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MSW Effects in Vacuum Oscillations

Alexander Friedland
Department of Physics, University of California, Berkeley, CA 94720, USA;

Theory Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
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We point out that for solar neutrino oscillations with the mass–squared difference of ∆m2 ∼
10−10 − 10−9 eV2, traditionally known as “vacuum oscillation” range, the solar matter effects are
non-negligible, particularly for the low energy pp neutrinos. One consequence of this is that the
values of the mixing angle θ and π/2 − θ are not equivalent, leading to the need to consider the
entire physical range of the mixing angle 0 ≤ θ ≤ π/2 when determining the allowed values of the
neutrino oscillation parameters.

1. The field of solar neutrino physics is currently un-
dergoing a remarkable change. For 30 years the goal
was simply to confirm the deficit of solar neutrinos. The
latest experiments, however, such as Super-Kamiokande,
SNO, Borexino, KamLAND, etc, aim to accomplish more
than that. By collecting high statistics real–time data
sets on different components of the solar neutrino spec-
trum, they hope to obtain unequivocal proof of neu-
trino oscillations and measure the oscillation parameters.
With the physics of solar neutrinos quickly becoming a
precision science, it is more important then ever to ensure
that all relevant physical effects are taken into account
and the right parameter set is used.

It has been a long–standing tradition in solar neutrino
physics to present experimental results in the ∆m2 −
sin2 2θ space and to treat separately the “vacuum os-
cillation” (∆m2 ∼ 10−11 − 10−9 eV2) and the MSW
(∆m2 ∼ 10−8 − 10−3 eV2) regions. In the vacuum oscil-
lation region the neutrino survival probability (i.e. the
probability to be detected as νe) was always computed
according to the canonical formula,

P = 1 − sin2 2θ sin2

(

1.27
∆m2L

E

)

, (1)

where the neutrino energy E is in GeV, the distance L in
km, and the mass–squared splitting ∆m2 in eV2. Eq. (1)
makes sin2 2θ seem like a natural parameter choice. As
sin2 2θ runs from 0 to 1, the corresponding range of the
mixing angle is 0 ≤ θ ≤ π/4. There is no need to
treat separately the case of ∆m2 < 0 (or equivalently
π/4 ≤ θ ≤ π/2), since Eq. (1) is invariant with respect
to ∆m2 → −∆m2 (θ → π/2 − θ).

The situation is different in the MSW region, since
neutrino interactions with matter are manifestly flavor-
dependent. It is well known that for |∆m2| >

∼ 10−8 eV2

matter effects in the Sun and Earth can be quite large.
In this case, if one still chooses to limit the range of
the mixing angle to 0 ≤ θ ≤ π/4, one must consider
both signs of ∆m2 to describe all physically inequivalent
situations. As was argued in [1], to exhibit the continuity
of physics around the maximal mixing, it is more natural
to keep the same sign of ∆m2 and to vary the mixing
angle in the range 0 ≤ θ ≤ π/2.

Historically, a possible argument in favor of not consid-
ering θ > π/4 in the MSW region might have been that
this half of the parameter space is “uninteresting”, since
for θ > π/4 there is no level-crossing in the Sun and the
neutrino survival probability is always greater than 1/2.
However, a detailed analysis reveals that allowed MSW
regions can extend to maximal mixing and beyond, as
was explored in [2] (see also [3] and [4] for a treatment of
3- and 4- neutrino mixing schemes).

In this letter we point out that for solar neutrinos with
low energies, particularly the pp neutrinos, the solar mat-
ter effects can be relevant even for neutrino oscillations
with ∆m2 ∼ 10−10 − 10−9 eV2. These effects break the
symmetry between θ and π/2 − θ making it necessary
to consider the full physical range of the mixing angle
0 ≤ θ ≤ π/2 even in the “vacuum oscillation” case.

2. For simplicity, we will only consider here the two-
generation mixing. If neutrino masses are nonzero then,
in general, the mass eigenstates |ν1,2〉 are different from
the flavor eigenstates |νe,µ〉. The relationship between
the two bases is given in terms of the mixing angle θ:

|ν1〉 = cos θ|νe〉 − sin θ|νµ〉,

|ν2〉 = sin θ|νe〉 + cos θ|νµ〉. (2)

In our convention |ν2〉 is always the heavier of the two
eigenstates, i.e. ∆m2 ≡ m2

2 − m2
1 ≥ 0. Then, as already

mentioned, 0 ≤ θ ≤ π/2 encompasses all physically dif-
ferent situations.

Neutrinos are created in the Sun’s core and exit the
Sun in the superposition of |ν1〉 and |ν2〉. For ∆m2 in
the vacuum oscillation region, the neutrino is produced
almost completely in the heavy Hamiltonian eigenstate
|ν+〉. In this case, if the evolution inside the Sun is adia-

batic, the exit state is purely |ν2〉. In the case of a nona-

diabatic transition there is also a nonzero probability Pc

to find the neutrino in the |ν1〉 state (a “level crossing”
probability). For a given value of Pc, the survival prob-
ability for neutrinos arriving at the Earth is determined
by simple 2-state quantum mechanics [5,7,8]:

P = Pc cos2 θ + (1 − Pc) sin2 θ

+ 2
√

Pc(1 − Pc) sin θ cos θ cos

(

2.54
∆m2L

Eν

+ δ

)

. (3)
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Here δ is a phase acquired when neutrinos traverse the
Sun. In our analysis it is determined numerically [6].
Units are the same as in Eq. (1).

In the adiabatic limit Pc = 0 and Eq. (3) yields
P = sin2 θ. Neutrinos exit the Sun in the heavy mass
eigenstate and do not oscillate in vacuum. In the op-
posite limit of small ∆m2, when the neutrino evolution
in the Sun is “extremely nonadiabatic”, Pc → cos2 θ. It
is trivial to verify that Eq. (3) in this limit reduces to
Eq. (1). It has been assumed that in the vacuum oscil-
lation region this limit is reached. Remarkably, however,
this is not always the case for the low energy solar neu-
trinos, especially the pp neutrinos (Eν ≤ 0.42 MeV).

The most reliable way to compute Pc is by numerically
solving the Schrödinger equation in the Sun for different
values of ∆m2 and θ. We do this using the latest avail-
able BP2000 solar profile [9]. Fig. 1 shows contours of
constant Pc for the energy of 7Be neutrino (solid lines).
Note that the variable on the horizontal axis is tan2 θ.
With this choice, points θ and π/2 − θ are located sym-
metrically on the logarithmic scale about tan2 θ = 1 (see
[10]) [11]. The figure demonstrates that the contours are
not symmetric with respect to the tan2 θ = 1 line, ex-
cept in the region of ∆m2/Eν

<
∼ 10−10 eV2/MeV, where

the extreme nonadiabatic limit is reached. This simple
observation is the crucial point of this letter.
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FIG. 1. Contours of constant level crossing probability Pc

for neutrino energy of 0.863 MeV (7Be line). The solid lines
are the results of numerical calculations using the BP2000
solar profile. The dashed lines correspond to using the expo-
nential profile formula with r0 = R⊙/18.4 = 3.77 × 104 km.

In the MSW region the value of Pc is often computed
using the analytical result [12]

Pc =
eγ cos

2 θ − 1

eγ − 1
, (4)

where

γ = 2πr0

∆m2

2Eν

, (5)

valid for the exponential solar profile ne ∝ exp(−r/r0),
with r0 = R⊙/10.54 = 6.60×104 km [13]. Although orig-
inally derived for θ ≤ π/4, it also applies when θ > π/4,
as was demonstrated in [1]. In the region relevant for vac-
uum oscillation, however, 0.9R⊙

<
∼ R <

∼ R⊙, the profile
falls off faster than the exponential with r0 = R⊙/10.54.
Nevertheless, Eq. (4) can still be used with the appro-
priately chosen value of r0. The dashed lines in Fig. 1
show the contours of Pc computed using Eq. (4) with
r0 = R⊙/18.4 = 3.77× 104 km. As can be seen from the
figure, the agreement between the two sets of contours
for ∆m2 <

∼ 4 × 10−9 eV2 is very good. Note that a sim-
ilar result was arrived at in [14] for θ ≤ π/4, where the
value of r0 = R⊙ × 0.065 = 6.5 × 104 km was obtained.

Fig. 1 can also be used to read off the values of Pc

for different neutrino energies, since Pc depends on Eν

through the combination ∆m2/Eν . It is obvious that for
neutrinos of lower energies Pc starts deviating from its
“extreme nonadiabatic” value at even smaller values of
∆m2, and vice versa. Consequently, as will be seen later,
the solar matter effects on vacuum oscillations are most
important at the gallium experiments, which are sensi-
tive to the pp neutrinos, while the Super-Kamiokande
experiment is practically unaffected.

Using Eqs. (4,3), it is possible to derive a corrected
form of Eq. (1), by retaining in the expansion terms linear
in γ:

P = 1 −
(

1 +
γ

4
cos 2θ

)

sin2 2θ sin2

(

1.27
∆m2L

E

)

+

+ O(γ2) (6)

Notice that the first order correction contains cos 2θ
and hence is manifestly not invariant under the transfor-
mation θ → π/2−θ. Using Eq. (5) with r0 = 3.8×104 km,
we see that for the pp neutrinos (Eν ≤ 0.42 MeV) this
correction is indeed non-negligible already for ∆m2 ∼
10−10 − 10−9 eV2.

With matter effects being relevant already at ∆m2 >
∼

10−10 eV2 one might wonder if the separation between
vacuum oscillation solutions and MSW solutions is some-
what artificial. To fix the terminology, we will adopt a
definition of vacuum oscillations as the situation when
the value of neutrino survival probability depends on the
distance L from the Sun, regardless of whether matter
effects are negligible or not. The transition between the
vacuum and the MSW regions will be discussed shortly.

3. To illustrate the role of matter effects in vacuum
oscillations, we present fits to the total rates of the Home-
stake [15], GALLEX [16] and SAGE [17], and Super-
Kamiokande [18] experiments. We combine experimental
rates and uncertainties for the two gallium experiments
and use the latest available 825-day Super-Kamiokande
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FIG. 2. Regions allowed by total rates of GALLEX and SAGE only (A), GALLEX, SAGE, and Super-Kamiokande (B), and
GALLEX, SAGE, Homestake, and Super-Kamiokande (C). Black outlines correspond to neglecting the solar matter effects.

data set. The experimental results are conveniently col-
lected and tabulated in [3].

We fit the data to the theoretical predictions of the
BP98 standard solar model [19]. Predicted fluxes and
uncertainties for various solar reactions were kindly made
available by J. N. Bahcall at [20]. To compute the rate
suppression caused by neutrino oscillations, we numeri-
cally integrate the neutrino survival probability, Eq. (3),
over the energy spectra of the pp, 7Be, 8B, pep, 13N, and
15O neutrinos. In addition, to account for the fact that
the Earth–Sun distance L varies throughout the year as
a consequence of the eccentricity of the Earth’s orbit

L = L0(1 − ǫ cos(2πt/year)) (7)

we also integrate over time to find an average event rate.
In Eq. (7) t is time measured in years from the perihelion,
L0 = 1.5×108 km is one astronomical unit, and ǫ = 1.7%.

In Fig. 2 (A) we show the vacuum oscillation regions
allowed by the total rates of GALLEX and SAGE. For
comparison, we also show the regions one would obtain by
neglecting the neutrino interactions with the solar mat-
ter (dark outlines), i.e. by setting Pc = cos2 θ (black
contours). The allowed regions were defined as the sets
of points where the theoretically predicted and experi-
mentally observed rates are consistent with each other
at the 2σ C.L. for 1 d.o.f. (χ2 = 4.0) [21]. The plot
demonstrates that the matter effects at the gallium ex-
periments are quite important, with their contribution
being significant for ∆m2 >

∼ 2 × 10−10 eV2.
The remaining two plots in Fig. 2 show the vacuum

regions allowed at 3σ C.L. by the rates of GALLEX,
SAGE, and Super-Kamiokande (B) (2 d.o.f., χ2 = 11.83,
in the same convention as before), and all four experi-
ments combined (C) (3 d.o.f., χ2 = 14.15). In order to
properly account for the correlation between the theoret-
ical errors of the different experiments, we followed the
technique developed in [22] and [3]. The matter effects
are noticeable for ∆m2 > 6 × 10−10 eV2.

0.01 0.1 1 10 100
10-11
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10-8

tan2 θ

∆
2

m
(e

V
  )2

FIG. 3. The sensitivity region of the Borexino experiment
to anomalous seasonal variations for the full range of the mix-
ing angle (95% C.L.). Notice the asymmetry for large ∆m2.

4. An important question is how well future experi-
ments will be able to cover vacuum oscillation solutions
with θ > π/4. In Fig. 3 we show the sensitivity of
the Borexino experiment to anomalous seasonal varia-
tions for the entire physical range of the mixing angle
0 ≤ θ ≤ π/2. This is an extension of the analysis per-
formed in [7], where the details of the procedure are de-
scribed. The sensitivity region shows a clear asymmetry
as a result of the solar matter effects.

Fig. 3 gives us an opportunity to discuss the extent
of the vacuum oscillation region. There are two primary
physical reasons why the neutrino event rate becomes in-
dependent of L (and anomalous seasonal variations dis-
appear) for sufficiently large ∆m2:

• Adiabatic evolution in the Sun. As Pc → 0 the last
term in Eq. (3) vanishes.
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• Integration over neutrino energy spectrum. To
compute the event rate one has to integrate Eq. (3)
over neutrino energies. For sufficiently large ∆m2

the last term averages out to zero, leading effec-
tively to the loss of coherence between the two mass
eigenstates.

As ∆m2 increases, coherence is first lost for reac-
tions with broad energy spectra, such as pp and 8B,
and persist the longest for neutrinos produced in two-
body final states. The most important such reaction is
7Be+e− →7Li +νe, which produces the 7Be neutrinos.
The 7Be neutrinos have an energy spread of only a few
keV, arising from the Doppler shift due to the motion
of the 7Be nucleus and the thermal kinetic energy of the
electron. A detailed discussion of this phenomenon can
be found in [7,5].

In order to properly take these effects into account, in
our codes we numerically integrate over the exact 7Be
line profile, computed in [23]. As Fig. 3 shows, the neu-
trino survival probability becomes independent of L for
∆m2 >

∼ 6 × 10−9 eV2. For this reason, we present our
fits for ∆m2 ranging from 10−11 eV2 to 10−8 eV2. Un-
fortunately, in the literature vacuum oscillations are usu-
ally studied in the range from 10−11 eV2 to 10−9 eV2

[24,25,4], although the allowed regions in all these pa-
pers seem to extend above 10−9 eV2.

5. In summary, the preceding examples clearly illus-
trate the importance of including the solar matter ef-
fects when studying vacuum oscillation of solar neutri-
nos with ∆m2 >

∼ 10−10 eV2. Because to describe such
effects one has to use the full range of the mixing angle
0 ≤ θ ≤ π/2, future fits to the data should be extended
to θ > π/4. This seems especially important in light
of the latest analyses [25], [4], which in addition to the
total rates also use the information on the neutrino spec-
trum and time variations at Super-Kamiokande. In this
case the allowed vacuum oscillation regions are mostly
located in the ∆m2 >

∼ 4 × 10−10 eV2 region [4], pre-
cisely where the matter effects are relevant. (The best
fit to the Super-Kamiokande electron recoil spectrum is
achieved for ∆m2 = 6.3 × 10−10 eV2, sin2 2θ = 1 [25].)
It would be very desirable to repeat these analyses with
the solar matter effects included.

Additionally, since the 7Be neutrinos remain (par-
tially) coherent for ∆m2 > 10−9 eV2, it is desirable to
present the results of the fits in the range 10−11 eV2 <
∆m2 < 10−8 eV2, as was done in [2].
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