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Abstract 

The importance of Radon transform inversion is beginning 

to be recognized in several areas of the physical and biological 

sciences. Various methods for inversion in two dimensions are 

discussed jo.intly with the interrelationships among some important 

formulas which naturally arise in the inversion process. These 

results serve as a foundation for the development of numerical 

inversion techniques, and for generalizations to higher dimensions. 
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The Radon transform of a function F defined on Euclidean n-space ~n 

establishes a relation between F and integrals of F over all hyperplanes 

contained in ~n. Following the early work by Radon [1] in 1917 the theory 

of the Radon transform has beeri developed by several authors [2-6]; however, 

it is only within the past few years that major applications have emerged. 

In most of these applications there is an attempt to obtain detailed information 

about some aspect of the internal structure of an object by studying the 

·effect the object has upon some probe, such as x-rays when they pass through 

the object. For some specific applications we refer the reader to [7-9] and. 

additional references contained therein. 

The unification of all of these applications where there is an attempt 

to PeaonstPuat certain internal structure fPom experimental knowledge about 

pPojeations of the internal structure information is to be found in the theory 

of the Radon transform. The success of a given application ultimately depends 

upon one's ability to invert the Radon transform relative to the specific 

object and specific probe. It is our purpose here to investigate the Radon 

transform in two dimensions and its inversion which yields information about 

a plane cross section of the object. Specifically, we shall be concerned 

with the Radon transform and its inversion for a function Fe[) where F represents 

the desired information about the internal structure and D is the space of 

Coo functions with compact support [10]. 

We shall present many of our results in considerable detail for several 

reasons. (i) It is important to point out certain interrelationships among 

various formulas which naturally appear in the inversion process. (ii) Various 

methods for inversion are suggested. (iii) There is a need to correct errors 

and simplify certain formulas which have appeared in the literature. (iv) This 
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approach is especially relevant at this time since some of these results are 

of importance in current work on the development of computer codes for Radon 

transform inversion. 

2. REDUCTION TO TWO DIMENSIONS 

Then-dimensional Radon transform of the function F(x) = F(x 1 ,x2 ,•••,xn) 

may be expressed .as [2] 

f(p, l;) = R{F} J F(x) O(p- l;•x) dx , (2.1) 

n . where XE IR and the integral is over all x-space, l; is an arbitrary fixed 

unit vector, and pis a real number. Observe that since FeD the function 

00 

f is also a C function with compact support [6] and the presence of the Dirac 

o function causes the.integration to be performed over all .hyperplanes where 

Note that since l; is a unit vector p represents the distance from the origin to 

the hyperplane. Moreover, if F is a function of n independent variables then 

f is also a function of n independent variables and f satisfies the symmetry 

property 

f(-p,-F,) f(p, F,). 

We now assume that Fe ID is defined on IR2 and that the support of F is 

bounded by the unit circle. If at this point there is concern about the severe 
. 

and perhaps unphysical restrictions which have been placed upon F it is 

appropriate to recall the Approximation Theorem [10]. 

\. 
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THEOREM. (Schwartz) For any~£>03 any continuous function f 3 with a bounded 

support K3 can be uniformly approximated to within a.distance £by some 
' ' 

function <j>€ID3 and¢ can be required to have its support contained within an 

arbitrary neighbourhood of the support K of f. 

The main reason for working with functions from 0 is to insure that the results 

will be rigorous, since there are numerous changes in the order of integration 

and generalized functions appear all through the development, 

With the stated assumptions (2,1) may be written as 

7T 1 
f(p3eJ = f. f F(r3¢J o[p- r cos(¢- e)] lrl dP d¢ ; -1 ~P ~ 1 , 

0 -1 

(2. 2) 

where we have replac~d f(p3t;) and F(x) by f(p,e) and F(P3<j>), respectively, in 

going over to a modified form of polar coordinates. Explicitly, 

t; 1 = cos e , 

and the symmetry condition becomes 

f(-p,e+n) = f(p,e) . 

By use of standard Fourier techniques [11,12] it is possible to obtain 

a deceptively simple expression for F which shows a striking resemblance to 

(2. 2)' 

F(r,¢) 
7T 1 
f f g(p,e) o[p-rcos(¢-8)] dpde, -1srS1 ,Os<j><n, (2.3) 
0 -1 

where g(p,8) is related to f(p,e) by 
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g(p,e) 
1 00 

f dt f(t,e) f dy lyl e2rriy(~-p) (2. 4) 
-1 -00 

Note that F satisfies the symmetry condition 

F(P,¢) = F(-P,<f> +TI) , -1 ~ P S 1 , 0 S <f> < TI , 

By consideration of the argument of the o function and the symmetry satisfied 

by F (2.3) may be modified to read (for P 1: 0) 

1T IPI 
F(P,¢) = f f g(p,e) O[p- p cos <<P- e)] dp de 

0 -IPI 

however, for reasons which will be apparent as we proceed it is very useful 

·to rewrite (2.3) with P > 0. (The P = 0 case is treated separately in Sec. 7) 

This modification can be made if we agree to calculate F(-P,¢) from the 

symmetry condition with P replaced by -P, 

F(-P,¢) = F(P,<f> + TI) 

Then, F is calculated from 

1T p 

F(P,¢) = J 
0 

f g(p,e) o[p- p cos <<P- e)] dp de , 
-1' 

0 < P ~ 1 , 0 ~ <f> < 2TI, (2, 5) 

The y integration in (2.4) can be done by considering the integrand as 

a generalized function [13], 

g (p' e) 
.::;1_ ft<t,e> dt 
2rr2 -1 (t- p)2 

An integration by parts serves to cast this result into the desired form, 

g(p,e) = .::;1_ / af(t,e) ....1l_ 
2rr2 _ 1 at t-p (2. 6) 

where H stands for the Hilbert transform [14]. 



·o' 

•. 

0 i,,J 6 0 
::, . .) 

J 9 0 0 :k,J ~-
1!.>1 ., 

5 

Upon substituting (2.6) into (2.5) and making a change in the order of 

integration we obtain ( 0 < 1' :S 1 , 0 :S <P < 21T ) 

-1 F(r,<f>) = 
1f 1 1' 

f de ! dt f __Ep_ 1.f_(t,e) o[p -1' cos(<f>- e)] 0 

0 _ 1 -rt-p at 
(2 .7) 

By doing the p integration we obtain the often pub~icized but seldom derived 

result, 

F(r,cp) 
-1 1f 

21T2 ! 
' 0 

1 f lt<t,e) 
_

1 
at t -1' cos(<f>- e) 

dt de 
(2 0 8) 

It is useful to observe that this same result follows directly from the 

n = 2 special case of the general Radon inversion formula [6] . 

• 

3. DECOMPOSITION ·oF F AND f 

Our purpose in the previous section was not to obtain (2. 8), but to 

indicate the steps one may follow in going from (2.3) to (2.8). Indeed, 

there are very good reasons for using (2.3) as a starting point for the inversion 

process [12]; however, for most of the interesting physical problems F is not 

in D and the convergence is usually in the space of distributions ID' or in the 

space of tempered distributions. Convergence in these spaces is known as 

weak aonvergenae and cannot be compared in a simple way to the usual convergence 

of functions. The Approximation Theorem would still apply but it is usually 

ignored and one might justifiably ask why many of the current methods work at all. 

Although a careful answer may be slightly different for each successful case the 

basic reason can be traced to the fact. that from a numerical point of view all 

a-convergent sequences are very similar in appearance, and in many situations 

a lack of uniqueness may not be of great concern if the final result "looks" close. 
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The main concern here is with the intermediate result (2.7). Suppose 

we do not do the p integration which yielded (2.8); instead, let us assume 

that f(t,8) may be decomposed into the product 

f(t' 8) = aR.(t) cos R.8 ' R. 0~1~2~··· (3 .la) 

or 

f(t,e) = bR. (t) sin R.8, R. = 1~2~3~··· (3.1b) 

where 

aR.(t) = (-l)'R. aR. (-t) bQ.(t) = 
. Q. 

' 
(-1) b (-t) ,. 

R. 

a co~dition which follows directly from the symmetry condition satisfied 

by f. This decomposition is the mos.t general one which preserves the 

symmetry, and by linearity it is easy to extend this to an expansion of the 

form 

f(t,8) 
00 

L at (t) cos £8 
R.=O 

. 

00 

+ I b Q. (t) sin £8 • 
Q.=1 

(3.2) 

Note that the same form is obtained if one assumes that the real function f 

can be expanded as 

f(t,8) ite 
e 

We now substitute the forms (3.1) into (2.7) and pick out the 8 integration. 

This yields integrals J which depend upon r and $, 

7T 

J = f cos Q.8 o[p-rcos(8-$)]d8' a 
0 

(3.3a) 

7T 

Jb = J sin R.8 o[p-rcos(8-$)]d8. 
0 

(3.3b) 
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These integrals are easier to evaluate after a change of variable, x = cos(8- <f>). 

Full details of the calculation for (3.3b) will be shown. The other case is very 

similar. · After the change of variables, 

cofs. <I> sin o.p + !1. cols- 1 x) 

-cos <f> (1 - x2) ~ 
o (p- rx) dx . 

Upon making use of the property o (p- rx) =Lo(E.-x) 
1" 1" 

with r>O it follows 

that 

where T£ and U£ are Tchebycheff polynomials of the first and second kinds, 

respectively. For convenience, some properties of these functions have been 

included in the Appenqix. 

It turns out that only one of the terms in the expression for Jb will 

actually contribute to F ; however, that may not be obvious at this point so 

we keep both terms and substitute this result into (2.7), 

F(r,¢) 

where 

F(r,<f>) 

-1 1 1" dp 
= -2 f dt b; ( t) f t-:- J b , 

2n _1 -r P 

=db£ 
dt 

By another change of variables p = rx we obtain 

The term involving cos£~ may be dropped, since by a change of variables 

x + -x , t + -t it is easy to show that 
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1 1 

J f (x- ~)- 1 b~ (t) Ug,_ 1 (x) dz dt . 
-1 -1 

vanishes. This leaves 

F(r,¢) = 
1 
f dz (x- ~)- 1 (1- x 2 )-~ TR, (x). (3.4) 

-1 

The case involving J may be worked out in a similar fashion. The result is a 

1 
F(r,cp) = f dt a; (t) 

-1 

1 . 

f dz ( x - ~ f 1 
( 1 - x 2 ) -~ T t (x) • 

-1 

(3.5) 

Consequently, we see that the decomposition (3.1) implies that it is 

possible to also decompose F(r,¢) in the form 

F(r,¢) = At (r) cos tcp , R, 0, 1, 2, ••• (3.6a) 

or 

F(r,¢) BR, (r) sin tcp , R, = 1, 2, 3, ••• (3.6b) 

with the understanding that both At(-r) and Bt(-r) are to be calculated 

R, 
from an equation of the form Ft(-r) = (-1) Ft(r), where 

1 , 
f dt fR, (t) 

-1 

For brevity we have written FR, to represent either AR, or BR, and 

fR, to represent either at or b£. 

(3. 7) 

For future reference it is convenient to select the x integration from 

(3.7) and define 

The evaluation of this integral will be discussed in Sec. 5. 
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·4, THE FORWARD INTEGRAL EQUATION 

Once we know that F(r,$) may be decomposed into the form (3.6), it 

is immediately possible to obtain another equation relating F~ and f~ which 

in effect solves (3.·7) for fR, (t). The desired result may be obtained by 

replacing f and F in .(2. 2) by t~eir respective decompositions (3 .1) and (3. 6), 

and observing that the presence of the o function allows a modification of the 
1T 1 1T 1 

limits of integration, f f -+ f f 
0 - 1 . -TI p 

0<Sp<S1. Then, by proceeding in 

a fashion very similar to the approach used in Sec. 3 one obtains 

O!.p$1 , (4 .1) 

with the understanding that ~ 
fQ, (-p) = (-1) fQ, (p). Here, the p = 0 case can 

be correctly calculated without difficult:y from (4 .1), 

1 

2 cos(Q,;) J FQ, (r) dr . 
0 

5, THE INVERSION FORMULA 

(4.2) 

Equation (4.1) ha~ a rather simple appearance while its inversion (3.7) 

is considerably more complicated. It is possible to simplify (3.7) but care 

must be taken since the evaluation of IQ,(~) defined in (3.8) depends upon 

whether or 1~1 > 1. To properly take this into account we write 

(O<r$1) 

-r 
= - 1

- [ J f: {t) In (~) dt + 
2n2r -1 JV JV .L 

r 
f f~ (t) IQ, (~) dt 

-r 

+ l t; (t) IQ, (~) dt ] 
r 
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By making use of the x -+ -x , t -+ -t change of variables again, we obtain 

(5 .1) 

where 0 < r ~ 1 
t 

and FR. (-r) = (-1) FR. (r) • 

It is now possible to evaluate It(~) by use of tabulated results [15], 

since in the first integral of (5.1) t/r ~ 1 and in the second integral 

t/r ~ 1 • The result is 

r 
F ( ) = ...!:._ f f: 1 

(t) U (!) dt -
£ r nr 

0 
£ t-1 r 'IT

1
Y' l [(~f-1r~ [~+ /(t/r)2- 1 rtf; (t) dt 

r 

(5.2) 

This inversion formula has been obtained by other authors [16,17] using 

different methods. 

6. SIMPLIFICATION OF THE INVERSION FORMULA 

The inversion formula (5.2) can be simplified by making use of the 

identities in the Appendix. The desired result is obtained by applying 

(A-10). This immediately yields 

1 
F ( ) = _j_ f f I ( t) u ( t) dt 

£ r TIT' O R_ t-1 P 

We now show that the first integral on the right gives zero. Consider 

the integral 

1 I . t 
K = f f£ (t) u£_1 (p-) dt 

0 
(6.2) 

(6. 1) 
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' 
An integration by parts yields 

where the prime means derivative with respect to the argument. The integrated 

.. 
part does not appear since it vanishes by use of symmetry combined with the 

assumption that ft (1) = 0 • Now, by application of (4.1), K becomes 

,. 
1 . 

K = - .§_ j dt U' (-!.) 
r 

0 
t-1 r 

and by interchanging the order of integration, 

. (If there is any question about the limits set up a horizontal x axis and a 

vertical t axis and observe that the integration is over a triangular region 

in the first quadrant of the x.t plane.) Next, by changing the t variable 

through t = xy , 

1 1 . . 

.§_ J dx xF,(x) J dy (1-y2 )-~ u' (~) T" (y) 
r 0 "' 0 t-1 r "' 

At this point we focus attention on the y integration which we 

designate by L, 

or from (A-9) 
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L = l/ T"(xy) Tn (y) (1-lf~ dy 
i_ 1 t r "' 

(6.3) 

Observe that is a polynomial .of degree i - 2 in the argument 

xy/r , where x and r are to be considered fixed and y as variable. Hence, 

in general we can write 

(6.4) 

The constants C can be determined explicitly, but need not be for our 
m 

current purposes. Upon substitution of (6.4) into (6.3) we see that we 

must evaluate integrals of the form 

(m = 0~ 1~ 2~ ···~i-2) 

But this integral vanishes for all m < i, since over the interval [-1 ,+1] 

Tt (y) is orthogonal to any polynomial of degree. less than i. This is easy 

to verify by expanding ym in a series of theTchebycheff polynomials of the 

first kind and making use of the orthogonality relations (A-11). 

Consequently, we have the result that L vanishes. Thus, K vanishes and 

FR. (r) is given by the deceptively simple result 

-1 
Til' 

O<r5;1 (6. 5) 

With the exception of an unfortunate extra factor of r in the numerator 

this result was obtained by Cormack [18] by a different line of reasoning. 
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7. THE r = 0 CASE 

In deriving (6.5) it was necessary to exclude r = 0 and work over the 

interval 0 < r S 1 • . Here, we consider the r = 0 case and work first with 

Jl, = 0 and then with Jl, f 0. ·. 
If JI.=O, we obtain Abel transform pairs [19] 

1 
; f fd (t) (t 2 - r2 )-~ dt (7 .1a) 

r 

!
0 

(t) (7 .1b) 

In this case F0 (r) may be evaluated at r = 0 with no difficulty. 

On the other hand, for the symmetry condition F~(-r) 
~ 

= (-1) FR. (r) 

immediately yields 

(JI, = 1, 3, 5, ••• ) (7. 2) 

This leaves only the even Jl, values· Jl, = 2, 4, 6, ••• . We may proceed 

(i) by direct evaluation of (2.3) or (ii) by examining the limiting case 

of (6.5). Either way the result is the same, 

(51, 2, 4, 6, ... ) (7. 3) 

Method (i) is fairly straightforward but. in method (ii) one must make use 

of arguments similar to those in Sec. 6. Such a result is perhaps most 

easily seen to follow from (6.1) since for arbitrarily small r 

l u (t) 
r ~-1 r -+r -R- t~-1 

and the two integrals simply add to zero. 
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8, TRANSFORM METHOD 

Given (4.1) it is possible to obtain the inversion formula (6.5) by 

use of the Mellin transform. By using Sneddon's [14] approach we write 

where H(x) is the Heaviside step function, zero if x < 0 and unity if x > 0 • 

With these definitions (4.1) assumes the standard form 

00 

J K(E.) Fn (r) dr 
0 1' ]<, 1' 

The Mellin transform of both sides of (8.1) yields 

* ft(s) 

where the star indicates the Mellin transform, 

* G. (s) = 

00 

J G (x) x 8
-

1 dx 
0 

To cast (8.2) into the appropriate form for solution we rewrite it as 

* Ft(s-1) 
* ___ 1-:::*:---- • (s -1) f £ (s -1) 

(s - 1) K (s - 1) 

* 
1 

= ------~*~----
(s-1) K (s-1) 

f(s) ft(s-1) 

f(s - 1) 

(8.1) 

(8.2) 

• 
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where f(s) is the Gamma function. In this form it is clear that Sneddon's 

general Mellin inversion formula applies, page 279 in [14]. The result is 

2r ER, {r) H(l-r) 

00 . 

21' J 1' 2 -~ n 1' d dp -- [1-(-) ] T (~) H(l- -)Iff (p) H(l-p}]..,..... 
Tio P R-1' pdp t P 

,l 
and upon simplification, 

1 

- ~ f (p2 -r2 )-~ t; (p) Tt (~) dp , 
1' 

which is the same as (6.5). 

9. SUMMARY AND CONCLUSIONS 

We have demons.trated several techniques and methods for inversion of the 

Radon transform of a function FE ID defined on a plane, and have obtained the 

Tchebycheff transform pair given by (4.1) and (6.5). This lays the foundation 

for work involving the numerical inversion of the Radon transform with (6.5) used 

as the starting point rather than (2.3). This is not a trivial problem for 

·although the inversion formula (6. 5) is exact it is not in a. good form for 

certain numerical calculations since there are large cancellations which may 

occur in the integrand for some values of r. Finally, the results here form 

the basis for generalizations to a study of the Radon transform of a function 

of n variables where n is even. New results in this area making use of 

Gegenbauer functions of the second kind will appear soon [22]. 
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APPENDIX 

In this appendix we collect some formulas involving Tchebycheff 

polynomials Tt and Ut of the first and second kinds, respectively. · 

None of these results are new and can be obtained from standard sources 

[15,20,21]. They are included here for convenience. 

For any nonnegative integer t, the Tchebycheff polynomials of the 

first kind are given by 

Tt(x) cos (t arc cos x) , O<x<1 (A-1) 

Tt (x) cosh(t arc cosh x) , 1 <x<oo, (A-2) 

or 

Tt (x) ~ [ ( x + / x 2 - 1 ) 
2 + ( x - / x2 - 1 ) t] O<x<oo (A-3) 

and 

Tt (-x) 
t 

Tt (1) T£ (O) cos ~tn (A-4) = (-1) Tt (x) 1 = . 

The Tchebycheff polynomials of the second kind are given by (t .2: 1) 

ut-1 (x) 
1 , sin(t arc cos x~ O<x<1 (A-5) = - T (x) = t £ k 

(1-x2)2 

u
2

_
1 

(x) sinh(t arc cosh x) 1<x<oo (A~6) 
1 

(x2- 1)~ 

or 

{x+lx~-1} 2 - {x-lx2-1}
2 

u
2

_
1 

(x) O<x<oo, X:/= 1 (A-7) 
2(x2 -1)~ ' 

and 

u
2 
(~x) 

t u
2 

(1) t+1 ut (O) cos ~tn. (A-8) (-1) li (x) ' = 
' . . 

\. 
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From the above expressions we observe that 

and ·for x 1: 1 

(x+~fQ, 
(x2 - 1)~ 

The orthogonality relations hold over the interval [-1,+1] ' 

1 
(1- x2 )-~ dx J TQ, (x) T (x) m 

-1 

1 
J UQ, (x) Um (x) (1 - x2) ~ dx 

-I 

. I 

= f 0 i#:m 

~TI ' 9..= m#: 0 
I 9..=m=O l 1T 

~ 1T 6 • Q, ,m 

(A-9) 

(A-10) 

(A-ll) 

(A-12) 
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