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ABSTRACT OF THE DISSERTATION

Estimating Stochastic Volatility within a Trading Day

by

Sibo Yan

Doctor of Philosophy in Economics

University of California, Los Angeles, 2017

Professor Bryan C. Ellickson, Chair

This thesis uses high-frequency data to characterize the volatility of asset prices within a

trading day. The estimation procedure applies the generalized method of moments (GMM)

to the Heston (1993) model of stochastic volatility. I apply the estimation to SPY in chapter

1 and to other 8 assets in chapter 2. I compare estimation results and discuss the implications

and applicability of the model. In Chapter 3 I examine the path behavior of realized volatility

and provide evidence that it is important to allow jumps in the Heston model.
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CHAPTER 1

Estimating Intraday Stochastic Volatility

1.1 Introduction

Understanding volatility and its dynamics is an important subject in modern finance. As the

primary measure of risk, volatility drives the construction of optimal portfolios, the hedging

and pricing of options and other derivative securities or the determination of a firm’s value

while exposing to a variety of risk factors. It also plays a critical role in discovering trading

and investment opportunities which provide an attractive risk-return trade-off.

It is therefore not surprising that numerous efforts have been spent on modeling the

volatility process. In particular, continuous-time stochastic volatility(SV) models are widely

used in the empirical finance literature, surveyed in Part II of The Handbook of Financial

Time Series (Anderson et al. (2009)). The Heston (1993) is a popular SV model due to its

analytical tractability.

Realized volatility is one of the most natural and model-free methods to measure stock

price volatility (Anderson and Bollerslev (1997)). It is defined as the cumulative summation

of the squared log returns of discretely sampled stock prices over a time interval. The

theory of stochastic integration implies that realized volatility (RV) converges uniformly

in probability to the quadratic variation (QV) over the same time interval when prices are

sampled more and more frequently. Therefore since it became available, using high-frequency

trading data to approximate quadratic variation has been viewed optimistically. (Merton

(1980) and Nelson (1992)).

However, because of concerns about market microstructure noise, it has become a com-
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mon practice to sample prices at most once every five minutes when computing daily RV1.

Bollerslev and Zhou (2002) is one of the pioneering studies of applying daily RV to the

estimation of SV models. They use the stochastic differential equation that characterizes

the motion of the continuous-time volatility process of the Heston model to derive moment

conditions for the sequence of daily QV. These moment conditions allow estimation of the

three parameters of the Heston model using the generalized method of moments (GMM).

Because QV is latent, Bollerslev and Zhou (2002) replace QV with RV using prices sampled

every 5 minutes to reduce the measurement error.

Bollerslev and Zhou (2002) estimate their model using Deutsch Mark U.S. Dollar spot

exchange rates. I found three papers citing Bollerslev and Zhou (2002) that apply their

methodology to stocks and ETFs. Corradi and Distaso (2006) test their model with General

Electric, Intel and Microsoft stocks. Garcia, Lewis, Pastorello and Renault (2011) and

Bergantini (2013) use the S&P 500 stock index. All of these studies focus on quadratic

variation over the trading day and sample prices once every five minutes. In contrast, we

focus on the behavior of quadratic variation over short intervals (100 seconds) within the

trading day.

The analytical framework used in this thesis builds on Sun (2016), which differs from

Bollerslev and Zhou (2002) in several important aspects:

• Realized volatility is computed for each 100-second interval which allows us to examine

the path behavior of stochastic volatility within a trading day.

• Concerned about market microstructure noise, Bollerslev and Zhou (2002) assume

prices are sampled with error. They decrease the sampling frequency of stock prices

to once every five minutes to reduce the effects of this measurement error. We assume

instead that realized volatility measure quadratic variation with error, and introduce

an assumption that justify replacing quadratic variations with realized volatilities.

The 100-second RVs behave better than the literature suggests. Figure 1.1 plots the

1See chapter 7, Figure 7.1: “Volatility Signature Plots” in Aı̈t-Sahalia and Jacod (2014) and Aı̈t-Sahalia,
Mykland and Zhang (2005, 2006)
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daily integrated realized volatility using SPY sampled at 5-minute frequency on the

horizontal axis and the daily average of 100-second RV using prices sampled every

second on the vertical axis. The average 100 second RV is noisy but lie reasonably

close to the daily RV except for a few outliers.

Figure 1.1: Daily RV versus the average of 100-sec RV

• Bollerslev and Zhou (2002) develop a moment condition for the conditional second mo-

ment of quadratic variation, using nuisance parameters to deal with measurement error

associated with replacing quadratic variations by realized volatility. Instead, we pro-

vide explicit formulas for the asymptotic autocovariances of quadratic variation which

we use to derive second order moment conditions to estimate volatility of volatility

that are unaffected by measurement error.

This chapter makes several important modifications to Sun (2016) that bolsters the reli-

ability of our estimation framework. First, Sun (2016) uses the first order moment condition
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for realized volatility to estimate the speed of mean reversion and asymptotic mean of the

Heston model for SPY, an exchange traded fund tracking the S&P 500 index. He substitutes

estimates of these two parameters into the second-moment conditions for lag 1 and lag 2 au-

tocorrelations in order to estimate the volatility-of-volatility parameter of the Heston model.

In contrast, I estimate all three parameters simultaneously with all the moment conditions

to insure the standard errors of parameter estimates are correct. Second, I take advantage

of the fact that we can freely choose the time scale to pick the time unit to be a year. In this

way, I increase the magnitude of realized volatility over a 100-second interval, which avoids

computational errors in the GMM estimation.

To put my research into practice, I estimate the Heston model using daily RVs with

prices sampled once every 5 minutes. I compare the results with Bollerslev and Zhou (2002)

which clarifies the differences between their approach and ours. I found 67 days missing in

the data sample used in Sun (2016), which I added to the data set. I also verified that every

trading day in the entire 8 years of the data sample is now included.

The time frame of my study, 2007-2014, is an interesting period containing the great

recession and the sovereign debt crisis, both of which had tremendous impact on market

volatility. Focusing on the behavior of the quadratic variation within a single trading day

avoids the problem of the time gap between one trading day and the next. On any day, the

market is open at most 6.5 hours. When it closes, it remains closed for at least 17.5 hours

(longer over a weekend). Because we analyze volatility within a trading day, there is no gap

between the intervals we are considering. Splitting a single trading day into 234 100-second

intervals yield a number of observations similar to the number of daily quadratic variations

in a year (252 per year on average for our sample). Furthermore, I can pool days by assuming

that the parameters of the Heston model are invariant over the days contained in a pool,

provided I do not link the the final quadratic variation of one day to the initial quadratic

variation of the next. In a five-day pool, there are 1,710 100-second quadratic variations,

comparable to five years of daily quadratic variation. This pooling technique is very useful

in improving the standard errors of the parameter estimates and diminishing the influence

of the outliers in the data.
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The rest of the chapter is structured as follows: Section 1.2 introduces the Heston model

of intraday stochastic volatility and the economic intuition behind the model. Section 1.3

introduces the estimation framework. Section 1.4 presents the empirical results. Section 1.5

provides additional evidence for our model. Section 1.6 compares our intraday model with

a variation of the model estimated using daily RV. Section 1.7 concludes the chapter.

1.2 The Heston model of intraday volatility

Let Xt = log(St) denote the log of the stock price St at time t. Assume that W = (Wt)t≥0

is a standard Wiener process. A process (Xt)t≥0 follows a geometric Brownian motion if

Xt = X0 + bt+
√
c Wt (t ≥ 0)

where b (the drift) and c (the volatility) are constants.2

The Heston (1993) model replaces the constants b and c by stochastic processes b = (bt)t≥0

and c = (ct)t≥0. The log-price process becomes

Xt = X0 +

∫ t

0

bsds+

∫ t

0

√
cs dWs (t ≥ 0) (1.1)

and the volatility process c = (ct)t≥0 is the solution of the stochastic differential equation

(SDE)

dct = κ(c̄− ct)dt+ γ
√
ct dBt (t ∈ [0, 1]) (1.2)

where B = (Bt)t≥0 is a standard Wiener process, possibly correlated with the Wiener process

W . The processes b and c are assumed to be adapted to the filtration generated by (B,W ).

The parameter c̄ is the asymptotic mean of the process c, κ is the rate of reversion to the

mean and γ2 is the volatility of volatility.3 All three parameters are assumed to be strictly

positive and to obey the Feller condition 2κc̄ > γ2, which insures that, with probability one,

2In the literature,
√
c is often called the volatility.

3In the literature, γ is often called the volatility of volatility.
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ct remains strictly positive for all t.

Figure 1.2: RV, 1/6/2011

Figure 1.2 plots the sequence of realized volatilities for SPY, an exchange-traded fund

that tracks the S&P 500 index for a typical trading day, January 6, 2011. I use “Time”

to indicate the fraction of the trading day expired since the market open. The stochastic

differential equation of the Heston model characterizes the evolvement of the spot volatility

ct throughout the entire trading day. The quadratic variation for a 100-second interval is

the integral of ct over the interval. The GMM estimate of the asymptotic mean ̂̄c = 0.060

(indicated by the horizontal line) is an annual rate: i.e, the annual log return of a geometric

Brownian motion with this volatility would have a standard deviation of
√

0.060 = 0.245

(24.5%). The estimated speed of mean reversion for this trading day implies that on average

21% of the gap between ct and c̄ is eliminated within one hundred seconds. In Figure 1.2 the

process has fallen well below the asymptotic mean by the seventh block, 700 seconds after

the market opens.

The Heston model applied to intraday volatility has a nice economic interpretation. The

value of ct is the variance of instantaneous log return dXt at time t. Our empirical results
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suggest that the volatility of asset prices typically starts way above the asymptotic mean

of the trading day. With a fast mean reversion, it quickly settles to a dynamic balance

between the inflow of additional market uncertainty and reduction of uncertainty by market

participants. They have a strong incentive to resolve uncertainty when ct is above c̄ which

drives ct downward, but have less incentive to do so when ct is below c̄, allowing ct to move

up.

The parameters of the Heston model are fixed for each day, but they are allowed to

vary across different days or different pools. The time series for the asymptotic mean c̄ and

volatility of volatility γ2 move smoothly overall in our 2007-2014 sample period but spike to

a huge level at times of financial crisis. These parameters of the Heston model are natural

candidates for state variables in modeling the long run behavior of stock prices.

1.3 The GMM estimation framework

I begin this section by introducing the definition of quadratic variation and realized volatility

over a time interval, which I will refer to as a block. After that, I present the conditional

moments of RV derived from the stochastic differential equation of the Heston model that

are used to estimate the parameters of the model.

A trading day is represented by the interval [t0, tN ] where t0 the market open and tN the

market close. The trading day is partitioned into one-second intervals with the set of times

ΠN = {t0, t1, ..., tN} (t0 < t1 < ... < tN)

where N = 23,400 is the number of one-second intervals in a 6.5-hour trading day. The

trading day is also divided into 100-second intervals (blocks) using the set of times ΠM ⊂ ΠN ,

ΠM = {t0, t1, ..., tM} (t0 < t1 < ... < tM)

where M = 234 is the number of 100-second intervals in a 6.5-hour trading day.
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The quadratic variation Ct,t+h of the Heston model over the block [t, t+ h] is given by

Ct,t+h =
1

h

∫ t+h

t

csds (1.3)

I choose the time unit to be a year. Consequently, h here is equal to the length of a 100-second

block relative to a calendar year of 365.25 days: h = 100/(3600× 24× 365.25) = 1/315576.

Let

Ĉ0,t =
∑
ti≤t

(∆Xti)
2 (t ∈ [t0, tN ], ti ∈ ΠN)

represent the cumulative sum of squared log returns over the interval [t0, t] ⊂ [t0, tN ]. The

realized variation Ĉt,t+h over the block [t, t+ h], scaled to a rate per trading day, is given by

ĈN
t,t+h :=

1

h
(ĈN

0,t+h − ĈN
0,t)

For the Heston model, the quadratic variations associated with any pair of adjacent

blocks [t, t+ h] and [t+ h, t+ 2h] satisfies the following moment condition4.

E[Ct+h,t+2h − (1− β)Ct,t+h − βc̄ | Ft] = 0 (1.4)

where β = 1 − e−κh ∈ (0, 1) and Ft is the σ-algebra at time t belonging to the filtration

of sigma-algebras generated by the Wiener processes in the price process and the volatility

process of the Heston model. This equation establishes an autoregression model for the

sequence of quadratic variations for the blocks of a trading day.

Equation (1.4), which is equation (1.20) in Sun (2016) corresponds to equation (4) in

Bollerslev and Zhou (2002). Because they sample prices only once every five minutes,

Bollerslev and Zhou (2002) assume that the quadratic variation can be replaced by real-

ized volatilities. In contrast, we assume QV is measured by RV with an error and introduce

an assumption that allows us to replace QVs with RVs without affecting the coefficients of

the moment condition. Let Ĉt,t+h = Ct,t+h + νt,t+h for each time block [t, t+ h], where νt,t+h

4The detailed proof can be found in Sun (2016)
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is the measurement error.

Assumption 1.

E[νt,t+h | Fs] = 0 for all s ≤ t

The interpretation of the assumption is straightforward: the gap between the RV of

the observed price process and the QV implied by the Heston model is mean zero and

uncorrelated with what happens before the beginning of the block.

After replacing the QVs in equation (1.4) by the corresponding RVs of the observed price

process, Assumption 1 implies that

E[Ĉt+h,t+2h − (1− β)Ĉt,t+h − βc̄ | Ft] = 0 (1.5)

Because α = 1− β, equation 1.5 can be rewritten as

E[Ĉt+h,t+2h − Ĉt,t+h | Ft] = β(c̄− E[Ĉt,t+h | Ft])

In other words, conditioned on Ft, β is the average fraction of the gap between the

conditional expectation of Ĉt,t+h and the asymptotic mean c̄ eliminated over the interval

[t+h, t+2h]. Although in the GMM, I estimate β directly because of its natural interpretation

of the speed of mean reversion, I can always recover κ as κ = − 1
h
log(1− β).

Replacing quadratic variations by realized volatilities makes Ĉt,t+h necessarily endoge-

nous. To generate a consistent estimator with GMM, I use instrumental variables. In-

strumental variables should be both valid and relevant: orthogonal to the error term and

correlated with Ĉt,t+h. The lagged RV and its powers satisfy both conditions: they are

independent of the error term according to assumption 1 and equation 1.4, and realized

volatility is serially correlated. The number of instrumental variables should be no less than

the number of parameters. I use the lagged RV, its square root and its fourth root as the
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instruments, generating the following moment conditions for GMM:

E[Ĉt+h,t+2h − (1− β)Ĉt,t+h − βc̄] = 0

E[(Ĉt+h,t+2h − (1− β)Ĉt,t+h − βc̄)Ĉt−h,t] = 0

E[(Ĉt+h,t+2h − (1− β)Ĉt,t+h − βc̄)Ĉ1/2
t−h,t] = 0

E[(Ĉt+h,t+2h − (1− β)Ĉt,t+h − βc̄)Ĉ1/4
t−h,t] = 0

(1.6)

These moment conditions provide the basis for estimating the parameters κ (or β) and

c̄ of the Heston model. The volatility of volatility parameter γ2 is estimated using moment

conditions based on the asymptotic autocovariances of the sequence of quadratic variations.

The formulas for these asymptotic autocovariances, which depend only on the mean reversion

parameter β, are given as5:

V0 = (
γ

κh
)2(h− β

κ
)c̄

V1 = (
γ

κh
)2
β2

2κ
c̄

Vj = (1− β)Vj−1 (j ≥ 2)

Let Vj := limt→∞ E[(Ct,t+h − c̄)(Ct+jh,t+(j+1)h − c̄)], V0 is the asymptotic variance, V1 is one-

period lagged asymptotic covariance and Vj is the asymptotic autocovariance of lag j ≥ 2.

To obtain moment conditions for the autocovariances of RVs, we need another assumption

on the measurement error.

Assumption 2. The errors νt,t+h are i.i.d., and independent of the volatility process c with

mean 0 and finite positive variance.

Let V̂j := limt→∞E[(Ĉt,t+h − c̄)(Ĉt+h,t+2h − c̄)], assumption 2 implies that V̂0 = V0 + ν2

and V̂j = Vj for j ≥ 16. In other words, the asymptotic variance V0 is not robust to

5See Proposition 2.2 in Sun (2016) for a detail proof

6See proposition 2.6 of Sun (2016) for the proof.
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measurement error but the asymptotic autocovariances Vj are. I will use V1 and V2 to estimate

the volatility-of-volatility parameter γ2. Specifically, the following moment conditions are

established.

E[(Ĉt,t+h − c̄)(Ĉt+h,t+2h − c̄)− (
β2c̄

2κ3h2
)γ2] = 0

E[(Ĉt,t+h − c̄)(Ĉt+2h,t+3h − c̄)− (
(1− β)β2c̄

2κ3h2
)γ2] = 0

(1.7)

In contrast to Sun(2016), I conduct non-linear joint estimation of β, c̄ and γ2. I rescale

the moment conditions to make them have the same order of magnitude. Because the error

terms are serially correlated, I use a heteroskedasticity and autocorrelation consistent (HAC)

covariance matrix estimator with a Bartlett kernel (Newey and West (1987)). The model

was estimated using the R gmm package (see Chausse (2010)).

The second-moment condition used in Bollerslev and Zhou (2002) is different from this

thesis. Using our notation, their second-order moment condition is:

E[C2
t+h,t+2h −HC2

t,t+h − ICt,t+h − J ] = 0 (1.8)

where H, I and J are constants depend only on the parameters h, κ, c̄ and γ7. They replace

the daily quadratic variations with daily realized variations. Because the measurement error

for the second order moments does not disappear when prices are sampled infrequently, they

introduce a “nuisance parameter” in an effort to deal with that issue. They use the moment

conditions (1.4) and (1.8) with QVs replaced by RVs as the basic conditions for estimation.

As in this thesis they use functions of RVs lagged one period as instruments, obtaining a

total of six moment conditions.

7Please see the formal derivation in Appendix A.2 of BZ
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1.4 Empirical results

1.4.1 The data sample

The high frequency data for this research comes from the NYSE Trade and Quote (TAQ)

database provided by Wharton Research Data Services (WRDS). The sample includes price,

number of shares and time of each transaction (to the nearest second). I include trades from

9:30 AM to 4:00 PM, coinciding with the market open and close. Trades that were canceled

or illegitimate are removed using the TAQ condition codes8.

Table 1.1: Trades per second and inactive time stamps for SPY

Year 2007 2008 2009 2010 2011 2012 2013 2014

Trades/second 13.4 12.1 14.1 12.9 13.4 13.5 13.5 15.0

Inactive (%) 34.4 17.0 18.1 20.2 17.6 25.1 26.7 22.6

Although SPY is heavily traded, many time stamps have no trade. As reported in Ta-

ble 1.1, the average number of trades per second for each of the eight years of our study

ranges from 12.1 to 15.0. Nevertheless, the percentage of time stamps with no trade (“inac-

tive” time stamps) is large, ranging from a high of 34.4% in 2007 to a low of 17.0% in 2011.

If the arrival of trades were Poisson with an arrival rate of 12 trades per second , then the

probability a given second has no trade would be e−12 = 6.1× 10−6. Instead roughly one in

five time stamps is inactive. Clearly the counting process that counts the arrival of trades

is not Poisson.

For time stamps with more than one trade, I use the median share-price, the median

of the distribution of price per share for the time stamp, regarding each share traded as

one single observation. For time stamps with no trade, I used the median share-price from

the most recent time stamp which had a trade. This yields the series of prices for each

second of the trading day that I use to calculate the sample quadratic variation for each

8The TAQ ”condition codes” imply trades that were canceled or flagged as illegitimate

8‘*’, ‘**’ and ‘***’ indicate the z-score is larger than 1.645, 1.96 and 2.33
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100-second block. Interestingly, this will not be much of an issue in the future as starting

from 2015, the time stamps of the TAQ files are measured in milliseconds instead of seconds.

At this resolution, it is very likely that most active seconds for SPY would have at most one

trade, and the realized volatility for each 100-second block could be calculated as the sum

of squared millisecond returns over the block.

The only other filtering of the data other than the TAQ condition codes is elimination

of bouncebacks, which are defined in Aı̈t-Sahalia and Jacod (2014)9 as:

bouncebacks are price observations that are either higher or lower than the

sequence of prices that both immediately precede and follow them. Such prices

generate a log-return from one transaction to the next that is large in magnitude

and is followed immediately by a log-return of the same magnitude but of the

opposite sign, so that the price returns to its starting level before that particular

transactions

An influence statistic is used to detect and eliminate the bouncebacks. Eliminating

boucebacks causes little reduction in the number of active time stamps because usually the

bouceback is replaced by the median share-price of the remaining trades with the same time

stamp10.

1.4.2 Contrasting daily and pooling estimation of the Heston model

This section discusses the daily and pooled estimation results for the 2,014 trading days from

2007 to 2014. I estimate the parameters of the Heston model for both individual trading

days and for five-day pools. The Heston model requires all of the three parameters: β, c̄

and γ to be positive. A parameter estimate is called “good” if the ratio of the estimate to

its standard error (its z score) is large enough to reject at a 5% significance level the null

hypothesis that it is zero in favor of an alternative that it is positive. I refer to a J-statistic

9Aı̈t-Sahalia and Jacod (2014), p.74

10See Whang(2012) for more details about the construction of the data set.
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as “good” if the model is not rejected at a 10% significance level. We declare the estimation

of a trading day or pool to be good if the parameter estimates for β, c̄ are good, the estimate

of γ2 is strictly positive and the J-statistic is good as well. Recall that the Feller condition is

defined as γ2 < 2κc̄, which guarantees that the volatility process c remains strictly positive

with probability 1. The Feller conditions are satisfied for every good day and every good

pool.

Table 1.2: Overall performance: 2007–2014

Classification days (%) pools(%)

Good days/pools 923 (45.8%) 286 (70.9%)

Bad days/pools 1091 (54.2%) 117 (29.1%)

Good β̂ 967 (48.0%) 304 (75.4%)

Good ̂̄c 1495 (74.2%) 352 (87.3%)

Good γ̂2 527 (26.2%) 252 (62.5%)

Good J-statistic 1899 (94.3%) 360 (89.3%)

Table 1.2 displays measures of overall performance of the estimation for individual trading

days and for 5-day pools. Pooling increases the success rate of estimating the Heston model

dramatically from 45.8% of trading days to 70.9% of 5-day pools. The percentage of good

parameter estimates is improved for all three parameters. In particular for γ2, the percentage

of good estimates more than doubled from daily to pooling estimation. The percentage of

good J-statistics declined by 5%, which is probably due to the restriction of parameters being

the same for all 5 days of the pool.

Table 1.3 describes parameter estimates for the good days and good pools. Pooling has

little impact on the estimates of the asymptotic mean c̄, where the mean, median, lower

and upper quartile are almost the same, except that the standard errors and z score are

considerably improved. The median estimate of c̄ is 0.085 for good pools, equivalent to

a standard deviation
√

0.081 = 0.29(29%) of annualized log returns with a volatility of

volatility
√

1.11× 103 = 33.3.11 The lower and upper quartiles for pools, 0.053 and 0.15,

11According to Cochrane (2005), the annual standard deviation of postwar U.S. stock returns was 16%.
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Table 1.3: Estimates of β, c̄ and γ2

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.19 0.081 1.89 0.10 0.081 1.11

lower quartile 0.14 0.051 0.97 0.07 0.053 0.64

upper quartile 0.27 0.14 3.82 0.13 0.15 2.31

median standard error 0.07 0.007 1.11 0.031 0.006 0.52

mean 0.22 0.14 4.07 0.11 0.14 1.97

median z-score 2.62 11.72 1.68 3.16 15.11 2.33

correspond to 23% and 37% yearly standard deviations respectively. The impact of pooling

on the estimates of β and γ2 is much larger. The median speed of mean-reversion β decreases

almost by half from 0.19 to 0.10, and the interquartile range (the spread between the upper

and lower quartiles) falls from 0.13 to 0.06. The median estimate of γ2 falls from 1.89× 103

to 1.11 × 103 and the interquartile range from 2.85 × 103 to 1.67 × 103. Standard errors

and z statistic for both parameters improved substantially. The median z score indicates

that c̄ is much more precisely estimated than β or γ2. The median as well as the lower and

upper quartiles of the estimates for γ2 have a much larger magnitude than the corresponding

statistic for c̄, suggesting that the volatility of volatility exercises a dominant influence on

the asymptotic variance γ2c̄/2κ of ct. However, because the estimates of γ2 also have much

higher standard errors than the estimates of c̄, this conclusion must be considered with

caution.
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Figure 1.3: Time series for β̂ (good days)

Figure 1.4: Time series for β̂ (good weeks)

The time series of β̂ provides a clearer portrayal of the impact of pooling on the esti-

mation. Figure 1.3 and 1.4 plots the estimates for good days and good pools respectively.
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Neither plots shows any evidence of a trend over time but the daily estimates vary a lot with

many estimates over 0.5. The pooled estimates are tightly clustered in a plausible range

of speed of mean reversion below 0.25, consistent with a constant beta subject to sampling

error.

Table 1.4: Estimates of mean reversion (good pools)

median lower quartile upper quartile

β̂: 100 seconds 0.10 0.07 0.13

β̂: 5 minutes 0.27 0.20 0.34

β̂: 10 minutes 0.47 0.35 0.57

β̂: 30 minutes 0.85 0.73 0.92

κ̂ (rate per year) 3.32× 104 2.29× 104 4.39× 104

Table 1.4 shows alternative measures of the speed of mean reversion using 5-day pool

estimates of β. The top row of each table gives the estimates of β for good pools from

Table 1.3. Inverting β = 1−e−κh gives κ = − log(1−β)/h, the parameter that measures the

speed of mean reversion in the Heston model. Using the estimate of β for 100-second blocks

gives an estimate of κ, reported in the final row of Table 1.4. These estimates of κ help us

to compute βh for any length h using the formula βh = 1 − e−κh. The top panels display

estimates of βh for various lengths h. The 5-day pool median estimates indicate that 10% of

the gap between volatility and its asymptotic mean is eliminated in 100 seconds, 27% in 5

minutes, 47% in 10 minutes and 85% within a half hour. Even the lower quartile estimates

suggest mean reversion is rapid.
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Figure 1.5: Time series for ̂̄c (good days)

Figure 1.6: Time series for ̂̄c (good pools)
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Figure 1.7: Time series for γ̂2 (good days)

Figure 1.8: Time series for γ̂2 (good pools)

Table 1.5 tabulates the number of gaps between good days by duration: of the 472 gaps,

19



Table 1.5: Length of gap between good days

Length of gap 1 2 3 4 5 6 7 8 9 10 11 12

Number of gaps 199 117 69 36 28 11 3 5 2 1 0 1

Table 1.6: Length of gap between good pools

Length of gap 1 2 3 4 5 6

Number of gaps 61 13 5 1 1 1

316 (67.0%) are of 1 or 2 day duration and 4 are of 9 to 12-day duration. Table 1.6 tabulates

the number of gaps between good pools by duration. Most of the gaps (74 out of 82) are of

1 or 2 pool duration and there are three long gaps of 4, 5 and 6 pool lengths each, roughly a

month time. They happen at the end of year 2007 and the end of year 2008. The long gaps

between good days and good pools will be revisited in chapter 3 when I discuss the model

outliers.

In contrast to the time series for β estimates, we see very clear evidence of variation over

time in the asymptotic mean and the volatility of volatility, especially during the financial

crisis that began late in 2008. Figures 1.5 and 1.6 plot the time series of daily and pool

estimates for c̄. The peaks in the two time series show up simultaneously. As a visual guide,

six vertical lines have been added to these figures to mark off periods of interest.The vertical

lines at day 420 and day 630 highlight the mortgage-financing crisis. Day 420 is 9/2/2008,

shortly before Fannie Mae and Freddie Mac declared bankruptcy. Day 630 corresponds to

7/2/2009, when our estimate of c̄ has returned to roughly the level it had before the crisis.

The two vertical lines at days 839 (5/3/2010) and 858 (5/28/2010) mark another surge

in volatility associated with the sovereign debt crisis in the Eurozone. The Flash Crash

occurred near the beginning of this period and day 858 is the date of the Deepwater Horizon

explosion. The final two vertical lines at days 1155 and and 1197 mark off a third period of

high volatility stretching from the first day of August to the end of September. Standard
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and Poor lowered the credit rating of the U.S. Government shortly before the start of this

period.

Figure 1.7 and 1.8 display the daily and 5-day pool estimates of γ2 estimates. There is

some noisiness in the graphs but the three periods of high market volatility still stand out.

Comparing Figure 1.8 with Figure 1.6, γ2 follows a similar pattern to c̄. We observe high

volatility of volatility during the crisis periods identified in Figure 1.6. The difference is

that γ2 is much larger than the magnitude of c̄ which provide more evidence that volatility

of volatility dominates the asymptotic mean in determining the variation of stock price

volatility. At the peak of the financial crisis both parameters exceeded their medians by an

order of magnitude, astonishing testimony to the severity of the crisis.

1.5 Additional evidence for the model

Several aspects of the estimation procedure for the Heston model are examined in this section.

I first show the importance of rescaling by examining sample autocovariances of RVs. This

is then followed by a detailed comparison between sample first and second order moments

and model predicted ones. Furthermore, I compare the time series of ̂̄c to that of VIX.

1.5.1 The effect of scaling RV

Using unscaled RV for very short intervals such as 100 seconds can cause serious computa-

tional issues, such as weak instruments and singularity. The squared 1-second log return of a

stock unscaled is usually less than 10−10, which implies a 100-second RV of 10−8. Therefore

the absolute value of the autocovariance of the RV process is usually less than 10−16. This

is likely to cause a computational error when computing standard errors of the parameter

estimates. However, appropriate scaling of RV can avoid this problem. The daily sample

1-lag autocovariances of RVs is 1
M

∑M
i=2 Ĉt−h,tĈt,t+h, where M is the number of blocks, which

is 232 for daily estimation and 1170 for 5-day pools. For a good day, the daily average 1-lag

autocovaraince of RVs has a mean of 0.081 and a minimum of 0.0056. For a good pool, it

has a mean of 0.084 and minimum of 0.007. It is quite an improvement from 10−16 to avoid
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computational errors.

1.5.2 First order moments: model versus predicted

In this section I would like to check whether model predicted mean is close to the sample

mean of RV. Figure 1.9 and 1.10 compares my estimates of c̄ for good days and good pools

with the median and mean of the realized variation for all blocks in the same pool, together

with the 45 degree lines. My GMM estimates are very close to both the median and mean

for a great majority of pools. My estimates are occasionally significantly larger than the

median and are rarely smaller, while estimates are sometimes significantly smaller than the

mean and are rarely larger. Estimates in good pools lie closer to the 45 degree line than

good day estimates.

Figure 1.9: ̂̄c versus mean of RV (good day)
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Figure 1.10: ̂̄c versus mean of RV (good pool)

1.5.3 Second order moments: model versus predicted

The next task is to use the sample autocorrelations for good days and good pools to test

our claim that asymptotic autocovariances of all lags j ≥ 1 are robust to measurement

error but asymptotic variances are not. We use the following result from Sun(2016): The

autocorrelations Rj := Vj/V0 of Ct,t+h for lags j ≥ 0 are given by

R0 = 1

R1 =
β2

2(log(1− β) + β)

Rj = (1− β)Rj−1, j ≥ 2

Asymptotic autocorrelations of Ĉt,t+h depend only on the parameter β, which gives us a

simple way to test the robustness our second order moments to measurement error. For
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example, if β = 0.10 (the sample median of good pool estimates), then R1 = 0.93, R2/R1 =

1 − β = 0.90 and R3/R1 = (1 − β)2 = 0.81. Figures 1.11 and 1.12 display box plots of the

sample autocorrelation R̂1 and the ratios R̂2/R̂1 and R̂3/R̂1. The horizontal line within the

box of each box plot corresponds to the median and the upper and lower sides of the box

indicate the upper and lower quartiles of the distribution. The isolated points above the

“whiskers” indicate the position of outliers. In these figures, the median of the box plot for

R̂1 (the boxplot on the left) are 0.54 and 0.57, far below the median predicted by the formula

for R1 (0.96 and 0.93 for good days and good pools respectively). This finding conforms with

the expectation based on our analysis of measurement error because the autocorrelation R1

has the variance in the denominator. Measurement error increases the variance but not the

autocovariance for lag 1, which lowers the sample autocorrelation below the prediction of the

formula. On the other hand, the ratios R̂2/R̂1 and R̂3/R̂1 are not affected by measurement

error because variances cancel out.

Figure 1.11: Box plot of asymptotic autocorrelations (good days)
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Figure 1.12: Box plot of asymptotic autocorrelations (good pools)

The medians of the box plots for good days are 0.81 and 0.72, close to the predicted 0.81

and 0.66. The medians of their box plots for good pools are 0.87 and 0.80, also close to the

prediction (0.90 and 0.81 as mentioned above). These are consistent with our conclusion

that autocovariances of lag j ≥ 1 are unaffected by measurement error.

Moment conditions 1.7 match the sample autocovariances of lag 1 and lag 2 to the formu-

las we derived for the asymptotic covariances V1 and V2 respectively, formulas that depend

on solely on h and the parameters β, c̄ and γ2 of the Heston model. Figure 1.13 to 1.14 plot

the sample variances versus the estimated asymptotic variances predicted by the parameter

estimates for each good day and good pool, along with the 45o line. The two graphs both in-

dicate that the asymptotic variances are not robust to measurement error. Figure 1.15 to 1.18

plot sample autocovariances versus the estimated asymptotic autovariances predicted by the

parameter estimates for each good day and good pool. Although there are a few outliers,

most of the 923 good days and 306 good pools are clustered along the 45o line.
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Figure 1.13: Asymptotic variance: real versus model (good days)

Figure 1.14: Asymptotic variance: real versus model (good pools)
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Figure 1.15: V̂1 versus V1 (good days)

Figure 1.16: V̂1 versus V1 (good pools)
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Figure 1.17: V̂2 versus V2 (good days)

Figure 1.18: V̂2 versus V2 (good pools)
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1.5.4 Comparison to the VIX

Figure 1.19 plots the VIX index week by week over our 8-year sample period. The VIX is

the implied volatility of S&P 500 index options. The 3 pairs of vertical lines in the VIX

graph correspond to the vertical lines in our plot of the time series for ̂̄c. We see that the

largest peak for the VIX lies inside the first pair of lines, and ̂̄c follows a trajectory similar

to that of the VIX over this period. VIX is near its mean at both the beginning and the end

of the period. It takes 40 days for VIX to climb up to the top in the week of 10/22/2008.

Similar to the plot for ̂̄c, the VIX exhibits higher volatility in the period leading up to the

great eruption, and there are two peaks in 2010 and 2011 lying in the regions identified by

the second and third periods of vertical lines. The VIX is relatively quiet in the last three

years, just like our plot of the estimates of ̂̄c.

Figure 1.19: Volatility Index of S&P 500, 2007-2014
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1.6 Comparison with the interday model

In this final part of the chapter, I would like to use our moment conditions to estimate

the Heston model using daily realized volatilities, with prices sampled either once every

five minutes (the usual procedure in the literature) or every second. We apply the moment

conditions (1.6) and (1.7) of our model to the sequence of daily quadratic variations implied

by the Heston model. Because there are gaps between the quadratic variations from two

different trading days, the derivation from the Heston model no longer makes much sense.

Nevertheless, I estimate the model for the entire eight-year sequence of 2014 trading days

from 2007-2014, a sample roughly equal in size to two five-day pools with realized volatility

computed over 100-second blocks. I adjust h to match the length of a 6.5 hour day relative

to a year: h = 6.5/(24 ∗ 365.25) = 1/1348.6.

Table 1.7: Heston model using daily RV

5-minute sampling 1-second sampling

parameter estimate z score estimate z score

β̂ 0.04 2.25 0.002 0.48̂̄c 0.13 3.87 0.12 0.78

γ̂2 36.6 1.35 13.6 0.96

Table 1.7 reports the results of the estimation, giving the parameter estimates and their

z scores. When prices are sampled every 5-minutes, the estimates of β and c̄ are significantly

different from 0 at the 2.5% level, the estimate of γ2 is significantly different from 0 at

the 10% level, the J-statistic does not reject the specification and the parameter estimates

satisfy the Feller condition. The estimate ̂̄c = 0.13 is close to the mean estimates reported

in Table 1.3 for good days or good pools (0.14). However, the estimate of the parameter γ2

is about 1.8% of the mean estimate for good pools in Table 1.3. The parameter β in the

interday estimation scenario now measures mean reversion relative a 6.5-hour day: 4% of

the gap between instantaneous volatility and the asymptotic mean is eliminated on average

in the course of a 6.5-hour trading day. This is much slower mean reversion compared to
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our model. The implied estimate of κ = log(1 − β)/h = 689 is about 2% of the median

estimate of κ = 3.32 × 104 reported in Table 1.3 for good pools12. The current literature

advocates sampling prices no more often than once every five minutes. The estimation results

in Table 1.7 is consistent with this opinion: When prices are sampled once a second, the

estimation using daily realized volatilities breaks down: z scores are all less than one.

1.7 Conclusion

This chapter demonstrates that the path of quadratic variation during a trading day can be

described by a Heston model of stochastic volatility. I estimate all parameters of the Heston

model using GMM with six moment conditions of the realized volatilities over 100-second

blocks. The estimation shows the three parameters of the Heston model can be used to

describe the characteristics of market uncertainty not only within a trading day, but across

different days as well. Enlarging the sample size by pooling realized volatilities over five

consecutive days leads to a dramatic increase in our model performance. Model outliers will

be examined in detail in chapter 3.

This chapter also demonstrates the importance of using appropriate units for time when

modeling realized volatility over very short intervals. Choosing the calendar year as the unit

of time rather than 100 seconds improved estimates considerably.

The chapter also compares intraday estimation of the Heston model using 100 second

RVs with the interday estimation using daily RVs. The results provide a clear interpretation

of the difference: The intraday model finds much higher volatility of volatility balanced with

much more rapid mean reversion.

12Bergantini (2013) estimated the Bollerslev and Zhou (2002) for the period 8/1/1987 to 6/20/2011 using
the S&P 500 index sampled at 5 minute frequency. The estimation she obtained was ̂̄c = 0.0103, κ̂ = 0.01135,

γ̂2 = 0.0840, with standard errors equal to 0.0011, 0.0353 and 0.0104 respectively. The Feller condition in
her exercise was not satisfied.
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CHAPTER 2

Estimating Intraday Stochastic Volatility:

Seven Case Studies

SPY is one of the most heavily traded assets on the U.S. stock market. A natural question is

whether our estimation procedure will meet with as much success for assets less liquid than

SPY.

In this chapter I estimate the Heston model for seven assets: IWM (which tracks the

Russell 2000 index), EEM (which tracks the MSCI emerging markets index), and five com-

ponents of the Dow Jones Industrial Average: BAC (Bank of America), CVX (Chevron),

IBM, INTC (Intel) and MSFT (Microsoft).

I begin by demonstrating that the one-dimensional Heston model is consistent with a

model in which both the price and volatility process are driven by D-dimensional Wiener

processes, which allows the volatility process for different assets to be sensitive to different

dimensions of risk. The rest of the chapter follows the outline of the discussion for the

empirical results on SPY in chapter 1. I begin by examining the overall empirical performance

of estimation day by day and with 5-day pools. I also examine the influence of the volume of

trade on empirical performance. I then describe in detail the parameter estimates for each

of the seven assets for good pools and plot the time series of the estimates over the 8-year

sample period, comparing and contrasting with those of SPY. I also compute the sample

moments of RVs with the population moments used in GMM estimation and compare the

intraday model with estimates of an interday model. Our basic conclusion is that GMM

estimation of the Heston model works well for these seven assets despite lower trade volume

and higher fraction of inactive seconds.
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The rest of the chapter is organized as follows: Section 2.1 describes how the Heston

model can incorporate multidimensional risks. Section 2.2 introduces the seven stocks and

ETFs and discusses the frequency of trades and the fraction of missing time stamps for each.

Section 2.3 presents estimation results for the seven assets and compares them with those of

SPY. Section 2.4 extends the discussion of the preceding section, comparing and contrasting

the seven assets with each other. Section 2.5 concludes the chapter.

2.1 Heston model as a general model

The Heston model can be formulated within the setting of multi-dimensional risks. In

particular a Heston model driven by a D-dimensional Wiener process can be reduced to

a one-dimensional Heston model, provided that the price process depends on the same D-

dimensional Wiener process. Let

Xt = X0 +

∫ t

0

bs ds+
D∑
d=1

∫ t

0

σds dW
d
s (t ≥ 0) (2.1)

where (W 1,W 2, . . . ,WD) is a standard D-dimensional Wiener process and ct :=
∑D

d=1(σ
d
t )

2

for all t ≥ 0, which is never zero. Also assume that the stochastic process c is the solution

to the stochastic differential equation

dct = κ(c̄− ct) dt+
√
ct

D∑
d=1

γd dW d
t (t ≥ 0) (2.2)

where the parameters γd are constant and γ2 :=
∑D

d=1(γ
d)2 is never zero.

We claim that equations (2.1) and (2.2) imply equations (1.1) and (1.2), the usual rep-

resentation of the Heston model. If we define

Wt =
D∑
d=1

∫ t

0

σds√
cs
dW d

s (t ≥ 0) (2.3)
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and

Bt =
D∑
d=1

∫ t

0

γd

γ
dW d

s (t ≥ 0) (2.4)

then W and B are standard 1-dimensional Wiener processes, possibly correlated.1 Equa-

tion (2.3) implies
√
ct dWt =

∑D
d=1 σ

d
t dW

d
t for all t ≥ 0. Substituting into the differential

version of equation (2.1) yields dXt = bt dt +
√
ct dWt, which is the differential version of

equation (1.1). Equation (2.4) shows γ dBt =
∑D

d=1 γ
d dW d

t , which when substituted into

equation (2.2) leads to equation (1.2).

Therefore, we can always reduce the D-dimensional Heston model represented by equa-

tion (2.1) and (2.2) to the one-dimensional Heston model given by equations (1.1) and (1.2).

As a result, there is no reason to distinguish between one-dimensional and multi-dimensional

versions of the Heston model as in Bollerslev and Zhou (2002). It is important to believe

that our estimation technique is consistent with a multi-dimensional world of risk.

2.2 Introduction to the assets

Table 2.1 lists all the stocks and exchange-traded funds used in this study. All of the stocks

are “high cap” stocks, listed as components of the Dow Jones Industrial Average in the

sample period 2007-2014. The first and second columns of Table 2.1 give the ticker symbol

and the name of the asset respectively. SPDR is an abbreviation for Standard and Poor’s

Depositary Receipts. All SPDF ETFs including SPY are managed by State Street Global

Advisors (SSGA). Russell refers to the FTSE Russell indexes. The FTSE Russell 2000 index

tracks 2000 U.S. small-cap stocks. iShare is a family of ETFs managed by Black Rock Inc.

MSCI Emerging is the component of the MSCI World index that tracks emerging markets.

It is maintained by Morgan Stanley Capital International. I will often use the ticker symbol

to identify points in graphs associated with a particular asset. Column 3 of Table 2.1 gives

1See Shreve (2004), p. 226. The quadratic variation of W is the same as that of a standard Wiener
process, which implies by Lévy’s Theorem that W is a standard Wiener process. The same argument applies
to the process B. The instantaneous correlation of the processes W and B at time t equals the differential

of the quadratic covariation [W,B] at time t, d[W,B]t =
(∑D

d=1 σ
d
t γ

d
)
/
√
ct γ.
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the percentage of time stamps over the 8-year period that were “inactive”, i.e., there is no

trade associated with an inactive time stamp. The fourth column gives the average number

of trades per second over the 8-year period.

As Table 2.1 shows, SPY averaged 17.2 trades per second over the 8-year sample period,

and 23% of the time stamps were inactive. Although not as high as SPY, the number of

trades per second for the other assets is also very high, ranging from a low of 1.5 for IBM to

a high of 8.9 for BAC, with an average of 6 trades per second. However, the percentage of

inactive seconds is much higher than it is for SPY, varying from a low of 45% for BAC to a

high of 70% for CVX, with an average of 52%2.

Table 2.1: Stocks and ETFs

Ticker Name Percent Inactive Trades

Time Stamps per second

SPY SPDR S&P 500 23 17.2

IWM iShares Russell 2000 52 6.4

EEM iShares MSCI Emerging 59 5.1

BAC Bank of America 45 8.9

CVX Chevron Corporation 70 2.2

IBM IBM Corporation 64 1.5

INTC Intel Corporation 53 3.2

MSFT Microsoft Corporation 51 3.5

2The average trade per second for the 30 DJIA component stocks is 3 and the average percent of inactive
time stamps is 58%
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Table 2.2: Market Capitalization and Daily Volume, Stocks and ETFs

Ticker Name Market Cap(b) Daily Vol(m)

SPY SPDR S&P 500 188.51 130.05

IWM iShares Russell 2000 25.77 38.13

EEM iShares MSCI Emerging 25.80 69.72

BAC Bank of America 143.09 105.54

CVX Chevron Corporation 13 25.94

IBM IBM Corporation 143.48 4.56

INTC Intel Corporation 143.5 22.96

MSFT Microsoft Corporation 407.41 29.98

Figure 2.1: Inactive seconds versus trades per second
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The high percentage of time stamps with no trade is surprising. To put this into per-

spective, suppose that the arrival of trades follows a Poisson process with intensity λ, where

λ is the arrival rate of trades per second. In that case, the probability there are exactly k

arrivals in an interval of length h is3

P(Nt+h −Nt = k) =
(λh)k

k!
e−λh (2.5)

If k = 0 and h = 1, this simplifies to

P(Nt+1 −Nt = 0) = e−λ (2.6)

Take the number of arrivals per second reported in column 4 of Tables 2.1 as the estimate

of λ for each stock or ETF, and take the left-hand side of equation (2.6) as the predicted

probability that a given time stamp has no trade. The dashed declining exponential curve in

Figure 2.1 plots equation 2.6 for all the 8 assets. The dots labeled with ticker symbols plot

the data given in column 3 (percentage inactive divided by 100, to convert the percentage to

a fraction) and column 4 (trades per second) for all the 8 assets. As Figure 2.1 illustrates,

all of the assets lie well above the percentage of inactive seconds that would be expected if

the arrival of trades were a Poisson process. For the lowest trading volume stocks (IBM and

CVX), the fraction of inactive seconds is relatively close to the fraction expected if arrivals

were Poisson. The gap widens as trades per second increases. For example, the fraction of

time stamps with no trades is 0.45 for Bank of America, but the Poisson equation predicts

the fraction should be e−8.9 = 1.4× 10−4.

2.3 Overall performance of selected stocks

In the previous section we showed the trade arrival process is far from Poisson and assets

except SPY have significantly fewer trades. Nevertheless, I find the Heston model works well

3Here we are indexing time by the interval [0, T ] rather than [0, 1], where T = 23,000 is the number of
seconds in a trading day.
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even for assets with a high percentage of inactive time stamps. Table 2.3 and 2.4 present the

performance ratings for the daily and pooled estimates respectively, comparable to Table 1.2.

To save space, the table gives only percentages and not the counts. For all 7 assets, there

are 2014 trading days and 403 five-day pools during the sample period 2007-2014, formed

exactly as the pools used in the analysis for SPY.

Table 2.3: Overall performance: 2007–2014, daily estimation

Classification IWM EEM BAC CVX IBM INTC MSFT

Good overall 47.9% 35.2% 39.1% 56.8% 52.8% 40.0% 29.7%

Bad overall 52.1% 64.9% 60.9% 43.2% 47.2% 60.0% 70.3%

Good β̂ 50.6% 37.5% 42.2% 59.6% 55.6% 38.9% 32.3%

Good ̂̄c 78.4% 64.9% 65.9% 78.8% 73.1% 64.7% 57.1%

Good γ̂2 25.2% 19.1% 24.3% 18.5% 15.6% 20.9% 17.2%

Good J-statistic 94.2% 92.2% 91.6% 93.5% 90.1% 93.2% 90.6%

Table 2.4: Overall performance: 2007–2014, 5-day pool estimation

Classification IWM EEM BAC CVX IBM INTC MSFT

Good overall 65.9% 53.0% 59.7% 61.7% 65.9% 52.5% 54.2%

Bad overall 34.1% 47.0% 40.3% 38.3% 34.1% 47.5% 45.8%

Good β̂ 79.1% 57.0% 66.4% 78.4% 80.3% 57.5% 60.2%

Good ̂̄c 90.8% 79.4% 80.1% 86.3% 87.1% 78.1% 83.3%

Good γ̂2 67.9% 41.1% 56.0% 50.7% 50.5% 44.8% 44.5%

Good J-statistic 84.3% 90.3% 86.1% 72.1% 77.1% 84.1% 85.3%

The percentage of good daily estimates varies from a low of 29.7% to a high of 56.8% for

CVX, with IWM and IBM as well as CVX exceeding the daily performance of SPY. Pooling

increases performance across the board. The percentage of good pools ranges from a low

of 52.5% for Intel to a high of 65.9% for IWM and IBM, somewhat short of SPY (70.9%).

As in the case of SPY, the percentage of good parameter estimates increased for all three

parameters from daily to pool estimation for these assets. Especially for γ̂2, the percentage
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of good estimates more than doubled from daily to pooling estimation for each asset. The

percentage of good J-statistics all worsened somewhat similar to that of SPY.

Figure 2.2: Model performance and fraction of inactive seconds

Figure 2.2 plots the fraction of inactive time stamps versus percentage of good pools

in the estimation. SPY distinguishes itself from other assets because of better estimation

performance and low fraction of inactive seconds. However, for the seven other assets, the

decrease of the fraction of inactive seconds is not associated with a clear improvement in

the fraction of good pools. For IBM and CVX, 60% of their time stamps have no trade,

but around 60% of their pools are good. These two stocks do have a significant number

of failures of the Feller inequality, 119 and 51 cases respectively. The Feller inequality is

satisfied for almost all of the pools for the other 5 assets, as will be discussed in the next

section.
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2.4 Empirical analysis of different stocks

This section discusses the estimation results for each of the seven assets. In each subsection

devoted to all of the assets, there is a table paralleling Table 1.3 that describes the parameter

estimates for each asset followed by the time series graphs of β̂, ̂̄c and γ̂2 for good pools in the

sample period 2007-2014. I also display graphically the feller conditions for each good pool

and compare the sample first and second order moments with the values predicted by the

model. These exercises provide evidence for the general applicability of the Heston model

to different assets.

2.4.1 IWM

Table 2.5 describes the parameter estimates for good days and good pools for IWM. Similar

to SPY, pooling substantially improves the standard errors and z scores for estimates of

all three parameters. Pooling has little impact on the estimates of c̄ (the mean, median

and interquartile range are almost the same), but pooling affects the estimates of β and γ2

greatly. The median β̂ fell from 0.17 to 0.09 and the interquartile range shrunk from 0.12 to

0.05. The median estimate of γ2 fell from 4.85×103 to 3.23×103 and the interquartile range

fell from 6.7× 103 to 4.0× 103. The median estimate of c̄ is 0.17 for good pools, equivalent

to a standard deviation
√

0.17 = 0.41(41%) of annualized log returns with a volatility of

volatility
√

3.23× 103 = 56.83.

Figure 2.3 plots β̂ for good pools over the 8 year sample period for IWM. The estimates

are tightly clustered with no evidence of a trend over time.

Figure 2.4 and 2.5 plot ̂̄c and γ̂2 for good pools of IWM. Three pairs of vertical lines are

added to these figures in the same locations as those in Figure 1.6 and 1.8 for SPY. Three

pairs of lines indicate three periods where we observe a surge in volatility in SPY associated

with specific economic events: the financial crisis, the sovereign debt crisis and the credit

crisis. We see these events impact the volatility of IWM as well. The asymptotic mean

estimates rise in these three periods, reaching a peak higher than SPY. The γ2 estimates

have a larger scale and are noisier than SPY. This result is not surprising because IWM is
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Table 2.5: Estimates of β, c̄ and γ2, IWM

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.17 0.15 4.85 0.09 0.17 3.23

lower quartile 0.12 0.09 2.65 0.07 0.10 2.03

upper quartile 0.24 0.25 9.35 0.12 0.29 6.03

median standard error 0.06 0.02 2.98 0.03 0.014 1.34

mean 0.20 0.24 9.70 0.10 0.27 16.45

median z-score 2.67 8.59 1.62 3.11 11.15 2.31

the exchange traded fund tracking small cap stocks. Figure 2.6 checks the Feller condition

for good pool estimates. I plot γ2 on the vertical axis and 2κc̄ on the horizontal axis using

the parameter estimates for good pools, along with the 45o line. Points above the 45o line

violates the Feller conditionγ2 ≤ 2κc̄. We see all the Feller conditions are strictly satisfied.

Figure 2.7 parallels Figure 1.10 for SPY, plotting for each good pool the mean RV for the

pool versus the estimate of the asymptotic mean c̄. All of the estimates of the asymptotic

mean match closely with the mean realized volatility. Figure 2.8 and 2.9 provide evidence

that the sample autocovariances of lag 1 and lag 2 match the asymptotic autocovariances

predicted by the model, (compare Figure 1.16 and 1.18 for SPY). Except for a few outliers,

most of the 265 good pools are clustered along the 45o line.
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Figure 2.3: Time series for β̂ (good pools), IWM

Figure 2.4: Time series for ̂̄c (good pools), IWM
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Figure 2.5: Time series for γ̂2 (good pools),IWM

Figure 2.6: Feller condition (good pools), IWM
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Figure 2.7: ̂̄c versus mean of RV (good pools), IWM

Figure 2.8: V1 versus V̂1 (good pools), IWM
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Figure 2.9: V2 versus V̂2 (good pools), IWM

2.4.2 EEM

Because of the similarity in the estimation results across assets, I will describe tables and

graphs for other assets more briefly. Table 2.6 indicates similar impact of pooling on the

estimation: better standard errors and z score, smaller range of estimates for β and γ2 and

little effect on the distribution of estimates for c̄.

Figures 2.10, 2.11 and 2.12 show time series of the estimates for the three parameters

over the 8 year sample period for EEM. The mean reversion rate β shows no evidence of a

trend over time but c̄ and γ2 estimates vary. The same three pairs of dashed lines are added

in these two graphs. The magnitude of ̂̄c is more than 2 times larger than that of SPY.

The impact of the financial crisis on c̄ and γ2 is clear but there is little evidence of surge

in volatility in the other two periods. Because EEM tracks emerging market indexes, it is

not surprising that EEM is less impacted by the Eurozone crisis and the lowering of credit

rating for the U.S. government. In contrast to SPY and the other assets, the volatility of

volatility is very noisy in 2007.
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There are 11 cases that fail the Feller inequality, illustrated by Figure 2.13. However,

most of the good pools have γ2 smaller than 2κc̄. The sample first and second order moments,

except for a few outliers, cluster along the 45o line.

Table 2.6: Estimates of β, c̄ and γ2, EEM

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.22 0.20 6.73 0.11 0.20 3.11

lower quartile 0.15 0.14 4.09 0.08 0.15 2.28

upper quartile 0.32 0.31 12.30 0.14 0.30 6.10

median standard error 0.08 0.02 4.05 0.04 0.02 1.42

mean 0.26 0.36 21.92 0.12 0.34 8.02

median z-score 2.60 10.23 1.61 2.65 13.04 2.00

Figure 2.10: Time series for β̂ (good pools), EEM
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Figure 2.11: Time series for ̂̄c (good pools), EEM

Figure 2.12: Time series for γ̂2 (good pools),EEM
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Figure 2.13: Feller condition (good pools), EEM

Figure 2.14: ̂̄c versus mean of RV (good pools), EEM
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Figure 2.15: V1 versus V̂1 (good pools), EEM

Figure 2.16: V2 versus V̂2 (good pools), EEM
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2.4.3 BAC

Table 2.7 indicates that pooling helps to generate better standard errors and z scores for all

the parameter estimates. Pool estimation also provides smaller mean, median and interquar-

tile range for estimates of β and γ2 but has little effect on the distribution of c̄ estimates.

The time series graphs demonstrate the rate of mean reversion has no evidence of a trend

over time but c̄ and γ2 estimates varies tremendously. The scale of ̂̄c for BAC is more than

20 times larger than the scale of SPY, showing a profound impact of the financial crisis on

the banking sector. On the other hand, the eurozone crisis (indicated by the middle pair of

vertical lines) had little impact on BAC. The credit crisis however, seems to have had a more

lasting effect than SPY, taking more than two years to settle down. It provides evidence of

the multi-dimensional nature of market risks.

There are no cases in which the Feller inequality fails, illustrated by Figure 2.20. Despite

a few outliers, Figure 2.21 to 2.23 show the sample first and second order moments in RVs

for BAC match the predicted moments fairly closely for most good pools.

Table 2.7: Estimates of β, c̄ and γ2, BAC

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.23 2.87 31.04 0.12 3.10 19.14

lower quartile 0.16 1.44 15.89 0.09 1.60 11.87

upper quartile 0.32 5.35 73.95 0.15 6.25 42.65

median standard error 0.07 0.15 17.27 0.04 0.12 8.32

mean 0.27 4.87 63.88 0.13 4.69 42.23

median z-score 2.91 17.74 1.71 3.04 23.86 2.22
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Figure 2.17: Time series for β̂ (good pools), BAC

Figure 2.18: Time series for ̂̄c (good pools), BAC
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Figure 2.19: Time series for γ̂2 (good pools),BAC

Figure 2.20: Feller condition, BAC
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Figure 2.21: ̂̄c versus mean of RV (good pools), BAC

Figure 2.22: V1 versus V̂1 (good pools), BAC
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Figure 2.23: V2 versus V̂2 (good pools), BAC

2.4.4 CVX

Pooling has a similar impact on the estimation for CVX, as shown by Table 2.8. The time

series graphs for the mean reversion rate evolves in the same fashion as that of SPY. In

Figure 2.25, the scale is three times than the ̂̄c graph of SPY, showing a profound impact

of the financial crisis. However, there is little sign that sovereign debt crisis laid an impact

on CVX. Moreover, the credit crisis did cause a surge of volatility. The same is true of

the estimates of γ2 in Figure 2.26. There are 51 good pools fail the Feller inequality, as

illustrated in Figure 2.27. Most of the pools that violate the Feller condition lie reasonably

close to the 45o line. Despite a few outliers, Figure 2.28 to 2.30 show the sample first and

second order moments in RVs for CVX are, except from a few outliers, close to the 45o line.
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Table 2.8: Estimates of β, c̄ and γ2, CVX

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.17 0.16 7.04 0.11 0.17 7.67

lower quartile 0.12 0.09 3.52 0.08 0.10 4.22

upper quartile 0.27 0.29 14.90 0.15 0.31 13.77

median standard error 0.05 0.02 6.38 0.03 0.02 3.85

mean 0.21 0.29 17.17 0.12 0.31 27.39

median z-score 3.36 7.53 1.29 3.75 10.06 1.87

Figure 2.24: Time series for β̂ (good pools), CVX
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Figure 2.25: Time series for ̂̄c (good pools), CVX

Figure 2.26: Time series for γ̂2 (good pools),CVX
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Figure 2.27: Feller condition (good pools), CVX

Figure 2.28: ̂̄c versus mean of RV (good pools), CVX
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Figure 2.29: V1 versus V̂1 (good pools), CVX

Figure 2.30: V2 versus V̂2 (good pools), CVX
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2.4.5 IBM

Pooling has the by now familiar impact on the estimation for IBM, as shown in Table 2.9. The

time series graphs of ̂̄c and γ̂2 for IBM are almost identical to the ETFs but the magnitude

of the peaks is much larger. There are 119 cases that fail the Feller inequality, the largest

number of differences of all the 8 assets including SPY. Fortunately, most of the pools that

violate the Feller condition still lie reasonably close to the 45o line, illustrated by Figure 2.34.

We conjecture that sampling prices every millisecond would alleviate this problem, because

the number of trades per active time stamp is quite high. Despite a few outliers, Figure 2.35,

2.36 and 2.37 show that the moment conditions have relatively small errors.

Table 2.9: Estimates of β, c̄ and γ2, IBM

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.18 0.13 9.60 0.12 0.12 10.30

lower quartile 0.13 0.08 5.35 0.09 0.09 6.40

upper quartile 0.26 0.23 20.38 0.15 0.22 17.09

median standard error 0.05 0.02 8.34 0.03 0.02 5.15

mean 0.22 0.26 24.75 0.12 0.24 24.00

median z-score 3.45 6.71 1.26 3.92 8.93 1.90
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Figure 2.31: Time series for β̂ (good pools), IBM

Figure 2.32: Time series for ̂̄c (good pools), IBM
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Figure 2.33: Time series for γ̂2 (good pools), IBM

Figure 2.34: Feller condition (good pools), IBM
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Figure 2.35: ̂̄c versus mean of RV (good pools), IBM

Figure 2.36: V1 versus V̂1 (good pools), IBM
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Figure 2.37: V2 versus V̂2 (good pools), IBM

2.4.6 INTC

The impact of pooling on the estimation for INTC fits the usual pattern, illustrated by

Table 2.10. The time series graph for c̄ estimates for INTC shows a different pattern than

Figure 1.6 for SPY. After the financial crisis, c̄ returns to a level slightly higher than that

before the crisis and gradually declines until the end of the sample period. This is not

surprising as the volatility of a technology stock like INTC may hardly be impacted by the

sovereign debt crisis or the credit downgrade of U.S. government. All good pools for INTC

satisfy the Feller condition strictly, illustrated by Figure 2.41. Despite a few outliers, the

points in Figure 2.42 to 2.44 lie close to the 45o line.
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Table 2.10: Estimates of β, c̄ and γ2, INTC

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.21 0.90 15.29 0.11 0.95 8.74

lower quartile 0.15 0.58 9.05 0.08 0.64 5.33

upper quartile 0.29 1.24 25.44 0.14 1.27 15.24

median standard error 0.06 0.06 9.05 0.04 0.05 4.11

mean 0.24 1.05 31.71 0.12 1.06 16.98

median z-score 2.79 13.70 1.66 2.83 17.22 2.05

Figure 2.38: Time series for β̂ (good pools), INTC
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Figure 2.39: Time series for ̂̄c (good pools), INTC

Figure 2.40: Time series for γ̂2 (good pools), INTC
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Figure 2.41: Feller condition, INTC

Figure 2.42: ̂̄c versus mean of RV (good pools), INTC
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Figure 2.43: V1 versus V̂1 (good pools), INTC

Figure 2.44: V2 versus V̂2 (good pools), INTC
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2.4.7 MSFT

The impact of pooling on the estimation for MSFT fits the regular pattern, illustrated by

Table 2.11. The time series graph of parameter estimates for MSFT are similar to those of

INTC, not surprising since they belong to the technology sector. The volatility of volatility

estimates are smooth over time except for one huge outlier in the financial crisis that is 33

times its mean. There are no failures for the Feller condition. Despite a few outliers, the

sample first and second order moments in RVs for MSFT are close to the 45o line.

Table 2.11: Estimates of β, c̄ and γ2, MSFT

good days good pools

β̂ ̂̄c γ̂2(×103) β̂ ̂̄c γ̂2(×103)

median 0.21 0.58 11.91 0.12 0.57 6.71

lower quartile 0.15 0.40 6.79 0.09 0.40 4.26

upper quartile 0.31 0.80 21.02 0.15 0.74 10.25

median standard error 0.07 0.04 7.45 0.04 0.03 3.03

mean 0.25 0.75 28.90 0.13 0.66 10.21

median z-score 2.88 12.92 1.60 2.85 17.61 1.98
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Figure 2.45: Time series for β̂ (good pools), MSFT

Figure 2.46: Time series for ̂̄c (good pools), MSFT
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Figure 2.47: Time series for γ̂2 (good pools), MSFT

Figure 2.48: Feller condition (good pools), MSFT
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Figure 2.49: ̂̄c versus mean of RV (good pools), MSFT

Figure 2.50: V1 versus V̂1 (good pools), MSFT
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Figure 2.51: V2 versus V̂2 (good pools), MSFT

2.5 Common patterns and differences among assets

This section considers the parameter estimates for all 8 assets as a whole. We show some

common patterns for the three parameters and point to some notable differences in parameter

estimates across assets.

The first three rows of Table 2.12 present the median and interquartile range of the

estimates for β, and the median estimate of κ. The interquartile range for the mean reversion

rate is tight and almost identical for all assets. The median estimates for of mean reversion

rate is similar to that of SPY for all assets as well, which is an astonishing impact of pooling.
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Table 2.12: Summary of parameter estimates (good pools)

IWM EEM BAC CVX IBM INTC MSFT

median β̂ 0.09 0.11 0.11 0.11 0.11 0.11 0.12

IQ range β̂ 0.05 0.07 0.06 0.06 0.06 0.05 0.06

median κ̂(×103) 3.0 3.7 3.7 3.7 3.7 3.7 4.0

median ̂̄c 0.17 0.20 3.1 0.18 0.13 0.99 0.58

IQ range ̂̄c 0.19 0.15 4.65 0.21 0.13 0.63 0.34

mean ̂̄c 0.27 0.33 4.5 0.32 0.27 1.1 0.73

median γ̂2(×103) 3.3 3.6 17.6 9.0 10.8 9.4 6.8

IQ range γ̂2(×103) 4.00 3.82 30.78 9.55 10.69 5.91 5.99

(max/mean) ̂̄c 11.11 14.71 9.10 20.97 20.83 6.13 6.44

(max/mean) γ̂2 3.77 12.47 10.63 9.50 18.75 40.64 32.81

Figure 2.52 displays the box plot of β estimates for good pools of all assets. The top

and bottom of the box give 75% and 25% quartiles of the distribution. The horizontal line

inside the box is the median. The two horizontal lines lie outside of the box are called the

whiskers. Estimates outside the whiskers (the outliers) are plotted as individual points. The

top and bottom whisker for a distribution is calculated by

WT = min(max(β̂), Q3 + 1.5IQR)

and

WB = max(min(β̂), Q1 − 1.5IQR)

where Q1 and Q3 are the 25% and 75% quartiles of the distribution and IQR is the in-

terquartile range, Q3 − Q1. In Figure 2.52, WB = 0.003 and WT = 0.236, so 99% of the
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estimates are within the range of about 0.23. There are no observations below WB but there

are 57 outliers above WT .

The estimates for c̄ and γ2, on the other hand, vary considerably across stocks. The

forth to sixth row of Table 2.12 display the median, IQ range and mean of the estimates for

c̄. Not surprisingly the banking stock BAC registered the highest level median and mean

of c̄ over this eight-year period. The interquartile range of ̂̄c for BAC is also largest among

all assets, more than 7 times of the second largest (INTC). The seventh and eighth row of

Table 2.12 show the median and interquartile range of estimates for γ2. The interquartile

range of stocks are clearly larger than that of ETFs. Figure 2.53 displays box plots of γ2

estimates of good pools for all assets.

Figure 2.54 compares estimates of c̄ with the mean of RVs for all blocks in good pools for

all 8 assets. The GMM estimates of c̄ are very close to the 45o line with only two exceptions.
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Figure 2.52: Box plots of β̂ (good pools), all assets
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Figure 2.53: Box plots of γ̂2 (good pools), all assets

Figure 2.54: ̂̄c versus mean of RVs (good pools), all assets

We also estimated the Heston model for these assets using daily RV sampled every five
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minutes and once every second. Results are demonstrated in Table 2.13. The results are

similar to the case of SPY: when prices are sampled every five minutes, the estimates of c̄

are usually roughly similar to the mean of intraday estimates. However, estimates of κ and

γ2 are two orders of magnitude smaller than the mean of intraday estimates. In the intraday

setting, volatility is very volatile but quickly reverts toward its mean. In the interday model,

volatility is much less volatile and reverts much smaller to its mean.

2.6 Conclusion

This chapter provides additional evidence for the Heston intraday stochastic volatility model,

testing the model for two additional ETFs and five stocks. While these other assets are traded

less frequently than SPY, the fraction of active time stamps does not fall as quickly as their

frequency of trades. Lower trade volume and a high fraction of inactive time stamps have

little impact on the model performance.

For estimates in good pools, I find strong evidence that the rate of mean reversion is

roughly constant across the entire sample. The estimates of c̄ and γ2 for the seven assets

vary a lot over time similar to SPY, but with very different scales. For example, the times

series of ̂̄c and γ̂2 for the financial stocks have a much higher peak than the other stocks. The

interquartile range of ̂̄c and γ̂2 for stocks are obviously larger than ETFs. I also compare our

model with the model using daily realized volatility and parameters held constant over the

entire sample period. The results are very different. The speed of mean reversion is much

more rapid in our model and the volatility-of-volatility is much higher.
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Table 2.13: Heston model using daily RV with different sampling frequency

Interday Intraday

Ticker parameter estimate zscore mean estimate median z score

κ̂ 83 2.99 3.32× 104 3.11

IWM ̂̄c 0.26 4.80 0.27 11.15

γ̂2 64.94 2.28 16.45 2.31

κ̂ 55 2.35 3.85× 104 2.65

EEM ̂̄c 0.19 4.16 0.34 13.04

γ̂2 63.06 1.41 8.02 2.00

κ̂ 55 2.44 4.39× 104 3.04

BAC ̂̄c 0.87 3.63 4.69 23.86

γ̂2 519.61 1.62 42.23 2.22

κ̂ 69 3.48 3.85× 104 3.75

CVX ̂̄c 0.27 5.33 0.31 10.06

γ̂2 76.41 1.17 27.39 1.87

κ̂ 55 2.16 3.85× 104 3.92

IBM ̂̄c 0.21 4.29 0.24 8.93

γ̂2 32.40 1.37 24.00 1.90

κ̂ 83 3.32 3.85× 104 2.83

INTC ̂̄c 0.31 7.98 1.06 17.22

γ̂2 38.54 2.03 16.98 2.05

κ̂ 83 2.88 4.39× 104 2.85

MSFT ̂̄c 0.28 6.99 0.66 17.61

γ̂2 72.93 2.28 10.21 1.98
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CHAPTER 3

The Evidence for Jumps in Intraday Stochastic

Volatility

3.1 Introduction

In Chapters 1 and 2 I estimated the Heston model using SPY and other 7 assets. I demon-

strate the continuous path of quadratic variation during a trading day can be described by

the Heston model. However, the Heston model is not the whole story, as jumps could happen

when volatility is volatile. Thus an attractive extension of the model is to allow for jumps

in the price process or the volatility process. This chapter examines the evidence for the

presence of jumps.

The study focuses on the realized volatilities on each trading day during 2007-2014 for

SPY, the asset we have investigated the most in the previous chapters. I examine trading

days pool by pool. Because the average RV varies substantially from pool to pool, we can not

rely on the absolute magnitude of RVs to look for jumps. Therefore, I construct a measure

of relative realized volatility (RRV) to overcome this difficulty.

After identifying pools with large jumps using the distribution of RRVs, I investigate the

path behavior of these pools. I begin with good pools, which occupy 71% of the sample for

SPY. In these pools, I find large RVs are relatively rare. They tend to occur together and

are likely to trigger a cascade of volatility jumps. The remaining RVs stay quiet most of the

time but are often higher at the beginning of a trading day. With the presence of volatility

jumps, the pool estimate of c̄ is likely to be higher than the median RV.

For the bad pools, I find large RVs happen considerably more often. As in the case for
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good pools, large RVs for bad pools are tend to occur together and are likely to trigger a

series of volatility jumps. Moreover, I provide evidence that most of the data in a pool are

explained by the Heston model if we take out the jumps. The discussion paves the way for

future modeling of jumps in the Heston model.

The rest of chapter is organized as follows: Section 3.2 provides our classification of

jumps based on the empirical distribution of realized volatilities over 100 second time blocks.

Section 3.3 and 3.4 investigate the path behavior of RV processes in good and bad pools

respectively when jump are present. Section 3.5 concludes the chapter.

3.2 Classifying realized volatilities

We have relied on realized volatilities over 100 second intervals to estimate the Heston model.

In this chapter, we would like to develop an empirical definition of jumps independent of

any models but simply depend on the 100-second RVs. In other words, we would like to

start with the empirical distribution of RVs for SPY over the entire 8 year sample period

and identify outliers. We conclude the price or volatility process contain a jump when RV

some threshold. This strategy is complicated by the fact that the average volatility changes

greatly over the sample period. For example, the largest average RV over a trading day is

17.42 in the financial crisis while the average RV of the entire sample is only 0.087.

The relative realized volatility(RRV) measure solves this difficulty by looking at the ratio

of RV divided by the median RV of the pool. RRV judges what constitutes an outlier by

a relative standard that uses the median RV as a reference point. In other words, a large

deviation from the median is not supposed to be captured by mean reversion or stochastic

volatility, and hence likely to be a jump. We use median RV instead of c̄ because median

RV is model free. The median is a measure of central tendency that is less sensitive to the

presence of outliers than the mean.
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Table 3.1: Order statistics of RRV

Q1 Q3 median WU max

good pools 0.72 1.41 1.00 2.45 1368.9

bad pools 0.71 1.42 1.00 2.48 7308.5

RRV in [0, 2.5) (good pools) 0.70 1.33 0.97 2.28 2.50

RRV in [0, 2.5) (bad pools) 0.70 1.33 0.97 2.28 2.50

Table 3.1 presents the order statistics for RRV. There are 234 × 2014 = 471,276 blocks

in the sample, of which 234 × 286 × 5 = 334,620 are blocks for good pools, and 136,656

blocks from bad pools1. The lower and upper quartile of the distribution of RRVs are

indicated by Q1 and Q3 correspondingly. WU is the upper whisker and calculated as WU =

min[max(RRV s), Q3 + 1.5IQR], where IQR is the interquartile range. WU is not an order

statistic but a reasonable threshold for outliers.

To make use of WU in identifying jumps, I separate the RRVs into good pools and bad

pools, presented in Table 3.1. The two distributions have the same median and almost same

interquartile range2. Their WU are also very close. Moreover, the distribution of RRVs below

WU is not much affected by the outliers larger than the WU , shown by the third and fourth

columns of Table 3.1. The order statistics of distribution of RRVs below WU is identical for

good and bad pools.

1Because there are 2,014 days, the final pool has only 4 days

2The lower bound, WL, is left out of the table. WL is 0 because RV =0 when there is no trading activity
in the afternoon of some public holiday
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Table 3.2: Distribution of RRV

RRV Good pools Bad pools Total

[1000,+∞) 1 44 45

[100, 1000) 11 186 197

[10, 100) 353 352 705

[5, 10) 1291 659 1950

[2.5, 5) 13875 5649 19524

[0, 2.5) 319,089 129,766 448,855

Total 334,620 136,656 471,276

Table 3.3: Right tail distribution of RRV(percentage)

RRV Good pools Bad pools Total

[1000,+∞) 0.0003% 0.03% 0.0095%

[100, 1000) 0.003% 0.14% 0.042%

[10, 100) 0.11% 0.26% 0.15%

[5, 10) 0.39% 0.48% 0.41%

[2.5, 5) 4.15% 4.13% 4.14%

[0, 2.5) 95.36% 94.36% 95.22%

Total 100% 100% 100%
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Table 3.4: RRVs per pool

RRV Good pools Bad pools Total

[1000,+∞) 0.004 0.38 0.11

[100, 1000) 0.04 1.59 0.48

[10, 100) 1.23 3.01 1.75

[5, 10) 4.51 5.63 4.84

[2.5, 5) 48.51 48.28 48.45

[0, 2.5) 1115.7 1109.1 1113.8

Total 1170 1170 1170

There are in total 22,421 RRVs larger than 2.5, 13,875 of which are from good pools.

Overall the number of RRVs over 2.5 occupies 4.78% of all the blocks in the 403 pools.

Moreover, the max RRV of good and bad pools are 1369 and 7309, very different from the

rest of the distribution. These facts inspire me further divide the distribution of RRVs above

WU to find a threshold for large outliers. I classify [2.5,∞) into 5 intervals: [2.5, 5), [5, 10),

[10, 100), [100, 1000) and [1000,∞). I show the number of RRVs in each of these intervals in

Table 3.2 for good and bad pools separately. I also show the number of RRVs in the range

of [0, 2.5) as a comparison. The percentage of blocks in each category is listed in Table 3.3.

The two tables tell us that bad pools are much more likely to have very large RRVs than

good pools and large RRVs are relatively rare. The difference between bad and good pools

shrinks rapidly as we decrease the threshold. The table starts from the most extreme case

when RRVs exceed 1000, i.e., RVs are over 1000 times the median RV of the pool to which

they belong. There is only 1 block in this scenario for good pools but there are 44 in bad

pools. The number of RRVs in the range of [10, 100) for good pools and bad pools are nearly

equal. However, because we have more than twice the number of good pools than bad pools,

the percentage of RRVs in this range for bad pools is still much larger. When we get to
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[2.5, 5), their percentage of RRVs are nearly the same.

Table 3.4 converts the counts of Table 3.3 to rates per pool by dividing the counts of

good pools by the number of good pools and the counts of bad pools by the number of bad

pools. We see the same pattern continues in this table: The incidence of tail events for the

first four categories is greater for bad pools than good pools, but the difference decreases as

the threshold decreases.
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Figure 3.1: RRV by block, 1/5/2011 - 1/11/2011(WRFMT, pool 203)

Table 3.5: Parameter estimates of a typical pool3

Pool β̂ ̂̄c γ2 × 103 jpvalue

203 0.17*** 0.067*** 1.16*** 0.31

Table 3.1 to 3.4 provide a good guidance for the path analysis of pools in the next section.

Figure 3.1 provides an example. This is pool 203 which includes 1/6/2011, the good day

portrayed in Figure 1.1 in chapter 1. Because this is a good pool, the estimates of c̄ and

3‘*’, ‘**’ and ‘***’ indicate the z-score is larger than 1.645, 1.96 and 2.33
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β are significant and the model specification is also good. Although not required for good

pools, the γ2 estimate is also statistically significant at the 1% level. Details of parameter

estimates can be found in Table 3.5. The horizontal dashed line in Figure 3.1 is ̂̄c divided by

the median RV of the pool. The caption lists the sequence of weekdays included in the pool:

pool 203 starts on Wednesday and ends with Tuesday, described as “WRFMT”. Realized

volatilities has a scalloped pattern each day: RRVs of the first few blocks of each day are

often above 2.5. They fall below 1 in the middle of the day and usually tend to rise at the

end of the day. In this pool, there are no bad blocks and all but one of the RRVs is below 5.

Now I focus on RRVs above 10 to select some other interesting pools for the analysis in

the next section. RRVs in this range occupies only 0.15% (1.75 per pool) in the sample. I

call RRVs in [10,∞) “bad blocks”. I refer to RRVs in [10, 100), [100, 1000) and [1000,∞)

as Category 1, 2 and 3 respectively. Table 3.6 provides a complete catalog of bad blocks for

every good pool. Each row describes a profile of a good pool characterized by the number of

bad blocks in the pool, the number of bad blocks in each category and the number of pools

fitting the profile. There are 18 rows in the table, representing 18 distinctive profiles. For

example, 155 good pools have no bad blocks. Only one pool has one bad block of category

3. For the 131 good pools that have bad blocks, most have 1 or 2 bad blocks. One pool have

25 bad blocks, all of category 1.
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Table 3.6: Distribution of the number of bad blocks (good pools)

bad blocks per pool Cat 1 Cat 2 Cat 3 pools

0 0 0 0 155

1 0 0 1 1

1 0 1 0 4

1 1 0 0 56

2 2 0 0 26

3 3 0 0 15

4 4 0 0 12

4 2 2 0 1

5 5 0 0 3

6 6 0 0 3

7 7 0 0 2

8 7 1 0 1

9 8 1 0 1

9 7 2 0 1

10 10 0 0 2

14 14 0 0 1

23 22 1 0 1

25 25 0 0 1

Table 3.7 catalogs the distribution of bad blocks for bad pools. There are 37 bad pools

with no bad blocks, accounting for 32% of total bad pools. Bad pools with 0, 1, 2 bad blocks

account for 69% of all bad pools. The bad pool with 184 bad blocks includes February 27,

2007, when the S&P 500 Index dropped 3.5% following a 9% sell-off in China’s stock market

overnight. The 44 Cat 3 bad blocks belong to 6 pools. The 186 Cat 2 bad blocks come from

30 bad pools. Thus bad blocks are clustered into a few bad pools.
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Table 3.7: Distribution of the number of bad blocks (bad pools)

bad blocks per pool Cat 1 Cat 2 Cat 3 pools

0 0 0 0 37

1 1 0 0 25

1 0 1 0 4

1 0 0 1 1

2 2 0 0 11

2 1 1 0 2

2 1 0 1 1

3 3 0 0 7

3 2 1 0 1

3 1 2 0 2

4 4 0 0 2

4 1 3 0 2

5 4 1 0 1

6 6 0 0 1

6 5 1 0 1

6 4 2 0 1

7 2 5 0 1

7 1 6 0 1

8 7 1 0 1

8 4 4 0 1

8 3 5 0 1

8 2 6 0 1

10 10 0 0 1

11 4 5 2 1

11 9 2 0 1

12 8 4 0 1

13 11 2 0 1

13 6 7 0 1

14 14 0 0 1

18 1 8 9 1

20 19 1 0 1

29 17 11 1 1

74 46 28 0 1

184 98 78 30 1
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3.3 Examining RRV for good pools

The previous section sets up a framework for identifying jumps in RVs using relative realized

volatilities. I will now use this classification to explore the path behavior of RRVs in pools

containing bad blocks. The path analysis allows us to visualize how the Heston model reacts

to jumps.

Table 3.8 lists the pools that will be discussed. Among the 35 pools, 23 are good pools

and 12 are bad. Half of the pools come from 2007-2009 and the rest from the last 5 years

of the sample. As we saw in chapter 1, RVs are more volatile in the first three years of our

sample due to the financial crisis.

The first column of Table 3.8 indicates whether the pool is good (G) or (B). The second

column gives the number of the pool. Pools are numbered from 1 to 403. The third column

gives the beginning and end date of the pool. Columns 4 to 6 indicate the number of RRVs

falling into each of the three categories of bad blocks. The last column attaches descriptive

labels to some pools, e.g.,:

• Pool 11 is labeled “FOMC” because there was a FOMC announcement on one of the

trading days.

• Pool 169 is labeled “Flash Crash” because the Flash Crash event happened in this

pool.

• Pool 6 is labeled “Gang of Nine”, the nine good pools having “Cat 2” bad blocks.

• “The Great Six” indicates the only six bad pools having “Cat 3” bad blocks.

Other labels indicate pools at the beginning and the end of the financial crisis, as well as

its peak and bottom, and other market events of interests.
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Table 3.8: Summary of pools in the path behavior analysis

G/B pool dates Cat1 Cat 2 Cat 3 description

G 6 2/8/07-2/14/07 22 1 0 Gang of Nine

B 8 2/23/07-3/1/07 98 78 30 Worst pool

G 11 3/16/07-3/22/07 14 0 0 FOMC

B 26 7/3/07-7/10/07 14 0 0 Bernanke effect

G 42 10/25/07-11/2/07 8 1 0 FOMC

B 45 11/15/07-11/21/07 1 0 1 The Great Six

G 71 5/23/08-5/30/08 7 2 0 Gang of Nine

B 87 9/17/08-9/23/08 19 1 0 Beginning of the financial crisis

G 88 9/24/08-9/30/08 25 0 0 Largest dive of DJIA

G 92 10/22/08-10/28/08 1 0 0 Peak of the financial crisis

G 106 2/3/09-2/9/09 0 0 0 Bottom of the financial crisis

G 121 5/21/09-5/28/09 4 0 0

B 128 7/13/09-7/17/09 0 0 1 End of the financial crisis

G 133 8/17/09-8/21/09 2 2 0 Gang of Nine

B 137 9/15/09-9/21/09 1 8 9 The Great Six

B 144 11/3/09-11/9/09 46 28 0 Job effect

G 159 2/23/10-3/1/10 0 0 0

B 169 5/5/10-5/11/10 17 11 1 Flash Crash

G 184 8/20/10-8/26/10 3 0 0

G 194 11/1/10-11/5/10 10 0 0 FOMC

G 203 1/5/11-1/11/11 0 0 0 Includes Figure 1.1

B 222 5/23/11-5/27/11 4 5 2 The Great Six

G 250 12/9/11-12/15/11 0 1 0

B 262 3/8/12-3/14/12 0 0 0

G 282 7/31/12-8/6/12 7 0 0 FOMC

G 289 9/19/12-9/25/12 10 0 0 Apple effect

G 297 11/16/12-11/23/12 0 0 1 Worst good pool

G 320 5/6/13-5/10/13 0 1 0 Gang of Nine

G 324 6/4/13-6/10/13 0 1 0 Gang of Nine

B 326 6/18/13-6/24/13 1 0 0 FOMC

G 351 12/13/13-12/19/13 7 1 0 FOMC

G 368 5/17/14-4/24/14 0 1 0 Gang of Nine

B 380 7/15/14-7/21/14 0 0 0

G 389 9/17/14-9/23/14 5 0 0 FOMC

G 395 10/29/14-11/4/14 5 0 0 FOMC
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3.3.1 Two good pools in the financial crisis

I begin with two well-behaved good pools in the financial crisis. These two pools are pool

92 and 106, labeled as “Peak of the financial crisis” and “Bottom of the financial crisis” in

Table 3.8. Their labels tell the reasons they are selected: The average magnitude of RVs

in the two pools represent the highest and lowest respectively among all good pools in the

financial crisis.

Figure 3.2 plots the RRVs for pool 92, the peak of the financial crisis. The c̄ estimate

for this pool is 2.04, slightly higher than the median RV (1.59) of the pool and 15 times the

mean estimate of c̄ for the entire 8 years. The RRVs fall in the range [0, 5) except for a few

outliers in [5, 12) at the end of the second and the beginning of the third day. Most of the

RRVs above 2.5 appear at the beginning of the trading day.

Figure 3.3 plots RRVs for pool 106, which has the lowest ̂̄c among good pools in the

financial crisis and half the mean estimate of c̄ for the entire sample. RRVs in this pool look

similar to pool 92. Most stay below 5. We observe some mid-range jumps between [2.5, 5),

all of which appear at the beginning and end of each trading day. Table 3.9 gives details

about the parameter estimates in the two pools.
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Figure 3.2: RRV by block, 10/22/2008 - 10/28/2008 (WRFMT, pool 92)
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Figure 3.3: RRV by block, 2/3/2009 - 2/9/2009 (TWRFM,pool 106)

Table 3.9: Parameter estimates of two good pools

Pool β̂ ̂̄c γ2 × 103 jpvalue

92 0.04*** 2.04*** 14.7** 0.55

106 0.10*** 0.38*** 2.89*** 0.19

3.3.2 Good pools with large jumps

I now turn to good pools having Cat 2 and Cat 3 bad blocks. The only good pool having a

Cat 3 bad block is pool 297, listed in Table 3.8 as the “Worst good pool”. All of the Cat 2

bad blocks for good pools are located in 9 pools, labeled as the “Gang of Nine” in Table 3.8.

Table 3.10 gives an overview of the 10 pools with information extracted from Table 3.8.
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Table 3.10: Ten good pools with large jumps

Pool Time period Cat 1 Cat 2 Cat 3

6 2/8/07-2/14/07 22 1 0

42 10/25/07-11/2/07 8 1 0

71 5/23/08-5/30/08 7 2 0

133 8/17/09-8/21/09 2 2 0

250 12/9/11-12/15/11 0 1 0

320 5/6/13-5/10/13 0 1 0

324 6/4/13-6/10/13 0 1 0

351 12/13/13-12/19/13 7 1 0

368 5/17/14-4/24/14 0 1 0

297 11/16/12-11/23/12 0 0 1
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Figure 3.4: RRV by block, 11/16/2012 - 11/23/2012 (FMTWR, pool 297)

Figure 3.4 plots RRVs of pool 297 after removing the Cat 3 RRV equal to 1369. The
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timing of this RRV is indicated at the top of the plot in the middle of 11/23/2012, the

day before Thanksgiving. Trading activities almost cease at that time, with RVs quickly

approaching 0. Thus the Cat 3 RRV is probably a data error. On the other days of the

pool RRVs are below 5 except for a volatility cascade on 11/16/2012. On this day, the stock

market experienced a sell-off attributed to investor worry about the negative impact of fiscal

policy on the recovery of the U.S. economy.

0
50

10
0

15
0

Time

R
V

/m
ed

ia
n.

R
V

20070208 20070209 20070212 20070213 20070214

Figure 3.5: RRV by block, 2/8/2007 - 2/14/2007 (RFMTW, pool 6)
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Figure 3.6: RRV by block, 2/8/2007 - 2/14/2007 (RFMTW, pool 6), truncated

Figure 3.5 and 3.6 display pool 6, a member of the “Gang of Nine”. There are 23 bad

blocks, one of them is a Cat 2 bad block. Figure 3.6 truncates the graph to show a clearer

structure of RRVs at the bottom. We group these 23 bad blocks into three clusters: 7 bad

blocks in the beginning of 2/12/2007, 13 bad blocks at the end of 2/12/2007 and 3 at the

beginning of 2/14/2007. Each cluster of bad blocks is accompanied by many middle-sized

volatility jumps in [5, 10). The estimate of c̄ of the pool is affected by these large RRVs,

showing a value 1.5 times the median RV of the pool. The β̂ is higher than the upper quartile

of all good pool estimates. On 2/12/2007, the stock market experienced a large slide after a

3.5% rapid drop of oil prices.
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Figure 3.7: RRV by block, 10/25/2007 - 10/31/2007 (RFMTW, pool 42)

Figure 3.7 shows the second member of the “Gang of Nine”, labeled in Table 3.8 as

“FOMC”. The pool has 9 bad blocks, among which 1 Cat 2 and 6 Cat 1 bad blocks lie

outside the range of this plot. I include the timing of these bad blocks on top of the figure.

I also use a vertical dashed line to mark the timing as well. The remaining 2 Cat 1 bad

blocks are plotted in the figure on the last day. They happen at the same time as the other

6 Cat 1 bad blocks. At 2PM on the last day, the Fed released the FOMC announcement to

cut the Federal funds rate. These Cat 1 bad blocks are followed by a volatility cascade until

the end of the day. The other RRVs stay below 5 most of the time and we observe some

large RRVs at beginning of these trading days. There was exceptional volatility on the first

day as uncertainties in the housing market gathered before the subprime mortgage crisis.

The estimate for c̄ is much larger than the median RV, presumably a result of the volatility

cascade.
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Figure 3.8: RRV by block, 5/23/2008 - 5/30/2008 (FMTWR, pool 71)

Figure 3.8 displays pool 71, the third member of the “Gang of Nine”. There are 2 Cat 2

and 7 Cat 1 bad blocks happening around 12:20PM on the third day: the Cat 2 bad block,

equaling 351, was immediately followed by a cascade of 7 Cat 1 bad blocks. The rest of the

RRVs stay below 5 and only 27 RRVs are above 2.5, most happening at the beginning of a

trading day.
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Figure 3.9: RRV by block, 8/17/2009 - 8/21/2009 (MTWRF, pool 133)
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Figure 3.9 shows the RRVs of pool 133, another member of the “Gang of Nine”. There

are only 2 Cat 2 bad blocks in this pool, both occurring around 1:30PM of the first day as

indicated in the figure. There is not much sign of a volatility cascade after the Cat 2 bad

blocks. In addition, seven RRVs are above 5.
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Figure 3.10: RRV by block, 12/13/2013 - 12/19/2013 (FMTWR, pool 351)

Figure 3.10 shows the plot of pool 351, the fifth member of the “Gang of Nine”. It

is also labeled “FOMC” in Table 3.8, and the volatility process is impacted by the Fed

announcement on the fourth day of the pool. There are 1 Cat 2 and 7 Cat 1 bad blocks in

this pool. All happened near 2PM, when the Federal government announced to taper back

the QE3 plan. These bad blocks in turn triggered a series of middle-sized jumps in [5, 10).

Except for their reaction to the FOMC announcement, most RRVs stay below 2.5 except at

beginning of each trading day. The estimate of c̄ is roughly 1.5 times higher than the median

RV.
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Figure 3.11: RRV by block, 12/09/2011 - 12/15/2011 (FMTWR, pool 250)

The remaining four members of the “Gang of Nine” each has one Cat 2 bad block and

no other large RRVs. I plot each graph truncated to the range of [0, 10) with the position of

the Cat 2 bad blocks indicated by a vertical line. Figure 3.11 is the first example. The single

Cat 2 bad block happened around 2pm on the third day, followed by a gap in the process.

RRVs after the gap are significantly larger than before. On this day, the German Chancellor

rejected the proposal of increasing the bail out amount to deal with the sovereign debt crisis

in the Eurozone. The rest of the pool is quiet with most of the RRVs under 2.5.
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Figure 3.12: RRV by block, 05/06/2013 - 05/10/2013 (MTWRF, pool 320)

Pool 320 is shown in Figure 3.12. The Cat 2 bad block appears near the end of the fourth

day with no after effect. No other RRVs are greater than 5.

The Cat 2 bad block for pool 324 and 368 both occur on the first day, as shown in

Figure 3.13 and Figure 3.14. The estimate of ̂̄c is quite high in pool 368 with more than 80%

of the RVs below ̂̄c.
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Figure 3.13: RRV by block, 06/04/2013 - 06/10/2013 (TWRFM, pool 324)
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Figure 3.14: RRV by block, 04/17/2014 - 04/24/2014 (RFMTW, pool 368), truncated

Table 3.11: Parameter estimates of ten good pools with large jumps

Pool β̂ ̂̄c γ̂2 × 103 jpvalue

6 0.17** 0.056*** 7.25 0.27

42 0.19*** 0.099*** 5.21* 0.45

71 0.13*** 0.093*** 1.05*** 0.86

133 0.11*** 0.142* 4.24 0.36

351 0.065* 0.041*** 0.96 0.74

250 0.06*** 0.35*** 2.91* 0.90

320 0.09*** 0.041*** 0.41 0.79

324 0.16*** 0.073*** 3.37*** 0.86

368 0.11*** 0.109*** 1.12*** 0.17

297 0.03* 0.067* 0.62 0.78
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Table 3.11 presents the parameter estimates for all ten good pools with Cat 2 and Cat

3 bad blocks. None of the estimates are extremely large or small. The lower and upper

quartile estimates of β for the 286 good pools are 0.07 and 0.13. Pool 6 and 71 have β̂ above

the upper quartile. Pool 351 and 250 have β̂ below the lower quartile. The rest of the β

estimates lie within the interquartile range. The lower and upper quartile estimates of c̄ for

the 286 good pools are 0.053 and 0.15. Only pool 250 has c̄ above the upper quartile, and

only pools 351 and 320 are below the lower quartile.

3.3.3 Good pools with many jumps

The previous section examined the RRV paths of good pools have Cat 2 and Cat 3 bad

blocks. Table 3.6 shows that of the remaining pools, 121 good pools having Cat 1 bad

blocks. In this section, I focus on good pools with many Cat 1 bad blocks.

Table 3.12 lists the 5 good pools having at least 7 Cat 1 bad blocks that will be discussed

in this section. These 5 pools account for 66 of the 121 Cat 1 bad blocks, further evidence

that bad blocks often tend to trigger cascades of jumps.

Table 3.12: Five good pools with many jumps

Pool Time period Cat 1 Cat 2 Cat 3

11 3/16/07-3/22/07 14 0 0

88 9/24/08-9/30/08 25 0 0

194 11/1/10-11/5/10 10 0 0

282 7/31/12-8/6/12 7 0 0

289 9/19/12-9/25/12 10 0 0
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Figure 3.15: RRV by block, 3/16/2007 - 3/22/2007 (FMTWR, pool 11)

Three of the five pools are impacted by an FOMC announcement: Pool 11, 194 and 282,

all labeled as “FOMC” in Table 3.8. They are shown in Figure 3.15, 3.16 and 3.17. For

pool 11, I show a truncated graph of RRVs leaving out 10 Cat 1 bad blocks near the end

of the fourth day, the day of the FOMC announcement. The pool has 4 other Cat 1 bad

blocks, one near the beginning of the fourth day and three others shortly after the 10 Cat 1

bad blocks. In addition, there are 7 RRVs of magnitude in [5, 10) following the Cat 1 bad

blocks. Some other volatility jumps in [2.5, 5) also occurred after them.

101



0
2

4
6

8
10

Time

R
V

/m
ed

ia
n.

R
V

20101101 20101102 20101103 20101104 20101105

6 Cat 1

Figure 3.16: RRV by block, 11/1/2010 - 11/5/2010 (MTWRF, pool 194)
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Figure 3.17: RRV by block, 7/31/2012-8/6/2012 (TWRFM, pool 282)

For pool 194, 9 out of the 10 Cat 1 bad blocks appear at the FOMC announcement

time on the third day. Among these 9 bad blocks, 6 are outside the truncated graph and

hence labeled on top. These bad blocks are followed by a volatility cascade lasting until the

end of the trading day. Similarly, 3 of the 7 Cat 1 bad blocks for pool 282 appear at the

announcement time on the second day. They are also followed by 11 RRVs in the range of
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[2.5, 10). The other 4 Cat 1 bad blocks for pool 282 occurred at the beginning of the third

day. The rest of the RRVs stay below 2.5 most of time.
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Figure 3.18: RRV by block, 9/24/2008 - 9/30/2008 (WRFMT, pool 88)
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Figure 3.19: RRV by block, 9/24/2008 - 9/30/2008 (WRFMT, pool 88),truncated

The remaining two pools: pool 88 and 289 are impacted by irregular market activities.

Pool 88 is labeled as “Largest dive of DJIA” in Table 3.8 because on 9/29/2008, the Dow
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Jones index recorded the largest drop in its history. It declined by 777 points when congress

denied the bailout plan of $700 billion to buy up bad debts and rescue the financial industry.

All of the 25 Cat 1 bad blocks of pool 88 appeared on this day nearing the close of the

market. Again, the rest of the RRVs are mostly below 5.
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Figure 3.20: RRV by block, 9/19/2012-9/25/2012 (WRFMT, pool 289)

RRVs of pool 289 are shown in Figure 3.20, 8 out of the 10 Cat 1 bad blocks appeared

starting at 10AM on the third day along with 5 jumps in [5, 10). This occurred when Apple

recorded a historically high sales of their new product, the iPhone 5. The other two Cat 1

bad blocks happened at the end of the third and fifth day.
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Table 3.13: Parameter estimates of five good pools with many jumps

Pool β̂ ̂̄c γ̂2 × 103 jpvalue

11 0.08** 0.049*** 1.27 0.49

88 0.15*** 0.43*** 56.41 0.44

194 0.11*** 0.094*** 3.22 0.79

282 0.10*** 0.067*** 1.28 0.15

289 0.19*** 0.053*** 4.86 0.37

Table 3.13 gives the parameter estimates of these five pools. Similar to the good pools

with Cat 2 and Cat 3 bad blocks, these estimates stay mostly within the interquartile range

of parameter estimates for all 286 good pools.

3.3.4 Some other good pools

So far we have discussed 18 good pools, most from or before the financial crisis. To balance

the choice of pools over the sample period, I examine some good pools in the post financial

crisis era. Using Table 3.6, I try to pick pools having more than two Cat 1 bad blocks.

Table 3.14 provides information about these pools, extracted form Table 3.8. I also

present the parameter estimates of these pools in Table 3.15. Pool 121 has a large estimate

of c̄ as it is from the financial crisis. The remaining estimates of both β and c̄ lie within the

interquartile range of estimates for all 285 good pools most of the time.
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Table 3.14: Other good pools

Pool Time period Cat 1 Cat 2 Cat 3

121 5/21/09-5/28/09 4 0 0

159 2/23/10-3/1/10 0 0 0

184 8/20/10-8/26/10 3 0 0

389 9/17/14-9/23/14 5 0 0

395 10/29/14-11/4/14 5 0 0

Table 3.15: Parameter estimates of the other good pools

Pool β̂ ̂̄c γ̂2 × 103 jpvalue

121 0.14*** 0.24*** 3.75** 0.48

159 0.08*** 0.12*** 1.16** 0.45

184 0.09*** 0.14*** 1.15* 0.51

389 0.11*** 0.034*** 0.64 0.77

395 0.16*** 0.056*** 3.60** 0.99
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Figure 3.21: RRV by block, 5/21/2009-5/28/2009 (RFMTW, pool 121)
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Figure 3.22: RRV by block, 2/23/2010-3/1/2010 (TWRFM, pool 159)

Because most of the RRV plots look very similar to ones discussed in previous sections,

I do not comment on the common patterns among these plots such as the high RRVs near

the beginning of a trading day.

Figure 3.21 for pool 121 has two Cat 1 bad blocks at the beginning of the first day and

107



2 others at the start of the third day. The rest of the RRVs are below 5.

RRVs of pool 159 are shown in Figure 3.22. There are no bad blocks in this pool but 6

middle sized jumps lie within [5, 10). The rest of the RRVs look similar to other good pools:

At the beginning of each trading day, we see high RRVs in the range of [2.5, 5). The middle

part usually stays close to but less than 1. RRVs near the end of the day go slightly up. In

pool 159, more than 70% of the RVs are lower than ̂̄c, presumably reflecting the influence

of the volatility jumps at beginning of each trading day on the estimate of the asymptotic

mean c̄.
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Figure 3.23: RRV by block, 8/20/2010-8/26/2010 (FMTWR, pool 184)

Figure 3.23 shows pool 184. There are 3 Cat 1 bad blocks in this pool. They appeared

at the beginning of the third and fourth day. Most of the RRVs above 2.5 in this pool are

from the beginning of each trading day.
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Figure 3.24: RRV by block, 9/17/2014-9/23/2014 (WRFMT, pool 389)
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Figure 3.25: RRV by block, 10/29/2014-11/4/2014 (WRFMT, pool 395)

The remaining 2 pools, 389 and 395, are each impacted by a FOMC announcement.

Like other “FOMC” pools discussed before, pool 389 has a volatility cascade right after the

announcement time occurring on the first day. All of the bad blocks in this pool at the start

of this cascade and 4 of them lie outside the range of the truncated Figure 3.24.
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Pool 395 has a more complicated story. There are 5 Cat 1 bad blocks in this pool, two

appearing at the FOMC announcement time on the first day. These two bad blocks trigger

a series of middle sized volatility jumps in the range of [2.5, 6.5). RRVs in the next day are

very volatile. The trading stopped for around 10 minutes in the middle of the day followed

by a series of volatility jumps which contains two more 2 Cat 1 bad blocks lying outside the

range of this truncated figure. The last Cat 1 bad block occurred around 10AM on the fourth

day. This day has 3 distinctive RRV jumps in the range of [4, 10) at the market opening.

Similar to other pools impacted by volatility jumps, more than 70% of the RVs in pool 395

are lower than the pool estimate of c̄.

3.4 Examining RRVs for bad pools

So far, we have focused on the path of RRV for good pools. We have seen some common

patterns in these RRV plots that could help us understand the reaction of Heston model to

large jumps in the volatility process. Bad blocks are accompanied by a cascade of volatility

jumps. The remaining RRVs stay below 2.5 most of the time but are often higher at the

beginning of a trading day. The pool estimate of c̄ is likely to be higher than the median

RV when jumps happen. I now examine RRV for the 12 bad pools listed in Table 3.8.

3.4.1 Bad pools with category 3 bad blocks

As in the case for good pools, I start with with Cat 3 bad blocks. As Table 3.7 shows all

44 Cat 3 bad blocks occur in just 6 bad pools. These 6 pools are listed in Table 3.16 with

information extracted from Table 3.8. I described these pools as “The Great Six”.
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Table 3.16: Six bad pools having large RRVs

pool Time period Cat 1 Cat 2 Cat 3

8 2/23/2007-3/1/2007 98 78 30

45 11/15/2007-11/21/2007 1 0 1

128 7/13/2009-7/17/2009 0 0 1

137 9/15/2009-9/21/2009 1 8 9

169 5/5/2010-5/11/2010 17 11 1

222 5/23/2011-5/27/2011 4 5 2
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Figure 3.26: RRV by block, 2/23/2007 - 3/1/2007 (FMTWR, pool 8)
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Figure 3.27: RRV by block, 2/23/2007 - 3/1/2007 (FMTWR, pool 8),truncated
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Figure 3.28: RRV by block, 2/23/2007 - 3/1/2007 (FMTWR, pool 8),truncated

Figure 3.26 presents the first member of “the Great Six”, labeled in Table 3.8 as “Worst

pool”. It has the largest number of bad blocks among all pools. This pool includes February

27, 2007, when the S&P 500 Index dropped 3.5% following a 9% sell-off in China’s stock

market the night before.
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There are 98 Cat 1, 78 Cat 2 and 30 Cat 3 bad blocks in this pool. The largest RRV is

7368. Figure 3.26 shows the untruncated graph of RRV for this pool.

To investigate the structure of RRV in detail for pool 8, I did two truncations in Fig-

ure 3.27 and 3.28. Because ̂̄c is typically poorly estimated in bad pools, in this section, the

horizontal dashed line indicates RRV = 1.

Comparing these graphs we notice that all 30 Cat 3 and 78 Cat 2 bad blocks happen at

the end of the third day, the beginning of the fourth day and the beginning of the last day.

For the 98 Cat 1 bad blocks, 14 occured at the beginning of the third day, the rest of them

accompanied with Cat 2 and Cat 3 bad blocks.

The pool can be divided into two parts: the first part includes the first two trading days

where 99% of the RRVs stay below 2.5. The second part includes the last three days during

and after the shock. Even in this part, 60% of the RRVs are below 2.5 despite the presence

of 184 bad blocks. This is because between shocks the volatility process quickly reverts back

toward its mean, as can be seen in Figure 3.28. The gaps in Figure 3.28 are due to the large

jumps outside the range of this plot. This suggests that if we remove all the 290 RRVs are

above 2.5 and combine the remaining ones to form a new pool, the estimation of the Heston

model could be improved. I will investigate that possibility later.
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Figure 3.29: RRV by block, 11/15/2007 - 11/21/2007 (RFMTW, pool 45),truncated
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Figure 3.29 plots the RRVs of pool 45. There is 1 Cat 3 bad block near the end of the

fourth day in the midst of a volatility cascade. There is also 1 Cat 1 bad block at the end

of the first day. I labeled their positions on top of the graph and use vertical dashed lines

to emphasize their locations. All other RRVs are below 6 and most concentrate around the

median. On 11/20/2007, the major market indices are dragged down by bad performances

of financial stocks while investors worried about an incoming financial crisis.
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Figure 3.30: RRV by block, 7/13/2009 - 7/17/2009 (MTWRF, pool 128),truncated

Pool 128 has one bad block of Cat 3. I plot the pool in Figure 3.30 taking out the bad

block, which occurred near the end of the first day. I label the position of the bad block

with a vertical dashed line. Only 4 other RRVs are above 5. The remaining RRV plot looks

very much like a plot for a typical good pool.
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Figure 3.31: RRV by block, 9/15/2009 - 9/21/2009 (TWRFM, pool 137)
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Figure 3.32: RRV by block, 9/15/2009 - 9/21/2009 (TWRFM, pool 137),truncated

Pool 137 is an interesting case as it has 9 Cat 3 bad blocks and 8 Cat 2 bad blocks,

but only 1 Cat 1 bad block. I truncated Figure 3.31 to get Figure 3.32, which allows me to

observe the bottom structure. Comparing these two graphs we see that the large RRVs are

concentrated in two volatility cascades happening in the middle and end of 9/16/2009: The

first one has 8 Cat 3 RRVs and 2 Cat 2 RRVs. The other has 1 Cat 3 RRV and 6 Cat 2
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RRVs. RRVs inside each cascade happened consecutively. The only Cat 1 bad block happen

before the two cascades on the same day. In Figure 3.32, we see most of the RRVs except

these bad blocks are below 5, again looking very much like the pattern for a good pool.

0
50

0
10

00
15

00

Time

R
V

/m
ed

ia
n.

R
V

20100505 20100506 20100507 20100510 20100511

2:20PM

Figure 3.33: RRV by block, 5/05/2010 - 5/11/2010 (WRFMT, pool 169)
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Figure 3.34: RRV by block, 5/05/2010 - 5/11/2010 (WRFMT, pool 169),truncated

Figure 3.33 and 3.34 display the sixth member of “the Great Six”: pool 169. The Flash

Crash happened on 5/6/2010 around 2:20PM in this pool. During the crash, the S&P 500
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index tumbled by 3% and reverted back to the level before the crash within 20 minutes. This

resulted in high stock price volatility until the end of the next day.

The impact of the crash can be witnessed from the RRV plots in Figure 3.33 and 3.34.

There are in total 17 Cat 1, 11 Cat 2 and 1 Cat 3 bad blocks. Among them, 5 Cat 2 and

1 Cat 1 bad blocks happened on 5/5/2010, the day before the crash. One Cat 3, 5 Cat 2

and 13 Cat 1 bad blocks happened during the crash, and 1 Cat 2 and 3 Cat 1 bad blocks

happened right after the crash. This was followed by a huge volatility cascade from 2:20PM

on 5/6/2010 until the end of 5/7/2010, shown in Figure 3.34.

Similar to pool 8, RRVs outside of crash period stay fairly close to the median, indicated

by the horizontal dashed line looking very much like the RRVs of a good pool. This invites

the question of what could happen if we delete all the 300 RRVs in the crash period and

reestimate the model. The Heston model should provide a well explanation for the remaining

blocks. Detailed results of such an estimation will be discussed later.
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Figure 3.35: RRV by block, 5/23/2011 - 5/27/2011(MTWRF, pool 222), truncated

Figure 3.35 shows pool 222. There are 11 bad blocks in this pool, concentrated in two

places. One Cat 1, 2 Cat 2 and 2 Cat 3 bad blocks happened right in the middle of the

second day. The other 3 Cat 1 and 3 Cat 2 bad blocks occurred on the last day. These bad

117



blocks did not trigger volatility jumps in [5, 10). Except for the bad blocks, the pattern of

RRVs look like a good pool.

Table 3.17: Parameter re-estimation for six bad pools after “surgery”

Pool β̂ ̂̄c γ̂2 × 103 jpvalue median(RV) blocks remaining

8 0.04 0.068*** 117.7** 0.48 0.077 886

45 0.13*** 0.19*** 3.33*** 0.85 0.17 1168

128 0.15*** 1.1*** 14.9*** 0.38 0.99 1169

137 0.13*** 0.13*** 1.70*** 0.73 0.11 1152

169 0.14*** 0.21*** 2.3*** 0.59 0.24 870

222 0.11*** 0.073*** 0.73*** 0.93 0.066 1159

After examining the path of these pools, I perform some “Surgery” on the RV sample

and reestimate the Heston model. The surgery is not intended to be a general technique for

dealing with jumps, but rather to provide some evidence that the Heston model describes

the continuous component of the intraday volatility process even when jumps are present.

Table 3.17 present the estimation results for “the Great Six” after “Surgery”. The last

column of the table shows the median RV of the pool. For pool 8, I remove the 284 RVs

when their RRVs are above 2.5 and combine the remaining blocks into a new pool. In the

estimates for this new pool, c̄ and γ2 are significant. The estimation of β is not significant

but has a z score of 1.33. I remove all the RVs during the Flash crash for pool 169. In other

words, I exclude 300 RVs between 2:20PM on 5/6/2010 and 4:30PM 5/7/2010. I also get rid

of the 5 bad blocks from 5/5/2010. This time all the parameter estimates become significant

and model specification is good as well4. Moreover, the c̄ estimate is 0.21, very close to the

median RV of the pool.

4I ignore the overnight returns and treat RVs in the new pool as if they were from the same trading day
in the estimation.
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For the remaining four members of “the Great Six”, I simply remove all the bad blocks. It

turns out that all the parameter estimates are significant at 1% level and model specification

are good. Meanwhile, all the c̄ estimates are close to the median of RVs for the entire pool.

3.4.2 Bad pools with many jumps

The previous section covers the 6 bad pools that contain all the Cat 3 bad blocks for bad

pools. I now discuss the other 6 bad pools in Table 3.8. Three are pools with many bad

blocks, which are discussed in this section.

Table 3.18: Three bad pools with many jumps

pool Time period Cat 1 Cat 2 Cat 3

26 7/3/2007-7/10/2007 14 0 0

87 9/17/2008-9/23/2008 19 1 0

144 11/3/2009-11/9/2009 46 28 0
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Figure 3.36: RRV by block, 7/3/2007 - 7/10/2007(TRFMT, pool 26)
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Figure 3.37: RRV by block, 7/3/2007 - 7/10/2007(TRFMT, pool 26), truncated

Figure 3.36 and 3.37 display the RRVs of pool 26. This pool is labeled as “Bernanke

effect” because of the market reaction to a speech by Ben Bernanke on inflation on 7/10/2007.

All 14 Cat 1 bad blocks occurred on this day, 11 right after the speech began at 1PM5. When

Ben Bernanke gave little sign that the Fed would lower the interest rate in his speech, there

was a large sell-off in the stock market.

5The first day of this pool shows the effect of half-day trading because the following day is a national
holiday
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Figure 3.38: RRV by block, 9/17/2008 - 9/23/2008(WRFMT, pool 87), truncated

Figure 3.38 shows pool 87: labeled as the “Beginning of the financial crisis” in Table 3.8.

This is the first day of the period we called the financial crisis in Chapter 1. The burst of

volatility at the end of 9/18/2008 reflects the 410-point gain of the DJIA index in reaction

bail-out plan to absorb money market bad debts that was submitted to the Congress. All of

the 19 Cat and 1 Cat 2 bad blocks come from that time. They are accompanied by a series

of middle-sized volatility jumps in [5, 10).
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Figure 3.39: RRV by block, 11/03/2009 - 11/09/2009(TWRFM, pool 144)
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Figure 3.40: RRV by block, 11/03/2009 - 11/09/2009(TWRFM, pool 144), truncated

The last of the three is pool 144, which is plotted in Figure 3.39 and 3.40. There are

many bad blocks in this pool so I truncate the graph to display the bottom structure. All

28 Cat 2 and 46 Cat 1 bad blocks appeared near the beginning of the third day. On this

day, the DJIA index reclaimed 10,000 for the first time after the financial crisis. The market

rallied when the government reported a bigger-than-expected drop in jobless claims.
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3.4.3 Bad pools without large RVs

We have covered all the bad pools in Table 3.8 having bad blocks. In this last subsection, I

now present some interesting bad pools without bad blocks.
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Figure 3.41: RRV by block, 6/18/2013 - 6/24/2013 (TWRFM, pool 326)

Table 3.19: Re-estimating Pool 326

before after

β̂ 0.047* 0.128***

̂̄c 0.05*** 0.13***

γ̂2 0.19 2.93*

jpvalue 0.73 0.65

median RV 0.04 0.13

Figure 3.41 plots a bad pool that is impacted by an FOMC announcement that happened

at 2PM on the second day. Although there is no bad block in this pool, there is a clear
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volatility cascade at the announcement time. Before the cascade, RRVs stay below 1 most

of the time. After the cascade, the average level of volatility is considerably higher.

In fact, treating the volatility cascade as the start of a new pool, we could break this bad

pool into two pools. Table 3.19 presents the estimation results of the two new pools, labeled

“before” and “after”. Both of the two new pools are good pools and the β and c̄ estimates

stay within the interquartile range of estimates for all good pools. The estimates of c̄ are

close to the median RVs of the two subpools.
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Figure 3.42: RRV by block, 3/8/2012 - 3/14/2012 (RFMTW, pool 262)
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Figure 3.43: RRV by block, 7/15/2014 - 7/21/2014 (TWRFM, pool 380)
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The bad pools, pool 262 and pool 380, are plotted in Figure 3.42 and 3.43. Both of the

pool show high volatility at the beginning of each trading day. After the market opens, RVs

quickly revert back to the mean and stay quiet mostly throughout the rest of the day. There

is a volatility cascade on the third day of pool 380, at the time when Israel invaded Gaza.

The DIJA plunged by 1.5% because of the event.

3.5 Good pools without bad blocks

This chapter so far has focused on large relative RVs that are 10 or higher. The evidence

is convincing that these RRVs contain jumps in price or volatility. In this section, I focus

instead on good pools without bad blocks.

Table 3.20: Parameter estimates of good pools

all without bad blocks

β̂ ̂̄c γ̂2/103 β̂ ̂̄c γ̂2/103

median 0.10 0.081 1.11 0.10 0.085 1.00

lower quartile 0.07 0.053 0.64 0.07 0.055 0.57

upper quartile 0.13 0.15 2.31 0.13 0.15 1.86

median standard error 0.031 0.006 0.52 0.031 0.005 0.38

mean 0.11 0.14 1.97 0.11 0.14 1.51

median z-score 3.16 15.11 2.33 3.17 17.05 2.53

Table 3.20 compares parameter estimates of the 286 good pools and the 155 good pools

without bad blocks. There is not much difference in the order statistics of c̄ and β estimates

for good pools with and without bad blocks. However, taking out large jumps helps to

improve the precision of parameter estimates. On the other hand, the order statistics of

the volatility-of-volatility parameter estimates are smaller for good pools without bad blocks
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than for all good pools.

Table 3.21: Distribution of middle sized jumps in good pools

all without bb with bb

[5, 10) (per pool) 1291 (4.51) 352 (2.27) 939 (7.17)

[2.5, 5) (per pool) 13875 (48.51) 6166 (39.78) 9709 (74.11)

We have seen earlier in this chapter that large RRVs are often accompanied by a series of

middle sized RRVs, RRVs larger than 2.5 but less than 10. Table 3.21 contrasts the number

of RRVs in the intervals [2.5, 5) and [5, 10) in good pools with and without bad blocks. The

number per pool is shown in parenthesis. In the introduction to this chapter I argued that

2.5 is the natural threshold of outliers for the RRV distribution. The table shows that RRVs

in the range of [5, 10) are much more likely to appear in good pools that contain RRVs larger

than 10. The number of RRVs in the interval [5, 10) per pool for good pools with bad blocks

is 7.17 but only 2.27 for good pools without bad blocks.

Now I would like to show some examples of good pools with no bad blocks. Figures 3.44

to 3.51 plot the path of RRVs for 8 good pools without bad blocks. I use two horizontal

dashed lines to indicate 2.5 and 5, and another horizontal dashed line to indicate the level

of ̂̄c relative to the median RV of the pool. In these figures very few RRVs lie in [5, 10) and

RRVs in the range of [2.5, 5) are typically concentrated at the beginning of a trading day.

Table 3.22 summarizes the number of RRVs in [5, 10) for these pools. We see most of them

have less than 5 cases. The estimates of c̄ are very close to the median RV of the pool as

well.

Overall, the market usually starts with high volatility at the beginning of each day and

quickly reverts to the mean. Occasionally we observe small volatility jumps in the middle of

the day. For example on 7/21/2010 in pool 179, the S&P 500 tumbled by 14 points right after

a speech by Fed Chairman Ben Bernanke at 2PM. The market reverts back to equilibrium

after the event.
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Table 3.22: Number of RRVs in [5, 10), good pools without bad blocks

pool 3 43 106 159 179 203 308 345

count 5 1 2 6 2 1 4 3
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Figure 3.44: RRV by block, 1/18/2007 - 1/24/2007 (RFMTW, pool 3)
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Figure 3.45: RRV by block, 11/01/2007 - 11/07/2007 (RFMTW, pool 43)
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Figure 3.46: RRV by block, 2/3/2009 - 2/9/2009 (TWRFM,pool 106)
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Figure 3.47: RRV by block, 2/23/2010-3/1/2010 (TWRFM, pool 159)
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Figure 3.48: RRV by block, 7/16/2012 - 7/22/2010 (FMTWR, pool 179)
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Figure 3.49: RRV by block, 1/5/2011 - 1/11/2011(WRFMT, pool 203)
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Figure 3.50: RRV by block, 2/7/2013 - 2/13/2013 (RFMTW, pool 308)
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Figure 3.51: RRV by block, 10/31/2013 - 11/06/2013 (RFMTW, pool 345)

Figure 3.52 plots the average RRV for each block over our 8-year sample period for the

155 good pools without bad blocks. The graph coincides with the “U-shape” pattern often

mentioned in the literature of realized volatility. The Heston model provides an explanation

for the decline of realized volatility at the beginning of the day: The realized volatility

process takes time to reach the equilibrium after the market opens. Although the average
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RRV summarizes the pattern, the Heston model also describes the dynamics in the volatility

process.

0 50 100 150 200

1.
0

1.
5

2.
0

2.
5

block

m
ea

n 
of

 R
R

V
s

Figure 3.52: Average RRVs for good pools without bad blocks

3.6 Conclusion

This chapter examines the path behavior of 100-second relative RVs to find evidence for

jumps in the Heston model. My conclusions are as follows:

• Jumps exist. Although most relative realized RVs are not large, many pools have at

least one RRV above 10.

• Jumps are much more likely to appear in bad pools than good pools. Bad pools have

four times more bad blocks per pool than good pools. Removing blocks with large

relative RVs in bad pools can improve the estimation results.

• Large jumps often trigger cascades of smaller jumps. These cascades are usually at-

tached to specific economic events. Examples including the Flash Crash and FOMC

announcements. The duration of these cascades reflects the severity of the information

shock. For instance, it took more than one day for the market volatility to settle after
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the Flash Crash. However, the market volatility often stays high for less than half of

a trading day after a FOMC announcement.

• Volatility typically stays high at the beginning of a trading day, which suggests that

the Heston model requires time to reach equilibrium.

• Measuring realized volatility over 100-second intervals provides useful information

about the path behavior of the volatility process. The literature on market microstruc-

ture noise suggests that stock prices should be sampled once every 5 minutes. As the

plots of relative RVs in this chapter demonstrate, 100-second RVs computed using

prices sampled once a second are useful not only in estimating the parameters of the

Heston model but also in identifying departures from the model.
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