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Abstract

Cofilin and other Actin-regulating proteins are essential in regulating the shape of dendritic

spines, which are sites of neuronal communications in the brain, and their malfunctions are

implicated in neurodegeneration related to aging. The analysis of cofilin motility in dendritic

spines using fluorescence video-microscopy may allow for the discovery of its effects on

synaptic functions. To date, the flow of cofilin has not been analyzed by automatic means.

This paper presents Dendrite Protein Analysis (DendritePA), a novel automated pattern rec-

ognition software to analyze protein trafficking in neurons. Using spatiotemporal information

present in multichannel fluorescence videos, the DendritePA generates a temporal maxi-

mum intensity projection that enhances the signal-to-noise ratio of important biological

structures, segments and tracks dendritic spines, estimates the density of proteins in spines,

and analyzes the flux of proteins through the dendrite/spine boundary. The motion of a den-

dritic spine is used to generate spine energy images, which are used to automatically clas-

sify the shape of common dendritic spines such as stubby, mushroom, or thin. By tracking

dendritic spines over time and using their intensity profiles, the system can analyze the flux

patterns of cofilin and other fluorescently stained proteins. The cofilin flux patterns are found

to correlate with the dynamic changes in dendritic spine shapes. Our results also have

shown that the activation of cofilin using genetic manipulations leads to immature spines

while its inhibition results in an increase in mature spines.

Introduction

Dendritic spines are small protrusions located on the surface of neurons, which receive inputs

from other neurons and are the active sites for neuronal communications called synapses.

These synapses are often remodeled by the rapid turnover of the actin cytoskeleton, which is

regulated by various actin-binding proteins [1, 2]. Cofilin is an actin-severing protein and its

activity is regulated by phosphorylation at Ser3 [3, 4]. Cofilin mediated remodeling of the actin

cytoskeleton is critical in regulating the shape and functionality of dendritic spines. Therefore,

the localization and phosphorylation state of cofilin within dendritic spines can affect the
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synaptic functions. Cofilin-S3A is a constitutively active mutant form of cofilin, where the Ser3

is substituted to alanine, which can constitutively bind and remodel actin filaments, whereas

in inactive form of Cofilin-S3D the serine is substituted with aspartate [1, 2]. The S3A mutant

cannot be inactivated by phosphorylation, hence it is always in its active “severing” state,

which leads to filamentous actin (F-actin) depolymerization, whereas the S3D substitution

prevents the cofilin binding to F-actin, which reduces F-actin depolymerization. These two

mutants are often used to study the mechanism of cofilin phospho-regulation in neurons [5, 6]

and are shown in Fig 1. Although various studies have reported on the functional down-stream

effects of the cofilin mutants, the changes in their dynamics have been relatively unexplored to

date.

In this paper, we investigate the dynamics of the actin-severing protein, cofilin, and its

effects on remodeling of dendritic spines. Dendritic spines contain the post-synaptic sites of

excitatory synapses in the central nervous system (CNS) [7–11]. Dysregulation of dendritic

spines can have a strong impact on brain functions and underlie cognitive decline associated

with neurological diseases. Cofilin can regulate the remodeling of dendritic spines through the

disassembly and reorganization of F-actin cytoskeleton, which provides the structure to den-

dritic spines. Elevated levels of cofilin have previously been shown to contribute to loss of syn-

apses and spines in neurodegenerative disorders, such as Alzheimer’s disease (AD) [12, 13].

However, the precise mechanism underlying cofilin-mediated loss of synapses is unclear.

Therefore, it is important to quantify the motility of cofilin and examine how the localization

of cofilin affects dendritic spine shape.

Most previous studies involving the effects of proteins on neurons have primarily used

manual examination, segmentation, and classification [14]. Most of these biological studies

have used popular user-operated software such as ImageJ [15] to manually segment dendritic

spines, other studies have used visualization systems such as Imaris or Neurolucida [16]. How-

ever, both Imaris and Neurolucida require z-stack information and are sensitive to parameter

selection. These manual methods are prone to human bias and are extremely tedious and

time-consuming processes when performed on multiple images. Because of this, it is advanta-

geous to develop an image analysis software such as DendritePA to automatically segment

dendritic spines and extract features for the analysis of live fluorescence videos.

To automatically relate cofilin motility with dendritic spine shapes, dendritic spines must

be automatically segmented. Because of the small size of dendritic spines, it is very hard to

acquire images with sufficient resolution and contrast to properly analyze the dynamic entities

and structures. To compensate, many experiments use the maximum intensity projection of a

z-stack instead of data from a single image. For our work, capturing these z-stacks would be

disadvantageous, as we are examining two separate fluorescence channels; a green channel,

which detects wild-type (wt)-Cofilin-GFP to assess cofilin motility and a red channel to detect

tdTomato providing spine structural information. While it may be possible that overexpres-

sion of proteins cause artificial effects, our previous studies with the cofilin mutants have

showed no adverse effects of GFP-tagged cofilin or TdTomato on neurons [5]. In addition, the

genetic cofilin mutants cofilin-S3A and cofilin-S3D were used to study the effects of cofilin

activity on its dynamics and spine shape. To analyze the spatiotemporal relationship between

dendritic spines and cofilin, a time series of sufficient temporal resolution must be captured.

Here we present a method that uses the spatiotemporal information of the video to improve

the signal-to-noise ratio of each frame without having to acquire z-stack data.

In this paper, we present DendritePA, a novel automated pattern recognition system that

analyzes protein localization in neurons using multi-channel florescence microscopy and

relates it to dendritic spine shape and protein activity state. Unlike previous work, our Dendri-

tePA uses video bioinformatics algorithms to automatically obtain spatiotemporal pattern
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information on protein dynamics. The system is used specifically to examine the effects of cofi-

lin motility on the shape and evolution of dendritic spines. Fluorescence microscopy is used

because the pixel intensity is assumed to be proportional to the amount of stained proteins in

the region. Due to the small size of cofilin, which is at the subpixel level or smaller than a pixel

at 40x magnification, individual molecules of cofilin cannot be tracked. However, our Dendri-

tePA can estimate the changes in cofilin density within the dendritic spines by measuring their

intensity levels. DendritePA also uses a spine energy representation derived from an existing

motion pattern representation called gait energy image (GEI) to summarize spine motion into

a single image. Doing so allows for the extraction of useful features that can be used to classify

segmented spine shapes. By relating the spine shapes with the observed cofilin trafficking

dynamics, it is possible to examine the underlying biological processes.

Related work

Some preliminary work reported in this paper were originally presented at the International

Conference on Pattern Recognition 2016 [17]. To the best of our knowledge, before our previ-

ous conference paper, cofilin has never been automatically quantified. Another actin-

Fig 1. Cofilin dynamics in dendritic spines. A) When wild-type cofilin is active (Active Cofilin Ca) it binds to F-actin (F-actin Bound Cofilin Cf) and

severs it into G-actin (G-actin Bound Cofilin Cm). When cofilin is phosphorylated (Phospho Cofilin Cp) on Ser3, it cannot bind the actin. This phospho-

regulation is mediated by two upstream players, LIMK which phosphorylates cofilin, and SSH which dephosphorylates cofilin. Both Active and

Phospho Cofilin can move from the spines into the dendrites. B) Cofilin-S3A, which cannot be phosphorylated, can bind to actin (Cf) and sever it into

G-actin (Cm). However, Cofilin-S3D cannot bind to actin. S3A and S3D are not able to convert between each other, since they are different mutants.

However, both may flow in and out of dendritic spine regions.

https://doi.org/10.1371/journal.pone.0182958.g001
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regulating protein paxillin, has previously been automatically analyzed in non-neuronal flores-

cence images [18]. However, only paxillin dense regions that are clearly visible are examined.

These paxillin dense regions are also sparse and appear much brighter than the rest of the cell

allowing for simple segmentation. However, this is not the case for cofilin located in neurons

as it is more uniformly distributed. Also, cofilin dense regions are not static, forming and dis-

persing over time, making tracking these clusters challenging. Bosch et al. [6] have manually

studied the effect of cofilin localization on the remodeling of dendritic spines. They classified

cofilin transport in dendritic spines into four patterns: persistent increase in concentration,

transient increase, transient decrease, and persistent decrease. In their work, they found that

cofilin transport patterns correlated with the remodeling of dendritic spine shapes.

There are some current methods that automatically inspect the flow of proteins in cells.

Many of these techniques evaluate individual particle trajectories over time by using frame by

frame object detection [19] and associating the objects across time. An issue with these tech-

niques is that they do not perform well with high particle density and background noise.

Another method is to separate the cell into regions and measure particle flux by the intensity

level or protein density in the regions [20, 21]. Pecot et al. [21] designed an approach that

involves partitioning the cell into predefined sections of set sizes and shape. By checking the

quantity of particles or tracking changes in the intensity levels, they could estimate the flux of

these particles through the boundaries between sections. A drawback of this approach is that

regions must be rigid and the choice of region size affects the performance. Experiments on

live samples utilized micro-fabricated patterns [22] to constrain the cell shape so that the parti-

tioned regions remained consistent throughout the experiment.

To efficiently correlate cofilin motility with dendritic spine shape, spines must be automati-

cally segmented and classified. Spine segmentation methods can be separated into two groups,

classification-based [23] and centerline extraction based [24–28]. The classification-based

methods classify individual pixels into various groups such as spine, dendrite, or background

[23]. The software NeuronStudio by Rodriguez et al. [23] utilizes the pixel distance to the near-

est surface point as a feature in classification, however, this can generate spurious spine detec-

tion and it is sensitive to noise. NeuronStudio also requires manual input by the user before

the segmentation process can begin. Centerline extraction based methods involve detecting

the backbone or central region of dendrites and segmenting spines by their relationship to the

central region. Traditional methods may experience issues when the dendrite width varies

along its orientation. In our previous work, the method [29] was used to detect a center region

using gradient vector flow [30] instead of a thin backbone. However, this method does not

completely capture the segmentation of a dendrite. Instead, in this paper, we choose to build

upon the method used by Basu et al. [28] called 2dSpAn. This method uses a set of convolution

kernels at varying angles to accurately segment a dendrite. This method can compensate for

varying dendritic spine widths. However, the software requires user input of seed points for

the kernels, does not consider dendrites with large curvatures, and may overestimate the size

of the dendrite at the base of large spines. In our work, we address each of these issues.

Using segmented spine information, automated classification of shape type is critical in

analyzing biological conditions. Basu et al. [28] utilized a decision tree method to classify

spines by using neck length, spine height, and head width. An issue with these features arises

when the resolution is low because they are measured in only a few pixels. This prompts an

increased likelihood of measurement error and resulting in misclassifications. The primary

feature utilized by DendritePA is an adaption of gait energy image (GEI) [31]. GEI is a spatio-

temporal gait representation that has been widely used to characterize human walking patterns

and has previously been shown to be highly effective for recognition of different individuals.

DendritePA uses a spine energy image (SEI) along with other features in the classification of
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dendritic spine shapes such as mushroom, thin, and stubby. Unlike previous spine classifica-

tion methods, SEI allows for the use of spatiotemporal information in classification.

As compared to previous work, the key contributions of our work are: a) Present Dendri-

tePA (protein analysis) software which is an automated, unbiased program that can be used to

segment and track dendrite spines, analyze cofilin patterns in fluorescence live videos, and

classify dendrite spine shape. b) Develop for the first time an automated algorithm suite to

quantify the movement of cofilin in dendrites and spines, and correlate it to spine shape using

multi-channel fluorescence live videos. c) Use spatiotemporal information to enhance the sig-

nal-to-noise ratio in videos and perform automated analysis of multiple fluorescent probes in

time-lapse videos for tracking the local distribution of cofilin while simultaneously analyzing

the effects on spine shape. d) Segment spines and dendrites using convolution kernels that can

adapt to changing angles automatically. e) Automatically classify individual dendritic spine

shapes using SEI and other features. f) Examine the effect of cofilin activation using wild-type

cofilin, cofilin-S3A, and cofilin-S3D. Understanding the dynamics of cofilin motility and acti-

vation within sub-neuronal compartments is critical to understanding its function in regulat-

ing the morphological structure and functionality of synapses.

Materials and methods

Animal protocol

All animal care protocols and procedures were approved by the UC Riverside Animal Care &

Use Program, which is accredited by AAALAC International, and animal welfare assurance

number A3439-01 is on file with the Office of Laboratory Animal Welfare (OLAW).

Mice. Mice were obtained from Jackson laboratories, housed in an AAALAC-accredited

facility under 12-h light/dark cycles and fed standard mouse chow. Food and water were pro-

vided ad libitum. All procedures were approved by the Institutional Animal Care and Use

Committee at the University of California, Riverside.

Hippocampal neuron cultures. Cultures of hippocampal neurons were prepared from

embryonic day 15 (E15) or E16 pups. Briefly, hippocampal cells were treated with papain (0.5

mg/ml) and DNase (0.6 μg/ml) for 20 min at 37˚C, mechanically dissociated, and then plated

on glass coverslips that had been pre-coated with poly-DL ornithine (0.5 mg/ml in borate

buffer) and laminin (5 μg/ml in PBS). The hippocampal cells were cultured in Neurobasal

medium with 25 μM glutamine, 1% penicillin-streptomycin, and B27 supplement (Invitrogen,

Carlsbad, CA), under 5% CO2/10% O2 atmosphere at 37˚C. Hippocampal neurons were trans-

fected with ptdTomato and pcDNA3-EGFP-cofilin, pcDNA3-EGFP-cofilinS3A or pcDNA3-

EGFP-cofilinS3D plasmids to express tdTomato and wt-Cofilin-GFP, cofilin-S3A-GFP or cofi-

lin-S3D-GFP at 10 days in vitro (DIV) using a calcium phosphate method, as previously

described [5].

Live imaging. Time-lapse imaging was performed on 14 DIV hippocampal cultures

under an inverted fluorescent microscope (model TE2000; Nikon) with a 40x air Fluor objec-

tive and monitored by a 12-bit CCD camera (model ORCA-AG; Hamamatsu) using Image-

Pro software (Media Cybernetics). During imaging, the cultures were maintained in Hank’s

solution supplemented with 1.8 mM CaCl2, 0.45% glucose, and 0.1% BSA at 37˚C and 5%

CO2, and images were captured at 3 min intervals for 1 h. Cofilin was visualized by GFP fluo-

rescence and dendritic spines were identified with tdTomato. Briefly, samples were encoded

for blind analysis. In each experiment, 2–3 coverslips were analyzed for each condition. At

least ten spiny pyramidal neurons were randomly imaged in each group.

Automated analysis of dendritic spines and proteins
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Development and use of DendritePA software

The DendritePA is designed in a modular manner with three parts: Dendritic spine segmenta-

tion, protein motility extraction, and cofilin-spine shape analysis. A diagram of our workflow

is shown in Fig 2. DendritePA was written and developed with MATLAB 2016a programming

environment. The MATLAB source code, a stand-alone executable version of this algorithm,

and supplied test data are available online at http://vislab.ucr.edu/SOFTWARE/software.php.

DendritePA.m is the main program of the code and requires the following MATLAB tool-

boxes: Statistics and Machine Learning, Bioinformatics, Computer Vision System, Image Pro-

cessing, Mapping, and System Identification. The standalone executable requires the

installation of the 64-bit version of MATLAB Runtime R2016a (9.0.1) available at http://www.

mathworks.com/products/compiler/mcr/.

Dendritic spine segmentation

Dendritic spine segmentation is performed on the red color channel of our florescence data.

This channel is stained with TdTomato, which fills the cell, providing structural information

used for examining the cell morphology. Common issues with fluorescence microscopy

include hazy background noise, lack of contrast, and bleaching of intensity over time [32]. The

background may auto-fluoresce and structures such as other dendrites and axons that are out

of focus may affect the structures of interest. To account for these issues, it is useful to prepro-

cess a video. Top-hat filtering has been used to reduce background fluorescence [33]. For this

work, a top-hat filter using a disk with a radius of 50 pixels was used on each frame. After com-

pleting top-hat filtering, a 3 by 3 median filter was also used to reduce noise. Previous methods

have used histogram matching to correct for photo-bleaching. This step is important for seg-

mentation of dendritic spines in later frames as well as getting the correct intensity of fluo-

resced proteins. Every frame after the first was histogram matched using the first frame as a

reference [34].

Temporal maximum intensity projection. Dendritic spine segmentation begins by esti-

mating the foreground in each frame. The foreground in our case is any pixel brightly illumi-

nated by fluorescent proteins in a dendritic structure. DendritePA starts by computing the

maximum intensity projection using all frames in a video. For a video consisting of Nv frames,

this temporal maximum intensity projection (TMIP) is defined as follows:

Tðx; yÞ ¼ max
t

Iðx; y; tÞ; ð1Þ

where I(x,y,t) is the image or frame at time t. Since TMIP uses the maximum intensity of a

pixel along the time dimension, a TMIP pixel will have a larger intensity if a structure strongly

fluoresced at that location for any time in the video. The pixel value will be minimal for any

background structures such as dendrites or axons outside of the focal distance. The TMIP is

then max-min normalized producing filter whose values will be used as weights for enhancing

the signal-to-noise ratio in each frame. For every frame, the TMIP is multiplied to the image as

weights. This image enhance procedure is summarized in the following equation:

I 0ðx; y; tÞ ¼
Tðx; yÞ � Tmin

Tmax � Tmin
�Iðx; y; tÞ: ð2Þ

By preprocessing with a TMIP, structures that are brighter in the TMIP will be enhanced in

each frame, while background structures such as axons or dendrites outside the depth of focus

will be suppressed. Since the data in the present frame is utilized, no artifacts will be generated

from the bright areas in the TMIP. The TMIP, an original image, and a temporally enhanced
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image are shown in Fig 3. TMIP is only applied for the segmentation step and not utilized in

the cofilin analysis step. This is because it is undesirable to modify the intensity in such a way

that would change the relative intensity differences between pixels. An initial segmentation of

the dendrites and spines can now be computed by using the Otsu’s method [35]. This initial

segmentation is the foreground which can be used to extract the central region of the dendrite.

With the foreground computed, the contours are then acquired by removing all interior pixels

of the foreground leaving only the outline.

Foreground and dendrite segmentation. Upon computing the foreground, we segment

the central regions or backbone of dendrites. Past strategies have relied on basic skeletoniza-

tion of the initial segmentation until only a thin backbone remain. The skeleton of a fore-

ground image (Fig 4A) is shown in Fig 4B. However, this skeleton does not give the best

representation of a dendrite and does not give data regarding the changing width of the den-

drite. Precise dendrite information is critical because numerous spine segmentation algo-

rithms are dependent on accurately segmented dendrites. In our previous work [17], we used

the method outlined in [29] to find the central region. This method used a modified gradient

vector flow (GVF), in which vectors are orientated towards the center of a structure. Starting

from every edge pixel, the algorithm follows the path of vectors until it encounters a vector

greater than 90 degrees from the current vector. Both these pixels will now be marked as a cen-

tral dendrite pixel. While this method is an improvement over skeletonization, it does not fully

capture the outline of a dendritic spine as it will not detect the outer edges of a dendrite.

Another issue is that the algorithm will not detect central regions near large dendrites or cross-

ing structures. This is because the GVF vectors area oriented in a spiral for these regions and

will not be 90 degrees from each other, which causes an infinite loop as it traces the vectors.

For this work, we adapted the convolution kernel method of [28] called 2dSpAn. In this

method, a foreground segmentation containing spines and dendrites is computed either with

manual thresholding or automatic Otsu’s method [35]. The user specifies two points on the

dendrite. The angle of flow is computed based on the two points selected. Based on this angle,

Fig 2. System overview diagram. DendritePA is designed with three subsystems: Dendritic spine segmentation,

Protein Motility Extraction, and Protein-Spine Shape Analysis. Dendritic spine segmentation subsystem uses the red

fluorescence channel to extract the foreground, central region, and spines. Protein motility extraction subsystem uses

green fluorescence channel to measure cofilin levels and transport in spines. Protein-spine shape analysis subsystem

uses both channels and temporal information to relate spine shape with cofilin flow.

https://doi.org/10.1371/journal.pone.0182958.g002
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a set of two 3 by 3 convolution kernels is selected. Starting from one point, a convolution ker-

nel is continuously applied until it reaches the other point. Next, starting from the opposite

point, the complementary convolution kernel is applied until it reaches the first. The intersec-

tion of the two regions generated by the kernels is taken as the segmentation of the dendrite.

Fig 3. Effect of preprocessing video frames. A) Temporal maximum intensity projection (TMIP) computed from an image sequence of dendrites. B)

An original frame from the image sequence. C) An enhanced image generated by combining the original frame with the TMIP. D) Extracted foreground

segmentation done on the original frame without TMIP. E) Foreground extracted after enhancement with TMIP. F) An overlay of foreground contours with

(green outline) and without (red outline) TMIP on enhanced frame. This reveals that TMIP significantly improves segmentation of foreground.

https://doi.org/10.1371/journal.pone.0182958.g003

Automated analysis of dendritic spines and proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0182958 August 21, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0182958.g003
https://doi.org/10.1371/journal.pone.0182958


Because the kernels are chosen by the original angle of flow, this method fails for dendrites

with large curvature. To automate this method and to account for large curvatures, we propose

the following steps. The foreground segmentation is skeletonized and trimmed. The two end-

points of the dendrite skeleton that are furthest from each other are used as the first two seed

points for the kernel method. Additional seed points can now be computed using piecewise

linear approximation as shown in Fig 4C. A line connecting the two current seed points is

computed and the dendrite skeleton pixel that is furthest from this line is evaluated. If the dis-

tance between the dendrite skeleton pixel and the closest point on the line is greater than dis-

tance d (which is set to 15 pixels for our experiments), then this skeleton pixel will be used a

Fig 4. Dendrite segmentation. A) Foreground segmentation of one image. B) Skeletonization of the segmentation done by removing pixels

from the peripheries until only an individual pixel remains. C) Diagram of piecewise linear approximation method used to automate dendrite

segmentation. D) Dendrite segmentation using convolution kernels. E) Low pass filter output performed after the convolution step. F)

Segmented foreground contours (green outline) and final dendrite segmentation (red) overlaid on to the original frame.

https://doi.org/10.1371/journal.pone.0182958.g004
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new seed point. The seed point generation step is repeated for all pairs of seed points until no

more seed points can be generated. This allows the dendrite to be computed in a piecewise

process, which accounts for large curvature in the dendrite. Once all seed points are found, the

convolution kernel method of 2dSpAn is used to generate a dendrite segmentation as shown

in Fig 4D.

Another issue with 2dSpAn is that for spines with large bases, a portion of the spine will be

included in the dendrite segmentation. Also, by breaking the dendrite into piecewise segments,

regions at the seed points will not be segmented perpendicular to the angle of flow. By applying

a low pass filter to the dendrite segmentation contour, the method smooths contour of seg-

mentation. This repairs both types of regions by reducing the high-frequency changes in the

dendrite segmented contour as seen in Fig 4E. Fig 4F shows the contour of the foreground

(green) and the segmentation of the dendrite (red) overlaid onto the original image.

Spine segmentation and declumping. Once a segmentation of the dendrite is obtained,

DendritePA begins the spine segmentation process. Using the generated backbone, a distance

map is computed [36]. This distance map measures the distance of each foreground pixel to

the closest dendrite pixel. Only pixels in the computed foreground contour are considered

dendritic spine candidates. Using the inner distance map and the foreground contour, all

regional maxima are used as possible dendritic spine detections. These regional maxima corre-

late with the furthest spine pixels from the central regions of the dendrite and are considered

seed points for spine detection. All contour pixels that are closer to the seed point than the

closest backbone pixel are considered a part of that spine as shown in Fig 5A. The end points

of this contour are found and a line is drawn to connect them. This line represents the inter-

face or boundary between the spine and its dendrite. The contour is now filled and will be

used as the segmentation of the spine as displayed in Fig 5B.

While many spines will be properly segmented, some spines may be merged due to their

close proximity to each other. Spines that are slightly touching at the base can be split by comput-

ing the distance to dendrite of every contour pixel. We trace these values and detect if a regional

minimal distance is between two regional maximal distances. If the minimal distance is less than

half of either maxima, draw a dividing line form the minima to closest dendrite pixel. For spines

with severe overlap, we propose a marker control watershed method to declump the dendritic

spines. For each spine region, examine the intensity and detect regional minima and maxima. If

the centroid of two maxima are not parallel to the dendrite, connect the maxima with a line.

This line must not cross any minimal regions. The same is done for any pair of regional minima

as long as the line does not cross any maximal regions. Using the spine segmentation, connected

maxima, and connected minima, a composite image is generated to serve as the markers for the

watershed method. Background and regional minima are set to a low value of zero, regional

maxima are set to a high value of 255 and the rest of the spine segmentation is set to a middle

value. The composite image is inverted and the watershed will begin filling at the regional max-

ima. As the algorithm continues, the middle values will begin to form the watershed boundaries

while taking the regional minima into account. The regional maxima were connected to reduce

the number of watershed boundaries, while connected regional minima were used to aid in the

shape of the boundary. The generated watershed boundary is applied to the spine mask, separat-

ing the segmentation in two. The declumping process is illustrated in Fig 5C and the final seg-

mentations after splitting and declumping are shown in Fig 5D.

Cofilin motility extraction

Cofilin motility extraction is performed exclusively on the green channel of our fluorescence

microscopy videos. The channel shows GFP-labeled cofilin, (wt)-Cofilin-GFP, which allows
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for cofilin density to be visually analyzed. In order to analyze the motility of cofilin, at least two

adjacent frames are needed. Because individual cofilin molecules exist at the subpixel level and

cannot be resolved at our (40x) magnification, they cannot be tracked individually. Since the

green intensity channel tracks the GFP-tagged cofilin proteins, the intensity is directly propor-

tional to the amount of cofilin in the pixel. While the visual changes in cofilin density are diffi-

cult to examine by eye, the DendritePA is able to analyze this data by using spatiotemporal

information in the red structural channel. Utilizing the previous dendritic spine segmenta-

tions, DendritePA can estimate the amount of cofilin contained in these structures. The frame-

work starts by performing data association of segmented spines in neighboring frames to

produce dendritic spine tracks. Association is performed by choosing the segmentation with

the largest percentage of overlap with an existing track. The ratio of overlap is sufficient as the

Fig 5. Spine segmentation. A) Diagram of dendritic spine contour extraction using a seed point. This contour is used as the initial segmentation of a

dendritic spine. B) Spine segmentation (blue) and foreground contour (red) overlaid onto the image. C) Images of procedure to declump a segmented

dendritic spine. Marker-controlled watershed composite image (top left), boundary generated by watershed algorithm (top right), declumped

segmentation (bottom left), and contour of declumped segmentations overlaid onto image (bottom right). D) Final spine segmentation displaying split and

declumped spines.

https://doi.org/10.1371/journal.pone.0182958.g005
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spines are attached to a fixed location on the dendrite. Most of the movement in dendritic

spines is attributed to sway and shape change, whereas the sway of the dendrite itself is negligi-

ble. A new track may be created if the segmentation has little or no overlap with a track. Den-

dritic spines may not be detected in every frame as they may shrink into the dendrite or sway

in and out of the z-axis, thereby going out of view. Because of this, a spine segmentation may

be associated with any existing track if there is overlap with the last known location.

Cofilin flux. Since we are concerned with the flow of cofilin through sections of a cell, it is

advantageous to relate this concept to fluid dynamics. The differential form of the continuity

equation in fluid mechanics is written as:

dr

dt
þ divðf Þ ¼ s; such that f ¼ rv; ð3Þ

where ρ is the density of the fluid particles, f is the flux of the fluid through a boundary, v is the

velocity, and s is a source term. To find the change in the amount of cofilin in the spine, we

want to solve for the div(f) which is the “flux density” and represents the amount of flux enter-

ing or leaving a point. In florescence microscopy, fluorescence intensity levels are proportional

to the amount of tagged proteins in a region. This leads to the follow proportionality formula:

r / riðtÞ ¼
X

ðx;yÞ2SðtÞ

iðx; y; tÞ; ð4Þ

where pi(t) is the integrated density in spine S(t) at time t, and i(x,y,t) is the intensity of pixel

(x,y). Using integrated density accounts for changing spine area and is commonly used for

analyzing fluorescence microscopy images [37]. It can be assumed that cofilin neither pro-

duced nor consumed in the spine. This allows the source term s to be set to zero for all calcula-

tions of flux. Also as there is only one boundary between the spine and the dendrite, cofilin

flux must be either in or out of this boundary. Solving for div(f), the continuity equation

becomes:

divðf Þ / �
driðtÞ

dt
: ð5Þ

Cofilin flux and density can now be compared by examining the intensity levels in the

green cofilin channel. An increase in the intensity in a spine represents an increase in the cofi-

lin density at the spine and a flux of cofilin into the spine. Conversely, a decrease in the inten-

sity represents a decrease in cofilin density as well as a flux of cofilin out of the spine.

Cofilin-spine shape analysis

After estimating the motility of cofilin and dendritic spines morphology, we correlate their

effect on one another. The initial step is to automatically classify the shape of the dendritic

spine using machine learning. To do this, we obtain the spine energy image representation of a

spine. Generating the SEI starts by cropping the binary segmentation of each spine in a track.

All binary spines images are then transformed so that the spine-dendrite boundary is aligned

with the x-axis. These aligned cropped images are resized into 10x10 images. Given the regis-

tered binary images Bt(x,y) at time t for a spine track of N frames, the spine energy image can

be computed as follows:

Sðx; yÞ ¼
1

N

XN

t¼1

Btðx; yÞ: ð6Þ
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An example of the aligned binary images and SEI are shown in Fig 6. Since the SEI images

are 10x10 pixels, the dimension of the feature vector is 100, which leads to a problem with the

curse of dimensionality. This feature vector needs to be reduced while minimizing the loss of

information. Recent studies [38, 39] have shown that local binary pattern applied to Gait

Energy Image can reduce dimensionality. By applying uniform LBP [40] to SEI, the feature

vector is reduced to 59 dimensions.

While SEI has been shown in our previous work [17] to classify spine tracks well, it cannot

classify individual spine segmentations by itself. To classify individual spine, additional fea-

tures must be used. Before being passed to a classifier the SEI feature vector is combined with

the area, height, width, and average intensity of each spine. These features were used to train

three classifiers: (1) discriminant analysis (DA) classifier, (2) k-nearest neighbor (KNN), and

(3) error-correcting output codes (ECOC) multiclass model. The discriminant analysis classi-

fier trains by fitting a Gaussian distribution to each class. New data is compared to each class

distribution and assigned to the class with the lowest misclassification cost [41]. A k-nearest

neighbor classifier labels a new observation by comparing it to the k-nearest training samples

in a multi-dimensional space [42]. k = 5 was used for all experiments. ECOC is a classifier

reduces a multiclass classification problem into a set of L binary classifiers. DendritePA uses a

support vector machines (SVM) classifier for every pair of classes, L = 3. A new observation is

assigned to the class that minimizes the losses of the L binary learners [43].

Results

Our data set for segmentation consists of seven live fluorescence videos, which contain 3428

spines across all analyzed frames. TdTomato was used to label the entire structure of the cell

(dendritic structural information) and wild type (wt)-Cofilin-GFP was used to label cofilin

Fig 6. Spine energy image. Examples of aligned binary images and spine energy image for each class stubby, thin, and mushroom shaped dendritic

spines. The aligned and resized spine segmentations of a single spine track are combined to produce a single spine energy image (images in the furthest

right column). This image is a representation of the motion of the spine for the image sequence.

https://doi.org/10.1371/journal.pone.0182958.g006
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(cofilin distribution information). Videos varied in length from 39 frames and were collected

at intervals varying from every 30 seconds to 60 seconds over approximately 20 minutes. All

videos were collected at 40x magnification and were 128 by 128 in image resolution. To

improve image quality, all frames were resized to 512 by 512 with bicubic interpolation [44].

Most of the segmentation algorithm parameters were kept constant for each video, except a

multiplier for Otsu’s computed threshold which ranged from 0.2 to 0.4.

Dendrite segmentation was validated using the first frame of each of the seven videos. An

expert in the field labeled each frame by selecting only regions that are a part of the dendrite

and not the spines. Tests were performed using a GVF generated backbone, 2dSpAn’s convo-

lution algorithm with piecewise linear approximation, and DendritePA after using a low pass

filter. Results are obtained on a pixel detection basis and they are shown in Table 1. While

DendritePA has a slightly worse precision, it has a much better recall.

Ground-truth for dendritic spine was created by labeling every spine in every frame manu-

ally by two experts in the field. In order to reduce user bias, the decision tree shown in Fig 7

was used as a guideline during ground-truth labeling. For comparison, our spine detection

method is tested against the NeuronIQ software [45]. NeuronIQ was chosen because it is a

fully automated dendritic spine segmentation software. 2dSpAn and NeuronStudio both

required series of manual inputs for each frame, making them inappropriate for comparisons.

While NeuronIQ was able to segment without preprocessing, using a TMIP to preprocess the

videos improved segmentation results. A spine is considered detected if the segmentation has

at least 50% overlap with the ground-truth data. Table 2 shows the results of segmentation for

DendritePA, NeuronIQ with TMIP preprocessing, and NeuronIQ alone. NeuronIQ alone

seems to produce many false positives. By using TMIP to preprocess the videos, the SNR is

improved allowing NeuronIQ to perform better. DendritePA was able to achieve comparable

recall, but could greatly improve precision as it has nearly half as many false positives. Because

the classification of spines is dependent on the quality of their segmentations, only true posi-

tives were passed to the tracking and classification steps.

DendritePA was also run without bicubic interpolation and compared to ground-truth

sub-sampled at 128 by 128 resolution. Using the original resolution (128 by 128), DendritePA

with TMIP had a precision of 59.00% and recall of 16.09%. These results are noticeably worse

when compared to DendritePA with bicubic interpolation. To show that bicubic interpolation

does not have a major effect on cofilin analysis, we computed the average intensity of cofilin in

dendritic spines (green channel) for both 128 by 128 and 512 by 512. The average values for

seven wild-type videos were 0.78 ± 0.13 for the original resolution and 0.76 ± 0.13 for the bicu-

bic interpolation. The values were very similar between the two scales of resolution, and the

standard deviation was identical. Also, because we are only interested in relative change of

intensity compared to the previous frame, we do not require exact intensity values if the rela-

tionship between frames is maintained.

Classification of spines was done with 10-fold cross validation by partitioning the data into

10 equal sets. Each set is used as the test set once while the other 9 are used for training. The

Table 1. Dendrite segmentation results.

Method Precision Recall True Positive False Positive False Negative

GVF Dendrite 75.22% 4.21% 4.21% 1.39% 95.79%

Piecewise 2dSpAn 75.97% 84.33% 84.33% 26.66% 15.67%

DendritePA 73.23% 90.32% 90.33% 33.01% 9.67%

Segmentation results for dendrites using GVF, 2dSpAn, and DendritePA.

https://doi.org/10.1371/journal.pone.0182958.t001
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experiments were repeated 20 times by randomly shuffling the dataset so that the sets are ran-

domly generated. Each spine was classified as stubby, thin or mushroom. While DendritePA is

able to classify other phenotypes such as branched dendritic spines, it requires a training

Fig 7. Ground-truth decision tree. Decision tree for generating ground truth of dendritic spine segmentation and classification. Spines in images

were manually labelled (to be used as ground truth), using this decision tree to reduce bias and improve reproducibility. Spines were marked if they

satisfied the conditions of the stubby, thin, or mushroom shapes.

https://doi.org/10.1371/journal.pone.0182958.g007

Table 2. Spine segmentation results.

Method Precision Recall True Positive False Positive False Negative

NeuronIQ 28.13% 61.26% 61.26% 156.45% 38.74%

NeuronIQ with TMIP 53.69% 71.17% 71.18% 61.38% 28.82%

DendritePA 60.28% 61.93% 61.93% 40.64% 38.07%

DendritePA with TMIP 63.48% 67.24% 67.24% 38.68% 32.76%

Segmentation results for DendritePA, NeuronIQ with TMIP, and NeuronIQ alone.

https://doi.org/10.1371/journal.pone.0182958.t002
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library with sufficient examples of the class. Because our data did not have enough branched

spines, we focused our study on the three most common phenotypes [12, 46, 47]. Results are

compared to a decision tree method that uses spine height and width features. Table 3 displays

the classification results. The three classifiers using the proposed features outperform the tradi-

tional decision tree method by over 20%. The decision tree method was sensitive to small mea-

surement errors at this resolution, while our proposed method is robust due to the

spatiotemporal information in the spine energy images. While the classification rate of the

classifiers performs well with all videos, a subset of videos was used to build the classifier used

in later sections. Table 4 displays a confusion matrix of the three classifiers for videos 1–7 and

Fig 8 shows the receiver operating characteristic curve (ROC) of the three classifiers for the

same videos. ROC curves are useful in assessing the performance of an algorithm’s ability to

detect an object. The larger the area under the curve (AUC), the better the classifier is at classi-

fying the specific spine shape. From the Table 3 and the ROC plots, KNN slightly out performs

the ECOC and DA classifiers.

Upon closer examination of the SEI as shown in Fig 9, the SEI can be sorted visually into

their mode spine class. Stubby spines tend to have a flat uniform base and a sharp apex. Thins

have smaller middle regions and are blurry do to swaying over time. Mushrooms are round

and have smaller bases. Fig 9 also displays SEIs that were misclassified. SEI seem to be

Table 3. Classification results.

Classifier Results DA KNN ECOC Tree

Video 1 75.71 ± 0.47 81.35 ± 0.72 79.79 ± 0.90 52.19 ± 0.00

Video 2 59.90 ± 2.94 59.4 ± 3.32 54.10 ± 3.14 50.00 ± 0.00

Video 3 77.22 ± 0.82 75.36 ± 0.80 76.93 ± 0.89 63.79 ± 0.00

Video 4 81.97 ± 0.74 84.05 ± 0.69 81.33 ± 0.80 55.81 ± 0.00

Video 5 93.00 ± 0.72 98.26 ± 0.00 98.26 ± 0.00 79.52 ± 0.00

Video 6 76.34 ± 0.80 75.84 ± 0.75 74.55 ± 0.47 69.18 ± 0.00

Video 7 83.68 ± 1.07 90.44 ± 0.69 84.03 ± 0.43 58.49 ± 0.00

Videos 1–7 76.40 ± 0.29 80.61 ± 0.41 76.79 ± 0.33 62.10 ± 0.00

Classification results on ROIs 1–7 using DA, KNN, ECOC, and manual decision tree.

https://doi.org/10.1371/journal.pone.0182958.t003

Table 4. Confusion matrices.

Real Class Predicted Class

DA Classifier Stubby Thin Mushroom

Stubby 499 49 50

Thin 62 192 57

Mushroom 73 52 507

KNN Classifier Stubby Thin Mushroom

Stubby 508 40 50

Thin 62 192 57

Mushroom 55 44 533

ECOC Classifier Stubby Thin Mushroom

Stubby 526 27 45

Thin 84 174 53

Mushroom 98 50 484

Confusion Matrices for discriminant analysis, k-nearest neighbor, and error-correcting output codes.

https://doi.org/10.1371/journal.pone.0182958.t004

Automated analysis of dendritic spines and proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0182958 August 21, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0182958.t003
https://doi.org/10.1371/journal.pone.0182958.t004
https://doi.org/10.1371/journal.pone.0182958


Fig 8. ROC plots. Receiver operating characteristic (ROC) curves for stubby (blue curves), thin (red curves),

and mushroom (yellow curves) shaped spines. The ROC plots illustrate the ability of each classifier to

distinguish the specific class when varying a discrimination threshold. A larger area under the curves (AUC)

represents a better classifier. A) Discriminant analysis (DA) classifier. B) K-nearest neighbor (KNN) classifier.

C) Error-correcting output codes (ECOC) classifier. K-nearest neighbor classifier had the largest AUC,

proving to be the most accurate.

https://doi.org/10.1371/journal.pone.0182958.g008
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commonly misclassified as stubby if they are triangular, as thin if they blurry or have an

unusual base, and as mushroom if they are more circular.

Cofilin conditions and spine shape

Three videos of S3A and three videos of S3D were collected using florescence microscopy.

Each video has 40 frames and were captured at 40x magnification with 128 by 128 pixels. Like

the wild-type videos, all S3A and S3D frames were resized to 512 by 512 using bicubic interpo-

lation. TdTomato was used to label the actin cytoskeleton that make up the structure of the

spine and CofilinS3A or CofilinS3D was used to label cofilin proteins. Visual observations of

S3A show a relatively even distribution of stubby, thin and mushroom shaped spines. The den-

sity of spines were uneven across the video with some regions very dense and others less

dense. For S3D, most spines were mushroom or stubby and had mild spine density.

DendritePA was used to segment and analyze videos showing the dendrite spines contain-

ing wt-cofilin, cofilinS3A, and cofilinS3D. A discriminant analysis classifier built with the

ground truth was used to classify the data. Fig 10A shows the percentage of each spine class for

the wild-type cofilin, cofilinS3A, and cofilinS3D videos. These percentages were significantly

different (P< 0.0001 using Chi-squared test) and show that dendritic spine shape can be

altered by introducing exogenous cofilin. For the case of the wild-type condition, most spines

are stubby and mushroom, which indicate that spines are mostly mature for this condition.

With the activation of cofilin in the cofilinS3A condition, there is a noticeable increase of thin

spines and a decrease in mushrooms. This is consistent with the expectation that cofilin breaks

down the F-actin in spines. With more cofilin being active the spines become less mature.

Interestingly, we see that in the cofilinS3D videos there is a significant decrease in the number

thin spines, while the ratio of stubby and mushroom spines remains the same. This indicates

that by suppressing cofilin activation, it may be possible to induce more mature spines. Fig

Fig 9. SEI classification examples. Each row displays spine energy images (SEI) that were classified by DendritePA as stubby, mushroom, or thin. The

last two columns represent misclassified SEI, where the actual class of the spine track is shown below each SEI.

https://doi.org/10.1371/journal.pone.0182958.g009
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10B–10D shows the percent of cofilin flux for each spine class across the three cofilin mutants.

For all three spine classes, the ratio of cofilin flux moving in (cofilin density increases in spine,

shown in green) or out of spines (cofilin density decreases in spine, shown in red) is consistent

for all conditions and did not show significant difference (thin p-value = 0.84, stubby p-

value = 0.60, mushroom p-value = 0.89). This indicates that the type of exogenous cofilin has

little effect on the flow of cofilin. Also, because the ratio of in and out flux is constant within a

spine class regardless of cofilin condition, cofilin flux has less importance in spine type than

cofilin activation. In the time frame we examined (20 minutes), we did not notice a difference

in the rate in which spine shape changed based on cofilin type. Although this was not our

focus, it may be of interest to study in the future with longer videos.

Although endogenous cofilin is present in all three groups, the use of different exogenous

cofilin is the only variable that is changed between the conditions. These exogenously

expressed mutant forms of cofilin will affect spine morphology by competing with endogenous

cofilin for binding to several actin proteins and enzymes. This is done to ensure that changes

are due to only one alteration in the experimental setup. Because plasmid transfection effi-

ciency is a concern, we measured the mean expression levels in all videos. The mean fluores-

cence intensity of cofilin S3A-GFP was 20.66 ± 1.20, cofilinS3D-GFP was 38.06 ± 12.54, and

Fig 10. Cofilin-spine graphs. A) Bar graph of the percentage of detected spines classified as mushroom (orange), thin (red), stubby (blue) for each

condition: WT, S3A, and S3D. The percentages for each condition were significantly different (P<0.0001 using Chi-squared test). B-D) Bar graphs of

the flux direction computed with integrated density for B) Thin, C) stubby, and D) mushroom spines. For all cases, the percentages were not

significantly different using Chi-squared analysis (thin p-value = 0.84, stubby p-value = 0.60, mushroom p-value = 0.89), indicating that cofilin flux has

less importance on spine type.

https://doi.org/10.1371/journal.pone.0182958.g010
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wt-cofilin was 23.29 ±7.94. The groups were shown to be not significantly different when com-

pared using one-way ANOVA followed by Tukey’s multiple-comparison post-tests.

Conclusions

In this paper, we have developed a pattern recognition software called DendritePA to analyze

protein trafficking in neuronal florescence microscopy videos. Using spatiotemporal informa-

tion, the DendritePA is able to enhance low contrast/low resolution images by computing a

temporal maximum intensity projection which is used to improve the signal-to-noise ratio in

every frame. Dendrite spines were automatically segmented using an improved kernel convo-

lution method. Temporal dynamics of spines were used to generate a spine energy image,

which is useful in classifying different spine shapes. Multiple classifiers were used to classify

individual spine segmentations as stubby, thin, and mushroom. Lastly, we were able to esti-

mate cofilin flux patterns and correlate them with the changing spine morphology over time.

Mushroom/stubby spine shapes are recognized as mature/stable spines, whereas thin spines

are classified as immature/unstable. By examining S3A and S3D conditions of cofilin, our data

suggests that the level of activation of cofilin greatly affects the shape of spines. Highly activated

cofilin seems to lead to structural instability of the spines. This is consistent with the actin-sev-

ering/remodeling function of cofilin.
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