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THE NEGATIVE ENERGY N-BODY PROBLEM HAS FINITE

DIAMETER

RICHARD MONTGOMERY

Abstract. The Jacobi-Maupertuis metric provides a reformulation of the

classical N-body problem as a geodesic flow on an energy-dependent metric
space denoted ME where E is the energy of the problem. We show ME has

finite diameter for E < 0. Consequently ME has no “metric rays”. Motiva-

tion comes from work of Burgos- Maderna and Polimeni-Terracini on the case
E ≥ 0 and from a need to correct an error made in a previous “proof”. ME

is constructed by completing the JM metric, a Riemannian metric on the Hill

region, a domain in configuration space. We show that ME has finite diameter
for E < 0 by showing that there is a constant D such that all points of the

Hill region lie a distance D from the Hill boundary. (When E ≥ 0 the Hill

boundary is empty.) The proof relies on a game of escape which allows us to
quantify the escape rate from a closed subset of configuration space, and the

reduction of this game to one of escaping the boundary of a polyhedral convex
cone into its interior.

The classical N-body problem at fixed energy E can be reformulated as a geodesic
problem. The geodesics are those of the Jacobi-Maupertuis [JM] metric at that
energy. Our main result is

Theorem 0.1. The Jacobi-Maupertuis [JM]metric for the N-body problem at neg-
ative energy has finite diameter.

The configuration space of the N-body problem is a Euclidean space endowed
with a potential energy function q 7→ V (q). The Jacobi-Maupertuis metric at
energy E is defined on the region {q : −∞ < V (q) < E} whose closure, the domain
{q : −∞ ≤ V (q) ≤ E}, we call the Hill region. The boundary {q : V (q) = E}
is called the Hill boundary and will be denoted as ∂ME . The Hill boundary is
non-empty if and only if E < 0. The Jacobi-Maupertuis metric degenerates to zero
at the Hill boundary and so we can travel along the Hill boundary at zero (metric)
cost. Write ME for the metric completion of the Jacobi-Maupertuis metric and dE
for the corresponding metric. When forming ME for E < 0 we must collapse the
Hill boundary to a single point because of this zero-cost travel. We also denote this
point by ∂ME . The theorem above follows from

Theorem 0.2. If E < 0 then sup{q∈ME}dE(∂ME , q) < ∞

Proof of theorem 0.1 from theorem 0.2. The theorem asserts that the
boundedness of the function dE(∂ME , q). In other words, there is a positive con-
stant K such for all q ∈ ME we have that dE(∂ME , q) < K. Take p, q ∈ ME . Then
dE(p, q) ≤ dE(p, ∂ME)+dE(∂ME , q) ≤ 2K so that the diameter of ME is less than
or equal to 2K.

remark 1. ME is well-known to have infinite diameter when E ≥ 0.
1

ar
X

iv
:2

40
6.

05
56

3v
1 

 [
m

at
h.

D
S]

  8
 J

un
 2

02
4



2 RICHARD MONTGOMERY

Figure 1. The Contour level surface V = −1 drawn in the planar
3-body shape space is like the surface of a plumbing fixture con-
sisting of three pipes centered about the three binary collision rays.
The Hill region {V ≤ −1} projects onto the interior of the surface.
The shaded planar domain inside the Hill region is the Hill region
for the collinear three-body problem at energy −1. (Courtesy of
Rick Moeckel.)

0.1. Motivation. The JM metric perspective on N-body dynamics has recently
proven particularly useful for positive energies. Maderna and Venturelli [9] com-
bined this perspective with weak KAM methods to prove that given any initial
configuration and any final asymptotic ‘hyperbolic’ state that there is a positive
energy solution connecting the two.

Maderna and Venturelli’s positive energy solutions are metric rays in ME , E >
0. A metric ray in a metric space M is an isometric embedding of the half-line
[0,∞) ⊂ R into that metric space, the half-line being endowed with the usual
metric inherited from R. A minimizing geodesic c : [a, b] → M is an isometric
embedding of the interval [a, b] into M . If γ : [0,∞) → M is a metric ray then the
restriction of γ to any compact subinterval [a, b] ⊂ [0,∞) is a minimizing geodesic.
(See Burago et al [4] for general definitions and results concerning geodesics in
metric spaces.)

Burgos and Maderna ([6]) obtained a ‘parabolic generalization” of Maderna-
Venturelli, and in so doing asked the compelling question: If the energy E is
negative does ME admit any metric rays? Since finite diameter spaces cannot
support metric rays our theorem provides an immediate answer to their question.

Corollary 0.1. There are no metric rays in ME for E < 0.

On page 387 of [14] I had claimed to have proven theorems 0.1 and 0.2. That
proof is wrong. I also wrote this article to correct that error. In detail, the error
is as follows. I gave an estimate showing that any point could be connected to the
Hill boundary by a Euclidean ray whose Jacobi-Maupertuis length was linear in
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∥A∥ where A is the point where that ray pierces the Hill boundary. But ∥A∥ is
unbounded on the Hill boundary, so the claimed proof does not bound dE(q, ∂ME).

0.2. A conjecture.

Conjecture 1. sup{q∈ME}dE(∂ME , q) = dE(∂ME , 0) when E < 0.

This conjecture holds for N = 2 bodies. We can also show that it holds locally
for the 3-body problem. ‘Locally’ here means that q = 0 is a local maximum
for dE(q, ∂ME), and that dE(q, ∂ME) < dE(0, ∂ME) for all ∥q∥ is sufficiently large.
dE(∂ME , 0), can be computed explicitly in terms of ‘minimal central configurations”
in a manner similar to the way that the minimal action to total collision in a
fixed time can be computed by ‘dropping’ minimal central configurations. See for
example [11].

1. Set-up. Jacobi-Maupertuis metrics and the N-body equations.

Let E be a real inner product space and V a smooth real-valued function on E.
Together this data defines a Newton’s equations:

(1) q̈ = −∇V (q).

with conserved energy

E(q, v) = K(v) + V (q), where K(v) =
1

2
⟨v, v⟩, v = q̇.

Here the dots denote time derivatives. The inner product ⟨v, v⟩ used to define the
kinetic energy K is the given inner product on E. The gradient “∇” in Newton’s
equations is relative to this inner product so that dV (q)(h) = ⟨∇V (q), h⟩.

The function V is called the potential energy. In order to accomodate the N-body
problem we allow for points q with V (q) = −∞. We call these collision points. The
gradient of V goes to infinity as we approach a collision point so Newton’s equations
break down.

Since K ≥ 0 we have that V (q) ≤ E if a solution q(t) has energy E. Define the
Hill region at energy E to be the locus

Hill region = {q ∈ E : V (q) ≤ E}

and its boundary, called the Hill boundary, to be

∂ME := {q ∈ E : V (q) = E}

All energy E solutions q(t) to Newton’s equations must lie in the Hill region. If the
solution q(t) encounters the Hill boundary at some instant t = t0 then K(q̇(t0)) = 0
which means the solution has instantaneously stopped. We call such instants or
locations along the path “brake points”.

The Jacobi-Maupertuis principle asserts that the solutions to Newton’s equations
at energy E can be characterized as geodesics on the Hill region.

Definition 1.1. The Jacobi-Maupertuis metric at energy E for the Newton’s equa-
tion (1) is the Riemannian metric

(2) ds2JM = 2(E − V (q))⟨dq, dq⟩

defined on the interior {−∞ < V < E} of the Hill region for that energy, with
collisions (V = −∞) excluded.
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Note that the conformal factor E−V (q) vanishes on the Hill boundary: the met-
ric fails to be Riemannian and paths can travel for no cost along the Hill boundary.

Theorem 1.1 (Jacobi-Maupertuis principle). Away from collisions and brake points,
the energy E solutions to Newton’s equations are reparameterizations of geodesics
on the Hill region. Conversely, away from the collisions and the Hill boundary,
geodesic for this Jacobi-Maupertuis metric are reparameterizations of energy E so-
lutions of Newton’s equations.

See Landau-Lifshitz [8] p. 141, Knauf [7] p. 178, or Abraham-Marsden [1] p.228
for proofs of the Jacob-Maupertuis principle.

The metric completion of the interior of the Hill region will be denoted as ME . If
the Hill boundary is non-empty and connected it contains that boundary, collapsed
to a point, as a single point denoted as ∂ME . That point is typically not a manifold
point. Depending on the potential V , the collision locus may, or may not be in ME .
For a detailed description of ME see Proposition 1 on p. 383 of [14].

1.1. The N-body equations. We put the N-body problem into the above frame-
work by using the set-up which Albouy and Chenciner taught me. See [2] or [3].
View the bodies as point masses. They move in d-dimensional Euclidean space Rd.
The standard choice of d is d = 3. The bodies, or masses, are labelled by an index
a ∈ [N ] = {1, 2, . . . , N}. The instantaneous location of the ath body is denoted
by qa ∈ Rd so that the simulataneous positions of all N-bodies is encoded by the
vector

q = (q1, q2, . . . , qN ) ∈ E := (Rd)N .

The mass of the ath body is ma > 0 and the masses endow E with an inner product
⟨·, ·⟩ which we call the mass inner product and whose associated quadratic form is :

⟨q, q⟩ = Σma|qa|2,
where |qa|2 = qa · qa is the standard dot product on Rd. When applied to velocities
q̇ = (q̇1, . . . q̇N ); q̇a := dqa/dt the mass inner product yields twice the kinetic energy:

(3)
K(q̇) =

1

2
⟨q̇, q̇⟩

=
1

2
Σma|q̇a|

The potential energy V = −U is the negative of

U(q) = GΣ
mamb

rab
; rab = |qa − qb|, V = −U

the sum being over all distinct pairs a, b taken from [N ] = {1, 2, . . . , N}, and G
being the gravitational constant. The total energy is then given by:

(4) E(q, q̇) = K(q̇)− U(q)

Since E ≥ V ⇐⇒ U ≥ −E we have that the Hill region for energy E is the
domain {q : U(q) ≥ −E} within E. Since U(q) > 0 everywhere we have that the
Hill region is all of E whenever E ≥ 0. On the other hand, if E < 0 the Hill region
is not all of E and has a non-empty boundary

∂ME = {q : U(q) = −E}
The JM metric on the interior of ME is

ds2E = 2(U(q)− E)⟨dq, dq⟩.
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We note that the metric is conformal to the flat Euclidean metric ⟨dq, dq⟩ but
that the conformal factor is zero along the Hill boundary. It follows that we can
travel for free along the Hill boundary. It costs nothing to move along the Hill
boundary.

1.2. Scaling Normalization. We reduce to the case of energy E = −1 using the
standard scaling symmetry for the N-body problem. This scaling asserts that if
the curve q(t) ∈ E is a solution to (1) then, for any positive real number λ, so is
λq(λ−3/2t) and that if the 1st solution has energy E then the second solution has
energy E/λ. At the metric level, this scaling symmetry corresponds to the fact that
the scaling substitution that q = λQ takes the JM metric on ME/λ to λ1/2 times
the JM metric on ME . By appropriate λ we can scale any negative E to E = −1.
So, from now on, set E = −1, write M−1 = M and the JM metric d−1 on M as d.

1.3. Collisions. The collision locus ∆ ⊂ E is the union

∆ =
⋃

distinct pairs

∆ab

of the linear subspaces ∆ab = {rab = 0} = {q ∈ E : qa = qb}. The potential blows
up exactly at the points of ∆ and the forces, or gradients , the right hand side of
Newton’s equations, also blow up along the collision locus.

1.4. Distance to collision. The following lemma is crucial to our proof.

Lemma 1.1. The Hill region {q : U(q) ≥ 1} lies a bounded Euclidean distance
dist(q,∆) from the collision locus: there is a positive constant k such that U(q) ≥
1 =⇒ dist(q,∆) ≤ k.

Here we write dist(q,K) = infs(∥q − s∥ : s ∈ K) for K a closed subset of E.
The lemma uses the fact that the function 1/U(q) is Lipshitz equivalent to the

function dist(q,∆). In other words, there exist positive constants c1 < C such that
that for all q ∈ E we have

(5) c1dist(q,∆) ≤ 1

U(q)
≤ Cdist(q,∆).

Proof of lemma. The lemma follows immediately from the first inequality of
inequality (5) with k = 1/c1. QED

Inequality (5) is based on the distance formula 1

(6) dist(q,∆ab) = kabrab, where kab =
√

mamb/(ma +mb)

from which it follows that

U = Σ
λab

dist(q,∆ab)
where λab = Gmambkab

Use

dist(q,∆) = minabdist(q,∆ab)

to get
λab

dist(q,∆ab)
< U(q) ≤ Σ

λab

dist(q,∆)

1This equality is stated without a derivation in the last paragraphs of my book on subRieman-
nian geometry. For completeness, I derive the distance formula in an Appendix.



6 RICHARD MONTGOMERY

valid for any pair a, b. Choose a pair a, b such that dist(q,∆ab) = dist(q,∆) and
set

λ∗ = mina̸=bλab, and Λ =
∑

λab.

We get

(7)
λ∗

dist(q,∆)
≤ U(q) ≤ Λ

dist(q,∆)

which yields inequality (5) with constants c1 = 1
Λ and C = 1

λ∗
.

2. A game of escape

Our proof of theorem 0.2 relies on a game of escape.
Setting up the game. Select a finite-dimensional Euclidean space E together

with a finite collection L1, L2, . . . , Lk of distinct linear subspaces of E, no one of
which is contained in any other.

The game. The game is to escape the union of the Li as quickly as possible.
Write ∆ = ∪k

i=1Li. We measure escape in terms of dist(q,∆) = minidist(q, Li).
We use it to quantify the pay-off in the game which we call the “escape rate”. We
have found it helpful to generalize the setting.

Let ∆ be a closed subset of Euclidean space E. For t > 0 let

Nt := Nt(∆) := {q ∈ E : dist(q,∆) ≤ t}
denote the set of points of E lying within a distance t of C. Note that

∂Nt = {q : dist(q,∆) = t}.
Escape routes and their rates

Definition 2.1. A t -escaper is a rectifiable path starting inside Nt(∆) and exiting
Nt(∆) and along which the distance from ∆ is strictly monotonic increasing as a
function of arc length.

remark In order for the distance from ∆ to be strictly monotonic increasing it
must be true that ∆ has empty interior.

We want to talk about the escape rate of an escaper.

Definition 2.2. Parameterize a t-escaper γ by arclength s. Suppose that

(8) dist(γ(s),∆) ≥ dist(γ(0),∆) + cs

holds for some constant c > 0 and all s up to the escape time. Then we will say
that γ has t-escape rate at least c. The largest such c will be called the escape rate
of the escaper γ.

And we want to talk about the escape rate from ∆

Definition 2.3. If there is a positive number c such that for all t > 0 and all
p ∈ Nt there exists a t-escaper starting at p with escape rate at least c then we will
say that the escape rate from ∆ is positive and at least c. The supremum of all such
c’s is the escape rate from ∆. When we want to distinguish this escape rate from
the earlier escape rates we have defined we will refer to it as the global escape
rate.

Our goal in playing the game and making all these definitions is to prove:



THE NEGATIVE ENERGY N-BODY PROBLEM HAS FINITE DIAMETER 7

Theorem 2.1. If ∆ is the union of a finite collection of proper linear subspaces of
a Euclidean vector space then the global escape rate from ∆ is positive and at least
1/dist(0, ∂N1(∆)). The t-escapers can be taken to be line segments.

We postpone the proof.

3. Proof of theorem 0.2 from theorem 2.1

Take ∆ to be the collision locus. Inequality (5) shows that if dist(q,∆) ≥ 1
C

then U(q) ≤ 1. In other words, a t-escaper with t = 1/C has left the Hill region
{U ≥ 1} and so has crossed the Hill boundary {U = 1} at or before escape from
N1/C(∆). Theorem 2.1 applied to ∆ with t = 1/C guarantees a positive global

t-escape rate of c > 0. Now U > 1 implies dist(q,∆) < 1
C : the Hill region

is contained in N1/C(∆). Theorem 2.1 guarantees that through any point q∗ of
the Hill region there is a unit speed line segment of q(t) starting at q∗, satisfying
dist(q(t),∆) ≥ dist(q∗,∆) + ct and crossing the Hill boundary. Inequality (5) now
implies that 1

U(q(t)) ≥ c1(
1

U(q∗)
+ ct) ≥ kt with k = c1c. Thus

U(q(t)) ≤ 1

kt
.

It follows that along our t-escapers q(t) we have
√

U(q(t))− 1 ≤
√

1
kt − 1 whenever

U(q(t) ≥ 1. For simplicity, set

λ(x) =

{√
x− 1, x ≥ 1

0, x ≤ 1
.

The JM arclength integrand can then be written λ(U(q(t))∥q̇(t)∥dt and the inequal-
ity just establishes asserts that λ(U(q(t)) ≤ λ( 1

kt ). (Our escapers q(t) have escaped
beyond the Hill boundary at or before the time t∗ = 1/k.)

Along an escaper ∥q̇(t)∥ = 1 so that its JM arclength satisfies

ℓ(q) ≤
∫ 1/k

0

√
1

kt
− 1dt = k

∫ 1

0

√
1

u
− 1du

This last integral is finite and less that 1/2 =
∫ 1

0

√
1
udu so that the JM arclength

to escape is less than k
2 . We have shown that any point inside the Hill region can

be connected to the Hill boundary by a path whose length is less than k/2, showing
that dist(q, ∂M) ≤ c/2 for all q∗.

QED

4. Proof of the escape theorem, theorem 2.1

We begin with examples of the escape game and consequent escape rates.

4.1. Examples.

1. If ∆ is a linear subspace then the escape rate from ∆ is 1. Lines orthogonal
to ∆ supply optimal escape routes.

2. If ∆ is the union of the x and y axis in the plane then Nt(∆) is the union
of the two strips |x| ≤ t and |y| ≤ t. The points (t, t) ∈ ∂Nt(∆) and its mirrors
(−t, t), (t,−t), (−t,−t) in the other three quadrants are the furthest exit points from
∆, being the furthest points on ∂Nt(∆) from the origin. The escape strategy used
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in the proof of of the polyhedral escape theorem 4.5.1 consists of a separate strategy
for each quadrant. In the first quadrant escape by translating that quadrant toward
the point (t, t) at unit speed. Thus p in the first quadrant escapes along the path

p+ s(1/
√
2, 1/

√
2) The escape rate of these paths is 1/

√
2.

3. If ∆ is the union of two lines in the plane which make an angle of θ∗ < π/2
relative to each other in the plane, then the escape rate into the acute sector
0 ≤ θ ≤ θ∗ is sin(θ∗/2). The strategy within that sector is the one of the proof of
of the polyhedral escape theorem 4.5.1: move according to the translation p + sv
where v is the unit vector along the angle bisector of this acute sector.

4. Suppose that ∆ is the coordinate orthant in Rn, by which we mean the union
of the coordinate hyperplanes x1 = 0, x2 = 0, etc. Then the escape rate from ∆
is 1/

√
n. For escaping from the positive orthant xi ≥ 0 mone at unit speed in the

direction parallel to the ray x1 = x2 = . . . = xn.

4.2. Wrong Turns and Gradient Flows. Originally, I had approached the prob-
lem of trying to “win” the escape game by using the gradient flow of the function
F (q) = +dist(q,∆). The trajectories of this flow, appropriately interpreted, are
piecewise linear t-escapers. However, an example involving configurations near
double binary collisions in the planar four-body problem shows that the escape
rates of the resulting solutions to q̇ = ∇F (q) can be arbitrarily small, and so in the
end this approach to escaping was not of help.

A successful approach which yields the correct global escape rate is based on the
gradient flow for Ft(q) = −dist(q, ∂Nt(∆)). It uses the reduction to convex sets
described below and the fact that the minus gradient flow to a convex set with non-
empty interior has trajectories which are shortest line segments to that convex set.
The strategy we describe here (see the proof of the polyhedral escape theorem 4.5.1)
ended up being significantly simpler than this one, although its escapers are the
limits t → ∞ of the t-escapers of this alternative successful gradient flow approach.

4.3. Reduction to Hyperplane arrangements. We reduce the proof of theorem
2.1 to the case where the linear subspaces Li of the theorem are hyperplanes. In
order to do this, observe that if ∆ ⊂ ∆′ are closed subsets then Nt(∆) ⊂ Nt(∆

′)
and dist(q,∆) ≥ dist(q,∆′). It follows that if γ is a t-escape path for ∆′ which
starts in Nt(∆) ⊂ Nt(∆

′) then it is also a t-escape path for ∆. Consequently, if
the escape rate from ∆′ is c′ > 0 then the escape rate from ∆ is also positive and
is some c ≥ c′.

Let L1, . . . , Li, . . . , Lk be the linear subspaces. Choose hyperplanes Hi ⊃ Li and
write ∆′ =

⋃
i Hi. Then ∆ ⊂ ∆′ so that Nt(∆) ⊂ Nt(∆

′). It follows from the
definitions that if ∆′ has global escape rate c then the global escape rate from ∆ is
at least c.

Relabel the linear hyperplanes to call them Li instead of Hi and their union to
be ∆. We have reduced our escape problem to:

Proposition 4.1 (Escaping linear hyperplane arrangements). If ∆ =
⋃k

i=1 Hi is
a hyperplane arrangement in a Euclidean vector space then the escape rate from
∆ is finite and greater than or each to c∗ where c∗ is given immediately following
theorem 4.1 below.

4.4. Reduction to a Convex polyhedral cone. We further reduce to the prob-
lem of escaping from a convex polyhedral cone. Write each hyperplane Li of propo-
sition 4.1 in the form Li = ker(ℓi) where ℓi ∈ E∗ is a nonzero linear functional.
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Normalize ℓi to have unit length, so that

ℓi(q) = ⟨q, ni⟩
is the operation of inner product with respect to the unit normal vector ni to Li.
The distance of a point q from Li is |ℓi(q)| so that

dist(q,∆) = mini∈[k]|ℓi(q)|
where we use the symbol [k] to mean the set {1, 2, 3, . . . , k}.

The complement of ∆ consists of a finite number of connected components:

E \∆ = C1 ∪ C2 ∪ . . . ∪ CM .

Each component Cα, α = 1, 2, . . . ,M is an open polyhedral cone bounded by some
subcollection Li, i ∈ I = I(α) of the hyperplanes making up our arrangement.
Any t-escaper must enter into one or another of these components. Once entering
it can never leave that component. This ‘no exit’ property follows from the fact
that if a continous curve is travelling in a component Cα and then exits to travel
into another component it must have crossed one of the bounding hyperplanes Li.
Crossing requires dist(q,∆) = 0 which violates the assumption that this distance
function is strictly monotone increasing along escapers. So, we have reduced to
escapers which escape into the interior of a single convex polyhedral cone.

In order to focus on a single convex cone we modify the definition of “escape
rate” to focus on those paths escaping into the cone’s interior.

Definition 4.1. Let K be a convex cone with nonempty interior. Then by the
escape rate into K we mean the global escape rate from ∆ = ∂K, for escapers
which escape entering the interior of K.

Theorem 4.1 (Escaping polyhedral cones). Let K be a closed polyhedral cone with
non-empty interior. Then the escape rate into K is positive. The exact escape rate is
c = 1/dist(0,K1) where K1 ⊂ K is the convex polyhedron defined by dist(q, ∂K) ≥ 1
for q ∈ K.

Proof of Proposition 4.1 The escape rate from the union ∆ of the hyper-
planes equals the minimum of the escape rates into the interiors of all the com-
ponent closed convex polyhedra Kα whose interiors comprise the components of
the complement of ∆. In other words, for each Kα take its associated escape
rate cα = 1/dist(0, (Kα

1 ). Let c∗ = minαcα. Since the union of the ∂Kα form
∆ =

⋃
i Li, and since any t-escaper must escape into the interior of one or another

of these components, we have that the escape rate from ∆ is at least c∗. QED

4.5. Proving the polyhedral escape theorem. We begin with some background
and notation. A convex polyhedral cone K ⊂ E. is defined by a finite collection of
linear inequalities:

(9) K = {q : ℓi(q) ≥ 0, i = 1, . . . ,m}
where the ℓi ∈ E∗ are unit length linear covectors. Thus ℓi(q) = ⟨ni, q⟩ where the
ni are the inward-pointing unit normal vectors to the cone’s faces. Write

Li = {ℓi = 0}
for the corresponding hyperplanes so that Fi = Li ∩ K. The distance of a point
q ∈ K from a face Fi is ℓi(q). Then , if q ∈ K we have that

(10) dist(q, ∂K) = mini∈[m]ℓi(q),
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Figure 2. Cones K0 (grey) and its equidistant K1 (black) which
is not a cone. See Appendix B for details.

where we are using the symbol [m] for the set of integers 1, 2, . . . ,m.
Define

(11) Kt =
⋂

i∈[m]

{q : ℓi(q) ≥ t}.

Kt itself is a convex polyhedron, being the intersection of the finite collection of
half-spaces ℓi ≥ t. Observe that Kt = {q ∈ K : dist(q,∆) ≥ t} and that ∂Nt = ∂Kt

while K \ int(Nt) = Kt.
Remark. K1, and hence Kt, t > 0 is typically not a cone. See Appendix B and

especially accompanying figure 2.

4.5.1. The proof of polyhedral escape (theorem 4.1). In what follows ∆ = ∂K. We
will show that by translating K inward we obtain a family of t-escapers covering
Nt(∆).

Let S denote the unit sphere in E. Choose any unit vector v ∈ S ∩ int(K).
Consider the one-parameter family of translations

p 7→ τs(p) = p+ sv.

By convexity, τs maps K into K for s > 0. Write

c∗(v) = mini∈[m]ℓi(v)

I claim that for all t > 0, the family of rays s 7→ p+ sv, s ≥ 0 forms t-escapers with
escape rate c∗(v). Indeed,

ℓj(p+ sv) = ℓj(p) + sℓj(v) ≥ dist(p,∆) + sc∗(v).

which establishes the escape rate inequality (8) for the ray γ(s) = p+sv with escape
rate c = c∗(v). Fix any t > 0. the escape rate inequality shows that if p ∈ Nt(∆)
then the curve p + sv has left Nt(∆), by the time s = t/c∗(v),so that the escape
rate from ∆ is positive and at least c∗(v).

To verify the claim regarding the precise global escape rate observe that c∗(v) =
dist(v,∆). Now take the maximum of c∗(v) over all v ∈ S∩K. Since both dist(v,∆)
and ∥v∥ are homogeneous of degree 1, this maximum of c∗(v) equals the maximum
of dist(v,∆)/∥v∥ over v ∈ K \ {0}. This last maximum in turn is the reciprocal
of the minimum of ∥q∥/dist(q,∆) over q ∈ K \ {0}. We can understand this
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minimum by setting dist(q,∆) = 1 and then minimizing ∥q∥. But this minimum
value is dist(0,K1) and is achieved as ∥q∗∥ where q∗ is the closest point to 0 on
K1. It follows that the optimal escape rate is equal to 1/dist(0,K1) and that the
corresponding translational ray escapers p+sv are obtained by setting v = q∗/∥q∗∥.

To show that this value just computed for the escape rate is best possible consider
the problem of escaping from the cone point p = 0 into K. The best t = 1-escaper
for p = 0 will be the shortest path to ∂K1 which is the segment [0, q∗]. Now, by
homogeneity the intersection of the ray sv, v = q∗/∥q∗∥ with Kt, t > 0, yields the
best t-escaper from 0, for all t.

QED

5. Appendix: On the distance formula.

Here we prove the distance formula (6) used in the paper 2.
Fix a point q = (q1, q2, . . . , qN ) ∈ E. The distance between q and any affine

subspace S is the length of the unique line segment which hits S orthogonally. We
apply this observation to S = ∆ab. A line segment from q to S can be written
ℓ(t) = (1− t)q + ts for some s ∈ S.

For simplicity of notation, suppose that a = 1, b = 2. Write

qcm =
1

m1 +m2
(m1q1 +m2q2)

for the center of mass of 1 and 2. The (unique) point of ∆12 = S which we will
want with our line segment from q turns out to be

s = (qcm, qcm, q3, q4, . . . , qN ).

The corresponding line segment is then ℓ(t) = (1− t)q + ts, or, in terms of compo-
nents

ℓ1(t) = (1− t)q1 + tqcm

ℓ2(t) = (1− 2)q2 + tqcm

and
ℓa(t) = qa = const., for a > 2.

The corresponding velocity v = ℓ̇ = (v1, v2, . . . , vN ) ∈ E is given by

v1 = −q1 + qcm

v2 = −q2 + qcm

and
va = 0, for a > 2.

The total linear momentum of this trajectory ℓ(t) is zero. Indeed this total linear
momentum, Σmava is m1v1 +m2v2 = −m1q1 −m2q2 +m12qcm = 0. Now let h be
any vector in ∆12. Then h is of the form h = (a, a, h3, h4, . . . , hN ) where a, hi ∈ Rd

are arbitrary. We compute that < v, h >= m1av1+m2av2 = a ·(m1v̇1+m2v2) = 0.
which shows that the line segment is orthogonal to ∆12.

2Doubtless this formula is proved in other papers, probably in some of my own, but, not finding
a derivation, I opted to give this one.
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We have established that the path ℓ is the (unique) line segment joining q to
∆12 orthogonally. The length of ℓ is thus dist(q,∆12). But this length is ∥v∥ where
∥v∥2 = m1|v1|+m2|v2|. The computation is finished with some algebra.

The algebra can be streamlined by introducing the “probabilities” p1 = m1

m1+m2

and p2 = m2

m1+m2
which allow us to write

qcm = p1q1 + p2q2, q1 = p1q1 + p2q1, q2 = p1q2 + p2q2.

from which we compute that

v1 = −p2(q1 − q2)

v2 = p1(q1 − q2)

and finally ∥v∥2 = (m1p
2
2 + m2p

2
1)r

2
12. A wee bit of algebra yields that (m1p

2
2 +

m2p
2
1) =

m1m2

m1+m2
which is the claim.

6. A cone and its equidistant

I was temporarily seduced into the misbelief that Kt, t > 0, must be a cone since
K0 is a cone. This is false. See figure 2.

Correcting my misbelief corrected my intuition and helped me come up with
the short correct proof given here. For a simple example where K1 is not a cone,
suppose that K0 is the cone over the with sides 2/a and 2/b where a, b > 0 and
a ̸= b. Place the rectangle on the plane z = 1 with the cone point at the origin of
the xyz plane. Then we can specify K0 by the inequalities

z ≥ a|x|, z ≥ b|y|.

Its cross sections z = z0 are rectangles whose sides are in the ratio 1/a : 1/b and
which grow linearly with z0.

To computeKt find the four normalized linear functionals which defineK0. They
are ℓ± = 1√

a2+1
(z ± ax), f± = 1√

a2+1
(z ± by). Thus K0 is defined by ℓ± ≥ 0 and

f± ≥ 0, and Kt by ℓ± ≥ t, f± ≥ t. Taking t = 1 and doing a bit of algebra yields
that K1 is defined by

z −
√
a2 + 1 ≥ a|x|, z −

√
b2 + 1 ≥ b|y|.

In particular, since the right hand side of these equations is greater than or equal
to zero we have that z ≥ max{

√
a2 + 1,

√
b2 + 1}.

For concreteness, set a = 1 and suppose b < 1 so that z ≥
√
2 on K1. The cross-

section K1 with the plane z =
√
2 is the bounded interval

√
2 −

√
b2 + 1 ≥ b|y| or

1
b (
√
2−

√
b2 + 1) ≥ |y|. Consequently K1 cannot be a cone. To get a 3-dimensional

picture of K1 consider the cross-sections z = z0 for z0 >
√
2 of K1. These are

rectangles z0 −
√
2 ≥ |x| and 1

b (z0 −
√
b2 + 1) ≥ |y|. Working out the side lengths

we see that the rectangles have aspect ratio (1−
√
2

z0
) : (1b −

√
b2+1
z0b

) and asymptotes

to 1 : 1
b , the aspect ratio of the rectangle on which K0 is based.
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