Title
Ni-Catalyzed Suzuki–Miyaura Cross-Coupling of Aliphatic Amides on the Benchtop

Permalink
https://escholarship.org/uc/item/0df92485

Journal
Organic Letters, 22(1)

Authors
Mehta, Milauni M.
Boit, Timothy B.
Dander, Jacob E.

Publication Date
2019-10-17

Peer reviewed
Ni-Catalyzed Suzuki–Miyaura Cross-Coupling of Aliphatic Amides on the Benchtop

Milauni M. Mehta,† Timothy B. Boit,† Jacob E. Dander,† and Neil K. Garg*‡

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

Supporting Information

ABSTRACT: Suzuki–Miyaura cross-couplings of amides offer an approach to the synthesis of ketones that avoids the use of basic or pyrophoric nucleophiles. However, these reactions require glovebox manipulations, thus limiting their practicality. We report a benchtop protocol for Suzuki–Miyaura cross-couplings of aliphatic amides that utilizes a paraffin capsule containing a Ni(0) precatalyst and NHC ligand. This methodology is broad in scope, is scalable, and provides a user-friendly approach to convert aliphatic amides to alkyl–aryl ketones.

The conversion of carboxylic acid derivatives to ketones is a fundamental transformation in synthetic chemistry (Figure 1).1 A common strategy to achieve this conversion is the Weinreb ketone synthesis, in which a N-methoxy-N-methyl amide undergoes net substitution with an organometallic nucleophile.2 An alternative strategy lies in the development of transition-metal-catalyzed cross-couplings of acyl electrophiles,3c,3 which avoid the use of strongly basic and pyrophoric organometallic reagents. Our laboratory and others have shown that amides, which are well suited for multistep synthesis due to their pronounced stability, are particularly useful in this context.4 Specifically, Ni,5a and Pd-catalysis have enabled the mild activation of the amide C–N bond for cross-coupling with boronic acids and esters,8 as well as organozinc reagents.9

We recently reported a Ni-catalyzed Suzuki–Miyaura coupling of aliphatic amides to generate alkyl–aryl ketones (Figure 1, e.g. 1 + 2 → 3).6,11 This methodology is broad in scope, but requires the use of a glovebox, thus limiting its practical utility.12 We questioned if a paraffin-encapsulation strategy, analogous to that pioneered by Buchwald, could prove useful.13 In this approach, air-sensitive reagents are stored in paraffin capsules, ultimately providing a user-friendly means to perform air-sensitive transition-metal-catalyzed reactions. Previously, we showed the promise of this strategy for the Suzuki–Miyaura cross-coupling of a single benzamide-derived substrate utilizing paraffin–Ni(cod)2/SIPr capsules.14 However, this precatalyst and ligand combination is ineffective in the coupling of amides derived from aliphatic carboxylic acids.10 Moreover, only a single example of a glovebox free arylation of an aliphatic amide derivative has been reported, which uses a bench-stable Pd(II) precatalyst.15 We report the realization of a paraffin encapsulation strategy to achieve the nickel-catalyzed Suzuki–Miyaura coupling of aliphatic amides on the benchtop.

Our studies were initiated by preparing the desired paraffin capsules, using a molding process analogous to one we had previously reported (Figure 2).14 These capsules were charged with Ni(cod)2 and Benz-ICy·HCl, as this precatalyst/ligand combination had proven effective in our original studies on the Suzuki–Miyaura coupling of aliphatic amides using a glovebox.10 Next, we assessed the utility of these capsules in the benchtop Suzuki–Miyaura coupling of amide 4 with N-methylpyrrole-2-boronic acid pinacol ester (5), using 5 mol% Ni. Unfortunately, the use of our literature conditions resulted in a poor yield of ketone 6.16 Specifically, the coupling of 4 and 5 employing paraffin-encapsulated Ni(cod)2/Benz-ICy·HCl

Received: September 27, 2019
Published: October 17, 2019

Figure 1. Methods for the conversion of amides to ketones. Prior studies of Ni-catalyzed Suzuki–Miyaura coupling of amides - Requires glovebox. This study: Benchtop Ni-catalyzed Suzuki–Miyaura coupling of aliphatic amides - Glovebox Free.
Figure 2. Preparation of Ni(cod)₂/Benz-ICy·HCl—paraffin capsules and their use in the benchtop Suzuki–Miyaura coupling of piperidinyl amide 4 and pyrrole boronic ester 5 under optimized conditions. Yields were determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an external standard.

2.5 equiv of 5, toluene as the reaction solvent, and a stir rate of 400 rpm for 16 h at 120 °C provided ketone 9 in 28% 1H NMR yield. After extensive experimentation, it was found that employing higher equivalents of 5 (2.5 to 5.0), utilizing 1,4-dioxane as the reaction solvent, and extending the reaction time to 24 h proved beneficial. This provided ketone 9 in 91% yield on the benchtop. Additionally, these capsules displayed long-term air and moisture stability when stored outside of a glovebox. After two months of storage, a benchtop coupling of 4 and 5 generated 6 in comparable yield. These capsules are currently undergoing commercialization to enable their widespread use.

Having validated our encapsulation approach and arrived at optimized reaction conditions, we evaluated the scope of this transformation with respect to the boronate ester coupling partner. A variety of aryl boronate esters were assessed in couplings with piperidinyl amide 4 (Figure 3). The methodology was found to be tolerant of medicinally privileged N-heterocyclic aryl boronates, as evidenced by the formation of ketones 6–8, in good to excellent yields. Additionally, electron-poor p-CF₃ and sterically encumbered a-CH₃ substituted phenyl boronate esters could be employed in the coupling, providing ketones 9 and 10 in 53% and 74% yields, respectively. Boronate esters featuring extended aromatic ring systems were also competent nucleophiles in the methodology, as demonstrated by the formation of naphthyl ketone 11 in 71% yield. Of note, in all cases, benchtop yields of the desired ketone products were comparable to those obtained when using literature conditions requiring a glovebox (yields using the glovebox protocol are shown in parentheses in Figures 3 and 4).

Figure 3. Scope of the boronic ester coupling partners. General conditions unless otherwise stated: substrate 4 (1.0 equiv, 0.4 mmol), K₃PO₄ (4.0 equiv), Ni(cod)₂ (5 mol%), Benz-ICy·HCl (10 mol%), and 1,4-dioxane (1.0 M) heated at 120 °C for 24 h in a sealed vial under an atmosphere of N₂. Unless otherwise noted, yields reflect the average of two isolation experiments. Yields in parentheses were obtained by carrying out the reaction in a glovebox utilizing literature conditions without encapsulating Ni(cod)₂ and Benz-ICy·HCl in paraffin. *Yield was determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an external standard.

We next surveyed a range of amide substrates in the Suzuki–Miyaura coupling with pyrroloboronate 5 (Figure 4). An additional piperidine-derived amide substrate could be used in the coupling to furnish 12 in excellent yield. Furthermore, amides derived from isomeric 3- and 4-tetrahydropyran-carboxylic acids were competent substrates, giving rise to ketones 13 and 14 in 79% and 84% yields, respectively. We also evaluated the coupling of non-heterocyclic amides. Linear and carbocyclic amides underwent the reaction smoothly, as demonstrated by the formation of 15 and 16 in 83% and 89% yield, respectively. Notably, steric bulk adjacent to the amide carbonyl did not hinder the Suzuki–Miyaura coupling, as the use of a pivalamide substrate gave ketone 17 in 90% yield.

Finally, we assessed the Suzuki–Miyaura coupling of piperidine amide 1 with N-methylindole-2-boronic ester 18 on gram-scale as shown in Figure 5. Using 5 mol% Ni, the coupling proceeded smoothly to deliver ketone 19 in 73% yield. We view this result as promising in the context of the scalable construction of biologically relevant bis-heterocyclic ketones where the enolizable alkyl–aryl ketone provides a valuable synthetic handle for further manipulation.
We have developed a benchtop protocol for the Suzuki–Miyaura cross-coupling of aliphatic amides to access alkyl–aryl ketones. Our strategy leverages mild Ni-catalyzed C–N bond activation to avoid the use of strongly basic and pyrophoric reagents typically employed in amide to ketone conversions. Additionally, the Ni(cod)2/Benz-ICy reagents typically employed in amide to ketone conversions. Activation to avoid the use of strongly basic and pyrophoric reagents in Ni-catalyzed anhydride alkylation. Moreover, this transformation is scalable and, further, provides a valuable approach to the synthesis of alkyl amides with a variety of aryl boronic esters for the formation of C–C bonds. However, this study hopes to promote the use of Ni-mediated Suzuki–Miyaura couplings of aliphatic amides as a complement to traditional synthetic strategies.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b03434.

Experimental details and compound characterization data (PDF)

AUTHOR INFORMATION
Corresponding Author
E-mail: neilgarg@chem.ucla.edu.

ORCID
Milani M. Mehta: 0000-0002-4597-2829
Neil K. Garg: 0000-0002-7793-2629

Author Contributions
M.M.M. and T.B.B., and J.E.D. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank the NIH-NIGMS (R01-GM117016 to N.K.G.), the California Tobacco-Related Disease Research Program (28DT-0006 to T.B.B.), the NSF (DGE-1144087 to J.E.D.), the Trueblood Family (N.K.G.), the Foote Family (J.E.D.), and the University of California, Los Angeles for financial support. Hui-Qi Ni (Scripps Research Institute) and Angel Mendoza (University of California, Los Angeles) are acknowledged for experimental assistance. These studies were supported by shared instrumentation grants from the NSF (CHE-1048804) and the NIH-NCRR (S10RR025631). The cover was designed by the authors and created by Element26, Inc.

REFERENCES


(r) Lei, P.; Meng, G.; Ling, Y.; An, J.; Nolan, S. P.;


(16) See the Supporting Information (SI) for details.

(17) See the Supporting Information for full optimization details.