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Towards understanding diseases of memory and learning: Artificial neural network models of
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Human memory and learning represent the most complex and miraculous of human

abilities and also the most difficult and major challenges of modern medicine. While treatments

for diseases from heart to lung have rapidly advanced, basic mechanisms of brain function

rooted in memory and learning remain completely unknown, reflected by the dearth of targeted

treatments available for neuropsychiatric disorders.

This dissertation seeks to understand the neural processes of memory and learning at

three interdependent levels of investigation — systems of circuits, an individual circuit, and

molecular modulation of circuits — and how they can become disrupted in disease. To study

these processes, I use artificial neural network models.
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I first consider a system of circuits (Chapter 2), studying how regions of the brain

coordinate to produce coherent and flexible behavior and how disruptions lead to specific clinical

syndromes. I focus on the prefrontal cortex where distinct subregions have been characterized,

and analyze how simple architectural alterations in circuit interdependencies can give rise to

powerful memory and learning features characteristic of humans. I then study how disruptions

affect this circuit system, revealing striking parallels to patients who have suffered specific

prefrontal lesions.

To understand how an individual circuit learns and develops, I then focus on the internal

process of strategy acquisition and evolution within a neural network (Chapter 3). To do this, I

investigate a surprising experimental finding that humans and monkeys exhibit major behavioral

discrepancies when solving a set of working memory tasks. I find that neural network models

follow characteristic strategy progressions, exhibiting both monkey-like and human-like behavior

at different stages. Furthermore, neural networks can mimic common problem solving heuristics

while operating with unrelated underlying mechanisms. Counterintuitively, I find that some

non-optimal heuristics can act as catalytic strategies that accelerate optimal learning.

These investigations raise the question of how highly structured networks of neurons,

like brains, are able to store a multitude of versatile behaviors. In Chapter 4, I investigate

how a critical class of regulatory molecules in the brain called neuromodulators alter network

properties to enable multiplexing of neural circuits. I reveal how neuromodulators may underlie

idiosyncratic circuit dose-response properties, suggesting an alternative explanation for the large

variability of neuropsychiatric drug sensitivities observed in patients.

Through these three levels of investigation, I aim to contribute to our understanding of

how systems, circuits, and molecules help store and manipulate forms of neural memory to

generate the complex and dynamic behaviors characteristic of humans and animals. My findings

suggest how these processes relate to disease manifestations and begin to suggest possible

avenues toward the ultimate goal: treatments for patients.
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Chapter 1

Introduction

The brain has been and remains one of the greatest mysteries. The three pound gelatinous

mass is the most sophisticated computational device we know of, and despite a constant stream

of new and exciting discoveries, many major questions remain unanswered. In one sense this

presents a fascinating and exhilarating frontier — a gold rush for discovery, — but in another

sense, this lack of knowledge is a source of human suffering derived from our inability to

effectively treat many ailments of the brain. Many pharmacologic treatments for psychiatric

disorders (e.g. lithium, chlorpromazine, iproniazid) are adapted versions of drugs discovered

serendipitously in the 1950s, and have mechanisms of action and side effects that still remain

unexplained [Hym13]. This dissertation aims to contribute to the study of fundamental aspects

of memory and learning in the brain, in order to support the effort of developing effective

treatments.

To understand the properties of the brain good models are required. For millenia animal

models have been used to learn about human biology, extending from experiments in nematodes

to monkeys. Biological model systems have provided great insight into many aspects of the

brain from the molecular and cellular components that make up the system to the connectivity

patterns that interconnect regions of the brain. In the past few decades another important model

has emerged to study the brain: artificial neural networks (ANNs). ANNs are computational

models that consist of simplified neural units, linked to each other through weighted connections.
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Mimicking the brain, ANNs are massively parallelized computing devices [RMP86] and have

proven to be exceptionally powerful both for function approximation in machine learning

applications [Sch+20; Jum+21; He+16; RFB15] and as insightful models of neural computation

[Wan+18; KS20; Man+13; Yan+19; Rus+18]. Although simplified compared to biological

neural networks, ANNs allow detailed analysis of how parallel distributed processing can occur,

providing a unique lens for studying neural processes. The studies in this dissertation employ

ANNs to study aspects of neural behavior.

The brain must be studied across levels. In the work presented here, the focus begins

with prefrontal cortex (PFC). Yet it quickly becomes evident that understanding the PFC requires

some understanding of the tightly connected basal ganglia, as well as the hippocampus, premotor

regions, and thalamus, each of which in turn can only be properly understood with some

understanding of regions tightly connected to them. While it is often desirable to simplify systems

and reduce them to smaller, discrete components that seem more manageable to understand,

systems of the brain cannot be fully understood without understanding their relation to other

parts of the brain. This holistic approach includes consideration of both dependencies across

areas of the brain (PFC, basal ganglia, hippocampus, etc.), and also dependencies across levels

of investigation (Figure 1.1). Principles of how the brain works at the circuit level must be

understood in relation to how individual neurons behave, how proteins and ions within those

neurons interact (deeper levels) and also how those circuits combine into a larger architecture,

and how that architecture itself can be differentially activated (higher levels).

This dissertation is a dive through multiple levels of investigation in understanding

memory and learning and how they can be modified in disease or with treatment (Figure 1.1B–D).

Chapter 2 begins at the level of systems of circuits (Figure 1.1B) with a study on how regions of

the brain, specifically within the prefrontal cortex and basal ganglia, can coordinate to give rise

to coherent mental schemas in an always-varying world. This study introduces a new question:

what does it mean for even one part of the prefrontal cortex, i.e., one circuit, to store a “strategy?”

Chapter 3 moves to this deeper level of investigation — a single circuit (Figure 1.1C) — to
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Figure 1.1. Levels of investigation in the brain. (A) Understanding how learning and memory
generate flexible behaviors from the brain requires investigation across levels. This dissertation
focuses on sub-levels of the network level, drawing on principles from systems and maps from
above and synapses and molecules from below. Reprinted from [Sej20]. (B) Chapter 2 considers
system-level coordination of subregions across the prefrontal cortex. (C) Chapter 3 considers how
a single neural circuit encodes a strategy and its subsequent evolution. (D) Chapter 4 considers
how a class of modulatory molecules affects synapses in a way that enables computational
flexibility in a neural network.

study the development and evolution of strategies on a series of working memory tasks in which

humans and monkeys showed major discrepencies. This study leads to another question: how

can multiple strategies be simultaneously stored in a single circuit? Chapter 4 moves still deeper

to this level of investigation — molecules acting within circuits (Figure 1.1D), — studying

how a vital class of chemical compounds called neuromodulators allow robust and powerful

parallelization of a network, enabling storage of multiple behavioral repertoires in a single circuit.

Importantly, these studies aim not only to understand how the brain achieves these

properties, but also how they can help inform new treatments for patients. The study of the
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structure of subregions within the prefrontal cortex in Chapter 2 includes lesion studies with the

model, in which particular areas of the neural network are damaged and resultant behavior is

assessed using a widely implemented clinical assessment for prefrontal damage. This experiment

provides insight into the underlying structure and deficits that occur in diseases that affect

subregions of the prefrontal cortex. The study on strategy evolution in neural networks in

Chapter 3 strongly motivates use of our model to study learning impairments and disabilities

in future work. As described in more detail below, neuromodulators are central to nearly every

neuropsychiatric disease. The study of neuromodulators and learning in Chapter 4 suggests a

new explanation for idiosyncratic (and sometimes problematic) drug response profiles of patients

and why different modes of treatment (e.g. deep brain stimulation vs pharmacologics) may

sometimes act so differently in a single patient.

1.1 Memory and learning and their diseases

1.1.1 Background

Memory can be thought of as information that is retained in some form. In the context of

the brain, the term “memory” often causes people to think of declarative memory (“I remember

what I ate for breakfast yesterday”) or sometimes also procedural memory (“I remember how to

ride a bike”), but in fact the basis of all behavior is rooted in memory. All thoughts and actions

derive from various forms and manipulations of memory stored in the brain.

Memory in the brain can be exhibited by anything that has a lasting effect on neural

computation, and as such, comes in many different forms. The most straightforward is alteration

of synaptic strengths between neurons in a network, for example as shown by Bi and Poo’s

seminal paper [BP98] on spike-timing dependent plasticity. Other forms of memory also play

important roles in the brain. Experience-dependent changes in gene expression and neural activity

both can alter neural computation. The latter for example is critical for working memory, using

exposure to initial stimuli to condition subsequent neural activity used to generate an appropriate
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response some time later. Higher order memory mechanisms utilize these components to encode,

store, organize, and retrieve neural activity sequences, for example during episodic memory.

Many aspects of how and which components combine to generate these higher order memory

mechanisms remain unknown.

Learning refers to the process of altering memory stored in the brain to better execute

a desired behavior, for example becoming a better swimmer. Similar to memory, learning is

multifaceted. Learning can occur by changing synaptic weights between neurons, changing the

spatiotemporal pattern of expression of modulatory molecules that transiently affect network

parameters (e.g. synaptic weights, activation functions), or changing the dynamical activity

pattern of the network, in what has been called meta-learning [Wan+18].

Both memory and the processes of learning can be disrupted or disordered in various

ways. Problems can occur with the formation of the structures that hold memory (malformation

and neurodevelopmental disorders), the processes of encoding new memory (learning impair-

ments), long-term structural integrity (traumatic lesions, strokes, tumors, atrophy), regulatory

processes (various psychiatric disorders), and retention and recall (neurodegenerative diseases).

Natural occurrences of these disruptions have provided great insight into various memory and

learning processes, and provide persistent and urgent motivation to understand the underlying

mechanisms.

In this dissertation, I pursue three lines of investigation, targeting three aspects of memory,

learning, and their diseases. The work described in Chapter 2 pertains to problems of information

flow between regions in the brain which can be caused for example by traumatic lesions, strokes,

or tumors. Disorders of this type can occur due to a problem with a component circuit in the

system or due to a problem with transmission between circuits in the system. Chapter 3 focuses

on how synaptic memory in a neural circuit can reflect a particular problem-solving strategy, and

how the modification of this memory through learning leads to strategy evolution. Problems with

these processes are tightly linked to learning impairments and disabilities. Finally Chapter 4

concentrates on how neuromodulatory molecules modify parameters of network transmission to
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enable storage of overlapping synaptic memory regimes within a circuit. Nearly every psychiatric

illness is linked to neuromodulator abnormalities, and likewise nearly every treatment is aimed

at modifying neuromodulatory signalling.

1.1.2 Disorders of neural circuit communication

The brain can grossly be mapped into functional regions. For example in the human

cortex occiptal regions are critical for vision, some temporal areas are critical for hearing

(auditory cortex), others for declarative memory (medial temporal lobe), others for language

(e.g. Wernicke’s area), parietal areas are critical for sensation (sensory cortex), and some

frontal areas are critical for movement (motor and premotor regions), others for planning

and decisions (prefrontal regions). These large subdivisions can often be further subdivided

with some functional associations, for example into subregions of the prefrontal cortex (PFC):

dorsolateral (dlPFC), ventrolateral, ventromedial (vmPFC), and orbital frontal cortex [Mac+15;

Fus01; Wil+10]. Although these divisions and their functional associations are approximately

true with supporting evidence from clinical cases and experimental studies, they are estimations

and most often, not precise. This imprecision is not simply a shortcoming of measurement or

knowledge, but rather reflective of the interconnectedness of all the component parts that make

up the brain.

Some disorders can be traced to specific, localized problems with regions or the communi-

cation between regions that make up a larger circuit system. These disorders often take the form

of focal lesions. The most straightforward examples are traumatic brain injuries, for example

in the famous case of Phineas Gage who suffered a projectile penetration from an exploded

railway rod that damaged several parts of his prefrontal cortex but left the rest of his brain intact

[Mac+15; Har48]. Another example is patient H.M. [SM57] whose memory deficit symptoms

following a bilateral medial temporal-lobe resection spurred and continue to spur research into

the declarative memory properties of the hippocampus and medial temporal lobe. Focal lesions

of this type have been incredibly informative for mapping approximate functionality of brain
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regions and their communication [Mac+15].

Lesions causing inter-regional disruption also take other forms. Alzheimer’s disease is a

progressive neurodegenerative disease that usually begins as a declarative memory deficit that

then progresses in severity and scope to eventually cause broader general dementia. This can be

thought of as a lesion (a diffuse rather than traumatic, focal lesion) that likely originates in the

medial temporal lobe (MTL) and then progressively expands, disrupting communication first

through MTL then more broadly. Parkinson’s disease, another neurodegenerative disease, with

its hallmarks of rigidity, tremor, bradykinesia, and postural instability, originates from a lesion

— progressive loss of neurons — of the substantia nigra, a region of the basal ganglia that is

a major source of dopamine production. Normal information flow that is dependent on these

dopaminergic neurons is disrupted for example in the direct and indirect pathways of the basal

ganglia [Wic19].

In Chapter 2, I consider inter-regional disorders of the PFC. Using an artificial neural

network system to model the PFC subregions’ coordinated activity, I systematically introduce

lesions of various types to the model, simulating neural ablations (e.g. traumatic injury) and

neurodegeneration (weakening and loss of synaptic connections). I then use these lesioned

models to compare resultant behavior to that of patients with prefrontal lesions. I employ a

widely used clinical assessment of prefrontal function to reveal parallels in post-lesion behavior

between the model and patients, suggesting the neural architecture underlying prefrontal function

and how it becomes disrupted in various disorders.

1.1.3 Disorders of learning

Learning disabilities occur in varying degrees, from mild impairment to very severe

developmental disorders. They may derive in part from structural abnormalities as in the case

of cerebral malformation diseases, and in part from problems with the molecular machinery

of learning processes [Rit03]. In many cases the etiology is unknown or unclear. Treatments

attempt to ameliorate causative factors when known (e.g. surgical procedures for some neural
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malformation disorders) or support patients (e.g. social and educational assistance), but for

many learning disabilities no treatments exist, in part due to a lack of understanding of the

pathophysiology. Much of current research is aimed at gaining basic understanding of why

and how learning disabilities occur at the molecular, cellular, and circuit levels and developing

pipelines to discover novel targeted therapeutics (e.g. [Tru+20]1).

Chapter 3 focuses on the learning processes that occur in a neural network as it tunes to

solve a task. The investigation follows how learning leads to formation of a strategy reflected

in network activity dynamics that can then evolve through further learning to attain higher

proficiency. By revealing some counterintuitive findings about learning heuristics and learning

progression, this work lays a foundation for future investigation of how impairments of synaptic

plasticity and other learning processes influence how networks store and evolve strategies.

1.1.4 Disorders of neuromodulation

Neuromodulation underlies different modes of behavior driven by different underlying

cognitive states, including arousal, hunger, and moods. The behavior of a bear encountering a

mysterious mushroom can vary greatly depending on its underlying state of hunger; a starved bear

may consume without hesitation while a well-fed bear is more likely to forgo the risk of poisoning

(Figure 1.2A). Almost every psychiatric and several neurological diseases have been linked to

neuromodulator abnormalities. Clinical findings provide supportive evidence of this link with

nearly every pharmacologic treatment for psychiatric illness aimed at targeting a neuromodulator

class either directly (e.g. SSRIs) or indirectly [Ash+17]. The four main neuromodulators in the

brain are dopamine, serotonin, acetylcholine, and norepinephrine and are produced in subcortical

areas and the brainstem (Figure 1.2B), though many other neuromodulators exist including types

of neuropeptides [Mer+11].

Dopamine (Figure 1.2B, blue) is a tyrosine-derived neuromodulator produced in the

1In parallel to my dissertation work, I coauthored this paper that established an organoid-based drug candidate
identification pipeline and applied it to discover new treatments for Rett syndrome.
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Figure 1.2. Neuromodulatory molecules control cognitive states. (A) The behavior of an
organism — here, a bear — depends on the underlying cognitive state. A bear that is in dire need
of food is more likely to take the risk of eating a unknown food (mushroom) than a well-fed
bear who would avoid the risk. (B) Four major neuromodulators are acetylcholine (green),
norepinephrine (red), serotonin (purple), and dopamine (blue). Each is produced in small regions
of the subcortex or brainstem and are widely distributed throughout the brain via short and
long-range projections. Reprinted from [OWS20].

substantia nigra pars compacta of the basal ganglia and the ventral tegmental area in the mid-

brain. Dopamine plays a central role in reward information and movement control. Loss of

dopaminergic neurons in the substantia nigra pars compacta are central to the pathology of

Parkinson’s disease and other forms of Parkinsonism [Wic19]. Abnormally and inappropri-

ately elevated dopamine levels are associated with symptoms of psychotic illnesses including

schizophrenia [AK17]. This spectrum of dopaminergic levels and their related diseases has been

firmly established and supported by evidence from pharmacologic treatments targeting dopamine.

Pharmacologics for Parkinson’s disease aimed at increasing dopamine levels can result in psy-

chosis, hallucinations, and several other related symptoms. On the other hand, antipsychotic

therapeutics aimed at lowering dopamine levels can cause extrapyramidal symptoms including

Parkinsonism.

Serotonin (Figure 1.2B, purple) is derived from tryptophan, and is produced in the raphe

nuclei in the brainstem. Serotonin is tightly linked to mood regulation and associated disorders,

with selective serotonin reuptake inhibitors (SSRIs) being first-line treatment for depression
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and anxiety disorders [Fur+19; Tor+19]. Norepinephine (Figure 1.2B, red), like dopamine is

tyrosine-derived, and is produced in the locus coeruleus in the brainstem. In addition to its several

functions peripherally including in blood pressure regulation, norepinephrine acts centrally to

regulate arousal and mood, and serotonin and norepinephrine reuptake inhibitors (SNRIs) are

used as close alternatives to SSRIs in treatments of depressive and anxiety disorders [Del+10].

Acetylcholine (Figure 1.2B, green) is synthesized from acetyl-CoA (a derivative of

glucose) and choline, and is produced centrally in the nucleus basalis of the basal forebrain

and in the brainstem. In addition to its critical role in neuromuscular junctions, it is strongly

associated with memory processes in the brain. Not surprisingly, abnormal acetylcholine levels

have been linked to Alzheimer’s disease, and cholinesterase inhibitors have been developed to

treat the memory-related symptoms. Acetylcholine also plays an important role in the direct and

indirect pathways of the basal ganglia that are thought to be disrupted in Parkinson’s disease.

Specifically, the loss of dopaminergic neurons is thought to create an imbalance in dopamine and

acetylcholine levels in the striatum, resulting in motor abnormalities [Tat+14].

Table 1.1. Abnormalities of the major neuromodulators associated with neurological and
psychiatric diseases [AK17; HP14; YSY14; Tor+19; Tat+14].

Dopamine Serotonin Norepinephrine Acetylcholine
Parkinson’s × ×

OCD × ×
PTSD × × ×

Schizophrenia × × ×
ADHD × × ×

Depression × × ×
Anxiety × ×

Alzheimer’s ×

Table 1.1 shows a sample of neurological and psychiatric diseases and their links to spe-

cific neuromodulator abnormalities. Many of the drugs for these diseases target neuromodulators

and have mechanisms of action and side effects that are not well understood. An example we

focus on in Chapter 4 is why there is such large dose-response variability among patients, some
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of whom exhibit very high sensitivity and others of whom fail to respond at the highest doses

of the same drug. We reveal that the answer may be related to another puzzling observation in

psychiatric therapeutics: why do some patients who fail pharmacologic treatment respond so

well to other modes of treatment like deep brain stimulation?

1.2 Artificial neural network as a model system

1.2.1 Background

The human brain is a massive parallel distributed processing (PDP) device characterized

by ∼ 1014 connections (synapses) between ∼ 1011 units (neurons). To begin to understand

how such a computing device operates, it is critical to understand general principles of parallel

distributed processing. Artificial neural networks (ANNs) are models of such PDP devices, built

out of connected (via synapses) simple computational units (artificial neurons). As such, they

allow unprecedented access to study how large-scale parallel distributed processing devices with

neuron-like components work and what they are capable of [RMP86]. In their short history

since the McCulloch-Pitts neuron in 1943 and Frank Rosenblatt’s perceptron in 1958, myriad

surprising emergent phenomena have been reported when ANNs are subjected to various tasks

and manipulated in different ways, some of which closely mimic features of the brain.

Many different types of ANNs have been developed. ANNs can be grouped into two

large categories based on structure: feedforward architectures in which information flows from

start to end of the network without being passed backward, and recurrent neural networks

(RNNs) which connect back onto themselves, passing information backward as well as forward

through the network. Feedforward networks include traditional convolutional neural networks

(CNNs) (e.g. AlexNet, ResNet, U-Net), traditional autoencoders, and transformers; recurrent

architectures include sequence-to-sequence networks and recurrent autoencoders. Additionally,

networks can be grouped by their method of simulation: rate networks simulate neural firing

rates of each neuron, whereas spiking networks explicitly simulate individual action potentials in
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neurons. Examples can be found from all these categories that have proven extremely useful in

neuroscience research and technological applications [Mio+18; Alz+21; Sch+22]. The work in

this dissertation focuses on brain regions and functions most suitably studied with continuous

rate recurrent neural networks.

ANNs are made up of very simple units, called neurons. Neurons have weighted con-

nections to other neurons and operate by taking input from upstream connected neurons and

outputting a transformed version to downstream connected neurons. Each neuron is governed by

a simple equation. For example in a typical rate network, the governing equation for neurons in

the network is:

τ
dx
dt

=−x+Wr+Winu+ ε (1.1)

where τ represents the synaptic decay time constants for the neurons, x represents the current

variables of the neurons, W is the matrix of connection weights between neurons, r is the output

firing rates of the neurons, Win are weights associated with external input u, and ε is added

noise. The output firing rate for the neuron often involves a nonlinearity operating on the current

variable called the activation function of the neuron, which mimics the relationship between

the state of the neural current and consequent firing rate. An example is the standard logistic

sigmoid function:

r =
1

1+ e−x (1.2)

The weighted connections between the neurons in network can then be tuned to produce

desired output when given input, guided by an objective function (also called a loss function, L )

that dictates how the connection weights should be tuned. A common example of an objective

function is mean squared error (Equation 1.9) which gives a measure of how far off the network’s

output is from a desired target. To find out how to tune connection weights, partial derivatives of
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the objective function with respect to each weight (θi) in the network can be calculated:

∂L

∂θi
(1.3)

which indicates how the loss changes with that weight. Following this gradient, each weight

can be tuned in the direction that decreases the loss, often scaled by a scalar, η , called the

learning rate. This process, called backpropagation, is then repeated iteratively as more examples

of inputs, outputs, and desired target outputs are experienced. The objective function defines

the optimization problem that backpropagation attempts to solve through iterative tuning of

connection weights with training data.

Somewhat surprisingly (or perhaps not, given the brain as empirical evidence), these

networks of artificial neurons have proven to be very powerful computational devices that

underlie many major achievements (e.g. AlphaFold [Jum+21]), some even superhuman (in a

narrow sense) like the game playing neural network MuZero [Sch+20]. RNNs in particular have

been proved to be Turing-complete [SS92], and under certain conditions even super-Turing,

capable of solving problems uncomputable by a Turing machine (e.g. the halting problem)[Sie95;

CS14]. This computational power in theory and in practice is why ANNs are so popular and

useful in machine learning.

As with any model system, there are caveats and limitations of the model in simulating

animal and human neural processes. ANN models are vastly simplified approximations of bio-

logical neural networks, typically lacking features including spatial constraints (both intracellular

and intercellular), metabolic properties, interacting cell types (e.g. glia), action potentials (for

rate networks), and detailed molecular interactions (probabilistic neurotransmitter release and

binding, individual ions and their channels, etc.). For many simple tasks, objective function

construction is straightforward (e.g. labeled picture classification), but extrapolation to plausible

objective functions governing human and animal life is less straightforward. Writing down

any objective function governing animal learning and behavior would require several unknown
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components, and it is unclear how such an objective function would be stored, if at all, and used

to calculate gradients in order to optimize parameters of the system [Ric+19]. Furthermore, the

learning rules used in animal brains remain unclear.

Nonetheless, ANNs have also proved to be very useful models for understanding princi-

ples of animal and human brain function. There are now innumerable examples of this [Man+13;

Rus+18; KS20; Bak+21; Nay+18; Tru+20], from layers of a deep CNN predicting activity in the

visual stream [Yam+14] to RNNs tightly mimicking experimental animal behaviors and neural

activity properties and revealing new learning principles [Wan+18].

1.2.2 Circuit models

Recurrent neural networks

RNNs are defined by unconstrained connections of neurons within a neural population

(Figure 1.3A). Precisely, this refers to W in Equation 1.1 being an unconstrained N×N matrix of

real numbers (W ∈ RN×N), where N is the number of neurons in the network. Recurrent connec-

tivity is inherently suited for temporally-dependent computation since neural state information

can be preserved and manipulated through neural connections that form loops. Information in

this way can be retained from history and new information integrated with the old. For this

reason, RNNs are particularly useful models for studying principles like working memory and

reinforcement learning which rely on temporal dependencies.

Algorithmically, a major difference from feedforward ANNs is that training is done

via backpropagation through time. The computation done by an RNN can be reframed as an

iterative process that “unrolls” through time (Figure 1.3B). This “unrolling” of the network in

time is useful for computing the error-based partial derivatives necessary for weight optimization

(∂L
∂θi

from Equation 1.3 depends on ∂xt
∂θi

which depends on ∂xt
∂xt−1

, ∂xt−1
∂xt−2

, ∂xt−2
∂xt−3

, etc.). Because

the temporal duration of a task may be many steps, RNNs historically posed challenging for

optimization since derivatives had to be backpropagated through several time steps. Similar

to very deep feedforward networks this could lead to the “vanishing or exploding gradients”
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Figure 1.3. RNN circuit models. (A) Standard RNN takes input, u, and produces output, z.
Neurons in the network can form weighted connections to any other neuron in the network. (B)
An RNN can be “unrolled in time” to depict temporal dependencies of its computations. (C)
Long short-term memory cell is a specialized RNN that contains a set of intrinsic gates: a forget
gate ( f ), an input gate (i), and an output gate (o). Input, u, together with output from the prior
timestep, z, passes through input weights (g) and conditions the gates to update the state of the
network and its output, z. The thick black line represents the state of the network units and boxes
represent linear and nonlinear operators.

problem, in which a gradient calculated on the output error when propagated across many time

steps (i.e. the partial derivatives calculated across neural units across time steps going back to

the beginning of the task) could become very small or very large, hindering training. These

challenges have effectively been handled by clever weight initialization methods, improved

optimizer algorithms, and altered architectures like long short-term memory networks [Sut+13;

KB15; GB10; He+15; HS97].

RNNs are widely used in modeling regions of the brain [Man+13; KS20; Rus+18;

Wan+18], particularly working memory-based computations in the prefrontal cortex. Mounting

realizations that recurrent connections, even if sparse, play important computational roles

throughout the brain have led to incorporation of RNN modelling for regions traditionally

thought of as feedforward brain regions like the visual stream [Nay+18]. Each study in this

dissertation focuses on recurrently connected brain regions and thus utilizes RNN circuit models.

Long short-term memory networks

Different variations of the RNN have been developed for ease of use and robustness of

computation. Most draw on the insight that a limited set of intrinsic gates within the RNN lead
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to faster and better learning, especially for tasks with complex temporal dependencies. Among

these the most used are long short-term memory cells (LSTMs; Figure 1.3C) and a variation

called gated recurrent units (GRUs). Here we introduce the LSTM which is used in Chapters 2

and 3.

The LSTM [HS97] is a recurrent network that includes three intrinsic gates: an input

gate, a forget gate, and an output gate. Each gate influences how the units of the RNN encode

information. The governing equations for these gates are:

ft = σ(Wx f xt +Wh f ht−1 +b f ) (1.4)

it = σ(Wxixt +Whiht−1 +bi) (1.5)

ot = σ(Woxxt +Whoht−1 +bo) (1.6)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 +bc) (1.7)

ht = ot ◦ tanh(ct) (1.8)

where ft , it ,and ot are the forget, input, and output gates at time t respectively, σ is the sigmoid

activation function, Wi j denotes the weights from component i to component j, xt is the external

input at time t, ht is the ouput of the LSTM at time t, ct is the state of the LSTM cell at time t,

b f , bi, and bo are the biases of the forget, input and output gates respectively, bc is the bias of the

cell states, and ◦ denotes the Hadamard product.

As in all ANNs, input into the network passes through input weights (Wxc in Equation

1.7 and g in Figure 1.3C). The input gate (i) further modifies the inputs before incorporation into

the state of the RNN units (c). The forget gate ( f ) determines how much of the previous state of

the RNN units is passed on to the next state. Finally the output gate (o) modifies the final form

of information that is propagated out of the RNN (h).

LSTMs have been used to model areas of the brain involving working memory and

recurrent connection loops like those between the PFC, basal ganglia, and thalamus [Wan+18].
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The ANNs used in Chapter 2 and 3 to model properties of PFC circuits trained by reinforcement

learning utilize LSTMs.

1.2.3 Learning methods

In the training of ANNs, different learning methods can be used. These fall broadly into

three categories: supervised, unsupervised, and reinforcement learning. Supervised learning

refers to training an ANN with a teacher signal. This can take the form of true labels in a

categorization task or a desired output signal in a continuous output value task. A loss (objective)

function (L ) is then used to calculate an error. For example, the following loss function

calculates the mean squared error for a desired output signal, z:

L =
1
T

T

∑
t=1

(zt −ot)
2 (1.9)

where T is the number of timesteps in a trial, zt is the desired signal and ot is the ANN output at

time t. This error is then used to calculate gradients (partial derivatives of the error with respect

to each individual weight in the ANN) for backpropagation weight optimization. Supervised

learning is use in Chapter 4.

Unsupervised learning refers to learning that occurs in the absence of a teacher signal, for

example clustering. In this case the objective function of the network dictates desired properties

of the output without an external teacher signal. An example of unsupervised learning occurs

in an autoencoder, which is an ANN that learns to reconstruct whatever input it is given, often

performing compression with middle layers being lower dimensional than input and output

layers.

Reinforcement learning

Reinforcement learning is a prominent learning mechanism used by humans and animals.

Also referred to as “trial and error learning,” it occurs through a sequence of experiences in

which the agent (e.g. human, animal, or ANN) takes an action and receives feedback from the
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environment that carries a positive or negative valence — the reward. Through repeated actions

the agent learns associations of environmental states, actions, and rewards. Biologically, these

processes likely involve cortical areas, which convey information and encode, organize, and

refine memory; the basal ganglia, where reward information is processed and elaborated and

motor associations are stored; and dopamine signaling, which conveys a reward prediction error

signal [Sej+14; MDS96; SDM97]. Mathematically, the class of problems that reinforcement

learning attempts to solve can be posed as a Markov decision processes (MDPs) [SB18]: at each

state the agent makes a decision and with some probability gets some reward and ends up in

some other state. Using the reward feedback, the agent learns which actions taken in which states

lead to positive and negative outcomes. As I show in Chapters 2 and 3 and others have shown

in other works and experiments, reinforcement learning is a simple and incredibly powerful

mechanism for encoding function approximators in a neural network to solve MDPs.

The core of why reinforcement learning works is captured in a single equation: the

Bellman equation, developed by Richard Bellman in the 1950s [SB18].

vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (1.10)

where vπ(s) is the value of state s under policy π , π(a|s) is the probability of taking action a

given state s under the policy, s′ is the next state, r is the reward, and γ is a temporal discount

factor.

This equation reveals a recurrence, namely that the value of the current state s can be

written as an average over all temporally adjacent states s′. Importantly, because of this recurrence,

the value of state s includes complete information about all possible futures extending from that

state (since it is the average of all possible next state’s values, which each are the average of all

possible next next states, etc.). The goal of reinforcement learning is to find the most accurate

value map, or framed another way, the optimal policy π given the value map. This solution is
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captured by the Bellman optimality equation:

v∗(s) = max
a ∑

s′,r
p(s′,r|s,a)[r+ γv∗(s′)] (1.11)

where v∗(s) is optimal state value function. Reinforcement algorithms aim to closely approximate

this solution, for example with a function approximator in the form of a neural network.

The algorithmic implementation of reinforcement learning can take many forms, which

depend on the representation of the objective function. Reinforcement learning can be thought of

as acting on a representation of the value of states and actions given the state of an environment.

A popular implementation of this is Q learning, in which an agent holds a representation of the

value of particular actions given the state of the environment (q; the Bellman equations can also

be written for q rather than v). Another widely used implementation involves the agent simply

holding a representation of the policy π , i.e., what action to take in what state, alleviating the

requirement to accurately capture value associations of actions.

Reinforcement learning in humans and animals often exhibits a form of temporal dis-

counting, in which values (i.e. rewards) associated with states more distant temporally (e.g.

further into projected future) have less influence than more immediate rewards [BS14]. Such

temporal discounting underlies effective planning – actions taken several steps ahead of a final

desired outcome enable achievement of that outcome (like diligently working in year 1 to finally

earn a diploma in year 4). Temporal discounting is algorithmically implemented as temporal

difference learning, introducing a discounting factor, γ , which represents the exponentially

decreasing influence of a reward on temporally adjacent states.

Another commonly used method within reinforcement learning is utilization of a refer-

ence or baseline value, known in its algorithmic implementation as “actor-critic” [SB18]. Reward

feedback from the environment is compared to a stored representation of the value of that state,

held independent of the policy representation. This comparison — the “critic” — is used to shape

the policy — the “actor” — and takes the form of a temporal difference error. The use of this
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baseline value estimation can accelerate learning by constraining the variance of the updates. The

actor-critic comparison of reward to expected reward (value estimation) is strongly analogous to

dopaminergic reward prediction error signalling in the basal ganglia [JNR02; Sej+14; BNB09].

In Chapters 2 and 3 I use reinforcement learning to train neural network models. I use

an actor-critic policy method with temporal difference learning outlined in Mnih et al. 2016

[Mni+16]. The objective function (L ) I use is defined by three components: a policy term (Lπ )

and value term (Lv) as discussed above, and an entropy of the policy term (LH) which simply

encourages exploration and prevents premature convergence to a set policy before experiencing

the full environment. The gradient of the objective function I use is given by:

∇L = ∇Lπ +∇Lv +∇LH (1.12)

=
∂ logπ(at |st ;θ)

∂θ
δt(st ;θ)+βvδt(st ;θ)

∂V
∂θ

+βH
∂H(π(at |st ;θ))

∂θ
(1.13)

where π is the policy, at is the action taken at time t, st is the state at time t, θ is the network

parameters, βv,βH are scalar constants, V is the value output of the network, and H is entropy.

δt is the “advantage estimate” of the critic, which represents the temporal difference error as

described above:

δt(st ;θ) =

(
rt +

k−1

∑
i=1

γ
irt+i + γ

kV (st+k;θ)

)
−V (st ;θ) (1.14)

where rt is the reward at time t, γ is the discount factor, and k is the number of steps until the

next end state.

1.3 Levels of investigation

This dissertation takes the approach of studying memory and learning across levels of

investigation (Figure 1.1). Chapter 2 considers a system of circuits — how arrangement and

20



coordination of subregions of the prefrontal cortex support flexible behavior. Chapter 3 zooms in

to an individual circuit — how a circuit can adopt a strategy and how that strategy can evolve

as a function of network capacity and experience. Chapter 4 zooms in to the molecular level —

how a class of molecules called neuromodulators can enable a circuit to flexibly encode multiple

behaviors in parallel.

The integration of these three levels of the neural circuit lead to a broader understanding

of how parallel distributed computing can work at multiple levels in the brain. Molecules

establish unique and accessible parallel modes within a circuit, each mode within a circuit itself

can evolve, and combining multiple circuits into a circuit system can coalesce into an integrated

flexible higher-order memory device. Along with providing an appreciation for the seamless

layering of these levels to generate complex function, study across these levels reveals a better

understanding of consequences of disruptions across the whole system such as those that occur

in disease. Effective treatments will be those designed taking into account effects that occur at

each of these levels.
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Chapter 2

A modeling framework for adaptive life-
long learning with transfer and savings
through gating in the prefrontal cortex

In this chapter I consider how a system of circuits in the prefrontal cortex can coordinate

to generate flexible, coherent behaviors. I explore how a simple arrangement of neural network

architecture with a temporally dynamic component gives rise to a form of inductive transfer

learning and preserves memory of prior experiences while continuing to behave flexibly in a

changing environment. I apply this ANN model to study how various impairments affect the

circuit system and observe interesting parallels with assessments of patients with prefrontal

impairments.

The work presented here is reproduced and adapted from: Ben Tsuda, Kay M. Tye, Hava

T. Siegelmann, and Terrence J. Sejnowski. A modeling framework for adaptive lifelong learning

with transfer and savings through gating in the prefrontal cortex. Proceedings of the National

Academy of Sciences, 117 (47), 29872-29882, 2020.

2.1 Abstract

The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly

switches between them. Recent research on artificial neural networks trained by reinforcement

learning has made it possible to model fundamental processes underlying schema encoding and
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storage. Yet how the brain is able to create new schemas while preserving and utilizing old

schemas remains unclear. Here we propose a simple neural network framework that incorporates

hierarchical gating to model the prefrontal cortex’s ability to flexibly encode and use multiple

disparate schemas. We show how gating naturally leads to transfer learning and robust memory

savings. We then show how neuropsychological impairments observed in patients with prefrontal

damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE,

provides a fundamental framework for how the prefrontal cortex may handle the abundance of

schemas necessary to navigate the real world.

2.2 Introduction

Humans and animals have evolved the ability to flexibly and dynamically adapt their

behavior to suit the relevant task at hand [Mon03]. During a soccer match, at one end of the pitch

a player attempts to stop the ball from entering the net. A few moments later at the opposite end

of the pitch, the same player now tries to put the ball precisely into the net. To an uninitiated

viewer, such apparently contradictory behaviors in nearly identical settings may seem puzzling,

yet the ease with which the player switches between these behaviors (keep ball away from net

or put ball into net) highlights the ease with which we adapt our behavior to the ever-changing

contexts (near own net or opposing team’s net) we experience in the world. A bulk of evidence

from observations of humans with prefrontal cortical lesions, neuroimaging studies, and animal

experiments have indicated the importance of the prefrontal cortex (PFC) and connected regions

in encoding, storing, and utilizing such context-dependent behavioral strategies, often referred to

as mental schemas [Buc+05; Fus01; GAT19; Mac+15; MMT06]. Yet how the prefrontal and

related areas are able to translate series of experiences in the world into coherent mental schemas

which can then be used to navigate the world remains unknown.

Research in reinforcement learning has helped provide some insight into how the PFC

may transform experiences into operational schemas [Sej+14; SYW17; Wan+18]. In rein-
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forcement learning paradigms, an agent learns through trial and error, taking actions in the

world and receiving feedback [SB18]. Recent work has demonstrated how recurrent neural

networks (RNNs) trained by trial-by-trial reinforcement learning can result in powerful function

approximators that mimic the complex behavior of animals in experimental studies [Wan+18].

Although reinforcement learning has provided invaluable insight into mechanisms the

PFC may use, it remains unclear how the PFC is able to encode multiple schemas, building

on each other, without interference, and persisting so they may be accessed again in the future.

The majority of models capable of solving multi-strategy problems require specially curated

training regimens, most often by interleaving examples of different problem types [Yan+19].

Models learn successfully due to the balanced presentation of examples in training; if the training

regimen is altered—for example, problem types appear in sequence rather than interleaved, as

often happens in the world—the unbalanced models fail miserably [Fre99].

Some techniques have been proposed to help models learn and remember more robustly,

yet none have established how these processes may occur together in the brain. For example,

continual learning techniques (e.g. [Kir+17; ZPG17]) propose selective protection of weights.

Yet such techniques heavily bias networks toward internal structures that favor earlier, older

experiences over newer ones and are potentially not biologically realistic [Yan+19]. Other

models either require explicit storage of past episodes for constant reference [Cha+19; LR17], or

an “oracle” to indicate when tasks are “new” [ACT17; Rus+16].

Experimental studies have suggested that areas within the prefrontal cortex and related

regions may adopt a gating-like mechanism to control the flow of information in the brain in order

to support complex behaviors involving multiple schemas [GB11; Joh+07; RGH18]. Many forms

of prefrontal gating have been proposed in the literature to date, including gating of sensory infor-

mation [Pos05; ON19; Wee+18], gating mechanisms to support working memory [MK08], and

gating of task-relevant activity [MMT06; Joh+07; RGH18]. Building off experimental findings,

computational models incorporating gating have been developed for action sequences [DCB15]

and particularly for working memory [BC00; OF06; FLO01; Rou+05; FB12; Wan+18].
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Furthermore, experimental and modeling work has suggested functional divisions within

the PFC and neighboring areas [Mac+15; Tye18; SL02; Mil63; DCK14]. Clinical and neu-

roimaging observations from patients with prefrontal lesions have strongly linked dorsolateral

PFC (dlPFC) to set-shifting [Mac+15; SL02; Mil63]. Additionally, some clinical and experi-

mental findings have indicated ventromedial PFC (vmPFC) and anterior cingulate cortex (ACC)

involvement in set-shifting [Mac+15; Joh+07; DCK14] while others have not [Mac+15; Mil63].

Notably, although multiple models for working memory mechanisms have been proposed, there

is a lack of models designed to investigate schema encoding and shifting, linked to functions

distributed across dlPFC, vmPFC, OFC, and ACC among other areas.

We hypothesized that, in addition to gating mechanisms supporting maintenance of

working memory, the presence of structural gating could support manipulation and adaptation

of multiple task-specific schemas in the prefrontal cortex. Such a network architecture could

learn multiple schemas through reinforcement and adapt to new environments without “oracle”

supervision, while remaining robust against catastrophic forgetting. To investigate this, we devel-

oped a neural network framework for the PFC that mirrors the mixture of experts (MoE) class of

models [Jac+91] (Fig. 2.1A). MoE networks are used widely across machine learning applica-

tions [YWG12; Sha+17] and have been shown to support transfer learning in combination with

reinforcement learning [Sin92a; Sin92b; DL17; GSL18] and Bayesian nonparametrics [RG01;

WR95; SN96; FFW96; ACT17; KMG06].

Using our network model, we demonstrate how structural gating naturally leads to transfer

learning as new scenarios are encountered and schemas are encoded. Furthermore, we show

how our network adaptively learns and, due to its architecture, demonstrates robust memory

savings for past experiences. We implemented lesions to our model to study how functional

components may become disrupted in disease and found that the lesions recapitulated specific

neuropsychological impairments observed in patients. Our framework provides a basis for how

the PFC and related areas may encode, store, and access multiple schemas.
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2.3 Materials and methods

2.3.1 Behavioral task

To demonstrate our framework we used the Wisconsin Card Sorting Task. In this task

the subject is asked to sort cards. Each card has symbols with a shape type (triangle, star, cross,

circle), a color type (red, green, yellow, blue), and a specific number of symbols (one, two,

three, four). During each episode, an unsignaled operating rule is chosen: either shape, color, or

number. The subject must discover the rule by trial and error and then sort a given card according

to the relevant rule into one of four stacks. The first stack, Stack 1, has 1 red triangle, Stack 2 has

2 green stars, Stack 3 has 3 yellow crosses, and Stack 4 has 4 blue circles (Fig. 2.1B). After each

attempted card sort, the subject is given feedback as to whether the sort was correct or incorrect.

Once the subject has sorted a given number of cards correctly consecutively the operating rule is

switched without signal and the subject must discover the new rule through trial and error. For

all of our simulations, the operating rule was switched after 3 correct sorts in a row.

At the beginning of each episode a deck of cards containing all 64 possible combinations

of shape, color, and number was generated. Cards were randomly drawn from this deck and

presented to the subject for sorting, removing each card from the deck after presentation. If all 64

cards from the deck were used before termination of the episode, the deck was regenerated and

new cards continued to be drawn in the same manner. An episode was terminated by meeting

one of two termination criteria: 1) achieving the given number of correct sorts in a row (3 for our

simulations) or 2) reaching the maximum episode length which we set to 200 card draws.

In our sequential scenario training simulations, a particular operating rule was kept

constant for the duration of training in that period, either until a given number of sorting episodes

was achieved or until performance passed a satisfactory threshold. In the next training period,

a new operating rule was held constant and training was repeated in the same manner. As a

demonstration, a DynaMoE network was trained in a sequential training protocol with sequential

blocks of 1,250 sorting episodes (1 “sorting episode” ≈ 12 total WCST episodes across whole
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network) of each sort rule type (Fig. 2.2C). Each 1,250 sorting episode block was split into two

625 sorting episode subblocks; in the first subblock, the gating network was tuned and in the

second both the gating and new expert network were tuned. To evaluate the degree of transfer

learning, a moving mean over every 100 sorting episodes was taken for the periods of isolated

gate retuning (no expert training), and the minimum value was compared to the minimum value

of the initial network before training any expert (baseline without transfer). When the shape

sort rule was reintroduced, only the gating network was tuned. The 1,250 sorting episode block

training protocol described above was also done with a standard RNN for comparison (Appendix,

Fig. 2.7). In all line plots of sorts to criterion over training, a moving mean over every 10 sorting

episodes was calculated and plotted for readability.

2.3.2 Reinforcement learning training

To train our networks with reinforcement learning, we used the Advantage Actor-Critic

algorithm of Mnih et al. [Mni+16], where a full description of the algorithm can be found.

Briefly, the objective function for our neural network consists of the gradient of a policy term, an

advantage value term, and an entropy regularization term:

∇L = ∇Lπ +∇Lv +∇LH

=
∂ logπ(at |st ;θ)

∂θ
δt(st ;θ)+βvδt(st ;θ)

∂V
∂θ

+βH
∂H(π(at |st ;θ))

∂θ

where π is the policy, at is the action taken at time t, st is the state at time t, θ is the network

parameters, βv,βH are hyperparameters for scaling the contribution of the value and entropy

terms respectively, V is the value output of the network, and H is the entropy regularization term

of the policy. δt is the advantage estimate, which represents the temporal difference error:

δt(st ;θ) = Rt −V (st ;θ)
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where Rt is the discounted reward:

Rt =
k−1

∑
i=0

γ
irt+i + γ

kV (st+k;θ)

where k is the number of steps until the next end state. When γ = 0, Rt = rt .

The advantage equation in this case is equivalent to a temporal-difference error signal

enabling temporal difference reinforcement learning.

The parameters of the model were updated during training by gradient descent and back

propagation through time after the completion of every 3 episodes. For all simulations we used

12 asynchronous threads for training. In our plots, a single “sorting episode” was defined as the

number of total WCST episodes completed while a single thread completed 1 episode, which

was roughly equal to 12 episodes for the total network. We used the AdamOptimizer with a

learning rate of 1e−03 to optimize weights. The objective function scaling hyperparameters βv

and βH were both set to 0.05 for all our simulations.

For feedback as to whether each card sort was correct or incorrect, we gave a reward of

+5 if correct and -5 if incorrect. For the WCST, a discount factor of γ = 0 was used since each

card sort was an independent event, based only on the relevant operating rule rather than any

prior previous action sequence.

Similar to the implementation by Wang et al. [Wan+18], the input to the networks for

each step was given as vector with the current card shape, color, and number, the action taken for

the previous time step, at−1, and the reward given for previous card-sort action, rt−1.

2.3.3 Network architecture

Both our standard RNN and DynaMoE network architectures were composed of LSTMs

as implemented by Wang et al. [Wan+18] (for details see Appendix). In contrast to “vanilla”

RNNs, LSTMs copy their state from each time step to the next by default and utilize a combi-

nation of built-in gates to forget, input new information, and output from the states. This RNN
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structure allows for robust learning and storage of functional approximators for various tasks

as demonstrated by Wang et al. [Wan+18]. The LSTM states and gates are described by the

following equations:

ft = σ(Wx f xt +Wh f ht−1 +b f )

it = σ(Wxixt +Whiht−1 +bi)

ot = σ(Woxxt +Whoht−1 +bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 +bc)

ht = ot ◦ tanh(ct)

where ft , it ,and ot are the forget, input, and output gates at time t respectively, σ is the sigmoid

activation function, Wi j denotes the weights from component i to component j, xt is the external

input at time t, ht is the ouput of the LSTM at time t, ct is the state of the LSTM cell at time t,

b f , bi, and bo are the biases of the forget, input and output gates respectively, bc is the bias of the

cell states, and ◦ denotes the Hadamard product.

For all our simulations described in the paper we used a standard RNN of 105 units and a

DynaMoE network with a 98 unit gating network and 19 unit experts. We chose these network

sizes because they provided ample capacity to learn the WCST scenarios and shared the same

number of total trainable network parameters (47,145) which enabled the direct comparisons

between standard RNN and DynaMoE networks.

In DynaMoE networks, if the gating network could not solve a scenario using its current

experts, a new expert was brought online. In this case, first the gating network was retuned with

the current experts and an additional randomly initialized expert of the same size. If performance

did not achieve the desired performance criterion, the gating network and the new expert were

then trained simultaneously. The gating network LSTM learned a functional approximator

mapping from inputs to experts, and the experts learned functional approximators mapping from
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inputs to actions in their input domain of expertise which was determined by the gating network’s

mapping function.

2.3.4 DynaMoE seeded with pretrained experts transfer simulations

For our demonstration of DynaMoE networks’ transfer learning property, we performed

a simulation with pretrained experts. We trained one expert on only shape sorting until the expert

network achieved near perfect “expert performance,” defined in this simulation as an average

sorts to criterion of <4 in the last 100 episodes of a single asynchronous thread (minimum

sorts to criterion is 3). We repeated the same with a second expert network trained on only

color sorting. We then created a DynaMoE network with these two pretrained expert networks

and a third randomly initialized expert network, and trained the gating network only on the

number sorting rule for 7,500 sorting episodes to ensure convergent decision behavior. “Expert

performance” as defined above was not achieved during this stage of training (Fig. 2.3B, Inset).

Network weights were then fixed and behavior and performance of the network was evaluated.

To evaluate behavior of the network, 1,000 test episodes were performed in the number rule and

the proportion of decisions to use each expert network (the decision rate) was measured in subsets

of the number rule described in the the Results section (“shape-match-number,” “color-match-

number,”“no-match-number;” Fig. 2.3C). From this parent network, we then ran 10 independent

training runs in parallel in which the gating network and the randomly initialized expert network

were trained simultaneously on the number sorting rule until the “expert performance” criteria

was achieved. To evaluate the decision rate of the gating network for each of the 10 independent

training runs, 1,000 test episodes were performed and the mean and standard deviation of the

decision rates were calculated in the same subsets of the number rule (Fig. 2.3F and Appendix,

Fig. 2.8).
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2.3.5 Organic transfer simulations

For our demonstration of the DynaMoE network’s implementation of transfer learning

without any pretraining, we independently trained 10 DynaMoE networks from scratch in the

following manner. We began with a randomly initialized gating network with a single randomly

initialized expert network. The gating network was then trained alone on the shape sort scenario

of the WCST for 1,250 sorting episodes. The gate and single expert network were then trained

simultaneously until “expert performance,” defined for this simulation as an average sorts to

criterion of <4 in the last 100 episodes of a single asynchronous thread. A new randomly

initialized expert network was then added, and the gating network was trained for 7,500 sorting

episodes in the color scenario to allow full convergence of decision behavior. The gate and

new expert were then trained simultaneously until “expert performance” was achieved. This

was repeated finally for the number scenario and a third expert network. To evaluate transfer,

for each sort rule we retuned the gating network until expert performance was achieved. The

gating network was then tested for 1,000 episodes in the given sort scenario and the relative

expert network use was measured as described in the Data analysis section below (Fig. 2.4 and

Appendix, Fig. 2.9).

2.3.6 Robust memory savings simulations

To demonstrate the DynaMoE network’s robust memory savings, we independently

trained 10 DynaMoE networks and standard RNNs with the same number of trainable parameters

(47,145) in an identical presentation of scenarios. First, the randomly initialized networks trained

on 1,250 sorting episodes of the shape sort scenario to ensure convergent performance. This was

followed by 1,250 sorting episodes of the color sort scenario, followed by 1,250 sorting episodes

of the number sort scenario (same as for networks in Fig. 2.2C and Appendix, Fig. 2.7). For

the DynaMoE network each block of 1,250 sorting episodes with a sort rule was broken into 2

sub-blocks of 625 sorting episodes—in the first 625 sorting episodes, the DynaMoE network
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did the first stage of training in which only the gating network is tuned, and for the second 625,

the second stage of training was done in which both the gating and new expert networks are

tuned simultaneously. After this sequential scenario training, for each standard RNN and the

DynaMoE network, we ran 10 independent retrainings on the first scenario encountered: the

shape scenario. For the DynaMoE network only the gating network was retuned. To measure

how quickly the networks could recover performance in the previously learned rule, the networks

were tuned until they reached a performance criteria of average sorts to criterion <10 cards for

the last 10 episodes of a single asynchronous thread. The number of sorting episodes required to

achieve this performance were measured, as well as the distance traveled in weight space during

relearning/remembering the shape scenario (Fig. 2.5 and Appendix, Fig. 2.10). For additional

methods on comparing network remembering to initial learning see Appendix.

2.3.7 Classic WCST simulations with untrained and pretrained net-
works

To simulate performance on the classic WCST in which the different sorting rule episodes

are interleaved randomly, 5 different networks were created. The first network was a standard

RNN with randomly initialized weights (Appendix, Fig. 2.12A). The second network was a

standard RNN that was pretrained sequentially on first the shape rule, followed by the color rule,

followed by the number rule (Appendix, Fig. 2.12B). For each rule type, the network was trained

until “expert performance,” defined as average sorts to criterion <4 over last 100 episodes of

single asynchronous thread before switching rules. The third network was a DynaMoE network

with three untrained expert networks with randomly initialized weights (Fig. 2.1C and Appendix,

Fig. 2.12C). The fourth network was a DynaMoE network seeded with three pretrained expert

networks—one pretrained on shape sorting, one on color sorting, and one on number sorting

(Fig. 2.1D and Appendix, Fig. 2.12D). Each of these pretrained experts had been trained on the

given rule until reaching “expert performance.” The fifth network was a DynaMoE network that

was pretrained sequentially on first the shape rule, followed by the color rule, followed by the
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number rule (Fig. 2.1E and Appendix, Fig. 2.12E). The network started with a gating network

and a single expert network with randomly initialized weights. The gating and expert networks

were trained simultaneously on the shape rule until “expert performance” was reached. The rule

was then switched to the color rule and a new expert network with random weights was added.

The gating network was trained for a maximum of 250 sorting episodes and then the new expert

was brought online and trained until “expert performance.” The same was then repeated for the

number rule.

Each network was then trained on the classic WCST, in which rules are randomly

interleaved (rules switch after every episode; see full description in Behavioral task section

of Materials and Methods). The center column of Appendix, Fig. 2.12 shows performance of

each network over 2,500 sorting episodes of training. Networks with pretraining (Appendix,

Figs. 2.12B,D,E), were also trained for 2,500 sorting episodes on the shape rule (the first rule

experienced) to compare each network’s ability to “remember” a previously learned rule.

2.3.8 Lesion studies

To perform the lesions studies, we first trained a DynaMoE network identical to the

network in Appendix, Fig. 2.12E as described above. We then implemented one of the following

lesions: L0- no lesion; L1- ablation of the reward feedback input to the network; L2- ablation of

the action feedback input; L3- both L1 and L2 simultaneously; L4- ablation of varying amounts

of the synaptic connections of the “forget gate” component of the LSTM, ranging from 10–100%

and denoted by the subscript (e.g. L40.9 has 90% of the synaptic connections ablated) (Appendix,

Fig. 2.13); L5- ablation of varying amounts of output from the RNN; L6- ablation of synaptic

connections to the units used to determine which expert network to use; L8- ablation of the

synaptic connects to the unit used to estimate value; and L7- both L6 and L8 simultaneously. For

two of the lesions types (L4,L7) we show the full severity spectrum as an example in Appendix,

Fig. 2.13.

After implementing the lesion, we then tested the full DynaMoE network on the classic
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interleaved WCST. We ran 1,000 test episodes and then performed analysis on performance as

described in the Results section. For each lesion type, we randomly ablated at each level of

severity 10 times and analyzed average behavior, since lesions of specific connections or units

within a given region may have differential effects. Errors per episode in Fig. 2.6 was the total

number of errors in a sort rule episode. Perseveration proportion was calculated as the proportion

of increase in total error due to change in perseveration errors. We defined perseveration errors

as incorrect card sorts immediately following the inevitable error trial after a rule change, which

would have been correct according to the previous rule [Gre93]. The inevitable error trial refers

to the first trial which receives feedback that a sort according to the previously correct rule is now

incorrect, signaling a rule change has occurred. We note that there are more complex methods

for scoring perseverations on the WCST largely due to the ambiguity introduced by cards that

can sort to multiple stacks [GB48; Mil63; FHF91; Gre93]. Practically, we categorized an error

as a perseveration if it immediately followed an inevitable error trial, another perseveration error,

or an unbroken streak of perseveration errors and correct sorts with ambiguity that included the

previous sort rule. Using the same criteria, we also tested the effects of the lesions with the

subset of cards excluding ambiguous cards, as in the Modified Card Sorting Task (MCST or

MWCST) [Nel76; Mac+15] and found qualitatively similar results (Appendix, Fig. 2.14).

2.4 Results

To demonstrate the properties of our framework we chose the Wisconsin Card Sorting

Task (WCST), a neuropsychological assessment of PFC function commonly used in clinic

[Buc+05; Mac+15; Mit+05; GB48]. In the WCST, a subject is required to sequentially sort

cards according to one of three possible sorting rules: shape, color, number (Fig. 2.1B; see

Materials and Methods for full description). The sorting rule is not explicitly given, but rather

must be discovered through trial and error. After each attempted card sort, the subject receives

feedback as to whether the sort was correct or incorrect. After a set number of correct card
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sorts in a row, the sort rule is changed without signal, requiring the subject to adapt behavior

accordingly [Mac+15; GB48]. Performance can be measured by the number of attempted card

sorts until the episode termination criterion is achieved (“sorts to criterion;” 3 correct sorts in a

row in our simulations), with fewer attempted sorts representing superior performance.
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Figure 2.1. DynaMoE network structure and the WCST. (A) The DynaMoE network is in
the MoE family of networks. A gating network takes input and outputs a decision of which
expert network to use (πg) and a value estimate (vg). The chosen expert network (e.g. E1) takes
input and outputs an action to take (πE1)—for the WCST, in which stack to place the current
card—and a value estimate (vE1). (B) The WCST. The subject must sort the presented test card
to one of four stacks by matching the relevant sort rule. The subject continues to attempt sorting
test cards until achieving the termination criterion (correctly sorting a given number of cards
consecutively). (C–E) MoE networks on the classic WCST. (C) MoE network with 3 experts
achieves good performance quickly and slowly improves further over time. (D) MoE network
with pretrained experts on the sort rules also learns quickly reaching near perfect performance
faster. (E) DynaMoE network pretrained sequentially on the sort rules learns rapidly and reaches
near perfect performance fastest. In all plots, blue traces are from networks during training and
grey traces are random behavior for reference. Grey dotted line is the minimum sorts to criterion.
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The WCST requires the PFC’s abilities to encode, store, and access multiple schemas.

The task requires a recognition of “rule scenarios” (a form of “set learning”) and flexible

adaptation through reinforcement signals to shift with changing rules. Patients with prefrontal

damage often have difficulty with this task, with some stereotypically making perseveration

errors, indicating an inability to switch rules when given reinforcement [GAT19; Mac+15].

Although many models are able to solve the classic WCST (Fig. 2.1C–D and Appendix,

Fig. 2.12), we sought to use the WCST to help uncover the mechanisms by which the PFC is

able to learn and remember multiple schemas in the absence of curated training or supervision.

The framework we develop can be generalized to many similar tasks.

2.4.1 The model: dynamic mixture of experts (DynaMoE)

Our neural network architecture combines RNNs used previously to model the function

of PFC [Wan+18] with the MoE architecture [Jac+91], and introduces two new features that

enable flexible lifelong learning of disparate schemas: a new learning process and repeated focal

retuning. Our MoE design uses two specialized networks: a gating network that receives input

from the external environment and outputs a decision of which expert network to use; and expert

networks that take external input and output an action decision—the card stack to sort the current

card in the WCST (Fig. 2.1A). To capture the complex dynamics of the PFC, we modeled both

the gating network and expert networks as RNNs (long short term memory networks (LSTMs)

in our implementation). While other architectures have been used in MoE networks, recent work

by Wang et al. [Wan+18] demonstrated the ability of RNNs to reliably store biologically realistic

function approximators when trained by reinforcement learning that mimic animal behaviors.

Using this network architecture, we first introduce a new learning process (Fig. 2.2B).

Our neural network begins as a gating network with a single expert network (Fig. 2.2A). As it

gathers experience in the world, it learns in series of 2-step tunings. When the neural network

experiences a scenario (e.g. a series of card sorts in the WCST), it first tunes its gating network

to attempt to solve the problem by optimally delegating to expert networks, much as a traditional

42



!"# $%! %&#'()*

$%+,#

&-+&)# %&#'()*.

/ 01 2

34

!

!

!

" #

!

" # " $

!

" # !

!

! !

!

!

!

" #

!

" # " $

!

" # !

!

! !

!

!

!

" #

!

" # " $

!

" # !

!

" # " %" $

!

" # !" $

!

" # " %" $

!

! !

!

!

!

" #

!

" # " $

!

" # !

!

" # " %" $

!

" # !" $

!

" # " %" $

!

00040003000200010
0

50

100

150

! 1 ("#$%&)
&'%&()*"&

"#$%&+ ,-.-(
)($/"0&(

! 2 &'%&()*"&

! 1,! 2+ /123&(
)($/"0&(

! 3 &'%&()*"&

4-31") 2&2-(5

($/6-2 /&)7-(8

&
%
*"
-6
&.
&
/9
)#

#

!""#"" $%#&'(&)!*+#

)*+,& -./.% 0$12&% )*+,&3.%4'%$/&5

assess
performance

Stage 1 Stage 2
input

gating network

expert network

�E1:

E1
random network

E1 expertise

shape color number shape
Sort rule

0

50

100

150

1000 2000 3000 4000

so
rts

 to
 c

rit
er

io
n

sorting episodes

�g,vg

vE1

E1 transfer

E2 expertise

E1,E2
transfer

E3 expertise

Memory
savings

E1 E1 E1 E1E2 E2E2 E3

A B

C

Figure 2.2. Training of a DynaMoE network. (A) DynaMoE begins with a gating network and a
single expert network, E1. Both the gating and expert networks train by reinforcement learning,
outputing a predicted value (vg and vE1) and policy (πg and πE1). (B) DynaMoE’s 2-step learning
process. In Stage 1 the gating network retunes to attempt to solve the task at hand with current
experts; if performance is unsatisfactory, the network adds an additional expert in Stage 2 which
preferentially trains on tasks that could not be solved by other experts. (C) A sample training
trajectory of a DynaMoE network presented with sequential periods of sorting rules in the WCST.
A randomly initialized DynaMoE begins in the shape sorting scenario. First the gating network is
tuned alone. In the second step of learning, the first expert network, E1, is trained (second half of
the blue curve). The sort rule is switched to color (red curve) and the same 2-step training process
is repeated; followed by the number sort rule (yellow). The improved performance between the
first and second stages of training in each sort rule scenario results from expert training. The
improved performance from gate retuning results from transfer learning from past experts and
increased network capacity. The purple curve shows how DynaMoE rapidly “remembers” past
experience due to robust memory savings. The schematic below the graph shows the progression
of the DynaMoE network as it experiences the scenarios. Each stage of training above was done
for 625 sorting episodes to display convergent learning behavior.

MoE model would. If some combination of expert actions results in satisfactory performance,

no further learning is necessary. If, however, the experiences are sufficiently novel such that
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no combination of the current expert networks’ outputs can solve the task fully, the network

then brings online a latent untrained expert (Fig. 2.2B–C). The new expert is trained along

with the gating network, resulting in a new expert that handles those problems that could not

be solved with previous experts. Importantly, this training procedure is agnostic to the order of

training scenarios presented and does not require any supervision. Instead, given only the desired

performance criteria (e.g. level of accuracy) and limit of training duration per step (how long to

try to solve with current experts), our neural network dynamically tunes and grows to fit the needs

of any scenario it encounters (Fig. 2.2C). The learning curves in Fig. 2.2C reveal two prominent

features. First, the speed of learning is successively faster for the second (55.8% improvement

in performance on color sorting with only gate retuning; “E1 transfer” in Fig. 2.2C) and third

(77.5% improvement in performance on number sorting with only gate retuning; “E1,E2 transfer”

in Fig. 2.2C) scenarios, which is a form of transfer learning. Second, after learning all three

scenarios, relearning the first scenario (shape sorting) was rapid, a form of memory savings.

The second new feature is repeated retuning of the gating network. Training standard

neural networks on new tasks leads to overwriting of network parameters resulting in catastrophic

forgetting [Fre99] (Appendix, Fig. 2.7). By decomposing a single network into a hierarchy of

gating and expert networks, we are able to separate the memory of the neural network into the

“decision strategy” (gate), which maps between inputs and experts, and the “action strategies”

(experts), which map from input to actions. The hierarchical separation enables repurposing

expertise through combinatorial use of previously acquired experts and a natural means to

confine memory overwriting to a small portion of the neural network that can be easily recovered

through repeated retuning. Experimental evidence suggests areas of the brain similarly support

different levels of plasticity, with regions higher in hierarchical structures exhibiting increased

plasticity [HB19]. The resulting network exhibits memory savings [Nel85] that remain robust

to new learning and lead to rapid “remembering” rather than relearning from scratch (compare

purple curve in blue shaded region in Fig. 2.2C and Appendix, Fig. 2.7).

We found that the implementation of these two new features in a hierarchical MoE com-
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posed of RNNs results in an architecture that organically learns by reinforcement relative to past

experiences and preserves memory savings of past experiences, reminiscent of prefrontal cortex.

Importantly, when presented with the classic interleaved WCST, our network (Fig. 2.1E) learns

just as fast or faster than standard RNNs and traditional MoE networks (Fig. 2.1C–D and

Appendix, Fig. 2.12). We next sought to understand how our dynamic architecture enabled the

observed transfer and savings.

2.4.2 Transfer learning: DynaMoE seeded with pretrained experts

To probe how the DynaMoE network implements transfer learning, we first created an

easily interpretable scenario in which two expert networks were separately pretrained on specific

rule sets of the WCST; one on shape sorting (Eshape) and another on color sorting (Ecolor) (Fig.

2.3A). We then seeded a DynaMoE network with the two pretrained experts and a randomly

initialized untrained expert, and introduced it to the third rule, number sorting, and studied its

behavior.

Reflexively, one may speculate that a DynaMoE network with a shape sorting expert, a

color sorting expert, and a random network would perform no better on number sorting than

with only a random network, since number sorting is seemingly independent of shape or color.

Somewhat surprisingly, we found this was not the case. After tuning the gating network, the

DynaMoE network with pretrained experts performed drastically better than without them, nearly

reaching perfect performance (Fig. 2.3B). We found that the gating network learned to identify

cards for which the shape or color sort matched the correct number sort, and allocate them to the

corresponding expert. For example, a card with 1 blue triangle would be sorted to Stack 1 in

both the shape (triangle) and number (one) scenarios (“shape-match-number”). Similarly, some

cards, for example the card with 1 red circle, would be sorted to Stack 1 in both the color (red)

and number (one) scenarios (“color-match-number”). The gating network learned to map these

cards to Eshape and Ecolor to perform correct card sorts in the number rule (Fig. 2.3C). Only

cards for which the number sort did not match the shape or color sort (“no-match-number”) were
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Figure 2.3. Transfer learning with a seeded DynaMoE network. (A) A DynaMoE network
seeded with pretrained shape and color experts and a randomly initialized untrained network.
(B) The DynaMoE network from A achieves near perfect performance in number sorting when
only the gating network is trained (blue) in contrast to a network with only an untrained expert
(grey). Inset shows that performance of the seeded network does not reach the minimum
sorts to criterion (grey dash) without training the third expert network. (C) The proportion of
cards allocated to each expert network after the training in B in three different subsets of the
number sort rule: shape-match-number, color-match-number, and no-match-number. (D) Seeded
DynaMoE network with trained Expert3 network. (E) Performance (measured by decrease in
sorts to criterion) of two example training runs from the same initial network (A–C) that result in
different end behavior (see F). The performance of both runs improves from DynaMoE with an
untrained expert (B, Inset) and are indistinguishable from each other. (F) (Top) Proportion of
experts used in same subsets of number sort rule as in C for an example run (run 1). A varying
decision rate for experts is used depending on the scenario subset. (Bottom) Proportion of experts
used for a second example run (run 2). The new expert (E3) is used regardless of subset of
number sort rule. See Appendix, Fig. 2.8 for all 10 runs. Error bars are standard deviation over
1,000 test episodes after training. Absence of bar indicates zero selections of the given expert
during testing.

unsolvable with either Eshape or Ecolor—for these cards, the gating network used a mixture of

the shape, color, and untrained expert networks (Fig. 2.3C rightmost panel), since no expert

could reliably sort these cards correctly. The network had learned to exploit a hidden intrinsic

symmetry between the features in the task to enhance performance.
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Consequently, when the new expert network was brought online and trained (Fig. 2.3D),

the gating network allocated a large proportion of “no-match-number” cards to the new expert

(E3) (Fig. 2.3F, rightmost panels). E3’s expertise thus became number sorting cards that do not

match shape or color sorts. Interestingly, this demonstrates a form of transfer learning. The

gating network learned to use existent experts to find partial solutions for new problems, leaving

unsolvable parts of the problem to be disproportionately allocated to the new expert in the second

step of training. New experts thus learn relative to old experts, building on prior knowledge and

experience.

In practice, the expertise of E3 varied between number sorting predominantly “no-match-

number” cards and all cards. This likely reflects a trade-off between the complexity of mapping

functions the gating and expert networks must learn. In the number sorting scenario, the gating

network can learn to map each card type to the appropriate expert or the simpler function of

mapping all cards to E3; E3 in turn learns to number sort only “no-match-number” cards or all

cards. This highlights a trade-off that occurs in biological systems like the brain. We may be able

to solve a new problem by piecing together numerous tiny bits of completely disparate strategies,

but as complexity of the mapping function increases, at some point it becomes more efficient to

simply learn a separate strategy for the new problem, allocating dedicated memory for it.

We found that in the first stage of training, tuning of the gating network consistently

led to a mapping function that allocated the vast majority of “shape-match-number” cards to

Eshape and “color-match-number” cards to Ecolor (Fig. 2.3C). “No-match-number” cards were

allocated between all three experts. After the second stage of training in which both the gating

network and E3 are trained, we found that the “no-match-number” cards were almost entirely

allocated to E3 as expected (Fig. 2.3F, rightmost panels). We found that usage of experts for

“shape-match-number” and “color-match-number” cards varied across different training runs

(Fig. 2.3F and Appendix, Fig. 2.8). To see how often training led to different expert network

decision rates, we ran the second stage of training 10 times from the same initial network that

had gone through the first stage of training. Usage of the relevant pretrained expert (e.g. Eshape
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for “shape-match-number” cards) ranged from as much as 65% to as low as 1%, representing

end behavior in which Eshape and Ecolor continued to be used or in which E3 was used almost

exclusively (run1 and run2 in Fig. 2.3F, respectively). The non-relevant expert (e.g. Ecolor for

“shape-match-number” cards) was rarely ever used (0–5%). This shows that while DynaMoE

networks support pure transfer, the degree of transfer learning implemented depends on network

capacity, learning efficiency, and the stochastic nature of learning. All networks achieved the

same near perfect performance stop criteria within similar numbers of sorting episodes (Fig.

2.3E; see Materials and Methods).

2.4.3 Transfer learning: organic case

To probe how a DynaMoE network naturally implements the transfer learning described

in the previous section, we trained 10 DynaMoE networks independently from scratch through

sequential experiences of the different rules of the WCST. Each network began with an untrained

gating network and expert network (E1). The DynaMoE networks were then trained on shape

followed by color and then number sorting, adding a new expert in each new sort rule scenario

(see Materials and Methods).

As expected from the result in the previous section, we found that the expert networks

were not pure rule sorters, but rather had learned an expertise in a mixture of rule types relative

to the other experts. For each sort rule scenario, one expert network was used preferentially (E1

for the first rule experienced, E2 for the second, etc.), which we refer to as the “dominant expert

network” for that sort rule scenario. To quantify the degree of transfer learning utilized, we

measured the usage of all 3 expert networks in the different sorting scenarios. For each sort rule

scenario, the gating network was retuned until “expert performance” was once again attained.

We then measured the usage of each of the non-dominant expert networks with respect to usage

of the dominant expert network. Although the magnitude of relative usage varied between

independent runs, a consistent pattern emerged. In the shape sort scenario—the first scenario

encountered with only E1—E2 and E3 were used very little or never (Fig. 2.4A, Left). For the
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Figure 2.4. Transfer learning in an unseeded DynaMoE network. (A) The relative use of each
expert network in each sort rule normalized to the dominant expert for the sort rule from 10
independent DynaMoE networks trained in a sequential training regimen (see Materials and
Methods). The greyed out expert network label with lightest grey bar of value 1 indicates the
dominant expert network for each sort rule. Darker grey bars indicate usage of experts that were
not present during initial training of the given sort rule (e.g. E2 and E3 for the shape rule). Green
bars indicate experts that were present during initial training of the given sort rule (e.g. E1 and
E2 for the number rule). Absence of a bar indicates the given expert was never used. Error
bar is SEM over 10 independent runs (see Appendix, Fig. 2.9). (B) Aggregated bar plot from
A grouped by whether the expert was added before or after initial training on the rule. Use of
experts present during initial training of a rule indicates transfer learning (green bar), while use
of experts not present during initial training indicates non-transfer usage (grey bar). The usage
of experts added before was significantly higher (p = 1.16e−05, Student’s t-test) than that of
experts added after initial training on a rule. Error bar is SEM.

second scenario encountered—color sort scenario—E1 was used a small amount, and E3 was

never used (Fig. 2.4A, Center). Finally, for the third scenario—number sort scenario—E1 and

E2 were used a small but significant portion of the time (Fig. 2.4A, Right).

This trend of increased usage of experts that were present during the learning of a

rule compared to experts added afterward strongly indicates transfer learning as the DynaMoE

network encountered new scenarios (Fig. 2.4B). Newly added experts predominantly trained on

examples that the other experts could not solve. Thus when the gating network was retuned to

solve a scenario later, it continued to use the previously added experts. In contrast, if an expert

was added after the learning of a scenario, all the knowledge to solve the scenario was already
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contained in the existent experts, so the expert added after learning was rarely used. This shows

that new experts were trained relative to knowledge contained by existent experts. Furthermore,

while the aggregated expert use percentages clearly show the presence of transfer learning, they

mute the degree of transfer learning adopted by some individual networks (Appendix, Fig. 2.9).

2.4.4 Robust memory savings

A critical feature of the PFC is the ability to retain knowledge from past experiences in

the form of learned connectivity patterns [EGM12]. Many neural network models suffer from

castastrophic forgetting [Fre99], overwriting information from previous experiences. Put in

terms of network parameters, when such networks retune weights to solve new problems, they

move to an optimal point in weight space for the current task which can be far away from the

optimal space for previous tasks.

In contrast, DynaMoE networks, like the PFC, maintain near optimal configuration

for previously experienced scenarios, exhibiting “memory savings” [Nel85]. The hierarchical

architecture of DynaMoE networks confines memory loss to a small flexible portion of the

network: the gating network. If a scenario has been encountered before, retuning the gating

network to optimal configuration is rapid, requiring only a small number of reinforcement

episodes (Fig. 2.5A–B and Appendix, Fig. 2.11). Retuning the gating network requires much

less movement in weight space compared to standard RNNs, since tuning is confined to only the

gating network. This is in stark contrast to standard neural networks which can require complete

retraining (Fig. 2.5C–D and Appendix, Fig. 2.10).

To measure the memory savings of DynaMoE networks, we sequentially trained networks

with identical presentations of, first shape, then color, then number sorting scenarios (see

Materials and Methods). We then tested how many sorting episodes of reinforcement were

required for the network to regain expertise in the first sorting rule it experienced (shape). As

Fig. 2.5A–B shows, DynaMoE networks required 78% fewer episodes to regain expertise than

standard RNNs (p = 2.49e−11, Student’s t-test). The number of episodes required to remember
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Figure 2.5. Robust memory savings of DynaMoE. (A) Example of performance over sorting
episodes of retraining of standard RNN (blue) and DynaMoE network (orange) on a previously
encountered task. Shading indicates standard deviation over 10 independent retraining runs.
(B) Average number of sorting episodes required until expert performance for standard RNN
and DynaMoE networks over 10 independently trained networks of each type. DynaMoE
networks require 78% fewer sorting episodes to remember (p = 2.49e−11, Student’s t-test). (C)
Visualization of top three principal components of weight space for 10 relearning/remembering
trajectories of an example standard RNN and a DynaMoE network trained sequentially. (D)
Euclidean distance between networks before and after remembering previously learned rule
in full weight space (average of 10 independently trained networks of each type). DynaMoE
network moves 40% less in weight space compared to the standard RNN (p = 7.43e− 05,
Student’s t-test). Error bars are SEM.

was drastically fewer than when it first learned the rule, whereas standard RNNs improved only

slightly compared to when they first learned the rule (Appendix, Figs. 2.7, 2.11, 2.12). While

standard RNNs nearly completely overwrote the information learned through initial training,

DynaMoE networks preserved their memory and only required brief reinforcement for the gating
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network to remember how to allocate cards to experts.

To measure the weight changes required to regain optimal performance, we measured

the distance in weight space each of the networks traversed when remembering the shape sort

rule after sequential training. DynaMoE networks traversed 40% less distance in weight space to

reach optimal performance compared to standard RNNs (p = 7.43e−05, Student’s t-test; Fig.

2.5C–D and Appendix, Fig. 2.10). Even after sequential training, DynaMoE networks remain

relatively close in weight space to the optimal performance configurations on all previously

experienced tasks. In contrast, standard RNNs moved far from their initial optimal point in

weight space for the shape scenario, resulting in movement of nearly equal distance when

relearning the shape scenario as when initially learned (Appendix, Fig. 2.10).

2.4.5 Lesions of DynaMoE cause PFC lesion-like impairments

The DynaMoE framework provides an opportunity to understand how disruptions to

specific functional aspects of the PFC and related areas can lead to different neuropsychological

impairments observed in clinical cases. Numerous clinical and neuroimaging studies have

indicated regional specialization within the PFC, yet evidence from human studies is invariably

messy, involving overlapping brain regions and varying degrees of impairment in different

aspects of tasks [Buc+05; Mac+15; Dim+99]. Our framework enables targeted disruption of

specific functional components of our network that may help clarify the underlying organization

of the human PFC. The WCST has served as a standard clinical assessment to evaluate PFC

impairment [Mac+15] making it an ideal task with which to analyze functional consequences of

various lesion types.

To assess how lesions of our network architecture could result in behavioral impairments,

we damaged specific regions of the gating network of our architecture. Importantly, in our lesion

studies the expert networks were unperturbed, leaving available the action strategies to perfectly

perform the task. This characteristic is often seen in patients with prefrontal damage: although

they have difficulty with the full WCST, if explicitly told which sort rule to use, patients are
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Figure 2.6. Different lesion-induced error modes of DynaMoE gating networks. (A) Map of
lesioned regions in DynaMoE’s gating network. Three lesions of input (region 1) were done
(L1–L3), one lesion of the network dynamics (region 2—L4), one lesion of network output
(region 3—L5), one lesion of decision determination (region 4—L6–L7), one lesion of value
determination (region 5—L7–L8). (B) Average number of errors per episode for each lesion type.
L1 is ablation of reward feedback from previous trial; L2 is ablation of action feedback from
previous trial, L3 is simultaneous L1 and L2 lesions; L40.5 is ablation of 50% of connections
to forget gate of network and L40.9 is ablation of 90%; L5 is ablation of output units; L6 is
ablation of connections to decision units (π); L8 is ablation of connections to value unit (v);
L7 is simultaneous L6 and L8. Asterix indicates significant difference from no lesion (L0)
(Student’s t-test *:p < 0.05; *:p < 0.01; ***:p < 0.001) (C) Proportion of increase in errors that
were perseveration errors for lesions that caused significant increase in errors. Asterix indicates
confidence interval (CI) excluding zero (*: 95% CI; **: 99% CI). All error bars are SEM.

often fully capable [Mac+15; RSM02]. We first trained DynaMoE networks on each rule type,

and then the classic interleaved WCST (Appendix, Fig. 2.12E; see Materials and Methods). We

then lesioned the gating network and performed testing on the classic WCST to assess changes

in performance and behavior.

Lesions were targeted to five different regions within the gating network (Fig. 2.6A):
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inputs to the network (red region 1 in Fig. 2.6A)—ablation of reward feedback (L1), action

feedback (L2), or both (L3); internal network dynamics (region 2)—ablation of varying numbers

of synaptic connections to the “forget” gate of the LSTM (L40.5 and L40.9 were 50% and 90%

ablations of synaptic connections, respectively; Appendix, Fig. 2.13A–B for full range); output

of the network (region 3; L5); and areas downstream of the network—ablation of synaptic

connections to the units that determined which expert network to use (region 4; L6), to the unit

that estimated value (region 5; L8), or both (L7; Appendix, Fig. 2.13C–D for full range). Since

lesions could potentially have differential effects depending on the specific disruptions incurred,

we performed each lesion 10 times and measured the average effect.

We found that different lesion types resulted in different degrees of impairment, ranging

from no change in error rate (e.g. L80.9, p = 0.3664, Student’s t-test) to 10.5 fold more errors

(L3, p = 2.1268e−25, Student’s t-test) than before the lesion (Fig. 2.6B and Appendix, Table

2.1). Since perseverative errors are a signature of some prefrontal lesions, particularly associated

with dlPFC impairment, we measured the proportion of the increase in error rate that was due

to perseverative errors (“perseveration proportion”; a negative value indicates a decrease in

perseverative errors relative to no lesion). Fig. 2.6C shows the variability in perseveration

proportion for the lesions that caused a significant increase in error rate. To ensure that the error

profiles we observed were not an artifact due to the presence of ambiguous cards for which

sorting by multiple rules could result in the same action decision, we also tested the lesioned

networks with the card deck from the Modified WCST (MWCST) [Nel76; Mac+15], in which

all ambiguous cards are removed, and found qualitatively similar results (Appendix, Fig. 2.14).

The neuropsychological impairment profiles defined by increase in total error and perse-

veration proportion reveal different lesion-specific error modes that mirror the different error

modes observed from patients across the range of prefrontal lesions (Fig. 2.6 and Appendix,

Table 2.1). Overall, lesions grouped qualitatively into three categories: lesions that caused

often substantially increased total error rate (1.72–10.51x), a small proportion of which were

perseverative errors (-1.18–1.79%) (regions 1,3,4; L1-L3,L5-L7); lesions that caused a small but
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significant increase in total errors (1.18–1.65x), a large proportion of which were perseverative

errors (9.36–10.59%) (region 2; L4); and lesions that caused no change in error rate (region 5;

L8).

Our lesion results provide a roadmap with which to interpret and understand the variety

of error modes observed in human patients with prefrontal damage due to trauma or disease.

While the PFC as a whole has been definitively linked to set-shifting and cognitive flexibility,

localization of functional components to specific subregions remains unclear. Lesions throughout

the prefrontal areas have been associated with impairments observed in the WCST, ranging from

no change in error rate to large increases in perseverative and non-perseverative error rates similar

to the range of behavioral outcomes resulting from our lesions [Mac+15]. Canonically, though

with mixed evidence, impairment of the dlPFC is associated with increased error rate on the

WCST, particularly perseveration errors. Our lesion study indicates this behavioral phenotype

maybe due to impairment of gating network dynamics, suggesting the dlPFC may contribute to a

gating-like mechanism within the PFC. Interestingly, the lesions of components inside the gating

network’s recurrent connections that caused a specific increase in perseverations only weakly

increased the total error rate. In contrast, lesions to input components led to a large increase in

total error while perseverations increased relatively less. These contrasting neuropsychological

impairments highlight a double dissociation of neural components underlying perseveration

errors and total errors, a characteristic also observed in patients.

2.5 Discussion

In this paper we propose a new framework for how the PFC may encode, store, and

access multiple schemas from experiences in the world. Like the PFC, the DynaMoE neural

network is agnostic to training regimen and does not require “oracle” supervision. We showed

how the hierarchical architecture of DynaMoE naturally leads to progressive learning, building

on past knowledge. We then demonstrated how DynaMoE networks reliably store memory
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savings for past experiences, requiring only brief gate retuning to remember. Finally, we showed

how lesions to specific functional components of the DynaMoE network result in different error

modes in the WCST, analogous to the error modes described of patients with different forms and

severity of prefrontal damage.

The parallels seen between the DynaMoE network and the PFC and related areas encour-

ages investigation into the extent to which these two systems recapitulate each other. Perhaps

most poignantly, this comparison puts forth the hypothesis that the PFC may incorporate a gating

system that is tuned to optimally combine knowledge from past experiences to handle problems

as they are encountered. Some studies have provided evidence for such a functional architecture

in the brain [Yao+09], and prefrontal cortical areas in particular [GB11; MMT06; Joh+07;

RGH18]. In our model, each “unit” within our recurrent networks represents a population of

neurons, and as such, inputs to the network were represented by populations of neurons, each

of which receives multiple inputs and responds with mixed selectivity as has been observed in

PFC [Rig+13; Man+13]. Our model also suggests that the neural representations of different

contextual “rules” can distributed across multiple overlapping subpopulations. In this way, our

model adopts a hierarchy of distributed representations in which overlapping neural subpop-

ulations support distributed representations of both lower level sensory information (inputs)

and higher level abstract information (context-dependent rules). Experimental investigations

that compare the diverse neural population activities of DynaMoE networks to that in relevant

prefrontal cortical areas will be fruitful in supporting or refuting our framework. Studies in

non-human primates with a WCST analog [MMT06] and related task [Joh+07] have reported

specific neural activity patterns associated with set-shifting, suggesting the possibility of direct

comparisons to our model; a topic we are currently exploring.

Our model’s feature of adaptive growth by adding new expert networks represents the

recruitment of neural subpopulations for new learning. Both the assessment of performance and

recruitment of new subpopulation bring up interesting parallels in neurophysiological studies (Fig.

2.2b). Error-related negativity and positivity signals are well-known phenomena that are thought
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to relate to self-assessment of performance, preceding a switch to an alternative strategy [Wes12].

Research on neuromodulation, neuropeptides, and metaplasticity provide evidence for spatially

and temporally regulated plasticity differences in neural subpopulations [MT02; LCD14; RH18;

Abr08; VC17], potentially supporting a dynamic, regionally selective learning system like

DynaMoE. Elaborating DynaMoE to explicitly model these processes will help untangle how

these processes may interact to support behavior and learning.

The DynaMoE model suggests functional relationships underlying organization in the

PFC and related areas. The gating network in the model is reflective of the set-shifting functions

that are closely linked to activity in dlPFC. Our lesions studies support this association, showing

a relative increase in perseveration errors with disruption of the gating network internal dynamics,

similar to dlPFC lesions association with increased perseveration errors in patients [Mil63;

SL02] and increased dlPFC activity observed in patients during rule shifts [Buc+05; Mac+15;

Mit+05]. However, the gating network in our model likely incorporates elements that are

distributed anatomically, including processing of error signals attributed to ACC [Joh+07;

OH12]. Other elements of our model may correspond to adjunct prefrontal regions—value

tracking functions attributed to OFC — mOFC in particular [Lop+17] — may correspond to the

value units in both the gating and expert networks [RM14]. The expert networks in our model

correspond to functional elements spanning regions of PFC (perhaps downstream of dlPFC) to

premotor cortex, culminating in an action decision sent to the motor system to execute in the

environment. The different expert networks then represent different effector pathways originating

from the gating network signal and extending to the premotor cortex. These “cognitive maps”

representing different context-dependent behavioral strategies are characteristic of areas of

OFC [Sch+16], perhaps lOFC in particular [Lop+17]. Both the gating network and the effector

expert networks also encapsulate cortical-thalamic-basal ganglia loops, routing and processing

sensory information and reward information to and from areas of PFC and ACC, nuclei of the

thalamus, and areas of the striatum and other basal ganglia regions [Sej+14]. Further comparison

between individual functional elements in our model (e.g. expert networks and OFC) will be
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helpful in studying the relationship between subregions of the PFC.

Our model also can be integrated with the anterior-posterior cascade model of the frontal

regions as proposed by Kochelin and Summerfield [KS07]. From this perspective, the gating

network of our model corresponds to the more abstract contextual information in the anterior

regions of lateral PFC, while the expert networks correspond to more immediate context sensory

processing, taking external input and mapping to an output action. Our model layers into the

anterior-posterior cascade scheme, providing a mechanism for encoding and flexible usage with

transfer and savings.

Several computational models have provided strong support for a hierarchical organiza-

tion in the PFC [FB12; AB15; KS07; Bot07]. Combining our model with insights from other

models will likely yield further insights into the architecture and functions of the prefrontal

areas. Together with Kochelin and Summerfield’s cascade model [KS07], Botvinick’s model

of Fuster’s hierarchy [Bot07] suggests that added layers to a hierarchical structure lead to orga-

nizing principles that map to higher levels of abstraction and context. Likewise in our model,

the gating network sits above the expert networks, processing the higher level context to choose

which expert to use. Understanding how the processing of higher and lower levels of the task

self-organize within the hierarchical structure, i.e., how the division of labor between the levels

is determined, is a fascinating area of future research we are pursuing. Integrating the HER

model’s [AB15] hierarchical propagation of errors into DynaMoE is also a promising direction,

particularly in understanding the roles and relationship of dlPFC and ACC.

Our model also relates closely to previous computational models investigating the emer-

gence of hierarchical rule-like representations [Rou+05; DCK14]. The model proposed by

Donoso et al. [DCK14] to study the medial (vmPFC-pgACC, dACC, ventral striatum) and lateral

(FPC, mid-LPC) tracks contribution to strategy inference shares features with DynaMoE in

storing multiple strategies and allowing combinatorial use. Our model further posits a part of

PFC, likely within dlPFC and perhaps spanning to parts of ACC, supports nonlinear and dynami-

cally evolving combinations of stored strategies, enabling more powerful transfer learning and
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reducing memory requirements. To gain a deeper understanding of how multi-schema inference

is done in the prefrontal regions, further fMRI studies elaborating on the paradigm used by

Donoso et al. [DCK14] will be important to compare features of their model to those of the

DynaMoE model.

Our lesion studies motivate further investigation of functional specialization in the

PFC through comparison of our framework and clinical, experimental, and neuroimaging stud-

ies [Buc+05; Mac+15]. Clinical and experimental studies have yielded unclear and sometimes

contradictory findings due to the anatomical inseparability of PFC functions [Mac+15]. Although

studies have most clearly linked perseverative abnormalities to dlPFC, similar abnormalities

can be observed in compulsive behaviors like alcohol consumption, which depend on strategies

generated by the mPFC that predict individual behavioral patterns [Sic+19]. Our model provides

full access to the underlying structure enabling targeted studies to use as a reference for interpret-

ing human and animal studies. Further comparison of our framework with in-depth phenotypic

analyses across various tasks may help us understand the functional organization of the PFC and

the consequences of disruptions due to trauma and disease.

Our lesion analysis also motivates future studies on adaptation to lesions. In the present

study we focused on lesions after learning was complete, since most clinical case reports describe

testing of patients after acute injury. In clinic, it is also important to understand how patients

may cope and adapt after a lesion has occurred. The DynaMoE framework may be useful for

studying the effects lesions on learning and adaptation.

The DynaMoE framework also has interesting implications for areas of machine learning.

It combines the advantages of prior models that leverage transfer learning in the MoE architecture

with reinforcement learning [Sin92a; Sin92b; DL17; GSL18] and Bayesian nonparametric MoE

models [RG01; WR95; SN96; ACT17; FFW96; KMG06]. DynaMoE’s organic, unsupervised

implementation of transfer may be useful for intractable problems that may be handled piece-

wise in a way that may be non-obvious to an “oracle” supervisor. By letting the model learn

how to grow and structure itself, our framework puts the burden of optimally solving complex
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problems on the algorithm. This may significantly improve progress by removing the need for

careful curation of training data and training regimen.

The form of transfer learning demonstrated by our dynamic architecture—acquiring new

knowledge (new expert) based on indirect knowledge of what other parts of the network (old

experts) know—has not been reported before to our knowledge. This form of transfer learning is

reminiscent of “learning by analogy,” a learning skill humans are very good at, but machines

continue to struggle with [Hil+19; KV18]. Through our framework, this dynamic form of transfer

could be extended to much larger networks, utilizing a myriad of experts. Such a framework

could be useful both as a model of the brain and for machine learning applications.

Finally, our framework provides a new method for lifelong learning and memory. Major

challenges persist in developing methods that do not get overloaded, but also scale well to

lifelong problems [Par+19]. Similar to “grow-when-required” algorithms, our network adds

capacity when necessary. However, our network also leverages already acquired knowledge

to help solve new problems, reducing demand for growth. This feature supports scalability,

which both the brain and machine learning methods must support given their limited resources.

Elaborating and adapting DynaMoE to more complex tasks and incorporating other techniques

such has simultaneous combinatorial use of experts will lead to exciting steps forward in lifelong

learning.

Chapter 2, in full, is a reprint of the material as it appears in: Ben Tsuda, Kay M. Tye,

Hava T. Siegelmann, and Terrence J. Sejnowski. A modeling framework for adaptive lifelong

learning with transfer and savings through gating in the prefrontal cortex. Proceedings of the

National Academy of Sciences, 117 (47), 29872-29882, 2020. The dissertation author was the

primary investigator and author of this paper.
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2.6 Appendix

2.6.1 Behavioral task example

As an example of the WCST, a subject could be given a sample card with 3 green triangles.

If the operating rule is shape, the card should be placed in Stack 1 (matching the triangle shape of

the 1 red triangle). If the operating rule is color, the card should be placed in Stack 2 (matching

the green color of the 2 green stars). If the operating rule is number, the card should be placed in

Stack 3 (matching the number of the 3 yellow crosses)(Fig. 2.1B).

2.6.2 Details of network architectures

Our “standard RNN” architecture consists of a single LSTM network. As input, the RNN

takes the card from the current time step and the action and reward from previous time step. The

RNN sends output to a policy layer and a value layer. The policy layer implements a softmax

transformation over the possible actions to determine the action to take. The value layer outputs

a single number value estimate used to calculate the advantage term for the objective function.

In our DynaMoE architecture, the gating network consists of a single LSTM network.

The gating network takes as input the card from the current time step and the action and reward

from the previous time step. It sends output to two parallel layers, one implementing a softmax

transformation over the possible expert networks to determine which expert network to use, and

the other estimating the value of action to be taken. Each expert network consists of a single

LSTM network that takes the same input as the gating network, and sends output to two parallel

layers. One of these layers implements a softmax transformation over all possible actions to

determine the action to take, and the other gives a value estimate of that action. The gating

network and the expert networks are each optimized by their own objective function in the form

described in the Reinforcement learning training section of Materials and Methods.
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2.6.3 Memory savings: comparison of network training required for
“remembering” vs initial learning

To compare how many sorting episodes were required for each network type to re-

learn/remember the shape scenario after the sequential rule training versus learn the scenario for

the first time from scratch (initial learning), we trained 10 randomly initialized standard RNNs

and 10 randomly initialized DynaMoE networks with a single expert network until they achieved

the performance criteria of average sorts to criterion <10 cards for the last 10 episodes of a

single asynchronous thread. We then compared the average number of sorting episodes required

to achieve this criteria to the number required for relearning/remembering as described in the

Results section (Appendix, Fig. 2.11).

2.6.4 Additional data analysis

For the organic transfer learning (without pretraining) analysis, after sequential training,

the gating network was retuned for each rule type. The “dominant expert network” was then

defined as the expert network that received majority of the decisions after retuning in that

scenario. We found the newly added expert was always the “dominant expert network:” first

expert for the shape rule, second expert for the color rule, and third expert for the number rule.

Of the 10 independent training runs, the minimum usage of the first expert in the shape scenario

was 96.45% and maximum of other expert usage was 3.55%; minimum usage of second expert in

color scenario was 93.19% and maximum of other expert usage was 6.81%; minimum usage of

third expert in number scenario was 67.96% and maximum of other expert usage was 24.34%. To

calculate the relative expert network use shown in Fig. 2.4 and Appendix, Fig. 2.9 we normalized

the non-dominant expert usages to the dominant expert usage in each scenario. The aggregate

relative usage of the expert networks in Fig. 2.4 was calculated by combining the relative usage

of all non-dominant experts that were present during initial learning of a rule (first expert for

color and number training; second expert for number training) to represent experts present during

initial training (green bar), and the relative usage of all non-dominant experts that were not
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present during initial learning of a rule (second and third experts for the shape training; third

expert for the color training) to represent experts not present during initial training (grey bar).

Two analyses were done to assess the networks’ memory savings. In the first, we

measured the number of sorting episodes required to achieve expert performance in the first sort

rule (shape sort) after going through the sequential rule scenario training described above. We

ran this simulation 10 times for both the standard RNN and DynaMoE network, and compared

the results with the Student’s t-test. We also used the Student’s t-test to compare the number of

sorting episodes each network required to relearn/remember the shape scenario to the number of

sorting episodes required to learn the shape scenario for the first time (Appendix, Fig. 2.11).

In the second analysis, we measured the change in weights during retraining of both

the standard RNN and the DynaMoE network on the first sort rule (shape) after sequential

training. We did this for all 10 repetitions of the retraining. To visualize the movement in weight

space for the retraining runs of a network, we performed PCA on the weights for all retraining

runs of both networks together. We then took the top three principal components, translated

the starting point in this 3 PCA weight space for all networks to the same origin point, and

plotted the retraining trajectory of each repetition for each network type (Fig. 2.5C). For 10

independent full training and retraining runs, we also measured the Euclidean distance between

the start and end points in full weight space and compared these using the Student’s t-test (Fig.

2.5D). For the comparison of movement in weight space of the two networks throughout training

and remembering, distances traveled in weight space for 10 runs of each type of network were

measured throughout the training and remembering periods (Appendix, Fig. 2.10).

2.6.5 Code availability

The code used to generate the DynaMoE model used in this work is available at:

https://github.com/tsudacode/DynaMoE
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2.6.6 Supplementary Figures
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Figure 2.7. Sequential training of a standard recurrent neural network. For each task, the network
was trained for 1,250 sorting episodes to display performance behavior over time (lower sorts
to criterion is better performance in the WCST). During learning, all network parameters are
tuned (Bottom schematic). When trained on a sequences of tasks, the performance trajectory
of the network appears nearly identical for every new task, demonstrating the lack of transfer
learning for solving new tasks. The nearly identical performance trajectory for relearning a
previously learned rule—the shape rule shown in the leftmost white panel and the rightmost light
blue—demonstrates the memorylessness of standard RNNs, also called catastrophic forgetting.
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Figure 2.8. Decision rate in subsets of number sort rule after 10 independent training runs from
the same seeded DynaMoE network. For each training run, the gating network and a new expert
network (E3) were simultaneously trained on the number sort rule until “expert performance”
(see Methods). Weights were then fixed and 1,000 test sorts were done in the number sort rule.
The proportion of decisions by the gating network to use each expert in subsets of the number
rule were measured. The purple and green colored runs are the same as depicted in Fig. 2.3E–F.
Error bars show standard deviation over 1,000 test trials. Different training runs resulted in
different decision rates in subsets of the number sort rule, showing how expert performance
could be achieved by different expert usage strategies.
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Figure 2.9. Relative expert network usage in each sort rule for 10 independently trained
DynaMoE networks. For each network, after sequential training, the gating network was retuned
for each sort rule until expert performance. Weights were then fixed and 1,000 test sorts were
done in the same sort rule. Proportion of cards allocated to each expert were normalized to the
dominant expert in that sort rule and plotted (see Methods). Color schemes and notations are the
same as Fig. 2.4. Error bars show standard deviation over 1,000 test trials. Independent training
runs led to variable levels of expert network usage, while clearly showing a consistent pattern of
using experts added before initial training (green bars) more than those added after (grey bars)
(Fig. 2.4).

66



30

25

10

5

0

sh
ap

e
co

lor

nu
mber

sh
ap

e
sh

ap
e

co
lor

nu
mber

sh
ap

e

standard RNN initial learning DynaMoE initial learning
DynaMoE rememberingstandard RNN remembering

w
ei

gh
t s

pa
ce

 d
is

ta
nc

e
45

15
10

5

0

15

20

20
25
30
35
40

Figure 2.10. Comparison of networks during initial learning and relearning of a previously
learned task in weight space. Bar graphs show movement of networks from Fig. 2.5 in weight
space during sequential training of sort rules in WCST (initial learning of shape rule is leftmost
bar of each bar graph). For initial learning of each rule (light blue and light and medium orange
bars), networks were trained on 1,250 sorting episodes to allow full convergence to optimal
performance (see Fig. 2.2 and Fig. 2.7). For relearning (dark bars), networks were trained
until they reached expert performance criteria (see Methods). (Left), Standard RNN. Distances
moved in weight space during initial learning of each rule (light blue) and “remembering” of the
shape rule (dark blue) are similar. (Right), DynaMoE network. In stacked bars, lightest orange
indicates stage 1 of training for a task (gating network only), medium orange indicates stage
2 of training (gating and new expert network). Distance moved in weight space during initial
learning of each rule is similar. Distance moved during “remembering” shape rule (dark orange)
is much less than initial learning of each of the rules (stacked bars). Error bars are SEM for 10
independent training runs of each type of network.
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Figure 2.11. Comparison of number of sorting episodes required to attain expert performance
during initial learning compared to during remembering of shape rule after sequential training.
For a standard RNN, 31% fewer sorting episodes (p = 1.54e−05) were required when remem-
bering compared to initially learning a rule, while for the DynaMoE network 84% fewer sorting
episodes (p = 2.37e−06) were required for remembering compared to initially learning a rule.
Number of sorting episodes required to initially learn the rule were not significantly different
between the standard RNN and the DynaMoE network (light colored bars; p = 0.70). Error bars
are SEM over 10 independent simulations for each condition.
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Figure 2.12. Performance of standard RNN (A–B), MoE (C–D), and DynaMoE networks (E) on
the classic interleaved rules WCST and on a single rule after random initialization or pretraining.
The first column depicts the network type, the second column shows performance on the classic
interleaved rule scenario, and the third column shows performance on the shape rule for networks
with pretraining. (A) A randomly initialized standard RNN rapidly learns the interleaved WCST
(mean sorts to criterion (STC) over 10 sorting episodes (SrtEp) <50 by about 50 SrtEp of
training). (B) A standard RNN pretrained sequentially on the shape, then color, then number
rules (see Methods) learns the interleaved WCST faster (mean STC <50 by SrtEp 21) and
exhibits catastrophic forgetting in the single previously experienced rule. (C–E) Networks from
Fig. 2.1C–E. (C) MoE network with 3 randomly initialized expert networks (mean STC <50
by SrtEp 109). (D) MoE network seeded with pretrained rule experts (mean STC <50 from the
first SrtEp). Within a single training SrtEp, this network performs near perfect on the single
rule scenario. (E) DynaMoE network trained sequentially in a manner similar to Fig. 2.2C (see
Methods) (mean STC <50 by SrtEp 21) converges to the best performance. It more rapidly
achieves near perfect performance on the single rule scenario than the standard RNN, due to its
robust memory savings. All simulations were done for 2,500 SrtEp to show convergent learning
behavior. In all plots, blue traces are from networks during training and grey traces are random
behavior for reference.
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Figure 2.13. Examples of full spectrum of severity for specific lesions from Fig. 2.6. (A–B)
L4 - lesions of the internal network dynamics (synaptic connections to the “forget” gate in the
LSTM) of DynaMoE’s gating network (region 2 in Fig. 2.6) (A) Average total errors per episode
after L4 lesions of varying severity. (B) Average perseveration proportion for lesions that caused
significant increase in average total error. (C–D) L7 - lesions of the synaptic connections to
action and value units (region 4 and 5 in Fig. 2.6). (C) Average total errors per episode after L7
lesions of vary severity. (D) Average perseveration proportion for lesions that caused significant
increase in average total error. Asterixes indicating significance follow same key as Fig. 2.6. For
all plots, error bars are SEM.
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Figure 2.14. Comparison of lesions to DynaMoE’s gating network on the WCST and Modified
Wisconsin Card Sorting Task (MWCST). In the MWCST all ambiguous cards (which could be
sorted to the same stack for 2+ different rules) are removed, leaving only the 24 unambiguous
cards. (A) Total errors per sorting episode with the WCST (Left, solid blue) and MWCST (Right,
striped blue). (B) Perseveration proportion with the WCST (Left, solid orange) and MWCST
(Right, striped orange). The WCST error patterns are the same as in Fig. 2.6. The MWCST show
a similar pattern of errors across lesion types. Asterixes indicating significance follow same key
as Fig. 2.6. For all plots, error bars are SEM.
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Table 2.1. DynaMoE lesion-induced impairments on the WCST. Lesions of the gating network
of DynaMoE qualitatively separated into 3 categories based on error rate and perseveration
proportion (Fig. 2.6): (red) lesions that caused significant increase in error rate with small or
not significant perseveration proportion; (blue) lesions that caused small but significant increase
in error rate with large perseveration proportion; and (grey) lesions that did not significantly
change the error rate. The lower end of all ranges is 50% impairment and the high end is 90%
impairment for the given lesion type. Lesions labels are same as Fig. 2.6

1 42 53
L1  L2   L3 L4 L5 L6          L7       L8

perseveration
proportion (%)

error increase
(fold) 7.41 10.511.72 1.18 - 1.65 2.91 - 7.03 2.47 - 6.25 3.81 - 7.50 NS

NA0.72 - 1.790.79 - 1.740.83 - 1.129.36 - 10.59NS -0.10-1.18

lesion
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Chapter 3

Understanding strategy differences in hu-
mans and monkeys with recurrent neural
networks

This chapter investigates how a single neural circuit can come to encode a “strategy” and

how can that encoded strategy can change throughout learning. To explore this, I follow an

intriguing finding that drew attention to differences in strategies used by humans and monkeys

even when task performance was similar [Wit+16]. In addition to calling into question commonly

made extrapolations from monkey to human behaviors, the study suggested potential underlying

neural circuit differences. In this chapter, I use ANNs to systematically assess what properties of

a neural network lead to particular strategy adoption and show how this evolves with experience

and is influenced by network capacity. My investigation reveals two surprising twists that reorient

our understanding of strategy adoption and learning in neural circuits.

The work presented here is reproduced and adapted from: Ben Tsuda, Barry J. Richmond,

Terrence J. Sejnowski. Understanding strategy differences in humans and monkeys with recurrent

neural networks. In preparation, 2022.

3.1 Abstract

Animal models are used to understand principles of human biology. Within cognitive neu-

roscience, non-human primates (monkeys) are considered the premier model for decision-making
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behaviors where direct manipulation experiments are still possible. Some prominent studies

have brought to light major discrepancies between monkey and human cognition, highlighting

the problematic nature of unverified extrapolation from monkey to human. Here, we use a

parallel model system — artificial neural networks (ANNs) — to investigate a well-established

discrepancy identified between monkeys and humans on a working memory task: monkeys

appear to use a recency-based strategy to solve the same tasks for which humans use a selective

strategy. We find that ANNs trained on the task exhibit a progression of strategy from random

behavior (untrained) to recency-like behavior (partially trained) and finally to selective behavior

(further trained), suggesting monkeys and humans may occupy different points in the same

overall learning progression. To our surprise, we reveal that what appears to be recency-like

behavior in the ANN, is in fact an emergent non-recency-based property of the organization

of the neural network’s solution space through training. We find that explicit encouragement

of recency behavior has a dual effect, not only causing an accentuated recency-like behavior,

but speeding up the learning process altogether, resulting in an efficient shaping mechanism to

achieve the optimal strategy. Our results suggest an explanation for the discrepency observed

between monkeys and humans and reveal that what can appear to be a recency-based strategy in

some cases may not be recency at all.

3.2 Introduction

Animal models have been used to help understand human biology for millennia [ECF13].

Among these, studies with non-human primates (monkeys) are considered the gold-standard for

studying higher order behaviors and decision in an experimental system [Fen+20; BS19; RC19;

Ver+15; Lut14]. As for all animal models, non-human primate studies rely on the similarity

between monkeys and humans, yet assumption of such similarities without validation can be

problematic [Lee+19; Wit+16; Elm+11; PP07; Các+03]. Wittig et al. brought to light one

such case, revealing major problems with inferring human behaviors from findings in non-
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human primates. In a series of papers [WR14; Wit+16], they showed that while humans and

monkeys both proficiently solved a number of working memory tasks, closer examination of

behaviors revealed significant discrepancies in problem solving strategies, only apparent through

measurement of error patterns. In particular, for several tasks monkeys used what appeared to be

a recency-based strategy while humans used a target-selective strategy.

The results from Wittig et al. suggested an alternative strategy used by monkeys, though

the underlying neural computations were left unknown. Wittig et al. speculated that the difference

may originate from use of language, understanding of the task rules, or superior working memory

capacity and selectivity [Wit+16].

Artificial neural networks (ANNs) are a parallel model system particularly suited to

investigating the latter two possibilities: strategy differences resulting from task learning or

neural network capacity. ANNs are powerful models to understand neural computations due

to their ability to capture important aspects of neural population dynamics while providing

full access to all components of the network for analysis. For these reasons, ANNs have been

established as another useful model system and have been successfully used numerous times

to reveal the network computations underlying observed neurocognitive phenomena [Man+13;

Wan+18; Rus+18; KS20].

Using recurrent neural networks (RNNs), we show that the most apparent explanation is

once again likely not the full story, peeling back another layer of the onion. We show that RNNs

trained on a working memory task can exhibit human-like or monkey-like strategy behaviors,

and in fact progress through these strategies with increasing experience. A deeper dive into

the mechanism underlying the RNNs’ strategy progression reveals that what appears to be a

recency-based strategy is not recency-related, but rather stems from the evolution of the RNN’s

solution space, which, depending on the RNN’s experience, can mimic recency-like or target-

selective behavior. We then consider the role of a true recency-based strategy on task learning

and performance.
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3.3 Materials and methods

3.3.1 Working memory tasks from Wittig et al. 2016

Our analyses were done with the working memory tasks used by Wittig et al. (see

[Wit+16; WR14] where a full description can be found). In brief, there were three tasks: Same-

Different, in which a response indicates if the second cue matches the first cue; Match-First, in

which a response indicates if the last cue matches the first cue in a cue sequence; and Match-Any,

in which a response indicates if the last cue matches any of the previous cues in the current

trial. Each task had variations depending on the set size (number of different cues that could be

selected) and trial size (number of steps in a single trial), leading to a total of 8 task variations.

We computationally implemented each of these task variations and trained and tested all network

configurations on each task.

Cues were encoded as a single value ranging from [1,maximum cue] (e.g. for Match-First,

set size 5, this was [1..5]). For timesteps during which no cue was presented, [0] was presented

in place of any cue. Trials were separated by a timestep with no cue presented.

Rewards were given after the RNN’s decision of “match” or “no match” following

presentation of the final cue in a trial. Correct trials were rewarded with +5 and incorrect trials

with -5. At all other timepoints reward feedback was 0.

In the recency-based reward scheme for Match-First, two modifications were made to

encourage recency-based behavior. X-A-X-A trials in which the RNN responded “match” were

rewarded +3 and X-X-A-A trials in which the RNN responded “match” were rewarded +1

(in original reward scheme reward for both these would be -5). All other rewards remained

unchanged.

3.3.2 Recurrent neural networks models

Our RNN models consisted of LSTMs of different sizes (n∈ {5,10,25,50,100,200,500}

neural units). Unlike “vanilla” RNNs, LSTMs incorporate multiple intrinsic gates that influence
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the RNN’s state dynamics with respect to retaining information, incorporating new information,

and outputting information. This gating structure enables robust learning and behaviors mimick-

ing animal and human models on multiple tasks [Wan+18; Tsu+20]. The LSTM states and gates

are described by the following equations:

ft = σ(Wx f xt +Wh f ht−1 +b f )

it = σ(Wxixt +Whiht−1 +bi)

ot = σ(Woxxt +Whoht−1 +bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 +bc)

ht = ot ◦ tanh(ct)

where ft , it ,and ot are the forget, input, and output gates at time t respectively, σ is the sigmoid

activation function, Wi j denotes the weights from component i to component j, xt is the external

input at time t, ht is the ouput of the LSTM at time t, ct is the state of the LSTM cell at time t,

b f , bi, and bo are the biases of the forget, input and output gates respectively, bc is the bias of the

cell states, and ◦ denotes the Hadamard product.

3.3.3 Reinforcement learning

We trained our RNNs by reinforcement learning, similar to how humans and animals

learn many tasks such as the working memory tasks from Wittig et al. 2016. Similar to [Tsu+20],

we used an Advantage Actor-Critic algorithm (see Mnih et al. [Mni+16] for a full description

of the algorithm). In brief, the objective function consists of the gradient of a policy term, an

advantage value term, and an entropy regularization term:

∇L = ∇Lπ +∇Lv +∇LH

=
∂ logπ(at |st ;θ)

∂θ
δt(st ;θ)+βvδt(st ;θ)

∂V
∂θ

+βH
∂H(π(at |st ;θ))

∂θ
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where π is the policy, at is the action taken at time t, st is the state at time t, θ is the network

parameters, βv,βH are hyperparameters for scaling the contribution of the value and entropy

terms respectively (we set βv = βH = 0.05 for all our simulations), V is the value output of the

network, and H is the entropy regularization term of the policy. δt is the advantage estimate,

which represents the temporal difference error:

δt(st ;θ) = Rt −V (st ;θ)

where Rt is the discounted reward:

Rt =
k−1

∑
i=0

γ
irt+i + γ

kV (st+k;θ)

where k is the number of steps until the next end state. When γ = 0, Rt = rt .

The advantage equation in this case is equivalent to a temporal-difference error signal

enabling temporal difference reinforcement learning.

The parameters of the model were updated during training by gradient descent and back

propagation through time using AdamOptimizer with learning rate 1e−03. Training occurred

after every 3 trials. For all tasks, we set γ = 0 since actions at time points prior to the decision

timepoint had no bearing on outcome.

Similar to the implementation of others [Wan+18; Tsu+20], input to networks at each

time point was given as vector with the current cue, the action taken at the previous time point,

at−1, and the reward received at the previous timepoint, rt−1.

RNNs were trained for 50,000 trials (nep) and tested throughout after nep ∈ {0,5,10,20,

30,40,50} x 103 trials. To compare 25 unit RNNs on Match-First, set size 5 with the original and

recency-based reward schemes, we trained RNNs with either reward scheme and tested every 5 x

103 trials. To compare RNN activity solution spaces across reward schemes we selected training
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points with similar performance (and close to that of monkeys on the task) which was 20k for

the original (77.6% correct) and 12k for the recency-based reward scheme (72.4% correct).

3.3.4 Serial position curves

Following Wittig et al. 2016 we measured serial position curves for RNNs. Serial

position curves give the fraction of yes (i.e., “match”) responses when a cue at a given position

matches the target cue (last cue in a trial). For example, for Match-First, trial size 4, if the target

cue was cue 1, the serial position curve would give the fraction of yes/no responses when cue 1

was in the first position (-3 test recency position in Figure 3 of Wittig et al. 2016; yes response

in this case was a correct match), fraction of yes/no responses when cue 1 was in the second

position (-2 test recency position), and same for third position (-1 test recency position). These

fractions (e.g. -2 and -3 test recency positions for Match-First, trial size 4) then can be fit with

a least-squares linear fit as was done in Figure 3 of Wittig et al. 2016 [Wit+16]. The linear fit

can be used to calculate a residual that describes the deviation of the observed “hit rate” (yes/no

fraction at -3 test rececny position) from the linear fit; this is what we refer to as linfit res. The

slope of the linear fit indicates the presence or absence of a recency-like behavior; this is what

we refer to as the linear fit slope.

3.3.5 Sorting directions

Sorting directions in Fig. 3.5 were computed by calculating the centroid of each point

cloud in the space of the first three principal components identified by the cue presented at a

given timestep in the trial. A least-squares error line was fit to these centroids to give the sorting

direction. This was calculated for network states after being presented with the first 3 cues in the

sequence for Match-First on all correct trials from 5000 test trials at each level of training (50k

training episodes for Fig. 3.5A, and 20k for Fig. 3.5B). The first sorting direction was calculated

with respect to the first cue presented (different colors in Fig. 3.5A,B leftmost colored PC plots).

The second and third sorting directions were calculated using the point cloud in which the first
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cue was cue 1 (i.e., within the blue point cloud in the leftmost colored PC plots in Fig. 3.5).

3.4 Results

3.4.1 Modeling the contribution of network size and experience

We investigated the contribution of network size (i.e., capacity) and training experience

(i.e., task understanding) using the same working memory tasks introduced by Wittig et al.

2016 [Wit+16](see Materials and Methods) to reveal strategy differences between monkeys

and humans (Fig. 3.1A). ANNs allow systematic characterization of network behavior as a

function of both network size and amount of experience, i.e. training. We varied RNNs across a

size spectrum (n ∈ {5,10,25,50,100,200,500} neural units) and training experience spectrum

(nep ∈ {0,5,10,20,30,40,50} x 103 trial episodes) (Fig. 3.1B).

We found that for some tasks (e.g. Same-Different) networks across the size spectrum

tested could gain proficiency, though different sized networks required different amounts of train-

ing. Across all tasks, smaller networks generally required more experience to gain comparable

proficiency (Supp. Fig. 3.7). Following the metrics used by Wittig et al., we measured “serial

position curves” [Wit+16] for networks with each size and experience combination. To assess

the degree of target-selectivity of each network configuration, we measured the linear fit residual

(linfit res), following the linear fit protocol of Wittig et al. (see Materials and Methods). We

found that the linfit res increased more quickly with experience for larger networks, correlating

very tightly with performance (Fig. 3.1C,D and Appendix, Fig. 3.8).

3.4.2 RNNs progress from random to recency to selective strategy with
experience

Serial position curve linear fit residuals indicate the degree of target selectivity, but

they cannot distinguish between different forms of non-selectivity. To illustrate this point,

consider two scenarios: 1) a network begins untrained with random behavior, gradually increases

selectivity with no other response trends, and finally achieves high target-selectivity (Appendix,
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Figure 3.1. Task performance and target-selectivity increases as a function of both network
size and training experience. (A) Working memory tasks from Wittig et al. 2016. Reprinted
from [Wit+16]. (B) Ashby chart schematic of modeling strategy to characterize contribution of
network size and training experience to task performance and strategy. (C) Linear fit residuals
of serial position curves across network sizes and training experience, here shown for Same-
Different (set size 2). Linfit res mirrors performance progression, with larger networks’ linfit res
increasing more rapidly with increasing training experience. (D) Linfit res and performance are
tightly correlated across network configurations.

Fig. 3.9A); 2) a network begins untrained, adopts a recency-like response profile, then achieves

high target-selectivity (Fig. 3.2A and Appendix, Fig. 3.9B). In both these cases, the linear fit

residual is small while the network has a random behavior or a recency-based behavior and may

follow very similar linear fit residual progressions. To distinguish between these possibilities, we

introduced another measure of serial position curves: linear fit slope.

Linear fit slope distinguishes between the two scenarios above: in the first (random →

low target-selective → high target-selective), linear fit slope will remain around zero (Appendix,

Fig. 3.9A), whereas in the second (random → recency-based → high target-selective), linear

fit slope will follow a predictable deflection during recency-based behavior (Fig. 3.2A and

Appendix, Fig. 3.9B). Importantly, the predicted recency-based behavior provides a strong prior
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on the direction of the slope deflection, decreasing the probability of erroneously attributing a

spurious slope deflection to a strategy difference.
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Figure 3.2. RNNs progress from random to recency-like to target-selective behavior over
training. (A) Serial position curve exhibits specific characteristics depending on strategy. Left
panels, Random behavior would be characterized by a near-zero linear fit residual and slope;
recency-based strategy would continue to have a small residual, but a slope of a particular
direction — for Match-First, a negative slope; target-selective strategy would have a large
residual and near-zero slope. Right panels, Progression through these strategies would be
characterized by the residual and slope vs performance schematic plots. (B) Serial position curve
with linear fits from Wittig et al. 2016. Humans exhibit a target-selective behavior with large
residual and near-zero slope. Monkeys exhibit a recency-based behavior with small residual
and expected negative slope. Reprinted and adapted from [Wit+16]. (C) RNNs across the size
spectrum (small to large is light to dark blue) exhibited a progression from random (zero residual,
zero slope) to recency-like (small residual, negative slope) to target-selective behavior (high
residual, zero slope). Points representing human and monkey residuals and slopes are shown in
red and green, respectively.

Using both measures — linear fit residual and slope, — we assessed the networks on the
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working memory tasks. For some tasks, a clear progression emerged, following that predicted

by the random → recency-based → high target-selectivity scenario (Fig. 3.2C), while other

tasks appeared to follow the alternative progression (random → low target-selective → high

target-selective) (Supp. Fig. 3.10). Furthermore, in some cases networks across all sizes tested

exhibited the recency-based progression (Fig. 3.2C), while in others there appeared to be a size

dependency, with smaller networks more likely to progress through recency-based behavior

(Supp. Fig. 3.10). Three possibilities may underlie these discrepencies. First, different network

configurations may truly follow different behavioral progressions. Second, there appeared to

be a trend where task scenarios involving larger cue deck sizes (100 cues vs 5 cues) showed

less recency-based progression. A simple reason for this may be related to sample size. Serial

position curves rely on occurrences of “yes” responses at each position for each cue. We found

evidence of such undersampling, revealing similar recency-based progression when sample

size was increased proportional to cue deck size (Appendix, Fig. 3.11A). Third, in some cases

networks — particularly larger networks — may progress through different strategies rapidly

during training, such that if the sampling rate during training is too coarse, deflections of the

residual or slope curves will be missed. We found evidence of this form of undersampling as

well (Appendix, Fig. 3.11B).

While we had hypothesized that network size (capacity) and experience (learning) may

contribute to strategy adoption and progression, it was nevertheless surprising that networks

appeared to progress through a recency-based behavior given no recency-based reward scheme

was used in the reinforcement learning structure of the tasks (see Materials and Methods).

To investigate why the networks appeared to transition through a recency-based intermediate

strategy, we considered a network configuration that exhibited a clear progression from random

to recency-based to high target-selectivity, approaching intersection with the data points from

human and monkey from Wittig et al. (red and green points in Fig. 3.2C, respectively): the 25

neural unit RNN trained on the Match-First task with small cue deck size (5 cues) and 4-step

trial size (2 distractors) (Fig. 3.2B,C), which we focus on for the remaining analyses performed.
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In this task, trials take on the form A-B-C-D where a Match occurs when D and A are the same

cue and no-match occurs otherwise (Fig. 3.3A). Recency-based behavior was characterized by a

higher X-A-X-A error “yes” response rate than X-X-A-A (where X is any cue other than A; this

relative difference causes the negative slope deflection in Fig. 3.2C).

3.4.3 Recency or something else?

At intermediate training experience, RNNs’ serial position curves exhibited the same

residual and slope profiles characteristic of monkeys in Wittig et al. 2016. Our RNN models

allowed systematic interrogation of the network behaviors, specifically the hypothesis that this

behavior is reflective of a recency-based strategy; a hypothesis that has concrete predictions

which can be validated or refuted in our model. Like monkeys, RNNs emergently exhibit this

behavior, without an explicit recency-based reward scheme. A straightforward measure of

whether a true recency-based strategy is being used is comparison of different cues sequences

in which lead cue is varied. A recency-based strategy not only predicts more X-A-X-A match

errors than X-X-A-A in Match-First, but also predicts that all X-A-X-A errors are equally likely,

regardless of the other cues’ (X) identities; 2-1-3-1 and 5-1-3-1 match responses should equally

contribute to recency-based errors, where 1-X-X-1 is the correct match, and numbers indicate

specific cues (i.e., “1” refers to cue 1).

To assess this, we measured the cue-specific match error responses of RNNs exhibiting

“recency-strategy” behavior. A recency-based strategy would predict a flat rate of match error

responses across all lead cue identities. For example, 2-1-X-1, 3-1-X-1, 4-1-X-1, and 5-1-

X-1 would each make up 25% of X-1-X-1 match errors. Interestingly, this was not the case.

Lead cue-specific responses varied strongly, ranging from 89% to 0%. This refutes a simple

recency-based strategy. Furthermore, match error rates exhibited a ramping progression around

the corresponding mistaken match cue (Fig. 3.3), suggesting an underlying lead cue-specific

structure to the match error rates. This was true in both the higher (X-A-X-A) and the lower

(X-X-A-A) match error categories (Fig. 3.3 dark and light blue bars, respectively). Although
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Figure 3.3. Stimulus-specific breakdown of match errors suggests not mere recency. (A)
In a Match-First trial, a sequence of cues is presented and the agent must respond “yes” or “no”
match by comparing the lead (cue A) and target (cue D) cues in the sequence. For a set size of
5, there are 5 unique cues which we refer to as cue1 through cue5 (1–5, for short). We focus
our analysis on the 25 neuron RNN which exhibited behavioral variation mimicking monkeys
and humans over training on Match-First. (B) In the cue sequence labels, the number/letter
represents the cue identity, A represents the cue of interest, and X represents any cue other than
A. E.g. in the top row A=1; dark blue bars indicate X-1-X-1 cue sequences (2-1-X-1, 3-1-X-1,
4-1-X-1, 5-1-X-1 from left to right) and light blue bars indicate X-X-1-1 cue sequences (2-X-1-1,
3-X-1-1, etc). A identities for each row is given on the right. For RNN trained on 20k trials and
exhibiting recency behavior, both dark and light bars show uneven distribution of match errors
across different lead cues. This refutes a simple recency-based strategy which would predict
parity across all lead cues, i.e., 25% (horizontal dotted line in each graph) for all dark blue bars
and 25% for all light blue bars. Error bars are SEM.

course-grain analysis suggested a recency-based strategy, the strong variation in response rate by

lead cue identity reflects an underlying non-recency behavior derived from the formation and

refinement of the RNNs’ solution spaces.
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3.4.4 Formation of the RNN solution space with experience

To understand the RNN’s solution space, we first considered the population activity of

the network over the course of individual trials. Untrained RNNs’ activity trajectories showed no

discernible pattern based on cue order. In contrast, after reaching target-selective performance

(50k training episodes), activity trajectories suggested a mechanism of encoding cues. The

relevant cues (first and last) appeared to cause a directionally similar deflection in 3-PC space,

while the two distractor cues caused a deflection along a different and roughly consistent direction.

This suggested the possibility that RNNs learn to ignore the distractor cues by controlling activity

flow in an independent direction from the activity flow of the relevant cues. Visualization of the

activity trajectories during recency-like behavior (20k training episodes) showed a pattern more

organized than that of untrained RNNs, but not achieving the apparent directional independence

for distractor cues seen after 50k training episodes (Appendix, Fig. 3.12).

To better understand the structure of the RNN’s solution space, we considered the final

activity state of the RNN after being presented with all four cues (first cue, 2 distractors, target

cue). We found a precise structure that emerges through training. Untrained RNNs adopt random

behavior, for example always responding “match” leading to final state activity reflective only of

stimulus-dependent effects (i.e., similarity-based influence on network state, Fig. 3.4A and B,

0k). After some training when the recency-like behavior emerges (20k training episodes), activity

states begin to show clustering reflective of “match” and “no match” regions (Fig. 3.4A, 20k)

suggesting some organization by target cue and first cue (Fig. 3.4B, 20k). Finally, when target-

selectivity is achieved (50k training episodes) a highly precise solution space map underlies

network behavior, with tightly defined activity spaces demarcating particular match and no match

combinations (1-X-X-1 vs 2-X-X-1 vs 2-X-X-2, etc.) that follows a clear organization based on

first and target cues (colored and shaded point clouds in Fig. 3.4A,B, 50k).

Further dissection of the RNN activity solution space revealed that the arrangement of

these network activity point clouds depends on cue-encoding, i.e., the final network state for
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1-X-X-1 is closer to 2-1-X-1 than to 5-1-X-1 (blue, light red, and dark red points in Fig. 3.4C,

respectively), something that would not be predicted by a recency-based strategy. This also

occurred for X-X-1-1 activity states (light vs dark green points in Fig. 3.4C), as well as for

the other target cues (Fig. 3.4D shows for target cue 3). Less separated activity states after

20k training episodes resulted in more errors than after 50k training episodes, though the same

structure remained (Fig. 3.4D, 20k vs 50k). This closer activity state proximity (resulting in

higher activity region overlap and consequent erroneous network readout) of particular cue

sequences explains why the proportion of X-1-X-1 match errors was much higher for 2-1-X-1

(68%) than for 5-1-X-1 (0.3%) (Fig. 3.3, dark blue bars, first row), and were not close to the

25% parity predicted by a recency-based strategy.

3.4.5 Alignment of activity space sorting directions underlies recency-
like phenotype

Although this insight into solution space structure explained the lead cue-mediated

inequality of match-error response profile, it did not help explain why networks consistently

exhibited a recency-like response behavior. Given that final network state was organized by cues

that were presented, we investigated how sequential cue presentation in a trial was encoded by

the network. To do this, we considered the state of each network after being presented with

the first 3 cues (lead cue and 2 distractor cues) and assessed whether network activity could be

separated by cue history.

We found that indeed network state was neatly organized by cue history, with each

successive cue causing a directional separation in activity space. We characterized this “sorting

direction” for each cue (see Materials and Methods) and found that in the space spanned by the

first three PCs (accounting for >88% of variance in activity), the angles of the sorting directions

approached orthogonality (for an example network: θ12 = 81◦ between sorting directions 1 and

2; θ23 = 62◦ between directions 2 and 3, and θ13 = 112◦ between directions 1 and 3; Fig. 3.5A).

The same network with less experience had sorting angles less close to orthogonality

94



Figure 3.4. RNN solution space geometry explains uneven match error profiles. (A) PCA
of network activity after presentation of all cues in a trial for trials answered correctly, colored
by match (blue) or no match (red) identity. The untrained RNN (0k) outputs random behavior
(e.g. always “match”; so correct trials are the match trials). At 20k training episodes, distinct
match and no match clusters begin to form. At 50k, clearly demarcated clusters in activity space
are apparent, defining a “match” band (blue region) within a surrounding “no match” zone (red
region). (B) Same plots as (A) but colored by last cue (target cue) and shaded by first cue in
sequence. Color and shading shows clear organization at 50k; each cluster corresponds to a
unique lead and last cue combination. Emergence of this conformation can begin to be seen at
20k. (C) PCA of solution space for match error trials with target cue 1 shows arrangement that
leads to mostly likely error overlaps with cue sequences with lower lead cues (lighter shaded red
and green). (D) Neighboring match error trials for target cue 3 sequences shows similar result,
with most likely overlap for cues starting with cue 2 or 4. For comparisons in (A),(B) PCA was
performed on all correct trials (51% for 0k, 83% for 20k, 97% for 50k). For (C),(D) PCA was
performed on all relevant trials (e.g. for (C), all 1-X-X-1, X-1-X-1, X-X-1-1 trials). Top 3 PCs
explained >87% of activity variance for all analyses. In (D), PCs 1 and 3 explained 75% and
83% of variance for 20k and 50k trained RNNs, respectively.

(for the same network after 20k training: θ12 = 61◦, θ23 = 76◦, and θ13 = 130◦; Fig. 3.5B). In

particular, we observed that the first sorting angle, θ12, consistently increased from an acute
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angle toward orthogonality during training progression from the recency-like behavior to the

target-selective behavior (Fig. 3.5C). This progression of θ12 explains the recency-like response

behavior of the networks.

To illustrate this, first consider the extreme case where sorting directions 1 and 2 are the

same, i.e., θ12 = 0◦. In this case, as illustrated in Supp. Fig. 3.13A, any overlap between points

from the cloud defined by first cue 2 with the cloud defined by first cue 1 (large red and blue

blobs in Supp. Fig. 3.13A, respectively) would more likely be 2-1-X-X than 2-Z-X-X (where

Z is any cue other than cue 1 or 2; in this case cue 3, 4, or 5). Thus, between these two points

clouds, 2-1-X-1 is more likely to be mistaken for 1-X-X-1 than 2-X-1-1, which is exactly the

recency-like phenotype.

This explanation makes a strong prediction based on the organization of the remaining

point clouds (with first cue 3, 4, 5), namely that a similar recency-like phenotype will occur

between 4-5-X-5, 4-X-5-5, and 5-X-X-5, but not so for the other cue combinations (e.g. 2-3-X-3,

2-X-3-3, and 3-X-X-3) (see Appendix, Fig. 3.13A). We found that this prediction was highly

accurate. While altogether, a recency-like phenotype was apparent (Fig. 3.5D; p = 8.3828e−5,

one-sample Student’s t-test), when stratified by target cue (which measures errors made in

confusion with 1-X-X-1, 2-X-X-2, 3-X-X-3, etc.) a strong recency-like phenotype was seen

with target cues 1 and 5 (p = 0.0020 and p = 0.0046, respectively; Student’s t-test), but not with

target cues 2, 3, 4 (p = 0.7929 and p = 0.2833 p = 0.3312, respectively; Student’s t-test; Fig.

3.5E), exactly as predicted by a small θ12 ≈ 0◦.

Further training led to increased cluster separation and also increased θ12 >> 0◦ toward

orthogonality, which decreases likelihood of the recency-like phenotype (Appendix, Fig. 3.13B).

3.4.6 Using recency to learn

Given our finding that RNNs exhibit the recency-like phenotype but not due to a recency-

based strategy, we investigated how explicit encouragement of a recency-based strategy would

alter RNN behavior, specifically if it would alter the RNNs’ solution mechanism. To do this, we
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Figure 3.5. Cue-dependent sorting directions of activity solution space underlie recency-
like phenotype. (A) Activity states of an RNN trained on 50k episodes after first three cues.
Coloring by first cue (leftmost of colored PC plots), second cue (middle), and third cue (right)
reveal distinct sorting directions that organize points within clusters. Sorting angles approach
orthogonality in PC3 space. (B) Same as (A) for the network after 20k episodes. Activity space
clusters are less distinct, and sorting angles less close to orthogonality. In particular, θ12 is more
acute at 20k than 50k. (C) Independently trained networks consistently showed an increase of
the angle between the first and second sorting directions, θ12, from acute toward orthogonal
with increased training from 20k to 50k episodes (after 20k training, θ12 = 38.5±4.9◦; after
50k training, θ12 = 61.5± 5.9◦, average over 10 independently trained RNNs; *: p = 0.001,
one-sided paired samples t-test. (D) Aggregated slope vs performance curve shows recency-like
phenotype at 20k training episodes. (E) Same plots as in (D) but stratified by target cue identity.
E.g. cue 1 plot measures serial position curve only when cue 1 is the target cue, i.e., 1-X-X-1, X-
1-X-1, X-X-1-1. Curves stratified by cue 1 and 5 show strong recency-like phenotypes, whereas
those for cues 2, 3, 4 do not. **: p < 0.01; ***: p < 0.001, one-sample t-test. Curves for (D),(E)
are averages over 10 independently trained RNNs. For (A) and (B) PCA was performed on all
correct trials (97% and 83% of all trials, respectively) and top 3 PCs explain 94% and 88% of
activity state variance, respectively.
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altered the reward scheme of the task to explicitly promote a recency-based strategy: “match”

responses to X-A-X-A and X-X-A-A trials were now rewarded, with X-A-X-A resulting in a

larger reward than X-X-A-A (A-X-X-A still had the highest reward; all other rewards were

unchanged; see Materials and Methods for details).

As expected, under the new reward scheme, RNNs progressed through a larger slope

deflection, indicating an exaggerated X-A-X-A/X-X-A-A ratio (Appendix, Fig. 3.14A). In-

terestingly, they also progressed in performance more rapidly than with the original reward

scheme.

We checked the match error profile by lead cue, with the expectation that, unlike with

the original reward scheme, RNNs with the recency-based reward scheme would have response

distributions insensitive to lead cue during the period of recency-like phenotype. To our surprise

we found this was not the case. Though less accentuated for the corresponding performance

level in the original reward scheme (compare Fig. 3.6A and 3.3 where performances are similar

at 72.4% and 77.6%, respectively), error profiles were still starkly uneven (ranging from 76% to

0%), in a directionally identical manner (Fig. 3.6A).

This suggests that since the end solution of both reward schemes is the same — reward is

maximized by adopting a high target-selective strategy — recency simply affects the learning

progression. More specifically, the recency-based reward scheme facilitates learning of the task,

accelerating the solution state space transformation, albeit in the exactly the same manner (Fig.

3.6B and Supp. Fig. 3.14B).

3.5 Discussion

We presented a straightforward follow-up study of Wittig et al.’s important finding

[Wit+16], which revealed two major twists: 1) what appears to be recency behavior may not in

fact be true recency, and 2) in spite of this, a recency-based strategy may facilitate learning of

the non-recency strategy progression. A lens from networks’ state space solutions elucidated
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Figure 3.6. Recency-based reward scheme accelerates formation of the same solution space
organization. (A) Serial position curve error profiles reveal similar uneven and directional trends
as with the original reward scheme. Error rates across different lead cues ranged from 76% to
0%, far from the even 25% predicted by a pure recency-based strategy. Shown for RNN with
similar performance and behavior phenotype as that in Fig. 3.3B (72.4% correct, 12k training
trials). (B) Top, The recency-based reward scheme (magenta) leads to increases in performance
earlier in training than the original reward scheme (blue). Bottom, The recency-based reward
scheme causes an earlier and larger slope deflection in the expected direction during training
than the original scheme. Bar and line plots represent mean of 10 independently trained RNNs.
All error bars are SEM.

how these twists fit together into a coherent learning paradigm; one that may be similar to that

used by monkeys and humans.

Our results support the hypothesis put forward by Wittig et al. [Wit+16] that a major

component driving the differences observed of humans and monkeys on the working memory

tasks may be task understanding, which we show can further be influenced by the capacity of the

network dedicated to learning the task. Our finding suggests humans and monkeys may lie on

two different points of the same learning progression.
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RNNs trained until high task proficiency had activity trajectories suggestive of learned

ignoring of distractor cues, yet upon deeper analysis revealed high-fidelity encoding of distractor

cues as well as relevant cues. This finding follows the observation of several other studies

that task irrelevant features are often encoded even when subjects explicitly understand their

irrelevance [MB13]. In our analysis, activity space organization is shaped by task irrelevant cues

(distractor cues) (“sorting directions”) which causes the recency-like phenotype observed. Our

results hypothesize that task irrelevant feature encoding rather than simple repetition may drive

this observed behavior.

The finding that a recency-reward scheme facilitated attainment of the optimal target-

selective strategy, raises an interesting possibility that some strategies might be useful simply

to accelerate learning. Such strategies may themselves not be optimal, but act as a “catalytic

strategy,” helping shape the solution space’s structure in a way that expedites achievement of the

optimal solution. This concept is similar to “shaping,” in which intermediate training goals are

used to piece together a larger, often multi-step behavior. Catalytic strategies could then function

as a type of internal shaping; for example, a monkey that derives some positive feeling from

incorrect recency trials (perhaps the aesthetic pleasure of seeing a number repeat?) would get

to optimal performance faster than a monkey zealously following the external reward program.

Identifying employment of catalytic strategies — perhaps within the vast repertoire of heuristics

humans use — promises to be a fascinating endeavour.

Our modeling work makes a number of predictions that can be tested:

1) In monkeys, is the match error profile across specific lead/distractor cues uniform as

predicted by a pure recency-based strategy, or is it sharply varying as predicted by our RNN

model? If the distribution is uniform, this suggests a true recency-based strategy, perhaps

relating to prior experience or shaping behaviors not captured in our models which lack the rich

experiential history of organisms like humans and monkeys. If the distribution is sharply varying,

this would indicate the monkeys use a strategy well-described by our network model, showing a

recency-like phenotype that in fact is not pure recency-based.
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2) Our model predicts that using a recency-based reward scheme will speed up learning of the

task. Adding this explicit recency-rewarding protocol during training of monkeys and comparing

them to monkeys trained with the normal reward scheme can support or refute this prediction.

3) Our RNN models predict a particular solution space organization for the working memory

tasks. This solution space result was robust, occurring repeatedly for independently trained

networks, suggesting a potentially optimal solution for the task. Collection of large-scale neural

recordings from monkeys (e.g. regions of prefrontal cortex thought to be critical to solving these

working memory tasks) during and after training on the tasks (e.g. Match-First, set size 5) will

allow assessment of how well the RNN model’s solution space matches that of monkeys neural

circuits.

Our findings reiterate the central message of Wittig et al. 2016: that extrapolation from

one model system to another should be done with caution rather that assuming similarity based

on coarse-grain measures. Wittig et al. showed monkey and human behaviors have different

characteristic features even though performance may be comparable; here we show that the

explanation for that difference may not be the most obvious, and that although they are different,

monkeys and humans may lie on different points of the same learning continuum.

Finally, we note the inherent and unavoidable challenges of comparing model systems —

humans and monkeys, and RNNs and humans and monkeys — and emphasize the importance of

validation studies to assess findings and predictions from one model system to another. Monkeys

have very different life histories than the humans they are compared to, and likewise, RNNs have

even more starkly different life histories (i.e. none) prior to task introduction. In lab, monkeys

must go through rigorous shaping protocols over the course of several months to successfully

train them on experimental tasks. These include components as simple as sitting still or looking

at a point on a screen consistently. Humans in contrast can be tested immediately or within a

single day of training, inferring many of the implicit protocols of the experimental assessment

(e.g. chair in the room likely means sit; screen likely is the place to look; language guidance).

RNNs output utter nonsense corresponding to no meaningful behavior until training begins. The
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shared features of humans, monkeys, and RNNs make them each useful in understanding the

others, but their fundamental differences must be acknowledged in the analyses that extrapolate

from one to the others.

Chapter 3, in full, is a reprint of the material as it appears in: Ben Tsuda, Barry J.

Richmond, and Terrence J. Sejnowski. Understanding strategy differences between humans and

monkeys with recurrent neural networks. In preparation, 2022. The dissertation author was the

primary investigator and author of this paper.

3.6 Appendix

3.6.1 Code availability

The code and RNN models in this work will be made available at:

https://github.com/tsudacode/humanVmonkey
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3.6.2 Supplementary Figures
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Figure 3.7. Performance over training episodes for RNNs across a size spectrum. Perfor-
mance over eight variations of three working memory tasks from Wittig et al. 2016. Across all
tasks, smaller networks (lighter blue colors) required more training episodes to achieve similar
performance to larger networks (darker blue colors). For some tasks, networks across the whole
size spectrum could gain proficiency (Same-Different, set size 2), for others only some networks
reached maximum proficiency by the maximum training duration (e.g. Match-First, set size
5), and for others no network reached near perfect performance (e.g. Match-Any, set size 5).
Similarly to humans and monkeys, RNNs performed the worst on Match-Any. All performance
curves are the average performance of 10 independently trained networks of the given size,
tested with 5000 test episodes at each training point. Error bars represent standard error over 10
independent networks tested.
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Figure 3.8. Serial position curve linear fit residuals on all task variations from Wittig et
al. 2016. Residuals of serial position curve linear fits (linfit res) as described in Wittig et al.
2016 closely mimic performance of RNNs on each task. A linfit res of 1 represents a pure
target-selective behavior whereas a value of zero represents a pure non-selective strategy. For
each task variation, the correlation coefficient between linfit res and performance at each network
configuration (size x training) is given; all are upwards of 0.9 except Match-Any, set size 100
(R=0.4) which the RNNs had trouble learning in the training duration. All linfit res curves are
the average of 10 independently trained networks of the given size, tested with 5000 test episodes
at each training point. Error bars represent standard error over 10 independent networks tested.
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Figure 3.9. Two possible modes of strategy evolution. Schematics of two hypothetical strategy
evolution scenarios shown for the Match-First task. For each part, left shows the progression of
the serial position curve, right top shows the performance vs linear fit residual, and bottom right
shows performance vs linear fit slope. (A) Strategy progression from random to increasingly
target selective. Behavior begins as random with uniform yes rate across serial positions, then
yes rate progressively increases at target location (“hit rate”) and yes rate at all other positions
(“false alarm rate”) decreases uniformly. Residual of linear fit will increase with increasing
performance and slope will trace random walk around 0. (B) Strategy progression from random
to recency-like to target selective. From initial random behavior, yes rate at positions close
to target location increase (or decrease more slowly) relative to yes rate at further positions,
exhibiting recency-like behavior. Then hit rate continues to increase, while false alarm rate
becomes uniform and low in a target selective strategy. Linear fit residual initially remains near
0 with initial increase in performance during recency-like behavior, then increases with further
performance improvement. Slope beings at 0, deflects in an expected direction (negative for
Match-First) then returns to zero when target selective strategy is achieved.
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Figure 3.10. Serial position curve linear fit slope and residual for all task variations from
Wittig et al. 2016. Slope and residual plots reveal clear instances where RNNs progress from
random (low performance, small slope, small residual) to recency-like (higher performance,
slope deflected in predicted (green) direction, low residual) to target-selective behavior (higher
performance, small slope, high residual), for example Match-First, set size 5. Other RNNs did
not have apparent recency-like behavior, though caveats on sampling depth and frequency require
further investigation (e.g. Match-First, set size 100, distractors 2; Same-Different, set size 2;
Supp. Fig. 3.11). In each slope plot, shaded green region indicates prediction prior on direction
of slope deflection if recency-like behavior occurs. Dotted line in slope plots indicates 0 slope.
Dotted line in residual plots connects from random (0 performance, 0 slope) to point achieved
by human subjects in Wittig et al. 2016 (red dot). Human and monkey behavior is shown in all
plots as red and green dots, respectively.
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Figure 3.11. Undersampling depth and frequency masks occurrences of recency-like be-
havior by RNNs. (A) Example of undersampling depth. Serial position curve is constructed
based on occurrence of error trials with particular cue arrangements. Task variations with large
cue set size (100 vs 5 cues; 20x difference) require more sampling. Increased test sampling
depth (5000 → 30000 → 100000 test samples) of same network reveals recency-like behavior
when none was apparent at lower test sampling depth (5000 test samples). (B) Recency-like
behavior could also be masked by sampling frequency for networks/tasks that rapidly pro-
gressed from random to target-selective strategy. Increased sampling frequency (training points
∈ {0,11,20,40,50} → {0,5,11,15,20,30,40,50} → {0,5,7,9,11,13,15,20,30,40,50}x103)
reveals recency-like behavior when none was apparent at lower frequency sampling.
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Figure 3.12. RNN population activity trajectories on Match-First trials. Network activity
trajectories on test trials for three levels of training (trained on 0k, 20k, 50k trials). Colored
points indicate network state after presentation of indicated cue in the trial sequence. Untrained
networks (0k) do not exhibit any apparent ordering, with network states at different timepoints
in different trials mixed up. Highly trained networks (50k) show precise trajectory shape
and network state organization, with relevant cues (1st and 4th) moving network state in a
direction apparently different than distractor cues (2nd and 3rd). Intermediately trained networks
(20k) exhibit sequential ordering of network states without showing clear directional difference
by specific cue position. For visualization and comparison purposes, all plots show random
100 trajectories aligned at the trial start for correct trials that occurred following a correct
trial (“correct-after-correct”); previous trial outcome had a large binary influence on activity
variability. For 50k trained RNNs, these made up 97% of correct trials, which in turn made up
97% of all trials. For 20k, this was 83% and 83%; and for 0k this was 51% and 51%. Top 3 PCs
on all “correct-after-correct” trials explained >85% of variance in activity at each of the three
training points assessed.
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Figure 3.13. Predictions based on angle between first two cue-based sorting angles in RNN
state space. θ12 is defined as the angle between the first and second sorting directions (see
Materials and Methods). (A) When θ12 is small, the sorting direction of the second cue is aligned
with that of the first, which manifests as cue-ordering based on second cue (smaller blobs) within
clusters ordered by first cue (larger blobs) occurring in the same progression (increasing left to
right). This conformation leads to particular spatial relationships, putting some clusters in closer
proximity (and consequently at higher risk of overlap and erroneous readout) than others. The
cluster defined by first cue 1 (big blue blob) contains the correct 1-X-X-1 match trials. Closest to
this cluster is that with first cue 2 (big magenta blob). Within this cluster, the subcluster with
second cue 1 is more proximal to the first cue 1 cluster than the subclusters with second cue 3, 4,
or 5. This results in 2-1-X-X being more likely to overlap (and cause an erroneous match error)
than 2-[3/4/5]-X-X, the former of which contains 2-1-X-1 sequences and the latter of which
contains 2-X-1-1. This exactly predicts a recency-like relationship, i.e., match errors for 2-1-X-1
> 2-X-1-1. A similar pattern occurs with first cue 4 cluster’s (black large blob) subclusters’
likelihood of overlap with first cue 5 cluster (large yellow blob). In contrast, overlaps between
middle first cue clusters (2 (big magenta blob), 3 (big green blob), 4(big black blob)) do not
have this spatial property, and would not be predicted to exhibit a recency-like relationship. For
example, 2-3-X-X is less likely to overlap with the first cue-3-cluster (large green blob) than
2-4-X-X or 2-5-X-X, but more likely than 2-1-X-X. Given the uneven match error profiles (see
Fig. 3B), this makes 2-3-X-3 > 2-X-3-3 match errors (i.e., the recency phenotype) very unlikely.
(B) When θ12 >> 0 and closer to orthogonality, the proximity effect is removed so that match
errors for X-A-X-A and X-X-A-A are equally likely across all clusters.
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Figure 3.14. Recency reward scheme trained RNNs progress from recency to target-
selective behavior and learn faster. (A) Slope vs performance plot for RNNs trained with a
reward scheme that explicitly rewards recency behavior compared to original reward scheme.
RNNs trained with recency scheme show the same slope vs performance progression, but appear
to have an accentuated recency behavior at intermediate training (more negative slope) and move
through the learning progression faster (compare recency reward scheme trained RNNs slope at
10k training trials to original at 15k). Labels in graph indicate trials trained on (e.g. 15k indicates
RNN has been trained on 15e3 trials). Data shown is for 10 independently trained networks in
each reward scheme. Error bars are SEM. (B). Example RNN’s solution space during learning
under recency reward scheme. The solution space of RNNs trained with the recency reward
scheme follows a similar progression as those trained with the original scheme (Fig. 4A,B), with
a very similarly arranged solution space map after extensive training and attainment of a target
selective strategy (50k training trials). The progression occurs faster with recency reward scheme
training, with performance and solution space after 12k training trials very similar to those of
RNNs under the original scheme at 20k training trials. Top 3 PCs explained >88% of activity
variance for all conditions.
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Chapter 4

Neuromodulators generate multiple con-
text-relevant behaviors in a recurrent neu-
ral network by shifting activity hypertubes

This chapter seeks to understand how molecules can modulate a neural circuit to effec-

tively switch the mode of the neural network to generate a new set of behaviors. The investigation

reveals how neuromodulators act on circuits to increase capacity and flexibility, how they dictate

neural responses in an idiosyncratic manner, and how these properties relate to different modes of

neuropsychiatric treatments. Through this work I elucidate a simple and powerful computational

mechanism at play in networks of neurons and provide links that support and motivate further

developments in precision medicine and machine learning technologies.

The work presented here is reproduced and adapted from: Ben Tsuda, Stefan C. Pate, Kay

M. Tye, Hava T. Siegelmann, and Terrence J. Sejnowski. Neuromodulators generate multiple

context-relevant behaviors in a recurrent neural network by shifting activity hypertubes. In

submission, 2022.

4.1 Abstract

Mood, arousal, and other internal states can drastically alter behavior, even in identical

external circumstances — a cold glass of water when you are thirsty is much more desirable

than when you are sated. Neuromodulators are critical controllers of such neural states, with
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dysfunctions linked to various neuropsychiatric disorders. Although biological aspects of

neuromodulation have been well studied, the computational principles underlying how large-

scale neuromodulation of distributed neural populations shifts brain states remain unclear. We

use recurrent neural networks to model how synaptic weight modulation — an important function

of neuromodulators — can achieve nuanced alterations in neural computation, even in a highly

simplified form. We find that under structural constraints like those in brains, this provides a

fundamental mechanism that can increase the computational capability and flexibility of a neural

network by enabling overlapping storage of synaptic memories able to generate diverse, even

diametrically opposed, behaviors. Our findings help explain how neuromodulators “unlock”

specific behaviors by creating task-specific hypertubes in the space of neural activities and

motivate more flexible, compact and capable machine learning architectures.

4.2 Introduction

Neuromodulators are a central mechanism in the biological control of neural states that

manifest as mood, arousal, and other variable behavioral modes [Ina+12; Bur+17; MNH20;

Bac+20; AK17; KE99; All+19]. Unlike standard, noise-sensitive models of context-dependent

behaviors where exogenous cues are required to drive neurons [Man+13] (Appendix, Fig. 4.6),

neuromodulation can modify nearly every aspect of how neurons transduce information, including

intrinsic ion channels and synaptic strengths using a scalar signal. This enables stable alterations

of network computations over longer timescales that are robust to fluctuations in external inputs

[HM18] (Appendix, Fig. 4.6), supporting neural states like sleep [MNH20]. Pioneering studies

on the lobster pyloric network [Mar12; ME84; JPH95] and other systems [KGF94; JGW09]

have revealed how neuron-specific neuromodulation can precisely tailor central pattern generator

rhythms. Yet it remains unknown how large-scale neuromodulation of vast distributed neural

populations can control global network dynamics and dictate behavior as it does in large brains.

Fully understanding neuromodulation in brains is important for several reasons. First,
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most psychiatric disorders either stem from or are directly related to neuromodulator dysreg-

ulation, as nearly all psychiatric drugs target neuromodulatory activity. Second, many of the

psychiatric drugs currently in use only partially or imprecisely target neuromodulatory pro-

cesses. Third, effects of many psychiatric treatments are highly variable, with some patients

responding strongly and others failing to respond to multiple drugs. Fourth, neuromodulation

acts via multiple mechanisms (as discussed below), allowing powerful circuit control but also

making it difficult to fully understand how. Fifth, given the central role of neuromodulators in

control of brains, a better understanding promises to make deep learning models based on brain

architectures more flexible, more compact, and more efficient.

Neuromodulators affect several processes in brains including synaptic strengths, neural

excitability, plasticity, and, indirectly, downstream circuit activity [New+12; NB12; Mar12;

Wee+18]. Prior research has focused on different aspects of neuromodulation, including Yu

and Dayan [YD05] who modeled the role of acetylcholine and norepinephrine in Bayesian

probability estimations of uncertainties; Stroud et al. and Vecoven et al. [Str+18; Vec+20] who

considered modulation of the neural activation function; Beaulieu et al. [Bea+20] who formulated

neuromodulation as a separate network that masks effector networks; Miconi et al. [Mic+19]

who used modulation of synaptic plasticity to train networks; and Hasselmo et al. [HSB95] who

developed a model incorporating experimental work on multi-factor neuromodulator-specific

circuit dynamics, particularly in hippocampal memory processes. Our model of synaptic weight

modulation shares some similarities to previous models, particularly to the neural excitability

models [Str+18; Vec+20]. Both lead to increased flexibility and versatility, yet they operate

through independent mechanisms both biologically [NB12] and computationally (see Appendix).

We focus here on a critical aspect of neuromodulation in brains — synaptic weight

modulation [Mar12; NB12; KGF94; JPH95; Has06] — of which no general, biologically-

plausible model exists. We consider a simplified approximation in which neuromodulators act

as nearly uniform synaptic weight amplifiers or dampeners within a local region of a neural

network. We show how this form of neuromodulation establishes overlapping synaptic memories
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corresponding to unique dynamic activity landscapes within a structurally-conserved neural

network to generate unique behaviors. We demonstrate how neuromodulated circuits give rise

to idiosyncratic, non-linear dose-response properties that can differ depending on the mode of

neuromodulation. Using a well-established neuromodulation-mediated behavioral paradigm in

Drosophila, we show how this form of neuromodulation naturally handles intermediate neural

states, and as such, generalizes models of discrete internal state switching [CPM19; Cer+20] to

continuous state transitions. Although many mechanisms may influence behavioral shifts, we

show that a simple multiplicative factor applied to weights already acts as a powerful network

control device, allowing neuromodulators to vastly increase the capability and complexity of

computation in brains and making artificial neural networks more flexible, compact and capable.

4.3 Materials and methods

4.3.1 Modified Go-NoGo tasks

The classic Go-NoGo task has two possible stimuli (positive pulse referred to as positive

stimulus or +; no pulse, also referred to as null stimulus or /0). The agent is trained to give a

positive output (+1, “Go”) for the positive stimulus and zero output (0, “NoGo”) for the null

stimulus. In the modified Go-NoGo task we added a second possible behavioral set: NoGo

for the positive stimulus and negative output (-1, “AntiGo”) for the null stimulus. The network

was trained on the classic Go-NoGo behavior in the absence of neuromodulator and on the

new NoGo-AntiGo behavior in the presence of neuromodulator. The 3 behavior and 9 behavior

variants of the modified Go-NoGo task followed a similar paradigm with additional added

behaviors. In the 3 behavior version, a third behavior of positive stimulus → AntiGo, null

stimulus → Go was added. In the 9 behavior version all possible stimulus → output response

pairs were added. As such, Behavior 1 was + → AntiGo, /0 → AntiGo; Behavior 2 was + →

NoGo, /0 → AntiGo; Behavior 3 was + → Go, /0 → AntiGo; . . . ; Behavior 9 was + → Go, /0 Go.

In our simulations each trial lasted 200 timesteps of 5ms each for a total represented duration of
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1 second.

4.3.2 Neuromodulatory neural network model

For our simulations we used a continuous rate recurrent neural network (RNN) model with

biologically plausible parameters similar to RNNs in prior works [KS20; Tru+20]. Consistent

with biological neural networks, we implemented Dale’s Law using the method in Song et al.

[SYW16] such that each neuron was either excitatory or inhibitory. For all our simulations we

used a RNN with N = 200 neuron units, 80% excitatory and 20% inhibitory. In the RNN each

neuron can be connected to any other neuron with probability pcon (pcon was initialized at 0.8 in

our simulations), and each neuron receives weighted input from connected neurons to produce a

firing rate governed by the neural dynamical equation

τ
dx
dt

=−x+Wr+Winu+N(0,0.1) (4.1)

where τ ∈ R1×N is the synaptic decay time constant for the N neurons in the network, x ∈ R1×N

is the synaptic current variable for the N neurons, W ∈ RN×N is the matrix of synaptic weights

between all N neurons, r ∈ R1×N is the output firing rates of the N neurons in the network,

Win ∈ R1×N are weights associated with external input u, and N(0,0.1) is added noise drawn

from a normal distribution with mean 0 and variance 0.1. The output firing rate for the neurons

is given by an elementwise nonlinear transfer function transformation of the synaptic current

variable. In our network we used the standard logistic sigmoid function as implemented by prior

models [KLS19; KS20]:

r =
1

1+ e−x (4.2)

The synaptic connectivity matrix W was randomly initialized from a normal distribution with

zero mean and standard deviation g/
√

N · pcon, where g is the gain. We set g = 1.5 as previous
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studies have shown that networks operating in a high gain regime (g ≥ 1.5) support rich dynamics

analogous to those of biological networks [KS20; KLS19; LB13]. The synaptic decay time

constants were randomly initialized to a value in the biologically plausible range of 20–100 ms.

As in Kim et al. 2019, we used the first-order Euler approximation method to discretize

Equation 4.1 for the simulations; for neuron i:

xi,t = (1− ∆t
τ
)xi,t−1 +

∆t
τ
(∑

j
Wjir ji,t−1 +Wuiut−1)+N(0,0.1) (3)

Output was generated by taking all recurrent network neurons’ activities and passing

them through a weighted output unit

onetwork =Woutr+bout

where Wout ∈ RN×1 are the neural output weights and bout is the output unit’s bias term. RNNs

were trained by backpropagation through time using AdamOptimizer with a least square error

objective function.

To apply an amplifying or dampening neuromodulatory effect, target neurons’ weights

were scaled by the neuromodulatory factor. For whole network neuromodulation this effect was

applied to all neurons in the RNN; for subpopulation neuromodulation the effect was applied

only to the selected subpopulation of neurons.

For the modified Go-NoGo task, RNNs were trained until one of two possible stop criteria

was met: 1) average trial least square error over the last 50 trials was under a threshold of 1, or 2)

10,000 training trials was reached. Performance on the task was then assessed by evaluating the

percentage of test trials that matched the following performance criteria: for Go trials, output

was required to reach 1.0±0.2 by timestep 120 (full trial was 200 timesteps); for NoGo trails,

output was required to be 0.0±0.2 and for AntiGo trails −1.0±0.2 at timestep 120.
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4.3.3 Comparison to context-dependent cued model

For comparison, we created a cue-driven RNN model and trained it on the Modified

Go-NoGo task. The cue, which we refer to as the “context cue”, was delivered through an

additional input channel and signaled which output behavior was desired. We created models

with two types of cues: transient cues were constant value inputs present only during the stimulus

input period (t=0 to t=75); persistent cues were constant value inputs across the whole trial. For

comparisons between models, we ran models with cue pairs of +1.0/-1.0 (2.0 sep in Appendix,

Fig. 4.6d,e), +0.5/-0.5 (1.0 sep), and +0.2/-0.2 (0.4 sep).

To compare the neuromodulatory and context-cued RNNs tolerance to noise, we ran two

types of simulation experiments. First, we added Gaussian noise of zero mean and standard

deviation ranging from 0 to 4 to all input signals and measured RNN performance as the

difference between target and actual output. At each level of noise, we simulated 4 independent

models 100 times each and averaged their performances (Appendix, Fig. 4.6d). In a second

experiment, after training, we simulated pure intrinsic network activity (no inputs). We again

added Gaussian noise of zero mean and standard deviation ranging from 0 to 4. For each batch

of 100 simulations on 4 replicate networks, we examined the consistency of final network states

(t=200). To measure this, we computed the mean Euclidean distance of the 100 simulations

final-time-step states from the centroid, giving a measure of final network state spread. Larger

mean Euclidean distance (higher spread) indicated more variable activity trajectories; lower

mean distance (lower spread) indicated highly consistent activity trajectories (Appendix, Fig.

4.6e).

The phase portraits with flow fields were created by simulating a network to produce two

state trajectories from distinct behavioral contexts. For this we used a neuromodulatory network

( fnm=9) and a context-cued model with persistent cues 0/+2.0. For each network configuration

(with and without neuromodulator, and cued model), we computed the derivative of the neurons’

rates across the trajectories to generate vector fields depicting the intrinsic flow fields of the
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network in the absence of any driving input. For the exogenously cued model, we then calculated

the external drive required across the alternative cue-driven trajectory (cue=+2.0) to achieve the

corresponding activity trajectory. We projected state trajectories and flow fields into the first

three PCA space for visualization (Appendix, Fig. 4.6f).

4.3.4 Neuromodulation of multiple subpopulations and multiple levels

For neuromodulation of non-overlapping subpopulations, same-sized groups of neurons

were choosen randomly without any overlap and neuromodulator applied to each for a given

behavior. For overlapping subpopulations, groups of neurons were chosen randomly allowing

overlap (Appendix, Fig. 4.11).

Neuromodulation at different levels (“multi-factor networks”) was done by applying

different neuromodulation factors ( fnm). For the 9-behavior modified Go-NoGo this was done

using factors ∈ [1 : 1 : 9], i.e., for Behavior 1 no factor was applied ( fnm = 1), for Behavior 2

fnm = 2, for Behavior 3 fnm = 3, et cetera.

To test networks across the range of subpopulation sizes with single or multiple neuro-

modulator factors on n-behavior modified Go-NoGo tasks, stop criteria were adjusted to account

for the increased behaviors: 1) average trial least square error over last n*25 trials was under

threshold of 1, or 2) 15,000 training trials was reached. Performance on the tasks was assessed as

before. For overlapping subpopulations, overlap was quantified in two ways. For each network,

the number of neurons neuromodulated in 2 or more subpopulations was measured (Appendix,

Fig. 4.11d). Overlap was also quantified by measuring the average number of neuromodulated

subpopulations a neuron in the network was a member of (Appendix, Fig. 4.11e).

4.3.5 Single neuron inputs, functional clustering, and selectivity index

Neural activity in a RNN is a complex function of all the neuron activities tracing all

the way back in time. To understand how neuromodulation shifted synaptic inputs at the single

neuron level, we considered the first time point in a trial. For any trial, at t=0 all activities
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are randomly initialized from a normal distribution. As a result, at t=1, a neuron reacts only

to the weighted inputs of its incoming connections, uncontaminated by propagating recurrent

activity dynamics from past timepoints. Analysis of neuron activity at this timepoint is shown in

Appendix, Fig. 4.12a–c.

In order to examine whether trained models contained functionally specialized neurons,

we grouped neuron activities by combination of subtask (which maps one-to-one with neuro-

modulatory state) and stimulus given (“stimulus-subtask combinations”). We averaged activity

of each neuron over time and trials within each group. This resulted in a matrix of time-trial

averaged neuron activities with a number of rows equal to the stimulus-subtask combinations,

and number of columns equal to the number of neurons. Using k-means, we clustered neurons

with similar activity levels across stimulus-subtask combinations. We computed a silhouette

score to find the optimal number of clusters, which for the RNN in Appendix, Fig. 4.12, was

6. The silhouette score computed for 5 and 6 clusters differed only by 0.7% and the additional

cluster was very small and similar to an existing cluster, so we conducted further analysis with 5

clusters for simplicity.

To measure the selectivity of individual neurons for particular stimulus-subtask combina-

tions, we calculated a “selectivity index” (si) for each neuron j:

si j =
r̄max

j − r̄second max
j

r̄max
j

where r̄ j is the average firing rate of neuron j over the trial duration, r̄max
j indicates the maximum

r̄ j across all the stimulus-subtask combinations and r̄second max
j indicates the second highest r̄ j

over all the stimulus-subtask combinations. The selectivity index thus captures a normalized

approximation of how uniquely active a neuron was for a given stimulus-subtask combination.
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4.3.6 Network population dynamics

To represent whole network population activity dynamics we sought a low dimensional

representation of whole population activity. We used principal component analysis (PCA)

since the leading components capture the largest projections of activity variability, which we

hypothesized would effectively separate our neuromodulatory conditions if large differences

occurred [CY14]. We found this was the case. We found qualitatively similar results using

multidimensional scaling which finds projections designed to best preserve distances in high-

dimensional activity space. For our figures we display the first 3 PCs, as these captured a large

amount of the activity variance (80–92% explained across the analyses) and effectively represent

the activity dynamic differences in the analyses.

To map the neuromodulation-dependent activity subspace, we generated 100 independent

stimuli series consisting of random numbers drawn from a uniform distribution between 0 and

1 at each time point (t=0 to t=200) and fed this into the RNN with and without neuromodula-

tion (shotgun stimulus mapping from Appendix, Fig. 4.15a), which defined non-overlapping

subspaces of activity space.

To analyze neuromodulation transition curves we compared activity under intermediate

neuromodulation levels with linear interpolation. Linear interpolation was done by evenly divid-

ing the distance between no and full neuromodulation activity states into 9 sections analogous to

the 9 neuromodulation levels assessed. These 9 points in activity space were then used to gener-

ate output that is plotted in Appendix, Fig. 4.16. The geometry of the neuromodulation-based

transition was assessed by calculating the Euclidean distance of intermediate neuromodulation

level states at a given trial timepoint to the nearest point on the line connecting no and full

neuromodulation states at that timepoint. These distances are plotted in Fig 4.3i. The angle of

departure (AoD) was defined as the angle formed by the line between no and full neuromodula-

tion states and the line between no neuromodulation and the first neuromodulation level states,
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which can be calculated as:

v⃗1 = p⃗F − p⃗N

u⃗1 = p⃗L1 − p⃗N

AoD = cos−1 u⃗1 · v⃗1

|u⃗1||v⃗1|

where p⃗N is the network state with no neuromodulation, p⃗F is the network state with full

neuromodulation, p⃗L1 is the network state with the first level of neuromodulation.

4.3.7 EC50

The EC50 of a network was defined as the level of neuromodulation that led to half

the output of full neuromodulation. For the results reported, we used EC50 calculated for the

positive stimulus. For this stimulus in the modified Go-NoGo task, a non-neuromodulated

network outputs +1 and a fully neuromodulated network outputs 0 (measurements for output

level were taken at 0.5 s through the trial); the EC50 for the network in this case is the amount of

neuromodulator required to output 0.5. The EC50 was calculated by fitting a sigmoid curve to

the progression of output (from +1 to 0 in this case) with increasing neuromodulation level (Fig.

4.3d)

out put = 1− 1
1+ ea· fnm+b

where fnm is the neuromodulation level. EC50 neuromodulation level was calculated by finding

the intersection of the sigmoid and the half-maximal output; for half-maximal output of 0.5,

EC50 =−b/a. Sigmoid curves were fit using a least squares fit.
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4.3.8 Drosophila sugar sensitivity task

We implemented a computational version of Inagaki et al. 2012 to train our network

models. During training, models were presented with a constant sugar concentration (external

input proportional to sugar concentration) for 100 timesteps (equivalent to 500 ms) and trained

to output a probability of PER. For fed and 2-day starved training we used a piece-wise linear

approximation estimated from Inagaki et al. 2012. To compare boxplots of MAT, one-way

ANOVA followed by t-test with Bonferroni correction was used as in Inagaki et al. 2012.

4.3.9 Mean acceptance threshold (MAT)

Analogous to the analysis done for flies in Inagaki et al. 2012, for each RNN a sigmoid

was fit

PER =
1

1+ e−a·log2
xsugar
MAT

where a is the slope of the sigmoid. When PER = 0.5 then xsugar = MAT , as defined in Inagaki

et al. 2012 [Ina+12]. Sigmoid curves were fit using a least squares fit.

For intermediate neuromodulatory level ( fnm=3) MAT variability analysis, a normalized change

in MAT (%∆MAT) was calculated:

%∆MAT =
MATfnm=3 −MATfnm=1

MATfnm=5 −MATfnm=1

where MATfnm=x is the RNN’s MAT with neuromodulation factor x. %∆MAT gives a network

normalized metric for how much the intermediate neuromodulation ( fnm=3) moved the fly from

no neuromodulation ( fnm=1) to full neuromodulation ( fnm=5) sensitivity.
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4.3.10 Electrical modulation

We administered electrical modulation as an external current applied for the duration

of the trial. “On-target” modulation was applied to the neuromodulated neuron population

and “random” modulation was applied to a randomly selected group of neurons of equal size;

these could include both neuromodulated or non-neuromodulated neurons. All neurons (both

excitatory and inhibitory) within the selected subpopulation were given identical external current

modulation. For fixed electrical modulation simulations, a current of magnitude 1 was applied

(+1 for excitatory modulation; -1 for inhibitory).

For graded electrical modulation, networks that did not achieve e-mod50 at maximum

stimulation (-9 units) were assigned a surrogate e-mod50 value of -10 to calculate correlation to

EC50. To account for possible missed correlation due to this substitution, correlation of EC50 to

output at maximum modulation (-9) was also calculated (Appendix, Fig. 4.18c).

4.4 Results

4.4.1 Neuromodulation creates multiple weight regimes within shared
synaptic connections

The effects of neuromodulators on synaptic weights present a mode of circuit control

[NB12] that is poorly understood in brains — both how it is implemented at scale and the

computational mechanisms by which it shifts coordinated activity to generate different behaviors.

Several recent studies on cell type diversity have made clear that brains contain a complex array

of neuromodulators that act with carefully coordinated spatiotemporal precision [Xie+21; RF18;

Zha+21; LBN18; Pat+18]. As a first step, we sought to assess whether a simplified form of

neuromodulation — modelled as a uniform multiplicative factor acting on synaptic weights in

a recurrent neural network (RNN) — could help us understand how neuromodulators control

neural state. Although other modes of neural network control such as exogenous contextual cuing

have been shown to successfully shift network behavior [Man+13], uniform weight modulation
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represents a completely different biological and computational mechanism, which, given the

complex, non-linear, and often unpredictable nature of RNNs, requires explicit assessment.
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Figure 4.1. Neuromodulation weight scaling separates overlapping synaptic memory
regimes. a, Modified Go-NoGo task. Given a stimulus (either + or /0), in absence of neuromodu-
latory effect the recurrent neural network (RNN) should produce outputs from the Behavior 1
repertoire and in presence of neuromodulator, from Behavior 2. b, Approximation of neuromod-
ulatory effect implemented in the model: all synaptic weights in the RNN are multiplied by a
constant factor, here 0.5. c, Mean output to + and /0 stimuli of 10 independently trained RNNs on
the modified Go-NoGo with global neuromodulation factor 0.5. Shading represents standard
deviation. d, Individual neuromodulators elicit unpredictable transforms of firing patterns in
crustacean stomatogastric ganglion (STG) neurons. Reprinted from Neuron 76, Marder, Neuro-
modulation of Neuronal Circuits: Back to the Future, 1-11, 2012, with permission from Elsevier.
e, Five example neurons’ activity patterns from neuromodulated model RNN show complex
nonlinear transformations analogous to crustacean STG activity changes under neuromodulation.

We used a modification of the classic Go, No Go experimental paradigm (“modified

Go-NoGo;” Fig. 4.1a; see Materials and Methods) to assess whether given identical input stimuli,

uniformly shifting all the weights in a RNN — for example, scaling all weights by a factor of

1
2 (Fig. 4.1b) — could elicit an independent behavior from the same network. We found that

neuromodulation in this form was able to generate distinct behaviors for the task (Fig. 4.1c),

demonstrating that this simple mechanism operating in brains can effectively separate synaptic
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memory regimes within a fixed circuit and access them through uniform scaling of weights to

“unlock” specific behaviors (Appendix, Fig. 4.8). We found this result held over a wide range

of neuromodulatory factors (Appendix, Fig. 4.9). Furthermore, reminiscent of neuromodulator

effects on individual neuron activity patterns observed in lobster stomatogastric ganglion (Fig.

4.1d) and other organisms [Mar12; JPH95; Joh+11; KGF94], we found that both global activity

(Appendix, Fig. 4.7a) and individual neuron activities were unpredictable, displaying non-linear

transforms (Fig. 4.1e and Appendix, Fig. 4.7b).

4.4.2 Targeted neuromodulation can toggle across multiple global
network states

In brains, neuromodulators are released in specific regions — some tightly localized,

others broadcast widely — to influence local and global neural output. We found that RNNs

with neuromodulated subpopulations of sizes across a broad range (100%–10% of the whole

population) consistently supported the opposing behaviors of the task (Fig. 4.2a–c). Just as

some neuromodulators affect neurons in a cell-type specific manner, for example selectively

influencing activity of excitatory or inhibitory neurons with corresponding receptors [WM14],

we found targeting of neuromodulator in this manner also was able to support the task (Fig.

4.2d,e).

To assess the flexibility of this neuromodulatory mechanism, we asked whether multiple

unique behaviors could be learned and unlocked from a single network through targeted neu-

romodulation. Using an extended version of the modified Go-NoGo task (see Materials and

Methods), we found that neuromodulation of distinct subpopulations or with distinct neuromodu-

lation levels could support multiple behaviors, up to the maximum 9-behavioral Go-NoGo task

we tested (Fig. 4.2f,g and Appendix, Figs. 4.10, 4.11; see Materials and Methods).
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RNNs with embedded neuromodulated subpopulations across the size spectrum could support
the opposing behaviors of the modified Go-NoGo. b, Number of training trials to reach stop
criteria (see Materials and Methods). c, Test performance (1 is 100% correct; see Materials
and Methods). d, Neuromodulation of exclusively excitatory or inhibitory neurons (blue annuli).
e, Excitatory or inhibitory neuromodulation supported learning of modified Go-NoGo. f, 9-
behavior modified Go-NoGo task with unique neuromodulated subpopulations (subpops) and
example corresponding outputs. g, RNNs successfully learned the task from f with 9 targeted
subpops (each 10% of the RNN, non-overlapping; fnm=2.5). Application of neuromodulator to
any subpop unlocked a specific behavior set (beh.) from the 9-behavior repertoire (fraction of
trials correct is ≈1 on diagonal; see Materials and Methods). Off-diagonal fraction correct due
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4.4.3 Distinct global network activity hypertubes with non-linear
transition dynamics emerge from neuromodulation

To understand how this form of neuromodulation leads to network behavior shifts, we

analyzed the coordinated activity of all neurons in the RNN in the absence and presence of

neuromodulator. At the individual neuron level, neuromodulation shifted the net difference of

excitatory and inhibitory inputs, which in turn altered the recurrent propagation of activity over

time and resultant internal network dynamics (Appendix, Figs. 4.12–4.14). At the whole popula-

tion level, neural activity trajectories for the same stimulus with and without neuromodulator

followed non-overlapping, stereotyped paths, or hypertubes [GB18; Low+18; Nie+21], in activity

space (Fig. 4.3a). Through amplification of synaptic weights, neuromodulation effectively resets

all the pins in the pinball machine, altering activity flow patterns through the RNN (Appendix,

Fig. 4.6f and 4.15a).

The distinct hypertubes in activity space derive from a common underlying neural net-

work. This suggests that there must be a transition between the hypertubes accessible through

intermediate amounts of neuromodulation. To characterize this transition, we applied interme-

diate levels of neuromodulation to the RNN after training, which mapped a smooth transition

from trajectories of the non-neuromodulated hypertube to those of the fully neuromodulated

hypertube (Fig. 4.3b). Furthermore, intermediate neuromodulation generated intermediate

outputs from the network (Fig. 4.3c). In this way, just as RNN neural trajectories have been

shown to naturally address temporally varying sensory-motor patterns [GB18], neuromodulated

neural trajectories provide a means to naturally respond to intermediate, even unexperienced

neural states (e.g. hunger levels). To characterize the transition in output behavior, we measured

the output of the RNN at the midpoint of each trial for each level of neuromodulation. We found

that increasing neuromodulator levels led to non-linear (exponential or sigmoidal) progression

from non-neuromodulated (Go: +1) to fully neuromodulated behavior (NoGo: 0) (Fig. 4.3d).

We next asked whether neuromodulatory transition dynamics were tightly constrained,
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defining a conserved property of neuromodulation, or highly variable depending on individual

network characteristics. To test this, we independently trained 29 RNNs. All RNNs exhibited

non-linear transition dynamics best fit by an exponential or sigmoid function (Fig. 4.3e and

Appendix, Fig. 4.15b), but networks’ sensitivities to neuromodulator and rates of transition varied

drastically. To quantify this variability, we defined a “half maximal effective concentration”

(EC50) as the amount of neuromodulator required to generate a half maximal output (see

Materials and Methods). The EC50 of individual networks trained with a full neuromodulator

factor of 9 ranged from 2.1 to 6.5 (3.1x range; Fig. 4.3f, left) and rate of transitions (steepness of

the transition dynamics sigmoid) varied widely as well from 0.9 to 26.3 (Fig. 4.3f, right). This

result reveals a previously unknown phenomenon that may contribute to the wide individual

variability of neuropsychiatric drug sensitivities observed clinically [Fur+19]; a “circuit-based

sensitivity.”

We next sought to characterize what properties of the networks contribute to the variabil-

ity in sensitivity to neuromodulator. We found that the skewness of networks’ weight distributions

exhibited a positive correlation with EC50s (R=0.51, p<0.01; Fig. 4.3g), suggesting networks

with more positively skewed weights (longer tail of strong excitatory weights) were less sensitive

to neuromodulator. To further understand the source of network sensitivity variability, we charac-

terized the shape of the networks’ activity transition curves across neuromodulation levels (Fig.

4.3h). At a given trial timepoint, purely linear interpolation yielded linear sensitivity relationships

with invariant EC50 (Appendix, Fig. 4.16). In contrast, progressive neuromodulation defined an

arc (Fig. 4.3h,i), which, collectively across all timepoints formed a curved transition manifold

connecting each neuromodulation-specific activity hypertube. The geometry of this transition

arc (measured as the angle of departure; see Materials and Methods) was strongly correlated to

network sensitivity (Fig. 4.3j). This suggests that while individual networks can achieve identical

performance on the trained task (no and full neuromodulation), the geometry of their population

activities at intermediate neuromodulations is unique, leading to emergent sensitivity profiles.

Excessive neuromodulation can also occur either pathologically or pharmacologically.
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To model this, we applied neuromodulation at levels higher than those used during training and

found neural dynamics could sometimes (but not always) diverge from trained activity hypertubes

into an adjacent region of activity space, translating into inappropriate output behavior (Appendix,

Fig. 4.15c–e).

4.4.4 Neuromodulated RNN replicates dopamine-mediated starvation-
dependent sugar sensitivity in Drosophila

Given our finding that neuromodulation provides a natural means of handling intermedi-

ate, unexperienced neural states, we next sought to evaluate our model’s ability to recapitulate the

behavioral effects of neuromodulation observed in vivo. The neuromodulator dopamine controls

the sugar sensitivity behavior of Drosophila [Ina+12], as measured by proboscis extension reflex

(PER) probability, which increased with both duration of starvation (fed, 1 day, 2 day starved)

and concentration of L-dopa administered in their diet (0, 3, 5 mg/ml) (Fig. 4.4a).

To assess if our neuromodulation model could reproduce these results, we trained RNNs

with neuromodulated subpopulations (20% subpopulation) to reproduce the fed and 2 day starved

sugar sensitivity curves of flies (no neuromodulation ( fnm=1) for fed; fnm=5 for 2 day starved).

We then tested the RNNs’ behaviors at an intermediate, never-before experienced neuromodulator

level ( fnm=3). The RNNs produced a shifted sensitivity curve very similar to that exhibited by 1

day starved flies and the flies fed an intermediate L-dopa concentration of 3 mg/ml (Fig. 4.4b).

The behavior of the RNNs reliably mimicked the intermediate behaviors of flies in

vivo because intermediate neuromodulation caused a continuous shift in the RNN’s activity

hypertube between “fed” and “2 day starved/5 mg/ml L-dopa” hypertubes (Appendix, Fig.

4.17a–c). Furthermore, our model reveals that transition manifolds (defined by the hypertubes

connecting intermediate neuromodulation levels) are unique to networks, predicting wide-

ranging natural variability in fly starvation-based sugar sensitivity profiles (Appendix, Fig. 4.17d).

Neuromodulation leads to natural handling of never-before experienced neural states by creating

a network configuration such that the neuromodulatory transition manifold has a geometry that

132



Drosophila

Neuromod

RNN

a

b

sugar concentration (mM)

fr
a
c
ti
o

n
 e

x
h

ib
it
in

g
 P

E
R

1

0.8

0.6

0.4

0.2

0

25

50

100

200

400

f
nm

none (1) 3 5

M
A

T
 (
m

M
)

p<0.001

p<0.001

p<0.001

6.25 12.5 8004002001005025

2 days starved fed

none (f
nm

=1)

f
nm

= 3

Neuromodulation (f
nm

)

f
nm

= 5

Figure 4.4. Neuromodulated RNNs reproduce Drosophila sugar sensitivity behaviors. a,
Drosophila sugar sensitivity behaviors from Inagaki et al. 2012 measured as PER behavior vs
sugar concentration. Reprinted from Cell 148, Inagaki et al., Visualizing Neuromodulation In
Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing,
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Inagaki et al. 2012 for boxplots, see Materials and Methods).

leads to intermediate outputs.

4.4.5 Electrical modulation shifts neural dynamics through an indepen-
dent circuit effect

Other endogenous and exogenous influences can alter neural circuit dynamics through

mechanisms that may be shared or independent, and understanding relationships between such

interventions is vital for safe and effective treatment. We used our model to compare whether
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exogenously delivered electrical modulation of a neuromodulated circuit — analogous to use of

optogenetics experimentally [Dei15] and deep-brain stimulation (DBS) and transcranial magnetic

stimulation clinically [Kra+21; Ris+20; Gou+19] — alters network activity in an analogous

manner to chemical neuromodulation or operates through an independent effect (Fig. 4.5a).
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Figure 4.5. Targeted electrical modulation shifts network dynamics through independent
circuit effect. a, Schematic of DBS and analogous electrical modulation (e-mod) of a neuro-
modulated RNN. b, Test performance was significantly impaired in absence of neuromodulation
(white bars) when inhibitory on-target electrical modulation (e-mod) was given (p=3.91e-11)
and with neuromodulation (blue bars) when excitatory and inhibitory on-target e-mod was given
(p=2.20e-08 and p=2.18e-02, respectively). *:p<0.05, **:p<0.01. c, RNN output in absence
of neuromodulation to + stimulus with increasing inhibitory e-mod. d, For 30 RNNs: Left:
neuromodulation EC50. Right: electrical e-mod50. Down arrows in d, e indicate RNNs that did
not achieve e-mod50 at maximum stimulation. e, No significant correlation between networks’
EC50 and e-mod50. f, Neuromodulation and electrical modulation push activity trajectories
along different transition manifolds enabling independent transition dynamics.

We computationally applied electrical modulation (excitatory or inhibitory current; see

Materials and Methods) to RNNs trained with neuromodulated subpopulations and found that
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while electrical current given to random subpopulations did not affect the RNNs’ performances,

current delivered to the neuromodulated subpopulation could significantly affect network output

(Fig. 4.5b), shifting behaviors directionally toward the opposing neuromodulation condition

behavioral set (Appendix, Fig. 4.18a,b).

In each RNN, increasing the level of targeted electrical input — for example inhibitory

modulation in the absence of neuromodulator — led to a graded transition in behavior similar to

the transition observed with graded administration of neuromodulator (Fig. 4.5c). To compare

these conditions, we measured the amount of electrical input that led to output of 50% of

the fully-neuromodulated condition (e-mod50) analogous to EC50 for neuromodulator levels.

Interestingly, RNNs also exhibited idiosyncratic circuit-based sensitivity to electrical modulation,

with e-mod50 under inhibitory modulation ranging from -2.6 input current to not achieving

e-mod50 by the maximum modulation we administered (-9 input current; >3.5x range) (Fig.

4.5d, right).

We then assessed whether networks’ electrical and chemical sensitivities were related,

and found no significant correlation (Fig. 4.5e). Since some RNNs’ outputs did not reach

e-mod50, saturating before the maximum electrical input given, — further evidence of a different

mechanism at play — we also measured each RNN’s output at maximum electrical input (input=-

9) and similarly found no significant correlation to EC50 (Appendix, Fig. 4.18c). The lack

of correlation suggests that networks insensitive to chemical modulation may still be highly

sensitive to electrical modulation and vice versa. Consistent with this, we found that electrical

modulation progressively shifted population dynamics along a manifold transition distinct to

neuromodulation, enabling different rates of transition (Fig. 4.5f). This may help explain why

some patients who fail pharmacologic treatments sometimes respond dramatically to DBS. By

utilizing an independent mechanism to chemical modulation, DBS exploits a parallel circuit-

sensitivity to achieve therapeutic efficacy.
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4.5 Discussion

Neuromodulation in brains drives unique neural function in health and disease. Using

an RNN model, we showed how neuromodulators, through simple scaling of synaptic weights,

can generate unique behavioral modes from a single RNN. The importance of our findings is

not that our model was able to solve tasks like Go, No Go, which other computational models

with mechanisms like contextual cuing can also solve. Rather, we showed how neuromodulation,

a completely independent and previously uncharacterized control mechanism that is highly

relevant biologically and clinically, is able to rapidly reconfigure a network with only a single

scalar input.

Our model provides insights into neuromodulation that are related to other recently

elucidated principles of neural computation. We showed that neuromodulation leads to separation

of distinct activity hypertubes, similar to those observed by Goudar and Buonomano [GB18]

and Nieh et al. [Nie+21], with neuromodulation effectively disentangling neural trajectories

by separating them in phase space analogous to the work of Russo et al. [Rus+18] in motor

cortex. Just as neural trajectories provide transformations in phase space that naturally handle

temporal variation of sensory-motor patterns [GB18], neuromodulation leads to transformations

in phase space that elucidate a biological mechanism for handling intermediate and continuously

transitioning neural states, even if never experienced before. We demonstrated the biological

use of this property through replication of Inagaki et al.’s findings in Drosophila [Ina+12]. In

this way, the level of neuromodulation acted as a controller on the amount of disentangling of

neural trajectories, using internal neural state (amount of weight modulation) to control output

behavior. Such a system is robust to external noise (Appendix, Fig. 4.6), since far apart neural

states generate trajectories that are widely separated in phase space.

Through this analysis we discovered a feature of networks previously unreported to

our knowledge: “circuit-based sensitivity,” which helps explain the clinical observation of

high variability in drug and other therapeutic response [Fur+19], alongside more standard
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explanations like enzyme variant-dependent drug metabolism and clearance rates. This emergent

sensitivity property of neuromodulated networks is related to the well-known “many solutions”

phenomenon of neural networks where different weight configurations can produce identical

output [Meh+20; Mah+19]. Unlike studies focusing on variability in networks producing

identical output, our model allowed study for the first time of the transition dynamics under

neuromodulation, revealing unique geometric configurations of phase space underlying emergent

network sensitivity profiles.

Future studies aimed at identifying circuit parameters that control this transition dynamic

geometry will be critical for understanding and use in therapeutic optimization. The idiosyncratic

nature of circuit-based sensitivity aligns with current efforts in precision medicine calling for the

need to consider each patient as an idiosyncratic individual — here we provide computational

evidence for this claim and its particular importance in neuropsychiatric treatment [Pro+19].

Fully understanding the relationship between chemical and electrical modulation and sensitivity

is also crucial. Although our simplified model suggests how the modes of modulation influence

dynamics (see Appendix), further analytical and experimental investigation into their relationship

as network dynamics evolve over time could provide deeper insights.

Our formulation of the neuromodulatory effect on synaptic weights is a simplification of

the true biological mechanism. Elaborating our model to support differential weight modulation

(e.g. via multiple neuromodulators and neuromodulator receptor subtypes on specific cell-types)

[HJ10; Bac+20], neuromodulator multiplexing [WM14; LBN18], and metamodulation [NB12;

RS10; KE99] will likely lead to even more sophisticated network behavior. Our model also

uses arbitrary neuromodulation levels, whereas brains likely use specific levels for optimal

functionality. Future investigation into which levels are optimal and methods of learning these

will be important.

Finally, neuromodulation provides interesting directions for machine learning (ML). By

separating synaptic memory regimes in a single network, we demonstrate how a network can

have much greater flexibility and increased capacity, supporting a library of unique behaviors

137



for overlapping external contingencies. Furthermore, each behavior can be rapidly accessed

through targeted application of the relevant neuromodulatory factor. High capacity, compact

networks with high-speed access to different output modes presents a promising component for

ML development and storage-limited applications like edge computing. Additionally, through

the separation of memory regimes that effectively splits a single RNN into multiple processors,

this mechanism may provide a means of realizing the super-Turing capability of specific RNN

configurations as defined by Cabessa and Siegelmann [CS14]. Future theoretical assessment of

neuromodulated RNNs’ capacity will establish if this simple mechanism is sufficient to exceed

the Turing limit.

Chapter 4, in full, is a reprint of the material as it appears in: Ben Tsuda, Stefan C.

Pate, Kay M. Tye, Hava T. Siegelmann, and Terrence J. Sejnowski. Neuromodulators generate

multiple context-relevant behaviors in a recurrent neural network by shifting activity hypertubes.

In submission, 2022. The dissertation author was the primary investigator and author of this

paper.

4.6 Appendix

4.6.1 Code availability

The code and RNN models in this work will be made available at:

https://github.com/tsudacode/neuromodRNN
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4.6.2 Supplementary Figures
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Figure 4.6. Noise robustness of neuromodulated and external cue-driven networks. a,
Neuromodulation is a fundamental biological mechanism, underlying e.g. how hunger level
dictates a bear’s behavior when encountering a mystery mushroom. b, Modified Go-NoGo task
in neuromodulated network. Neuromodulatory effect alters network configuration to produce
different behaviors. c, Standard, context-dependent model with contextual cue input. External cue
is required to drive activity to generate different outputs. d, Output error for neuromodulated and
exogenously cued models with increasing input noise. Noise is drawn from normal distribution
with standard deviation σ . Transiently cued models (green) — biologically more realistic than
persistently cued (red) — have errors that increase more rapidly with increasing noise compared
to neuromodulated (black—100% of network, blue—10% network; dashed lines factor 2.0, solid
lines factor 9.0) or persistently cued models (red). e, Average Euclidean distance of neural
trajectory endpoint between replicates when given no driving input across increasing levels
of input noise. Neuromodulated networks (blue, black) generate network dynamics robust to
noise, unlike cued models (green, red) which rapidly become unpredictable, exhibiting high
variability — measured as increased Euclidean distance of trajectory endpoints on replicate trials
— as noise levels increase. Cued models in d,e are highly dependent on specific cue values and
separation amplitude between cues (dotted lines represent networks that had input cue amplitudes
separated by 0.4 arbitrary units (au), dashed lines for cues separated by 1.0 au, solid line for
cues separated by 2.0 au). f, Neuromodulation changes the flow field of the network in activity
space (differences of vector fields in left and middle PCA activity plots). Blue vectors represent
network’s internal flow field (no driving input) along trajectories. Cue-based model (right) relies
on external input (red arrows) to drive the network along desired trajectory in phase space (yellow
arrows for Context 2 trajectory). For visualization clarity, flow field vectors indicate direction of
activity change (without magnitude) and are shown only when network activity is changing more
than a threshold of 0.02 units of Euclidean distance per timestep in full network activity space.
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Figure 4.7. Neural activity under neuromodulation. a, Mean whole network population
activity for example RNN over 100 trials after training. Activity under neuromodulation (blue) is
not simple transform of activity without neuromodulation (black). b, Difference of mean activity
with and without neuromodulation (∆activity) on + vs /0 stimulus trials for individual neurons.
Each color represents an independently trained RNN (10 colors total). Points representing simple
scaling of neural activity under neuromodulation would lie on dotted diagonal line.
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Figure 4.8. Relationship between neuromodulated weight configurations. For the contra-
dictory end behaviors in response to shared stimuli, as in the modified Go-NoGo task, a single
network without neuromodulation cannot simultaneously learn both tasks as depicted in this
schematic by the lack of overlap between weight space that solves task 1 (T1) and task 2 (T2).
By scaling weights in the network by a factor f , neuromodulation allows overlap between the
f ·T1 and T2 spaces. The network solves task 1 when weights are unscaled (T1), and task 2 when
weights are scaled ( f ·T1 ∩ T2).
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Figure 4.9. Neuromodulation weight scaling mechanism works over a range of factors. a,
A range of neuromodulation factors were tested on the modified Go-NoGo task. Factors were
applied to weights initialized as described in Materials and Methods. b, All amplifying factors
tested supported task learning in a similar number of training trials. Dampening factors that
were either too small (e.g. 1.11) or too large (e.g. 100) led to longer training. c, All amplifying
factors tested had perfect task performance. Dampening factors that were either too small or
too large led to impaired performance, though better than without neuromodulation (factor=1).
Extreme strong dampening effectively silences all transmission between neurons, impairing
information flow in the network. Too little scaling (e.g. 1.11 factor dampening) did not create
enough separation to distinguish the behaviors.
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Figure 4.11. Spectrum of neuromodulation subpopulation size and factor. a, Different
conformations of neuromodulation of a single network support multi-behavior task (9-behavior
modified Go-NoGo). Neuromodulation with a single factor (e.g. fnm = 2.5) of non-overlapping
and overlapping subpopulations across the spectrum of sizes could learn the full 9-behavior task,
with larger overlapping subpopulations less consistently learning the full task (“successful/total”
refers to independent networks that achieved successful training loss criteria over total attempted).
Neuromodulation of the full network with different factors ( fnm ∈ [1:1:9]) consistently supported
the 3 behavior task (5/5 successful/total), but not >3 behavior tasks (4-behavior 0/5; 5-behavior
0/5; 9-behavior 0/5 successful/total). Subpopulation neuromodulation with different factors
( fnm ∈ [1:1:9]) could also learn the 9-behavior task with overlapping and non-overlapping sub-
populations, similarly exhibiting less consistent learning with larger overlapping subpopulations.
b, Single factor networks test performance on 9-behavior task across networks that achieved
training loss criteria. c, Same as b but for multi-factor networks. d, Fraction of neurons neu-
romodulated for ≥2 conditions across range of neuromodulated subpopulation sizes. e, Mean
number of conditions a neuron was neuromodulated for across range of subpopulation sizes. For
d,e, 5 replicates per condition. All error bars are SEM.
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Figure 4.12. E-I difference scaling drives differential activity patterns. a, Differential
response of an individual neuron (neuron 1) in a whole-network neuromodulated RNN to same
stimulus depending on neuromodulation presence. b, At the start of a trial, neuromodulation
causes neuron 1 to receive different synaptic current input, shifting its firing rate. c, The
different synaptic input under neuromodulation occurs due to amplification of the net difference
in incoming excitatory and inhibitory weights; E/I balance is unchanged. d, E-I difference
across the whole network is also amplified; E/I remains unaltered. e, Though all neurons
in the RNN are influenced by the same neuromodulation, some exhibited activity selective
for particular stimulus-neuromodulation combinations (high si; example neuron bottom right,
si=0.89; see Materials and Methods); others were less selective (low si; example neuron bottom
left, si=0.01). f, Neurons formed 5 clusters—2 predominantly inhibitory, 3 predominantly
excitatory—whose activity coded for different stimulus-neuromodulation combinations. Each
column of the heatmap is the mean firing rate of an individual neuron across conditions with
excitatory/inhibitory identity labeled below. (Nm: neuromodulation present or absent; Stim:
stimulus presented) g, Amplification of relative weight differences (∆s of mean weight) between
inhibitory clusters drives cluster activity switches under neuromodulation: increased inhibition
of clusters 2 and 4 by cluster 5 and disinhibition of cluster 3. In all panels light blue represents
modulator present and grey/white modulator absent. Error bars are SEM.
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Figure 4.14. Independent networks have unique clustering patterns & different network
configurations exhibit less selective neurons and complex, overlapping clustering profiles.
a, Neural selectivity profiles for 3 networks trained independently on the same condition (100%
modulated, 2-behavior). All histograms exhibit high selectivity peak. b, Each network from a
exhibits a unique neural activity clustering pattern including number of clusters and excitatory-
inhibitory composition of clusters (see Appendix, Fig. 4.12f for run 1 cluster heatmap). c,
Selectivity index histograms for example networks with different configurations and tasks. Com-
pared to a network in which all neurons were neuromodulated trained on the 2-behavior modified
Go-NoGo, network configurations with smaller neuromodulated subpopulations and more be-
haviors exhibited less selective neurons and more non-selective neurons. d, A network with 10%
neuromodulated subpopulation trained on the 2-behavior modified Go-NoGo formed 2 activity
clusters, showing high overlap across stimulus-context conditions. e, The stimulus-context
clustering profile for a network with 10% neuromodulated subpopulations (non-overlapping)
trained on the 9-behavior modified Go-NoGo task. Cluster profiles are complex and highly
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Figure 4.15. Variability in network neuromodulatory transitions. a, Shotgun stimulus
mapping of activity space inhabited by network in absence and presence of neuromodulation
defines separable activity manifolds on which individual trajectories occur. b, Left: Output to
positive stimulus at time point 0.5s of 29 networks at varying levels of neuromodulation. Each
network was independently trained with amplifying neuromodulation factor 9 on the modified Go-
NoGo task and then tested at intermediate neuromdulation levels. Right: Sigmoid fits to raw data
with EC50 of each curve indicated by dotted vertical line. EC50s ranged from 2.1 to 6.5. Slope
of sigmoids (σ slope) ranged from 0.9 to 26.3. c, For + stimulus, excessive neuromodulation
pushes network activity into different space. d, Over-neuromodulation can drive inappropriate
behavior (top) or no change (bottom). e, Transition dynamics for overmodulation is best fit
by double sigmoid; first fits normal neuromodulation transition (blue) and second fits abberant
neuromodulation transition (orange). For all PCA, top 3 PCs accounted for 80–92% of activity
variance.
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Figure 4.17. RNN models of Drosophila exhibit emergent transition behaviors and high
variability of neuromodulator sensitivity. a, For 100mM sugar, a RNN with intermediate
neuromodulation ( fnm=3; cyan) generates activity between the neuromodulation extremes (none;
grey and fnm=5; magenta). b, Activity trajectory at MAT sugar concentration for intermediate
neuromodulation of a RNN lies between those for neuromodulation extremes. c, Across sugar
concentrations, intermediate neuromodulation trajectories (cyan) lay between neuromodulation
extremes (grey and magenta), forming a 3-layer activity curtain ending on curved line (dotted
lines) defined by trajectory endpoints across the sugar spectrum. d, Independently trained RNNs
(n=30) exhibited high variability of PERs at 100mM sugar (0.10 to 0.66) and MATs (48 to
194mM). e, Normalized MAT change (%∆MAT) vs E/I ratio for whole RNN and subpopulations.
%∆MAT had significant negative correlation to E/I ratio of the non-neuromodulated neurons
(p<0.05, R=-0.39). f, %∆MAT E/I ratio correlation was driven by recurrent weights within the
non-neuromodulated subpopulation 3⃝, rather than recurrent weights within the neuromodulated
subpopulation 1⃝, weights from neuromodulated to non-neuromodulated subpopulation 2⃝, or
weights from non-neuromodulated to neuromodulated subpopulation 4⃝ as shown by Pearson
correlation p-values (p) and coefficients (R) (for 1⃝, 2⃝, 4⃝ correlation significance scores shown,
scatter plots not shown).
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Figure 4.18. Targeted electrical modulation shifts network dynamics through independent
circuit effect. a, Behavioral and activity shifts in absence of neuromodulation. Top: behavioral
shifts with on-target e-mod. Bottom: activity dynamics under e-mod. Activity trajectories
without e-mod are in black (neuromodulated trajectories in light blue for reference); e-mod can
shift trajectories off black toward neuromodulated activity space (orange arrow). b, Same as
a with present neuromodulation. Top: behavioral shifts. Bottom: Activity trajectories without
e-mod are in blue (non-neuromodulated trajectories in grey for reference); e-mod can shift
trajectories off blue toward non-neuromodulated activity space (green arrow). c, Some networks
did not reach an output level equivalent to half the response of maximal neuromodulation (EC50)
even at the highest level of electrical modulation given of -9 units. To assess all networks
electrical modulation sensitivity in comparison to neuromodulation sensitivity, network output
at maximum electrical modulation is compared to EC50. Like EC50 vs e-mod50, there is no
significant correlation (p=0.10).
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4.6.3 Relationship to isolated gain modulation

Gain modulation changes the slope of the unit activation function (the neuron’s “intrinsic

excitability”) by changing a gain parameter g:

r = f (x;g)

where r is the firing rate and x is the synaptic current variable. For the sigmoid activation function

this corresponds to:

r =
1

1+ e−gx

To see the effective change on the activation function of amplifying or dampening the weights

we can compare the effect of gain modulation to weight modulation on the equation that governs

neural dynamics:

τ ẋi =−xi +∑
j

Wjir ji +Wuiu+N(0,0.1)

If we assume no input and no noise, we get a simplified equation describing neuron dynamics:

τ ẋi =−xi +∑
j

Wjir ji

Gain modulation g gives:

τ ẋi =−xi +∑
j

Wjir ji(g)
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while weight modulation with a neuromodulation factor m gives

τ ẋi =−xi +∑
j

m ·Wjir ji(1)

To compare each type of modulation, we can consider the modified terms:

1 · r(g) = 1
1+ e−gx (gain effect)

m · r(1) = 1
1
m + 1

m · e−x
(weight effect)

=
1

1
m + e−x−lnm

These effects are equivalent when

g =−
ln(1−m

m + e−x−lnm)

x
(4.3)

So generally gain modulation, g, is only equivalent to a weight modulation by m if the gain term

is precisely the time varying function of x defined by Equation 4.3. Furthermore, for some values

of m, there is no equivalent g for certain values of x. E.g. for m = 2, g is defined by Equation 4.3

only for x < 0. For arbitrary values of x with fixed, constant g and m:

r ji(g) ̸= m · r ji(1)

except when g = m = 1, i.e., when there is no modulation. Thus, weight neuromodulation and

gain modulation operate through different effects.

4.6.4 Chemical and electrical modulation

Chemical (neuromodulation) and electrical modulation in our network operate in direc-

tionally similar manner with qualitatively different effects. This can be seen by inspecting the
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equation governing each neuron i’s synaptic current variable and thereby the network’s activity

dynamics:

τ ẋi =−xi +∑
j

Wjir ji +Wuiu+N(0,0.1)

For any given neuron we can break up the terms by whether an input neuron is in the neuromod-

ulated subpopulation or not:

τ ẋi =−xi +∑
k

Wkirki +∑
q

Wqirqi +Wuiu+N(0,0.1)

where k is the index for non-neuromodulated neurons and q is the index for neuromodulated

neurons.

Neuromodulation in our model acts by scaling the target neurons outgoing weights by a factor f :

τ ẋi =−xi +∑
k

Wkirki + f ·∑
q

Wqirqi +Wuiu+N(0,0.1)

Electrical stimulation acts by adding exogenous synaptic current to target neurons. For a given

neuron i in the non-neuromodulated subpopulation, electrical stimulation of the neuromodulated

subpopulation is felt through altered incoming firing rates:

τ ẋi =−xi +∑
k

Wkirki +∑
q

Wqirqi,Estim +Wuiu+N(0,0.1)

and a neuron i in the neuromodulated subpopulation is additionally affected through direct

stimulation:

τ ẋi =−xi +∑
k

Wkirki +∑
q

Wqirqi,Estim +Wuiu+uEstim +N(0,0.1)
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Thus we can see that both chemical and electrical stimulation act through the same term in the

equation that governs neural synaptic currents yet in different manners. Neuromodulation directly

scales presynaptic weighted inputs from neuromoduated neurons, whereas electrical stimulation

acts by altering the firing rate of presynaptic neuromoduated neurons with an additional direct

influence on the synaptic current if the neuron of interest is in the electrically stimulation

subpopulation.

The similarities of these forms of modulation (acting through the same terms of the

synaptic current equation) indicates why they can have similar affects on network output in some

circumstances. Nevertheless, the differences in how they affect the synaptic current equation are

propagated through the recurrent connections of the network at each time step which drives the

distinct dynamical changes seen under chemical versus electrical modulation.
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[Bac+20] Julien Bacqué-Cazenave, Rahul Bharatiya, Grégory Barrière, Jean-Paul Delbecque,
Nouhaila Bouguiyoud, Giuseppe Di Giovanni, Daniel Cattaert, and Philippe De
Deurwaerdère. Serotonin in Animal Cognition and Behavior. International Journal
of Molecular Sciences, 21: 2020, 1649.

[Bea+20] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley, Jeff
Clune, and Nick Cheney. Learning to Continually Learn. 24th European Conference
on Artificial Intelligence (ECAI). Ed. by Giuseppe De Giacomo, Alejandro Catalá,
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Chapter 5

Conclusions

The brain is a memory machine with many features and levels of complexity built upon

each other, seamlessly integrated through millions of years of evolution. From the interaction

of molecules, cells, networks, and systems emerge colorful behaviors, vivid memories across

large time spans, abstract reasoning, and consciousness. These emergent properties can only be

understood by studying those interactions: networks made up of cells governed by molecules,

aggregated and fused into systems that create an integrated single central nervous system. In this

dissertation a small contribution to this effort is made. Primarily focusing on the prefrontal areas

of the brain, I studied how systems of circuits coordinate (Chapter 2), how the circuits upon

which those systems are built can learn and develop (Chapter 3), and how that process depends

on the modulatory effects of molecules acting in time and space (Chapter 4).

In each chapter future directions were discussed, yet other exciting future work reaches

across the levels of investigation considered in each chapter. Revealing how strategies develop

and evolve within circuit components (Chapter 3) set within a hierarchical system (Chapter 2)

and how this is influenced by both the architecture and importantly disruptions (e.g. lesions)

will provide insight and predictions for how PFC subregions and related regions learn together.

Implementing simulations of learning impairments (e.g. decreased learning rate or impaired

synaptic transmission) in this context and how they affect the system’s flexibility, inductive

transfer, and memory savings will be important for both understanding and possible treatment
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options for disorders that affect prefrontal learning like autism spectrum disorder and Rett

syndrome. Studies of how neuromodulators can regulate learning and coordinate multiple

behaviors (Chapter 4) in this setting will relate findings to clinical and experimental observations

of neuromodulatory action within the PFC. These latter investigations would shed light on

unknowns like the role of diurnal and seasonal fluctuations of neuromodulator levels in mood

disorders like seasonal affective disorder [Tyr+16; Mat+15], and the role of dopamine in working

memory impairments in schizophrenia [Bra+21].

To develop effective treatments for neurological and psychiatric illnesses, we must

understand basic properties of how the brain operates across levels. The studies in this dissertation

and others begin to build the multi-level foundation necessary for unraveling deep mysteries

of memory and learning in the brain, of which hints are accruing. Coordination of multiple

neuromodulators (Chapter 4; [Pri+21]) acting on a specialized neural network architecture1

suggest the basis of how episodic memory may operate. Emergent representations that vary in

abstraction across circuits in hierarchical systems (Chapter 2; [Bot07]), attentional mechanisms

[IKN98; Vas+17], and dynamic components supporting use of past information and prediction

of future occurrences (Chapter 2; [Fri05]) hint at some pieces of consciousness. Future studies

built on these foundations suggest discoveries on the horizon and hope for urgently needed new

treatments for diseases of the brain.

1The specialized architecture of the hippocampus is the focus of our study: Tsuda B, Sejnowski TJ. The
hippocampus as a spatiotemporal autoencoder. In preparation, 2022
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