηext = (2.5± 0.4) × 10−5 (microwave to optical) and

ηext = (3.8± 0.4) × 10−5 (optical to microwave), corresponding to internal efficiencies

of 2.4% and 3.75%. This device also has a larger bandwidth than previous efficient

vi



microwave-optical transducers, allowing us to operate in the time domain with 20 ns

pulses.
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Chapter 1

Quantum information processing

The work described in this thesis is directed toward the efficient and quantum-coherent

conversion of signals between microwave and optical frequencies. The chief motivation for

building such a device is in its potential for scaling up a quantum computer or network

by allowing quantum information to be shared between distant nodes.

Systems that require quantum mechanical descriptions—ranging from those provided

by nature like individual atoms or ions to engineered systems like quantum dots or super-

conducting circuits—can be used for information-processing tasks like computation and

communication. While classical computers encode information as separable “bits” taking

on values of 0 or 1, a quantum two-state system or “qubit” can be in a superposition

of its two states and quantum-mechanically entangled with any number of other qubits.

Taking advantage of the rules of quantum mechanics may offer an expansion of infor-

mation processing capabilities over what is practically possible with classical computers.
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For example, researchers have found quantum algorithms that have better asymptotic

scaling properties than the known classical algorithms for a number of problems, includ-

ing the factoring of large numbers and simulation of quantum systems. A sufficiently

large quantum computer could efficiently solve instances of these problems that are large

enough to be effectively intractable to known classical algorithms.

1.1 Superconducting qubits

Experiments so far have only demonstrated quantum control and readout of a small num-

ber of qubits. Scaling those experiments to a many-qubit fault-tolerant computer remains

a challenge. Among other candidates, superconducting quantum circuits have attracted

interest as a potentially scalable platform for quantum information processing [62]. Su-

perconducting qubits operate at microwave frequencies, with |0〉 and |1〉 states separated

by a typical energy difference around h × 6 GHz, where h is the Planck constant and

hf is the energy of a single field quantum (a photon, for electromagnetic fields) at fre-

quency f . To prevent errors due to thermal fluctuations in the environment driving the

transition from |0〉 to |1〉, devices at this frequency must be operated at temperatures

T � hf/kB ≈ 300 mK, where the Boltzmann constant kB relates the temperature to

the energy in microscopic degrees of freedom at that temperature. In practice, a dilution

refrigerator is used to cool these systems to below 10 mK.

Superconducting qubits on the same chip can be tunably coupled using superconduct-

ing circuit elements. Communication between remote qubits (for example, at different
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ends of a microwave cable or long on-chip transmission line) has also been demonstrated,

with recently achieved benchmarks for quantum communication including deterministic

bidirectional single-photon transfer and entanglement generation [33], as well as Bell-

inequality violation [68]. Coupling qubits in separate refrigerators presents further dif-

ficulties, since a microwave communication channel at room temperature will be noisy,

with thermal fluctuations overwhelming a single-photon signal.

1.2 Quantum networks

Quantum communication channels may have applications in cryptography, perhaps most

famously in quantum key distribution, as well as in distributed quantum computation. In

the latter, remote quantum processors would share an entangled state, effectively creating

a larger quantum computer than the largest modular quantum processor possible at a

given stage of development [30]. It would accordingly be valuable to combine a qubit

platform suitable for scalable computation with a long-distance communication channel.

Transmitting quantum information over long distances is a challenge, as quantum

states are vulnerable to loss in transmission or disturbance by the environment. While

there exist protocols for quantum error correction or purification, these require a mini-

mum fidelity as a starting point.

Optical photons are better suited than microwave photons for long-distance quantum

communication, since the energy carried by an optical photon is much greater than

that of thermal fluctuations in a room-temperature environment. For example, at the
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1550 nm telecommunications wavelength (f ≈ 193 THz, near-infrared), the energy of a

photon is hf ≈ kB(9000 K). Modern telecommunications technologies, including lasers

and optical fiber, are also well developed. Experiments have demonstrated quantum

teleportation (a fundamental building block of quantum communication protocols) of

information encoded in optical photons over distances up to 1400 km in free-space ground-

to-satellite communication [44], and 100 km in optical fiber [56].

Extending quantum communication beyond that scale becomes more difficult, as even

small but unavoidable transmission losses mount. Classical networks can reach arbitrary

distances using repeaters positioned throughout the network. These devices receive a

signal and re-transmit it, amplifying and correcting the signal to account for loss or er-

rors accumulated in transmission. The classical approach cannot be directly extended to

quantum signals. For example, error correction by simply measuring redundant copies of

the quantum state locally and then reconstructing the result would destroy any entan-

glement with the source node. More broadly, the quantum no-cloning theorem forbids

the amplification of arbitrary quantum states without some disturbance [65].

A quantum repeater protocol could be used to overcome this limitation [10]. It

would be desirable to implement a repeater using qubits suitable for computation, with

fast, high-fidelity operation scalable to hundreds of qubits. In this sense superconducting

qubits may be attractive for this purpose. A quantum repeater does, however, also require

efficient coupling of traveling photons to the qubits of the repeater node. The prospect of

using superconducting qubits as a platform for quantum repeaters thus further motivates

4



the development of a quantum microwave-optical transducer [40].

1.3 Microwave-optical transduction

An ideal quantum microwave-optical transducer would coherently and bidirectionally

exchange one microwave photon for one photon in the optical signal. The extra energy of

up- or down-conversion would come from an optical “pump” or “carrier” tone (that is, for

up-conversion, the energy of the microwave photon is added to a carrier photon to create

a signal photon). This exchange would also ideally be performed without adding noise to

the quantum state, requiring cryogenic operation to freeze out microwave thermal noise.

Classical radio- and microwave-frequency signals are routinely transmitted over an op-

tical carrier in research and communications applications. This can be accomplished, for

example, with phase modulation of the carrier by the signal, typically using the electro-

optic effect in a crystal like lithium niobate, resulting in optical sidebands separated from

the carrier by the signal frequency.

That is, given an optical input amplitude α0e
−2πifct (with power |α0|2) at carrier

frequency fc, modulated at microwave frequency fm with modulation depth M , phase

modulation produces the output field

α(t) = α0e
−2πifcte−iMsin(2πfmt)

=
∞∑

n=−∞

α0Jn(M)e−2πi(fc+nfm)t (1.1)
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expanded in Bessel functions of the first kind Jn. For weak modulation (M � 1), the

carrier is not depleted (J0(M) ≈ 1), and the higher-order sidebands (|n| > 1) can be

ignored.

On the simplest level, something like the commercial broadband electro-optic modu-

lator we use in our lab would be far too inefficient for quantum transduction, and cannot

practically be used for optical-to-microwave conversion at all.1 Typically the efficiency

of electro-optic modulation in a phase modulator is described indirectly using the half-

wave voltage Vπ, defined such that the electro-optic phase shift due to a voltage V (t)

is ∆φ = πV (t)/Vπ. It is a useful exercise to convert this to a ratio of average output

sideband photon rate to average input microwave photon rate, since this is the sort of

calculation underlying the efficiencies computed later in this thesis.

For a microwave input power Pin = V 2
rms/Z0 with Vrms � Vπ incident on the electro-

optic modulator (impedance matched to Z0 = 50 Ω), we can calculate the output power

in the optical sidebands

Psb = 2 |α0J1(M)|2 = 2 |α0|2
∣∣∣J1(π

√
2Vrms/Vπ)

∣∣∣2
≈ 2 |α0|2

∣∣∣∣12π√2Vrms/Vπ

∣∣∣∣2
= |α0|2

(
πVrms

Vπ

)2

. (1.2)

The respective microwave and optical average photon rates are Pin/hfm and Psb/hfc.

1Meanwhile, a classical microwave-frequency signal can be recovered from an optical carrier and
sideband using a high-speed amplified photodetector with bandwidth sufficient to see the beat between
the sideband and carrier, but this will not preserve quantum coherence.
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Then the efficiency is

Psbfm
Pinfc

=
fm |α0|2 π2Z0

fcV 2
π

. (1.3)

For our microwave frequency fm = 5 GHz, near-infrared carrier frequency fc = 193 THz,

and a typical Vπ = 5 V, this is |α0|2 /2 kW. That is, (incorrectly) extrapolating the

linear performance implies that kilowatts of carrier power would be required to reach

unit photon efficiency (and this power would instead destroy the device first). In a

cryogenic environment, peak power could be limited to microwatts in order to prevent

heating (particularly in the vicinity of superconducting electrodes), giving efficiency of

order 10−9. Quantum transduction seems to require a different approach.

1.4 Towards quantum transduction

One possibility is to enhance the electro-optic interaction by using resonant optical and

electrical modes. This is the approach taken by Fan et al. [18], where two optical modes

of an aluminum nitride ring resonator are matched to the electric field of a capacitor in

a microwave-frequency superconducting inductor-capacitor (LC) resonator. The authors

achieve a total bidirectional efficiency of 2.05% (internal efficiency 25.9%). The experi-

ment uses relatively high optical pump powers, with over 3 × 107 photons in the pump

mode, and requires the device be immersed in superfluid helium to promote thermaliza-

tion to the cryogenic environment [55].
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Another approach is to create a common interface between the two frequencies with

some third component. The system demonstrated in Ref. [1] uses a mechanically compli-

ant membrane for this purpose. One portion of the membrane couples to an LC resonator,

while another couples to a resonance of an optical mirror cavity. Vibrational motion in-

volving the entire membrane thus couples the microwave and optical electromagnetic

modes. One potential drawback is that the mechanical resonance used is around 1 MHz,

meaning that even if the membrane is thermalized to a 10 mK cryogenic environment,

there will be substantial thermal mechanical motion adding noise to the transduction

process; the conversion bandwidth will also be limited by the relatively low mechanical

frequency. In Ref. [24], such a system was operated with 47% conversion efficiency and

12 kHz bandwidth, also demonstrating the reduction of added noise by a feed-forward

protocol.

Meanwhile, optomechanical crystal devices (Fig. 1.1) provide an on-chip platform

for coupling optics to microwave-frequency mechanical modes [50]. Devices made from

silicon have been operated in the quantum regime [46, 47, 37, 26] and with very high

mechanical quality factor corresponding to phonon lifetime above 1 second [35]. If an elec-

tromechanical element is included in such a device, a path can be created between optical

and microwave-frequency electromagnetic signals. The use of microwave-frequency me-

chanics is particularly attractive for quantum transduction, as the mechanical resonator

will be near its quantum ground state in a cryogenic environment. Transduction can also

be performed with a relatively high bandwidth, which is relevant for fast operation with

8



10 μm

1 μm

a

b

Figure 1.1: Silicon optomechanical nanobeam and coupling waveguide. Op-
tomechanical crystal devices are described in Chapter 3. a, Angled scanning electron
micrograph showing mechanical release of nanobeam from the substrate. b, Optome-
chanical “defect” at the center of the nanobeam.

superconducting qubits that may have lifetimes in the tens of microseconds [62].

Silicon does not provide a convenient means for strong electromechanical coupling.

Other work has used gallium arsenide, which is optically similar to silicon while also

exhibiting a piezoelectric effect, for electro-optomechanical transduction from microwaves

to optics [6, 5], most recently demonstrating conversion with less than one thermal phonon

in the mechanical resonator [19]. The work described in this thesis instead uses aluminum

nitride, which has a considerably stronger piezoelectric effect and can be deposited in a

thin film, allowing it to be used together with silicon optomechanics.
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In a predecessor to the experiment described in Chapter 5, unidirectional microwave-

to-optical transduction was demonstrated using an optomechanical nanobeam fabricated

in thin-film aluminum nitride [8]. The mechanics were driven electrically using the piezo-

electric effect in aluminum nitride, with electrodes patterned on the top and bottom

surfaces of the nanobeam some distance from the optomechanical resonator. This al-

lowed phase-sensitive optical readout of coherent excitations of the mechanical mode

near the level of a single phonon.

For a subsequent experiment building on those results, we developed a design and

fabrication process for an interdigital acoustic-wave transducer on an aluminum nitride

membrane (Fig. 1.2). This allowed mode matching of the acoustic wave coupled out of

the nanobeam in the experiment described in Ref. [57], which demonstrated bidirectional

conversion of signals between microwave and optical frequencies with external amplitude

scattering matrix elements Soe,ext = (1.4± 0.6)×10−4 (electrical to optical) and Seo,ext =

(3.0± 0.9)× 10−4 (optical to electrical). In the terminology of this thesis, these are on-

chip photon efficiencies ηGHz→opt = 1.4 × 10−7 and ηopt→GHz = 6.6 × 10−7 (the squares

of the scattering matrix elements, where the 13.8% grating-coupler efficiency for getting

light on and off chip has been divided out; see Chapter 2).

A major factor limiting performance in the above experiment was the achievable

optomechanical coupling strength in an aluminum-nitride device. Silicon exhibits a

much stronger photoelastic effect. Combining a silicon optomechanical platform with

an aluminum-nitride-based electromechanical element (Fig. 1.3), together with revisiting

10



50 μm

Figure 1.2: Membrane acoustic wave transducer. This device, which uses interdigi-
tal electrodes to excite and detect resonant acoustic waves on a piezoelectric aluminum ni-
tride (AlN) membrane, was part of the development of an all-AlN electro-optomechanical
transducer [57]. Membrane acoustic wave devices are described in Chapter 4.
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40 μm

Figure 1.3: Electro-optomechanical transducer. A silicon optomechanical
nanobeam is connected to an acoustic wave transducer on a piezoelectric bilayer mem-
brane. Experimental results using this device are described in Chapter 5.

and optimizing each part of the design, has the potential to enable transduction with

near unit efficiency. In the following chapters, we present a theoretical model for such a

device, the design and analysis of the optomechanical and electromechanical components,

and the experimental results of continuous and time-domain operation of the device.
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Chapter 2

Theory of electro-optomechanical

transduction

In this chapter we build up a model of a hybrid electromechanical-optomechanical sys-

tem. The system consists of a mechanical mode coupled to both a microwave-frequency

electromechanical mode and an optical mode, allowing transfer of electromagnetic signals

between microwave and optical frequencies.

Similar three-mode models of state transfer are described in Refs. [1, 24] and [66].

In all of these the electromechanical mode is replaced by a microwave-frequency LC

resonator, while the mechanical mode is considered as a single mode with two loci, each

coupled to either the microwave or optical mode. In the first pair of experiments, the

mechanical mode is at a lower frequency and the microwave-mechanical coupling is an

optomechanical coupling.1 In the device proposed in the third reference, there is really

1For fixed microwave pump strength, when red detuned and sideband resolved, this system approx-
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a pair of hybridized mechanical-electromechanical modes, as in our device, but only one

is considered. The microwave and mechanical modes are also assumed to be frequency

matched, and the analysis is performed with an equivalent circuit model. Finally, Wang

and Clerk [61, 60] theoretically describe transfer protocols in three-mode systems using

time-domain control of both couplings, taking advantage of mechanically dark modes to

optimize transfer in the presence of strong mechanical dissipation.

We first present the standard optomechanical Hamiltonian before adding in the elec-

tromechanical mode, after which we discuss transduction efficiency, bandwidth, and

added noise in the three-mode system.

2.1 Optomechanics

A number of diverse systems exhibit interactions between electromagnetic fields and

mechanical motion. A review of cavity optomechanics can be found in Ref. [3].

The basic optomechanical Hamiltonian describes an optical mode whose frequency is

modulated by the displacement of a mechanical mode. Writing the optical annihilation

operator â and mechanical displacement x̂ = xzpf(b̂ + b̂†) (with zero point displacement

imately reproduces our Hamiltonian of Eqn. 2.12 below, but the low-frequency mechanical mode leads
to significant differences in operating bandwidth and added noise; see §2.3.1 and §2.4 below.
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xzpf)
2 the Hamiltonian is

Ĥom = ~â†â (ω(x̂)) + ~Ωmb̂
†b̂. (2.1)

with optical and mechanical frequencies ω(x̂) and Ωm.

The classic example is an optical cavity with one fixed mirror and one mirror on

a spring (considering only one cavity mode and one vibrational mode). The optical

resonance frequency is inversely proportional to the cavity length L + x̂ and can be

expanded as a function of x̂:

ω(x̂) = ωopt

(
1− x̂

L
+ · · ·

)
. (2.2)

Then the optomechanical Hamiltonian is

Ĥom = ~â†â
(
ωopt + g0(b̂+ b̂†)

)
+ ~Ωmb̂

†b̂, (2.3)

where we have identified −ωoptxzpf/L as the “single-photon” (or sometimes “vacuum”)

optomechanical coupling g0, so called because the energy shift is ~g0 per photon in the

cavity at the mechanical zero-point fluctuation amplitude.

2The zero point displacement is the amplitude of displacement fluctuations in the mechanical ground
state, meaning mΩ2

mx
2
zpf/2 = p2

zpf/2m = ~Ωm/4, or xzpf =
√
~/2mΩm, for a mode with effective mass

m. For modes where the physical displacement is a spatially varying vector u, we can parameterize it
as u = xq. By convention we choose the scalar x to describe some characteristic displacement, typically
evaluated at the spatial maximum of |u|. Then the potential energy mΩ2

mx
2/2 of the parameterized

oscillator can be related to the actual strain potential energy associated with u, fixing m, after which
xzpf can be calculated.
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The optomechanical nanobeam devices discussed in this thesis are described by this

mirror-on-a-spring Hamiltonian with coupling linear in x̂. In other systems, it is possible

to obtain a coupling where the quadratic term dominates in the expansion of ω(x̂); this

is known as “membrane-in-the-middle” optomechanics, since it arises when a vibrational

mode of a membrane interacts with two cavity modes on either side, causing zero variation

in optical energy to first order in displacement.

We are interested in the system when driven (or “pumped”) with a laser at frequency

ωL. It is convenient to switch to the frame rotating at ωL, and define ∆ ≡ ωopt−ωL � ωopt

as the frequency of the cavity mode in that frame. Note that ∆ > 0 corresponds to a

pump that is red-detuned (that is, at a lower or “redder” frequency than the cavity).

Then the Hamiltonian becomes

Ĥom ≈ ~∆â†â+ ~Ωmb̂
†b̂+ ~g0

(
â†â
)

(b̂+ b̂†) (2.4)

Here we have made the rotating wave approximation, dropping terms rotating at ωL+ωopt,

since dynamics on that timescale average to zero on the timescales of interest.

We can write the optical cavity field as a small fluctuation around a mean coherent

amplitude α:

â = α + δâ. (2.5)
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This allows us to “linearize” the optomechanical interaction as3

Ĥint,om ≈ ~g0

(
α∗δâ+ αδâ†

)
(b̂+ b̂†). (2.6)

We can also identify the “driven” or “pumped” optomechanical coupling Gom ≡ αg0,

observing that the effective coupling strength can be controlled by modulating the pump

strength.

With a pump red detuned by the mechanical frequency, the δâ†b̂ and δâb̂† terms

are resonant (describing energy-conserving processes that would survive another rotating

wave approximation), respectively denoting the destruction of a phonon for the creation

of a cavity photon from the pump and the reverse process. These processes can be used for

state transfer or cooling of the mechanical mode. For a blue detuned pump, the resonant

terms involve δâ†b̂† and δâb̂ (the simultaneous creation or destruction of one photon and

one phonon) which describe two-mode squeezing or mechanical self-amplification.

2.1.1 Origin of the optomechanical coupling

The optomechanical coupling in our devices arises from a combination of the photoelastic

effect and the moving dielectric boundary seen by the optical mode.4 The optical fre-

3Here and elsewhere in this thesis, we ignore terms in the Hamiltonian like an additional |α|2 ~g0(b̂+b̂†)
from displacement coupling to the constant coherent amplitude of the optical mode; this amounts to
a small shift in the equilibrium displacement and does not affect the dynamics, allowing us to slightly
redefine x̂ to eliminate that term. Likewise for the much smaller coupling to the zero-point energy of
the optical mode, which could have been included in Eqn. 2.1. The linearization also ignores the terms
quadratic in δâ, which has been assumed to be small.

4For another perspective on optomechanical coupling, see the literature on stimulated Brillouin scat-
tering (SBS), which deals with traveling waves rather than localized cavity modes [17]. The coupling
is usually described as originating from electrostriction and radiation pressure—that is, the respective
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quency shifts due to these effects can be derived using perturbation theory; this discussion

follows Refs. [27, 28, 11].

The photoelastic effect describes the modulation of the optical permittivity ε by

mechanical strain S, using the photoelastic tensor pijkl to write the change in permittivity

(ε(S)− ε(0))ij = − 1

ε0

εikpklmnSmnεlj, (2.7)

summing over repeated indices.

This gives rise to the optomechanical coupling

~g0,pe =
1

4

∫
dV

1

ε0

E∗i εikpklmnSmnεljEj. (2.8)

Here the strain field S is normalized to its zero-point amplitude (see Footnote 2), the

electric field E is normalized to its single-photon amplitude (such that the time-averaged

electric and magnetic field energy are each ~ωopt/2), and the integral is over the me-

chanical solid volume. The coupling has been written as an energy, with normalization

absorbed into the fields, to highlight the connection with the Hamiltonian.

For silicon, we have the isotropic index of refraction n =
√
ε11/ε0 and three inde-

pendent photoelastic coefficients p11 ≡ p1111, p12 ≡ p1122, and p44 ≡ p1212 given cubic

backactions of our photoelastic and moving boundary effects, now from the perspective of the optical field
acting on the mechanics. (Though also be aware that elsewhere, reported coefficients for electrostriction
are usually for the quadratic mechanical response to electric fields not optically but at microwave or
lower frequency.) The two perspectives have recently converged, particularly with the development of
nanophotonic SBS devices. A useful bridge between them is provided by Ref. [59]. A recent tutorial on
the subject, with COMSOL model files hosted in a data repository, is provided by Ref. [63].
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symmetry [67]. The product can be written out as5

~g0,pe =
ε0n

4

4

∫
Si

dV
(
|E1|2 (p11S11 + p12(S22 + S33))

+ |E2|2 (p11S22 + p12(S11 + S33))

+ |E3|2 (p11S33 + p12(S11 + S22))

+ 4Re[E1E2]p44S12

+ 4Re[E1E3]p44S13

+ 4Re[E2E3]p44S23

)
. (2.9)

The mechanical displacement also causes a change in the dielectric seen by the optical

field at the boundaries of the mechanical resonator. To ensure we only deal with field

components that are continuous across the boundary (and hence well defined on the

boundary), we split the field into components parallel and perpendicular to the boundary,

and define ∆ε = ε1−ε2 and ∆ε−1 = ε−1
1 −ε−1

2 as well as the unit surface normal n̂ pointing

from the material with permittivity ε1 to the material with ε2. Then we can write the

moving-boundary optomechanical coupling

~g0,mb = −1

4

∫
dAu · n̂

(
∆ε
∣∣E‖∣∣2 −∆ε−1 |D⊥|2

)
. (2.10)

5The factor of 4 in the p44 terms can be obtained by using Voigt notation and keeping careful
track of the covariant and contravariant representations (see Ref. [23]), or by simply counting identical
terms when summing over all indices for the original tensor product: E∗1p1212S12E2 + E∗2p2112S12E1 =
E∗1p1221S21E2 + E∗2p2121S21E1 = 2Re[E1E2]p1212S12 and so on. Since these terms are typically small,
the correct multiplicity may be overlooked (and appears to have been overlooked in some references
including Refs. [11, 12]). I thank Rhys Povey for pointing this out.
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Figure 2.1: Schematic representation of coupled optical, mechanical, and elec-
tromechanical modes. The optical mode is shown with external coupling to both
propagating directions in an evanescently coupled waveguide.

Again, the mechanical displacement and electric fields are normalized to give one half

phonon and one photon of total energy in the respective modes. The integral is over the

surface of the mechanical solid.

2.2 Electro-optomechanics

The electro-optomechanical model consists of the following modes and couplings, illus-

trated in Fig. 2.1:

� An optical mode with annihilation operator â at frequency ωopt, with intrinsic loss

rate κi and extrinsic loss κe/2 to each of two propagation directions in an adjacent

waveguide6

� A microwave-frequency mechanical mode b̂ at Ωm with intrinsic loss rate γb,i

6This is sometimes called “two-sided coupling” in the text. This is meant in contrast to “one-
sided” coupling, in which the optical mode emits into only one propagation direction at the end of
a waveguide and must be probed in reflection. Because only one direction of propagation is used for
sending and receiving signals, two-sided coupling generally results in the loss of half of the signal, but
allows transmission measurements.
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� A microwave-frequency electromechanical mode ĉ at Ωem (near Ωm) with intrinsic

loss rate γc,i, and external coupling γc,e to a microwave transmission line

� Single-photon optomechanical coupling g0 between modes â and b̂

� Fixed coupling Gme between the mechanical and electromechanical modes b̂ and ĉ,

described by Ĥme = ~Gme(b̂ĉ
† + b̂†ĉ) to first order in the respective fields, keeping

energy-conserving terms.

We also define total loss rates for ease of notation:

κ = κi + κe, γc = γc,i + γc,e. (2.11)

We perform the same rotating-wave approximation and linearization of the optome-

chanical Hamiltonian as in Eqns. 2.3–2.6. Then the driven electro-optomechanical Hamil-

tonian can be written

Ĥeom = ~∆â†â+ ~Ωmb̂
†b̂+ ~Ωemĉ

†ĉ+ ~g0

(
α∗â+ αâ†

)
(b̂+ b̂†)

+ ~Gme(b̂ĉ
† + b̂†ĉ) + Ĥenv. (2.12)

Here we include Ĥenv to describe linear coupling to any bath or drive fields.7 We also

relabel δâ as â to reduce clutter.

7See the appendices to Ref. [13] for an introduction to the treatment of these fields in input-output
theory.
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2.2.1 Input-output relations

Including input and bath fields coupled to each mode, the Hamiltonian (2.12) gives rise

to equations of motion according to

d

dt
Ô =

i

~
[Ĥ, Ô] (2.13)

for each operator Ô, yielding

dâ

dt
= − (i∆ + κ/2) â− ig0α(b̂+ b̂†)−

√
κe/2 (âin→ + âin←)−

√
κi âin,i, (2.14)

db̂

dt
= − (iΩm + γb,i/2) b̂− ig0

(
α∗â+ αâ†

)
− iGmeĉ−

√
γb,i b̂in, (2.15)

dĉ

dt
= − (iΩem + γc/2) ĉ− iGmeb̂−

√
γc,e ĉin −

√
γc,i ĉin,i. (2.16)

The factor of two in
√
κe/2 is due to the use of two-sided optical coupling.

For now, we are interested in classical operation of this system and will replace the

field operators with time-varying amplitudes. We will also set aside questions of noise

until §2.4 and drop the unused input terms.

As above, we deal with the system when pumped optically at a frequency ωL =

ωopt − ∆ with input drive a0,in, producing a cavity amplitude of a0 at that frequency.

We also consider the first upper and lower sidebands a− and a+ at ωL + Ω and ωL − Ω,

respectively (labeled such that a− is resonant with the cavity when ∆ = Ω, i.e. in
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Freq.
0

Figure 2.2: Optical pump, sidebands, and cavity. A red-detuned pump with
amplitude a0 is schematically represented with red sideband amplitude a+ and blue
sideband a−. The blue sideband is near-resonant with the cavity (pink).

red-detuned operation).8 The cavity amplitude in the rotating frame is

a(t) = a0 + a−e
−iΩt + a+e

iΩt. (2.17)

These fields are represented schematically in Fig. 2.2.

We assume that the sideband fields are small compared to the pump, no matter what

happens to them, so that we simply have α = a0 and average steady-state cavity photon

number nopt = |a0|2. We also assume higher-order sidebands are negligible. Similarly, we

consider the microwave fields at signal frequency Ω as b(t) = be−iΩt and c(t) = ce−iΩt. We

then label the corresponding optical inputs and outputs in the forward direction a±,in→,

a±,out→, and the microwave input and output cin, cout.

8The labeling of the sidebands may seem backwards, but like the sign of ∆ it follows most (but not
all) other references including Ref. [48]. One could take the sign to refer to the phase rotation in the
rotating frame (that is, the sign of the exponent in Eqn. 2.17).
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This leads to the input-output relations in the frequency domain

−iΩa− = − (i∆ + κ/2) a− − ig0a0b−
√
κe/2 a−,in→, (2.18)

−iΩa∗+ = − (−i∆ + κ/2) a∗+ + ig0a
∗
0b−

√
κe/2 a

∗
+,in→, (2.19)

−iΩb = − (iΩm + γb,i/2) b− ig0

(
a∗0a− + a0a

∗
+

)
− iGmec, (2.20)

−iΩc = − (iΩem + γc/2) c− iGmeb−
√
γc,e cin, (2.21)

a±,out→ = a±,in→ −
√
κe/2 a±, (2.22)

cout = cin −
√
γc,e c. (2.23)

2.3 Electro-optomechanical transduction efficiency

We can now solve the above system of equations for the outputs in terms of the inputs

to describe the transduction performed by the device.

We introduce the susceptibility9 χ of each resonator, which relates each cavity field

9A more familiar definition of the mechanical susceptibility may be as the linear displacement response
to a force with viscous damping; ours looks a bit different, since we are thinking in terms of the response to
“input fields”, which act on the first derivative of the amplitude rather than on the second derivative. Our
description also makes the approximation that both mechanical quadratures are damped symmetrically,
since the distinction is irrelevant near resonance when the damping is much slower than the oscillation
frequency. For further discussion see Ref. [45].
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to its input field in the absence of coupling, along with a normalized version Λ:10

χ−opt(Ω) ≡ 1

i (∆− Ω) + κ/2
, Λ−opt(Ω) ≡ κ

2
χ−opt(Ω), (2.24)

χ+
opt(Ω) ≡ 1

i (∆ + Ω) + κ/2
, Λ+

opt(Ω) ≡ κ

2
χ+

opt(Ω), (2.25)

χm(Ω) ≡ 1

i (Ωm − Ω) + γb,i/2
, Λm(Ω) ≡ γb,i

2
χm(Ω), (2.26)

χem(Ω) ≡ 1

i (Ωem − Ω) + γc/2
, Λem(Ω) ≡ γc

2
χem(Ω). (2.27)

Then a useful intermediate step is to write the mechanical amplitude b in terms of

inputs and outputs, with other fields in terms of b and their own inputs:

a− =
(
−ig0a0b−

√
κe/2 a−,in→

)
χ−opt(Ω), (2.28)

a∗+ =
(
ig0a

∗
0b−

√
κe/2 a

∗
+,in→

) (
χ+

opt(Ω)
)∗
, (2.29)

c =
(
−iGmeb−

√
γc,e cin

)
χem(Ω), (2.30)

b =
1

i (Ωmech − Ω) + γb,i/2 + |a0|2 g2
0

(
χ−opt(Ω)−

(
χ+

opt(Ω)
)∗)

+G2
meχem(Ω)

×
(
ig0

√
κe/2

(
a∗0a−,in→χ

−
opt(Ω) + a0a

∗
+,in→

(
χ+

opt(Ω)
)∗)

+ iGme
√
γc,e cinχem(Ω)

)
. (2.31)

The first term in the above expression for b can be identified as an effective mechanical

10The norm squared of each Λ is a Lorentzian with a maximum of 1 occurring on resonance, which
can be a little more natural to reason about than a susceptibility. Note that Λ−opt(Ω) = 1 for positive

Ω = |∆| when red detuned (∆ > 0), while Λ+
opt(Ω) = 1 for positive Ω = |∆| when blue detuned (∆ < 0).

These describe the cavity response for the corresponding frequency components of the optical field a−
and a+. I emphasize these details of notation because keeping them in mind makes many equations in
the rest of this chapter easier to read and interpret.
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susceptibility:

χ−1
m,eff(Ω) = χ−1

m (Ω) + |a0|2 g2
0

(
χ−opt(Ω)−

(
χ+

opt(Ω)
)∗)

+G2
meχem(Ω)

= i (Ωm − Ω) +
γb,i
2

(
1 + Com

(
Λ−opt(Ω)−

(
Λ+

opt(Ω)
)∗)

+ CmeΛem(Ω)
)

(2.32)

≡ γb,i
2

Λ̃−1
m,eff(Ω) (2.33)

where

Com ≡
4 |a0|2 g2

0

γb,iκ
, Cme ≡

4G2
me

γb,iγc
(2.34)

are the optomechanical and mechano-electromechanical cooperativities, and we have

placed a tilde on Λ̃m,eff to remind us that unlike our other Λ functions it may not be

equal to 1 on resonance. (Moreover, its norm splits into multiple peaks at high coopera-

tivities.) We can recognize the effective mechanical damping rate as

γb,eff ≡ γb,iRe[
(
1 + Com

(
Λ−opt(Ω)−

(
Λ+

opt(Ω)
)∗)

+ CmeΛem(Ω)
)
]. (2.35)

It is often useful to define the optomechanical or electromechanical damping rates for

frequency-matched, sideband-resolved operation (Ω = Ωm = Ωem = ±∆� κ),

γom ≡
4 |a0|2 g2

0

κ
, γme ≡

4G2
me

γc
, (2.36)

and then think of the cooperativities as describing the competition between those rates
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and the intrinsic mechanical loss rate:

Com =
γom

γb,i
, Cme =

γme

γb,i
. (2.37)

Meanwhile, the Λ functions (or susceptivities) in the denominator of Λ̃−1
m,eff(Ω) describe

effective modifications of these interactions for off-resonant operation, whose complex

parts lead to frequency shifts and whose real parts lead to an effective modification of

the mechanical damping rate γb,i.

We thus see that the coupling to other modes induces a detuning-dependent self-

interaction. In particular, the optical pump detuning (red or blue) changes the sign

of the optomechanical damping term, leading to either damping (red) or anti-damping

(blue), while the pump strength controls its magnitude through the factor of |a0|2.

2.3.1 Microwave-to-optical transduction

Driving only the microwave port (a±,in→ = 0) at frequency Ω, we find the transmission

to the upper and lower sidebands:

a−,out→ = −8a0g0Gme

γb,iγcκ

√
γc,eκe/2 Λem(Ω)Λ−opt(Ω)Λ̃m,eff(Ω) cin (2.38)∣∣∣∣a−,out→

cin

∣∣∣∣2 = ηoηe × 4 ComCme

∣∣∣Λem(Ω)Λ−opt(Ω)Λ̃m,eff(Ω)
∣∣∣2 , (2.39)

a∗+,out→ =
8a∗0g0Gme

γb,iγcκ

√
γc,eκe/2 Λem(Ω)

(
Λ+

opt(Ω)
)∗

Λ̃m,eff(Ω) cin (2.40)∣∣∣∣a+,out→

cin

∣∣∣∣2 = ηoηe × 4 ComCme

∣∣∣Λem(Ω)Λ+
opt(Ω)Λ̃m,eff(Ω)

∣∣∣2 (2.41)
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where

ηo ≡
κe/2

κ
, ηe ≡

γc,e
γc

(2.42)

are the optical and electrical external coupling ratios. (Note again the factor of 2 from

the use of one optical port in two-sided coupling.)

Equations 2.39 and 2.41 describe the total microwave-to-optical transduction effi-

ciency

ηGHz→opt ≡
∣∣∣∣a±,out→

cin

∣∣∣∣2
ain→=0

(2.43)

= ηoηe × 4 ComCme

∣∣∣Λem(Ω)Λ±opt(Ω)Λ̃m,eff(Ω)
∣∣∣2 (2.44)

where we consider the near-resonant sideband to be the transmitted signal (that is,

a−,out→ when red detuned or a+,out→ when blue detuned). For sideband-unresolved sys-

tems, there is also transmission into the off-resonant sideband, which depending on the

detection scheme may cause interference in the actual detected signal (see §2.3.3).
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We can also define an “internal” efficiency11

ηint ≡ ηGHz→opt/(ηoηe). (2.45)

This efficiency is plotted as a function of cavity detuning and signal frequency in Fig. 2.3

for two different sets of device parameters.

In the case of frequency-matched mechanical and electromechanical modes with the

optical pump red detuned by the mechanical frequency, while driving at that same fre-

quency (Ω = Ωm = Ωem = ∆), the efficiency becomes

ηGHz→opt = ηoηe ×
4 ComCme∣∣1 + Com

(
1− Λ+

opt(Ωm)
)

+ Cme

∣∣2 . (2.46)

(In the experiment described in this thesis, our mechanical and electromechanical modes

are separated by Ωm −Ωem ≈ γc, so that |Λem(Ωm)|2 ≈ 0.2, effectively reducing the peak

efficiency by a factor of at least 5.)

If the system is also sideband-resolved (Ωm � κ), one can make the approximation

ηGHz→opt ≈ ηoηe ×
4 ComCme

(1 + Com + Cme)
2 . (2.47)

11We should be careful in interpreting ηint. We can, as a straightforward matter of engineering, make
ηo and ηe close to one by increasing the external coupling to the optical and electromechanical modes
(and using one-sided optical coupling) so that κ ≈ κe and γc ≈ γc,e. But the resulting increase in
total damping κ and γc also affects ηint. Even if (as in our case) γc,e ≈ 0.01 × γc so that the effect
on total efficiency is mainly the increase in the coupling ratio ηe, the internal efficiency is not quite an
idealized efficiency of a given device. Rather, it is a description of the “internal” part of efficiency that
is dependent only on the rates of energy exchange between modes compared to total damping. It is still
worth thinking about various idealizations of a device to determine directions for further work, but we
will call the resulting efficiencies something else.
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Figure 2.3: Microwave-optical transduction efficiency. Internal transduction effi-
ciecy is plotted as a function of signal frequency Ω and cavity-laser detuning ∆ > 0 (red
detuned). The model uses Ωm = Ωem = 2π× 5 GHz, γc = 2π× 25 MHz, κ = 2π× 1 GHz,
g0 = 2π × 1 MHz, and Gme = 2π × 6.125 MHz. These parameters are somewhat bet-
ter than those of the device measured in Chapter 5 but are intended to be realistically
achievable. Left: γb,i = 2π × 3 MHz and nopt = 750, so that Cme = Com + 1 = 2, giving a
maximum ηint = 0.5 with a 3 dB bandwidth of around 10 MHz. Right: γb,i = 2π×30 kHz
and nopt = 1500, so that Cme = Com +1 = 200, giving a maximum ηint near the ideal value
of 1 with a 3 dB bandwidth slightly above 10 MHz. A 100-fold increase in mechanical Qi

is chosen to be comparable to what has been achieved in a number of cryogenic silicon
optomechanical experiments.
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When considering this efficiency as a function of one cooperativity with the other

fixed, we find the efficiency-maximizing cooperativities

C?om = Cme + 1 for fixed Cme and (2.48)

C?me = Com + 1 for fixed Com. (2.49)

This can be thought of as an impedance matching condition in light of the effective

mechanical susceptibility, such that the loading (increase in linewidth) of the mechanical

mode induced by one coupling is equal to the intrinsic loss rate plus the loading by

the other mode (see Eqns. 2.32–2.37). Thus for a given device (since Cme is fixed), we

want to set the pump power according to Eqn. 2.48; when designing the device, we

consider Eqn. 2.49 along with the parameters we expect to be achievable (as in §3.2.1).

In practice, heating of the cavity by the pump limits the Com we can (usefully) achieve,

although this can be mitigated by operation with short pulses. At the optimum points

given by these equations, the ideal efficiency is 0.5ηoηe when the smaller cooperativity is

1, and it approaches ηoηe for cooperativities greater than 1. An overcoupled device in the

high-cooperativity limit can thus approach the ideal efficiency of 1, with minimal added

noise as described in §2.4 below.

For the equivalent blue-detuned case (∆ < 0), we have the efficiency

∣∣∣∣a+,out→

cin

∣∣∣∣2 ≈ ηoηe ×
4 ComCme

(1− Com + Cme)
2 (2.50)

31



as long as 1− Com + Cme > 0 (otherwise, the mechanical mode enters a self-amplification

regime and will ultimately be limited by some nonlinearity). We can thus achieve gain

by operating with blue detuning, which comes at the cost of noise through amplification

of the mechanical mode and enhanced shot-noise scattering of pump photons depositing

energy into the mechanics (see §2.4).

Transduction bandwidth

The transduction bandwidth is also an important figure of merit, since it limits the

speed at which transduction operations can be performed. The frequency dependence

of the transduction efficiency comes from the responses of the various cavities near that

frequency—specifically, from the term

∣∣∣Λem(Ω)Λ±opt(Ω)Λ̃m,eff(Ω)
∣∣∣2 (2.51)

in Eqns. 2.39 and 2.41. We can define the transduction bandwidth as the range of signal

frequency Ω over which transduction efficiency is at least half of the maximum efficiency.

This bandwidth will be maximized in red detuned operation, through the optomechanical

effect on Λ̃m,eff(Ω).

The optical lineshape
∣∣Λ−opt(Ω)

∣∣2 around Ω ∼ Ωm is relatively flat and will not affect

the bandwidth much (that is, κ� γc, γb,eff in practice). At low cooperativity (Com,me < 1)

we can see from the remaining terms that the transduction bandwidth will be smaller

than γc and γb,eff ≈ γb,i, since the efficiency is approximately proportional to the product
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of two Lorentzians with those linewidths. With some analysis, one can show that the red

detuned, high-cooperativity limit (∆ = Ωm, Com ≈ Cme � 1) gives a limiting maximum

bandwidth of twice the electromechanical damping rate (2γc in angular frequency units).

We can thus achieve high bandwidth by making the external electromechanical cou-

pling γc,e large (as long as large, matched cooperativities can still be obtained).12 It is also

possible to trade off maximum efficiency for more bandwidth, for example by operating

above the optimal pump power.

Note that this bandwidth is directly related to time-domain operation in the usual

way for the case of a continuous-wave pump with pulsed signals. In Chapter 5, we instead

operate in the time domain by pulsing the optical pump power, making the equations of

motion (2.14–2.16) explicitly time dependent through α(t).

2.3.2 Optical-to-microwave transduction

If we return to Eqns. 2.28–2.31 and consider optical-to-microwave transduction (cin = 0),

we find the output microwave field

cout = −8g0Gme

γb,iγcκ

√
γc,eκe/2 Λem(Ω)Λ̃m,eff(Ω)

×
(
a∗0a−,in→Λ−opt(Ω) + a0a

∗
+,in→

(
Λ+

opt(Ω)
)∗)

. (2.52)

12This can be compared to the system described in Refs. [1, 24], which is similar to ours except
that mode c is optomechanically coupled to a much lower-frequency mechanical mode b. While it
produces a similar functional form for transduction efficiency when the pumps for both the c and a
modes are red detuned and sideband resolved, the bandwidth is limited in practice by the low mechanical
frequency, since it sets the top of the frequency hierarchy below which electromagnetic linewidths and
optomechanical couplings must sit [2].
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When driving with a single sideband, this gives us the transmission

∣∣∣∣ cout

a±,in→

∣∣∣∣2 = ηoηe × 4 ComCme

∣∣∣Λem(Ω)Λ±opt(Ω)Λ̃m,eff(Ω)
∣∣∣2 . (2.53)

Taking the efficiency ηopt→GHz to be the transmission from the resonant sideband (that

is, a−,in→ when red detuned or a+,in→ when blue detuned), we see that

ηopt→GHz = ηGHz→opt ≡ η. (2.54)

2.3.3 Interference between sidebands

In our microwave-to-optical experimental setup, we detect the beat at frequency Ω be-

tween the transmitted pump and both sidebands with a fast photodiode (detection band-

width ∼ 2Ωm), whose output at Ω is

VFPD = Gdet

(
a∗0,out→a−,out→ + a0,out→a

∗
+,out→

)
(2.55)

with some total gain Gdet in the output chain. The gain may vary with power and

wavelength, and is calibrated using a known input pump and phase-modulation-induced

sidebands, together with the optical transfer function of the device chip as determined

from other measurements. We then use our model to calculate the relative amplitudes

and phases of the beat terms and infer the amplitude in the near-resonant sideband

(a+,out→ when blue detuned).
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For optical-to-microwave measurements, we drive an optical phase modulator at the

signal frequency, generating upper and lower sidebands of equal amplitude. Each side-

band is transduced with a different phase and amplitude, and the detected microwave

signal is determined by their interference (Eqn. 2.52). Again, we can model this interfer-

ence in order to calculate the efficiency of transduction from a single-sideband drive.13

Note that there is a factor of
(
Λ−opt(Ω)−

(
Λ+

opt(Ω)
)∗)

multiplying Com in the denom-

inator of the efficiency, coming from the effective mechanical susceptibility (Eqn. 2.32).

This is also a kind of sideband-resolution factor (being approximately ±1 for resonant

sideband-resolved operation), but there is not (and should not be) any correction for

this, since it is intrinsic to the device rather than attributable to the detection or drive

scheme.14

Since these procedures for correcting for sideband interference rely on the accuracy

of the model, they are susceptible to systematic error, and this will be reflected in the

calculated uncertainty ranges. For example, if the true value of κ is near the lower

end of its plausible range, that error will affect all calculations of microwave-to-optical

efficiency in the same way by leading us to overestimate the effect of sideband interference.

Similarly, if κ increases at high power, there will be a power-dependent error.

13For both of the sideband correction factors, it is necessary to keep track of the phase of a0, since
the phase of the inputs, cavity amplitudes, and outputs are all interrelated. For this reason we did not
assume α or a0 were real at any point.

14To be clear, it is possible to configure a setup for driving with or detecting a single sideband. In
some other experiments, the optical output is filtered using a narrow-bandwidth tunable filter centered
on the signal sideband, allowing direct photodetection of the sideband power. A single-sideband input
signal can also be produced, for example by using a second laser phase-locked to the pump laser.
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2.4 Added noise

Noise not present in the signal may also be introduced by the device, mainly by unwanted

scattering from the optical pump into the lower sideband or by thermal occupation of

the mechanical mode.

A pedagogical introduction to quantum noise, measurement, and amplification may

be found in Ref. [13].

For simplicity, consider the case of perfect one-sided coupling (κ = κe, γc = γc,e),

where âin is the vacuum and b̂in and ĉin are thermal baths. We consider the Fourier

transformed operators,15 which satisfy

〈Ô†in(Ω)Ôin(Ω′)〉 = nOδ(Ω + Ω′) (2.56)

〈Ôin(Ω)Ô†in(Ω′)〉 = (nO + 1)δ(Ω + Ω′) (2.57)

where nO is the mean thermal occupancy of bath Ôin, expressed in terms of bath tem-

perature as nO = 1/(e~Ω/kBT − 1) at frequency Ω.

The mechanical mode is then described by annihilation operator

b̂ =

(
ig0

√
κ
(
a∗0âinχ

−
opt(Ω) + a0â

†
in

(
χ+

opt(Ω)
)∗)

+ iGme
√
γc ĉinχem(Ω) +

√
γb,i b̂in

)
× χm,eff(Ω), (2.58)

15We define Ô(Ω) ≡ 1√
2π

∫∞
−∞ dt eiΩtÔ(t) and write the transformed annihilation operator Ô†(Ω) ≡

(Ô(−Ω))† = 1√
2π

∫∞
−∞ dt eiΩtÔ†(t), generally following Ref. [13].
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which gives us the correlator and spectral density16

〈b̂†(Ω)b̂(Ω′)〉 =

(
|a0|2 g2

0κχ
+
opt(−Ω)

(
χ+

opt(Ω
′)
)∗

+G2
meγcncχ

∗
em(−Ω)χem(Ω′)

+ γb,inb

)
× δ(Ω + Ω′)χ∗m,eff (−Ω)χm,eff(Ω′), (2.59)

Sbb(Ω) =

(
|a0|2 g2

0κ
∣∣χ+

opt(−Ω)
∣∣2 +G2

meγcnc |χem(−Ω)|2

+ γb,inb

)
|χm,eff(−Ω)|2 . (2.60)

The spectral density of the annihilation operator peaks at negative frequency and can be

viewed as describing the tendency of the mechanical mode to emit energy. The spectral

density for the creation operator is similar but peaks at positive frequency and replaces

n[b,c] with n[b,c] + 1; it can be viewed as describing the tendency of the mechanical mode

to absorb energy, which is not symmetrical with the tendency to emit energy near the

quantum ground state.

If we remove the coupling to the electromechanical mode, we can recover an important

result in quantum optomechanics: the quantum limit of optomechanical cooling [38, 64].

When red detuned (Ωm = ∆) in the resolved sideband regime (Ωm � κ), integrating the

spectral density (while assuming κ� γ) gives us the final mean phonon occupation

nf =
γb,i

γb,i + γb,om

nb +
γb,om

γb,i + γb,om

(
κ

4Ωm

)2

(2.61)

16The quantum spectral density is defined in analogy to the (two-sided) classical version: SOO(Ω) ≡∫∞
−∞ dt eiΩt〈Ô†(t)Ô(0)〉 = 1

2π

∫∞
−∞ dΩ′ 〈Ô†(Ω)Ô(Ω′)〉. Unlike the classical version, it is not necessarily

symmetric in frequency.
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where γb,om = 4 |a0|2 g2
0/κ is the optomechanical damping rate (Eqn. 2.36). The first

term represents the thermal population under the cooling effect from optomechanical

damping, while the second comes from optical backaction, in which cavity pump photons

scatter into the off-resonant sideband in a shot-noise process, depositing energy into the

mechanical mode. For γb,om � γb,i the occupation approaches the lower limit

nmin =

(
κ

4Ωm

)2

. (2.62)

This backaction and mechanical thermal noise then appears at each output port, fol-

lowing Eqns. 2.18–2.23. This produces correlations between the noise at different ports;

Ref. [24] uses similar correlations (with noise from a mechanical mode at 1.5 MHz) in a

feed-forward scheme to reduce the effective noise added by their device. In addition, the

noise at the output port due to an input’s backaction on the mechanics will produce cor-

relations with the transmitted or reflected input noise, potentially resulting in squeezing,

as demonstrated with a low-frequency mode of a silicon zipper optomechanical cavity in

Ref. [49].

We can also simply consider the noise added by the device at each port. At the

microwave output port, we calculate the added photon number17No due to shot-noise

17The added noise for a network scattering process with “gain” G (not necessarily > 1), such as
amplification, is often described as a number N = S̄out(Ω)/~ΩG of added photons. Here S̄out denotes
the one-sided noise power spectral density due to noise not present in the input signal. This should be
taken to mean that this excess noise power in the output at the signal frequency Ω, “referred to the
input” (that is, divided by the gain, to get the power at the input that would produce this power at the
output), is N~Ω per second in a 1 Hz bandwidth. Typical signal and detection bandwidths are much
narrower than the bandwidth of the noise processes, so that the noise power spectral density is constant
over the detection bandwidth. In this way we can talk about added noise as a single number, as though
a thermal source with mean occupation N had been added on top of the input. (The equivalent “noise
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scattering events from the pump and Nm due to the mechanical thermal motion:

No(Ωm) ≈ 1

η
G2

meγc,e |a0|2 g2
0κ
∣∣χ+

opt(Ωm)χm,eff(Ωm)χme(Ωm)
∣∣2

=
1

ηo

∣∣∣∣Λ+
opt(Ωm)

Λ−opt(Ωm)

∣∣∣∣2 , (2.63)

Nm(Ωm) ≈ 1

η
G2

meγc,eγb,inb |χm,eff(Ωm)χme(Ωm)|2

=
1

ηo

nb
Com

1∣∣Λ−opt(Ωm)
∣∣2 . (2.64)

Meanwhile, at the optical signal output port we have

No(Ωm) ≈ 1

ηe

Com

Cme

∣∣∣∣Λ+
opt(Ωm)

Λem(Ωm)

∣∣∣∣2 , (2.65)

Nm(Ωm) ≈ 1

ηe

nb
Cme

1

|Λem(Ωm)|2
. (2.66)

Note that these results are valid for both red and blue detuning, and show that blue-

detuned operation (when
∣∣Λ+

opt(Ωm)
∣∣2 ≈ 1) has worse noise performance.

For red-detuned, resonant, sideband-resolved operation with high cooperativities, the

added noise is still bounded below (for the same reason as with the identical cooling limit

temperature” is also often used.)
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of Eqn. 2.62) by

Nmin ≈
∣∣Λ+

opt(Ωm)
∣∣2

=
(κ/2)2

4Ω2
m + (κ/2)2

≈
(

κ

4Ωm

)2

. (2.67)

There is also thermal noise in the microwave electromechanical mode; the effect on trans-

duction can be analyzed in the same way. We generally expect that mode to be better

thermalized to a cryogenic environment than the mechanical resonance, both because of

larger thermal conductance to the environment in a quasi-2D geometry and because it is

not directly heated by the optical pump.
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Chapter 3

The optomechanical element

In the next two chapters, we discuss the design and analysis of the individual components

of our electro-optomechanical device, beginning in this chapter with the optomechanical

element. This element consists of a nanobeam design similar to that used in many on-

chip optomechanical experiments, with some important modifications to that design in

order to allow a mechanical signal to be coupled in and out without sacrificing the desired

properties of the nanobeam.

3.1 Optomechanical crystal devices

An overview of optomechanical crystal devices is provided by Ref. [50], while Ref. [27] is

an excellent textbook on photonic crystals.
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3.1.1 Band structure

Electromagnetic and acoustic waves are each governed by a master equation that takes

the form of an eigenproblem Θ̂u = αu for the appropriate differential operator Θ̂, field

u, and eigenvalue α. For the electromagnetic problem with spatially-varying dielectric

constant ε(r), we obtain an equation for the magnetic field H from Maxwell’s equations:

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2

H(r). (3.1)

For the mechanical problem with displacement u (in an infinite solid)

∇ ·T(r) = −ρΩ2u(r), where (3.2)

Tij(r) = cijkl
1

2

(
∂uk
∂rl

+
∂ul
∂rk

)
. (3.3)

The mass ρ and stiffness cijkl may vary spatially. In our cases of interest, they are uniform

in a finite volume; our control over the problem enters instead through an additional

system of equations specifying zero normal stress at the boundaries. The discussion

below applies just as well to our mechanical problem, using the entire system including

the eigenvalue equation and boundary conditions together.

Waves in periodic structures can be described as the product of a plane wave and a

function with the periodicity of the structure; this result is known as Bloch’s theorem.

The essential idea of Bloch’s theorem is that we can find a set of solutions to our origi-

nal eigenproblem that are also eigenvectors of the discrete translation symmetry of the
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differential operator Θ̂. We can thus express such a solution as a superposition of plane

waves all related by the reciprocal lattice vector, or equivalently as a plane wave times a

function with the periodicity of the lattice.

These solutions can then be indexed by wavevector; the corresponding eigenvalues and

lattice-periodic functions vary continuously with wavevector and can be grouped into

“bands” characterized by the lattice-periodic function. The “band structure”, which

summarizes the relationships between band index, wavevector, and frequency, can be

tailored by designing an appropriate unit cell that repeats with translations by the lattice

vector. Such structures, when designed with optical (or acoustic) band structure in mind,

are known as photonic (or phononic) crystals.

Unlike in a homogeneous continuum, there does not necessarily exist a mode of a given

polarization at all frequencies. In fact, we can design a structure to have a “bandgap”

around our frequency of interest in which no waves of the target polarization propagate.

One-dimensional Bloch’s theorem

As a specific example, we consider electromagnetic waves in an infinite structure with

one-dimensional periodicity with lattice constant a in the x direction. We write the

lattice vector a = ax̂ and reciprocal lattice vector ka = 2πa−1x̂. We take the structure

to be infinite and homogeneous in the y and z directions; the master equation is separable

and gives us solutions with plane-wave dependence in those coordinates. The dielectric
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constant ε(r) has a discrete translation symmetry, whose translation operator we call T̂a:

T̂aε(r) = ε(r + a) = ε(r). (3.4)

The translation operator T̂a and differential operator Θ̂ then commute, meaning that

we can write down a set of solutions H where each is a superposition of degenerate

eigenvectors of T̂a.1 These latter eigenvectors are plane waves with wavevector k ≡

kxx̂ + kyŷ + kzẑ and eigenvalue eik·a:

Hk(r) = H0e
ik·r, (3.5)

T̂aHk(r) = eik·aHk(r). (3.6)

Since eika·a = 1, plane waves whose wavevector can be written k+mka for a given k and

some integer m have the same eigenvalue eik·a. With that in mind, we characterize these

degenerate sets by their unique such k with −π/a < kx ≤ π/a.

We can write each solution to the master equation expanded in one of these sets of

1This is a basic result in quantum mechanics; see e.g. Ref. [51].
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plane waves, indexed by wavevector:

Hk,n(r) = ei(kyy+kzz)
∑
m

ck,m,ne
i(k+mka)·r

= eik·r
∑
m

ck,m,ne
i(mka)·r

= eik·ruk,n(r). (3.7)

This is the result usually called Bloch’s theorem (or at least a version with one-dimensional

periodicity). We have defined the so-called Bloch functions uk,n(r) to be the sum in the

second line, noting that they are periodic with the periodicity of the lattice. In fact,

for each wavevector k, there are infinitely many solutions, each belonging to a family

or “band” (which we have labeled with band index n), within which the frequency and

Bloch function vary continuously with k.

Structures that are periodic or finite in other directions, like our quasi-1D nanobeams,

can be analyzed similarly. In our case, optical modes with ω > ckx (“above the light

line” as drawn in a band structure diagram) must propagate outside of the nanobeam,

while modes with ω < ckx can be index guided, decaying exponentially away from the

nanobeam.
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3.1.2 Bandgaps

As mentioned above, bands of a given polarization are often separated by a bandgap

in photonic and phononic crystals.2 To understand this a little further, we consider

optical modes in a periodic dielectric waveguide with elliptical holes, using the unit cell

in Fig. 3.1.

The resulting band structure is shown in Fig. 3.2a. Since modes with the same

wavevector must be distinguished by their Bloch function, we should look to the part of

the mode that shares the periodicity of the lattice to gain some intuition for the origin

of the bandgap. This will be clearest when kx = π/a, where the plane-wave envelope of

the eigenfunction gives a wavelength of two unit cells.

We see in Fig. 3.2b that the lower-frequency band has a maximum of electric-field

energy density in the dielectric between holes, while the higher-frequency band has its

energy distribution centered in the hole. (These are conventionally called the dielectric

and air bands, respectively, for this reason.)

These modes would be degenerate in the absence of periodic patterning. The fre-

quency difference between them can be understood from the perspective of the varia-

2Our quasi-1D photonic and phononic crystals do not have simultaneous bandgaps for modes of all
polarizations or symmetries. The bandgaps should thus be described as “incomplete”, and the defect
modes are protected from decay into guided modes at the same frequency by the symmetry of the unit
cell. Any asymmetries, such as angled sidewalls or random perturbations introduced during fabrication,
can introduce coupling to these guided modes. Moreover, radiative optical modes exist at all frequencies
for small enough kx; all localized modes will have some radiative loss via these modes. (And more
tightly localized modes will have a larger spread in reciprocal space, thus decreasing Q.) It turns
out that complete phononic bandgaps can be achieved in quasi-2D designs, allowing very high quality
factors if other sources of loss are eliminated, as with the acoustic mode of Ref. [35]. In this thesis, if
not otherwise specified, the term “bandgap” should be taken to mean an incomplete bandgap for the
modes under discussion.
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Figure 3.1: Optomechanical nanobeam “mirror” unit cell, with width in the y
direction w = 566 nm, thickness t = 220 nm, and elliptical hole diameters dx = 197 nm,
dy = 413 nm, which repeats with periodicity a in the x direction.

tional formulation of the electromagnetic problem, in which the concentration of energy

in low- or high-dielectric regions is related to the variational cost of these two ways of

drawing the electric field while respecting Maxwell’s equations and the symmetry of the

unit cell (see Ref. [27] for more detail). One can also verify in simulation that increasing

the effective dielectric contrast between the high-index and low-index parts of the unit

cell (for example, by enlarging the hole) increases the size of the bandgap relative to its

center frequency.3

The mechanical band structure of the same unit cell is shown in Fig. 3.3, with a

bandgap for fully symmetric modes between 2.6 and 5 GHz.

3Another way of thinking about the origin of the bandgap in a periodic medium is from the perspective
of the medium as an effective Bragg mirror. In this picture, originating in the analysis of a stack of
layers of alternating dielectric constant, an incident wave will partially reflect off of each interface. For
certain frequency ranges, these partial reflections interfere constructively, producing a nearly complete
reflection. Although we describe photonic and phononic crystals in terms of band structures, the Bragg-
mirror picture can also be useful for complementary intuition. In this picture, for example, increasing
contrast widens the reflective bandwidth by increasing the reflection at each interface, thus decreasing
the overall penetration depth into the mirror; since the nearer reflections become more important, and
the phase accumulated by these reflections is less sensitive to the frequency, the constructive-interference
condition becomes more lenient with respect to frequency.
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a b 222 THz

177 THz

Figure 3.2: Simulated optical band structure of the unit cell in Fig. 3.1. a,
Optical band structure diagram showing the two lowest-frequency TE-like modes with
y-inversion symmetry in the electric field, with an incomplete bandgap between 177 and
222 THz (blue shaded region). The lowest-frequency TM-like band is shown in orange.
The black dotted line denotes the frequency of a “defect mode” that can be localized by
a defect in the photonic crystal (see §3.1.3). The “light line” (red) marks the boundary
between the bands of guided modes and the continuum of extended radiating modes
(shaded red). (Guided modes very close to the light line are not captured by the finite
simulation volume.) b, The electric field in the y direction, for the kx = π/a mode in
the dielectric (lower) and air (upper) bands.
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a b

Figure 3.3: Simulated mechanical band structure of the unit cell in Fig. 3.1. a,
Band structure diagram with fully symmetric modes in blue, showing a bandgap between
2.6 and 5 GHz (shaded blue region). Modes of other symmetries are shown in other colors
and de-emphasized. The black dashed line marks the frequency of a mode that can be
localized by a defect in the phononic crystal (see §3.1.3). b, Volumetric strain of the
kx = 0 mode in the band at the top edge of the bandgap, with exaggerated deformation.

3.1.3 Defect modes

Together with a photonic and phononic bandgap, the standard optomechanical crystal

device must include a localized optical mode. This is accomplished with a “defect” in the

photonic crystal, designed such that a mode may exist there that lies in the bandgap of

the photonic crystal on either side, with the field profile decaying exponentially into the

bandgapped regions. This can also be thought of as a sort of mirror cavity, with “mirrors”

formed by the bandgapped regions. If the same defect also localizes a mechanical mode

in the same way, these two modes can interact according to the coupling described in

§2.1.1. Such a device may be called an optomechanical crystal.

A finite-element simulation of such an optomechanical crystal device is shown in
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a

b

Figure 3.4: Finite element simulation of a silicon optomechanical crystal
nanobeam. The “mirror” unit cell of Fig. 3.1 repeats for many periods beyond the
edges of the plotted region. a, Electric field in the y direction for the fundamental opti-
cal defect mode. b, Volumetric strain of the fundamental mechanical defect mode, with
exaggerated “breathing-mode” deformation.

Fig. 3.4. The simulated single-photon optomechanical coupling is g0/2π ≈ 1.1 MHz,

almost entirely due to the photoelastic effect. Typical devices that we have fabricated

exhibit optical Qi > 105, mechanical linewidth γ/2π ≈ 3 MHz, and g0/2π between 700

and 900 kHz.

3.2 Engineered phonon leakage

In order to couple the localized mechanical mode of the nanobeam to a distant elec-

tromechanical transducer, we must allow mechanical energy to exit the nanobeam. If

this energy leaks into a bath, it appears as an extrinsic increase γb,e in the total mechan-
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ical loss rate

γb = γb,i + γb,e. (3.8)

Patel et al. [42] introduce such “phonon loading” to a nanobeam optomechanical

resonator by offsetting the holes from the nanobeam axis, coupling the symmetric me-

chanical resonator mode to an antisymmetric guided mode at the same frequency. By

increasing this offset to 40 nm the mechanical Q is tuned from an unperturbed value

above 105 to less than 104, implying a loading of 0.643 MHz. The optical Q is unaffected,

and the optomechanical coupling g0 is reduced by 10% at the largest offset, in agreement

with a simulated reduction of 8%. There is also variation in the measured mechanical

Q between nominally identical devices by up to a factor of 10, which is attributed to

fabrication disorder in hole dimensions and position with evidence from simulation.

A different strategy was identified in the previous generation of this experiment [58].

The optical bandgap is most sensitive to the period and filling fraction of the unit cell.

Meanwhile, the mechanical mode of interest is most sensitive to the effective “stiffness”

of the unit cell transverse to the nanobeam axis, which is primarily affected by the

nanobeam width and hole width (in the y direction as labeled in Fig. 3.1). The standard

nanobeam design was modified to take advantage of this ability to control the mechanical

and optical band structures somewhat independently. The defect modes were localized

by unit cells with photonic and phononic band gaps, as usual, beyond which the unit cells

transitioned into a “leaky” cell with a photonic bandgap and a guided acoustic mode.
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These devices achieved a double-sided phonon loading of 1.5 MHz, as estimated by the

increase in linewidth over that of devices with no leaky cells, while also leading to an

increase in optical intrinsic loss rate of 25%.

3.2.1 How much is enough?

Recall the impedance-matching condition Eqn. 2.49, which tells us that the optimal

mechano-electromechanical cooperativity for a fixed optomechanical cooperativity (when

sideband resolved, with frequency-matched modes) is

C?me = Com + 1. (3.9)

At room temperature, we have reached optomechanical cooperativity above 1 with some

devices (with no electromechanical element). Using typical values for the loss in our

mechanical and electromechanical resonances, we estimate

C(typical)
me =

4(Gme/2π)2

(25 MHz)(3 MHz)
. (3.10)

Thus the impedance matching condition suggests we should aim for Gme ∼ 2π × 6 MHz,

if we can do this without disturbing the optical Q or optomechanical coupling.

For an eventual phonon-shielded device at cryogenic temperatures, we expect to see

mechanical and electromechanical Q improve, increasing both cooperativities; this could

allow us to operate with fewer photons as well as smaller Gme (for smaller perturbations
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to the optomechanics) or larger γc,e (for larger bandwidth; see §2.3.1) while maintaining

cooperativities above 1.

In any case, we would like to be able to design a resonator to have phonon loading

above 1 MHz and up to 10 MHz depending on the parameters achieved in the hybrid

device. It would be possible to do this by exaggerating the offset design in Ref. [42],

but as the offset increases, g0 continues to suffer. Making a large leakage one-sided

while preserving g0 and optical Q is also challenging, for both the offset and leaky-cell

designs. Moreover, we ultimately want to couple the acoustic leakage to a symmetric

mode of a membrane for transduction with an IDT (see §4.2), so we would prefer to

couple to a guided nanobeam mode that is symmetric across the nanobeam axis, as with

the leaky-cell but not the offset design.

3.3 A new design

Our new design accordingly modifies the leaky-cell design, introducing a smoother ta-

per and continuous design parameters for tuning a one-sided mechanical loading while

preserving optical Q and optomechanical coupling.

The design parameters of the nanobeam describe three unit cells each with some

elliptical hole shape and lattice constant:

� A “mirror” cell with a photonic and phononic bandgap for modes of the desired

symmetry, which repeats on the side of the nanobeam far from the electromechan-

ical membrane;
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� A “waveguide” cell supporting a symmetric guided acoustic mode but retaining a

photonic bandgap, which repeats on the side near the membrane;

� A “defect” cell at the center of the nanobeam.

Moving from the defect away from the membrane, the unit cells smoothly transition

between the defect and mirror cells, following a polynomial taper. Moving from the

defect toward the waveguide, a phononic barrier is formed by partially transitioning

the defect cell into a mirror cell, followed by a transition to the waveguide cell. The

extent of the partial transition is controlled by a “barrier height” parameter, allowing

continuous tuning in design of the coupling between the localized mechanical mode and

the mechanical waveguide. The distance of the barrier from the defect is optimized

together with the barrier height to preserve the co-localization of the mechanical and

optical modes despite the asymmetry of the nanobeam.

The optical and mechanical band structures of the waveguide cell are shown in Fig. 3.5

(while the mirror band structures are identical to that from Figs. 3.2 and 3.3). The

simulated nanobeam is shown in Fig. 3.6. The key parameters extracted from simulation

(phonon loading γb,e, optical Qi, and optomechanical coupling g0) are plotted in Fig. 3.7

for a sweep of barrier heights at two different barrier distances.

We find that this scheme allows us to design a nanobeam resonator with an engineered

phonon leakage rate above 1 MHz without reducing optomechanical coupling g0 or optical

Qi (in both simulation and experiment) from that of the corresponding design with mirror

cells on both sides.
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b

a

Figure 3.5: Band structure of the nanobeam “waveguide” unit cell. a, Optical
band structure, showing a bandgap for the two lowest-frequency TE-like modes with y-
inversion symmetry similar to that of the mirror cell (Fig. 3.2). The resonant frequency
of the defect mode (black dashed line) still falls in the bandgap. b, Mechanical band
structure, showing a guided mode of the correct symmetry at the defect-mode frequency.
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a

b

Figure 3.6: Finite element simulation of a leaky silicon optomechanical crystal
nanobeam. The mirror unit cell of Fig. 3.1 repeats for many periods beyond the right
edge of the plotted region, while the waveguide unit cell repeats on the left. a, Electric
field in the y direction for the fundamental optical defect mode. b, Volumetric strain of
the fundamental mechanical defect mode, with exaggerated “breathing” deformation.
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c

Figure 3.7: Key figures of merit for the modified nanobeam. The barrier height is
varied for a barrier-peak distance of 3 unit cells (blue dots) and 2 unit cells (orange dots)
from the defect. Random geometric errors in hole positions and diameters, normally
distributed with σ = 1 nm, are also simulated for barrier height 0.2 and distance 3 unit
cells, with median and 90% range shown in purple. a, Simulated optical Q (including
only radiative loss) is mainly affected by the mechanical loading at a level beyond our
practically achievable Qi ∼ 3×105, as desired. As with the non-leaky nanobeam, random
geometric errors still have a large effect. b, Mechanical loading can be tuned from below
0.1 MHz to over 30 MHz, with some variation due to random errors in geometry. c,
Optomechanical coupling is worse for leakier mechanics, but for a barrier height 0.2 and
distance 3 unit cells it is the same as for the corresponding non-leaky nanobeam, at
g0/2π = 1.1 MHz.
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3.3.1 Random geometric perturbations

The simulated optical Q, which accounts only for radiative loss, remains over 2 × 106

for selected parameters. As with our non-leaky nanobeams, this Q is well above our

maximum measured Qi of 3 × 105. However, if we include in our simulations a random

variation in hole position and diameter, normally distributed with standard deviation

1 nm (realistic or slightly optimistic compared to variation measured by SEM), the optical

Q significantly suffers. The purple ranges in Fig. 3.7 show the 5th through 95th percentile

of an ensemble of simulated devices. This suggests that our measured Qi may in fact be

affected by radiation.4 Some variation is also introduced to the mechanical loading and

optomechanical coupling.

Additionally, the dimensions of features in the actual device have some geometric bias

relative to the nominal pattern, introduced during exposure, development, or etching.

This bias can be measured by scanning electron microscopy and is typically on the order

of 5 nm. It may drift on a timescale of months due to aging resist or changes in the

electron-beam lithography tool. Once characterized, the bias can be corrected in the

pattern, or the biased pattern can be simulated itself, resulting in a correction to expected

frequencies, quality factors, and g0.

The measured room-temperature mechanical quality factor of several nominally iden-

4This then indicates process development or design efforts to reduce such errors or their effects would
be worthwhile. A key technique for reducing edge roughness and critical dimension nonuniformity in
e-beam lithography is multipass writing, where the same pattern is exposed multiple times at different
positions in the write field, averaging out errors. Unfortunately, our attempts to do this with our electron-
beam lithography tool have so far failed, apparently due to hardware problems causing misalignment on
successive passes.
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tical leaky nanobeams (with different unit cells than what was simulated for Fig. 3.7)

varies between 400 and 1600, where γc,e ≈ 2π× 3 MHz was targeted and Qi = 1600 or an

intrinsic linewidth around 3 MHz is typical of a non-leaky nanobeam at room tempera-

ture. It may be possible to make the design more robust against fabrication disorder by

additionally tapering the nanobeam width. Controlling the mechanical band structure

with continuous geometric variation may average out the effects of errors more effectively

than this design, which relies on a small number of discrete hole shapes and positions.

3.3.2 The double nanobeam

The phonon loading of this design can also be tested by attaching the waveguide end

to a mirror-image nanobeam. In simulation, this produces hybridized mechanical modes

with a frequency splitting equal to twice the loss rate of the nanobeam leaking into a

membrane, as expected for two identical resonators with a coupling equal to that loss

rate. These resulting modes are shown in Fig. 3.8a.

We should then be able to address each of these mechanical modes optically through

a waveguide coupled to only one nanobeam. Each mode would have an optomechanical

coupling reduced from the single-nanobeam optomechanical coupling by a factor of
√

2,

as well as a mechanical linewidth equal to that of a nanobeam with mirrors on both sides.

In practice, variation in fabrication often causes frequency differences between nominally

identical modes larger than the splitting expected from the coupling between them. In

such cases the hybridized modes are unequal superpositions of the modes local to each

59



a

b

Figure 3.8: Double nanobeam configuration. a, Volumetric strain of the antisym-
metric and symmetric hybridized modes of two coupled nanobeams, with a frequency
splitting twice the coupling between nanobeams. b, Noise peaks (fit to Lorentzians) in
the RF power spectrum of light transmitted through the right nanobeam optical cavity,
due to interaction with the thermal mechanical motion of each mode, showing a splitting
of ∆f = 13 MHz.

60



nanobeam, and by probing one nanobeam we see one mode much more strongly than the

other.

In some measured double-nanobeam devices we do see a fairly equal splitting, as

with one device with a mode at 5.016 GHz and another at 5.029 GHz. The optome-

chanical couplings are g0 ≈ 2π × (490 kHz, 335 kHz), while damping rates are γb ≈

2π×(2.8 MHz, 2.2 MHz), obtained from fits to the RF power spectrum of transmitted light

(Fig. 3.8b; see Ref. [20]). The splitting is not quite equal, indicating some bare frequency

difference combined with coupling between modes slightly less than ∆f/2 = 6.5 MHz.

An equivalent single nanobeam had g0 ≈ 2π×723 kHz (more than the expected factor of

√
2 larger) and a linewidth of 7.5 MHz implying a loading of 5 MHz. Roughly balanced

splittings up to ∆f = 20 MHz were measured in other devices. This indicates that we

can reach larger phonon loadings with this design without merely dumping phonons into

a bath, although more reliable fabrication processes and designs more robust to error will

still be valuable.
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Chapter 4

The electromechanical element

In the previous chapter, we described the design of the optomechanical component of our

device. This design included a means to allow microwave-frequency mechanical waves to

leak into or out of an optomechanical nanobeam, so that a separate component could cou-

ple that mechanical information with microwave-frequency electromagnetic fields. In this

chapter, we describe this electromechanical component, which consists of an interdigital

Lamb wave transducer on a piezoelectric bilayer membrane.

With our optomechanical design, we took advantage of the fact that the ratio of the

speed of sound and light in silicon is comparable to the ratio of the desired mechanical

and optical frequencies, allowing the wavelength-scale co-localization of the two modes.

In the absence of such matching of wavelengths, we rely on a new set of ideas for the

electromechanical transducer coupled to the optomechanical nanobeam.
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4.1 Piezoelectricity

In §2.1.1, we described the origin of the optomechanical coupling in the photoelastic and

moving dielectric boundary effects. Both of these are quadratic in the electromagnetic

fields; any strain-field interaction linear in the optical field would be averaged to zero

on the timescale of the deformation of the dielectric. While silicon also exhibits such

quadratic interactions at microwave frequencies (for essentially the same reasons), they

are weaker than is practical for our aims, particularly without the ability to enhance the

interaction by tightly co-localizing the modes.

Working with microwave-frequency electromagnetic fields, however, means that the

crystal lattice is able to deform on the same timescale as the electric field oscillations,

rather than requiring a microwave-frequency beat between two optical tones. We can

thus take advantage of potentially much stronger linear interactions between the electric

field and material strain.1

The first-order coupling between strain and electric field is known as the piezoelectric

effect, and is described by the constitutive relations [4]

Di = εTijEj + dijkTjk, (4.1)

Sij = dijkEk + sEijklε
T
kl. (4.2)

1In general, we expect first-order terms to dominate higher-order nonlinearities, as long as they
arise from the same physical perturbation and the first-order effect is not prohibited by symmetry.
Both the piezoelectric and electrostrictive (photoelastic-analogue) effects can be seen as arising from
a redistribution of charge under lattice deformations, changing the electric polarization density and
susceptibility (polarization response to applied field) of the crystal, respectively. On symmetry, see the
next footnote.
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Here D,E, and ε are the electric displacement field, electric field, and permittivity; T,S,

and s are the stress, strain, and compliance; and d is the piezoelectric tensor in “strain-

charge” form. The superscripts T and E denote coefficients determined at constant stress

and electric field, respectively, so that we can use these equations to directly calculate

D and S with E and T as the independent variables. For d = 0 we recover the usual

stress-strain and electric displacement relations. The addition of piezoelectricity allows

an electric field to produce strain or for stress to produce polarization. (These equations

can be rearranged for other choices of independent variables.)

Silicon itself exhibits no piezoelectric effect.2 Instead, we combine the silicon we

use for optomechanics with the piezoelectric material aluminum nitride (AlN), deposit-

ing the AlN with a sputter tool and removing it everywhere except the region where

the electromechanical resonator is defined. This electromechanical region is eventually

mechanically released along with the nanobeam by etching away a buried oxide layer,

forming an AlN/Si bilayer membrane.

4.2 Surface acoustic wave devices

Surface acoustic waves (SAWs) propagate along the surface of a solid with a displacement

field profile that decays exponentially into the bulk. Although the electromechanical part

2This can be understood in terms of its crystal symmetry. Specifically, the (diamond cubic) crystal
lattice (and hence the tensor describing the piezoelectric response) is symmetric under inversion (sending
position x to −x). An electric field changes sign under inversion, while a strain does not. Applying
inversion to both sides of Eqn. 4.2 with zero stress implies the strain resulting from any applied field must
be equal to its opposite, so d = 0. More simply, in a one-dimensional picture, the linear piezoelectric
effect wants the crystal to expand for a field pointing up and contract for a field pointing down. But
those fields are the same to an inversion-symmetric crystal.
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of our device, which involves a thin, mechanically suspended membrane rather than a

semi-infinite substrate, is not strictly a SAW device, its design and analysis inherits a

great deal from work on the physics and engineering of surface acoustic wave devices.

SAW devices are commonly used in signal processing applications (for example, as

radio-frequency filters). The low speed of sound compared to that of light allows very

compact elements with good control over frequency response through simple designs.

Much more detail on SAW devices can be found in the texts [15, 22, 39], which are all

useful references and complement one another in both material covered and perspective.

Recent experiments have also investigated the use of SAWs for quantum applications as

well as SAWs themselves in the quantum regime [53, 16, 7, 21, 36, 54].

4.2.1 Membrane acoustic waves

A infinite plate, uniform in the y direction and with some thickness d in the z direction,

supports two families of x-propagating waves, which we label Si, Ai (i ≥ 0) [31]. These

are known as Lamb waves, where S (symmetric) and A (antisymmetric) denote their

out-of-plane-axis inversion symmetry.3

The S0 and A0 modes exist at all frequencies. A useful parameter when thinking about

their behavior is the ratio of thickness to wavelength, or an equivalent scale parameter

independent of the mode choice. We consider the thickness-frequency product d · Ω

3There are also membrane shear modes, which have nonzero displacement amplitude in the y direction.
For the most part, we can ignore these, since our electromechanical component is effectively uniform in
the in-plane direction transverse to wave propagation, although they may appear where the membrane
and nanobeam are joined.
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compared to a typical wave speed, using the bulk shear velocity vs for concreteness.

When d · Ω/vs is large, the S0 and A0 waves approach symmetric and antisymmetric

superpositions of traditional surface acoustic waves (Rayleigh waves) on the top and

bottom of the plate.

When d·Ω/vs becomes small, the S0 wave propagates at a higher velocity and becomes

non-dispersive. It looks more like a bulk longitudinal wave with out-of-plane breathing

motion than a Rayleigh wave (which is more like a bulk shear wave). Meanwhile, the

A0 wave becomes like a flexural mode, and its phase velocity falls toward zero. The

higher-order modes also each have a cutoff at low enough d · Ω/vs.

In a bilayer membrane, there are analogous fundamental modes which we will still

call the S0 and A0 Lamb waves (Fig. 4.1). We are below the cutoff for all other modes

at the thickness and frequencies we work with.

4.2.2 Interdigital transducers

A SAW or Lamb wave in a piezoelectric substrate has an associated electrical component,

which can be addressed using electrodes patterned on the surface of the substrate. An

interdigital transducer (IDT) is an array of signal and ground electrodes matched to

the acoustic wavelength at a certain frequency, acting like an array antenna for such a

wave (Fig. 4.2). Electrically driving the IDT at that frequency will generate outgoing

acoustic waves in each direction, while the IDT will pick up an electrical signal from

incoming acoustic waves. An IDT is sometimes described by its wavelength or period
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= 2 μm

a

b

c

4.7 GHz

1.65 GHz

Figure 4.1: Lamb waves in a bilayer membrane, for 330 nm AlN on 220 nm Si.
a,: Dispersion diagram for Lamb waves in a 330 nm/220 nm AlN/Si membrane. The
horizontal axis is scaled by λ0 = 2µm. At 4.7 GHz (horizontal dash-dot line), only the
A0 and S0 modes are present. For wavelength λ0 (vertical dashed line), the S0 and A0

modes are around 4.7 GHz and 1.65 GHz. b, Volumetric strain profile of S0 Lamb wave
with λ = λ0. c, Strain of A0 Lamb wave.
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= 2 μm

a

b

c

4.7 GHz

1.65 GHz

Figure 4.2: Interdigital Lamb wave transducer. a, 3D schematic of interdigital
signal and ground electrodes on a bilayer membrane. b, 2D cross section of voltage for
one wavelength of the S0 Lamb wave of Fig. 4.1b. c, Voltage of A0 Lamb wave.

(length of the repeating signal-ground unit cell) or pitch (center-center distance between

adjacent electrodes); for our ‘regular’ IDT with equally spaced alternating signal and

ground electrodes, the pitch is half the period (and the electrode width is half the pitch).

We design our device to couple to the S0 mode. As with standard SAW devices, an

IDT will transduce a wave in a piezoelectric substrate when the acoustic wavelength is

matched such that it produces an in-phase response at the signal electrodes. This now

includes both A0 and S0 waves at different frequencies.

Any energy in the A0 mode is expected to be lost before it is transduced, since at the

S0 operating frequency the A0 mode is not phase-matched to the IDT. In our membrane,
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with an IDT period around 2µm, the S0 wavelength is matched around 4.7 GHz while

the A0 wave is matched around 1.65 GHz.4

The S0 and A0 waves are coupled by asymmetric perturbations to the membrane,

including the IDT electrodes and a non-vertical sidewall at the membrane boundary.

The IDT electrodes should be made as thin as possible, and the sidewall as vertical as

possible, to reduce this unwanted coupling.

Besides the presence of the A0 and potentially other Lamb waves (and the absence

of bulk modes to scatter into), the analysis of a Lamb wave transducer is essentially

analogous to that of a standard SAW device. The main further modification is that

the membrane thickness introduces an intrinsic length scale, as seen in Fig. 4.1: unlike

Rayleigh waves, Lamb waves are dispersive, being affected by the ratio of thickness to

wavelength.5 This leads to some additional design considerations, which we defer until

§4.3.

4.2.3 Equivalent circuits

An IDT can be described by an equivalent circuit consisting of the interdigital capaci-

tance C0 due to the electrode geometry in parallel with a frequency-dependent acoustic

admittance Ya(f) (Fig. 4.3). Power dissipated by the real part of the acoustic admittance

4Waves can also be phase-matched to a regular IDT with an odd number of wavelengths per IDT
period. Fortunately, the A0 wave at 4.7 GHz with approximately two wavelengths per IDT period is
nearly invisible to the IDT, since that wave applies the same electrical drive to both the signal and
ground electrodes.

5In practice all SAW devices have some finite electrode thickness, which also introduces scale de-
pendence. In particular, SAW devices that rely on the mechanical reflectivity of the electrodes (or
metal-strip Bragg mirrors) cannot easily be scaled from MHz to GHz frequencies by shrinking the elec-
trode lithographic pattern without considering the electrode thickness compared to the wavelength.
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C0 Ya

Figure 4.3: Equivalent circuit for an interdigital transducer, consisting of a
geometric capacitance C0 in parallel with an acoustic admittance Ya(f).

corresponds to power radiated as acoustic waves.

The frequency response of an IDT can be understood intuitively as related to the

discrete Fourier transform of the time-domain sampling of a SAW passing under it (the

“tapped delay line” picture). With regularly spaced, equally weighted fingers, we are

sampling a rectangle function in the time domain. This becomes a sinc function in the

frequency domain, whose width is inversely proportional to the number of IDT periods.

We are thus not surprised to find that Re[Ya] has a sinc2 frequency dependence around

the frequency f0 of the fundamental wave matched to the IDT period; we quote the result

from Ref. [39]:

Re[Ya(f)] ≈ Re[Ya(f0)]

(
sin (πNp(f − f0)/f0))

πNp(f − f0)/f0

)2

(4.3)

Here Np is the number of periods in the IDT, and the fractional bandwidth of the response

is seen to be roughly the inverse of Np. The peak conductance Re[Ya(f0)] grows with the

IDT capacitance, number of periods, and effective piezoelectric strength.6

6The piezoelectric strength is usually described by a number k2
eff, which can roughly be interpreted

as the fraction of total (strain and electromagnetic) energy in the electric field for a deformation of the
piezoelectric material, and it depends on the mode and thickness-frequency product for a Lamb wave
transducer (see §4.3).
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Figure 4.4: Acoustic conductance Ga(f) = Re[Ya(f)] of an interdigital Lamb
wave transducer. The 2D (plane-strain approximation) finite element simulation of
an IDT with 10 periods and 30µm aperture (solid blue line) agrees well with the simple
model for a traditional SAW device quoted in Eqn. 4.3 (black dashed line). When includ-
ing 20 nm aluminum electrodes in the mechanical simulation, there is some distortion of
the response due to internal reflections in the IDT (solid red line).

This can be used to model a Lamb-wave IDT just as well as a Rayleigh-wave IDT in

the absence of reflections by the IDT electrodes (Fig. 4.4).7

4.2.4 IDTs in resonators

An IDT can be placed in a “mirror cavity” that supports acoustic resonances, in analogy

to an optical Fabry-Perot resonator. In traditional SAW devices, each mirror is formed

by a distributed Bragg reflector, usually consisting of one-dimensionally periodic strips

of metal that create a bandgap for SAWs (see §3.1.2 and Footnote 3 in the previous

chapter). A useful tool for calculating the electrical and acoustic response for such a

device is the P -matrix, which allows the combined modeling of IDTs, mirrors, and other

elements by relating acoustic and electrical ports with a hybrid admittance/scattering

7These reflections internal to the IDT can still be modeled, for example using the coupling-of-modes
equations presented in Ref. [39].
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C0

Rm

Lm

Cm

Figure 4.5: Equivalent circuit for an IDT-coupled electromechanical reso-
nance, consisting of a geometric capacitance C0 in parallel with an RLC resonance.

matrix [39].

For a device on a membrane, an acoustic mirror may be conveniently formed by simply

terminating the membrane. For a short enough cavity, if the IDT is correctly placed, it

will couple strongly to a single resonance of the cavity. The acoustic admittance (which

describes a steady-state response) near resonance is sharpened and enhanced according

to the number of passes made by a traveling wave under the transducer before it decays.

In the high-Q limit, it turns out one can model the resulting electromechanical equivalent

circuit near resonance as C0 in parallel with a series RLC resonator; the energy stored

in the mechanical inductance Lm or capacitance Cm is the electromechanical energy, and

power dissipated in the mechanical resistance Rm corresponds to acoustic power lost.

4.2.5 External coupling and impedance matching

The coupling of a series RLC resonator to a load has a simple description in terms of the

real impedances of the resonator and the load, which dictate where energy is dissipated

in the circuit as a whole [43]. The resonator has intrinsic damping and external coupling
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Rm
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ZL

Figure 4.6: Equivalent circuit for an IDT-coupled electromechanical reso-
nance, loaded by some external impedance. The external load may really be at
the end of a matched transmission line. The series RLC sees the impedance of the load
and C0 in parallel as ZL, whose real part compared to Lm determines the extrinsic loss
rate of the resonance.

rates

γi =
R

L
, γe =

RL

L
(4.4)

where RL is the real part of the load impedance seen from the resonator. In the case

of the electromechanical RLC, which is connected over the geometric capacitance C0 to

a transmission line matched to a load with real impedance Z0 (Fig. 4.6), the external

coupling rate is

γe =
1

Lm

Re

(
1

1/Z0 + i2πf0C0

)
=

1

Lm

Z0

1 + (2πf0C0Z0)2
. (4.5)
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The actual device impedance will be more complicated, including for example embed-

ding impedances from on-chip microwave lines or wire bonds. The acoustic and electrical

parts can still be determined from electrical reflection measurements, producing an equiv-

alent circuit amenable to the same analysis.

Of particular note is that this external coupling can be made large by changing

the load resistance RL seen by the RLC. One may do this by inserting an impedance

matching network between the IDT and load, designed following procedures described in

Ref. [43].8

4.3 The piezoelectric bilayer membrane

When AlN is grown on silicon with the sputter tool, it grows in grains on a 10 nm

scale (order-of-magnitude, determined by AFM) whose c-axes are approximately aligned

normal to the wafer and whose in-plane orientation we expect to be random [9, 34].

Misalignment of c-axes, which can be quantified by x-ray diffraction, reduces the effective

piezoelectric effect relative to that of single-crystal AlN. Our sputtered AlN, with (002)

XRD peak full width at half maximum < 2° in rocking curve measurements, appears

to produce k2
eff (see Footnote 6) around a factor of 2 smaller than the value simulations

predict for our IDT with ideal crystalline AlN.

Thicker AlN can significantly increase the effective electromechanical coupling of an

8It is similarly possible to match a non-resonant IDT to a source or load over some frequency range,
so that all incident electrical power is converted into acoustic power, or half of the power incident on
one acoustic port is converted to electrical power (for a bidirectional IDT). The required inductance and
capacitance, given the non-resonant acoustic admittance for a device like ours, should be feasible with
on-chip superconducting elements.
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Figure 4.7: Wavelength-thickness ratio tuning. Peak acoustic conductance is plot-
ted from 2D plane-strain finite element simulation using a rectangular IDT with 10 finger
pairs. Actual device parameters are marked with a star. Effective electromechanical cou-
pling at the center frequency is enhanced as the thickness approaches one half wavelength
(although the center frequency is not held constant). Left: Varying AlN thickness with
fixed 1 µm electrode pitch. Right: Varying electrode pitch with fixed 330 nm AlN thick-
ness.

IDT, both because of better c-axis alignment at higher thicknesses and because of a

resonance-like effect as the membrane thickness approaches roughly half the IDT wave-

length. Simulation predicts that increasing the AlN thickness to 880 nm would increase

the maximum real admittance of an IDT, via the latter effect, by roughly a factor of 2.5

(Fig. 4.7). Alternatively, moving to a shorter acoustic wavelength with IDT pitch 0.55µm

could increase the peak admittance by a factor of 2.5 while increasing the frequency to

around 7.5 GHz.
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In practice, the thickness is constrained because thicker AlN places greater demands

on the (timed) etch process and also presents a challenge for the transition between

bare silicon and the AlN/Si bilayer (see §4.4.1). A 330 nm thickness was chosen for its

consistency with processes developed for prior experiments using AlN on SiO2 while still

satisfying the new fabrication demands for AlN on Si.

While pushing the AlN thickness higher may be difficult, decreasing the IDT pitch

would be feasible, since our electrode width of 500 nm (for a 2 µm wavelength) is well

above the limits of electron beam lithography.

4.4 Putting it together

Two final problems arise in mode-matching the interface between the nanobeam and the

membrane. The nanobeam uses only the silicon layer, while the IDT lives on the bilayer;

we need to be able to transmit waves between the two regions while minimizing scattering

into unwanted modes. Then, in addition to the difference in substrate, there is a natural

geometric mismatch between the quasi-1D nanobeam and the quasi-2D membrane. The

acoustic waves must be focused or tapered by some means.

4.4.1 The membrane bilayer transition

Our solution to the first problem is to make the transition between the bilayer and bare

silicon as gradual as possible. To this end, we etch the AlN using a photoresist reflow

process, creating a “ramp” between the bilayer and the bare silicon (Fig. 4.8.

76



We consider a bilayer S0 wave generated by an IDT and incident on the ramp, where

the wave in the other direction is assumed to be lost. We can calculate the conversion

of power into the outgoing silicon S0 mode through simulation. Some amplitude may

be reflected, which can actually lead to an increase or decrease in transmitted power

depending on the phase of the reflected wave at the IDT (so varying with frequency

when the distance between the IDT and ramp is fixed). To be pessimistic, we quote

the maximum decrease in transmitted power, but in an actual device the ramp could be

positioned to minimize its effect on the membrane resonance. Additionally, some power

will be converted to the silicon A0 mode. This conversion is not strongly frequency-

dependent.

We can consistently make the ramp around 1µm long. In this case the maximum

reflection is about 13% of the power transmitted into an infinite bilayer, and of the

transmitted power, another 11% is converted into the A0 mode (Fig. 4.9).

The fabrication of the ramp requires an AlN etch, which means it introduces a new

problem by potentially etching the silicon. An etch stop layer between the AlN and the

entire wafer could prevent that, but this has its own difficulties: the AlN etch consists of

a strong physical etch component, so that selectivity is generally low; we would also later

have to remove the etch stop over the photonics region (with high selectivity relative

to Si) without delaminating the AlN. (In particular, this would mean that SiO2 could

not be used, as the final vapor HF release would undercut the AlN; we would have to

introduce an entirely new material to our process.)
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notchtAlN
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Figure 4.8: Ramp and notch in membrane. Optical microscope image of the
interdigital transducer on the bilayer membrane. Inset: Schematic (not to scale) of
2D cross-section along blue line, showing the AlN “ramp” arising from etching with a
reflowed photoresist mask and Si “notch” arising from a gap between the protected Si
and the AlN during that etch.
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Figure 4.9: Scattering of bilayer S0 wave incident on transition to Si. Results
from finite-element simulation, varying ramp length `ramp with no notch (left), notch
length `notch with a 50 nm depth and 1µm ramp (middle), and notch depth tnotch with
a 500 nm length and 1µm ramp (right). Top: Fraction of transmitted power in the A0

Lamb mode. Bottom: Maximum reflected power, as a fraction of power transmitted in
the absence of scattering.
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The alternative that we select is to protect only the photonics region with an SiO2 etch

stop layer between the silicon and AlN. To prevent the end of the ramp from delaminating

when the stop layer is removed, there is a gap between the edge of the stop layer and the

end of the ramp. The silicon in this gap is etched, creating a “notch”. The notch depth

can be limited by timing the AlN etch as well as possible. (The device in Ref. [57] had

a similar notch, where the photonics region was protected during the etch defining the

IDT fingers.) Again, we can determine from simulation the effect on the transmission of

an S0 wave.

The notch parameters depend on the timed AlN etch and the alignment of the various

layers, so there is always some variation, but a typical notch is around 500 nm wide and

50 nm deep. Together with a 1µm ramp, the notch only slightly increases the conversion

to A0 to 15%, but increases the maxiumum reflected power to 31% of transmitted power.

The conversion and reflection depend sensitively on the notch length, which is near the

A0 wavelength of 700 nm (in a 220 nm silicon membrane at 4.7 GHz). At the minimum

point we find below 10% each of reflection and conversion, which is actually slightly

better than the ramp alone.

This is not ideal, but it is acceptable. To the extent that the power in unwanted

modes or directions is lost before it can be transduced, this conversion does limit the

Q of resonances in the bilayer membrane; it also effectively turns some of the acoustic

loading of the nanobeam mechanics into damping rather than coupling to the electrome-

chanical resonance. There are specific reasons to remain optimistic. High efficiency can
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be obtained in the presence of loss (including coherent conversion to unwanted modes),

as long as high cooperativities are still possible. Even so, we hope to increase the Q of

all modes in the entire suspended structure by surrounding it with a phononic crystal

with a full bandgap and operating at cryogenic temperatures [35]. We also may not need

to rely on a high Q for the membrane, as long as the nanobeam can achieve high Q and

the membrane mode can be overcoupled to its microwave input by impedance matching.

Still, these problems should be addressed as much as possible through design or process

development.

4.4.2 Acoustic focusing

Our solution to the dimensionality problem consists mainly of using a curved IDT design

as in Ref. [57]. That is, we choose to focus to a small spot (roughly the nanobeam width)

rather than adiabatically taper the membrane width over a long distance. To this end

we use a circular (or nearly circular) IDT finger pattern and a matching back mirror, by

analogy to the hemispherical mirror cavity in Gaussian optics (with the nanobeam end

as the flat mirror). We then modify this design in two significant ways to improve its

performance.

Membrane anisotropy

The bilayer membrane has the property of in-plane acoustic anisotropy. While the AlN

is isotropic in-plane due to random orientation of small grains, the (100)-cut crystalline

silicon has a slightly higher sound speed in the <110> direction than in the <100>
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direction. We can simulate the anisotropy of the bilayer membrane by approximating

the AlN stiffness tensor as the stiffness averaged over in-plane rotations,9 and find that

the sound speed of the S0 wave at 4.7 GHz varies by around 3% depending on propagation

direction.

This directly spreads out the acoustic response over a 3% larger range of frequencies.

Since the 3 dB bandwidth of an IDT with 30 finger pairs is also around 3% of the center

frequency, the reduction in peak admittance will be less than 3 dB. There is also an

effect on acoustic focusing and diffraction, as well as a complicated modification of the

resonant mode pattern if the back edge of the membrane is not matched to wavefront of

radiation from the nanobeam.

We can correct for both of these effects by adjusting the local IDT pitch to match the

half-wavelength of a wave with phase-velocity vector in the direction of the focus; this

has the effect that the waves generated at the design frequency from all sectors of the

device interfere constructively at the focus, and that the IDT response to a radiating spot

is phase-synchronous at all angles [32]. In Fig. 4.10 we show the anisotropic radiation

pattern, marking the signal electrode curves for an IDT uncorrected or corrected for

anisotropy.

A further small correction can be added for an area of bare silicon between the focus

spot and the bilayer as in the actual device.

9This averaging procedure uses what is known as the Voigt model of polycrystalline materials, which
assumes uniform strain throughout the grains. Averaging the compliance (the Reuss model, assuming
uniform stress) gives a different approximation, and true elastic properties generally lie between the
two [25]. Wurtzite AlN does not have especially dramatic acoustic anisotropy in this plane, so the
method of approximation is not critical.
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a

b

Figure 4.10: Anisotropic acoustic radiation. A circular spot on the bilayer mem-
brane is excited, and the out-of-plane strain on the surface due to the S0 Lamb wave is
plotted. Top: Circular cyan contours every 2 µm. After about 15 wavelengths from the
spot, the wave in <100> a direction (horizontal) is out of phase with the <110> (45°)
wave on the contour. Bottom: Contours adjusted for anisotropic wave speed. IDT
electrodes along these contours will respond to the radiation pattern from the spot with
in-phase contributions from all angles, or generate a wave with constructive interference
at the spot.
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Figure 4.11: Membrane-nanobeam connection. The nanobeam is tapered to an
unpatterned, wider geometry, then connected to the membrane with a large opening
angle. Volumetric strain of the leakage from the nanobeam resonance of Fig. 3.6 is
plotted, showing mostly the desired wave radiating into the membrane.

The nanobeam-membrane boundary

For our design using an abrupt transition between the nanobeam and membrane, we

can think of an outgoing wave in the nanobeam as scattering into some superposition of

waves transmitted into the membrane and reflected into the nanobeam, determined by

the overlap of the various mode shapes near the nanobeam-membrane boundary. The

guided mode in the nanobeam mostly has the same shape as a focused S0 Lamb wave,

but it may also couple to in-plane shear modes in the membrane or modes guided along

the edge of the membrane. These extraneous couplings are optimized in finite-element

simulation by widening the nanobeam slightly before it meets the membrane and by

connecting to the membrane with an opening angle of 240° (Fig. 4.11).
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Chapter 5

Continuous and time-domain

microwave-optical transduction

We have fabricated the device described in the previous chapters, combining an aluminum-

nitride-based interdigital transducer (IDT) with a silicon-based one-dimensional optome-

chanical resonator. These elements together promise the necessary optomechanical and

electromechanical coupling rates that would allow us to efficiently convert signals between

infrared light and microwave electrical signals. We demonstrate bidirectional conversion

of signals with internal efficiency above 1% and bandwidth above 3 MHz with a con-

tinuous blue-detuned pump. We then demonstrate time-domain microwave-to-optical

transduction using a pulsed pump at both red and blue detunings.
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5.1 Model of transduction

We model the transducer as described in Chapter 2, briefly restated here. The system

consists of an optical mode and microwave-frequency mechanical and electromechani-

cal modes, respectively labeled o, m, and e, each with their respective intrinsic loss and

external coupling rates. The optical and mechanical modes are coupled by the optome-

chanical coupling Gom = αg0, where α is the optical mode amplitude and g0 is the

single-photon optomechanical coupling. The mechanical and electromechanical modes

are coupled with a fixed coupling Gme.

The classical operation of this system can be described with input-output theory. We

model our sideband-unresolved device with the system of input-output relations including

the first sidebands on each side of the pump.

The microwave-to-optical transduction efficiency is defined as the ratio between the

average output optical photon rate in the near-resonant sideband and the average input

microwave photon rate, where the output refers the optical on-chip waveguide after the

resonator, and the input refers to the microwave cable before the chip. The optical-to-

microwave efficiency is defined in the reverse manner; we expect it to be equal to the

microwave-to-optical efficiency at the same operating parameters.

The resulting on-chip efficiency is modeled by Eqn. 2.44, reproduced here:

η = ηoηe × 4 ComCme

∣∣∣Λem(Ω)Λ±opt(Ω)Λ̃m,eff(Ω)
∣∣∣2 , (5.1)
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using the definitions of Chapter 2. The sign is chosen to correspond to the near-resonant

sideband (+ when blue detuned, − when red detuned).

In this experiment, we couple light onto and off of the device chip using focusing

grating couplers with a per-coupler efficiency of 25%, resulting in an “external” efficiency

ηext = 0.25η.1

5.2 Device design and fabrication

The device, shown in Fig. 5.1b, is fabricated on a silicon-on-insulator substrate with

2 µm oxide and 220 nm device layer. A thin film of SiO2 is deposited and patterned to

protect the regions of silicon that will be used for photonic components. A 330 nm film

of aluminum nitride is deposited then patterned using a photoresist reflow process and a

timed etch. The protective SiO2 acts as an etch stop over the photonic regions, so that

bare silicon is only etched in a small gap between the AlN and protected region, with

the overetch controlled by the etch time. The protective layer is then removed, and the

nanobeam and grating coupler circuit are patterned by etching the silicon layer using a

hydrogen silsesquioxane (HSQ) mask defined in electron-beam lithography. The IDT is

patterned in a second electron-beam lithography step, using a poly(methyl methacrylate)

(PMMA) bilayer as a liftoff mask. A release window is patterned in the silicon with

photolithography, and the nanobeam and IDT membrane are then mechanically released

1The microwave port of the device is also connected to a microwave cable using a high-frequency
probe with < 1 dB insertion loss and a resistive on-chip coplanar waveguide, but we do not factor these
losses out in this distinction between on-chip and external efficiency.
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by etching the buried oxide layer in hydrogen fluoride vapor.

The optomechanical nanobeam is designed as described in §3.3 to have an engineered

phonon leakage rate above 1 MHz without reducing simulated optomechanical coupling

g0 from that of the corresponding non-leaky design.

An interdigital transducer with finger pitch approximately 1 µm is designed to couple

to symmetric Lamb-like waves in the bilayer membrane around 4.7 GHz. The pitch is

adjusted by up to 2% as a function of in-plane angle to correct for the acoustic anisotropy

of the membrane [32].

The phononic waveguide is connected to the electromechanical membrane according

to a design that reduces coupling to unwanted modes in the membrane. To reduce cou-

pling to membrane shear and edge-guided modes, the nanobeam is widened to 1µm and

attaches to the membrane with a large opening angle. To reduce coupling to the anti-

symmetric Lamb-like mode of the bilayer membrane, the aluminum nitride is patterned

using a reflow process to create a 1µm-long ramp between the bilayer and bare silicon.

From finite-element simulation we estimate that 15% of the power radiating into the

membrane from the nanobeam is converted into these unwanted modes.

5.3 Experimental results

Measurements were performed in ambient conditions, with the experimental setup fol-

lowing the schematic in Fig. 5.1a.

From DC optical transmission as a function of wavelength, we find an optical mode
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Figure 5.1: Experimental setup and device. a, Simplified measurement schematic,
with microwave components in yellow and optical components in red. Solid lines are used
for continuous optical-to-microwave transduction, and dashed or dotted lines are addi-
tional signal pathways used for other measurements. b, False-color SEM of a microwave-
optical transducer, including photonic waveguide (red), optomechanical nanobeam (blue),
and interdigital transducer (yellow). Inset c, magnified image of electromechanical trans-
ducer, showing signal (red) and ground (blue) electrodes.
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at 1548 nm with intrinsic loss rate κi = 2π× (3.8± 0.4) GHz and extrinsic loss rate κe =

2π× (6.5± 0.3) GHz. From the noise peak in the RF power spectrum of the transmitted

optical beat between the pump and mechanics-induced sidebands, we measure a mode at

4.737 GHz with full width at half maximum (6.2± 0.1) MHz and single-photon optome-

chanical coupling g0 = 2π×(734± 31) kHz. The electromechanical mode is characterized

using microwave reflection measurements at the IDT. We obtain a fit to an equivalent cir-

cuit model including a resonance at 4.709 GHz with total loss rate γe = (24.6± 0.5) MHz

and external coupling rate to a 50 Ω transmission line γe,e = (310± 10) kHz. The re-

maining model parameter is the coupling rate Gme between the nanobeam mechanical

resonance and the membrane electromechanical resonance. This is not directly accessible;

our model uses the simulated value of Gme = 2π × 1.15 MHz.

5.3.1 Continuous-wave operation

We characterize the bidirectional conversion efficiency using a continuous pump and

signal. For microwave-to-optical transduction, we drive the IDT with a microwave signal

swept across the device’s operating frequency, and we detect the beat in transmitted

optical power using a fast photodiode. At low pump powers we can sweep the laser

wavelength across the optical resonance, observing symmetric transduction for red and

blue detuning in agreement with theory (Fig. 5.2), with a 3 dB bandwidth of 8.1 MHz.

The signal pathway is calibrated to convert this measurement into a peak “external”

photon number efficiency ηext, defined as the ratio between the average output optical
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a b

Figure 5.2: Low-power microwave-to-optical transduction. Top: theory, using
independently fit parameters. Bottom: experiment. a, Amplitude. b, Phase.

photon rate in the resonant sideband and the average input microwave photon rate,

where the output refers the optical fiber above the chip, and the input refers to the

microwave cable before the chip. The resulting ηext is plotted in Fig. 5.3a as a function

of pump power. Power-dependent redshifting of the optical resonance prevents red-

detuned operation with a continuous pump at high powers, so ηext is calculated in blue-

detuned operation. We achieve a maximum efficiency of ηext = (2.5± 0.4)×10−5 (on-chip

η = (1.0± 0.16)× 10−4) with 168 µW in the input waveguide, with a 3 dB bandwidth of

3.4 MHz. (Internal efficiency is discussed in §5.4 below.)

For optical-to-microwave transduction, we create sidebands on the input light using

a phase modulator driven at the device’s operating frequency, and we detect microwave

power coupled out by the IDT. External photon number efficiency ηext is calculated as
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a

b

Figure 5.3: Continuous-wave microwave-to-optical transduction. a, Pump-
power dependence of measured microwave-to-optical (blue) and optical-to-microwave
(orange) external transduction efficiency. Error bars are 90% confidence intervals; green
curve is theoretical efficiency using independently determined model parameters. b,
Microwave-to-optical (blue) and optical-to-microwave (orange) transduction at the opti-
mized pump powers.

the ratio of the photon rate in the microwave output cable to the photon rate in one

optical sideband in the fiber above the chip, and is plotted in Fig. 5.3a as a function

of pump power. We achieve a maximum of ηext = (3.8± 0.4) × 10−5 (on-chip η =

(1.5± 0.16)×10−4) at 231µW, with a 3 dB bandwidth of 3.8 MHz. The signal-frequency

dependent efficiency at the optimal detuning is compared to that of microwave-to-optical

transduction in Fig. 5.3b.
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The relative uncertainty is smaller than for the microwave-to-optical efficiency, which

calculation suffers additional potential systematic and random errors mainly through

the calibration of the optical detection chain. The optical-to-microwave efficiency as a

function of power roughly agrees with both the microwave-to-optical efficiency and our

theoretical model, up to a pump power at which the experimental efficiency appears to

saturate early. The theoretical model uses the parameters as determined above with no

additional fitting.

5.3.2 Time-domain operation

In order to perform microwave-to-optical transduction in the time domain, the DC port of

an optical intensity modulator (IM) is biased to the maximum extinction point, effectively

turning the pump off. The RF port of the IM is then driven by a pulse, generated by

amplifying the output of a custom DAC, in order to turn the pump on and off. This

produces a 20 ns rectangular pulse with rise and fall times of 5 ns and an on-off ratio of

23 dB in optical pump power. The IDT is driven continuously with a microwave source,

and an ADC demodulates the transmitted pulse in optical beat power detected with

a fast photodiode. The signal is digitally filtered to remove interference from 10 MHz

clock harmonics originating elsewhere in the setup; this spurious signal is small enough

to be mostly removed from the microwave-to-optical signal, but limits the reliability of

optical-to-microwave measurements in the time domain.

By repeating this measurement for laser wavelengths around the low-power-equilibrium
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Figure 5.4: Time-domain microwave-to-optical transduction. Left, Detected
power over time for a range of initial pump detunings. Right, Time traces for initially
red and blue detuned pulses, using the corresponding dashed cut lines. The maximum
input waveguide power during the pulse is 87 µW, with and rise and fall times of 5 ns,
and a length of 20 ns between midpoints of the rise and fall.
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resonant wavelength (Fig. 5.4), we can observe the time-dependent redshifting of the res-

onance, marked by the zero in transmission when the pump is resonant and the sidebands

interfere destructively. For pump power around 87µW on the red side of the cavity, the

optical mode shifts by roughly 5 GHz in 20 ns. Despite not operating at the optimal

detuning for the duration of a 20 ns pulse, we can observe both red-detuned and blue-

detuned transduction. By converting the detected signal to a single-sideband photon

rate in the fiber after the device, we calculate that approximately 1.6× 10−6 (1.3× 10−6)

of the input microwave photons in 20 ns are transduced when red (blue) detuned. If

we considered the blue-detuned continuous-wave efficiency in our model as a function

of power and simply integrated that efficiency over the pulse, we would expect a total

external efficiency of 8.1× 10−6. The lower efficiency for time-domain operation may be

attributed to the time-varying detuning, the finite transduction bandwidth of the device,

and operation faster than mechanical amplification by the blue-detuned pump.

Time domain optical-to-microwave transduction can be performed by applying the

signal to the phase modulator and demodulating the amplified output of the IDT. An

averaged time trace is shown in Fig. 5.5. The measurement suffers from the fact that

even a relatively strong optical signal corresponds to a relatively low photon rate, limiting

the signal power (or signal-to-noise ratio) available for detection as compared with the

microwave-to-optical measurement. Phase information is also transduced in the time

domain in both directions (Fig. 5.6).
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Figure 5.5: Time-domain optical-to-microwave transduction. Left, Detected
power over time for a range of initial pump detunings. Right, Time traces for initially
red and blue detuned pulses, using the corresponding dashed cut lines. The maximum
input waveguide power during the pulse is 183 µW, with and rise and fall times of 5 ns,
and a length of 20 ns between midpoints of the rise and fall.
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Figure 5.6: Phase information in time-domain transduction. Left, Microwave-
to-optical phase, corresponding to Figure 5.4. Right, Optical-to-microwave phase, cor-
responding to Figure 5.5.
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5.4 Internal efficiency

A major factor limiting the external efficiency is the poor impedance matching of the IDT

to a 50 Ω transmission line, which gives a ratio of external coupling to total loss in the

electromechanical resonator of ηe = 0.013. This ratio can be made close to 1 by modifying

the impedance seen from the transducer using a lumped-element resonator or impedance

matching network [43]. We further note that impedance matching, while relevant in

the context of our classical continuous-wave experiment where the electromechanical

resonance is addressed by a transmission line, will be replaced by a different challenge

when coupled to a resonator or qubit. For example, in order for a qubit to emit its state

as a phonon, the electromechanical interaction must be made to dominate other qubit

loss pathways.

We can consider a “semi-internal” efficiency that describes the on-chip performance

compared to an ideal electrically-overcoupled transducer by factoring out the electrical

coupling ratio and the 25% efficiency of the grating couplers. We obtain maximum semi-

internal efficiencies of 0.77% and 1.2% for microwave-to-optical and optical-to-microwave

transduction, respectively. Since two-sided optical coupling is used for the convenience

of measuring in transmission at the cost of a factor of 2 in efficiency, the comparable

ideal transducer has an efficiency of 50%. To obtain the internal efficiency as defined in

Eqn. 2.45, we also factor out the optical coupling ratio ηo = (κe/2)/κ = 0.32, yielding

ηint of 2.4% and 3.75% in the two directions.
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Chapter 6

Conclusion

In this thesis we have presented the design and operation of a new microwave-optical

transducer combining silicon optomechanics with aluminum-nitride based electrome-

chanics. The use of silicon, which has a stronger photoelastic effect than aluminum

nitride, together with a detailed revision of the design of the optomechanical and elec-

tromechanical elements, has allowed us to demonstrate external conversion efficiencies of

ηext = (2.5± 0.4)× 10−5 (microwave to optical) and ηext = (3.8± 0.4)× 10−5 (optical to

microwave), corresponding to internal efficiencies above 1%. This device also has a larger

bandwidth than previous efficient microwave-optical transducers, allowing us to operate

in the time domain as well with 20 ns pulses.

This kind of device could be extended to operate in the quantum regime. Future

experiments could focus on cryogenic operation, further improvements to efficiency, and

coupling to superconducting qubits.
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6.1 Improving efficiency

The model of efficiency previously shown in Fig. 2.3 used parameters chosen to be realis-

tic, though among our best measured individual device parameters. With that model, we

expect internal efficiency of 0.5 for typical room-temperature mechanical Q, approaching

unit internal efficiency for mechanical Q achievable at low temperatures. In order to

reach these efficiencies in practice, improvements must be made to a number of different

aspects of the device, some requiring more engineering effort than others. Examining

the optics, one-sided optical coupling would directly recover a factor of 2 in external

efficiency, besides allowing operation with lower total κ. Light could also be coupled to

an on-chip waveguide more efficiently than with focusing grating couplers, for example

using a lensed tapered fiber as in Ref. [14]. The device used also had an anomalously

low optical Qi; we have measured a nanobeam with nominally identical dimensions with

optical Qi ∼ 300, 000 at low temperature (3 K), as well as devices integrated with the

electromechanical element with optical Qi ∼ 200, 000. This would allow critically coupled

(one-sided) operation with a total κ < 2π × 2 GHz, increasing Com directly and provid-

ing good sideband resolution. The mechanical-electromechanical coupling Gme should

be tailored to match cooperativities at the target operating cavity photon number. The

frequencies of the electromechanical and mechanical modes can be matched by two-

dimensional scaling of one of the geometries, recovering a factor of 5 in efficiency. The

electromechanical membrane resonance has a low intrinsic Q, possibly owing to the large

supports connecting it to the rest of the chip as well as a back mirror defined photolitho-
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graphically using a direct-write system with a relatively large step size. Patterning the

supports with a full-bandgap phononic crystal could reduce clamping losses. The clamp-

ing Q of the nanobeam mechanical mode could similarly be improved. Operating at low

temperature is also expected to reduce intrinsic mechanical losses.

6.2 Outlook

The possibility of quantum operation of an efficient microwave-optical transducer is il-

luminated by recent work in our lab and others. Optical quantum control of silicon

optomechanics has previously been demonstrated, including entanglement of remote me-

chanical oscillators [47] and light-matter entanglement violating a Bell inequality [37]. If

the microwave port of our system can be coupled to a superconducting qubit, that qubit

could be read out or excited optically, with the goal of generating an entangled state

involving the microwave qubit and a single optical photon. That entanglement would be

an essential ingredient for long-distance communication using superconducting qubits.

Recent work on hybrid quantum devices and microwave quantum communication

suggests possible paths to interfacing our design with a qubit. An electromechanical res-

onator was directly coupled to a superconducting qubit on aluminum nitride in Ref. [41],

allowing the demonstration of mechanical ground-state cooling and single photon-phonon

swaps despite short mechanical and qubit lifetimes. A qubit could be fabricated on the

silicon region of the same chip, possibly offering better performance; a silicon-on-insulator

qubit was demonstrated in Ref. [29]. A separate qubit chip could also be integrated using
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a flip-chip method [52]; this method was used to couple surface acoustic waves to qubits

in Refs. [53, 7]. Finally, recent work has demonstrated quantum state transfer and entan-

glement generation between remote superconducting qubits, with methods which could

be extended to create a hybrid system with a qubit in a different package at the end of

a microwave transmission line in the same refrigerator (for example see Refs. [33, 68]).

Looking beyond the specifics of our device, we hope that the methods of this work may

contribute to the wider field of hybrid quantum systems. Surface acoustic waves have

emerged as a promising platform for experiments in quantum electromechanics, where

Lamb-wave devices may also find a place by eliminating scattering into bulk modes

and suppressing clamping losses with complete phononic bandgaps. Optomechanical

crystal devices are also a powerful platform for a range of interesting physics, with new

possibilities arising from efficient electromechanical driving and detection. Mechanical

motion serves as a sort of universal interface between different kinds of systems, from

microwaves or optics to semiconductor defect spins, through their sensitivity to physical

proximity or microscopic strain of materials. This work has attempted to extend the

potential of that interface for whatever applications arise.
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[49] Amir H. Safavi-Naeini, Simon Gröblacher, Jeff T. Hill, Jasper Chan, Markus As-
pelmeyer, and Oskar Painter. Squeezed light from a silicon micromechanical res-
onator. Nature, 500(7461):185–189, August 2013. [Cited on page 38.]

[50] Amir H. Safavi-Naeini and Oskar Painter. Optomechanical Crystal Devices. In
Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt, editors, Cavity
Optomechanics, pages 195–231. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
[Cited on pages 8 and 41.]

106



[51] J.J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Cambridge University
Press, 2017. [Cited on page 44.]

[52] K. J. Satzinger, C. R. Conner, A. Bienfait, H.-S. Chang, Ming-Han Chou, A. Y.
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