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An Analytical Solution for Wellbore Heat Transmission 

in Layered Formations 

Yu-Shu Wu and Karsten Pruess 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, California 94720 

Abstract 

This paper presents an analytical method for determining wellbore heat transmis

sion during liquid or gas flow along the tubing. The mathematical model describes the 

heat transfer of the flowing fluid in the well bore and in the surrounding formation as one 

whole physical system. The transient heat transfer equations in the two regions with cou

pling at the sandface are solved simultaneously. Previous treatments of wellbore heat 

transmission are improved upon in several aspects. Non-homogeneous formations are 

treated which consist of several layers with different physical properties and arbitrary ini

tial temperature distributions in the vertical direction. Closed form analytical solutions 

are obtained in real space and in Laplace space, which can be used to calculate the tem

perature distribution along the well bore and in the formation, and to evaluate heat 

transfer rate and cumulative heat exchange between wellbore and formation. A more 

accurate formula is given for the widely-used transient heat conduction function f(to) of 

thermal resistance. This is shown to differ from Ramey's approximate solution at early 

time, while approaching it at late time. 
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Introduction 

Heat is transferred to or from the well bore when there is a difference in temperature 

between the surrounding formation and the injected (or produced) fluid. I~ order to 

evaluate the feasibility of a thermal-recovery project, it is necessary to estimate the heat 

losses or gains of the flowing fluid in well bores, the changes in temperature with time and 

depth, and the heat transfer conditions between wellbore and formation. A quantitative 

description of heat exchange between a well bore and surrounding formations is also 

often required when one attempts to estimate formation temperatures from wellbore 

measurements. 

Studies of wellbore heat transmission during hot or cold fluid injection have 

appeared in the literature since the 1950's. The techniques available at the present time 

for dealing with wellbore heat transmission include analytical and numerical methods. 

Lessem et al. [1] and Squier et al. [3] derived and solved similar systems of differential 

equations describing the temperature behavior of gas and hot water injection wells. They 

neglected wellbore thermal resistance and made the following assumptions: 

1. There is no conductive heat transfer in the vertical direction of either the 
flowing fluid or the formation. 

2. The mass flow rate of gas or water is constant throughout the injection or pro
duction system. 

3. The volumetric heat capacities of fluids and formation are constant. 

4. . The formation is homogeneous and isotropic with constant thermal conduc
tivity. 

5. The fluid temperature and the formation temperature at the wellbore surface 
are equal. 

All subsequent work introduced another approximation, namely, that vertical heat 

transfer in the well bore was considered steady state. 

The classic study by Ramey[4] on well bore heat transmission improved Moss and 

White's[2] approach to incorporate an overall heat transfer coefficient. Ramey presented 

an approximate solution for the temperature of fluids, tubing and casing as a function of 

time and depth in a well used for hot-fluid injection. Satter[5] suggested a similar method 

• 
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for analyzing wellbore heat loss when taking into account condensing steam flow. and he 

provided a sample procedure for a given set of reservoir properties. An expression for 

the overall heat transfer coefficient for any well completion and the early time values of 

the transient heat conduction function were given by Willhite[6]. The more recent work 

by Durrant et al. [7] provided an iterative procedure for the wellbore heat transmission 

problem during flow of steam/water mixtures which includes vertical heat conduction. 

The numerical models by Farouq Ali[8] and Wooley[9] were more comprehensive 

than the analytical models. They include both horizontal and vertical heat conduction in 

the formation. and different well operation conditions can be dealt with. However. the 

numerical methods are often too complicated for field application or for reservoir simula

tion studies since many of the well bore and formation heat transfer properties needed in 

modeling are rarely known precisely. 

The 'mathematical model for well bore heat transmission presented in this paper 

adopts assumptions similar to those of Lessem. et al. The main differences are that we 

introduce an overall heat transfer coefficient to consider the well bore heat resistance and 

that we allow for non-homogeneous formations. We consider a medium with an arbitrary 

number of layers with different thermal and physical properties and arbitrary initial tem

perature distributions (see Figure 1). Both an exact solution and a solution in Laplace 

space are obtained in this paper for calculations of wellbore heat transmission. The 

numerical results calculated from the analytical solutions are compared with Ramey's 

long time approximation. Illustrative applications are given for predicting wellbore heat 

transmission for engineering designs or reservoir simulation studies in petroleum and 

geothermal reservoir development. 

Mathematical Model 

The transient heat transmission problem under consideration is as follows (see Fig

ure 1): 

The injection (or production) well is cased to the top of the injection (or production) 

interval. Heat is transferred along the well bore solely by convection and then by conduc

tion into formation. The formation consists of N layers with different thermal and 
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physical properties. The system to be modeled is composed of three parts, as shown in 

Figure 1, (i) fluid flow conduit inside the tubing; (ii) tubing/casing annulus, casing wall 

and cement; (iii) infinite fonnation surrounding the casing. The major assumptions and 

approximations are as follows: 

1. well flow rate is constant; 

2. fluid flow in the tubing is one-dimensional vertical and steady; 

3. the well fluid temperature is lumped radially; 

- 4. the heat conduction in the vertical direction is neglected compared with heat 

convection by the flowing fluid; 

5. radial heat flow between the wellbore and the fonnation is steady state; 

6. in the surrounding earth, the initial geothennal gradient is a known function of 

depth; and 

7. the vertical heat conduction in the fonnation can be ignored compared with the 

horizontal. 

All the other assumptions are similar to those of the previous work. Therefore, the 

heat transfer equation in the tubing can be written as: 

for liquid flow, 

(1) 

(j = 1, 2, ... N) (Zj-l < Z < Zj) 

for gas flow, 

(2) 

(j = 1, 2, ... , N) (Zj-l < Z < z) 

where the plus sign on the potential energy term is used for flow down the well and the 

negative sign is used for flow up the well. [4] 
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The heat conduction in layer j of the fonnation is described by 

(3) 

(j = I, 2, ... N) (Zj-l < Z < Zj) 

The heat flux at tubing surface (r = rt ) is: 

q(= Uj [Tlj - T2jl - 1 
r-rw 

(4) 

and the overall heat transfer coefficient is defined by:[6] 

-1 

Kcem 
(5) 

The initial conditions are: 

in the well, 

T Ij (z, t = 0) = G/z) (known functions) (6) 

and in the fonnation, 

(7). 

It is required in (6) and (7), 

G1 (0) = T air (constant) (8) 

The boundary conditions are: 

T11 (z = 0, t) = Tinj (9) 

and 
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lim T2j (r, z, t) = Gj (z) (10) 

(j = 1,2, ... N) 

Analytical Solution 

Define the following dimensionless parameters for radial distance, time and depth: 

r 
'ro=

rw 

tVm 
to=-

H 

z 
zo=-

H. 

The dimensionless temperatures in well bore and formation are: 

(j = 1, 2, ... N) 

(j = 1, 2, ... N) 

(11) 

(12) 

(13) 

(14) 

(15) 

The unsteady-state solution of this system in Laplace space becomes (see Appendix A) 

(j = 1, 2, ... N) 

where 

C
1
(s) = l + 01 (zo) 

S s(s + ~1 - Dl (s)) 
(17) 

Cj (s) = [ej-l (zoj->' S) + S(S + 6j(~ ~/S)) 1 exp [[ S + J3j - Dj(s) 1 ZOj-> 1 (18) 

(j = 2, 3, ... N) 

,. 
v 
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and 

(19) 

(j = 1, 2, ... N) 

The functions Yj (z, s), Dj(s), and OJ (ZD) and the parameters (3j' Olj and O'j are defined in 

Appendix A. The temperature function 8j in Laplace space can be determined recur

sively from layer j = N to N+ 1 since it is assumed that there is no vertical heat conduc

. tion both in the well bore and in the formation. Therefore, downstream wellbore fluid or 

formation temperatures have no effect on upstream ones. 

Another. important variable of interest for wellbore heat transmission is the heat 

flow rate transferred into (or from) the formation. For the case of a linear initial tempera

ture distribution in each layer of the formation: 

(20) 

where T cj are constant, continuity at the interfaces of layers requires 

(21a) 

and 

(j = 1, 2, ... N-l) (21b) 

Then 

(constant) (22) 

0-Y. (ZD s) = ___ ----oI.J __ _ 

J' s(s + f3j - Dj(s» 
(constant) (23) 

For the heat flux into (or from) the formation we have the following expression in 

Laplace space: 

(24) 

(j = 1, 2, ... N) 
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The cumulative heat flow rate is 

[ -~l 1 ~j . 

(25) 

The above solutions in Laplace space can be evaluated by numerical inversion tech

niques[lO]. Analytical solutions in real space are desirable for validating the numerical 

inversion results and for predicting the early-time transient behavior of the system since 

the numerical Laplace transform cannot be expected to give accurate results for early 

time. We have obtained soh,ltions in real space for the case of a linear initial temperature· 

distribution in each layer in the formation in Appendix B. For layer 1 (0 ~ ZD ~ ZD1) or 

for a homogeneous formation we have, 

(26) 

where 

[exP( - ~>0)-11 
------~-~-----------L-~-----du 

{[D;(U)(BI -;>-R1(U)r + ~ 1 
(27) 

12 = ..;..;..2....:;.e -_~_lZ_D d 1 
- exp [ ~-u~: (to - zo) 11 

1t 0 

. exp [ZD Rl (u)lD~ (U)) sin [ 2~D 1 du 
. 1tDIM 

(28) 

• 
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. exp [ZD Rl (u)/D~ (U)] (.£ cos [ 2~0 1 + sin [ 2~0 1 
1t 1tDI (u) 1tDI (u) 

. [D;(U) (~j - ~> -Rj (U)]} du 

For layer j = 2,3, ... N, the dimensionless wellbore temperatures are: 

where 

to 

. 9j (zo, to) = Aj (to) + f [ 9j- 1 (ZOj-l, t) 
o 

- A (t)] B· (zo to- t)dt J J, 

00 * (exp (- :1 to) - 1) 
48j f D j (u) _ v _ 

A (to) = - ~::----"-------~----:- du 

J 1t

2
0 U ([D~(U)(~.-..!t)-R(U)12 +~) 

J J OJ J 1t2 

(to >zo - zOj-d 

(29) 

(30) 

(31) 

(32) 

In Equations (27)-(32), Rj(u) and Dj(u) are defined in Appendix B. The dimensionless 

temperature function in the formation layer j is given by 

tD 

<Pj (ro, Zo. to) = f 9j (zo, t) gj (ro, to - t) dt 
o 

(33) 
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where 

. 2 f ~ gj (rD, tD) = ~ .u exp (- - tD) 
7t<Jj j 0 D j (u) <Jj 

{Yo (uro) I COj Jo(u) + uJ 1 (u) ]- Jo(uro) IUY 1 (u) + COj Y o(U)] } du (34) 

Discussion 
. 

To validate the analytical solutions, a series of tests have been run. The numerical 

inversion results of the Laplace transformed solution of Equation (16) have been com

pared with the numerical integration of the exact solution of Equation (26) and also with 

Ramey's long-time solution. The integrals appearing in Equation (26) were calculated 

with the numerical integral evaluation routine from the NAG fortran Library,ul] on a 

eRA Y computer. Convergence was very rapid and smooth. 

The example problem is a hot-water injection at a constant rate. The fluid and for

mation data for the calculation is· given in Table 1. As shown in Figure 2, the numerical 

Laplace invers~on results are in perfect agreement with the exact solution, and at long 

times, both the solutions and Ramey's solution converge to the same curve. 

The results from the numerical Laplace inversion by the Stehfest algorithm gen

erally need checking against some other solution, in particular for early times. The com

parison of the numerical Laplace inversion with the exact solution of Equation (26) and 

Ramey's approximate solution is given in Figure 3. It is obvious that the numerical 

inversion gives very· poor results for tD ~ ZD. This probably occurs because of the 

rapidly changing condition at the sandface until the entire well bore is full of injected 

water when lD> 1. When the time is a little longer, the numerical inversion will give 

very accurate results. Instead of the analytical solutions in the Laplace space, the exact 

solution in the real space would be used for applications in which the very early time 

transient behavior is important, such as in temperature well logging analysis. [12] 

As in most studies on wellbore heat transfer, the vertical heat conduction is ignored 

here, in comparison with horizontal flow. We examine this approximation by comparing 

• 
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the horizontal and vertical temperature gradients in the formation derived from the solu

tions obtained above. As shown in Figure 4, the ratio of vertical and horizontal tempera

ture gradients is always smaller than 1%, and reaches its maximum around the tempera

ture penetration fronts. A larger vertical heat flow may occur on the interface of forma

tion layers with different properties, where the temperatures obtained by neglecting verti

cal flow are vertically discontinuous. Figure 5 shows that despite rather different thermal 

diffusivities (Klpc = 1.72 E-6 m2/s for sandstone, 1.17 E-6 m2/s for clay), the difference 

in temperatures is very small on the interface of sandstone and clay whose properties are 

given in Table 1. These results should be conservative because vertical temperature 

differences are overestimat~d by neglecting the vertical flow. Therefore, the assumption 

that the vertical heat flow in the formation is negligible is probably acceptable for most 

engineering calculations. The approximation of neglecting vertical heat flow in the for

mation will break down at some distance from the well after long times for non

homogeneous reservoirs. Quantitative estimates of the distance and time limits for its 

applicability can only be made from numerical models. 

A steady-state approximation for vertical heat transfer in the wellbore has been 

made in almost all previous well bore heat transfer models. This approximation is not 
) 

resorted to here, and it can be tested by comparison of the results from the transient and 

the steady-state solutions obtained in this paper. The temperature distributions from the 

two solutions are given in Figure 6 for sandstone data as given Table 1. It is obvious that 

the steady-state solution overestimates the temperature increase at early time but the 

differences disappear at long times. 

The transient heat conduction function f(tD), discussed in detail by Ramey[4] and 

Willhite[6] is widely used for wellbore heat transfer calculations. However, it lacks a 

theoretical basis, except in the long-time limit of the line source equation given by 

Ramey. We obtain an accurate formula for f(tD) as a special case for a uniform and 

homogeneous formation (subscripts omitted): 

21tK(T 21 r=rw - G(z)) 
f(tD)=· M 

dz 
= (J) [8(ZD' tD) - <1>(1, zD, tD)] 

(35) 
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It is interesting to note that in a more rigorous formulation, f(to) is a function not only of 

dimensionless time to, but also of dimensionless depth Zo. This can be seen explicitly 

from Figure 7, in which f(to) from Equation (35) is plotted for different depths zo. Only 

after to ~ 500 (2500 hrs for this case), does f(to) become independent of Zo. This means 

that use of an f(to) independent of f(zo) will not give accurate results during the early 

transient time for well bore heat transfer problems. 

Heat loss (or gain) from wells is important for evaluating a thermal recovery pro

ject. The behavior of heat flux and cumulative heat transfer into the surrounding forma

tion are given in Figures 8 and 9 for hot-water injection into a well in a homogeneous 

sandstone formation. The calculation parameters are in Table 1. It is obvious from Fig

ure 9 that the heat losses from the well never· reach a steady state since the formation is 

modeled as an infinite radial system. 

In an actual reservoir, formations are neither uniform nor homogeneous, and lay

ered formations may be a re'alistic approximation. In order to take into account effects of 

formation heterogeneity on wellbore heat transfer, the temperature distribution along the 

wellbore was calculated for hot-water injection into a formation consisting of two layers. 

The upper 500 meters is sandstone, and the lower 500 meters is clay. Problem parame

ters are given in Table 1. As shown in Figure 10, if only sandstone properties are used, 

well temperatures are underestimated since thermal diffusivity in sandstone is larger than 

that in clay. Figure 10 suggests that the assumption of constant formation properties 
, 

introduces errors for non-homogeneous reservoirs. 

Conclusions 

An exact analytical solution for determining wellbore heat transfer has been 

developed. The analytical solution is applicable to field predictions and reservoir simula

tion studies of wellbore heat transmission in uniform and layered formations. Illustrative 

examples were given for temperature distributions along the wellbore and in the forma

tion, and for heat transfer rates and cumulative heat loss (or gain) between wellbore and 

formation. 

• 
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Analysis of the calculated results leads to the following conclusions: 

1. Vertical heat conduction in the fonnation may be ignored for engineering 

applications. 

2. The approximation of using a. depth-independent heat conduction function 

f(tD) will give large errors for early times . 

3. Effects of fonnation heterogeneity should be included for more accurate pred

ictions of well bore heat transmission in nonhomogeneous fonnations. 
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Nomenclature 

Aj(tD) defined in (31) 

Aj(s) defined in (B.2) 

Bj(ZD,tD) defined in (32) ;0 

Bj(ZD,S) defined in (B.3) 
\ . .., 

c· J fonnation specific heat of layers j [J/kg 0C] 

C J constant in (A.23, A.24) 

Dj(s) defined in (A.25) 

Dj*(u) defined in (B.15) 

f(tD) transient heat conduction function, defined in (35) 

fj(tD) defined in (B. 7) 
-
fj(s) defined in (B.2) 

g gravity acceleration [m/sec2] 

g/rD,tD) defined in (B.12) 

gj(rD,s) defined in (B.6) 

Gj(z) geothennal gradient (OC/m) 

H depth to top of penneable interval (m) 

he heat transfer coefficient of casing (W/m2°C) 

ht heat transfer coefficient of tubing (W/m2°C) 

I· J defined in (27) - (29) (j = 1,2,3) 

Jo zero-order Bessel function of the first kind 

J1 first-order Bessel function of the first kind 

" Kc thennal conductivity of casing wall [W/m°C] 

Kcem thennal conductivity of cement [W/m°C] ',.,.-

K J thennal conductivity of layer j fonnation [W/m°C] 

Ko zero-order modified Bessel function of the second kind 

Kl first-order modified Bessel function of the second order 
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N 

q( 

q(z,s) 

Q 

r 

t:w 

s 

t 

T 

T· illJ 

T Ij(Z, t) 

T2j (r,z,t) 

Uj 

z 
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total formation layer number with different physical properties 

heat flux between tubing and sandface [W/m2] 

defined in (24) 

injection rate [m3/sec] 

accumulate heat rate between well and formation [1] 

defined in (25) 

radius [m] 

dimensionless radius (11) 

outside radius of cement zone [m] 

inside radius of tubing [m] 

inside radius of casing [m] 

defined in (B.14) . 

Laplace transform variable 

time [sec] 

temperature [0C] 

surface temperature [0C] 

constant temperature in Gj (z) [0C] 

dimensionless time (12) 

surface injection fluid temperature [0C] 

temperature along tubing [0C] 

temperature in formation [0C] 

overall heat transfer coefficient [WI m20C] 

mean flow speed inside tubing [m/sec] 

zero-order Bessel function of the second kind 

first-order Bessel function of the second kind 

vertical coordinate [m] 

dimensionless vertical coordinate (13) 



z· J 

ZDj 

~j 

Yi 
Be' 

OJ (ZD) 

Bt 

8/ZD,tD) 

~j(ZD) 

P 

cr· J 

Subscripts 
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depth of bottom of layer; (j = 1, 2 ... N, Zo = 0) 

z/H, dimensionless of depth of layer, (j = 1, 2, ... , N) 

dimensionless constant (A-3) 

geothermal gradient of layer j [OC/m] 

thickness of casing wall [m] 

defined in (AA) 

thickness of tubing wall [m] 

dimensionless temperature functions of wellbore 

dimensionless function (A.5) 

density [kg/m3] 

dimensionless constant (A.6) 

dimensionless temperature function of formation 

c casing 

cern cement 

D dimensionless 

j formation layer index (j = 1, 2, ... , N) 

t tubing 

1 in tubing 

2 in formation 
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Appen~ix A. Analytical Solution in Laplace Space 

In tenns of the dimensionless variables defined in Eq. (11) - (15), the problem 

becomes 

where j = 1,2, ... N; and 

with initial conditions: 

and boundary conditions: 

ro=l 

~'(ZD) = _H~GJ"-~(z_)_ 
~ To· -T· . ffiJ Illl' 

ej (ZD, tD = 0) = 0 

<l>j (rD, ZD, tD = 0) = 0 

(j = 2,3, ... N) 

= 0)- [<1>·1 - e.] 
arD J J ro=l J 

ro=l 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

(A. 11) 
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. lim <l>j (rD, ZD, tD) = 0 
rD-+OO 

. Vj r t 
0). = 

J K 
J 

(A. 12) 

(A. 13) 

The Laplace transforms of aj(ZD, tD) and <l>j (rD, ZD, tD) are defined as follows:[13) . 

and 

00 

9j (ZD, s) = f a(ZD, tD)e -to
s 

dtD 
o 

(j = 1, 2, ... N) 

(j = 1, 2, ... N) 

(A. 14) 

(A.I5) 

Application of the Laplace transformation to the partial differential equations (A.I), 

(A.2) and the boundary conditions (A.9) - (A.I2) with incorporating the initial conditions 

(A.7), (A.8) yields 

d9j --
+ (s + p.) a· - p. <1>' dZD J J J . J 

rD=1 

d2(j). 1 d(j)· _ . 
~+ - ~-a·s<l>' =0 
drr, rD drD J J 

- 1 a1 (ZD = 0, s) = -
s 

(A.I6) 

(A.I7) 

(A.I8) 

(A. 19) 

(A.20) 

where j = 1, 2, ... N. The solutions of (A.I6), (A.I7) in Laplace space, satisfying the 

boundary condition (A.I8) - (A.20), are: 
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Gj (Zo. s) ~ e;<s) exp {- [s + !3j - Dj (S)] ZO} + Y/zo. s) (A.21) 

- CO}~j(ZD' S) Ko(-{cijS rD) 
<l>j(rD, ZD. s) = 

COjKo( .ycrjs) + .ycrj s Kl <.ycrjs) 
(A.22) 

where Yj(ZD, s) are the particular solutions of (A.16), which depend on the initial tem

perature profile. 

1 
C1 = - - Y 1 (ZD = 0, s) s . (A.23) 

(A.24) 

(j = 2, 3, ... N) 

and 

(A.25) 

Heat flux into (or from) the formation in layer j is defined as 

(A.26) 

so that 

rD=l 

(A.27) 

Total cumulative heat transfer is 

(A.28) 

For linear vertical initial temperature distributions in each layer of the formation, we can 
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obtain the explicit fonn of the p~icular solution Yj(z, s), in Eq. (23). Then the expres

sions for heat flux and total cumulative heat transfer in the Laplace transfonned space 

can be deri,:ed as given in Eq. (24), (25), respectively. 



v 

.. J 

- 23-

Appendix B. Analytical Solutions in Real Space 

For the case of linear initial temperature distributions in each layer of the formation, 

Eq. (A.21) can be written as: 

where 

and 

Sj(ZD, s) = Aj(s) + [Sj-l (ZDj-l' s) - A/S)] Bj(ZD, s) (B.l) 

G = 1, 2, ... N) (ZDj-l> ~ ZD ~ ZDj) 

8· 1- - -
Aj(s) = - ( . ~ J D ( )) = -fj(s) (fj(s) = sAj(s)) (B.2) 

ss+ ·_·s s 
J J . 

Bj(ZD, s) = exp [- ~j(ZD - ZDj-d] . exp [- s (ZD - ZDj-l)] 

. exp [Dj(S)(ZD - ZDj-l)] (B.3) 

- 1 
80 (ZDO, s) = -

s 
. (B.4) 

the dimensionless temperature function in the formation, 

(B.S) 

G = 1, 2, ... N) 

where 

(B.6) 

Since the functions A/s), Bj(ZD, s) and gj(rD, s) have a branch point at the origin, 

we have to use the inversion theorem for Laplace transformations by evaluating the con

tour integraI[13]. The following inversion can be proven after some algebraic opera

tions[14] . 

00 

f;(tD) = L -1 ~(S)] = 2~i [ e -10' ~(1,.e-i') - ~(1" ei')]dA 
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00 u2 

~ f -~to _____ u_D~;'__. (_u,-) _-::-=-__ 
=- e J du 

1t
2

crj 0 [D*(U) [~. - ~l R(U)]2 +--±-
J cr. J 1t2 

J . 

(B.7) 

[ 
i1t ]j 2 oof . '[2(ZD-ZDj-l)] 

- exp D/Ae )(ZD - zDj-d dA= ~ U sm * 
A.crJ 0 1tDj (u) 

. exp [(ZO - ZOj-') R/u)IDj (u) - :: to] du (B.8) 

then 

to 00 

Aj(tD) = L-1 [l ~(S)j = f fj (t)dt = 4~ f D*(u) 
s 0 1t 0 U 

(B.9) 

Bj (zo, to) ~ C' [Bj(ZD, s) 1 ~ exp [- Pj(ZO - ZOj-') 1 c' [ exp [-s (Zo -'- ZOj--') 1 

. exp [Dj, (S)(Zo - ZOH)lj 

= 10 (tD ~ ZD - ZDj-l) 00 

2 [ ] f . [ 2(ZD - ZDj-l) ] - exp - ~j (ZD - ZDj-d U sm * 

. exp r;:o - ZOj-') Rj (u)IDj(u) - 0:: (to - zo"~:~~~')] du (B.IO) 

(tD > ZD - ZDj-d 

Taking the mverse Laplace transfonn of (B.1) and using (B.9), (B.IO) and the 
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convolution property of the Laplace transfonn, we have 

and 

Then, 

to 

= Aj(tD) + f [8j- 1 (ZDj-l, 't) - Aj('t)] Bj (ZD, tD - 't) d't 
o 

u2 
00 --to 

2 ue J f 
0· 

= 1[0". r:t. D*(u) 
J PJ 0 

to 

<l>j (rD' ZD, tD) = f 8j (ZD , 't) gj(rD, tD - 't) d't 
o 

In the above solutions 

Rj (u) = Jo (U)[ OljJO(U) + uJ1 (U)] + Y o(u) [O)j Yo(u) + uY 1 (U)] 

Dj (u) = [ [Olj Yo(u) + uY I (u) r + [ro;Io(U) + uJ, (u) r }//3jOlj 

For layer 1; the solution (B.ll) is simplified as Eq. (26). 

(B.1l) 

(B.12). 

(B.13) 

(B.14) 

(B.15) 
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Table 1. Calculation Data 

Y= .03°e/m . T· =20oe . arr 

T· . -lOooe mJ - H= 1000m 

'. Q = 100 m3/day fw = 0.08 m (no tubing) 
(6.33 in ID) 

\1.' 

Pw = 958 kg/m3 
Cw = 4196 Jlkg ~ °e 

U = 978 W/m2oe 

Sandstone 

P = 2200 kg/m3 K=2.8W/moe 

C = 740 Jlkg °e 

Clay 

P = 1500 kg/m3 K= 1.4 W/m °e 

C = 800 Jlkg °e 
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Thermal Skin 

Tubing 

~-----------~----------~ 

r 

Region 2 

Kj+11 Pj+1, Cj+1 

T2j+1 (r,z,t) 

XBL 882-10052 

Figure 1. . Schematic of well bore and formation system .. 
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Figure 2. Comparison of numerical inversion of Laplace transfOlmation with exact 
solution and Ramey's solution. 
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Figure 3. Check on numerical inversion of Laplace transformation. 
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Figure 4. Ratio of vertical and horizontal temperature gradients and temperature dis
tribution in formation. 
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Figure 5. Discontinuity of vertical temperature on sandstone-clay interface. 
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• Transient 
6. Steady State 
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XBL 882-10200 

Figure 6. Comparison of steady-state and transient heat transfer in wellbore. 
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Figure 7. Effect of depth on f(tD). 
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Figure 8. Heat flux into fonnation. 

f:-- ~ 

v,) 

-+:>. 



- 35 -

1015 __ ------__ ------__ ------__ ------~----~ 

..-
J ---

109~------~----~~------~------~----~ 
10 102 103 

Time (hr) 
• 

XBL 882-10099 

Figure 9. Cumulative heat transfer into formation. 
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Figure 10. Wellbore temperature distribution of sandstone-clay 2-1ayer formation. 
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