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The volume penalization method (VP), a type of Fictitious Domain Method, is a widely

used technique for solving partial differential equations (PDEs) in complex domains. Its appli-

cations span various fields, from fluid-structure interactions like wave energy converters, bird

and insect flight, fish swimming, and cardiovascular flows, to phase change applications such

as glacier melting and additive manufacturing processes. This thesis presents robust and adap-

tive VP techniques for simulating non-isothermal phase-changing flows, as well as isothermal

multiphase fluid-structure interaction problems. Using the numerically constructed flux-forcing
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functions for arbitrarily complex boundaries, we extend the flux-based volume penalization (VP)

method to handle more general boundary conditions, including spatially varying inhomogeneous

Neumann and Robin boundary conditions. Several two- and three-dimensional test examples,

including flux-driven thermal convection in a concentric annular domain, are considered to

assess the spatial accuracy of the numerical solutions. In addition, we propose a projection

method-based preconditioning strategy for solving VP incompressible and low-Mach Navier-

Stokes equations. The solver converges faster as the penalty coefficient decreases, contrary to

prior experience. The developed preconditioning strategy is used in a novel low Mach enthalpy

method to solve solidification and melting problems with variable thermophysical properties,

including density. The proposed method captures the density change-induced flow during phase

change material (PCM) melting and solidification. A gas phase is also incorporated and coupled

to the solid-liquid PCM region in this formulation. The new low Mach enthalpy method is

validated against analytical solutions for a PCM undergoing a large density change during its

phase transition. Furthermore, we propose a set of simple sanity checks to serve as benchmarks

for evaluating computational fluid dynamics (CFD) algorithms that aim to capture the volume

change effects of PCMs. Adaptive mesh refinement is employed to achieve fine grid resolution

in domains requiring more accuracy, such as PCM-gas and liquid-solid interfaces.
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Chapter 1

Introduction

Since its introduction in the 1960s, computational fluid dynamics (CFD) has become

a primary tool with widespread applications across academia and industry. Initially, CFD was

predominantly used in traditional sectors such as automotive, aerospace, and power generation.

However, over the years, significant research conducted by academia and industry has enhanced

and popularized CFD techniques, leading to its expansion into cutting-edge technologies and

processes. For example, CFD has improved the design of electronic chips through thermal

analysis and cooling strategies. Additionally, CFD plays a critical role in advanced manufacturing

processes such as 3D printing by predicting part properties and performance [5]. Other notable

cutting-edge applications include battery simulation with CFD and optimization of Heating,

Ventilation, and Air Conditioning (HVAC) systems.

Fluid-structure interaction (FSI) involves the interplay between a structure and the fluid

surrounding it. Fluid forces induce movement in the structure, leading to changes in fluid

flow. FSI has numerous applications across various scales, including the flow of blood in the

heart and circulation, the flight of birds and insects, and the dispersal of seeds and pollen by

wind [6]. Additionally, FSI plays a crucial role in engineering applications such as wave energy

converters and ship design. Simulating FSI applications poses a challenge due to the potential

for significant deformations and displacements at the interface. Therefore, body-fitted methods

require frequent remeshing and incur high computational costs for solving linear systems of
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equations. To overcome the limitations of body-fitted grid methods, fictitious domain (FD)

methods have been proposed. In fictitious domain methods, an irregular region of interest is

embedded within a larger, simpler computational domain, and the original partial differential

equation (PDE) is reformulated over the entire domain. FD methods typically employ regular

Cartesian grids to mesh the computational domain, allowing for simpler discretization of PDEs

and faster linear solvers to solve the discrete system of equations. However, since the regular

grid does not conform to the irregular interface, incorporating original boundary conditions into

the reformulated equation is not straightforward.

The volume penalization (VP) method was initially introduced by Angot et al. [7]

and initially considered only Dirichlet boundary conditions. Subsequently, the VP method

was extended to include Neumann and Robin boundary conditions within a finite element

framework by Ramière, Angot, and Belliard [8]. In their formulation, inhomogeneous Neumann

and Robin boundary conditions were incorporated by introducing a surface delta function into

the reformulated equation, with regularization of the singular delta function during numerical

implementation. More recently, Kadoch et al. [9] presented a volume penalization method

for enforcing homogeneous Neumann boundary conditions. They implemented their method

using a pseudo-spectral code to simulate moving domain problems involving chemical mixers.

Since homogeneous Neumann boundary conditions were considered in this work, the need for

a surface delta function kernel was circumvented. Sakurai and colleagues [1] introduced the

flux-based VP method, which extends the approach of Kadoch et al. [9] to handle inhomogeneous

Neumann boundary conditions. The flux-based VP method utilizes a flux-forcing function to

impose the inhomogeneous Neumann conditions at the interface. Sakurai et al. employed

second-order central finite differences and interpolation to implement the flux-based VP method

and assessed its spatial convergence rate by solving one- and two-dimensional Poisson problems.

The authors in [1] considered simple interfaces in two-spatial dimensions (circles and rectangles)

in their study, which allowed them to construct flux-forcing functions analytically. Moreover,

the imposed flux values were considered spatially constant on the interface. The analytical
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construction of flux-forcing functions limits the feasibility of the flux-based VP method for

practical applications. The objectives of this thesis include generalizing the flux-based VP

method to handle arbitrarily complex interfaces in two and three spatial dimensions. This is

achieved through numerical construction of flux-forcing functions, as described in Chapter 2 of

this thesis. Furthermore, the thesis extends the flux-based VP method to incorporate spatially

varying Robin boundary conditions.

While VP methods have been extensively studied for their accuracy in penalized solutions

and used for simulating FSI problems [10, 11, 12, 13, 14, 15, 16], to our knowledge, there has

been no study proposing efficient solvers for the volume penalized Navier-Stokes equations,

particularly under stiff system conditions. Projection methods are typically employed to solve

the volume penalized incompressible Navier-Stokes (INS) equations [15, 16]. However, the pro-

jection algorithms used by [15, 16] do not lead to robust convergence of the solver, particularly

when the permeability is very low. One objective of this thesis is to propose a correct projec-

tion algorithm by including the Brinkman penalty term into the pressure Poisson equation, as

described in Chapter 3 of this thesis. In this work, we solve the volume penalized Navier-Stokes

equations using a monolithic velocity-pressure solver with the projection method employed as a

preconditioner. Results indicate that the proposed preconditioner performs well for low values of

the penalization coefficient. Contrary to prior experience, the solver’s convergence rate improves

as the permeability parameter decreases.

VP method is also utilized to model phase change problems under a different name,

known as the Carman-Kozeny drag model [17, 18]. In melting/solidification problems, a

volumetric penalty/drag force is applied to retard solid phase motion [18, 19]. Melting and

solidification are primary physical phenomena in the phase change materials (PCMs). The

numerical modeling and simulation of PCMs is a very active area of research due to their critical

role in energy systems, including concentrated solar power plants and latent thermal energy

storage units [20, 21, 22, 23, 24], as well as in geophysical processes such as sea ice formation

and glacier melting [25, 26], and manufacturing technologies like casting, welding, and metal
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3D printing [27, 28, 29, 30].

The numerical modeling of PCMs is difficult because the energy equation is nonlinear,

and most problems involve liquid flows, with some also including gas flows and solid motion.

CFD models for simulating the phase change of materials began to be developed in the late 80s

and early 90s. These models can be categorized into two main groups based on how they handle

the moving phase boundary: deforming and fixed grid schemes. Fixed grid schemes offer greater

flexibility for incorporating additional physics into heat transfer problems (e.g., fluid flow) and

are easier to implement than deforming grid schemes. They also naturally handle complex

topological changes of the interface (merging, pinching, break-up, self-folding), which the

deforming grid methods cannot. Despite significant improvements in numerical methodologies,

volume change in PCM with melting or solidification was often ignored and the variable density

in the liquid was described using the Boussinesq approximation [31, 32, 33, 34, 35, 36, 37]. In

this thesis, as described in Chapter 4, a fixed-grid low Mach enthalpy method is developed to

capture density change-induced flow during PCM melting and solidification. In this formulation

a gas phase is also incorporated and coupled to the solid–liquid PCM region. Our ultimate goal

is to develop a simulation method that can handle simultaneous occurrences of evaporation,

condensation, melting, and solidification.

Finally in Chapter 5, ongoing and future research topics are described, including ex-

tending the framework to accommodate condensation and evaporation, adding new features

such as recoil pressure and radiation models to simulate full-scale additive manufacturing (AM)

processes, and addressing turbulent fluid-structure interaction problems.
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Chapter 2

Handling Neumann and Robin boundary
conditions in a fictitious domain volume
penalization framework

This chapter presents a flux-based volume penalization (VP) approach for imposing

inhomogeneous Neumann and Robin boundary conditions on embedded interfaces. The flux-

based VP method modifies the diffusion coefficient of the original elliptic (Poisson) equation and

uses a flux-forcing function as a source term in the equation to impose the Neumann boundary

conditions. As such, the flux-based VP method can be easily incorporated into existing fictitious

domain codes. Previous studies relied on an analytical construction of flux-forcing functions,

which limits the practicality of the approach. In this chapter, we present a numerical technique

for constructing flux-forcing functions for arbitrarily complex boundaries. The imposed flux

values are also allowed to vary spatially in our approach. Furthermore, the flux-based VP

method is extended to include (spatially varying) Robin boundary conditions, which makes

the flux-based VP method even more general. The numerical construction of the flux-forcing

functions relies only on a signed distance function that describes the distance of a grid point from

the interface and can be constructed for any irregular boundary. We consider several two- and

three-dimensional test examples to access the spatial accuracy of the numerical solutions. The

method is also used to simulate flux- driven thermal convection in a concentric annular domain.

5



2.1 Introduction

Partial differential equations (PDEs) in complex domains describe many natural and

engineering processes. Examples include heat and mass transfer across melting/solidifying fronts,

aquatic locomotion, cellular phenomena like cellular blebbing and cell crawling, flow in internal

combustion engines or left ventricular assist devices, energy harvesting using wind turbines

and wave energy converters, etc. In order to obtain meaningful solutions to PDEs, appropriate

boundary conditions are required on the domain boundaries. Traditionally, body-fitted grid

approaches, in which a complex domain is triangulated using sophisticated grid generation

software, have been employed to solve PDEs numerically. Although body-fitted grid approaches

allow imposing various types of boundary conditions accurately, they pose a serious challenge

when the solution domain changes its topology over time. Issues like constant remeshing of

the computational domain, the high aspect ratio of the elements, etc., limit the feasibility of

body-fitted grid methods for modeling challenging moving domain problems.

To overcome the limitations of the body-fitted grid methods, fictitious domain (FD) meth-

ods have been proposed. In fictitious domain methods, an irregular region of interest is embedded

into a larger, simpler computational domain and the original PDE is reformulated on the entire

domain. FD methods typically employ regular Cartesian grids to mesh the computational domain.

This allows simpler discretization of PDEs and fast linear solvers to solve the discrete system

of equations. Since the regular grid no longer adheres to the irregular interface, incorporating

original boundary conditions in the reformulated equation is not straightforward. Neverthe-

less, several techniques to incorporate Dirichlet boundary conditions have been proposed for

various variants of the FD method. Dirichlet boundary conditions are particularly relevant for

modeling fluid-structure interaction (FSI) problems, where velocity matching condition on the

fluid-structure interface is required. Fictitious domain methods such as the immersed boundary

(IB) method [38] and the volume penalization (VP) method [7] have been successfully used to

model several FSI problems, including wave energy converters [39, 40, 13], water entry/exit
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problems [41], fish swimming [11, 42], esophageal transport [43], cardiovascular flows [44],

etc. The IB method was introduced by Peskin to model flow in a human heart [45] and is a

two-grid approach to FSI modeling: Lagrangian mesh for describing the moving structure and

an Eulerian grid for describing the fluid flow. In contrast, the VP method introduced by Angot et

al. [7] is a single grid approach in which all quantities related to fluid and structure are described

on the Eulerian grid. The moving structure in the VP method is typically tracked using an

indicator function. Since all quantities are described on a single grid, parallel implementation

of VP methods on distributed memory systems is relatively easier compared to the two-grid IB

methods.

The original VP method introduced by Angot et al. [7] considered only Dirichlet boundary

conditions. Later the VP method was generalized to Neumann and Robin boundary conditions

by Ramière, Angot, and Belliard [8]. The authors in [8] implemented their VP technique within

a finite element framework. In their formulation, inhomogeneous Neumann and Robin boundary

conditions were incorporated by introducing a surface delta function in the reformulated equa-

tion; the singular delta function was regularized in the numerical implementation. Recently, in

Kadoch et al. [9], a volume penalization method for imposing homogeneous Neumann boundary

conditions was presented. The authors in [9] implemented their method within a pseudo-spectral

code and used it to simulate moving domain problems involving chemical mixers. Since ho-

mogenous (Neumann) boundary conditions were considered in Kadoch et al. [9], the need for

a surface delta function kernel was circumvented. More recently, Sakurai and co-workers [1]

introduced the so-called flux-based VP method, which extends Kadoch et al.’s approach to

imposing inhomogeneous Neumann boundary conditions. The flux-based VP approach uses a

flux-forcing function to impose the inhomogeneous Neumann boundary conditions on the inter-

face. Sakurai et al. used second-order central finite differences and interpolation to implement

the flux-based VP method and solved several one- and two-dimensional Poisson problems to

assess the spatial convergence rate of the numerical solutions. Sakurai et al. considered simple

interfaces in two-spatial dimensions (circles and rectangles) in their study, which allowed them to
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construct flux-forcing functions analytically. Moreover, the imposed flux values were considered

spatially constant on the interface. The analytical construction of flux-forcing functions limits

the feasibility of the flux-based VP method for practical applications. Recently, Thirumalaisamy

et al. [46] critiqued Sakurai et al. for some inconsistencies in their results and conclusions,

following which the authors of [1] published a corrigendum [47] to their original work. Similar

to Sakurai et al., Thirumalaisamy et al. also relied on the analytical construction of flux-forcing

functions for the flux-based VP method.

One of the objectives of this work is to generalize the flux-based VP method to handle

arbitrarily complex interfaces in two and three spatial dimensions. This is achieved through nu-

merical construction of flux-forcing functions, as described in Sec. 2.5.1 of this thesis. Moreover,

the imposed flux values are allowed to vary spatially on the interface. The proposed numerical

approach for constructing flux-forcing functions requires only a signed distance function that

describes the distance of a grid point from the interface. The signed distance function can be

constructed analytically for simple geometries, or through computational geometry techniques

for complex interfaces [48]. Another objective of this work is to extend the flux-based VP

method to include (spatially varying) Robin boundary conditions. This allows imposing both

types of boundary conditions (Neumann and Robin) through similar (numerical) flux-forcing

functions.

Similar to Sakurai et al., we also discretize the volume penalized equations using second-

order finite differences. Using the method of manufactured solution, we assess the accuracy of

the proposed approach by solving two- and three-dimensional Poisson problems with constant

and spatially varying Neumann/Robin boundary conditions. We compare the performance of

our approach using both continuous and discontinuous indicator functions in the test problems

considered in Sec. 2.7. It is observed that the continuous indicator function performs better

(in terms of order of accuracy and uniformity of convergence rate) for imposing the spatially

constant Neumann/Robin boundary condition, whereas the discontinuous one performs better

for the spatially varying Neumann/Robin problem.
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We also provide a formal derivation of the flux-based VP Poisson equation, which was

not provided in Sakurai et al. [1], where the equation first appeared for the Neumann problem.

The derivation reveals that the flux-based volume penalization method also uses a surface delta

function to impose inhomogeneous Neumann/Robin boundary conditions. Interestingly, explicit

construction of the delta function is not required in the flux-based approach, which is in contrast

to the volume penalization approach of Ramière et al. [8]. We remark that on a formulation level

the volume penalization approaches of Ramière et al., Kadoch et al., and Sakurai et al. (and the

present work) are equivalent; minor differences in these works arise from the definition of the

surface delta function. This insight is gained from Li et al. [49] who derived phase field-based

diffuse domain equations satisfying Dirichlet, Neumann, and Robin boundary conditions. Li

et al. used the method of matched asymptotic expansions to provide different diffuse domain

approximations for the Neumann/Robin problem 1; these approximations differ in the way how

surface delta function is defined.

Characteristic-based approaches to impose Neumann and Robin boundary conditions for

the volume penalized PDEs have also been proposed in the literature; see, for example, Brown-

Dymkoski et al. [50] and Hardy et al. [51] who used characteristic-based VP approach to model

the energy transport equation satisfying Neumann and Robin boundary conditions in the context

of compressible flows and low Mach formulation of compressible flows, respectively. The main

limitation of the characteristic-based VP method is that it relies on having a time-derivative term

in the PDE and as such cannot be applied to steady-state (i.e., having no temporal derivative term)

elliptic equations. In addition to the volume penalization methods [8, 9, 1, 50, 51, 52, 53, 54],

other fictitious domain techniques have also been proposed to impose flux boundary conditions

on embedded interfaces. Notable ones include the flux-correction technique (FCT) of Ren et

al. [55], Wang et al. [56], and Guo et al. [57] and the direct forcing method of Lou et al. [58]. FCT

is a predictor-corrector scheme and is implemented using the Lagrangian-Eulerian machinery of

the IB method. In the prediction step of FCT, an intermediate scalar field is computed on the

1Different diffuse domain approximations for the Dirichlet problem are also provided in Li et al. [49].
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Eulerian grid, which in general does not satisfy the flux boundary condition on the interface

defined by the Lagrangian markers. Next, in the correction step, a Lagrangian forcing term is

computed either implicitly [56, 57] or explicitly [55] that corrects the intermediate scalar field

to satisfy the Neumann boundary condition. In an essence, FCT is a time-splitting approach

(similar to the characteristic-based VP approach), which requires having a time-derivative term

in the scalar transport equation. Therefore, unlike the flux-based VP method, FCT cannot be

used for time-independent elliptic equations. In the direct forcing method, the scalar field near

the interface is reconstructed locally using second- or third-degree polynomials in order to satisfy

the flux boundary condition. This is achieved by identifying “forcing” points on the fictitious

(solid) side of the interface, on which the reconstructed scalar field value is directly imposed.

Direct forcing methods are also typically implemented as a predictor-corrector scheme, which

avoids modifying the system of linear equations.

In the following sections, we first describe the continuous form of the volume penalized

equations and thereafter describe the numerical construction of the flux-forcing functions. Finally,

various test cases are considered in two- and three-spatial dimensions to access the accuracy of

the numerical solutions.

2.2 Mathematical formulation

2.2.1 The Neumann problem

Consider an irregular fluid domain Ωf embedded into a larger, regular computational

domain Ω, as shown in Fig. 2.1. Define Ω \ Ωf = Ωs as the fictitious solid domain and n as a

unit outward normal of the fluid-solid interface ∂Ωs (or ∂Ωf). With q as the scalar quantity of

interest, κ as the diffusion coefficient, and f as a source term, Sakurai et al. [1] extended the

Poisson equation defined in the fluid region Ωf

−∇ · κ ∇q = f, (2.1)
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Figure 2.1. Schematic of a regular computational domain Ω with an embedded irregular fluid
region Ωf. The solid domain is defined as Ωs = Ω \ Ωf. The fluid-solid interface ∂Ωs (or ∂Ωf)
has the unit normal vector n pointing out from the fluid and into the solid.

satisfying inhomogeneous Neumann/flux boundary conditions on ∂Ωs

−κ n · ∇q = g, (2.2)

to the entire computational domain Ω using the flux-based VP approach. The extended domain

Poisson equation satisfying the inhomogeneous flux boundary conditions on the interface reads

as

−∇ · [{κ (1− χ) + ηχ}∇q] = (1− χ) f +∇ · (χβ)− χ∇ · β. (2.3)

Here, η is the penalization parameter, χ(x) is an indicator function whose value is 1 in the solid

region and 0 in the fluid region, and fb = ∇ · (χβ) − χ∇ · β is an additional forcing term

required to impose the flux boundary conditions on ∂Ωs. The vector-valued flux-forcing function

β(x) is selected such that β · n = −g on the interface. In the limit of η → 0, the solution to the

volume penalized (VP) Poisson equation converges to the solution of non-penalized Poisson

equation (Eqs. (2.1) and (2.2)). A formal derivation of Eq. (2.3) is provided in the next section.

As noted in Thirumalaisamy et al. [46], the flux-based VP approach allows κ and g to vary

spatially as well.
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2.3 Derivation of the flux-based volume penalized Poisson
equation: the Neumann problem

In this section, we derive Eq. (2.3) by following the diffuse domain equation derivation

provided in Li et al. [49]. Similar derivation appeared in Ramière et al. [8]. To begin, multiply

Eq. (2.1) by a test function ψ and integrate it over the fluid domain Ωf to obtain

∫
∂Ωf

ψg dS +

∫
Ωf

κ ∇q · ∇ψ dV =

∫
Ωf

ψf dV. (2.4)

In the above equation we used the vector identity

∇ · (ab) = (∇a) · b + a (∇ · b), (2.5)

with the scalar field a = ψ and vector field b = κ ∇q, along with the Neumann boundary

condition on the fluid-solid interface ∂Ωf as written in Eq. (2.2). Note that Eq. (2.4) is the weak

form of the Poisson Eq. (2.1) defined in the fluid domain Ωf. Next, extend the integration domain

from region Ωf to Ω in the integral Eq. (2.4) by introducing the indicator function χ (χ = 0 in Ωf

and χ = 1 in Ωs) and a surface delta function δ∂Ωf to obtain

∫
Ω

δ∂Ωf ψg dV +

∫
Ω

(1− χ)κ ∇q · ∇ψ dV =

∫
Ω

(1− χ)ψf dV. (2.6)

Again invoking the vector identity defined in Eq. (2.5), but with b = (1− χ)κ ∇q this time, the

second integrand in the left-hand side of the above equation can be written as

(1− χ)κ ∇q · ∇ψ = ∇ · [ψ(1− χ)κ ∇q]− ψ ∇ · [(1− χ)κ ∇q].
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This allows us to simplify the second integral in the left-hand side of Eq. (2.6) as

∫
Ω

(1− χ)κ ∇q · ∇ψ dV =

∫
∂Ω

ψ(1− χ)κ (∇q · n∂Ω) dS︸ ︷︷ ︸
= 0 as χ = 1 on ∂Ω

−
∫

Ω

ψ ∇ · [(1− χ)κ ∇q] dV.

Therefore, the weak form of the Poison equation in the extended domain can be written as

∫
Ω

ψ (−∇ · [(1− χ)κ ∇q] + δ∂Ωf g − (1− χ)f) dV = 0. (2.7)

Since ψ is an arbitrary test function, the collective term multiplying ψ in Eq. (2.7) should evaluate

to zero at each point in the domain. This gives the strong form of the extended domain Poisson

equation as

−∇ · [(1− χ)κ ∇q] + δ∂Ωf g = (1− χ)f. (2.8)

Next, we show that the flux-based volume penalized Poisson Eq. (2.3) can be obtained

from Eq. (2.8) using a specific definition of the surface delta function δ∂Ωf . First, simplify the

forcing term fb in the right hand-side of Eq. (2.3) to

∇ · (χβ)− χ∇ · β = β · ∇χ. (2.9)

Next, noticing that∇χ = δ∂Ωf n, the forcing term of VP poisson equation becomes

β · ∇χ = δ∂Ωf(β · n) = −δ∂Ωf g. (2.10)

Substituting δ∂Ωf g term from Eq. (2.10) into the extended domain Poisson equation (2.8)

eliminates the explicit representation of the delta function and the extended domain equation

reads as

−∇ · [(1− χ)κ ∇q] = (1− χ)f +∇ · (χβ)− χ∇ · β. (2.11)
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The flux-based VP Poisson equation is obtained from Eq. (2.11) by introducing a small amount

of diffusion in the solid domain which is controlled by the penalization parameter η. For an easy

reference, the VP equation is re-written below

−∇ · [{κ(1− χ) + ηχ}∇q] = (1− χ)f +∇ · (χβ)− χ∇ · β.

2.4 Derivation of the flux-based volume penalized Poisson
equation: the Robin problem

The flux-based volume penalization method can be easily extended to include Robin

boundary conditions of the type

ζ q + κ n · ∇q = −g (2.12)

on the irregular boundary ∂Ωf (or ∂Ωs). First, it can be easily verified that the weak form of the

Poisson equation defined in the fluid domain and satisfying Robin boundary conditions written

in Eq. (2.12) is

∫
∂Ωf

ψ(ζq + g) dS +

∫
Ωf

κ ∇q · ∇ψ dV =

∫
Ωf

ψf dV. (2.13)

Next, following the procedure to reformulate the PDE on the entire domain as described above,

the strong form of the Poisson equation reads as

−∇ · [(1− χ)κ ∇q] + δ∂Ωf (ζq + g) = (1− χ)f. (2.14)
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Defining a flux function β that satisfies the property of β · n = −g on ∂Ωf, the above equation

can be written as

−∇ · [(1− χ)κ ∇q] +∇χ · (ζq n− β) = (1− χ)f. (2.15)

The flux-based VP Poisson equation satisfying the Robin boundary conditions is obtained from

Eq. (2.15) by adding a small amount of diffusion in the solid domain

(ζ ∇χ · n)q −∇ · [{κ (1− χ) + ηχ} ∇q] = (1− χ)f +∇ · (χβ)− χ∇ · β. (2.16)

In order to avoid computing the gradient of a possible discontinuous indicator function χ,

the above equation is re-written as

ζ[∇ · (χn)−χ∇ ·n]q−∇ · [{κ (1− χ) + ηχ} ∇q] = (1−χ)f +∇ · (χβ)−χ∇ ·β. (2.17)

The normal vector appearing in the first term of Eq. (2.17) can be computed numerically using

the signed distance function as n = −∇φ.

2.4.1 The Robin problem

Next, we consider the inhomogeneous Robin boundary conditions of the type

ζ q + κ n · ∇q = −g (2.18)

on the fluid-solid interface ∂Ωs. The flux-based VP Poisson equation for the Robin problem,

which reads as

ζ[∇ · (χn)−χ∇ ·n]q−∇ · [{κ (1− χ) + ηχ} ∇q] = (1−χ)f +∇ · (χβ)−χ∇ ·β. (2.19)
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In the equation above, the flux-forcing function satisfies the requirement of β · n = −g. The

unit normal vector n appearing in the first term of Eq. (2.19) can be computed numerically using

a signed distance function as explained later in Sec. 2.4.3. In our formulation, ζ, κ, and g are

allowed to vary spatially.

2.4.2 Multiple interfaces and coupled volume penalized equations

The VP Poisson equations (Eqs. (2.3) and (2.19)) can also be generalized to handle

multiple interfaces within the computational domain Ω. For some of these interfaces, Dirichlet

boundary conditions may also be prescribed. Following Thirumalaisamy et al. [46], the general-

ized form of the VP Poisson equation satisfying Neumann and Dirichlet boundary conditions

reads as

−∇ ·
[{

κ

(
1−

N∑
j=1

χn
j

)
+

N∑
j=1

ηχn
j

}
∇q
]

=
N∑
j=1

{
∇ ·

(
χn
jβj
)
− χn

j∇ · βj
}

−
D∑
i=1

χd
i

(
q − qd

i

)
η

+

(
1−

N∑
j=1

χn
j

)
f. (2.20)

For the above equation to hold true, the computational domain Ω is assumed to consist of disjoint

volumetric regions Ωd
i (for i = 1, 2, . . . , D) and Ωn

j (for j = 1, 2, . . . , N ), with imposed Dirichlet

(q = qd
i ) and Neumann (−κ ∇q · nj = gn

j ) boundary conditions, respectively. Furthermore,

the union of Ωd
i and Ωn

j regions defines the total solid domain, i.e., Ωs = Ωd
1 ∪ Ωd

2 ∪ · · ·Ωd
D ∪

Ωn
1 ∪ Ωn

2 ∪ · · ·Ωn
N . In Eq. (2.20) the indicator function χn(x)(respectively, χd(x)) is 1 if x ∈

Ωn(respectively,Ωd) and 0 if x ∈ Ω\Ωn(respectively,Ωd). Note that Robin boundary conditions

can be easily included in Eq. (2.20), as their form is very similar to the Neumann problem. We

omit Robin boundary conditions in the generalized equation written above for brevity.

The volume penalization approach can also be extended to other governing equations that

describe conservation of momentum, energy, species, etc. For example, the VP incompressible

Navier-Stokes equations coupled to the flux-based VP advection-diffusion equation satisfying
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Neumann boundary condition reads as

∂ρu

∂t
+∇ · ρuu = −∇p+∇ ·

[
µ
(
∇u +∇uT

)]
+
χ

η
(ub − u) + f(x, q, t), (2.21)

∇ · u = 0, (2.22)

∂q

∂t
+ (1− χ) (u · ∇q) = ∇ · [{κ (1− χ) + ηχ}∇q] + (1− χ) f +∇ · (χβ)− χ∇ · β.

(2.23)

In the equations above, u(x, t) is the fluid velocity, ub(x, t) is the structure velocity, p(x, t)

is the hydrodynamic pressure, f denotes the momentum body force, ρ(x) is the mass density,

and µ(x) is the dynamic viscosity. The equation set (5.6)-(2.23) is written considering only

a single interface in the domain; generalization to handle multiple interfaces is also possible

following Eq. 2.20. We remark that in the context of fluid-structure interaction (FSI) problems,

only velocity matching condition on the fluid-structure interface is required, i.e., u = ub on ∂Ωs

is essential, whereas u = ub in Ωs is optional. In the volume penalization approach to FSI, both

these conditions are imposed through the penalization term χ
η
(ub − u). Therefore, in the VP

momentum equation (5.6), only Dirichlet boundary conditions have been considered.

2.4.3 Interface capturing

We use a signed distance function φ(x) to implicitly define the fluid-solid interface ∂Ωs.

The scalar field φ(x) is defined to satisfy the following property: φ(x) > 0 if x ∈ Ωf, φ(x) < 0

if x ∈ Ωs and φ(x) = 0 is x ∈ ∂Ωs. Moreover, the negative gradient of the signed distance

function φ(x) gives the unit outward normal vector of the interface, i.e., n = −∇φ. The signed

distance function can also be used to define the indicator function χ(x). In this work we use

17



Figure 2.2. Schematic of a single Cartesian grid cell along with the placement of various
variables: the velocity components are stored at the edge centers (black,→); the fluid pressure p,
the transported quantity q and the signed distance function φ are stored at the cell centers (black,
◦).

φ(x) to define two types of indicator functions: one is smooth and continuous and written as

χ(x) =


1, φ(x) < −nsmear h,

1− 1
2

(
1 + 1

nsmearh
φ(x) + 1

π
sin
(

π
nsmearh

φ(x)
))

, |φ(x)| ≤ nsmear h,

0, otherwise,

(2.24)

and the other one is discontinuous, which reads as

χ(x) =


1, φ(x) < 0,

1
2
, φ(x) = 0,

0, otherwise.

(2.25)

In the Eq. (2.24) above, nsmear ∈ R is the number of grid cells over which the indicator function

is smoothed on either side of the interface and h is the grid cell size.

2.5 Discrete equations

We use second-order finite difference stencils to discretize the spatial derivative terms of

cell-centered Poisson and face-centered momentum equations (Eqs. (2.3) and (5.6), respectively)

on a Cartesian grid. Fig. 2.2 shows a schematic representation of a two-dimensional Cartesian
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grid cell, in which the velocity components are stored on edge centers (face centers in three

spatial dimensions), whereas the transported variable q, the fluid pressure p, and the signed

distance function φ are stored at the cell center. The computational domain Ω is discretized

into Nx × Ny Cartesian grid cells with mesh spacing ∆x and ∆y in the x- and y-direction,

respectively. In this work we use equal mesh spacing in the two directions, i.e., ∆x = ∆y = h.

In what follows next, we primarily focus on the discretization of the VP Poisson Eq. (2.3) for

the Neumann problem; details on the spatiotemporal discretization of the VP incompressible

Navier-Stokes equations can be found in our prior works [59, 41, 40].

Referring to Fig. 2.2, let (i, j) denote the cell index, (i− 1
2
, j) denote the lower x edge

index and (i, j − 1
2
) denote the lower y edge index. Then the discretized form of the VP Poisson

Eq. 2.3 in two spatial dimensions reads as

{ψi+ 1
2
,j + ψi− 1

2
,j + ψi,j+ 1

2
+ ψi,j− 1

2
} qi,j − ψi+ 1

2
,j qi+1,j − ψi− 1

2
,j qi−1,j − ψi,j+ 1

2
qi,j+1

− ψi,j− 1
2
qi,j−1 = Si,j,

(2.26)

in which

ψi+ 1
2
,j =

1

∆x2

{
κ (1− χ+ ηχ)

}
i+ 1

2
,j

(2.27a)

ψi− 1
2
,j =

1

∆x2

{
κ (1− χ+ ηχ)

}
i− 1

2
,j

(2.27b)

ψi,j+ 1
2

=
1

∆y2

{
κ (1− χ+ ηχ)

}
i,j+ 1

2

(2.27c)

ψi,j− 1
2

=
1

∆y2

{
κ (1− χ+ ηχ)

}
i,j− 1

2

, (2.27d)
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and the right hand side term Si,j is given by

Si,j = (1− χi,j) fi,j +
(χβ)i+ 1

2
,j − (χβ)i− 1

2
,j

∆x
+

(χβ)i,j+ 1
2
− (χβ)i,j− 1

2

∆y

− χi,j
(
βi+ 1

2
,j − βi− 1

2
,j

∆x
+
βi,j+ 1

2
− βi,j− 1

2

∆y

)
. (2.28)

Analogous discretization formulas can be written for the three-dimensional VP Poisson equation.

In the discretized Eq. (2.26) written above, the indicator function χ and the diffusion coefficient

κ are required at the edge centers; these properties are first defined at the cell centers and then

interpolated onto the edge centers using a second-order accurate linear interpolation scheme.

The flux-forcing function β(x) is also required at the edge centers; methods to construct β are

discussed next.

2.5.1 Construction of flux-forcing functions

The vector-valued flux-forcing function β(x) plays a crucial role in imposing the desired

inhomogeneous Neumann and Robin boundary conditions on the interface. In this section,

we introduce three approaches to construct β(x), namely Approach A, B, and C. The three

approaches are in increasing order of generality. While Approach A is specialized for the

Neumann problem, Approaches B and C are equally applicable to the Robin problem.

Approach A: Analytical construction of spatially varying g

Consider for a moment that the solution to the non-penalized Poisson equation with

inhomogeneous Neumann boundary conditions on ∂Ωs is known. Denote the exact solution

by qexact. If the flux-forcing function is taken to be of the form β(x) = κ ∇qexact(x), then it

satisfies the requirement of β · n = −g on ∂Ωs. In practice the solution to the Poisson Eq. (2.1)

with boundary condition (2.2) is sought and not known a priori. However, if an analytical
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approximation q̃ to the exact solution qexact exists, such that n · ∇q̃ = n · ∇qexact on ∂Ωs, then

β(x) = κ ∇q̃(x), (2.29)

can be prescribed as a flux-forcing function. Away from the interface, the approximation q̃ can

be close to or very different from qexact, depending upon whether a continuous or a discontinuous

indicator function χ is used. We denote the analytical construction of β as Approach A. In

component form, Approach A is written as

βi− 1
2
,j =

(
κ
∂q̃

∂x

)
x
i− 1

2 ,j

, (2.30a)

βi,j− 1
2

=

(
κ
∂q̃

∂y

)
x
i,j− 1

2

. (2.30b)

Approach A was employed in Sakurai et al. [1] and Thirumalaisamy et al. [46] to

demonstrate the feasibility of flux-based volume penalization method to solve PDEs with flux

boundary conditions in complex domains, but is quite restrictive in practice as discussed next.

Approach B: Numerical construction of spatially constant g

Although Approach A allows for imposing spatially varying g values on the interface,

approximating an analytical solution to the exact solution near the interface is a non-trivial

task, especially if the interface is geometrically complex. However, if g is spatially constant,

then constructing β is easy. This is achieved by taking β(x) = −g n(x), as it satisfies the

requirement of β · n = −g on ∂Ωs. Now, recalling from Sec. 2.4.3 that the negative gradient of

the signed distance function φ(x) is the continuous normal vector field n(x), the flux-forcing

function can be constructed numerically for an irregular boundary as

β(x) = −g n(x) = g ∇φ(x). (2.31)
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(A) Cartesian grid and an embedded interface (B) Propagation of interface cell g values

Figure 2.3. Approach C for constructing the flux-forcing function β. (A) Schematic of a
Cartesian grid (black lines) with an embedded fluid-solid interface ∂Ωs (red line). Two interface
cells are highlighted in the figure: one whose cell center xF lies in the fluid region and the other
whose cell center xN lies in the the solid region. For these interface cells the corresponding
function values gF and gN and the outward unit normal vectors nF and nN are shown. (B)
Propagation of the g value into the domain following an interface cell normal and a grid cell
where multiple normals intersect shown in light pink color. Out of the gF and gN values arriving
at the shaded cell, the one with the larger modulus is chosen.

We denote the numerical construction of spatially constant g value on the interface as Approach

B, which in component form is written as

βi− 1
2
,j = g

(
φi,j − φi−1,j

∆x

)
, (2.32a)

βi,j− 1
2

= g

(
φi,j − φi,j−1

∆y

)
. (2.32b)

Approach C: Numerical construction of spatially varying g

As a generalization of Approach B, the flux-forcing function can be taken as

β(x) = −g(x) n(x) = g(x)∇φ(x). (2.33)
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However, Eq. (2.33) poses a challenge of extending the codimension-1 boundary condition

function g defined over the interface to a codimension-0 function g(x) defined in the neighbor-

hood of the interface. Although there are several ways to achieve this function extension (in

absence of a constraint), in this work we follow a simple strategy of propagating the interfacial

g values to the neighboring grid cells along the interface normal. More specifically, consider a

fluid-solid interface ∂Ωs embedded into a Cartesian grid as shown in Fig. 2.3(A). The signed

distance function φ(x) can be used to identify the grid cells through which the interface passes.

Denote these grid cells as interface cells. Fig. 2.3(A) highlights two such interface cells: one

whose cell center xF lies in the fluid region and the other whose cell center xN lies in the solid

region. The normal vector of the interface cells is also known from the signed distance function:

nF = (−∇φ)F and nN = (−∇φ)N. Next, the g value at the cell center of an interface cell is set

equal to the closest interfacial g value:

gF ← g(xF∂Ωs
), (2.34a)

gN ← g(xN∂Ωs
), (2.34b)

in which xF∂Ωs
= xF + φFnF and xN∂Ωs

= xN + φNnN are the closest points on the interface to

the cell centers xF and xN, respectively. Note that the g function on the interface is prescribed

and therefore, g(xF∂Ωs
) and g(xN∂Ωs

) are known a priori. In the next part of the algorithm, gF and

gN values are propagated to the grid cells that are within a distance of nprop h to the interface

cells along ± nF and ± nN directions, respectively. This procedure is pictorially described in

Fig. 2.3(B). The number of grid cells nprop to which g values are propagated depends upon the

choice of the indicator function χ—we will explore the effect of nprop on the solution accuracy

in Sec. 2.7. Note that propagating g values along the normal directions may lead to a situation of

conflict at a grid cell where two or more interface cell normals intersect. This situation is shown

for the shaded cell in Fig. 2.3(B) where the two normals nF and nN intersect. For such cells, a g
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value with the larger modulus is chosen:

g� = maxmodulus(gF, gN). (2.35)

We also considered an average and the minimum modulus of g at the conflicted cells; these

choices however reduced the order of accuracy of the solution for the continuous/smoothed

indicator function. Note that for the discontinuous indicator function, the g value at the conflicted

cells does not matter much for the solution accuracy. This is because such cells are generally

located far away from the interface where the discontinuous indicator function is already zero.

Nevertheless, we always make use of Eq. (2.35) even for the discontinuous indicator function in

this work. With g values defined at the cell centers, the component form of β reads as

βi− 1
2
,j =

(
gi−1,j + gi,j

2

)(
φi,j − φi−1,j

∆x

)
, (2.36a)

βi,j− 1
2

=

(
gi,j−1 + gi,j

2

)(
φi,j − φi,j−1

∆y

)
. (2.36b)

The propagation strategy of Approach C can also be implemented by solving a hyperbolic

equation of the form
∂g(x)

∂τ
+ n(x) · ∇g(x) = 0. (2.37)

The equation above can be integrated over a pseudo-time interval ∆τ that is directly related to

the propagation distance. However, the test examples of Sec. 2.7 show that the method of g

propagation described in Approach C is quite effective in imposing the spatially varying flux

boundary conditions. Moreover, it does not require solving any additional partial differential

equation.

Note that there can be other ways of extending the flux-forcing function in the vicinity

of the interface as discussed at the beginning of this section. One straightforward approach is

to extend the β function defined over the interface Ωs to a flux-forcing function valid near the
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interface using the top hat or a Gaussian bell-like function, which we refer to as Approach D.

However, as demonstrated in Appendix 6.1, this particular function continuation approach does

not produce satisfactory results; the numerical and actual solutions differ significantly and the

numerical scheme does not converge under grid refinement in any norm. In contrast, Approach

C produces the correct solution and a convergent numerical scheme. This also highlights the non-

triviality in allowing spatially varying Neumann/Robin boundary conditions in the flux-based

VP method.

2.6 Software

The numerical formulations and the problems described in this thesis are implemented

within the IBAMR library [60], which is an open-source C++ simulation software focused on

immersed boundary and volume penalization methods with adaptive mesh refinement. The code

and test cases presented in this thesis are publicly available at https://github.com/IBAMR/IBAMR.

IBAMR relies on SAMRAI [61, 62] for Cartesian grid management and the AMR framework.

Linear and nonlinear solver support in IBAMR is provided by the PETSc library [63, 64, 65].

All of the example cases in the present work made use of distributed-memory parallelism using

the Message Passing Interface (MPI) library.

2.7 Results and discussion

In this section we discretely solve the volume penalized Poisson Eqs. 2.3 and 2.19

satisfying inhomogeneous Neumann and Robin boundary conditions, respectively, to assess the

accuracy of the numerical solutions. We use the flexible GMRES (FGMRES) iterative solver with

a tight relative residual tolerance of 10−12 to solve the system of linear equations. The order of

accuracy results presented here are computed only in the fluid domain and are determined based

on the L1 and L∞ norm of the error (denoted E1 and E∞, respectively) between the numerical and
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analytical 2 solutions. Since the VP method is expected to produce a non-uniform convergence

rate under grid refinement because of the delta function formulation (see Appendices 2.3 and 2.4

for derivation), we curve-fit the error data and report the slope/convergence rate, denoted m and

the coefficient of determination, denoted R2, in each case. Appendix 6.9 tabulates the error data.

The spatial convergence rate of the error is shown for both continuous (denoted E∞c and E1
c ) and

discontinuous (denoted E∞d and E1
d ) indicator functions. We consider two- and three-dimensional

examples involving constant and spatially varying flux boundary conditions on ∂Ωs. In the test

examples, the fluid region Ωf is embedded into a larger computational domain Ω with Dirichlet

boundary conditions imposed on the external boundary ∂Ω of the domain. The computational

domain is discretized into N ×N and N ×N ×N grid cells for the two- and three-dimensional

examples, respectively. The penalization parameter η is taken to be 10−8 (Appendix 6.2 considers

the effect of η on the convergence rate) and the diffusion coefficient κ is taken to be 1 for all of

the tests. While imposing the Robin boundary conditions we take ζ to be 1 in the test examples.

The numerical solutions are presented for Approach C and where applicable, results obtained

from Approach C are compared against Approach A or B. Since Approach A constructs the

flux-forcing function from the known solution to the problem, for a given indicator function χ,

Approach A is expected to perform better than or at least as well as Approach B and C. This

expectation is also confirmed from the tests that follow next.

2.7.1 Analysis of 1D Poisson equation with same inhomogeneous Neu-
mann boundary condition

We first consider the 1D Poisson problem with the same flux boundary condition on the

two ends of the fluid domain Ωf, as done in Sec. 2.1 of Sakurai et al. [1]. The fluid domain

Ωf ∈ [0, π] is embedded into a larger computational domain Ω ∈ [0, 2π], as shown in Fig. 2.4.

Same inhomogeneous Neumann boundary condition value is imposed on the two fluid-solid

2Analytical solution of the non-penalized equation is used for computing the error.
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Figure 2.4. Schematic of the computational domain used in Sakurai et al. [1] to solve the 1D
Poisson problem in the fluid region. The solid region in the figure represents the fictitious domain.
Periodic boundary conditions are imposed on the external boundaries.

interfaces located at x = 0 and x = π, respectively, and is taken to be

dq

dx

∣∣∣∣
x=0

= α and
dq

dx

∣∣∣∣
x=π

= α. (2.38)

We take the flux forcing function to be β = α î for this test case. Here, î denotes the unit vector

in the positive x−direction. The forcing function f(x) is taken to be

f(x) = m2 cos(mx). (2.39)

The analytical solution of this problem using a zero-mean condition on q in Ωf ,
∫

Ωf
q(x) dx = 0,

reads as

qexact(x) = cos(mx) + αx− πα

2
. (2.40)

We solve the penalized Poisson equation using both continuous and discontinuous

indicator functions as defined in Sec. 2.4.3. The parameters α and m are taken to be 1, and

periodic boundary conditions are imposed on ∂Ω (see Fig. 2.4). Since the solution to the Poisson

equation on a periodic computational domain is determinable only up to an additive constant,

the discrete set of equations for this case results in a singular matrix. To invert the matrix using

a direct solver, we replace the first linear equation with
∫

Ω
q(x) dx = 0 condition, as done in

Kolomenskiy et al. [53]. We remark that although the obtained numerical solution depends on

the linear equation that is replaced by the zero-mean condition (as also noted in [53]), the order

of accuracy of the solution remains the same.
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Two sets of N values are selected to assess the order of accuracy of the solution: (i)

Naligned = [32, 64, 128, 256, 512,1024] which aligns the fluid-solid interface located at x = π

with the Cartesian cell face, as done in [1], and (ii) Nnon−aligned = [25, 75, 225, 675, 2025]

which does not. The other two fluid-solid interfaces at x = 0 and x = 2π are located on grid

cell faces by construction. Fig. 2.5 compares the spatial convergence rate for the two grid

setups. As observed in Fig. 2.5(A), when the interface aligns with the Cartesian grid face,

O(h2) convergence rate is obtained using both continuous and discontinuous indicator functions.

Second-order spatial accuracy is also obtained in Sakurai et al. [1] using the discontinuous

indicator function using a similar grid setup. However, the order of accuracy degrades to O(h1)

when the interface is not aligned with the grid, as observed in Fig. 2.5(B). The authors in [1] did

not present the order of accuracy results using a non-conforming grid (to the interface) for this

problem. Finally, Fig. 2.5(C) shows the numerical solution q, and compares it against the exact

solution for N = 256 grid. An excellent agreement is obtained.

2.7.2 Analysis of 1D Poisson equation with different inhomogeneous
Neumann boundary conditions

We now consider the 1D Poisson problem with different inhomogeneous Neumann

boundary conditions on the two ends of the fluid domain, as done in Sec. 2.3 of Sakurai et al.

The forcing function f(x) for this case is

f(x) = m2 sin(mx), (2.41)

and the inhomogeneous Neumann boundary condition values on the two ends are

dq

dx

∣∣∣∣
x=0

= α +m and
dq

dx

∣∣∣∣
x=π

= α−m. (2.42)

Here, α and m parameters are taken to be 1. The problem setup remains the same as shown in

Fig. 2.4. The analytical solution of this problem (using a zero-mean condition on q in Ωf ) reads
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(A) Convergence rate using interface con-
forming grid

(B) Convergence rate using interface non-
conforming grid

(C) Solution

Figure 2.5. 1D Poisson problem with same flux boundary conditions. Error norms E1 and E∞ as
a function of grid size N using continuous (solid line with symbols) and discontinuous (dashed
line with symbols) indicator functions when (A) the fluid-solid interface at x = π is aligned
with the Cartesian cell face, and (B) when it is not; (C) numerical solution q obtained using
N = 256, α = 1, and m = 1, along with the exact solution. The penalization parameter η is
taken as 10−8.
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as

qexact(x) = sin(mx) + αx− 2

mπ
− πα

2
. (2.43)

The flux forcing function is taken to be β = ∇qexact = (m cos(mx) + α) î, which also satisfies

the boundary conditions written in Eq. (2.42). We again replace the first linear equation with

zero mean of q in Ω to obtain the unique solution. The results for this case are presented in

Fig. 2.6 for Naligned and Nnon−aligned grid size values, as taken in the previous section.

In Fig. 2.6(A) we observe O(2) convergence for both types of indicator functions when

the interface aligns with the Cartesian grid face. This is in contrast to Sakurai et al. [1] where

O(h1) convergence is reported for this test problem using a similar grid setup; the results reported

in [1] are not reproducible despite the use of same discretization method and problem setup. The

authors in [1] attribute the reduction in accuracy to different values of flux boundary condition,

which is clearly not the case here. Fig. 2.6(B) shows the order of accuracy results when the

interface is not aligned with the Cartesian cell face — O(h1) convergence rate is exhibited using

both continuous and discontinuous indicator functions. Finally, Fig. 2.6(C) shows the numerical

solution q, and compares it against the exact solution for N = 256 grid. An excellent agreement

is obtained.

The results presented in the above two sections may suggest that the spatial accuracy of

the flux-based VP method is O(h2) when the interface aligns the Cartesian mesh, but degrades

to O(h1) when it does not. This is also one of the conclusions in Sakurai et al. However, our

next examples contradict this conclusion.

2.7.3 Concentric circular annulus with spatially constant flux on the
interface

We consider the concentric circular annulus problem from Sakurai et al. [1] in which

different inhomogeneous, but spatially constant, Neumann boundary conditions are specified on

the two interfaces defining the annulus. The inner radius of the annulus is ri = π/4 and its outer

radius is ro = 3π/4. The center of the annulus is positioned at (π, π). The circular annulus is
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(A) Convergence rate using interface con-
forming grid

(B) Convergence rate using interface non-
conforming grid

(C) Solution

Figure 2.6. 1D Poisson problem with different flux boundary conditions. Error norms E1 and
E∞ as a function of grid size N using continuous (solid line with symbols) and discontinuous
(dashed line with symbols) indicator functions when (A) the fluid-solid interface at x = π is
aligned with the Cartesian cell face, and (B) when it is not; (C) numerical solution q obtained
using N = 256, α = 1, and m = 1, along with the exact solution. The penalization parameter η
is taken as 10−8.

31



embedded into a larger computational domain of extents Ω ∈ [0, 2π]2. The source term of the

Poisson equation for this case is

f(r) = 16 cos(4r) +
4 sin(4r)

r
, (2.44)

in which r =
√

(x− π)2 + (y − π)2 and the Neumann boundary condition values on the two

interfaces are taken to be

dq

dr

∣∣∣∣
r=π

4

= 3m and
dq

dr

∣∣∣∣
r= 3π

4

= m. (2.45)

The exact solution of this problem using the zero-mean condition
∫

Ωf
rq(r) dr = 0 reads as

qexact(r) = cos(4r) +
3

4
mπ log(r)− 3

32
mπ

(
9 log

(
3

4
π

)
− log

(π
4

)
− 4

)
. (2.46)

The mean of the numerical solution in the fluid region is subtracted as a post-processing step to

impose the zero-mean condition numerically.

Relatively simple geometry and constant flux boundary conditions of this test problem

allows for an analytical construction of β. Indeed, in [1, 46], the flux-forcing function β was

constructed analytically (Approach A) as β = κ ∇q̃ = dq̃
dr
er, in which er =

(
x−π
r
, y−π

r

)
and dq̃

dr

is

dq̃

dr
=

 m
(

4r
3π

)2 (
4
(
1− r

π

))3
, if 0 ≤ r ≤ π,

0, otherwise.
(2.47)

It is to be noted that dq̃
dr

reduces to 3m at r = π/4 and m at r = 3π/4, respectively.

Since the flux boundary condition value is spatially constant on the interface, Approach

B is also applicable for this test problem. The g value required for Approach B is m and −3m

on the inner and outer interface, respectively. Figs. 2.7(A) and 2.7(B) show the order of accuracy

of the solution as a function of mesh resolution for Approach A and B, respectively. As can
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(A) Spatial convergence rate for Approach A (B) Spatial convergence rate for Approach B
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(C) Solution variation along y−direction
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(D) Solution variation along x−direction

Figure 2.7. Concentric circular annulus with constant flux on the two interfaces using Approach
A and B. Error norms E1 and E∞ as a function of grid size N using the continuous (solid
lines with symbols) and discontinuous (dashed lines with symbols) indicator functions for (A)
Approach A; and (B) Approach B. The penalization parameter η is taken as 10−8 and m and κ
are taken as 1. (C) Variation of the numerical solution along y−direction at a fixed x = 3.12
location; and (D) variation of the numerical solution along x−direction at a fixed y = 3.12
location using N = 256 grid.
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(A) Spatial convergence rate for Approach C (B) Effect of number of smear width and prop-
agation cells

Figure 2.8. Concentric circular annulus with constant flux on the two interfaces using Approach
C. Error norms E1 and E∞ as a function of grid size N using the continuous (solid lines with
symbols) and discontinuous (dashed lines with symbols) indicator functions. (A) Convergence
rate using nsmear = 1 and nprop = 2. (B) Effect of nsmear and nprop on the solution accuracy.

be observed in Fig. 2.7(A), for Approach A, O(h1.98) (respectively, O(h1.94)) convergence rate

with an R2 value of 0.99 (respectively, 0.96) in L∞ (respectively, L1 ) norm is achieved using

the continuous indicator function. With the discontinuous χ, O(h1.50) (respectively, O(h1.78))

convergence rate with an R2 value of 0.98 (respectively, 0.99) in L∞ (respectively, L1) norm is

achieved. We note that the convergence rate using the continuous indicator function is better

than the discontinuous function for Approach A. Looking at Fig. 2.7(B), it is seen that Approach

B exhibits a very similar convergence rate as Approach A, but in contrast to Approach A,

Approach B is more versatile as it requires only ∇φ(x) information, which can be constructed

for any irregular boundary [48]. Figs. 2.7(C) and 2.7(D) compare the analytical and numerical

solutions along x− and y−direction, respectively. Numerical solutions using Approach B and

discontinuous indicator function are presented. As can be observed in the figures, an excellent

agreement is obtained between the analytical and numerical solutions.

Next, we solve this problem using Approach C. As can be seen in Fig. 2.8(A), Approach

C also exhibits a very similar convergence rate as Approach A and B when the discontinuous

indicator function is used, whereas the convergence rate is reduced when the continuous function

34



is employed. Specifically, O(h0.91) (respectively, O(h1.22)) convergence rate with an R2 value

of 0.79 (respectively, 0.82) in L∞ (respectively, L1) norm is obtained using the continuous χ.

However, Approach C is the most general one, since it can be used for imposing spatially varying

flux values as demonstrated in later examples.

The present example is also used to study the effect of the number of propagation cells

nprop on the solution accuracy for the continuous indicator function. The results are shown in

Fig. 2.8(B), in which it can be observed that 2 cells on either side of the interface are sufficient

for propagating g values for a fixed number of nsmear cells; the error norms are mostly affected

by the nsmear choice. Based on the results of this problem, we choose nsmear = 1 and nprop = 2

for the continuous masking function, unless otherwise stated. For the discontinuous indicator

function also, we use nprop = 2 for the remainder of the problems (although nprop = 1 is also

sufficient).

2.7.4 Spatially varying flux values along complex interfaces

In this section, we assess the accuracy of the numerical solution for spatially varying flux

values using a manufactured solution of the form

qexact(x) = sin(x) sin(y). (2.48)

Inhomogeneous Neumann boundary conditions g(x) = −κ n · ∇qexact are imposed on the

fluid-solid interface ∂Ωs, whereas Dirichlet boundary conditions are imposed on the external

boundaries of the computational domain, i.e., q|∂Ω(x) = qexact(x). Note that g(x) varies spatially,

and therefore, Approach B is not applicable for this test. Eq. (2.48) is plugged into the non-

penalized Poisson Eq. (2.1) to generate the required source term f(x). We consider three

geometrically complex solid domains: a hexagram, an egg, and a x-cross; these geometries are

embedded in a larger Cartesian domain of extents Ω ∈ [0, 2π]2 and the numerical solutions are

computed in the corresponding fluid domains Ωf = Ω \ Ωs.
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Figure 2.9. Numerical solution q (top row) and the error norms E1 and E∞ as a function of
grid size N (bottom row) for three complex shapes: (A) Hexagram; (B) Egg; and (C) X-cross
using Approach C. The convergence rate results are shown for both continuous (solid line with
symbols) and discontinuous (dashed line with symbols) indicator functions. The penalization
parameter η is taken as 10−8 and κ is taken to be 1.
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Using Approach A for constructing the flux-forcing function for this problem, wherein

qexact was used to define β = κ ∇qexact results in second-order convergence rate of the numerical

solution for this problem; refer [46]. We solve the same problem using Approach C. Fig. 2.9

presents the numerical solution and its convergence rate as a function of grid resolution. For

the hexagram case, at least O(h0.56) accuracy is achieved using the continuous indicator func-

tion whereas at least O(h0.78) accuracy is achieved using the discontinuous indicator function.

Similarly, for the egg case, at least O(h0.67) accuracy is achieved using the continuous χ and at

least O(h0.54) accuracy is obtained using the discontinuous indicator function. Lastly, for the

x-cross geometry, Approach C exhibits at least O(h0.67) accuracy using the continuous indicator

function and at least O(h0.85) accuracy with the discontinuous one. As noted in the previous

section also, Approach C with the discontinuous indicator function is able to achieve a better

convergence rate than with the discontinuous one. We remark that for Approach C, the reduction

in accuracy (when compared to Approach A) is attributed to the codimension-0 extension of

the spatially varying g function in the neighborhood of the interface. Nevertheless, Approach C

is able to impose spatially varying flux values on a complex interface (sharp corners, etc.) and

the solution accuracy is also reasonable. Later in Sec. 2.7.8 we demonstrate that smoothing of

geometric features like sharp corners improves the accuracy of Approach C further.

2.7.5 Constant and spatially varying flux on three-dimensional inter-
faces

In this section, we consider two complex geometries in three spatial dimensions: a sphere

and a torus. These geometries are embedded into a larger computational domain of extents

Ω ∈ [0, 2π]3.

For the spherical geometry, the manufactured solution is taken to be

qexact(r) = r2 + c, (2.49)
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in which r =
√

(x− π)2 + (y − π)2 + (z − π)2 and c is a constant. Eq. (2.49) when plugged

into the non-penalized Poisson Eq. (2.1) yields a constant source term f(x) = −6. The radius

of the sphere is taken to be R = 3/2. Two cases are considered for the spherical geometry:

fluid inside the sphere and fluid outside it. For the first case, a constant flux boundary condition

g = −κ ∂qexact/∂n = −2R is imposed on the spherical surface and a homogeneous Dirichlet

boundary condition is imposed on the external domain boundary ∂Ω. Since the solution of

this Poisson problem is defined up to an additive constant c, we use the zero-mean condition∫ R
0

4πr2 qexact dr = 0 to determine the constant c = −3R2

5
. For the second case, in which the

fluid is considered between the spherical interface and the computational domain boundary,

constant flux boundary condition g = −κ∂qexact/∂n = −2R is imposed on the spherical

interface and inhomogeneous Dirichlet boundary conditions q|∂Ω(x) = qexact(x) are imposed on

the external boundary. The constant c is taken to be zero for this case.

The comparison between the numerical and analytical solutions, as well as the spatial

convergence rate of E1 and E∞ error norms using Approach B and C are shown in Fig. 2.10. As

can be observed in the figure, the numerical solution is in excellent agreement with the exact

solution. Largely O(h2) convergence rate is obtained for this example using Approach B with

both continuous and discontinuous indicator functions. Approach C also yields the same order

of accuracy with the discontinuous indicator function as Approach B. However, the convergence

rate using the continuous indicator function is between 0 and 1 for Approach C. Clearly, the

discontinuous indicator function performs better than the continuous one for Approach C. Second-

order convergence rate is also obtained with Approach A, when β = κ ∇qexact is used for the

spherical geometry (data not shown for brevity). Better performance of Approach A compared

to Approach B and C is expected, as mentioned in the beginning of Sec. 2.7.

For the next three-dimensional test example, a solid torus is embedded in a computational

domain of extents Ω ∈ [0, 2π]3 as shown in Fig. 2.11(A) and the fluid region is taken outside of
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Figure 2.10. Spherical interface with constant flux boundary condition using Approach B and
C. Top row corresponds to fluid inside the sphere case and the bottom row corresponds to fluid
outside the sphere case. Also shown are the error norms, E1 and E∞ as a function of grid size
N using continuous (solid lines with symbols) and discontinuous (dashed lines with symbols)
indicator functions. (A) Comparison of numerical solution at z = π using N = 256 grid. Error
norms using (B) Approach B; and (C) Approach C. The penalization parameter η is taken as
10−8, κ as 1 and the radius of the sphere is 3/2.
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(A) Toroidal interface (B) Numerical solution at y = π

(C) Spatial convergence rate for Approach C

Figure 2.11. Toroidal interface with spatially varying flux boundary conditions using Approach
C. (A) Zero-contour of the solid torus; (B) numerical solution at y = π using N = 256 grid;
and (C) the error norms E1 and E∞ as a function of grid size N using the continuous (solid
lines with symbols) and discontinuous (dashed lines with symbols) indicator functions. The
penalization parameter η is taken as 10−8 and κ is taken to be 1.
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the torus. We consider a manufactured solution of the form

qexact(x) = − cos(x) cos(y) cos(z). (2.50)

Eq. (2.50) is plugged into the non-penalized Poisson Eq. (2.1) to generate the required source

term f(x). On the toroidal interface, spatially varying inhomogeneous Neumann boundary

conditions are imposed, whereas on the external domain boundary inhomogeneous Dirichlet

boundary conditions using the exact solution are imposed. We solve this test problem using

Approach C and the results are shown in Fig. 2.11. As can be observed in Fig. 2.11, at least

O(h1.25) is achieved with the discontinuous indicator function and at least O(h0.63) is achieved

with the continuous indicator function.

2.7.6 Spatially constant Robin boundary condition on two-dimensional
interfaces

We consider the concentric circular annulus problem of Sec. 2.7.3 with the same exact

solution qexact(r) and source term f(r), as written in Eqs. (2.46) and (2.44), respectively. Plugging

the exact solution into the Robin boundary condition Eq. 2.18 yields a spatially constant g value

for the inner and outer interface, respectively.

The VP Poisson Eq. 2.19 is solved using Approach B and C for this problem. The

numerical solution compared against Eq. 2.46 using Approach C is shown in Fig. 2.12(A); an

excellent agreement is obtained. We also present the convergence rate for Approach B and C in

Fig. 2.12. As can be seen in Fig. 2.12, the convergence rates obtained by using the discontinuous

indicator function for Approach B and C are quite close to what we had obtained in Sec. 2.7.3.

For the continuous indicator function, we obtain approximately second-order accuracy with

Approach B and at least O(h0.71) accuracy with Approach C. As also observed in Sec. 2.7.3, the

discontinuous indicator function performs better than the continuous one with Approach C; the

reverse is true for Approach B.
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(A) Numerical solution

(B) Order of convergence using Approach B (C) Order of convergence using Approach C

Figure 2.12. Concentric annulus with spatially constant Robin boundary conditions using
Approach B and C. (A) Numerical solution using N = 256 grid. Error norms E1 and E∞ as
a function of grid size N using the continuous (solid lines with symbols) and discontinuous
(dashed lines with symbols) indicator functions for (B) Approach B; and (C) Approach C. The
penalization parameter η is taken as 10−8. The values of κ and ζ are taken to be 1.
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(A) Numerical solution (B) Order of convergence

Figure 2.13. Hexagram domain with spatially varying Robin boundary conditions using Ap-
proach C. (A) Numerical solution using N = 256 grid; and (B) the error norms E1 and E∞ as
a function of grid size N using the continuous (solid lines with symbols) and discontinuous
(dashed lines with symbols) indicator functions. The penalization parameter η is taken as 10−8.
The values of κ and ζ are taken to be 1.

2.7.7 Spatially varying Robin boundary condition on a complex
two-dimensional interface

In this section, we assess the accuracy of Approach C for spatially varying Robin

boundary conditions on a complex two-dimensional interface. A hexagram geometry is embedded

into a computational domain of extents Ω ∈ [0, 2π]2, as considered in Sec. 2.7.4. The fluid is

occupied between the computational domain boundary ∂Ω and the fluid-solid interface ∂Ωs.

The same manufactured solution as written in Eq. 2.48 is considered here; this solution yields

spatially varying g values when plugged into the Robin boundary condition Eq. (2.18). We solve

the VP Poisson Eq. 2.19 using Approach C. The numerical solution and the spatial convergence

rate of the error norms are presented in Fig. 2.13. As observed in the figure, at least O(h0.71)

accuracy is achieved with the continuous indicator function and at least O(h0.72) accuracy is

achieved with the discontinuous indicator function.
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2.7.8 Effect of smoothing geometric features on the convergence rate of
Approach C

In this section, we study the effect of sharp geometric features, such as corners on the

convergence rate of Approach C. We consider a slightly modified version of the hexagram

interface, which was considered earlier in Secs. 2.7.4 and 2.7.7. Instead of the sharp corners, in

this case, we embed a hexagram having smooth exterior corners (see Fig. 2.14(A)) in a larger

Cartesian domain of extents Ω ∈ [0, 2π]2 and solve the Neumann/Robin problem using Approach

C. The order of accuracy results for spatially varying Neumann and Robin boundary conditions

using the discontinuous indicator function are presented in Fig. 2.14. For the sharp corner

geometry case with spatially varying Neumann boundary conditions (as shown in Fig 2.9(A)),

the convergence rates were O(h0.78) and O(h0.84) in L∞ and L1 norm, respectively. In contrast,

with smooth corners, the convergence rates are O(h0.95) and O(h1.08) in L∞ and L1 norm,

respectively. A similar trend is obtained when spatially varying Robin boundary conditions are

considered: For the sharp geometry case (as shown in Fig. 2.13), the convergence rates were

O(h0.71) and O(h1.00) in L∞ and L1 norm, respectively. With smooth corners, the convergence

rates are O(h1.00) and O(h1.26) in L∞ and L1 norm, respectively. This test demonstrates that the

convergence rate of Approach C also depends upon local geometric features.

2.7.9 Application to free convection problem

Finally, we consider steady natural convection in a concentric annulus. A constant heat

flux Q is imposed on the inner cylinder of radius ri and a fixed temperature To is maintained on

the outer cylinder of radius ro. The concentric annulus is embedded into a larger computational

domain of extents Ω ∈ [−2.56, 2.56]2, as shown in Fig. 2.15. This example was studied in

Yoo [66] using a body-fitted grid approach and more recently, it has been used to validate the

IB/FCT relying on time-splitting approach to handle the flux boundary conditions on embedded

interfaces [55, 56, 57]; see Introduction Sec. 2.1 for a brief discussion on IB/FCT.

We solve the volume penalized advection-diffusion equation for the temperature field
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(A) Smoothed hexagram geometry (B) Order of convergence for spatially vary-
ing Neumann boundary condition

(C) Order of convergence for spatially vary-
ing Robin boundary condition

Figure 2.14. Hexagram domain with smooth exterior corners. (A) Zero-contour of the smoothed
hexagram interface. Error norms E1 and E∞ as a function of grid size N using the discontinuous
indicator function with Approach C. (B) Spatially varying Neumann boundary conditions; and (C)
spatially varying Robin boundary conditions. The penalization parameter η is taken as 10−8. The
values of κ and ζ are taken to be 1.
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Figure 2.15. 2D free convection problem at two Rayleigh numbers: Ra = 5700 and Ra =
5×104.(A) Schematic of the problem. Steady state temperature field and temperature distribution
on the surface of the left half of the inner cylinder at (B) Ra = 5700 and (C) Ra = 5× 104.
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coupled to the volume penalized incompressible Navier-Stokes equations (Eqs. (5.6)-(2.23))

in a non-dimensional form. The non-dimensional quantities are defined as: dimensionless

temperature Φ∗ = k(T − T0)/(QL), velocity u∗ = uL/α, time t∗ = tα/L2, and position

x∗ = x/L. Here, k is the thermal conductivity, α is the thermal diffusivity α = k/(ρcp), ρ is the

density, cp is the heat capacity at constant pressure, and L = ro − ri is the annulus thickness.

For this case we consider r∗i = ri/L = 1 and r∗o = ro/L = 2. Dropping the ∗ superscript from

the non-dimensional quantities, the system of non-dimensional equations reads as

∂u

∂t
+∇ · (uu) = −∇p+ Pr∇2u + [1− (χd + χn)]RaPrΦey −

χd + χn

ηd

u, (2.51)

∇ · u = 0, (2.52)

∂Φ

∂t
+ (1− χn) (u · ∇Φ) = ∇ · [{(1− χn) + ηnχ

n}∇Φ] +∇ · (χnβ)− χn∇ · β − χd

ηd

Φ.

(2.53)

Here, ey = (0, 1) is a unit vector in the y−direction and the continuous indicator functions χd

and χn are defined to be

χd =


1, φd(x) < −nsmear h,

1− 1
2

(
1 + 1

nsmearh
φd(x) + 1

π
sin
(

π
nsmearh

φd(x)
))

, |φd(x)| ≤ nsmear h,

0, otherwise,

(2.54)

χn =


1, φn(x) < −nsmear h,

1− 1
2

(
1 + 1

nsmearh
φn(x) + 1

π
sin
(

π
nsmearh

φn(x)
))

, |φn(x)| ≤ nsmear h,

0, otherwise.

(2.55)

In the above, φd(x) and φn(x) are the signed distance functions for the Dirichlet (outer cylinder)

and Neumann (inner cylinder) boundary, respectively. The Rayleigh number Ra =GγQL4/(kαν)

and the Prandtl number Pr = ν/α are the two main non-dimensional parameters that characterize
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buoyancy-driven flows; these parameters are seen in the right-hand side of the non-dimensional

momentum Eq. (2.51). Here, γ is the coefficient of thermal expansion, G is the gravitational

constant, and ν is the kinematic viscosity. The flux-forcing function β imposing the constant

flux boundary condition on the surface of the inner cylinder, ni · ∇Φ = 1, is constructed using

Approach B and C for this problem. Here, ni is the unit outward normal vector of the inner

cylinder. On the outer cylinder homogeneous Dirichlet boundary condition, Φ = 0, is imposed

through the last term of Eq. (2.53). Periodic boundary conditions are used on the external domain

boundaries.

Two Rayleigh numbers Ra = 5700 and Ra = 5 × 104 are considered for this problem.

The same Prandtl number Pr = 0.71 is used for the two cases. The computational domain Ω

is discretized by a uniform Cartesian grid of size 256 × 256. The penalization parameters ηd

and ηn are taken to be 10−8. We treat the convective and the advective terms of Eqs. (2.51)

and (2.53) explicitly, whereas the rest of the terms are treated implicitly. The implicit treatment

of volume penalization terms in Eqs. (2.51) and (2.53) allows us to use a relatively large time

step sizes of ∆t = 10−4 and ∆t = 5× 10−5 for Ra = 5700 and Ra = 5× 104 cases, respectively.

In contrast, Sakurai et al. [1] used a time step size of ∆t = 10−6 for these two cases as they

employed an explicit Euler time marching scheme. More details on the second-order accurate

spatial discretization and time-stepping scheme employed in the fluid solver can be found in our

prior works [59, 4].

To compare our results with those reported in [1] we plot the steady-state temperature

distribution on the left half of the inner cylinder for both Ra cases in Fig. 2.15. In the figure, the

polar angle Θ = 0◦ starts from the top position (x, y) = (0, 1) of the inner cylinder and ends at

its bottom position (x, y) = (0,−1), where Θ = 180◦. As observed in the figure, the numerical

results obtained using both Approach B and C are in excellent agreement with those reported

in [1] who used Approach A for constructing β. Sakurai et al. compared their numerical results

with Yoo [66] and Ren et al. [55]; comparison with Yoo and Ren et al. is therefore omitted in

Fig. 2.15 in the interest of clarity. We also present the steady-state temperature field in the whole

48



annular domain at the two Rayleigh numbers in Fig. 2.15.

2.8 Conclusions

In this work, we proposed a numerical technique for constructing flux-forcing functions

for the flux-based VP method introduced by Sakurai et al. We also extended the flux-based

VP approach to include Robin boundary conditions. Our method of flux-forcing functions is

more general than the analytical approach (denoted Approach A in this work) of Sakurai et

al. and requires only a signed distance function to construct the flux-forcing function. Two

numerical-based approaches were presented for constructing flux-forcing functions: Approach

B for imposing spatially constant and Approach C for imposing spatially varying (as well

spatially constant) Neumann/Robin boundary conditions. Within Approach C we extended the

(spatially varying) codimension-1 g function to the neighborhood of the interface using a simple

propagation strategy. We considered several two- and three-dimensional Poisson problems in

complex domains to assess the accuracy of the numerical solutions. Results were presented for

both continuous and discontinuous indicator functions. For Approach B, largely O(h2) accuracy

is observed using the continuous indicator function. BetweenO(h1) andO(h2) convergence rate

is observed for Approach B with the discontinuous indicator function and a similar convergence

rate is observed for Approach C with the discontinuous indicator function when it is used

for solving the constant Neumann/Robin boundary condition problem. For spatially varying

boundary conditions, Approach C using the discontinuous indicator function exhibits close to

O(h1) convergence rate; the accuracy of the method is further improved by smoothing the sharp

geometric features. However, Approach C using the continuous indicator function exhibits a

convergence rate between O(h0) and O(h1). Based on our results, we recommend using the

discontinuous indicator function with Approach C to impose spatially varying Neumann/Robin

boundary conditions and using the continuous indicator function with Approach B to impose

spatially constant Neumann/Robin boundary conditions. Finally, we used Approach B and
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C to study the flux-driven thermal convection problem in a concentric annulus and compared

our results against the literature. An excellent agreement was obtained. We also provided

formal derivation of the flux-based volume penalized Poisson equations in strong form for both

Neumann and Robin problems. The formulation shows that an explicit construction of the delta

function is not necessary for the flux-based VP method, which makes it different from other

diffuse domain equations presented in the literature.
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Chapter 3

An effective preconditioning strategy for
volume penalized incompressible/low
Mach multiphase flow solvers

In this chapter, we propose a projection method-based preconditioning strategy for

solving volume penalized (VP) incompressible and low-Mach Navier-Stokes equations. The

projection preconditioner enables the monolithic solution of the coupled velocity- pressure

system in both single phase (uniform density and viscosity) and multiphase (variable density and

viscosity) flow settings. In this approach, the penalty force is treated implicitly, which is allowed

to take arbitrary large values without affecting the solver’s convergence rate or causing numerical

stiffness. It is made possible by including the penalty term in the pressure Poisson equation

(PPE), which was not included in previous works that solved VP incompressible Navier-Stokes

equations using the projection method. We show how and where the Brinkman penalty term

enters the PPE by re-deriving the projection algorithm for the VP method. Solver scalability

under grid refinement is demonstrated, i.e., convergence is achieved with the same number of

iterations regardless of the problem size. A manufactured solution in a single phase setting

is used to determine the spatial accuracy of the penalized solution. Various values of body’s

permeability are considered. Second-order pointwise accuracy is achieved for both velocity and

pressure solutions for reasonably small values of permeability. Error saturation occurs when

permeability is extremely small, but the convergence rate of the solver does not degrade. The
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solver converges faster as permeability decreases, contrary to prior experience. Two multiphase

fluid-structure interaction (FSI) problems from the ocean engineering literature are also simulated

to evaluate the solver’s robustness and performance (in terms of its number of iterations). The

proposed solver also allows us to investigate the effect of permeability on the motion of the

contact line over the surface of the immersed body. It also allows us to investigate the dynamics

of the free surface of a solidifying metal.

3.1 Introduction

The VP method was originally developed by Arquis and Caltagirone [67] to simulate

isothermal obstacles in incompressible single-phase flows. In 1999, Angot et al. [7] provided

convergence proofs and error estimates of the penalized solution in terms of the penalty parameter.

Inspired by Brinkman’s work [68], the VP technique treats solids embedded in a fluid as porous

media with extremely low permeabilities κ� 1. The velocity boundary condition on the fluid-

solid interface, which is of Dirichlet type, is imposed through a volumetric feedback force that is

inversely proportional to the body’s permeability κ. The feedback force is commonly referred to

as the Brinkman penalty force. A number of extensions and improvements have been made to the

VP method over the years due to its simplicity, robustness, ease of implementation, and ability

to handle complex geometries. We have extended the VP method to allow spatially-varying

Neumann and Robin boundary conditions over complex interfaces for advection-diffusion

PDEs (see Chapter 2 and [46, 69]). In our VP method [46, 69], the parameter κ has no

physical relationship to the solid’s permeability, but rather is a numerical diffusion parameter

that ensures flux continuity across the interface. To achieve high-order (up to fourth-order)

spatial accuracy of the penalized solution, Kou et al. [70] used a combination of VP and

high-order flux reconstruction techniques in a discontinuous Galerkin framework. VP is also

used to model phase change problems, but under a different name, the Carman-Kozeny drag

model [17, 18]. In melting/solidification problems, a volumetric penalty/drag force is applied to
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retard solid phase motion [18, 19]. In literature, volume penalization is most commonly used

to model fluid-structure interaction (FSI). The technique has been extensively used to model

FSI in incompressible single phase flows (uniform density and viscosity) [10, 11, 12]. The VP

technique has also recently gained popularity in modeling multiphase FSI, such as solid motion in

incompressible gas-liquid flows. In Bhalla et al. [41], water entry/exit problems were simulated

and hydrodynamic loads were calculated for solid bodies slamming into air-water interfaces.

Khedkar et al. [13, 14] modeled FSI and optimal control of wave energy converters. Sharaborin

et al. [15] combined the VP method with a volume of fluid approach to model the prescribed

motion of rigid bodies in gas-liquid flows. Bergmann used the VP method to investigate the

hydrodynamics of a dolphin jumping out of water [16]. In addition, there are some alternative

methods for modeling multiphase FSI that are worth mentioning. In recent years, sharp interface

cut cell methods have been proposed to simulate solid-liquid-gas flows [71, 72]. They have the

advantage of conserving mass and resolving three-phase triple points over VP methods. These

methods also employ discontinuous interface tracking methods, such as the volume of fluid

method to truncate the air-water interface at the solid surface. This is different from a fictitious

domain/VP method that employs a continuous representation of the air-water interface, whose

implications are discussed in Sec. 3.5.1 of this article. The implementation of cut cell methods

requires more work, especially when considering three spatial dimensions, and special care must

be taken when addressing non-prescribed motions of solid bodies and the intersection of multiple

phases [72].

In spite of the fact that the VP method has been extensively studied to understand the

accuracy of the penalized solution, there is no study (to our knowledge) that proposes efficient

solvers for the volume penalized Navier-Stokes equations, particularly when the system becomes

stiff as κ → 0. Several studies have treated the Brinkman penalty term explicitly [73, 1] (i.e.,

using the prior time value of the penalty force) or via an operator-splitting approach [74, 10, 75,

76] (i.e., accounting the penalty force separately in a substep), but this limits the time step size

∆t and/or κ values in order to avoid numerical stiffness/instability. An interesting linearization-
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based technique was recently proposed by Kou et al. [70] to treat the stiff penalty term in an

implicit-explicit manner in the context of volume penalized compressible flows, which allowed

the authors to take κ one to two orders of magnitude lower than needed in an explicit treatment.

As we aim to develop solver technology for arbitrary small κ values (e.g., four orders lower

compared to that required in an explicit treatment) for incompressible flows in this thesis, we do

not discuss the explicit and operator-splitting approaches further. This is needed in situations

like modeling phase change problems, where it is necessary to experiment with increasingly

large values of κ−1 in order to find out what is large enough to obtain physically correct phase

change dynamic. Similarly, for multiphase FSI problems κ controls the contact line motion

over the immersed surface, as demonstrated in this work. To alleviate the aforementioned issues

related to numerical stiffness and instability, the stiff penalty term can be treated implicitly, and

this is commonly accomplished by solving the penalized system using projection solvers in

literature. Bergmann and Iolla [11] describe the projection method to solve the volume penalized

single-phase incompressible Navier-Stokes (INS) system, and more recently, Sharaborin et

al. [15] have extended and described the projection approach for volume penalized multiphase

flows. Prior works [11, 15] have employed an incorrect projection algorithm to solve the volume

penalized INS equations, which is corrected in this study.

An alternative to the projection solver is the monolithic velocity-pressure solver, which

does not split velocity and pressure degrees of freedom. Monolithic flow solvers are believed

to be computationally inefficient compared to velocity-pressure split solvers such as the pro-

jection solver. Griffith [77] and Cai et al. [78] point out that this is a misconception, and that

the coupled velocity-pressure system can be solved as efficiently as the projection method.

Moreover, the monolithic approach does not suffer from order of accuracy reductions caused by

operator-splitting or artificial boundary conditions that are required in the projection algorithm.

In 2009, Griffith proposed to use an inexact projection solver as a preconditioner for the GM-

RES/FGMRES solver to solve the single phase INS equations monolithically and efficiently. Cai

et al. [78] extended the projection preconditioner approach to the variable density and viscosity
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INS system in 2014. The authors considered periodic, free-slip, and velocity boundary conditions

for the multiphase solver in their work [78]. Later in 2019, Nangia et al. [59] demonstrated

that the multiphase projection preconditioner can also handle spatially and temporally varying

traction boundary conditions. Based on the success of using projection method as a precon-

ditioner for the coupled velocity-pressure system, this work extends the technique to volume

penalized single and multiphase INS systems. The same preconditioner can also be used to solve

volume penalized low Mach Navier-Stokes equations. Low Mach volume penalized systems,

for instance, are used to model the melting/solidification of phase change materials undergoing

volume changes (i.e., velocity is not divergence-free) during the phase change process. An

example of this can be found in the motivating Sec. 3.2. It is interesting to note that some phase

change problems can also be modeled under isothermal conditions; see for example Ahlkrona

and Elfverson [79] and Löfgren [80], who simulate glacier melting due to the shear thinning of

ice. Unlike Sec. 3.2, these works assume divergence-free velocity.

An obvious choice for the projection preconditioner (to solve the volume penalized INS

system) is inexact versions of the projection solvers of Bergmann and Iolla [11] and Sharaborin

et al. [15]. An inexact solver solves the system of equations only approximately, such as by

using few iterations or setting a loose convergence tolerance. Empirical testing shows, however,

that the projection algorithms of [11, 15] do not lead to robust convergence of the monolithic

solver, particularly when κ is small. This is because prior projection algorithms have not taken

into account the Brinkman penalty term in the pressure Poisson equation (PPE). By re-deriving

the projection algorithm for the VP method, we show how and where the Brinkman penalty term

enters the PPE. Using the correct projection algorithm, we are able to achieve robust convergence

of the monolithic multiphase flow solver, even when the value of κ is very small. In addition, the

solver is demonstrated to remain scalable under grid refinement, i.e., the number of iterations

required to converge remains essentially the same regardless of the problem size. To test the

spatial accuracy of the penalized solution, we consider a manufactured solution for a uniform

density and viscosity flow. A wide range of κ values is considered in the test. For both velocity
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Figure 3.1. Solidification of liquid aluminum in presence of gas phase. As the liquid aluminum
solidifies a pipe defect appears due to the volume shrinkage effect. The effect of the permeability
parameter κ = ε∆t/(ρS) on the solidification dynamics is shown. Based on the results of this
simulation κ = ∆t/(100 ρS) or lower is suggested for this class of problems.

and pressure solutions, second-order pointwise accuracy is achieved for reasonably small values

of κ. In the case of extremely small κ, error saturation occurs, but the convergence rate of the

solver does not deteriorate. In fact, as κ values decrease, the proposed solver converges faster,

contrary to prior experience [73, 1, 76, 74, 10], where the system becomes stiff (difficult to

solve) at small values of κ. An additional test evaluates the solver’s performance (in terms of

iteration count) for a multiphase FSI problem with two- to three-order differences in density

and viscosity. The convergence rates remain robust in the multiphase case as well. Finally, the

proposed preconditioner also allows us to study the effect of κ on the contact line motion over

the immersed surface.

3.2 Motivation behind the proposed solver and precondi-
tioner

The motivation behind the development of the preconditioner proposed in this work

comes from our efforts to model phase change problems involving melting/solidification of phase

change materials (PCMs). Consider, for example, liquid aluminum/PCM (blue color) solidifying

in a cast in the presence of air (white color) as illustrated in Fig. 3.1. The computational domain

is taken to be a square of extents Ω ∈ [0, 8×10−3]2, which is discretized intoN×N = 256×256

uniform cells.Temperature T is fixed on all boundaries at 0.5Tm (Tm = 933.6 K is aluminum’s
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solidification temperature), except at the bottom wall, where zero-heat flux is imposed. Initially,

liquid aluminum has a temperature of 2Tm, whereas gas has a temperature of 0.5Tm. The

imposed boundary conditions cause solidification to begin on the right and left sides of the

domain. Solidification is not affected by the top open boundary (which is exposed to the

atmosphere) since air has a low thermal conductivity k (gas, liquid, and solid conductivities are

taken to be kG = 6.1 × 10−2, kL = 91, and kS = 211 W/m·K, respectively). Solid and liquid

aluminum and gas have densities of ρS = 2700, ρL = 2475, and ρG = 0.4 kg/m3, respectively,

specific heats of CS = 910, CL = 1042.4, and CG = 1100 J/kg·K, respectively, and viscosities

of µl = µs = 1.4× 10−3, and µg = 4.5× 10−5 Pa·s, respectively. Viscosity in the solid phase is

fictitious and does not affect numerical results. The surface tension coefficient between liquid

aluminum and gas is taken to be γ = 0.87 N/m. The latent heat of fusion/melting of aluminum

is L = 383840 J/kg.

The time evolution of the non-isothermal phase changing gas-liquid-solid system is

governed by the equation of state, and conservation of mass, momentum and energy equations

that read as

Equation of state (EOS): ρ = ρG + (ρS − ρG)H + (ρL − ρS)Hϕ, (3.1a)

Indicator advection:
DH

Dt
=
dH

dφ

(
Dφ

Dt
+ u · ∇φ

)
= H ′

Dφ

Dt
= 0, (3.1b)

Mass/Low-Mach: ∇ · u = −1

ρ

Dρ

Dt
=

(ρS − ρL)

ρ
H
Dϕ

Dt
, (3.1c)

Momentum:
D(ρu)

Dt
+∇ · (ρu⊗ u) = −∇p+∇ · [µ(∇u + (∇u)ᵀ)]

+ ρg − Adu, (3.1d)

Energy/Enthalpy:
D(ρh)

Dt
+∇ · (ρuh) = ∇ · (k∇T ) +Qsrc. (3.1e)

The EOS (Eq. (3.1a)) defines density in terms of: (i) an indicator function H that is defined to

be 1 in the solid-liquid PCM region and 0 in the gas region; and (ii) a liquid fraction variable

ϕ that is defined to be 1 in the liquid, 0 in the solid, and between 0 and 1 in the “mushy” zone.
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H is transported with the local velocity u (Eq. (3.1b)), whereas ϕ is defined to be an explicit

function of enthalpy and evolves with it. The indicator function H is defined in terms of a

signed distance/level set function φ that satisfies the same linear advection equation as H; see

Eq. (3.1b). More details on the novel low Mach formulation of the enthalpy method, its numerical

implementation, and its validation with an analytical solution to a two-phase Stefan problem

involving jumps in density, kinetic energy, and specific heat is provided in the next chapter 4. We

note that the enthalpy h and temperature T of the system evolves due to the boundary conditions

and/or heat source/sink term Qsrc; see Eq. (3.1e). Qsrc is taken to be zero for this case.

The momentum Eq. (3.1d) contains a volume penalization term Adu that retards any fluid

motion in the solid region. Here, Ad = Cd
ϕS

2

(1− ϕS)3 + ε
is the Carman-Kozeny drag coefficient,

ϕS = H(1− ϕ) is solid fraction of the grid cell, and ε is a tunable parameter that controls the

strength of the permeability parameter κ = ε/Cd = ε∆t/(ρS) in the solid region; small values

of ε (or κ) increase the drag force and retard the motion of solid. This particular choice of

Cd = ρS/∆t is based on an inertial scale and will be explained later. Here, ∆t is the time step

size. κ is usually chosen through numerical experiments where one can start with ε ∼ O(10) or

O(1) and gradually reduce its value until no further changes are discernible in the solution or

phase change dynamics. As an example, Fig. 3.1 shows the solidification dynamics of liquid

aluminum using ε = 10, 1, 10−2 in the permeability parameter κ. Additionally, we also simulated

the solidification dynamics with ε = 10−3; the solidification dynamics remained qualitatively

the same as in the ε = 10−2 case. In the case of ε = 10 and 1, the solidification dynamics

are incorrect—a lower value of drag force is not sufficient to prevent the gas-solid interface

from moving upon complete solidification, which occurs around t = 0.25 s in the simulation.

However, lowering ε to 10−2 or below gives the correct dynamics, which has the solidified metal

remaining stationary for t > 0.25 s. In addition, the low Mach Eq. (3.1c) captures the volume

shrinkage/pipe defect due to the density difference between solid and liquid metal (ρS > ρL). We

also compute the percentage change in aluminum’s mass as it solidifies over time for different

grid sizes. It is computed as Em = |m(t)−m0|
m0

× 100, in which m(t) =
∫

Ω
H[ρS(1−ϕ) + ρLϕ] dΩ
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Figure 3.2. Percentage change Em in aluminum’s mass as it solidifies over time for different grid
sizes. A uniform time step size ∆t is used in the simulations. For the coarsest grid N2 = 322, a
uniform time step size of ∆t = 8× 10−5 is employed, and for each successively refined grid ∆t
is halved.

is aluminum’s mass at time t and m0 = m(t = 0) is its initial mass when it is all liquid. As can

be observed from Fig. 3.2, Em decreases significantly under grid refinement. For the finest grid

N2 = 5122, the percentage mass change is approximately 0.62%.

At first, we were unable to go below ε = 1 without breaking the monolithic velocity-

pressure solver; the linear solver would take a large number of iterations (and long time) to

converge, particularly at high mesh resolutions. This was because our initial implementation of

the preconditioner employed the projection algorithm suggested by Bergmann and Iolla [11] for

solving volume penalized Navier-Stokes equations. Later in this work, we demonstrate that the

prior projection algorithm does not consider the volume penalized term in the pressure Poisson

equation (PPE), which leads to poor performance of the solver1. For incompressible or low

Mach systems, one can also use segregated velocity-pressure solvers instead of monolithic ones

(where issues related to incorrect/inaccurate PPE would remain “hidden”), but we advocate using

monolithic solvers since they have several advantages. This is discussed in Sec. 3.4.3. Monolithic

solvers require robust preconditioners, and the proposed preconditioner is an effective strategy.

In what follows, we explain the solution strategy for solving volume penalized equations

1This foresight came after much struggle and time.
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by considering an isothermal (no phase change) and incompressible multiphase system. It avoids

the additional complexity associated with heat transfer and phase change. There is no change to

the coupled velocity and pressure linear system for low Mach and incompressible Navier-Stokes

equations, except for the non-zero right hand side of Eq. (3.1c).

3.3 Equations of motion

3.3.1 The continuous isothermal multiphase equations

Let Ω ⊂ Rd represent a fixed region of space in spatial dimensions d = 2 or 3. The

volume penalized incompressible Navier-Stokes (INS) equations governing the dynamics of the

coupled multiphase fluid-structure system are:

∂ρu(x, t)

∂t
+∇ · (ρu(x, t)⊗ u(x, t)) = −∇p(x, t) +∇ · [µ (∇u(x, t) +∇u(x, t)ᵀ)] + f

+
χ(x, t)

κ
(ub(x, t)− u(x, t)) , (3.2)

∇ · u(x, t) = 0, (3.3)

which describe the momentum and incompressibility of a fluid with velocity u(x, t) and pressure

p(x, t) in an Eulerian coordinate system x ∈ Rd. Eqs. (5.6) and (5.7) are written for the entire

computational domain Ω. The domain Ω is further decomposed into two non-overlapping

regions, one occupied by the fluid—liquid and gas—Ωf (t) = Ωl(t) ∪ Ωg(t) ⊂ Ω and the other

by an immersed body Ωb(t) ⊂ Ω, so that Ω = Ωf (t) ∪ Ωb(t). Fig. 3.3 shows the schematic

representation of the domain occupied by the three (air, water, solid) phases.

The right-hand side of Eq. (5.6) involves the Brinkman penalty force

λ(x, t) =
χ(x, t)

κ
(ub(x, t)− u(x, t)) (3.4)

that imposes the structural velocity ub(x, t) onto the fictitious fluid contained within Ωb(t). In
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this work, we consider ub to be a rigid body velocity. The immersed body is treated as a porous

region with vanishing permeability κ� 1, and is tracked using an indicator function χ(x, t) that

is defined to be one inside Ωb(t) and zero outside. In the limit κ → 0, the Brinkman penalty

coefficient χ/κ→∞, and λ becomes an unknown Lagrange multiplier that needs to be solved

for. The Lagrange multiplier formulation is not considered here and we refer the readers to

Kallemov et al. [81] and Usabiaga et al. [82] for a solution strategy to this problem. Here,

we examine the case of finite, but small values of κ that can make the system of Eqs. (5.6)-

(5.7) stiff if treated explicitly or via operator-splitting. The density and viscosity fields vary

spatiotemporally and are denoted ρ(x, t) and µ(x, t), respectively. In Eq. (5.6), f represents an

additional body force term, such as gravity. The rigid body velocity ub(x, t) in the solid region

Ωb(t) can either be prescribed or determined by the combined actions of the hydrodynamic and

external forces (e.g., gravity).

When describing multiphase flows, it is useful to introduce additional scalar fields, such as

the level set/signed distance function (SDF) whose zero-contour defines the two-phase interface

implicitly [83, 84]. To describe three phase solid-liquid-gas flows, two level set functions are

required: φ(x, t) and ψ(x, t). The level set function φ(x, t) is used to demarcate the liquid (e.g.,

water) and gas (e.g., air) regions, Ωl ⊂ Ω and Ωg ⊂ Ω, respectively, in the computational domain.

The zero-contour of φ defines the two fluid interface Γ(t) = Ωl ∩ Ωg. Similarly, the surface of

the immersed body Sb(t) = ∂Vb(t) is tracked using the zero-contour of the level set function

ψ(x, t); see Fig. 3.3(B). The indicator function χ(x, t) for the solid domain is computed based

on the level set function ψ. The two SDFs are advected using the local fluid velocity:

∂φ

∂t
+ u · ∇φ = 0, (3.5)

∂ψ

∂t
+ u · ∇ψ = 0. (3.6)

The density and viscosity in the entire computational domain is expressed as a function of φ(x, t)

61



(A) Continuous domain (B) Discretized domain

Figure 3.3. (A) Two-dimensional computational domain Ω showing a body immersed in a
fluid and interacting with two fluids. (B) Discretization of the domain Ω on a Cartesian mesh
and values of the indicator function χ(x, t) used to differentiate the fluid and solid regions in
the fictitious domain volume penalization method. Here, χ(x, t) = 1 inside the solid domain
and χ(x, t) = 0 in liquid and gas domains. The liquid-gas interface Γ(t) is tracked by the
zero-contour of φ(x, t), while the zero-contour of ψ(x, t) tracks the solid-fluid interface Sb(t).

and ψ(x, t) using the signed distance property:

ρ(x, t) = ρ(φ(x, t), ψ(x, t)), (3.7)

µ(x, t) = µ(φ(x, t), ψ(x, t)). (3.8)

To maintain their signed distance property, both level set functions need to be reinitialized after

each time step. To reinitialize φ, the relaxation approach of Sussman et al. [84] is used to compute

the steady state solution to the Hamilton-Jacobi equation. This is explained in Sec. 3.3.4. For

simple solid geometries (e.g., cylinder, sphere, wedge) ψ can be reinitialized analytically by

using constructive solid geometry operators (i.e., the min/max operator) on primitive shapes [85].

3.3.2 Spatial discretization

The continuous equations of motion given by Eqs. (5.6) and (5.7) are discretized on a

staggered Cartesian grid. Without loss of generality, we explain the spatial discretization in d = 2

spatial dimensions. Extension to three spatial dimensions is analogous. A discrete Nx × Ny
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(A) 2D staggered Cartesian grid (B) Single grid cell

Figure 3.4. Schematic representation of a 2D staggered Cartesian grid. (A) shows the coordinate
system for the staggered grid. (B) shows a single grid cell with velocity components u and v
approximated at the cell faces (→) and scalar variable pressure p approximated at the cell center
(•) at nth time step.

Cartesian grid covers the physical domain Ω with mesh spacing ∆x and ∆y in each direction.

The bottom left corner of the domain is situated at the origin (0, 0). The position of each grid

cell center is then given by xi,j =
(
(i+ 1

2
)∆x, (j + 1

2
)∆y

)
, where i = 0, . . . , Nx − 1 and

j = 0, . . . , Ny−1. For a given cell center, xi− 1
2
,j =

(
i∆x, (j + 1

2
)∆y

)
where i = 0, . . . , Nx and

j = 0, . . . , Ny−1 denotes the physical location of the cell face that is half a grid space away from

xi,j in the negative x-direction. Similarly xi,j− 1
2

=
(
(i+ 1

2
)∆x, j∆y

)
, where i = 0, . . . , Nx − 1

and j = 0, . . . , Ny denotes the physical location of the cell face that is half a grid cell away

from xi,j in the negative y-direction. The pressure is defined at cell centers of the staggered grid

and are denoted by pni,j = p (xi,j, t
n), where tn is the time at time step n. Velocity components

are defined at cell faces: un
i− 1

2
,j

= u
(
xi− 1

2
,j, t

n
)

and vn
i,j− 1

2

= v
(
xi,j− 1

2
, tn
)

. The components

of the body force f = (f1, f2) are also defined at x- and y-faces of the staggered grid cells,

respectively. The density and viscosity are defined at cell centers of the staggered grid and

are denoted by ρni,j = ρ (xi,j, t
n) and µni,j = µ (xi,j, t

n), and are interpolated onto the required

degrees of freedom as needed. Similarly, the phase interface is tracked via the level set functions,

which are also defined at cell centers and denoted by φni,j = φ (xij, t
n) and ψni,j = ψ (xij, t

n).
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Fig. 4.2 shows the staggered-grid discretization of Ω.

Standard second-order finite differences are used to approximate the spatial differential

operators [77, 78, 86, 87]. These are briefly described here to facilitate the discussion.

The divergence of the velocity field u = (u, v) is approximated at cell centers by

D · u = Dxu+Dyv, (3.9)

(Dxu)i,j =
ui+ 1

2
,j − ui− 1

2
,j

∆x
, (3.10)

(Dyv)i,j =
vi,j+ 1

2
− vi,j− 1

2

∆y
. (3.11)

The gradient of cell-centered quantities (i.e., p) is approximated at cell faces by

Gp = (Gxp,Gyp), (3.12)

(Gxp)i− 1
2
,j =

pi,j − pi−1,j

∆x
, (3.13)

(Gyv)i,j− 1
2

=
pi,j − pi,j−1

∆y
. (3.14)

The continuous strain rate tensor form of the viscous term is

∇ · [µ (∇u +∇uᵀ)] =

 2 ∂
∂x

(
µ∂u
∂x

)
+ ∂

∂y

(
µ∂u
∂y

+ µ ∂v
∂x

)
2 ∂
∂y

(
µ∂v
∂y

)
+ ∂

∂x

(
µ ∂v
∂x

+ µ∂u
∂y

)
 , (3.15)

which couples the velocity components through spatially variable viscosity

Lµu =

 (Lµu)x
i− 1

2
,j

(Lµu)y
i,j− 1

2

 . (3.16)
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The viscous operator is discretized using standard second-order, centered finite differences

(Lµu)x
i− 1

2
,j

=
2

∆x

[
µi,j

ui+ 1
2
,j − ui− 1

2
,j

∆x
− µi−1,j

ui− 1
2
,j − ui− 3

2
,j

∆x

]
+

1

∆y

[
µi− 1

2
,j+ 1

2

ui− 1
2
,j+1 − ui− 1

2
,j

∆y
− µi− 1

2
,j− 1

2

ui− 1
2
,j − ui− 1

2
,j−1

∆y

]
+

1

∆y

[
µi− 1

2
,j+ 1

2

vi,j+ 1
2
− vi−1,j+ 1

2

∆x
− µi− 1

2
,j− 1

2

vi,j− 1
2
− vi−1,j− 1

2

∆x

]
(3.17)

(Lµu)y
i,j− 1

2

=
2

∆y

[
µi,j

vi,j+ 1
2
− vi,j− 1

2

∆y
− µi,j−1

vi,j− 1
2
− vi,j− 3

2

∆y

]
+

1

∆x

[
µi+ 1

2
,j− 1

2

vi+1,j− 1
2
− vi,j− 1

2

∆x
− µi− 1

2
,j− 1

2

vi,j− 1
2
− vi−1,j− 1

2

∆x

]
+

1

∆x

[
µi+ 1

2
,j− 1

2

ui+ 1
2
,j − ui+ 1

2
,j−1

∆y
− µi− 1

2
,j− 1

2

ui− 1
2
,j − ui− 1

2
,j−1

∆y

]
, (3.18)

in which viscosity is required on both cell centers and nodes of the staggered grid (i.e., µi± 1
2
,j± 1

2
).

Node centered quantities are obtained via interpolation by either arithmetically or harmonically

averaging the neighboring cell centered quantities. In three dimensions the viscosity is required

on both cell centers and edges of the staggered grid. Arithmetic averaging is more accurate

(second-order accurate interpolation), whereas harmonic averaging provides a better convergence

rate at the expense of solution accuracy for solvers dealing with large contrasting material

properties, such as density, viscosity, and thermal conductivity. A discussion of this topic can be

found in the classic CFD textbook of Patankar [88]. We have also observed this in our previous

work related to two phase flows [59]. In this work we use arithmetic averaging.

The linear operators described above are needed to fully discretize the continuous equa-

tions of motion. An additional approximation to a variable-coefficient Laplacian is required for

the projection preconditioner described in Sec. 3.4.3

(Lρχ p)i,j =
1

∆x

[
1

ρχ i+ 1
2
,j

pi+1,j − pi,j
∆x

− 1

ρχ i− 1
2
,j

pi,j − pi−1,j

∆x

]

+
1

∆y

[
1

ρχ i,j+ 1
2

pi,j+1 − pi,j
∆y

− 1

ρχ i,j− 1
2

pi,j − pi,j−1

∆y

]
, (3.19)
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which requires sum of density and Brinkman penalty coefficient, denoted ρχ, on faces of the

staggered grid (ρχ i± 1
2
,j and ρχ i,j± 1

2
in Eq. (3.19)). These can also be computed using either the

arithmetic or harmonic averages of density from the two adjacent cell centers. It is important to

note that our formulation utilizes the interpolated face-centered density within the preconditioner,

which does not affect solution accuracy or stability as long as the linear system of equations

converges. This means that any suitable interpolation scheme for density works equally well for

the preconditioner.

Evaluation of finite difference operators near boundaries of the computational domain

requires specification of abutting “ghost” values. We also use an adaptive mesh refinement

(AMR) framework to reduce computational costs of 3D simulations. For further details on the

spatial discretization and boundary conditions on uniform and spatially adaptive grids, see our

prior work [59].

3.3.3 Density and viscosity specification

Smoothed Heaviside functions are used to transition between liquid-gas and fluid-solid

interfaces Γ(t) and Sb(t), respectively2 The material properties in the transition area are smoothly

varied by using nsmear grid cells on either side of the interface. As an example, to calculate a

given material property =, such as density or viscosity, the flowing phase property (i.e., gas and

liquid) is calculated first

=flow
i,j = =L + (=G −=L)H̃flow

i,j , (3.20)

and later correcting =flow to account for the solid body by

=full
i,j = =S + (=flow

i,j −=S)H̃body
i,j . (3.21)

2Due to the scale of problems we are interested in, such as simulating wave energy converters and objects
slamming into air-water interfaces, we do not impose any contact angle condition at the three material points, since
this does not affect the rigid dynamics and the hydrodynamic forces acting on them. Furthermore, this detail also
does not affect the spectrum of linear operators, which is the main area of concern for the preconditioner.

66



Here, =full is the final scalar material property field throughout Ω. For the transition specified by

Eqs. 3.20 and 3.21, the usual numerical Heaviside functions are used:

H̃flow
i,j =


0, φi,j < −nsmear h,

1
2

(
1 + 1

nsmear h
φi,j + 1

π
sin
(

π
nsmear h

φi,j

))
, |φi,j| ≤ nsmear h,

1, otherwise.

(3.22)

H̃body
i,j =


0, ψi,j < −nsmear h,

1
2

(
1 + 1

nsmear h
ψi,j + 1

π
sin
(

π
nsmear h

ψi,j

))
, |ψi,j| ≤ nsmear h,

1, otherwise.

(3.23)

in which h is a suitable measure of the cell size (e.g., ∆x). By convention, we define φ and ψ to

be negative (positive) in the liquid (gas) and solid (fluid) regions. In all simulations performed in

this study, the number of transition cells nsmear = 1 for both air-water and fluid-solid interfaces,

unless mentioned otherwise.

The VP method is a diffuse interface method in which all quantities (pressure, velocity,

etc.) vary smoothly over the transition region (which is 2nsmear wide in our model), and therefore,

do not jump across the interface. In addition, the transition region remains incompressible,

since the same kinematic constraint is imposed on the velocity (Eq. (5.7)) in this region as well.

Diffuse interface methods differ from their sharp interface counterparts, such as the immersed

interface method [89, 90] and the ghost fluid method [91], which assume the interface thickness

is zero and explicitly impose jump conditions for the quantities of interest.

3.3.4 Temporal discretization

A fixed-point iteration scheme with ncycles cycles per time step is used to evolve quantities

from time level tn to time level tn+1 = tn + ∆t. The cycle number of the fixed-point iteration

scheme is denoted with a k superscript. At the beginning of each time step, the solutions from the
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previous time step are used to initialize cycle k = 0: un+1,0 = un, pn+ 1
2
,0 = pn−

1
2 , φn+1,0 = φn,

and ψn+1,0 = ψn. The physical quantities at the initial time n = 0 are prescribed via initial

conditions. Unless mentioned otherwise, we use ncycles = 2 in all of the test cases.

Level set advection

The two level set/signed distance functions φ and ψ are advected using an explicit

advection scheme as follows

φn+1,k+1 − φn
∆t

+Q
(
un+ 1

2
,k, φn+ 1

2
,k
)

= 0, (3.24)

ψn+1,k+1 − ψn
∆t

+Q
(
un+ 1

2
,k, ψn+ 1

2
,k
)

= 0, (3.25)

in which Q(·, ·) represents an explicit piecewise parabolic method (xsPPM7-limited) approxima-

tion to the linear advection terms on cell centers [77, 92].

Mitigating mass/volume loss with the level set method

With the geometries considered in this study, we are able to reset the solid level set

function ψ(x, t) analytically. The analytical resonstruction preserves the mass/volume of the

body while not distorting ψ’s signed distance property following the linear advection Eq. (3.25).

In contrast, φ cannot be reinitialized analytically after its signed distance property is disrupted

by the linear advection Eq. (3.24). To restore its signed distance property, a reinitialization

strategy is required. Let φ̃n+1 denote the level set function following an advection procedure

after time stepping through the interval [tn, tn+1]. We aim to reinitialize it to obtain a signed

distance function φn+1. As proposed by Sussman et al. [84], this can be achieved by computing

a steady-state solution to the Hamilton-Jacobi equation

∂φ

∂τ
+ sgn

(
φ̃
)

(‖∇φ‖ − 1) = 0, (3.26)

φ(x, τ = 0) = φ̃(x), (3.27)
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in which we have dropped the n+ 1 superscript because this process is agnostic to the particular

time step under consideration. At the end of a physical time step, Eq. (3.26) is evolved in pseudo-

time τ , which, at steady state, produces a signed distance function satisfying the Eikonal equation

‖∇φ‖ = 1. Here, sgn denotes the sign of φ̃, which is either 1, −1, or 0. The discretization of

Eq. (3.26) from the pseudo-time interval [τm, τm+1] yields

φm+1 − φm
∆τ

+ sgn
(
φ̃i,j

) [
HG
(
D+
x φi,j, D

−
x φi,j, D

+
y φi,j, D

−
y φi,j

)
− 1
]

= 0, (3.28)

in which HG denotes a discretization of ‖∇φ‖ using the Godunov-Hamiltonian, and D±x and D±y

denote one-sided discretizations of ∂φ
∂x

and ∂φ
∂y

, respectively. These are typically discretized using

high-order essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes [93].

It is well known that continually applying Eq. (3.28) will cause the interface to shift

as a function of τ [94], which will eventually shrink closed interfaces and lead to substantial

spurious changes in the volume of each phase. To mitigate the spurious volume loss associated

with Eq. (3.26), we employ second-order ENO finite differences combined with a subcell-fix

method described by Min [95]. Briefly, the subcell-fix method uses φ̃ to estimate the interface

location (i.e., where φ̃ = 0) by fitting a high-order polynomial and computing an improved

estimate of the one-sided derivatives D±x and D±y from the polynomial fit. A dimension-by-

dimension approach is followed to fit the high-order polynomial. After iterating Eq. 3.28 (using

an appropriate time-stepping scheme, e.g., TVD RK2) to some desired convergence criteria, the

level set function φn+1 is updated, and the next physical time step is carried out. In the present

work, we always reinitialize the level set every time step and declare convergence when the L2

norm between subsequent pseudo-time iterations is smaller than some tolerance (taken to be

10−6 in the present work) or when a maximum number of iterations (taken to be 50) have been

carried out — whichever happens first.

All simulations that involve liquid-gas interfaces report percentage mass/volume changes.
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Additionally, a two-phase dam break problem and two- and three-phase Rayleigh-Taylor insta-

bility problems are simulated in Appendix Secs. 6.4 and 6.5, respectively . We compare the

percentage volume change of conserved phases with prior numerical studies that also employ

the standard level set methodology. Our level set method implementation achieves acceptable

mass/volume loss, as shown in the results. We note that mitigating mass/volume loss issues with

the level set method is an active area of research; see for example, Howard and Tartakovsky [96]

who recently proposed a conservative level set method for N -phase flows that preserves the

volume of every phase simultaneously. Our current work focuses primarily on solving the stiff

system of equations that result from discretizing volume penalized multiphase flow equations.

The proposed preconditioner is agnostic to level set implementation details and applies equally

to conservative level set and volume of fluid methods.

The discrete multiphase equations

The discretized form of the multiphase incompressible Navier-Stokes Eqs. (5.6) and (5.7)

in conservative form reads as

ρ̆n+1,k+1un+1,k+1 − ρnun

∆t
+ Cn+1,k = −∇h p

n+ 1
2
,k+1 + (Lµu)n+ 1

2
,k+1 + fn+ 1

2
,k+1

+
χ̃n+1,k+1

κ

(
un+1,k+1
b − un+1,k+1

)
, (3.29)

∇ · un+1,k+1 = 0, (3.30)

in which Cn+1,k = C(ρn+1,k,un+1,k) is the discretized version of the convective term∇·(ρu⊗u)

and the density approximation ρ̆n+1,k+1 is computed by integrating the (auxiliary) mass balance

equation to achieve mass and momentum transport consistency at the discrete level. The

consistent mass/momentum transport scheme ensures the numerical stability of cases involving

high density contrast between solid, liquid and gas phases. This is discussed in greater detail in

our previous work [59].

The viscous strain rate in Eq. (3.29) is handled using the Crank-Nicolson (trapezoidal
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rule) approximation: (Lµu)n+ 1
2
,k+1 = 1

2

[
(Lµu)n+1,k+1 + (Lµu)n

]
, in which (Lµu)n+1 = ∇h ·[

µn+1 (∇u +∇uᵀ)n+1]. The newest approximation to the viscosity µn+1,k+1 is obtained using

the two-stage process as described in Sec. 3.3.3.

Fluid-structure coupling

Next, we describe the Brinkman penalization term that imposes the rigidity constraint in

the solid region, and the overall fluid-structure coupling scheme. The Brinkman penalization

term is treated implicitly and computed as

λn+1,k+1 =
χ̃

κ

(
un+1,k+1
b − un+1,k+1

)
, (3.31)

in which the discretized indicator function χ̃ = 1− H̃
body

is 1 only inside the body domain and

defined using the structure Heaviside function H̃body from Eq. (3.23). With Xcom denoting the

position of the center of mass of the body, the rigid body velocity ub = Ur + Wr × (x−Xcom)

can be expressed as a sum of translational Ur and rotational Wr velocities. The rigid body

velocities can be obtained by integrating Newton’s second law of motion

Mb
Un+1,k+1
r −Un

r

∆t
= Fn+1,k +Mbg, (3.32)

(IbWr)
n+1,k+1 − (IbWr)

n

∆t
=Mn+1,k, (3.33)

in which Mb is the mass, Ib is the moment of inertia, F is the net hydrodynamic force,M is the

net hydrodynamic torque and Mbg is the net gravitational force acting on the body. Eqs. (3.32)

and (3.33) are integrated using an explicit forward Euler scheme to compute Un+1,k+1
r , Wn+1,k+1

r

and Xn+1,k+1
com . In practice we employ quaternions to integrate Eq. (3.33) in the initial reference

frame, which avoids recomputing Ib as the body rotates in a complex manner in three spatial

dimensions.
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The multiphase FSI simulations presented in this work consider immersed bodies with

only one unlocked translational degree of freedom. In a previous work [41], simultaneous free

translation and rotational motions of the body have been considered with the VP approach.

3.4 Solution methodology

3.4.1 Fully-coupled Brinkman penalized Stokes system

Solving for un+1,k+1 and pn+ 1
2
,k+1 in Eqs. (3.29) and (3.30) requires the solution of the

following block linear system

 1
∆t
ρ̆n+1,k+1 + 1

κ
χ̃n+1,k+1 − 1

2
Lµ

n+1,k+1 G

−D· 0


 un+1,k+1

pn+1,k+1

 =

 fu

0

 , (3.34)

in which ρ̆n+1,k+1 and χ̃n+1,k+1 = 1− H̃
body

are diagonal matrices of face-centered densities

and body characteristic function corresponding to each velocity degree of freedom, respectively.

The right-hand side of the momentum equation is lumped into fu, which reads as

fu =

(
1

∆t
ρn +

1

2
Lµ

n

)
un +

(
χ̃

κ

)n+1,k+1

un+1,k+1
b −Cn+1,k + fn+ 1

2 . (3.35)

The operator on the left-hand side of Eq. (3.34) is the time-dependent, incompressible staggered

Stokes operator with an additional Brinkman penalty term in the (1,1) block. We call this the

Brinkman penalized Stokes operator or Stokes-BP operator for short. In the next section, we

describe the solution of Eq. (3.34) via the GMRES or flexible GMRES (FGMRES) Krylov

solver [97] that is preconditioned with an inexact projection solver.
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3.4.2 Projection solver for the Brinkman penalized Stokes system

The most popular approach to solving the incompressible Stokes system is the fractional-

step projection method. Bergmann and Iolla [11] solved the Stokes-BP system (Eq. (3.34))

using the projection solver by considering spatially uniform density and viscosity in the domain.

Recently, Sharaborin et al. [15] solved the Stokes-BP system for variable density and viscosity

flows. However, in both works [11, 15] the pressure Poisson equation (PPE) did not include the

Brinkman penalty term χ̃/κ. Our tests suggest that including the penalty term in the projection

algorithm ensures robust convergence of the monolithic fluid solver, particularly when κ values

are small. To see how the penalty term appears in PPE, the algorithmic derivation of projection

method for variable density and viscosity Stokes-BP system is presented next. The special case

of spatially uniform density (and viscosity) is also discussed.

The Stokes-BP system of Eq. (3.34) can be succinctly written in the following form

M x = b A G

−D· 0


 xu

xp

 =

 bu

bp

 (3.36)

in which M denotes the Stokes-BP operator, A = 1
∆t
ρ̆n+1,k+1+ 1

κ
χ̃n+1,k+1− 1

2
Lµ

n+1,k+1 denotes

the discretization of the temporal, Brinkman penalty and viscous operator, xu and xp denote the

velocity and pressure degrees of freedom, and bu and bp = 0 denote the velocity and pressure

right-hand sides.

Formally, the projection method can be derived by approximating the inverse of the Schur

complement of the saddle-point system Eq. (3.36). This is shown in the Appendix Sec. 6.3.

Algorithmically, in the first step of the projection method, an intermediate approximation to u is

computed by solving

Ax̂u = bu. (3.37)
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Note that this approximation does not in general satisfy the discrete continuity equation i.e.,

−D · x̂u 6= bp. This condition can be satisfied by introducing an auxiliary scalar field φ and

writing out a fractional timestep

(
ρ̆

∆t
+

χ̃

κ

)
(xu − x̂u) = −Gφ, (3.38)

−D · xu = bp. (3.39)

Multiplying Eq. (3.38) by

ρ−1
χ =

(
ρ̆ +

χ̃∆t

κ

)−1

, (3.40)

taking the discrete divergence D·, and substituting in Eq. 3.38 yields the density and Brinkman

penalty-weighted Poisson problem

−(D · ρ−1
χ G)φ = −Lρχ φ = − 1

∆t
(bp + D · x̂u) . (3.41)

The updated velocity solution can be computed as

xu = x̂u −∆tρ−1
χ Gφ, (3.42)

and that of pressure can be computed as

xp = φ. (3.43)

The main difference between our projection method and that of Bergmann and Iolla and

Sharaborin et al. is that we include the stiff Brinkman penalty term χ̃/κ in the pressure Poisson

Eq. (3.41) and the velocity update Eq. (3.42). This is a small but a crucial detail that leads to

robust convergence of the monolithic velocity-pressure solver, particularly when κ is small. In

Sec. 3.6, we careful study the effect of the Brinkman penalty term on the solver convergence
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rate. Note that in Bergmann and Iolla [11] a variable coefficient Poisson solver was not used to

solve the PPE. This is because for constant density and without the Brinkman penalty ρ−1
χ = 1

ρ
I

trivializes to a scalar multiple of the identity matrix I.

3.4.3 Projection preconditioner for the Brinkman penalized Stokes
system

Although the Stokes-BP system of Eq. (3.36) can be solved using the projection method,

we do not follow this approach here. Instead we use the projection method as a preconditioner to

solve the coupled velocity-pressure system. There are several advantages to using the projection

method as a preconditioner rather than as a solver. These are discussed in more detail in

Griffith [77] and Cai et al. [78]. Below is a summary of the main ones.

• The projection method solves the Stokes system by splitting the velocity and pressure

degrees of freedom. The operator-splitting approach requires specifying artificial boundary

conditions for the velocity (Eq. (3.37)) and pressure (Eq. (3.41)) fields. This split affects

the global order of accuracy of the solution [98]. For example, it is not possible to impose

normal traction boundary condition in the projection solver because this requires a linear

combination of discretized pressure and velocity variables. This combination can be

accounted for in the (Brinkman penalized) Stokes operator M directly, and the projection

preconditioner can still use the artificial boundary conditions in the split velocity and

pressure solves. A preconditioner based on artificial boundary conditions does not affect

the final outcome of the discretized system it only affects the solver’s convergence rate.

In Sec. 3.6.1 we consider a test problem with spatially-varying normal traction boundary

conditions. The projection preconditioner uses homogeneous Dirichlet and Neumann

boundary conditions for the pressure and normal component of velocity, respectively when

the normal traction boundary condition is imposed.

• The projection solver is derived under the assumption that certain operators commute;

see Appendix Sec. 6.3 for operator commutations associated with the projection method.
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These assumptions are typically only satisfied by constant-coefficient operators defined on

periodic domains. There is an unavoidable commutator error associated with using the

projection method as a solver for variable-coefficient operators.

• Furthermore, using the projection method as a preconditioner is no less efficient than using

it as a solver, as Griffith [77], Cai et al. [78], and Nangia et al. [59] demonstrate.

It is relatively straightforward to use the projection solver discussed in Sec. 3.4.2 as a

projection preconditioner. In this approach, an outer Krylov solver (e.g., GMRES or FGMRES)

is employed that generates a Krylov subspace by applying the action of matrix M on vectors.

When the Krylov solver is preconditioned with the projection solver, it also requires the action

of the preconditioner on residual vectors to get estimates on velocity and pressure errors. For

the projection preconditioner, the unknowns xu and xp defined in Eq. (3.36) should be inter-

preted as errors in velocity and pressure degrees of freedom, respectively, and the right-hand

side vectors bu and bp 6= 0 as residuals of momentum and continuity constraint equations,

respectively. The projection preconditioner computes the error in velocity (xu) and pressure (xp)

only approximately. This is achieved by solving Eqs. (3.37) and (3.41) in an inexact manner.

Specifically, we solve the velocity and pressure subdomain problems using a Richardson solver

that is preconditioned with a single V-cycle of a geometric multigrid solver [99]. For both

velocity and pressure problems, 3 iterations of Gauss-Seidel smoothing are performed on each

multigrid level.

For the first-order accurate projection method, the pressure solution can be approximated

as xp = φ as written in Eq. (3.43); see Brown et al. [98]. In the presence of a spatially-varying

viscosity, a more accurate approximation to the pressure solution can be obtained as

xp =
(
I−∆t µ Lρχ

)
φ, (3.44)

in which µ is a diagonal matrix of cell-centered viscosities corresponding to each pressure
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Figure 3.5. Schematic of the 2D wedge slamming on an air-water interface.

degree of freedom. The above form of xp is derived by approximating the inverse of the Schur

complement of the saddle-point system Eq. (3.36) as done in Cai et al. [78]. Appendix Sec. 6.3

provides the derivation. In the projection preconditioner we update pressure using Eq. (3.44)

instead of Eq. (3.43). Note that in Cai et al. Lρ is the density-weighted Laplace operator, whereas

in this work Lρχ is the density and Brinkman penalty-weighted Laplace operator (Eq. (3.41)).

3.5 Validation of the multiphase VP method: Free falling
wedge slamming into an air-water interface

As a validation case, we simulate the free fall of a two-dimensional and a three-

dimensional wedge slamming against an air-water interface. The top length of the 2D wedge is L

= 1.2 m, which is positioned within a computational domain of extents Ω = [0, 10L]× [0, 5L/2].

The 3D wedge simulation is performed in a computational domain of extents Ω = [0, 10L]×

[0, 5L/3]× [0, 5L/2]. The top surface of the 3D wedge is a square of extents L× L. The origin

O of the computational domains are at the bottom left corner; see Fig. 3.5. The initial coordinates

of the lower-most vertex of the 2D wedge is (x0, y0) = (5L, 23L/12) and that of the 3D wedge is

(x0, y0, z0) = (5L, 5L/6, 23L/12). The wedge makes an angle of 25◦ with the horizontal and its

free fall height is ∆s = 13L/12. There is a distance of 5L/12 between the wedge vertical sides

and the lateral wall of the 3D computational domain. The depth of the water column is 5L/6 and

the remainder of the domain is occupied by air. We assume the density of water is ρL = 1000

kg/m3 and the viscosity is µl = 10−3 Pa·s. For air, the density is assumed to be ρG = 1.2 kg/m3
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and viscosity to be µg = 1.8×10−5 Pa·s. Wedge density is assumed to be ρS = 466.6 kg/m3 and

its fictitious viscosity µs is the same as that of water.

The computational domain for the 2D case is discretized into a uniform grid of size

1200× 300, which corresponds to 120 grid cells per wedge length. The uniform mesh spacing

is ∆x = ∆y = 0.01 m. A similar grid size in 3D would be computationally very expensive;

therefore, we employ an adaptive mesh refinement framework to keep the mesh resolution

high in only a few select regions. Among these are regions containing immersed bodies,

air-water interfaces, and vorticity of large magnitude. The 3D domain is discretized using

` = 3 grid levels with a refinement ratio nref = 2. The mesh spacing on the coarsest level is

∆x0 = ∆y0 = ∆z0 = 0.04 m and on the finest level is ∆xmin = ∆ymin = ∆zmin = 0.01 m. A

constant time step size of ∆t = 6.25 × 10−5 s is used in both cases. As determined by a grid

resolution study (see Fig. 3.12), the mesh and time step size used are adequate to resolve the FSI

dynamics of the freely falling wedge.

Figs. 3.6(A) and 3.6(B) illustrate the temporal evolution of the wedge’s vertical position

and velocity, respectively. The results are in good agreement with previous 3D volume of fluid

simulations of Pathak et al. [2] 3 and experimental study of Yettou et al. [3]. There is some

mismatch between the 2D simulations and experimentally measured dynamics during later

times. In contrast, the present 3D simulation agrees better with the 3D simulations of Pathak et

al. [2] and the experimental results of Yettou et al. [3]. Fig. 3.6(B) illustrates how the vertical

velocity of the wedge decreases as the wedge penetrates the water and how it reverses directions

due to buoyancy forces. Fig. 3.6(C) compares the vertical hydrodynamic force (viscous and

pressure forces) on the wedge surface over time for both 2D and 3D cases. Some differences are

observed. A peak load around the time of slamming (t ≈ 0.52 s) can be observed in the figure.

Fig. 3.7 shows the evolution of wake behind the falling 2D wedge and the vortex shedding upon

slamming. This type of wake has also been observed in experiments with falling cones [100].

In Fig. 3.8 we show pressure in the domain at various times. As the 2D wedge impacts, a high

3Pathak et al. also impose a contact angle condition at the three material points in their volume of fluid simulation.
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(A) Vertical postion (B) Vertical velocity

(C) Vertical force

Figure 3.6. Temporal evolution of a free falling wedge slamming against an air-water interface:
(A) vertical position; (B) vertical velocity; and (C) vertical component of the hydrodynamic force
for 2D and 3D wedge case. The simulation results are compared against previous 3D volume of
fluid simulations of Pathak et al. [2] and experimental study of Yettou et al. [3].

pressure region forms at its bottom tip. When the wedge penetrates further into the water, the

high pressure region shifts to its inclined surface. After a period of time, the pressure in the

domain becomes hydrostatic (increases linearly with depth).

Fig. 3.9 shows the fluid-structure interaction of the 3D wedge case simulated using AMR

at three distinct time instances: (left column) density plot; (center column) mesh levels; (right

column) shed vortex structures shown on a 2D slice of the domain taken at y = 5L/6 . Initially,

the finest mesh level captures only the air-water interface and the region around the 3D wedge.

More fine mesh regions are dynamically generated when the wedge slams the air-water interface,
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(A) t = 0.4375 s (B) t = 0.4375 s

(C) t = 0.5625 s (D) t = 0.5625 s

(E) t = 0.875 s (F) t = 0.875 s

(G) t = 1.25625 s (H) t = 1.25625 s

Figure 3.7. Temporal evolution of free falling 2D wedge slamming into an air-water interface:
(left) density and (right) vorticity generated in the range -100 to 100 s−1.
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(A) t = 0.525 s (B) t = 0.55 s

(C) t = 0.65 s (D) t = 1.25 s

Figure 3.8. Temporal evolution of pressure in the domain for a free falling 2D wedge slamming
on an air-water interface.
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Figure 3.9. Temporal evolution of a free falling 3D wedge slamming on an air-water interface
using AMR: (left) density; (center) different mesh levels with the coarsest level shown in red
boxes and the finest level shown in blue boxes; and (right) vorticity generated in the air region
shown on a 2D slice of the domain at y = 5L/6. Vorticity is in the range -50 to 50 s−1.

so that larger vortex structures shed in the air phase can be resolved accurately.

Fig. 3.10 shows the percentage volume (or mass) change for the liquid and gas phases

in the 2D wedge case. The percentage error Ev is defined as Ev = |v(t)−v0|
v0

× 100, in which

v(t) =
∫

Ω
Hflow dΩ is the volume occupied by the gas phase at time t, and v0 = v(t = 0) is its

volume at the beginning of the simulation. The liquid volume/mass can be defined similarly. The

errors are below 1% and they decrease as the grid refines.

3.5.1 Choosing the right κ value for the multiphase FSI model and its
effect on the contact line

In both 2D and 3D wedge problems considered in this section, the permeability coefficient

is taken to be κ = ∆t/ρS ∼ O(10−8). While this value is small, it does not approach machine

precision. In the case of a small but non-zero value of κ, the Brinkman penalty term only weakly

imposes the no-slip condition on the solid surface. Weak no-slip conditions on solid surfaces can

also allow fluid to penetrate into porous solids and wet them. It is also possible to observe this
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(A) Percentage change in liquid volume (B) Percentage change in gas volume

Figure 3.10. Percentage volume (or mass) change Ev of liquid and gas as a function of time for
the two-dimensional wedge case under grid refinement.

Figure 3.11. Evolution of the zero contours of fluid φ (black line) and solid ψ (red line) level set
functions.
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wetting phenomenon in Fig. 3.11, which illustrates the temporal evolution of the zero contours of

the fluid and solid level set functions. When the wedge impacts the water surface, the liquid-gas

interface deforms and conforms to the wedge shape. Over time, the liquid-gas interface gradually

wets the wedge to conserve mass and to achieve force balance (weight of the wedge = buoyancy

force). Once the system reaches mechanical equilibrium (when velocity is zero everywhere after

a long time), the air-gas interface flattens out and returns to its original shape.

Fluid leakage into an immersed structure is a common trait of immersed boundary (IB)

methods that use penalty forces to enforce no-slip conditions. Most IB methods in this category

use delta functions proposed by Peskin; for a description of the leakage problem for single phase

IB methods see [38, 101, 81, 102, 103]. By lowering κ, it is possible to control flow leakage

within the Brinkman/volume penalization approach. However, this will make the system of

equations stiff. For the proposed preconditioner, the stiff system of equations is not an issue.

The solver remains robust even at very low values of κ ∼ O(10−12), as demonstrated in the

next Sec. 3.6. Nevertheless, very small κ values break a key assumption behind the multiphase

FSI model employed here: to conserve mass and to achieve force balance, we need the fluid

to penetrate the structure. Moreover, we need to relax the no-slip boundary condition for the

tangential velocity components to avoid singularities in tangential stress and pressure at the

contact line. Considering the falling wedge problem, we can understand the need for normal

penetration of the fluid into the impacting wedge as follows:

The enclosed domain consists of liquid and gas phases at t = 0. As far as material

mass is concerned, the wedge is not present (recall that the structure domain is fictitious and the

immersed body interacts only through the penalty term in the momentum equation). Imagine that

the wedge comes to rest after a very long time, and we have imposed the no-penetration boundary

condition perfectly throughout the simulation. For the tangential components of velocity we

can assume either a slip or no-slip condition for the purpose of this discussion. Eventually, the

air-water interface will conform to the wedge geometry (also called the “dry” contact line or the

180 degree contact angle condition), and both the stationary water level and wedge will be in
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equilibrium. However, this implies that the wedge has displaced the liquid and placed air in the

region where it is submerged. At the stationary air-water interface comprising both horizontal

and wedge-shaped regions, the hydrostatic pressure level is the same. Physically, this is not

possible as the horizontal and curved-down regions of the interface are at different elevations.

Instead, the method allows liquid and gas to penetrate the wedge, conserving both phases’ mass

and achieving the same (hydrostatic) pressure at the air-water interface. In the model, if κ is not

too small, this mechanism is permitted. Fluid leakage also means contact angle conditions cannot

be controlled directly, and they emerge numerically from mass and force balance conditions. Our

simulations demonstrate this in Fig. 3.11. Initially, the contact angle appears to be 180 degrees.

However, over time, the fluid penetrates into the porous solid at some numerical or apparent

angle less than 180 degrees. A further discussion on the issue of fluid entering the immersed

structure is provided at the end of this section.

Based on empirical tests, κ = ∆t/ρS represents a robust choice for multiphase FSI

models. This results in a continuous air-water interface near the triple points and within the

solid, as well as converged FSI dynamics. In Fig. 3.12, we show the convergence of 2D wedge

velocity and position, and liquid-gas interface at three grid resolutions: coarse, medium, and fine.

Numerical instability occurs when κ is lowered by a factor of 2 or more. In the simulations we

observe a sudden large rise in pressure and velocity magnitude at triple points when the wedge

meets the air-water interface; very low κ values do not affect the stability of the simulations when

the wedge is completely in the air phase. This is because the no-slip condition for the tangential

velocity components at the contact line leads to singularities in shear stress and pressure. Huh

and Scriven analyzed this situation analytically in their 1971 paper [104], where they considered

a solid driven into phase B from phase A (similar to the wedge problem considered in this

section). The authors showed that the classical no-slip condition (for the tangential velocity)

breaks down as it leads to infinite stress and pressure at the contact line and remarked that “not

even Herkales [Hercules] could sink a solid if the physical model [i.e., the no-slip model] were

entirely valid, which it is not.” As a possible means to remedy this situation, Huh and Scriven
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(A) Vertical postion 2D wedge (B) Vertical velocity 2D wedge

(C) Liquid-gas interface

Figure 3.12. Grid convergence study for the free falling 2D wedge case: (A) vertical position;
(B) vertical velocity; and (C) liquid-gas interface at two different time instants. κ = ∆t/ρS is
used as the penalty factor. A uniform time step size of ∆t = 2.5× 10−4 s is employed for the
coarse grid, which is halved for each successively refined grid.

suggest using a slip model (see Eq. 37 of [104]) in the tangential direction, which is what the

Brinkman penalty term is also doing. Furthermore, the authors in [104] also suggest relaxing the

no-slip condition in the normal direction, where they remark “Relaxing the normal component

of the adherence condition, Eqs. [2] and [5], in the immediate vicinity of the contact line—to

allow for fracture, for example–is another possibility, but seems to demand slip anyway, along

the fluid interface.” Thus, low but non-zero κ values in the volume penalization approach allow

tangential slip and mass flux into the solid. The simulations presented in this section confirm

Huh and Scriven’s theoretical analysis. Multiple viewpoints (e.g., force and mass balance at

the final equilibrium position and singularities in shear stress and pressure) lead to the same

conclusion that κ should not be taken too low. Further physical insights on the effect of κ on

the contact line/angle are provided in Sec. 3.6.2, where we consider a different multiphase FSI

problem (a rigid cylinder heaving on an air-water interface).
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Last but not least, we discuss the usefulness of our multiphase FSI model for certain

classes of problems (e.g., wave energy converters, water entry/exit of marine structures), despite

the fact that a specified contact angle condition cannot be directly imposed and that fluid

penetrates the structure. For the former issue, at the scale of these ocean engineering problems,

the contact angle boundary condition, or for that matter, the surface tension force as a whole

does not affect the device/structure dynamics. As a concrete example, let’s consider the water

entry of the wedge simulated in this section. The structure length scale is L = 1.2 m, whereas

the capillary length scale is lc ∝
√

γ
(ρL−ρG)g

≈ 2.7 mm. The structure is ≈ 500x larger than

the capillary length. The grid resolution that we used (same as that of Pathak et al. [2], who

impose static contact angle conditions [the validity of this assumption is questionable during the

dynamic phase of impact] over the surface of the impacting wedge) to capture the rigid body

dynamics of the wedge is ∆x = ∆y = ∆z = 0.01 m or 10 mm, which is 4x larger than the

capillary length scale. Now imagine that the wedge comes to rest after a long period of time and

the entrained air near the contact line has either dissolved or escaped. In this scenario the static

contact angle condition becomes valid. Assuming the wedge is metallic (hydrophilic surface with

θstatic = 60◦ < π/2) the air-water interface/meniscus will rise by a height of lc cot(θstatic) ≈ 1.55

mm, which is ≈ 777x smaller than the wedge dimensions, and falls in the subgrid scale (≈ 10x

smaller than the cell size). In more practical ocean engineering problems, marine structures

typically span a length of 25 - 500 m. Therefore, it is computationally unfeasible/impractical to

resolve capillary length scales/triple points along with structure and wave dynamics. Furthermore,

the dynamic contact angle conditions under these highly turbulent and unsteady conditions are

not well known/studied.

Regarding the issue of fluid penetrating the structure, technically speaking, this should

not happen. If this happens it means that some fluid is taken from the surrounding reservoir.

For ocean engineering problems, the reservoir volume is very large in comparison to how

much fluid penetrates the structure. Fluid-structure interaction is typically not affected by

this. There are specialized numerical techniques (e.g., cut-cell methods) that prevent this from
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happening [71, 72]. These methods also employ discontinuous interface capturing methods like

the volume of fluid method to truncate the air-water interface on the surface of the body. The

VP method employing the level set method assumes the air-water interface is continuous which

does not truncate on the structure surface. It remains a future endeavor to develop a VP/fictitious

domain method that (i) does not permit fluid from entering the structure; (ii) satisfies mass

balance and momentum equations; (iii) imposes a specified contact angle condition; and (iv)

keeps the air-water interface continuous/smooth. To summarize, the current multiphase FSI

model can only be used for problems that do not depend critically upon imposing a specific

contact angle condition (i.e., problems with length scale much larger than the capillary length

scale), and where the reservoir volume is much larger than the structure volume. As a final note

on the multiphase FSI model, there have been several studies in the literature which have ignored

contact angle conditions at material triple points, and have allowed the liquid-gas interface to

penetrate/exist within the solid region; see for example [105, 106, 107, 15, 16, 108]. In [106] the

authors mention that “In the present work, we assume that the solids are filled with a “virtual”

fluid with density and viscosity equal to the largest among all fluids in the domain.” In [15]

the authors show the penetration of the liquid-gas interface into the initially dry solid for their

coupled volume of fluid and Brinkman penalization approach. And in [108] the authors show

the air-water interface passing through a floating buoy in a numerical wave tank. A coupled level

set and immersed boundary method (similar to the VP method) was used in [108].

3.6 Results and discussion

In this section, we consider two nontrivial test problems to demonstrate the efficacy of

the projection preconditioner to solve the coupled velocity-pressure system written in Eq. (3.36).

In the first problem, a uniform density and viscosity flow is considered in a complex domain.

Using the method of manufactured solutions, we compute the spatial order of accuracy of the

solution (u and p), and monitor the number of iterations the outer FGMRES solver takes to

88



converge with decreasing values of κ. In the second case, we study the free-decay of a rigid

cylinder heaving on an air-water interface. The heave displacement of the cylinder is compared

against literature to assess the accuracy of the FSI solution. The number of iterations taken by

the Krylov solver to converge are monitored for this case as well. In contrast to the first problem,

the density and viscosity of the three phases (solid, liquid, gas) differ by orders of magnitude in

the second problem.

In the tests, the outer FGMRES solver is deemed to be converged if a value of 10−9 or

below is reached for the norm of the relative residual

R =
||r||
||b|| =

||b−Mx||
||b|| . (3.45)

For velocity and pressure subdomain problems, the inner Richardson solver (that is precondi-

tioned with a single multigrid V-cycle) is set to use only a single iteration. We remark that if

the preconditioner employs a fixed number of Richardson iterations (as considered here, which

is equal to one), then it is also possible to use the more memory-efficient GMRES solver as

the outer Krylov solver. However, here we report the convergence rate of the FGMRES solver

(which requires roughly twice the amount of memory compared to GMRES), as it exhibits more

uniform convergence behavior across a wide range of thermo-physical parameters, i.e., µ and ρ.

3.6.1 Uniform density and viscosity flow in a complex domain

Consider a computational domain Ω ∈ [0, 2π]2 which embeds a circular cylinder of

radius R = 1.5 at its center (π, π) as shown in Fig. 3.13. A steady state manufactured solution

for velocity u and pressure p

uexact(x, t→∞) = sin(x) cos(y), (3.46)

vexact(x, t→∞) = − cos(x) sin(y), (3.47)

pexact(x, t→∞) = sin(x) sin(y), (3.48)
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Figure 3.13. Schematic of the computational domain. Here, g = −p+ 2µ∂v
∂y

= sin(x) sin(y)−
2 cos(x) cos(y) is the imposed normal traction on the top and bottom boundaries. For the top
boundary n = (0, 1) and for the bottom boundary n = (0,−1).

is used to drive a constant density ρ(x, t) ≡ 1 and viscosity µ(x, t) ≡ 1 flow in the domain.

Specifically, Eqs. (3.46)-(3.48) are plugged into the momentum Eq. (5.6) to determine the body

force f that drives the flow. The manufactured solution is also used to impose boundary conditions

on ∂Ω and inside the fictitious cylinder Ωb. On the left and right ends of the domain, we impose

velocity boundary conditions u = uexact and v = vexact. On the top and bottom boundaries a

combination of normal traction n ·τ ·n = g = −p+2µ∂v
∂y

= sin(x) sin(y)−2 cos(x) cos(y) and

tangential velocity u = uexact condition is imposed. Here, τ = −pI + µ (∇u +∇uᵀ) denotes

the hydrodynamic stress tensor. The velocity inside the cylinder is prescribed to be ub = uexact.

The initial conditions for velocity and pressure are taken to be zero.

Five grid sizes N ×N = {642, 1282, 2562, 5122, 10242} are used to run the simulations

starting from t = 0 till steady state is reached. nsmear = 1 is used in Eq. (3.23) to smear the

fluid-solid interface. A constant time step size of ∆t = 1 × 10−3 is used in all simulations,

which maintains convective CFL number below 0.35 for all grid sizes N . The permeability

coefficient κ should be kept small, but not too small to avoid the plateauing of spatial dis-

cretization errors [7, 15]. To study the effect of κ on the spatial order of accuracy of u and
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p solutions, as well as on the solver convergence rate, we consider three different values for

κ = {∆t/ρ, ∆t/100ρ, ∆t/10000ρ} in the numerical experiments. Note that ∆t/ρ is the maxi-

mum value which κ can or should take as per the inertial scale χ/κ ∼ ρ/∆t. Another possibility

is to select κ based on the viscous scale χ/κ ∼ µ/h2, in which h is the uniform cell size. Here,

our strategy is to start with the maximum value of κ based on the inertial scale, and then reduce

it progressively till no further improvement in the solution is observed.

We first present the spatial order of accuracy of the Brinkman penalized u and p solutions.

The error between steady state numerical and analytical solutions is denoted E . As can be

observed in Fig. 3.14, second-order pointwise (L∞-norm) convergence rate is obtained for

both velocity and pressure errors when κ = ∆t/ρ, ∆t/100ρ. For a very small value of

κ = ∆t/10000ρ = 1 × 10−7, the error in velocity and pressure saturates after a certain grid

size (N = 128 in Fig. 3.14(C)). To understand this trend, we compare the magnitudes of the

Brinkman penalty coefficient χ/κ and the discrete inertial and viscous scales, by plotting the

latter two as a function of grid size N in Fig. 3.15. The discrete inertial scale ρ/∆t remains

constant (because of the constant time step size ∆t), whereas the discrete viscous scale varies

quadratically (linearly on a log scale) with N . The magnitude of the inertial scale is larger than

the viscous scale for the first two grids, and vice versa for the remaining grids. For the largest

value of κ = ∆t/ρ, although the penalty coefficient χ/κ = ρ/∆t is not always larger than the

viscous scale, second-order convergence is still observed. When κ = ∆t/100ρ, the Brinkman

penalty coefficient is significantly larger than the inertial scale and comparable with the viscous

scale. Second-order pointwise convergence is obtained for this κ value as well. However, when

κ is decreased further to ∆t/10000ρ, the Brinkman penalty becomes four orders larger than the

inertial scale and two orders larger than the viscous scale. This large penalty value causes the

errors to saturate. Note that in this problem we imposed spatially-varying traction boundary

condition on the top and bottom boundaries of ∂Ω, and obtained second-order convergence rates

for velocity and pressure solutions. This is not possible to achieve if pressure and velocity are

solved in a split manner using projection method as a solver.
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(A) κ = ∆t/ρ (B) κ = ∆t/100ρ

(C) κ = ∆t/10000ρ

Figure 3.14. Spatial order of convergence of the volume penalized Navier-Stokes system using
manufactured solutions and different values of κ.

Figure 3.15. Discrete inertial and viscous scales as a function of grid size N .
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(A) Relative residual when θ = 0 (B) Relative residual when θ = 1

Figure 3.16. Convergence rate of the preconditioned FGMRES solver during the first time
step of the simulation (A) without and (B) with the Brinkman penalty term in the projection
preconditioner. The grid size is N = 256.

Next, we study the impact of κ on the convergence rate of the preconditioned FGMRES

solver. For this problem, the first time step poses the most difficultly for the (iterative) Krylov

solver as the initial zero guess for velocity and pressure is far-off from the true solution at t = ∆t.

Therefore, it suffices to monitor the solver performance at the first time step only to evaluate the

efficacy of the preconditioner. We run this test case with and without the Brinkman penalty term

χ̃/κ in the projection preconditioner. In practice, we re-define ρ−1
χ with the help of a boolean

parameter θ

ρ−1
χ =

(
ρ̆ + θ

χ̃∆t

κ

)−1

, (3.49)

so that by setting θ = 1 in ρ−1
χ we obtain the new projection method and by setting θ = 0 we

revert to the projection methods of Bergmann and Iolla [11] and Sharaborin et al. [15].

Fig. 3.16 compares the convergence rate of the projection method preconditioned FGM-

RES solver for different κ values. The grid size is taken to be N = 256. When the Brinkman

penalty is excluded from the projection step (i.e., θ = 0 in Eq. (3.49)), we note from Fig. 3.16(A)

that the number of iterations required to convergence to a relative residual ofR = 10−9 increases

approximately by a factor of 10 with decreasing values of κ. However, with the proposed
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Figure 3.17. Performance of the preconditioned (θ = 1) FGMRES solver during the first
200 time steps of the simulations. The average number of iterations required to converge for
κ = ∆t/ρ, κ = ∆t/100ρ, and κ = ∆t/10000ρ are 6, 4 and 2, respectively. The grid size is
N = 256. Here, only a single-cycle of fixed-point iterations is considered.

projection method (i.e., θ = 1 in Eq. (3.49)) the convergence of the FGMRES solver remains

robust. This can be observed in Fig. 3.16(B) where the solver converges with approximately

10 iterations for all three κ values. This clearly demonstrates the importance of including the

Brinkman term in the projection method. In fact, with decreasing κ (or increasing penalty)

values, the convergence rate of the solver actually improves. This can be attributed to A matrix

of Eq. (3.37) which becomes diagonally dominant when the penalty coefficient is larger than the

viscous scale. This in turn makes the velocity subdomain problem “easier” to solve.

To present a more complete picture of the solver performance as the simulation progresses,

Fig. 3.17 presents the number of iterations to converge for the first 200 time steps. Here, only a

single cycle of fixed-point iterations is employed as the number of FGMRES iterations reduces

(substantially) at iteration 2 and beyond. Thus, the “worst-case-scenario” is considered. The grid

size is taken to be N = 256 and the same three κ values are considered. It is clearly seen that

with decreasing κ values or conversely with increasing penalty values, the average number of

iterations to converge decreases.

Thus far in this section, we demonstrated the efficacy of the new projection preconditioner

on a single grid N = 256. To demonstrate that the proposed preconditioner is scalable, Fig. 3.18
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Figure 3.18. Convergence rate of the preconditioned (θ = 1) FGMRES solver during the first
time step of the simulation on three grids: N = 256, 512, 1024. The permeability parameter is
taken to be κ = ∆t/100ρ.

reports the convergence rate of the preconditioned FGMRES solver on three grids: N =

256, 512, 1024. The permeability parameter is taken to be κ = ∆t/100ρ, which is larger than

both inertial and viscous scales as discussed earlier. In Fig. 3.18 it can be observed that the

solver’s convergence rate remains approximately the same, even when the degrees of freedom,

xu and xp, increase substantially with increasing grid size.

Based on the results presented in this section we conclude that: (1) the proposed projec-

tion method is a scalable preconditioner for the volume penalized incompressible Navier-Stokes

system; (2) it is possible to achieve pointwise second-order accuracy in velocity and pressure

solutions with nontrivial traction boundary conditions without sacrificing computational effi-

ciency; and (3) a reasonable starting value for the permeability parameter is κ = ∆t/ρ. In the

next section we consider a three phase FSI problem to demonstrate that the proposed projection

preconditioner remains effective even with spatially varying ρ and µ.

3.6.2 Free-decay of a rigid cylinder heaving on an air-water interface

We consider a two-dimensional computational domain of extents Ω ∈ [0, L] × [0, H]

to simulate the heaving motion of a 2D cylinder on an air-water interface; see Fig. 3.19. The

length of the domain is L = 10 m, height is H = 0.2L, and the origin O is located at the bottom
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Figure 3.19. Schematic of a 2D cylinder heaving on an air-water interface.

left corner. The radius of the cylinder is R = 0.0762 m. Water of density ρL = 1000 kg/m3 and

viscosity µl = 10−3 Pa·s occupies the computational domain from y = 0 to y = 16R and air of

density ρG = 1 kg/m3 and viscosity µg = 1.8× 10−5 Pa·s occupies the domain from y = 16R

to y = H . The solid cylinder is half-buoyant and has a density of ρS = 500 kg/m3. Its fictitious

viscosity µs is taken to be same as that of water. The initial center of the cylinder is located

slightly above the air-water interface (xc, yc) = (L/2, 16R + R/3) from where it is released.

The cylinder decays freely under the action of gravity and hydrodynamic forces. The cylinder’s

heave (vertical) degree of freedom is free, whereas its surge (horizontal) and pitch (rotational)

motions are locked. No-slip (zero-velocity) boundary conditions are imposed along ∂Ω. To

smoothly transition between different material properties while keeping the liquid-gas and fluid-

solid interfaces sharp, one grid cell on either side of the interface is considered (nsmear = 1 in

Eqs. (3.22) and (3.23)). The surface tension of water does not affect the dynamics of the cylinder

at this scale and is neglected in the simulation.

The domain is discretized with a uniform grid of size 6000 × 1200 such that there are

46 grid cells per radius of the cylinder. A constant time step of ∆t = 10−3 s is used which

maintains the convective CFL number below 0.5. The permeability coefficient is taken to be

κ = ∆t/ρS. Newton’s second law is used to compute the rigid body velocity of the cylinder ub,

which requires integrating hydrodynamic traction over the irregular surface of the immersed

body. This procedure is explained in our prior works [41, 40]. Fig. 3.20 shows the temporal
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Figure 3.20. Temporal evolution a cylinder heaving on an air-water interface: (left) density and
(right) vorticity generated in the range -1 to 1 s−1.

evolution of the heaving cylinder at various time instances. The vertical displacement of the

cylinder is shown in Fig. 3.28 and compared with prior immersed boundary (IB) simulations

of Nangia et al. [4]. Here, T = t
√
g/R and ȳ = 3y/R denote the non-dimensional time and

vertical displacement of the cylinder, respectively. An excellent agreement is obtained with the

prior study. After a while, the heaving motion of the cylinder ceases and its center coincides

with the free water surface. An illustration of the temporal evolution of the zero contours of the

fluid φ and solid ψ level set functions can be found in Fig. 3.22. Within the cylinder and near the

material triple points, the air-water interface remains continuous.

Fig. 3.23 shows the percentage volume/mass change of liquid and gas over time. κ =

∆t/ρS is taken and Ev is computed numerically as described in Sec. 3.5. There is a very small

percentage change in volume, less than 0.006%. The Ev value decreases further under grid

refinement.

Effect of κ on the contact line motion and solver performance

Unlike the falling wedge problem considered in Sec. 3.5, where the solid evolved from a

non-wet state to a wet state, here the rigid cylinder starts out in the wet state at T = 0. Recall

that the liquid-gas interface could not penetrate the wedge when κ was lowered below ∆t/ρS (by
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Figure 3.21. Temporal evolution of the non-dimensional vertical displacement ȳ of the cylinder.
The heave displacement of the cylinder is compared against the prior simulations of Nangia et
al. [4]

Figure 3.22. Evolution of the zero contours of fluid φ (black line) and solid ψ (red line) level set
functions. An enlarged view of the liquid-gas interface near the cylinder’s right side is shown in
the bottom row.
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(A) Percentage change in liquid volume (B) Percentage change in gas volume

Figure 3.23. Percentage volume change Ev of liquid and gas over time for the heaving cylinder
case. Three different grid resolutions are considered. A uniform time step size of ∆t = 2× 10−3

is used for the coarsest grid N = 600 and it is halved for each successive finer grid. The
permeability coefficient is taken to be κ = ∆t/ρS.

a factor of 2 or more) and numerical instability occurred due to the breakdown of the classical

no-slip condition for the contact line. The heaving cylinder case also presents a similar scenario.

The wet cylinder attempts to reach a dry state by conforming the contact line around its outer

periphery. This is observed when κ is further lowered to κ = {∆t/10ρS,∆t/10000ρS}. An

illustration of the situation is shown in Fig. 3.24, which compares contact line dynamics at three

different κ values. Numerical instabilities arise around T = 25 with κ = ∆t/10000ρS. Despite

trying to dry out, the cylinder is unable to do so due to the combination of mass and force balance

conditions. In the intermediate case of κ = ∆t/10ρS, numerical instabilities do not occur due to

imperfectly imposed no-slip conditions. One can clearly see, however, the contact line’s tendency

to align with the cylinder surface (the 180 degree contact angle condition) in the intermediate

case as well. The heave dynamics of the cylinder for the three κ values are compared in Fig. 3.25.

There is a very good match between all three curves and the results reported in the literature

(except for the numerical instability in the lowest κ case).

Next, we examine the effect of κ on the convergence rate of the preconditioned FGMRES

solver by considering three different values of κ = {∆t/ρS, ∆t/100ρS, ∆t/10000ρS}. Here
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Figure 3.24. Evolution of the zero contours of fluid φ (blue line) and solid ψ (mustard line) level
set functions using three different values of
κ = {∆t/ρS,∆t/10ρS,∆t/10000ρS}.
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Figure 3.25. Temporal evolution of the non-dimensional vertical displacement ȳ of the cylinder
using three different values of
κ = {∆t/ρS,∆t/10ρS,∆t/10000ρS}. The heave displacement of the cylinder is compared
against the prior study of Nangia et al. [4]. The sudden drop in the cylinder displacement is due
numerical instabilities that arise for the lowest κ case.

(A) Relative residual when θ = 0 (B) Relative residual when θ = 1

Figure 3.26. Convergence rate of the FGMRES solver during the first time step of the simulation
for the multiphase case of a cylinder heaving on the air-water interface.
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Figure 3.27. Performance of the preconditioned (θ = 1) FGMRES solver during the first 200 time
steps of the simulations for the multiphase case of cylinder heaving on the air-water interface.
The average number of iterations required to converge for κ = ∆t/ρS, κ = ∆t/100ρS, and
κ = ∆t/10000ρS are 4, 3 and 1, respectively. Here, only a single cycle of fixed-point iterations
is employed.

we are interested in testing the performance of the preconditioner at extremely low values

of κ, despite the fact that very low values of κ (which lead to the no-slip condition for the

contact line) are not consistent with the multiphase FSI model [104]. The solver performance is

monitored only at the first time step for the reasons explained in the previous Sec. 3.6.1. The

tests are run with (θ = 1) and without (θ = 0) the Brinkman penalty term χ̃/κ in the projection

preconditioner; see Eq. 3.49. Fig. 3.26 compares the convergence rate of the solver for the three

κ values. As observed in Fig. 3.26(A), without the penalty term, the number of iterations required

to converge to a relative residual of R = 10−9 increases approximately by a factor of 10 for

decreasing values of κ. With the new projection algorithm, the convergence of the solver remains

robust and it convergences within 7 iterations as illustrated in Fig. 3.26(B). Further, Fig. 3.27

shows the number of iterations to converge for the first 200 time steps for the three κ values. Here,

only a single cycle of fixed-point iterations is employed as the number of FGMRES iterations

reduces (substantially) at iteration 2 and beyond. Similar to the results of the previous section,

with decreasing κ values, the average number of iterations to converge decreases. Based upon
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Figure 3.28. Temporal evolution of the non-dimensional vertical displacement ȳ of the cylinder
for different nsmear values. The heave displacement of the cylinder is compared against the prior
immersed boundary (IB) simulations of Nangia et al. [4]

the results of this and the previous section, it can be concluded that the projection preconditioner

is an effective and scalable strategy for both single and multiphase VP INS systems.

Effect of nsmear

We investigate how nsmear values affect the solution accuracy, linear solver convergence

rate, and mass/volume of conserved phases. We consider three different nsmear values, nsmear = 1,

2, and 3, to solve the heaving cylinder problem on a uniform 6000× 1200 grid. κ = ∆t/ρS for

all cases considered in this subsection. The vertical displacement of the cylinder using different

nsmear values is plotted in Fig. 3.28. As can be observed, there is no significant change in the

numerical solution and it is similar to the prior IB simulations of Nangia et al. [4].

Using different values of nsmear, we compare the convergence rate of the linear solver
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Figure 3.29. Convergence rate of the preconditioned FGMRES solver during the first time
step of the simulation (A) without and (B) with the Brinkman penalty term in the projection
preconditioner. The grid size is N = 256.

during the first time step. Fig. 3.29(A) illustrates the linear solver’s convergence rate with θ = 0.

When θ = 0, the solver requires more iterations to converge. However, the convergence rates

are not significantly affected by nsmear values. We achieve a robust convergence rate when the

Brinkman penalty is included in the projection preconditioner, i.e., when θ = 1 as shown in

Fig. 3.29(B). There is no significant difference in convergence rates in this case either with

different values of nsmear.

Finally, we compute the percentage volume change in liquid and gas over time as

a function of nsmear, and is shown in Fig. 3.30. A longer duration of simulation time T is

considered here. We consider a uniform grid of size 6000× 1200 with a constant time step size

of ∆t = 10−3 s. Again, nsmear values do not significantly affect Ev. The errors appear in the same

order for all nsmear values.

While increasing the nsmear value does not affect the numerical solution quantitatively, it

does make the solid-liquid and liquid-gas interfaces more diffuse. This produces diffuse vortex

structures as well. Therefore, we do not recommend using nsmear > 2 in the simulations.
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(A) Percentage change in liquid volume (B) Percentage change in gas volume

Figure 3.30. Percentage change Ev in the volume of liquid and gas over time for the heaving
cylinder case with three nsmear values.

3.7 Conclusions

This work presented a scalable preconditioner for the monolithic solution of the vol-

ume penalized single and multiphase incompressible Navier-Stokes equations. The same pre-

conditioner can also be used to solve volume penalized low Mach Navier-Stokes equations

monolithically. The preconditioner uses a projection algorithm that correctly accounts for the

Brinkman penalty term in both pressure Poisson and velocity update equations. The accuracy

and scalability of the solver under grid refinement were discussed. In contrast to prior experience,

the solver convergence rate improves when the permeability parameter is decreased. However,

the penalized solution’s error saturates at extremely low values of permeability. The inertial

scale (κ = ∆t/ρ) can be used as a reasonable starting point for permeability parameter, which

can be gradually lowered until no further improvement in the penalized solution is observed.

Our robust preconditioner allowed us to consider low κ values for the multiphase FSI model. It

was demonstrated that a dry contact line condition is imposed over the surface of the immersed

body at low values of κ. In addition, low κ values imply a no-slip condition, which leads to

singularities in shear stress and pressure at the contact line [104]. In multiphase FSI simulations,
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low but not too small κ values should be used. κ = ∆/ρS is a robust choice. The robust precon-

ditioner enabled us to select the right penalty value to arrest the solidified surface in the phase

change problem. Additionally, we studied how κ affected solution accuracy for manufactured

solutions with our proposed preconditioner. We also showed that the use of the standard level set

method leads to (an acceptable level of) volume loss of the conserved fluid phases. This loss,

however, is not due to the Brinkman penalty. This can be further confirmed from the coupled

Brinkman penalization and volume of fluid (VoF) simulations of Sharaborin et al. [15]. These

VoF simulations demonstrate mass/volume loss close to machine accuracy. Lastly, we discussed

the limitations of the multiphase FSI model used in this and other works [105, 106, 107, 15, 16]

in Sec. 3.5.1, which are (i) fluid penetrating into the solid; and (ii) inability to impose contact

angle conditions. It was discussed that despite these limitations the model gives a converged FSI

solution for a certain class of problems (e.g., in ocean engineering) that have length scales much

larger than the capillary length scale and where the reservoir volume is much larger than the

structure volume. It remains a future endeavor to develop a VP/fictitious domain method that

overcomes these two limitations while keeping the air-water interface smooth/continuous and

satisfying the mass balance and momentum equations.
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Chapter 4

A low Mach enthalpy method to model
non-isothermal gas–liquid–solid flows with
melting and solidification

This chapter presents a novel low Mach enthalpy method for simulating solidification

and melting problems with variable thermophysical properties, including density. Additionally,

this formulation allows coupling a solid–liquid PCM with a gas phase in order to simulate the

free surface dynamics of PCMs undergoing melting and solidification. We revisit the two-phase

Stefan problem involving a density jump between two material phases. We propose a possible

means to include the kinetic energy jump in the Stefan condition while still allowing for an

analytical solution. The new low Mach enthalpy method is validated against analytical solutions

for a PCM undergoing a large density change during its phase transition. Additionally, a few

simple sanity checks are proposed to benchmark computational fluid dynamics (CFD) algorithms

that aim to capture the volume change effects of PCMs. Furthermore, we solve the enthalpy

equation in conjunction with the Navier-Stokes equation to solve surface tension-driven flows.

Additionally, we propose a robust technique for adaptively refining grids near the liquid-solid

interface, enhancing the accuracy and efficiency of our simulations in critical regions.
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4.1 Introduction

The numerical modeling and simulation of phase change materials (PCMs) is a very

active area of research because they play a key role in energy systems (e.g., concentrated solar

power plants and latent thermal energy storage units [20, 21, 22, 23, 24]), geophysical processes

(e.g., sea ice formation and glacier melting [25, 26]), and manufacturing technologies (e.g.,

casting, welding, and metal 3D printing [27, 28, 29, 30]). The numerical modeling of PCMs is

difficult because the energy equation is nonlinear, and most problems involve liquid flows, and

some also involve gas flows and solid motion. As an example, consider selective laser melting

(SLM) of metal powder as PCM for additively printing complex parts. During the SLM process,

a thin powder layer of thickness 20–100 µm is deposited with the aid of a roller or a blade, and

then fused by a directed laser source that typically scans at a rate of 0.1–1 m/s. After each laser

pass over the powder bed, the solid powder particles melt and evaporate, and the molten metal

pool solidifies to create the print [109]. The solidifying metal can entrain gas plumes from the

surface, causing porosity and keyhole defects [110, 111, 112, 29] in the finished product. The

aforementioned application of metal (powder) as a PCM illustrates the importance of resolving

large density gradients (gas-metal density ratio is ∼ 104) within multiphysics PCM simulations,

which pose stability issues for numerical schemes [113, 114, 115].

Computational fluid dynamics (CFD) models for simulating the phase change of materials

began to be developed in the late 80s and early 90s. According to the way they handle the moving

phase boundary, these models can be categorized into two main groups: (1) deforming and (2)

fixed grid schemes. Fixed grid schemes offer greater flexibility for incorporating additional

physics into heat transfer problems (e.g., fluid flow) and are easier to implement than deforming

grid schemes. They also naturally handle complex topological changes of the interface (merging,

pinching, break-up, self-folding), which the deforming grid methods cannot. In the early

development of fixed grid numerical methods, the volume change in PCM with melting or

solidification was ignored and the variable density in the liquid was described by the Boussinesq
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approximation. This is still practiced today [31, 32, 33, 34, 35, 36, 37], despite significant

improvements in numerical methodologies and the fact that solid–liquid phase changes are

always accompanied by a volume change. Since most existing numerical methods can only

deal with constant density PCMs, the gas phase is neglected and only melting and solidification

are simulated. In the context of metal AM simulations, a recent review paper by Cook and

Murphy [5] demonstrates that in most of the existing studies, the effect of the surrounding gas

flow has been ignored. This is mainly due to the assumption that the powder or substrate cannot

move. In reality, surrounding gas flows are prominent near the laser-interaction zone, where

extreme thermo-capillary forces can drive gaseous pores out of the melt-pool and/or entrain

particles in the melt-pool, resulting in deeper keyhole formation, which has been observed

experimentally [116, 30].

Surface tension plays a crucial role in AM simulations, impacting the curvature of liquid

interfaces, pore shape within the liquid, and melt pool behavior. Specifically, it contributes to

phenomena such as the balling of the melt pool due to Plateau–Rayleigh instability and the

movement/coalescence of partially melted powder due to capillary forces. The Marangoni effect,

caused by temperature or species concentration variations affecting surface tension, is a signifi-

cant driver of liquid flow dynamics in AM processes [5]. Surface tension is strongly influenced

by temperature and concentration, and numerous applications involve temperature/concentration-

dependent surface tension. For example, thermal fluctuations in the atomization of liquids in

the combustion process significantly impact the liquid-gas interface [117]. For instance, thermal

fluctuations during the atomization of liquids in combustion processes significantly affect the

liquid-gas interface [117]. Similarly, using surfactants to reduce the surface tension of liquids

is common in applications such as painting, lubrication, and pesticides [118]. Implementing

surface tension in simulations faces challenges such as accurately defining surface normals and

curvatures. Most studies employ the continuum surface tension model proposed by Brackbill

et al. [119] to include this surface force as a volumetric force in the momentum equation.

The temperature equation is solved in conjunction with the Navier-Stokes equation to simulate
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thermocapillary flows [120, 117, 121, 122, 123] with the assumption that surface tension σ is

dependent only on temperature, i.e., σ = f(T ).

In this chapter, a fixed-grid low Mach enthalpy method is developed to capture density

change-induced flow during PCM melting and solidification. In this formulation a gas phase is

also incorporated and coupled to the solid-liquid PCM region. Our ultimate goal is to develop

a simulation method that can handle simultaneous occurrences of evaporation, condensation,

melting, and solidification. A method such as this would allow realistic modeling of manu-

facturing processes such as metal additive manufacturing, in which all four modes of phase

change are present at the same time. The original enthalpy method (EM) introduced by Voller

and colleagues [124, 125] for modeling melting and solidification of PCMs assumes the two

material phases have the same density. Some recent works [126, 127, 128, 129] have relaxed the

constant density requirement of the enthalpy method, but none to our knowledge have explicitly

or carefully accounted for the volume change effect in this technique. This becomes even

more critical for CFD models [130, 131, 31] that consider three phase gas-liquid-solid flows.

Furthermore, existing numerical works have not verified whether using variable thermophysical

properties (density, specific heat, thermal conductivity) in the enthalpy method produces an

accurate numerical solution when such properties vary widely between phases1. The new low

Mach EM is validated using the analytical solution to the two-phase Stefan problem for a PCM

that undergoes a substantial volume change during solidification. The two-phase Stefan problem

has a non-standard Stefan condition that involves additional jumps in the specific heat and kinetic

energy. To derive analytical solutions, the kinetic energy jump term is dropped from the Stefan

condition as it is usually small in comparison to latent heat. We discuss a way to retain it in the

Stefan condition while still allowing for an analytical solution. Moreover, we use the low Mach

enthalpy method to simulate thermocapillary flows. However, the significant difference between

the previous and current studies is that the temperature is constructed from enthalpy rather than

1This is primarily due to the fact that in enthalpy methods, any thermophysical property is expressed as a
function of a liquid fraction variable that also needs to be solved for. Variable thermophysical properties increase
the nonlinearity of enthalpy methods.
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obtained from the temperature equation. Still, the results are promising.

4.2 Jump conditions across the phase-changing interface

We follow Myers et al. [132] to derive the jump conditions across the phase-changing

liquid-solid interface. The enthalpy equation and energy equation are distinguished at the end of

this section. In addition, we will see how certain jump terms get omitted if the enthalpy equation

is used as the starting point for the derivation. To derive the jump conditions, it is convenient

to express the governing equations for mass balance, momentum, and energy in conservative

form and apply the Rankine-Hugoniot condition across the interface. The conservation laws in

differential form2 read as

∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

∂ρu

∂t
+∇ · (ρu⊗ u + pI)− σCδ(x− s)n = 0 (4.2)

∂

∂t

(
ρ

[
e+

1

2
|u|2
])

+∇ ·
(
ρ

[
e+

1

2
|u|2
]
u + q + pu

)
− σCδ(x− s)u · n = 0. (4.3)

In momentum Eq. (4.2), σ is the surface tension coefficient between the two phases (liquid and

solid in this context), C represents the mean local curvature of the interface, s represents the

position of the interface, δ is the Dirac delta distribution, and n is the outward unit normal vector

of the interface (pointing outwards from the solid and into the liquid phase in Fig. 4.1 (A)).

In energy Eq. (4.3), e denotes the internal energy and q = −κ∇T is the conductive heat flux.

Integrating Eqs. (4.1)-(4.3) across a finite region around the liquid-solid interface and then letting

the volume of the region tend to zero, gives

1. Mass jump across the interface:

(ρL − ρS)u∗ = (ρLuL − ρSuS) · n = (ρLuL
n − ρSuS

n). (4.4)

2Alternatively, one can start with the integral form of the conservation principle and derive the jump condition(s);
see, for example, Delhaye [133].
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Here, u∗ = u · n represent the normal velocity of the interface, and uL
n = uL · n and

uS
n = uS · n represent the near-interface normal component of velocity of the liquid and

solid phase, respectively. The following relation can be obtained by taking the velocity in

the solid to be zero uS = 0

uL
n =

(
1− ρS

ρL

)
u∗. (4.5)

2. Momentum jump across the interface:

(ρLuL − ρSuS)u∗ =
(
ρLuL ⊗ uL + pLI

)
· n−

(
ρSuS ⊗ uS + pSI

)
· n + σCn. (4.6)

The above vector equation can be expressed in terms of normal and tangential jumps.

Taking an inner product of Eq. (4.6) with the unit normal vector n yields

(ρLuL
n − ρSuS

n)u∗ = ρL(uL
n)2 − ρS(uS

n)2 + pL − pS + σC

↪→ pS − pL = ρLuL
n(uL

n − u∗) + σC = −ρSuL
nu
∗ + σC, (4.7)

in which we used Eq. (4.4) to express pressure jump in terms of ρS. Likewise, jump in

the tangential momentum across the interface is obtained by taking the inner product of

Eq. (4.6) with the unit tangent vector t

(ρLuL
t − ρSuS

t )u∗ = ρLuL
nu

L
t − ρSuS

nu
S
t

↪→ (ρL − ρS)u∗ = ρLuL
n − ρSuS

n. (4.8)

Here, uL
t = uL · t and uS

t = uS · t denote the tangential velocity component of the liquid

and solid phase, respectively. In addition, we invoked the no-slip condition at the interface

to equate the tangential velocities of the two phases, uL
t = uS

t . The no-slip assumption

makes the mass and tangential momentum jumps equivalent.
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3. Energy jump across the interface:

ρL

(
eL +

|uL|2
2

)
(u∗ − uL

n)− ρS

(
eS +

|uS|2
2

)
(u∗ − uS

n) = [(qL − qS)

+(pLuL − pSuS)] · n + σCu∗

↪→
[
ρS

(
eL − eS +

|uL|2
2

)
− σC −

(
1− ρS

ρL

)
pL
]
u∗ = [(qL − qS)] · n, (4.9)

in which Eqs. (4.4) and (4.5) have been used to simplify some terms.

The Stefan condition is obtained from the energy jump Eq. (4.9) by expressing internal

energy in terms of temperature T and latent heat L

eS = CS(T S − Tr)−
pS

ρS
, (4.10)

eL = CL(T L − Tr) + L− pL

ρL
. (4.11)

Substituting Eqs. (4.10) and (4.11) into Eq. (4.9) and using Eqs. (4.7) and (4.4) for further

simplifications, yields the Stefan condition

ρS

[
(CL − CS)(Tm − Tr) + L− 1

2

(
1−

(
ρS

ρL

)2
)

(u∗)2

]
u∗ = [κS∇T S−κL∇T L]·n. (4.12)

Here, Tm denotes the melting/solidification temperature attained by the two phases at the interface

and Tr is the phase change temperature in the bulk measured at a reference pressure.

Note that the Stefan condition (Eq. (4.12)) is derived from the energy jump Eq. (4.9),

which considers the change in kinetic energy between liquid and solid across the interface.

Several textbooks derive the Stefan condition from the enthalpy equation and do not include

jumps related to kinetic energy. The reason for this can be traced back to the derivation of the

enthalpy equation, which is determined by subtracting the kinetic energy equation from the

energy equation. The subtraction eliminates terms like 1
2
|u|2. The kinetic energy equation is
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Figure 4.1. Schematics of the (A) two-phase and (B) three-phase problems examined in this
study. A liquid phase is represented by blue, a solid phase by yellow, and a gas phase by white.
Gas and PCM regions are tracked using the Heaviside function H , which is defined to be 1 in the
PCM domain and 0 in the gas domain. Liquid and solid phases are tracked by the liquid fraction
variable ϕ, which is equal to 1 in the liquid phase and 0 in the solid phase. A mushy region is
defined by 0 < ϕ < 1.

obtained by taking an inner product of velocity with the momentum equation and manipulating

derivatives of velocity and pressure to obtain terms like ∇ · (1
2
|u|2) and ∇ · (pu). It is not

possible to manipulate derivatives for a phase change problem since both velocity and pressure

are discontinuous across the interface.

4.3 Analytical solution to the two phase Stefan problem
with density change

In this section, we revisit the two-phase Stefan problem involving a density jump from

Alexiades and Solomon’s textbook [134]. Unfortunately, despite its simplicity, this problem has

not received much attention in the CFD literature. Meanwhile, the single phase Stefan problem,

where only the heat equation is used and no density change-induced fluid flow is involved,

remains the gold standard for validating advanced CFD algorithms for modeling melting and

solidification [135, 130, 136] and boiling and condensation [137, 138] phenomena. In their

textbook [134], the authors drop the kinetic energy jump term from the Stefan condition because

it “destroys” the similarity solution. As we show in this section, this is not the case. A method
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for including it in the analytical solution is discussed. In the early stages of solidification, the

interface velocity is infinite and the kinetic energy term dominates. Likewise, when a cylindrical

or spherical material melts, its melting rate tends to infinity towards the end of the process. There

are situations (certain time periods and length scales) where the kinetic energy term becomes

important, and our analytical solution may prove useful in those instances.

Consider solidification of a liquid in a large static domain Ω := 0 ≤ x ≤ l that is

closed on the left and open on the right. The same setup and analytical methodology can also

be applied to the evaporation/condensation problem. Liquid occupies the whole domain at

t = 0 and has a uniform temperature Ti greater than that of solidification temperature Tm. The

temperature at the left boundary (x = 0) is suddenly lowered to To < Tm at t = 0+, which

remains constant thereafter. The solidification front having position x∗ = s(t) moves in the

positive x-direction as shown in Fig. 4.1(A). The thermophysical properties, i.e., density, specific

heat, and thermal conductivity of the liquid phase are denoted ρL, CL, and κL, respectively. The

respective quantities for the solid phase are denoted ρS, CS, and κS. Solid-to-liquid density ratio

is denoted Rρ = ρS/ρL. In the case where Rρ < 1, the liquid expands as it solidifies, causing an

additional flow in the direction of solidification. Alternatively, if Rρ > 1, the fluid shrinks as it

solidifies, causing a flow in the opposite direction. We seek analytical solutions for temperature,

velocity, and pressure in the liquid and solid domains. Starting with the Rankine-Hugoniot

relation for the mass balance equation (see Eq. (4.4)) the jump in velocity across the interface is

obtained

JuK = uL(s+, t)− uS(s−, t) = uL(s+, t) = (1−Rρ)
ds

dt
. (4.13)

Here, s+ and s− represent spatial locations just ahead and behind the interface, and u∗ = ds/dt

represents interface speed. The velocity in the solid domain ΩS(t) := 0 ≤ x < s(t) is taken to

be zero3, i.e., uS(ΩS, t) ≡ 0, while in the liquid domain ΩL(t) := s(t) < x ≤ l, it is uniform

3In the case of evaporation and condensation, the solid phase will be replaced by gas/vapor in the analytical
model. In the vapor phase, the velocity is also zero everywhere uG ≡ 0. It follows from the continuity equation
∂uG/∂x = 0 and the zero-velocity boundary condition imposed at the left end (x = 0).
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as per the continuity equation ∂uL/∂x = 0. Therefore, liquid velocity can be obtained directly

from interface speed as uL(ΩL, t) ≡ uL(s+, t). Once the solid and fluid velocities have been

determined, it is possible to solve the phase change problem with volume change effects by

solving the energy equation for both solid and liquid phases

ρSCS

(
∂T S

∂t
+ uS∂T

S

∂x

)
= κS∂

2T S

∂x2
∈ ΩS(t), (4.14)

ρLCL

(
∂T L

∂t
+ uL∂T

L

∂x

)
= κL∂

2T L

∂x2
∈ ΩL(t), (4.15)

by taking uS(x, t) ≡ 0 and uL(x, t) ≡ uL(s+, t). Five boundary conditions are required to

determine T S(x, t), T L(x, t) and x∗ = s(t) completely. These include two boundary conditions

T S(0, t) = To and T L(l, t) = Ti and three interfacial conditions:

T S(x∗, t) = T L(x∗, t) = Tm, (4.16)

ρS

[
(CL − CS)(Tm − Tr) + L− 1

2
(1−R2

ρ)

(
ds

dt

)2
]

ds

dt

=

(
κS∂T

S

∂x
− κL∂T

L

∂x

)
x∗
. (4.17)

Here, Tr is the bulk phase change temperature measured at a specified reference pressure pr, and

L is the latent heat of melting/solidification. Eq. (6.24), which is commonly referred to as the

Stefan condition, contains terms related to latent heat and jumps in the specific heat, density, and

kinetic energy of the two material phases; see Sec. 4.2.

As shown in the Appendix Sec. 6.6, Eqs. (6.20) and (6.21) admit similarity solution of
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the form

T S(x, t) = To + A(λ(t)) erf
(

x

2
√
αSt

)
, (4.18)

T L(x, t) = Ti +B(λ(t)) erfc
(

x

2
√
αLt
− s(t)

2
√
αLt

(1−Rρ)

)
, (4.19)

in which αS = κS/(ρSCS) and αL = κL/(ρLCL) are the solid and liquid thermal diffusivities,

respectively, and λ(t) = s(t)

2
√
αLt

is a yet to be determined function of time. These temperature

profiles satisfy the boundary and initial conditions of their respective equations. The unknown

functions A and B appearing in the temperature profiles T S(x, t) and T L(x, t) implicitly depend

on time through λ(t). If λ(t) is time-(in)dependent, so are A and B. To our knowledge, all

textbooks and papers first assume that A and B are constants, and then deduce that λ has to be a

time-independent constant. In contrast, we posit that A and B should actually be determined the

other way around. To wit, the interface temperature condition written in Eq. (6.23)

To + A(λ(t)) erf
(

s(t)

2
√
αSt

)
= Ti +B(λ(t)) erfc

(
s(t)

2
√
αLt

Rρ

)
= Tm,

allows us to express A and B as a function of λ(t):

A(λ(t)) =
Tm − T0

erf
(
λ(t)

√
αL

αS

) and B(λ(t)) =
Tm − Ti

erfc (λ(t)Rρ)
. (4.20)

The temperature distribution in the solid phase is therefore

T S = To + (Tm − To)erf
(

x

2
√
αSt

)/
erf

(
λ(t)

√
αL

αS

)
(4.21)

and in the liquid phase is

T L = Ti + (Tm − Ti)
erfc

(
x

2
√
αLt
− λ(t) (1−Rρ)

)
erfc (λ(t)Rρ)

. (4.22)
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By substituting Eqs. (6.28), (6.29), and s(t) = 2λ(t)
√
αLt into the Stefan condition (Eq. (6.24)),

we obtain a governing equation for λ(t) 4

ρS

[
Leff − (1−R2

ρ)

2

(
λ2αL

t

)]
λ
√
αL =

κS Tm − To
erf
(
λ
√

αL

αS

) e−λ2αL/αS

√
παS

+ κL Tm − Ti
erfc (λRρ)

e−λ
2R2

ρ

√
παL

+O
((

dλ

dt

)3

, ..

)
, (4.23)

in which Leff = L + (CL − CS)(Tm − Tr) is the effective latent heat. In the equation above

O(...) contains terms related to the time derivatives of λ(t), which arise from differentiating s(t)

ds

dt
= λ

√
αL

t
+ 2
√
αLt

dλ

dt
. (4.24)

At the beginning of the solidification process, the interface speed ds/dt → ∞ due to the

leading-order 1/
√
t term. By retaining only this term for ds

dt
in the Stefan condition, we obtain a

time-dependent transcendental equation for λ(t) instead of a differential one

ρS

[
Leff − (1−R2

ρ)

2

(
λ2αL

t

)]
λ
√
αL =

κS Tm − To
erf
(
λ
√

αL

αS

) e−λ2αL/αS

√
παS

+ κL Tm − Ti
erfc (λRρ)

e−λ
2R2

ρ

√
παL

. (4.25)

Furthermore, we demonstrate that the dλ/dt terms can be omitted from Eq. (4.25) through

numerical experiments in Sec. 4.6.1.

From Eq. (4.25) (and also Eq. (6.30)), it is clear that if we keep the density/kinetic energy

jump term in the Stefan condition, λ is an explicit function of time, soA(λ) andB(λ) are implicit

4Due to the absence of the solid phase at the beginning, T S(x, t = 0) is not defined. Furthermore, since λ
is derived using the solutions to T S(x, t) and TL(x, t), it is defined for t > 0. This can also be argued from the
definition of interface position s(t) = 2λ(t)

√
αLt, which does not exist at t = 0. On the other hand TL(x, t = 0) is

defined and is independent of λ thanks to the erfc(.) function in the numerator of Eq. (6.29), which approaches zero
as t→ 0.
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functions of time. By dropping the density/kinetic energy jump term from the Stefan condition,

which is done in the literature, λ becomes independent of time. In this situation, A(λ) and B(λ)

are constants.

The closed form solution for T S(x, t), T L(x, t), and uL(x, t) can be written once λ(t)

has been found from Eq. (4.25) (without considering dλ/dt terms). When Rρ = 1 and Leff = L,

the present analytical solution reduces to the standard Stefan problem solution given in the Hahn

and Özişik textbook [139].

Next we find the variation of pressure inside the fluid and solid phases. First consider the

fluid momentum equation

ρL

(
∂uL

∂t
+ uL∂u

L

∂x

)
= −∂p

L

∂x
+ µL∂

2uL

∂x2
, (4.26)

which simplifies to

ρL(1−Rρ)
d2s

dt2
= −∂p

L

∂x
(4.27)

when uL ≡ (1−Rρ)
ds
dt

is substituted in Eq. (4.26). Integrating the above equation yields a linear

variation of pressure within ΩL(t): s(t) < x ≤ l as

pL(x, t) = pi −
λ(t)

2
√
t3

(l − x)
(
ρL − ρS

)√
αL. (4.28)

Here, pi is the pressure of the liquid phase at the right end (x = l). Due to the assumption that

the liquid phase is incompressible, the domain length l needs to be finite. l, however, is large

enough to accommodate the plateau region of the error function used in Eq. (6.26). In the solid

phase, we obtain a uniform pressure by considering the momentum equation with uS ≡ 0

pS(x, t) = pL(s+, t)− JpK

= pi −
λ(t)

2
√
t3

(l − s(t))
(
ρL − ρS

)√
αL − JpK, (4.29)
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in which JpK = pL(s+, t) − pS(s−, t) = ρS(1 − Rρ)
(

ds
dt

)2 is the jump in pressure across the

interface; see Eq. (4.7).

This completes the analytical derivation of the Stefan problem involving jumps in liquid

and solid thermophysical properties and we now proceed to the new low Mach enthalpy method

formulation.

4.4 A low Mach enthalpy method

The fixed-grid CFD techniques for modeling phase change phenomena can be divided

into two main categories: (1) sharp and (2) diffuse interface methods. A sharp technique treats

the phase boundary as an infinitesimally thin surface, whereas a diffuse technique smears it

over a few grid cells. Therefore, the former class of methods can explicitly impose the jump

conditions of the governing equations within the solution methodology. Using a diffuse interface

formulation, the phase transition occurs across a finite “mushy” region, and thus there is no jump

in the governing equations as all quantities vary continuously. In spite of this, diffuse interface

methods are quite popular in the literature due to their simplicity of implementation, robustness,

and ability to handle more than two phases simultaneously. We consider the diffuse interface

method for simulating solidification/melting of a PCM in this study. In addition, the proposed

method allows us to couple a solid-liquid PCM with a passive gas phase without posing major

problems.

Specifically, we consider the enthalpy method (EM) pioneered by Voller and colleagues

[124, 125] for modeling melting and solidification of PCMs. Phase field methods (PFM) are

another popular diffuse domain approach for modeling phase change phenomena [140, 135].

A major advantage of EM over PFM is that, unlike PFM, the EM does not require additional

material parameters (such as mobility, Gibbs-Thompson, linear kinetic coefficients, mixing

energy density, double-well potential function, etc.) that are usually empirically selected during

numerical simulation. The solid-liquid interface is implicitly tracked in the EM using the liquid
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fraction variable ϕ(x, t) that is defined over the entire domain (x denotes a spatial location

in Ω). ϕ is defined as 1 in the liquid phase, 0 in the solid phase, and between 0 and 1 in the

transition/mushy zone. A temperature interval of ∆T = T liq − T sol (where T liq represents the

liquidus temperature at which solidification begins, and T sol represents the solidus temperature

at which full solidification occurs) is chosen to represent the range over which the phase change

occurs. This assumption is based on the fact that for metal alloys and glassy substances there

is no single melting temperature Tm because the phase change occurs over an extended range

of temperatures from T sol to T liq, and there is a mushy zone between the all solid and all liquid

regions [139]. The energy/enthalpy equation implicitly models phase change—upon changing

phase, the grid cell’s enthalpy adjusts to account for latent heat release or absorption, which

in turn changes the ϕ value. EMs are typically implemented as source-based methods [125],

where the material enthalpy is divided into sensible and latent components. Newton’s method

is used to solve the nonlinear energy equation containing latent heat as a source term. Many

CFD softwares, including ANSYS Fluent and OpenFOAM, support source-based EM (SB-EM).

Studies using SB-EM have often ignored the phase change induced fluid motion resulting from a

density jump between liquid and solid phases. Where applicable, the Boussinesq approximation

is used in the momentum equation to account for density variations within the liquid phase (e.g.,

to model natural convection in a melting PCM [141]).

Some authors have only recently begun considering solid and liquid densities differently

when utilizing the EM method [126, 127, 128, 129]. To solve variable-density mass, momentum,

and energy equations, these works have employed classical finite volume algorithms such as

SIMPLE and PISO [142, 88]. These works suffer from the following shortcomings:

1. While the density field is defined by the liquid-fraction variable ϕ, i.e., an equation of

state (EOS) is defined for the system, it is not explicitly used to constrain the velocity

field. In other words, the continuous formulation does not explicitly distinguish between

the bulk of phases with no change in material volume (where velocity is divergence-free)
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and the narrow mushy region that allows changes in material volume (where velocity is

not divergence-free). The previous formulations also do not guarantee that when all of

the liquid has solidified, or when all of the solid has melted, there are no further volume

changes in the system.

2. A temperature equation is derived from the enthalpy equation. It is done by expressing

enthalpy as a function of temperature, for example, by using h = C(T − Tr) type of

relations. Here, h = e+ p/ρ denotes the specific enthalpy. However, this conversion has

a disadvantage in that the specification of specific heat C, that depends on ϕ, becomes

ambiguous. This is because ϕ evolves with T and it must also be solved for along with

temperature. When solving for T and ϕ, C is usually held constant in the numerical

implementation. As a result, the h = C(T − Tr) relation can be satisfied only weakly.

3. The advection of temperature or enthalpy involves a mass flux term mρ = ρu. The discrete

versions of mass and energy fluxes must be strongly coupled to each other to ensure the

numerical stability of high density ratio flows. Prior works had not ensured this coupling.

4. Lastly, the prior numerical algorithms are only qualitatively validated against complex

experiments [143, 144] (in complicated geometries and configurations). This includes

qualitatively comparing the interface evolution between simulations and experiments

[143, 126]. As a consequence, it is unclear how well the prior continuous and discrete

formulations capture density-induced flows or volume changes in PCMs.

To overcome the aforementioned shortcomings in the prior works, we re-formulate the

original enthalpy method as a low Mach technique. A low Mach approach has been traditionally

applied to gas dynamics applications, like combustion [145, 146] and astrophysical flows [147,

148], however it can also be applied to fluid flow problems. Bell, Donev, and colleagues used a

low Mach formulation to simulate multispecies liquid flows at mesoscales [149, 150, 151]. Our

new low Mach EM formulation keeps the flow velocity divergence-free (div-free for short) in the
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bulk of solid and liquid phases. In the narrow mushy region between solid and liquid, where

the material volume changes, the velocity is not divergence-free (non-div-free for short). The

conditions on the velocity field are made explicit in both the continuous and discrete versions of

our low Mach EM. A minor change in the EOS allows us to include a (passive) gas phase in the

original solid-liquid PCM system. We assume that gas is incompressible and the formulation

ensures that the gas domain’s velocity is div-free. We solve the nonlinear enthalpy equation as it

is without dividing it into sensible and latent components, i.e., we do not follow the source-based

approach. This makes the method more general and allows us to incorporate the gas phase more

easily. Furthermore, this avoids the ambiguity of defining specific heat in the domain when

solving for enthalpy and liquid fraction. We also solve an additional mass balance equation

to strongly couple mass advection with energy and momentum advection. For high density

ratio flows, this step ensures that the numerical scheme remains stable. The new low Mach

EM is validated using the analytical solution to the two-phase Stefan problem for a PCM that

undergoes a substantial volume change during solidification. To illustrate the practical utility of

our formulation, we simulate a metal casting problem showing a pipe defect [152] caused by the

volume shrinkage of solidifying metal. Pipe defects are captured only when the velocity field

is non-div-free, i.e., they cannot be captured by relying solely on a variable density field in the

momentum and energy equations.

4.4.1 Mathematical formulation

In our technique the gas-PCM interface Γ(t) is tracked using the zero-contour of the

signed distance function φ(x, t). φ is defined to be positive in the PCM region ΩP(t) = ΩS(t) ∪

ΩL(t) and negative in the gas region ΩG(t). It is advected with the non-div-free velocity u(x, t)

Dφ

Dt
=
∂φ

∂t
+ u · ∇φ = 0. (4.30)
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A smoothed Heaviside function H(x, t) is used in conjunction with the SDF φ to distinguish the

gas and PCM regions: H takes a value of 0 in the gas region, 1 in the solid-liquid PCM region,

and smoothly transitions from 0 to 1 around Γ = ΩG ∩ΩP with a prescribed width of 2 grid cells

on either side of the gas-PCM interface; see Fig. 4.1(B). Using the Heaviside function H and the

liquid fraction variable ϕ any thermophysical property β (e.g., ρ, C, κ) can be uniquely defined

throughout the domain

β = βG + (βS − βG)H + (βL − βS)Hϕ. (4.31a)

ρ = ρG + (ρS − ρG)H + (ρL − ρS)Hϕ. (4.31b)

When β = ρ, we get the EOS written in Eq. (4.31b).

The EOS and the mass balance equation provide a kinematic constraint on the velocity

field

∂ρ

∂t
+∇ · (ρu) = 0,

↪→∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0,

↪→∇ · u = −1

ρ

(
∂ρ

∂t
+ u · ∇ρ

)
= −1

ρ

Dρ

Dt
. (4.32)

The velocity divergence constraint can be expressed in terms of liquid fraction ϕ and Heaviside

function H using the EOS (Eq. (4.31b)) as

∇ · u = −1

ρ

Dρ

Dt

= −1

ρ

(
(ρS − ρG)

DH

Dt
+ (ρL − ρS)

D (Hϕ)

Dt

)
= −1

ρ

(
(ρS − ρG)

DH

Dt
+ (ρL − ρS)

(
H

Dϕ

Dt
+ ϕ

DH

Dt

))
=

(ρS − ρL)

ρ
H

Dϕ

Dt
. (4.33)
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In Eq. (4.33) we have used DH
Dt

= 0 as H follows the same linear advection equation (Eq. (4.30))

as φ. Having derived the low Mach Eq. (4.33) above, we now provide a physical rationale for

the low Mach formulation of the enthalpy method.

Since solid and liquid phases are assumed to be incompressible, the characteristic sound

speed is infinite in both solid and liquid regions. This means that in the bulk of both phases, the

Mach number of the flow is zero. The mushy region between all solid and liquid phases is a

very narrow area that is of the order of a few atomic/molecular diameters. Consequently, the

characteristic sound speed in the mushy region is expected not to deviate significantly from the

bulk solid and liquid phases, and it remains close to infinity. This ansatz allows us to employ a

low Mach model to express density as a function of liquid fraction, which in turn is a function

of enthalpy. A derivation of ϕ-h relation will be provided in this section. Low Mach models

also imply that variations in density don’t affect thermodynamic pressure p̃. Additionally, the

pressure variable p which appears in the momentum equation is mechanical in origin. It serves

as a Lagrange multiplier that enforces the kinematic constraint on the velocity field as written in

Eq. (4.33). We remark that although we call the new EM a “low Mach” method, it is actually a

zero Mach method. This is the common name for the class of models described by equations

such as (4.31a) and (4.33). It is similar to how “low Reynolds number” is most commonly used

to mean “zero Reynolds number.”

The material derivative of the liquid fraction Dϕ
Dt

required on the right-hand side of the

low Mach Eq. (4.33) is obtained from the energy equation, which is written in terms of specific

enthalpy h
∂ (ρh)

∂t
+∇ · (ρuh) = ρ

Dh

Dt
= ∇ · (κ∇T ) +Qsrc. (4.34)

Here, Qsrc represents any heat source/sink term, such as a scanning laser beam. Note that the

enthalpy equation is obtained by subtracting the kinetic energy equation from the conservation

of energy equation by manipulating derivatives associated with velocity u and pressure p. For a

diffuse interface formulation this is acceptable because velocity/kinetic energy and pressure are
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assumed to be continuous across the interface. For a sharp interface approach this leads to the

loss of kinetic energy jump terms; see Sec. 4.2 for further discussion on jump conditions.

Specific enthalpy h of the PCM is defined in terms of its temperature T as

h =


CS(T − Tr), T < T sol,

C̄(T − T sol) + hsol + ϕ
ρL

ρ L, T sol ≤ T ≤ T liq,

CL(T − T liq) + hliq, T > T liq,

(4.35)

and of the gas as

h = CG(T − Tr). (4.36)

In Eq. (4.35), hsol = CS(T sol− Tr), hliq = C̄(T liq− T sol) + hsol +L, and C̄ = CS+CL

2
. C̄ is the

specific heat of the mushy region, which is taken as an average of liquid and solid specific heats.

Eqs. (4.35) and (4.36) imply that PCM and gas enthalpies are zero at T = Tr. The numerical

solution is not affected by this arbitrary choice of reference temperature Tr, and in the numerical

simulations we set the melting/solidification temperature as the reference temperature Tr = Tm

5. We use the mixture model [153] to express density and specific enthalpy in terms of liquid

fraction in the mushy region

ρ = ϕρL + (1− ϕ)ρS, (4.37)

ρh = ϕρLhliq + (1− ϕ)ρShsol. (4.38)

Eqs. (4.37) and (4.38) can also be derived from the general Eq. (4.31a) by substituting H = 1

(which holds true in the PCM region) and β = ρ or ρh.

Substituting h from Eq. (4.35) and ρ from Eq. (4.37) into Eq. (4.38), we obtain a ϕ-T

5Another reasonable choice is to set Tr = 0.
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relation for the mushy region

ϕ =
ρ

ρL

T − T sol

T liq − T sol
. (4.39)

Knowing ϕ in terms of T (Eq. (4.39)) allows us to invert h-T relations. The temperature in the

PCM region

T =



h
CS + Tr, h < hsol,

T sol + h− hsol

hliq − hsol (T
liq − T sol), hsol ≤ h ≤ hliq,

T liq + h− hliq

CL , h > hliq,

(4.40)

and in the gas region

T =
h

CG
+ Tr (4.41)

can be written in terms of h. These T -h relations are used in the Newton’s iterations to solve

the nonlinear Eq. (4.34). Similarly, substituting ρ from Eq. (4.37) into Eq. (4.38), we get a ϕ-h

relation

ϕ =



0, h < hsol,

ρS(hsol − h)
h(ρL − ρS)− ρLhliq + ρShsol , hsol ≤ h ≤ hliq,

1, h > hliq.

(4.42)

Although arbitrary, ϕ in the gas region is defined to be zero.

Finally, Eq. (4.42) allows us to define Dϕ
Dt

for the low Mach Eq. (4.33) as

Dϕ

Dt
=



0, h < hsol,

−ρSρL(hsol − hliq)
(h(ρL − ρS)− ρLhliq + ρShsol)2

Dh

Dt
, hsol ≤ h ≤ hliq,

0, h > hliq.

(4.43)
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The material derivative of h in Eq. (4.43) is obtained from the enthalpy Eq. (4.34) as

Dh

Dt
=

1

ρ
(∇ · (κ∇T ) +Qsrc) .

It is clear from Eq. (4.43) that Dϕ
Dt
6= 0 only in the mushy region where hsol ≤ h ≤ hliq and

T sol ≤ T ≤ T liq. This results in a non-div-free velocity field in the mushy region, but div-free

elsewhere. Therefore, in the absence of mushy regions, velocity is div-free. This can happen

when a liquid phase has solidified completely or when a solid phase has melted completely. Our

formulation, therefore, guarantees that there will be no change in the volume of the system in the

absence of phase change. It can also be seen from Eq. (4.33) that when the densities of the solid

and liquid phases match, there is no induced flow and the velocity is div-free.

In most of the problems considered in this work, the phase change of PCM is induced by

an imposed temperature condition at the domain boundary. There are also cases where phase

change is induced by a heat source, which is denoted by Qsrc in Eq. (4.34). Physically, Qsrc

models melting of metals by lasers, electron beams, or electric arcs, which is common in metal

additive manufacturing processes [5]. The dimension of Qsrc is power (Watts) per unit volume.

In general, laser power is expressed in Watts (or in terms of heat flux). Through the use of the

delta function, an imposed heat flux (q′′) be incorporated into the enthalpy equation as

Qsrc = q′′δ = q′′ |∇B̃|. (4.44)

As in Eqs. (4.47), we use a smooth delta function δ = |∇B̃| that is obtained from a mollified

Heaviside function B̃ in Eq. (4.44).

The low Mach Eq. (4.33) is solved in conjunction with the momentum equation

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

[
µ
(
∇u +∇uT

)]
+ ρg − Adu + f st, (4.45)

to obtain the Eulerian velocity u(x, t) and pressure p(x, t) in all three phases. Here, µ(x, t) is the
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spatiotemporally varying viscosity that is defined using Eq. (4.31a), g is the acceleration due to

gravity, and Ad = Cd
ϕS

2

(1− ϕS)3 + ε
is the Carman-Kozeny drag coefficient that is used to retard

any flow in the solid domain, ϕS = H(1− ϕ) is the solid fraction of the grid cell, and ε = 10−3

is a small number to avoid a division by zero and to control the strength of penalty parameter

(Cd/ε) in the solid region. To retard fluid motion within the solid domain, the model parameter

Cd takes a large value. By comparing the magnitudes of the drag force and the first term on the

left hand side of the momentum equation (i.e., equating intertial force to drag force), we obtain a

sufficiently large value for Cd = ρS/∆t. Here, ∆t denotes the time step size of the simulation.

f st is the surface tension force that acts on the liquid-gas interface. The next section details the

numerical algorithm and the time stepping scheme. Due to the large density difference between

the solid, liquid, and gas phases, special care is needed to avoid numerical instabilities. This is

explained in the next section as well. Observe that the momentum equation is expressed using

a diffuse interface formulation, where all quantities are assumed to vary continuously across

the (three) phases. In addition, the Carman-Kozeny drag force strongly influences the pressure

jump/gradient across the mushy region, which is similar to the Darcy-Brinkman equation for

modeling flows in porous media [154]. When a diffuse interface formulation is used for the

momentum equation, p and JpK will generally have numerical values that differ (perhaps by

orders of magnitude) from those of a sharp interface formulation. This is discussed further in the

context of the Stefan problem in the next section.

A continuum surface tension model, proposed by Brackbill et al. [119] is used to account

for surface tension f st along the liquid-gas interface. The surface tension forces in flows with

large gradients of temperature and concentration are nonuniform. Temperature-dependent surface

tension causes additional thermocapillary flows. We assume that the surface tension coefficients

σ are temperature-dependent in this work. This assumption leads to a continuum surface tension
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force of the form

f st = σ(T )C(φ)δn +∇||σ(T ) δ, (4.46a)

↪→ f st = σ(T )C(φ)δn + [∇σ(T )− (∇σ(T ) · n)n] δ. (4.46b)

Here, C(φ) = −∇ · n = −∇ ·
(
∇φ
|∇φ|

)
is the curvature of the interface computed from the level

set function φ, and δ is the smoothed/mollified delta function. Implementing Eq. (4.46b) as

is leads to spurious/parasitic velocity currents near the interface. Francois et al. [] proposed a

well-balanced scheme wherein δ and δ n are obtained from the discrete gradient of a mollified

Heaviside function B̃ as δ = |∇B̃| and δ n = ∇B̃. Furthermore, the spatial gradient of

the surface tension coefficient can be expressed as ∇σ = dσ
dT
∇T . With these substitutions,

Eq. (4.46b) becomes

f st = σ(T )C(φ)∇B̃ +∇σ(T )|∇B̃| −
(
∇σ(T ) · ∇φ|∇φ|

)
∇B̃, (4.47a)

↪→ f st = σ(T )C(φ)∇B̃ +
dσ

dT
∇T |∇B̃| −

(
∇T · ∇φ|∇φ|

)
dσ

dT
∇B̃ (4.47b)

dσ
dT

is commonly referred to as the Marangoni surface tension coefficient.

In our numerical simulations we use enthapy Eq. (4.34) in conjunction with surface

tension Eq. (4.47b) to simulate thermocapillary flows. Most thermocapillary flow models in the

literature use temperature equation rather than enthalpy. Using enthalpy equation instead of

temperature does not make any difference at a continuous level, but discretely the results might

differ. Our results for simulating thermocapillary flows match benchmark solutions reported in

the literature, thanks to consistent mass-momentum-enthalpy integrators employed in this work.
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(A) A 2D staggered Cartesian grid (B) A single Cartesian grid cell

Figure 4.2. An illustration of a 2D staggered Cartesian grid. (A) shows the coordinate system for
the staggered grid. (B) shows a single grid cell with velocity components u and v approximated
at the cell faces (→) and scalar variables such as pressure p, specific enthalpy h and temperature
T approximated at the cell center (•).

4.4.2 Discretization

Spatial discretization

The continuous equations of motion are discretized on a locally refined staggered Carte-

sian grid. In this section, we explain the discretization in two spatial dimensions at the coars-

est/single level without sacrificing generality. Locally refined grids are addressed in Sec. 4.5.

The coarsest grid level covers the entire domain Ω with Nx ×Ny rectangular cells. The

cell size in x and y directions is ∆x and ∆y, respectively, as illustrated in Fig. 4.2(A). Unless

stated otherwise, a uniform grid spacing ∆x = ∆y is used for all simulations in this work.

We assume that the bottom-left corner of the computational domain Ω aligns with the origin

(0, 0). The position of each grid cell center is given by xi,j =
(
(i+ 1

2
)∆x, (j + 1

2
)∆y

)
, where

i = 0, . . . , Nx − 1 and j = 0, . . . , Ny − 1. The face center in the x−direction, which is located

half a grid space away from the cell center xi,j in the negative x−direction, is represented by

xi− 1
2
,j =

(
i∆x, (j + 1

2
)∆y

)
, where i = 0, . . . , Nx and j = 0, . . . , Ny − 1. Similar conventions

apply to other face center locations. Scalar variables such as pressure (p), specific enthalpy (h),
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and temperature (T ) are stored at the cell centers. The x−component of velocity (u) is stored

at the x−direction cell faces, while the y−component of velocity v is stored at the y−direction

cell faces, as depicted in Fig. 4.2(B). Material properties, including density (ρ), are stored at

the cell centers along with interface tracking variables φ and ϕ. Second-order interpolation is

used to interpolate the cell-centered quantities to the faces. Momentum forcing terms, such as

surface tension, gravity, and Carman-Kozeny drag force, are stored at the cell faces as velocity

components. Standard second-order finite differences are employed to approximate the spatial

differential operators. The spatial discretizations of the key continuous operators are as follows:

• The divergence of the velocity field u = (u, v) is approximated at cell centers by

D · u = Dxu+Dyv, (4.48a)

(Dxu)i,j =
ui+ 1

2
,j − ui− 1

2
,j

∆x
, (4.48b)

(Dyv)i,j =
vi,j+ 1

2
− vi,j− 1

2

∆y
. (4.48c)

• The diffusion term in the energy equation is approximated as

D · (κ∇T ) =
1

∆x

(
κi+ 1

2
,j

Ti+1,j − Ti,j
∆x

− κi− 1
2
,j

Ti,j − Ti−1,j

∆x

)
+

1

∆y

(
κi,j+ 1

2

Ti,j+1 − Ti,j
∆y

− κi,j− 1
2

Ti,j − Ti,j−1

∆y

)
(4.49)

• The gradient of cell-centered quantities (i.e., p) is approximated at cell faces by

Gp = (Gxp,Gyp), (4.50a)

(Gxp)i− 1
2
,j =

pi,j − pi−1,j

∆x
, (4.50b)

(Gyv)i,j− 1
2

=
pi,j − pi,j−1

∆y
. (4.50c)
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• The continuous strain rate tensor form of the viscous term is

∇ · [µ (∇u +∇uᵀ)] =

 2 ∂
∂x

(
µ∂u
∂x

)
+ ∂

∂y

(
µ∂u
∂y

+ µ ∂v
∂x

)
2 ∂
∂y

(
µ∂v
∂y

)
+ ∂

∂x

(
µ ∂v
∂x

+ µ∂u
∂y

)
 , (4.51)

which couples the velocity components through spatially variable viscosity

Lµu =

 (Lµu)x
i− 1

2
,j

(Lµu)y
i,j− 1

2

 . (4.52)

• The viscous operator is discretized using standard second-order, centered finite differences

(Lµu)x
i− 1

2
,j

=
2

∆x

[
µi,j

ui+ 1
2
,j − ui− 1

2
,j

∆x
− µi−1,j

ui− 1
2
,j − ui− 3

2
,j

∆x

]
+

1

∆y

[
µi− 1

2
,j+ 1

2

ui− 1
2
,j+1 − ui− 1

2
,j

∆y
− µi− 1

2
,j− 1

2

ui− 1
2
,j − ui− 1

2
,j−1

∆y

]
+

1

∆y

[
µi− 1

2
,j+ 1

2

vi,j+ 1
2
− vi−1,j+ 1

2

∆x
− µi− 1

2
,j− 1

2

vi,j− 1
2
− vi−1,j− 1

2

∆x

]
(4.53a)

(Lµu)y
i,j− 1

2

=
2

∆y

[
µi,j

vi,j+ 1
2
− vi,j− 1

2

∆y
− µi,j−1

vi,j− 1
2
− vi,j− 3

2

∆y

]
+

1

∆x

[
µi+ 1

2
,j− 1

2

vi+1,j− 1
2
− vi,j− 1

2

∆x
− µi− 1

2
,j− 1

2

vi,j− 1
2
− vi−1,j− 1

2

∆x

]
+

1

∆x

[
µi+ 1

2
,j− 1

2

ui+ 1
2
,j − ui+ 1

2
,j−1

∆y
− µi− 1

2
,j− 1

2

ui− 1
2
,j − ui− 1

2
,j−1

∆y

]
, (4.53b)

in which viscosity is required at both cell centers and nodes of the staggered grid (i.e.,

µi± 1
2
,j± 1

2
). Node-centered quantities are obtained via interpolation by either arithmetically

or harmonically averaging the neighboring cell-centered quantities. In this work, we utilize

harmonic averaging.

In terms of convective discretization, we employ the third-order accurate cubic upwind

interpolation (CUI) scheme. The CUI method satisfies both the convection-boundedness criterion
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(CBC) and the total variation diminishing (TVD) property. Specifically, the CUI scheme

demonstrates third-order spatial accuracy in monotonic regions, where the gradient of the

advected quantity remains monotone, and transitions to first-order spatial accuracy in non-

monotonic regions due to upwinding. We do not present the spatial discretization of the advection

equation using CUI here for brevity, but detailed information can be found in our prior publication

[113]. Extending these discretizations to three-dimensional Cartesian grids is straightforward.

For further details on the spatial discretization and boundary conditions on adaptively refined

meshes, refer our prior works [113, 4, 42].

4.4.3 Temporal discretization

In this section, we detail the temporal discretization method utilized in our study for the

continuous equation of motion. Within each time step [tn, tn+1], we employ ncycles cycles of

fixed-point iteration to approximate the solution to the coupled fluid-thermal system. At the start

of the simulation (t = 0), all variables are initialized with the initial conditions of the problem.

At the beginning of the each time step, with cycle number k = 0, variables are initialized to

their values from the previous time step, denoted as un+1,0 = un, pn+ 1
2
,0 = pn−

1
2 , hn+1,0 = hn,

φn+1,0 = φn, and ϕn+1,0 = ϕn, and iterated till k = ncycles − 1. Convective and surface tensions

terms are treated explicitly, while other terms are treated implicitly. Unless otherwise specified,

ncycles = 2 is used in this work.

Consistent mass-momentum integrators

For incompressible multiphase flows, mass is advected indirectly via an interface tracking

variable. In the present work this corresponds to the advection of the level set variable φ. The

momentum equation also contains a mass flux term mρ ≡ ρu in the the convective operator

∇ · (ρu ⊗ u) = ∇ · (mρ ⊗ u). For high density ratio flows ρL/ρG > 100 this weak coupling

of mass and momentum leads to numerical instabilities. One way to ensure strong coupling

between mass and momentum advection is to solve the redundant mass balance Eq. (4.32) and
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use the same mass flux mρ in the two advective operators: ∇ · (ρu) and∇ · (ρu⊗ u). This idea

was proposed in our prior works [113, 4].

Although the use of the same discrete mass flux is essential for ensuring stability of

high density ratio flows, there is still some freedom in the choice of time integrators for mass

and momentum equations. In our prior works we employed the strong stability preserving

Runga-Kutta (SSP-RK3) scheme for solving the mass balance equation and a midpoint RK-2

scheme for the momentum equation. Specifically the mass balance equation is integrated in three

stages:

ρ̆(1) = ρ̆n −∆tR (unadv, ρ̆
n
lim) , (4.54a)

ρ̆(2) =
3

4
ρ̆n +

1

4
ρ̆1 − 1

4
∆tR

(
u

(1)
adv, ρ̆

(1)
lim

)
, (4.54b)

ρ̆n+1,k+1 =
1

3
ρ̆n +

2

3
ρ̆(2) − 2

3
∆tR

(
u

(2)
adv, ρ̆

(2)
lim

)
, (4.54c)

in which ρ̆ denotes the face-centered density and uadv represents the advection velocity that is

centered at the faces of the staggered (velocity) control volume. The right-hand side term in

Eqs. (4.54) R (uadv, ρ̆lim) ≈
[
(∇ · (uadvρ̆lim))i− 1

2
,j , (∇ · (uadvρ̆lim))i,j− 1

2

]
is an explicit CUI

limited approximation to the linear advection term∇·(ρu). Subscripts “lim” and “adv” indicate a

limited and advected quantity, respectively. To maintain the accuracy of the SSP-RK3 integrator,

it is essential to use velocities that are appropriately extrapolated or interpolated in time. To wit,

for the first cycle (k = 0), the velocities are given by

u(1) = 2un − 2un−1, (4.55a)

u(2) =
3

2
un − 1

2
u1, (4.55b)
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and for the remaining cycles (k > 0), the velocities are

u(1) = un+1,k, (4.56a)

u(2) =
3

8
un+1,k +

3

4
un − 1

8
un−1. (4.56b)

The consistency between mass and momentum advection is achieved by using the same

discrete mass flux mρ = ρ̆
(2)
limu

(2)
adv from the last stage of the SSP-RK3 integrator (Eq. 4.54c) in

the discrete momentum equation

ρ̆n+1,k+1un+1,k+1 − ρ̆nun

∆t
+ C

(
u

(2)
adv, ρ̆

(2)
limu

(2)
lim

)
= −Gpn+ 1

2
,k+1 + (Lµu)n+ 1

2
,k+1

+ ρ̆n+1,k+1g − (Adu)n+1,k+1 + f
n+ 1

2
,k+1

st .

(4.57)

in which the convective term is approximated as

C
(
u

(2)
adv, ρ̆

(2)
limu

(2)
lim

)
≈
[(
∇ ·
(
u

(2)
advρ̆

(2)
limu

(2)
lim

))
i− 1

2
,j
,
(
∇ ·
(
u

(2)
advρ̆

(2)
limv

(2)
lim

))
i,j− 1

2

]
, (4.58)

and ρ̆n+1,k+1 is the updated value of the density obtained from the last stage of the SSP-RK3

integrator. The term Ad = Cd
ϕ2

S
(1− ϕS)2 + ε

in the momentum equation represents the Carman-

Kozeny drag coefficient that is used to retard any flow in the solid domain. Here, ϕS = H(1−ϕ)

is the solid fraction of the grid cell, and ε = 10−3 is a small number to avoid a division by zero

and to control the strength of penalty parameter (Cd/ε) in the solid region. In the solid domain,

Cd is also taken to be large in magnitude to retard fluid motion. When equating drag force

with the first term on the left hand side of the momentum equation, a sufficiently large value is

obtained for Cd = ρS/∆t.

In our prior works, for the test problems considered, it was demonstrated that although the

mass and momentum equations employed different time integrators, the use of the same discrete

mass flux was sufficient to ensure numerical stability. In this work, we propose an additional
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stabilizing term in the momentum equation to account for different integration schemes used for

mass and momentum equations. Specifically, after integrating the mass balance equation (using

SSP-RK3), the (face-centered) residual of the equation is computed

R =
ρ̆n+1,k+1 − ρ̆n

∆t
+ R

(
u

(2)
adv, ρ̆

(2)
lim

)
. (4.59)

The residual R is expected to be very small (close to zero). The residual of the mass equation is

used to define a body force term in the momentum equation. The modified momentum equation

reads as

ρ̆n+1,k+1un+1,k+1 − ρ̆nun

∆t
+ C

(
u

(2)
adv, ρ̆

(2)
limu

(2)
lim

)
= Run+1,k

+ viscous + pressure + other forces. (4.60)

The rationale for adding Run+1,k to the right hand side of the momentum equation is

as follows. Consider a uniform and constant velocity (u ≡ uc) flow which is not subject to

any viscous, pressure or body force. In such a case the momentum equation reverts to the mass

balance equation:

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = 0 (4.61a)

↪→uc

(
∂ρ

∂t
+∇ · (ρuc)

)
= 0, (4.61b)

↪→uc

(
∂ρ

∂t
+∇ · (ρu)

)
= Ruc = 0. (4.61c)

Thus the addition of the close-to-zero term Run+1,k ensures that the left and right hand sides of

the modified momentum Eq. (4.60) discretely balance each other.

Another way to ensure consistency between mass and momentum transport is to employ

the same integration scheme for the two equations. Since our existing fluid solvers employ a

midpoint/RK-2 scheme for integrating the momentum equation, we choose to employ the same
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integration scheme for the mass equation. In this case, the density update reads as:

ρ̆n+1,k+1 = ρ̆n −∆tR
(
u

(1)
adv, ρ̆

(1)
lim

)
, (4.62)

in which u
(1)
adv = 1

2

(
unadv + un+1,k

adv

)
and ρ̆

(1)
lim = 1

2

(
ρ̆nlim + ρ̆n+1,k

lim

)
. It can be noted that the

above scheme reduces to forward Euler (RK1) scheme with ncycles = 1. With the same integration

scheme for mass and momentum equations (RK-2) it is not necessary to add Run+1,k to the

right hand side of the momentum equation. Nevertheless, in our codes we retain this term for

consistency purposes.

A test problem to check consistency of mass-momentum transport: To illustrate the impor-

tance of consistent mass and momentum transport for high density ratio flows, consider an

advection of a dense, isothermal bubble moving in a uniform velocity uc = [uc, vc] = [1, 1] in

a square periodic domain Ω ∈ [0, 1]2. The radius of the bubble is R = 0.2 and it is initially

centered at the middle of the domain [xi = 0.5, yi = 0.5]. The density ratio between the bubble

and the outer liquid is ρi/ρo = 10, 000. The domain is discretized with 2 levels of mesh, with

the coarsest mesh size of Nx ×Ny = 1282. A refinement ratio of nref = 2 is used between the

two levels. The bubble’s interface is always placed on the finest level. Further details on the

adaptive mesh refinement (AMR) are provided in the next section. Viscosity µ is set to zero in

the entire domain, and no other body force (e.g., gravity or surface tension) is present. Under

these conditions, the governing equations for this problem reduce to

∂φ

∂t
+ u · ∇φ = 0, (4.63a)

∂ρ

∂t
+∇ · (ρu) = 0, (4.63b)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = 0. (4.63c)

For this problem it is expected that the bubble advects with a constant velocity uc and returns to
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its original position (with minimal distortions) after t = d/|uc|, in which d represents the distance

travelled to reach its original position. We simulate the advection of the bubble considering four

scenarios

• Case A: RK-2 integrator for momentum equation and SSP-RK3 integrator for mass balance

equation.

• Case B: RK-2 integrator for momentum equation, SSP-RK3 integrator for mass balance

equation, and residual forceRu in the momentum equation.

• Case C: RK-2 integrator for both mass and momentum equations.

• Case D: RK-2 integrator for both mass and momentum equations, and residual forceRu

in the momentum equation.

In all four cases we consider two cycles of fixed-point iteration, i.e., ncycles = 2 is used. To

assess the performance of the integrator choice, we compute the percentage change in mass and

momentum of the system. The relative change is defined as

EB =
|β(t)− β0|

β0

× 100, (4.64)

in which β =
∫

Ω
ρ dV and B = M denote the relative change in the mass of the system, and

β =
∫

Ω
ρu dV and B = Lx denote the relative change in the linear momentum of the system.

For this problem we expect that the mass and momentum of the system should remain invariant

over time. In order to check whether any catastrophic instability occurs in the four cases, we run

the simulations till t = 10, which corresponds to 10 complete passes of the dense bubble across

the domain.

Fig. 4.3 shows the results for the four cases. It can be observed that Case A produces

spurious changes in mass and momentum of the system that increase slowly over time. However,

adding the residual force in the momentum equation (Case B) reduces the spurious changes in
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Figure 4.3. Percentage change in (A) mass (B) x-momentum and (C) the y-momentum of
the system for various choices of time integrators: Case A - RK-2 integrator for momentum
equation and SSP-RK3 integrator for mass balance equation; Case B - RK-2 integrator for
momentum equation, SSP-RK3 integrator for mass balance equation, and residual forceRu in
the momentum equation; Case C - RK-2 integrator for both mass and momentum equations;
Case D - RK-2 integrator for both mass and momentum equations, and residual forceRu in the
momentum equation. ncycles = 2 is used for all four cases.

mass and momentum, and keeps them relatively low and constant over time. Similarly, using

the same time integrator (Case C and Case D) also yields very small percentage changes in both

mass and momentum of the system that remain steady over time. In all four cases, the simulation

remained stable till t = 10. The dynamics of the problem are illustrated in Fig. 4.17 of the

results Sec. 4.6. Based on the results of this test, we choose the integrator combination of Case D

(i.e., RK-2 integrator for integrating both mass and momentum equations and considering an

additional residual force in the momentum equation) in this work.

Consistent mass-momentum-enthalpy integrators

The concept of consistent mass-momentum transport is extended to consistent mass-

momentum-enthalpy transport in this section. This involves solving the mass balance equation

on both cell faces and cell centers. The former is done to obtain the discrete mass flux mρ
fc

for the convective operator∇ · (mρ
fc ⊗ u) of the momentum equation, while the latter is done

to obtain the discrete mass flux mρ
cc for the advective operator ∇ · (mρ

cch) of the enthalpy

equation. We use an RK-2 scheme for time integrating both cell-centered mass and enthalpy

equations, as explained in the previous section. An additional residual term Rhn+1,k is added
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to the right hand side of the enthalpy equation for reasons explained previously. Overall the

discretized cell-centered enthalpy equation reads as

ρ̆n+1,k+1hn+1,k+1 − ρ̆nhn

∆t
+A

(
h

(1)
lim, ρ̆

(1)
limu

(1)
adv

)
= Rhn+1,k + (∇ · κ∇T )n+1,k+1 +Qn+1,k

src ,

(4.65)

in which the advective term is defined as

A
(
h

(1)
lim, ρ̆

(1)
limu

(1)
adv

)
≈
[(
∇ ·
(
h

(1)
limρ̆

(1)
limu

(1)
adv

))
i− 1

2
,j
,
(
∇ ·
(
h

(1)
limρ̆

(1)
limv

(1)
adv

))
i,j− 1

2

]
. (4.66)

In the equation above R is the (cell-centered) residual of the discrete mass balance equation

(see also Eq. (4.59)). We explore the combined consistency of mass, momentum, and enthalpy

integrators in Sec. 4.6.3.

4.4.4 Complete solution algorithm

In this section we describe the time stepping algorithm used to solve the coupled mass,

momentum and enthalpy equations described above. We assume that all quantities of interest,

denoted θ, have been computed or are known at time t = tn. To advance the solution to the next

time level n+ 1, we employ ncycles number of fixed point iterations (with k = 0, 1, . . . , ncycles− 1

denoting the iteration number) within a single time step to approximate θn+1 = θn+1,ncycles−1.

Within each fixed point iteration, we employ qmax number of Newton’s iterations (with m =

0, 1, . . . , qmax − 1 denoting the Newton’s iteration number) to solve the nonlinear enthalpy

equation. At the beginning of the time step, we initialize θn+1,k=0 = θn for variables u, ρ, φ, and

H . The temperature variable is initialized similarly T n+1,k=0,m=0 = T n. Hence, within a single

time step (of size ∆t = tn+1 − tn), the Navier-Stokes system and the level-set and Heaviside

advection equations are solved for ncycles times and the enthalpy equation is solved (possibly) for

ncycles × qmax times. For all cases presented in this work, we use ncycles = 2 fixed-point iterations

and set qmax = 5 for the Newton solver, unless otherwise stated. The governing equations are
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solved in the order described next.

1. The level set function φn is first advected with the non-div-free velocity u to obtain

φn+1,k+1

φn+1,k+1 − φn
∆t

+ (∇ · [φu])n+1,k = (φ∇ · u)n+1,k. (4.67)

Under (linear) advection, φ does not maintain its signed distance property. A reinitialization

procedure suggested by Sussman et al. [84] is used to restore the signed distance property

of φ. Implementation details about the level set method, and its reinitialization can be

found in our prior work [113].

2. A smooth Heaviside function H is used to track the gas-PCM interface. H takes a value

of 0 in the gas region, 1 in the solid-liquid PCM region, and transitions smoothly from 0 to

1 around the interface with a prescribed width of ncells = 2 grid cells (of size ∆) on either

side of the gas-PCM interface

H =


0, φ(x) < −ncells ∆,

1
2

[
1 + 1

ncells ∆
φ(x) + 1

π
sin
(

π
ncells ∆

φ(x)
)]
, |φ(x)| ≤ ncells ∆,

1, otherwise.

(4.68)

Although Hn+1,k+1 can be defined directly in terms of φn+1,k+1, we instead advect Hn

(defined in terms of φn using Eq. (4.68)) to approximate Hn+1,k+1

Hn+1,k+1 −Hn

∆t
+ (∇ · [Hu])n+1,k = (H∇ · u)n+1,k. (4.69)

This is done to obtain the advective flux of Heaviside Hu, which could be used to advect

additional scalar variables of a more involved problem. At the end of the time step

Hn+1 is synchronized with φn+1 using Eq. (4.68). A third-order accurate cubic upwind

interpolation (CUI) scheme [113] is used for advecting φ and H in Eqs. (4.67) and (4.69).
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CUI satisfies both the convection-boundedness criterion (CBC) (see chapter 12 of [142] for

a discussion on high-resolution schemes) as well as the total variation diminishing (TVD)

property. Both properties are essential to bound H (0 ≤ H ≤ 1) during its advection.

3. In practical applications, the density contrast between PCM and gas is usually very large.

The metal to gas density ratio, for example, is ρS/ρG ∼ 104. It is important to ensure

numerical stability of the scheme when advecting energy/enthalpy and momentum in the

domain with very high density ratios. Our recent work proposed an efficient approach

for maintaining the stability of isothermal flows (no phase change) with a high density

ratio. It involves solving an additional mass balance equation and computing the mass flux

mρ = ρu. The same mass flux mρ is used in the convective operator of the momentum

equation, i.e.,∇ · (ρu⊗u) is discretized as∇ · (mρ⊗u) in the momentum equation. The

same idea is applied to advect enthalpy h as well, i.e.,∇ · (ρuh) = ∇ · (mρh).

The discrete mass balance equation reads as

ρ̆n+1,k+1 − ρn
∆t

+ (∇ ·mρ)n+1,k = 0, (4.70)

which is solved to obtain ρ̆n+1,k+1 and the discrete mass flux mρ. We use a second-order

accurate explicit Runge-Kutta scheme (mid-point rule) for time integrating Eq. (4.70).

CUI is used as a limiter to ensure that ρ remains bounded during advection. In Eq. (4.70)

ρn is defined through EOS. In other words, approximation to the new density ρ̆n+1,k+1

is only temporarily used within a time step, after which it is synchronized with the EOS.

The synchronization step ensures that (i) density does not deviate from the EOS; and (ii)

gas-PCM interface remains sharp. The latter is due to the use of reinitialized level set

function in the EOS.

4. Using the discrete approximation for the new density ρ̆ and mass flux mρ, the nonlinear

enthalpy equation is solved to update enthalpy h, temperature T , and liquid fraction ϕ.
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κ and C are defined as functions of ϕ, which is in turn a function of h. As a result, the

enthalpy equation is highly nonlinear.

The discrete enthalpy equation reads as

ρ̆n+1,k+1hn+1,k+1 − ρnhn
∆t

+ (∇ ·mρh)n+1,k = (∇ · κ∇T )n+1,k+1 +Qsrc. (4.71)

In the examples considered in this work, there are no additional heat source/sink terms,

i.e., Qsrc = 0 in Eq. (4.71). This term could be treated implicitly or explicitly depending

upon the numerical stiffness and/or its complexity. We omit the Qsrc term in the remainder

of the algorithm.

(a) The nonlinear enthalpy equation is solved using Newton’s iteration to obtain hn+1,k+1.

Specifically, h is linearized using Taylor’s expansion as

hn+1,k+1,m+1 = hn+1,k+1,m +
∂h

∂T

∣∣∣∣n+1,k+1,m

(T n+1,k+1,m+1 − T n+1,k+1,m), (4.72)

in which m is the inner (Newton) iteration level. Substituting the above equation into

Eq. (4.71), we get

ρ̃n+1,k+1

(
hn+1,k+1,m + ∂h

∂T

∣∣∣∣n+1,k+1,m (
T n+1,k+1,m+1 − T n+1,k+1,m

))
∆t

−ρnhn
∆t

+∇ · (mρh)n+1,k = (∇ · κ∇T )n+1,k+1,m+1 (4.73)

Eq. (4.73) is solved to obtain T n+1,k+1,m+1. The h-T relations written in Eq. (4.35)

allows an analytical evaluation of ∂h
∂T

. Specifically, in the PCM domain, the derivative
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∂h
∂T

is given by

∂h

∂T

∣∣∣∣∣
PCM

=


CS, T < T sol,

C̄ + L/(T liq − T sol), T sol ≤ T ≤ T liq,

CL, T > T liq,

(4.74)

and in the gas ∂h
∂T

∣∣∣
gas

= CG. Note that the specific enthalpy of the PCM is defined to

be a C0 piecewise-continuous function6 of T , and its derivative (with respect to T )

jumps at T sol and T liq. The PCM and gas regions are distinguished by the Heaviside

contour H = 0.5 (or alternatively by the φ = 0 contour). Therefore, ∂h
∂T

in the entire

domain is defined as:

∂h

∂T
=



∂h
∂T

∣∣∣
PCM

, H ≥ 0.5,

∂h
∂T

∣∣∣
gas
, otherwise.

(4.75)

∂h
∂T

defined in Eq. (4.75) can be made “more smooth” by defining it as ∂h
∂t

=

H ∂h
∂T

∣∣∣
PCM

+ (1 −H) ∂h
∂T

∣∣∣
gas

. In our numerical experiments we did not observe any

major improvement in the Newton solver (in term of its convergence rate) using the

“smoother” version of ∂h
∂t

. Hence, we make use of Eq. (4.75) in the code. The linear

system of Eq. (4.73) is solved using a geometric multigrid preconditioned FGMRES

solver with a relative tolerance of 10−9.

(b) Update enthalpy hn+1,k+1,m+1 using the Taylor series expansion (Eq. (4.72)) and

T n+1,k+1,m+1.
6Strictly speaking, the specific enthalpy h of a pure PCM cannot be a C0 continuous function. This is because a

large amount of latent heat is released/absorbed at its solidification/melting temperature Tm and h jumps at Tm. In
enthalpy methods, this condition is relaxed and the latent heat is assumed to be released over a temperature interval
∆T = T liq − T sol.
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(c) Update T n+1,k+1,m+1 and ϕn+1,k+1.m+1 using hn+1,k+1,m+1 and analytical T -h and

ϕ-h relations written in the Sec. 4.4.1, respectively.

(d) Update thermophysical properties (κ,C, and µ) using ϕn+1,k+1,m+1. In spite of the

fact that the model does not need specific heat C directly, we update it for consistency

reasons. The updated C values can be used for post-processing or to model additional

physics, for example.

(e) Compute the relative change in liquid fraction

ε =
||ϕn+1,k+1,m+1 − ϕn+1,k+1,m||2

||1 + ϕn+1,k+1,m||2
(4.76)

The Newton solver is deemed to be converged if ε ≤ 10−8 or if m + 1 = qmax = 5

iterations have completed.

5. Finally we solve the momentum and low Mach equations together

ρ̆n+1,k+1un+1,k+1 − ρnun
∆t

+ (∇ · [mρ ⊗ u])n+1,k = −∇pn+ 1
2
,k+1

+ (∇ ·
[
µ
(
∇u +∇uT

)]
)n+ 1

2
,k+1 − An+1,k+1

d un+1,k+1 + f st
n+ 1

2
,k+1, (4.77)

∇ · u =



0, H < 0.5 (i.e., in the gas phase),

0, h < hsol,

−ρSρL

ρ2
(ρL − ρS)H (∇ · κ∇T )

(hliq − hsol)(
h(ρL − ρS)− ρLhliq + ρShsol

)2 , hsol ≤ h ≤ hliq,

0, h > hliq.

(4.78)

to update velocity un+1,k+1 and pressure pn+ 1
2
,k+1. In Eq. (4.77) we use the same discrete

density ρ̆n+1,k+1 and mass flux mρ that we obtained from solving Eq. (4.70). This main-

tains consistency between mass and momentum transport for high-density ratio flows. The
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Carman-Kozeny drag coefficient Ad employs an updated value of ϕn+1,k+1 obtained from

solving the enthalpy Eq. (4.71). The surface tension force f st acting on the liquid-gas

interface is modeled using the continuous surface tension formulation [119, 155, 156].

The continuous surface tension force reads as

f st = ϕ
2ρ̆

ρL + ρG

(
σC∇B̃

)
, (4.79)

in which σ is the uniform liquid-gas surface tension coefficient and C(φ) is the curvature of

the interface computed from the level set function Cn+ 1
2
,k+1 = −∇·

(
∇φ
||∇φ||

)
. In Eq. (4.79),

B̃(φ) represents a mollified Heaviside function that ensures the surface tension force only

acts near the PCM-gas region. In addition, the multiplier ϕ limits the influence of surface

tension to liquid and gas. We use the mid-point value of φn+ 1
2
,k+1 = 1

2

(
φn+1,k+1 + φn

)
in

computing C and B̃. The right-hand side of the discrete low Mach Eq. (4.78) is evaluated

by using the most updated values of Hn+1,k+1, hn+1,k+1, T n+1,k+1, and ρn+1,k+1. The

linear system of Eqs. (4.77) and (4.78) is solved monolithically for the coupled u-p system

using an FGMRES solver with a relative tolerance of 10−9. The FGMRES solver employs

a projection method-based preconditioner as explained in Thirumalaisamy et al. [157].

Each case presented in this work uses a uniform time step size ∆t, and the CFL number

does not exceed 0.5.

4.5 Adaptive mesh refinement (AMR)

We use a structured adaptive mesh refinement framework to discretize the governing

equations. The three-dimensional computational domain Ω ∈ [0, L]×[0, H]×[0, D] is discretized

into multiple levels of structured grids. The ratio between each successive grid level is denoted

nref . The cell dimensions on the coarsest level are ∆x0 = L
Nx0

, ∆y0 = H
Ny0

, ∆z0 = D
Nz0

, in which

Nx0, Ny0, and Nz0 are the number of cells in the x, y, and z directions. The cell dimensions on

the finer levels are then ∆xmin = ∆x0/n
l−1
ref , in which l is the grid level number.
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We support both static and adaptive meshes in our framework. During static refinement,

coarse mesh levels are refined over a fixed area of space, and mesh configuration remains constant

over time. It is applicable when the region of interest exhibits minimal movement. With dynamic

meshes (or adaptive meshes), coarse level cells are tagged/untagged throughout the simulation

based on user-specified criteria. In our framework, we employ two tagging criteria:

1. Tagging cells based on the signed distance function: To resolve the gas-PCM interface

with sufficient mesh resolution, a value-based tagging criterion is used. A cell is tagged

for grid refinement when its signed distance function value is within zero threshold, e.g.,

|φ| ≤ 2∆x0. Using numerical simulations, we find that this amount of tagging is sufficient

to resolve the sharp variation in material properties (ρ, κ, µ) across the gas-PCM interface.

2. Tagging cells based on the liquid fraction variable: In order to capture the mushy region

and the associated volume change of PCM, it is necessary to use sufficiently refined grids

to resolve the ΩM(t) region. We can identify the mushy region by either: (i) probing the

value of ϕ, e.g., 0.3 ≤ ϕ ≤ 0.8; or by (ii) probing the gradient of ϕ, e.g., |∇ϕ| > 0. We

term the former tagging criterion as ϕ-based tagging or value-based tagging and the latter

as ∇ϕ-based tagging or gradient-based tagging.

4.6 Results and discussion

4.6.1 Validation of the low Mach enthalpy method with analytical
solutions

We validate the novel low Mach EM by examining the Stefan problem (solidification of

a liquid PCM) discussed in Sec. 4.3, with three different density ratios Rρ = ρS/ρL that lead

to: (1) no flow (Rρ = 1); (2) flow with volume expansion (Rρ < 1); and (3) flow with volume

shrinkage (Rρ > 1). The numerical model consists of a quasi one-dimensional computational

domain Ω ∈ [0, 1]× [0, 0.05] with Nx ×Ny = 1280× 64 grid cells. The domain is periodic in

the y-direction. Initially, liquid occupies the entire domain at Ti = 973.6 K. The left boundary
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Table 4.1. Thermophysical properties used to simulate the Stefan problem

Property Value

Thermal conductivity of solid κS 211 W/m.K
Thermal conductivity of liquid κL 91 W/m.K
Specific heat of solid CS 910 J/kg.K
Specific heat of liquid CL 1042.4 J/kg.K
Solidification temperature Tm 933.6 K
Bulk phase change temperature Tr 933.6 K
Liquidus temperature T liq 938.6 K
Solidus temperature T sol 928.6 K
Latent heat L 383840 J/kg

(x = 0) is set to To = 298.6 K and the right boundary (x = 1) is adiabatic (homogeneous

Neumann). The flow solver uses zero-velocity and zero-pressure/outflow boundary conditions

at the left and right ends, respectively. PCM’s thermophysical properties are largely aluminum-

based, and are listed in Table 4.1. In this case, both fluid and solid viscosities are set to zero. For

simplicity, we take the bulk phase change temperature Tr equal to the solidification temperature

Tm, so Leff = L. The temperature interval ∆T between solidus and liquidus and the grid size

are selected based on convergence studies presented in Secs. 4.6.1 and 4.6.1, respectively.

The no volume change case

Fig. 4.4(A) compares CFD results7 for the interface position x∗ = s(t) and temperature

distribution in the solid and liquid phases against the analytical solutions for Rρ = 1 case. We

take solid and liquid densities to be the same ρS = ρL = 2475 kg/m3. Table 4.1 lists the rest of

the thermophysical properties. Simulation is run until t = 10 s with a uniform time step size of

∆t = 10−3 s. The numerical solid-liquid interface is defined by an iso-contour value of 0.5 of the

liquid fraction ϕ. It is evident from the figure that the interface position and temperature profiles

match the analytical solution very well at different times. The analytical solution derived in this

work reduces to the solution of the standard Stefan problem when Rρ equals 1. The top row of

Fig. 4.4 shows both the new and standard Stefan problem solutions for x∗; the latter solution is

7This benchmark test is provided in IBAMR GitHub within the directory examples/phase change/ex0.

149



<latexit sha1_base64="6wHGaJwY3lWE5L9+2Xi3CYpn6No="></latexit>

No flow

<latexit sha1_base64="6e2VGY7ty7X5sq1BPmaILZxdMhU="></latexit>pAq R⇢ “ 1
<latexit sha1_base64="yqFGunJ9CX2cVCMbS19xRpk1BNI="></latexit>pBq R⇢ “ 0.185

<latexit sha1_base64="VW7p6FOob8+WNqekxiElArJnaEA="></latexit>pCq R⇢ “ 5.4

Figure 4.4. Comparison of CFD and analytical solutions to the Stefan problem at various density
ratios Rρ = ρS/ρL. (A) Comparison of the solid-liquid interface position and temperature
distribution in the domain when the liquid and solid densities are the same. In this case, there
is no fluid flow. (B) and (C), respectively, compare CFD and analytical solutions (interface
position and temperature and [uniform] velocity distributions) for the expansion (Rρ = 0.185)
and shrinkage (Rρ = 5.4) cases.

from the Hahn and Özişik textbook [139].

The expansion case

For this case, the liquid and solid densities are assumed to be ρL = 2700 and ρS = 500

kg/m3, respectively. Other thermophysical properties of aluminum-based PCM can be found

in Table 4.1. A uniform time step size of ∆t = 10−4 s is used throughout the simulation to

maintain the CFL number below 0.5. Analytical and CFD solutions8 are compared in Fig. 4.4(B).

There is excellent agreement between the two. As can be seen, the standard Stefan solution

8This benchmark test is provided in IBAMR GitHub within the directory examples/phase change/ex1.
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underpredicts the interface position. This is because it does not take into account the additional

flow that is generated in the direction of interface propagation. In addition, the temperature and

liquid velocity profiles agree well with the new analytical model. At t = 0+ the interface velocity

u∗ = ds/dt ∝ 1/
√

t→∞. As fluid velocity is proportional to interface speed (see Eq. (6.22)),

the CFD simulation produces large uL values at the beginning9. The pressure profiles from CFD

and analytical methods for this case are compared in Sec. 4.6.1.

The shrinkage case

In order to simulate shrinkage, liquid and solid densities are assumed to be ρL = 500 and

ρS = 2700 kg/m3, respectively. All other simulation and thermophysical parameters are kept

the same as in the expansion case. Results10 are shown in Fig. 4.4(C). Liquid-solid interface

location matches the analytical solution very well. Temperature and velocity profiles are also

in good agreement with the analytical solution. Rρ > 1 results in fluid flow opposite to the

interface propagation, since fluid shrinks as it solidifies. Solidification rate is (slightly) reduced as

additional hot fluid is pulled towards the solidifying front. Both the new analytical solution and

standard Stefan solution (without a density jump) predict an interface position that is qualitatively

similar. Volume shrinkage during solidification may seem insignificant based on this analysis.

This argument is refuted in Sec. 4.6.6, in which we present a modeling study that highlights the

importance of volume shrinkage in causing pipe defects during metal casting.

∆T convergence study for the Stefan problem with volume change

The thickness of the mushy zone for the enthalpy method depends on the temperature

interval ∆T = T liq − T sol around the phase change temperature Tm. The numerical solution is

expected to approach the analytical one as ∆T → 0. In practice ∆T is kept finite so that the

latent heat can be absorbed or released within the grid-resolved mushy region. While simulating,

9At t = 0, the liquid is taken to be quiescent. uL starts with a zero value but jumps to a large value immediately
for CFD velocity profiles.

10This benchmark test is provided in IBAMR GitHub within the directory examples/phase change/ex1.
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Figure 4.5. Effect of temperature interval ∆T = T liq − T sol on the numerical solution of the
Stefan problem with volume expansion (Rρ = 0.185). The grid size considered is Nx ×Ny =
1280× 64. A uniform time step size of ∆t = 10−4 is used for all the temperature intervals.

if ∆T is set too small (but finite), the mushy region becomes very narrow and falls in the sub-grid

region. Numerical oscillations are produced by intermittent appearances and disappearances of

the mushy region during simulation. In order to select grid size and temperature interval for the

EM, a convergence study is necessary.

For the Stefan problem simulated in this section, we consider ∆T = {10, 20, 40, 60} K.

A convergence study is performed for the expansion problem Rρ = 0.185. A fixed grid size

of Nx×Ny = 1280× 64 is chosen for the study. Results for the interface position x∗ = s(t)

at various temperature intervals are shown in Fig. 4.5. As expected, a smaller temperature

interval leads to a more accurate solution for the EM. Additionally, we also considered ∆T

= 2.5 and 5 K; the numerical solutions either did not change appreciably or exhibited minor

oscillations at coarse grid resolutions for these values of ∆T (data not presented). Therefore, we

use ∆T = 10 K in the numerical simulations for a PCM that is largely aluminum-based, unless

otherwise stated. We also perform a grid convergence study using three grids: coarse, medium

and fine of size Nx ×Ny = 640× 32, 1280× 64, 2560× 128, respectively. ∆T = 10 K is used

for three grids. As observed in Fig. 4.6, the analytical and numerical solutions agree reasonably

well. Consequently, we use medium grid to simulate the Stefan problems of this section.
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Figure 4.6. Grid convergence study for the Stefan problem with volume expansion (Rρ = 0.185).
∆T = 10 K is used for all grids. Uniform time step sizes used for the coarse, medium, and fine
grids are ∆t = 10−3, 10−4, and 5× 10−5 s, respectively.

Spatio-temporal convergence rate of the low Mach enthalpy method

This section investigates the spatio-temporal convergence rate of the proposed low Mach

enthalpy method. A grid convergence study is conducted for the three Stefan problems of

Secs. 4.6.1- 4.6.1 using four grid sizes: Nx×Ny = {320×16, 640×32, 1280×64, 2560×128}.

A uniform time step size of ∆t = 4×10−4 s is employed for the coarse gridNx×Ny = 320×16

and for each successive grid, the time step size is halved. This ensures the CFL number

stays below 0.5 for all four grids. The temperature interval between liquidus and solidus

is taken to be ∆T = 10 K, as determined by the results of the previous section. The L2

error for a quantity ψ is defined to be the root mean squared error (RMSE) of the vector

||Eψ||RMSE = ||ψreference − ψnumerical||2/
√
N . Here, N denotes the size of the vector Eψ. Two

different reference solutions are considered here: (i) analytical and (ii) numerical solutions

obtained using the finest grid resolution (2560×128). Errors based on analytical solutions indicate

the convergence of the present diffuse interface approach to its sharp interface counterpart. This

is when the thickness of the mushy zone decreases. In contrast, errors based on the finest grid

solutions indicate the spatio-temporal convergence rate of the diffuse interface model itself. We

present errors as a function of mesh resolution for the interface position x∗ = s(t) for the entire
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simulation period (0 ≤ t ≤ 10 s) and for temperature T (x, t) in the entire domain (0 ≤ x ≤ l) at

t = 5 s. The uniform velocity in the liquid domain is a scalar multiple of the interface position

(see Eq. (4.5)). Therefore, error in the interface position is also a measure of error in the flow

field.

Fig. 4.7 illustrates the spatio-temporal convergence rate of the numerical solution to

the Stefan problem for the matched density case (ρL = ρS). Convergence rates based on the

analytical solution are shown in Fig. 4.7 (A). As can be observed in the figure the present method

exhibits close to first order with respect to the temperature solution. In the case of interface

position, the present method exhibits a convergence rate between first and second order. We note

that the interface location in diffuse interface enthalpy methods is implicitly defined as the 0.5

contour of the liquid fraction variable ϕ. Extracting the interface location x∗ itself introduces

an unavoidable interpolation error that also contributes to the non-uniform convergence rate

of Ex∗ . In this work we rely on VisIt software’s [158] excellent post-processing capabilities

to extract the interface location from the (distributed memory parallel) ϕ data. Fig. 4.7 (B)

illustrates the convergence rates based on the finest grid numerical solutions of x∗ and T . Here,

the convergence rate between first and second order is observed for both quantities.

Figs. 4.8 (A) and (B) present the convergence rates for the Stefan problem exhibiting

material expansion upon solidification (Rρ < 1) using analytical and finest grid numerical

solutions, respectively. The temperature convergence rate trend is the same as in the constant

density case: close to first order convergence rate with respect to the analytical solution and

between first and second order with respect to the finest grid numerical solution. Errors for

interface position exhibit a non-monotonic convergence rate, however error magnitudes are low

(on the order of 10−3). For larger temperature intervals (∆T > 10 K) the convergence rate of the

interface position error is slightly better, but the error magnitude is higher (data not presented for

brevity).

Finally, the method’s accuracy is tested for the Stefan problem exhibiting material

shrinkage upon solidification (Rρ > 1) and the results are presented in Fig. 4.9. Similar to the
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previous two cases, we observe close to first order convergence rate of temperature errors with

respect to the analytical solution. We also observe close to second order convergence rate with

respect to finest grid numerical solution. Interface position errors, though small saturate at fine

grids.

Solution to the transcendental equation

In Fig. 4.10, we plot λ versus t that is obtained by solving the transcendental Eq. (4.25)

for the expansion and shrinkage cases considered in this section. It is evident from the plot that

λ varies during the early stages of solidification (when kinetic energy dominates in the Stefan

condition) before reaching a steady state. The relative magnitude of two terms comprising the

interface velocity ds/dt (see Eq. (4.24)) are also compared for the expansion and shrinkage case

in Fig. 4.10. We can observe that the second term involving dλ/dt is much smaller (at least six

orders of magnitude) than the first term λ/
√
t, so it is justified to solve the simpler Eq. (4.25)

rather than the original, more complex Eq. (6.30) for λ(t). For the thermophysical properties

considered in this work, λ variation is quite small and can arguably be ignored. Nevertheless, it

is possible to include the kinetic energy jump term in the analytical solution to the two-phase

Stefan problem.

Pressure jump across the interface for the Stefan problem exhibiting volume change

Based on the analytical solution of the one-dimensional Stefan problem considering

fluid flow, pressure varies linearly in the liquid phase and remains uniform in the solid phase.

The numerical solution also exhibits this behavior of pressure variation. Figs. 4.11(A) and

4.11(B) show pressure in the entire domain at t = 5 and 10 s, respectively for the expansion case

(Rρ = 0.185). Zoomed-in plots are required to discern variation in liquid pressure since solid

pressure is much greater. Although the numerical and analytical models predict the same trend in

pressure variation, the numerical values differ substantially; numerical pressure values are much

larger than the analytical ones (data not shown for brevity). This is due to the diffuse-interface
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Figure 4.7. Convergence rates of the low Mach enthalpy method considering the Stefan problem
with matched densities of solid and liquid phases (ρL = ρS). The L2 error for a quantity ψ
is defined to be the root mean squared error (RMSE) of the vector ||Eψ||RMSE = ||ψreference −
ψnumerical||2/

√
N , in which N denotes the size of the vector Eψ. Here, Ψ represents the interface

position x∗ = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the
analytical solutions and (B) the finest grid (Nx ×Ny = 2560× 128) numerical solutions. Errors
are presented as a function of mesh resolution for the interface position x∗ = s(t) for the entire
simulation period (0 ≤ t ≤ 10 s) and for temperature T (x, t) in the entire domain (0 ≤ x ≤ l) at
t = 5 s. The temperature interval between liquidus and solidus is ∆T = 10 K.
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Figure 4.8. Convergence rates of the low Mach enthalpy method considering the Stefan problem
with the solid phase density lower than the liquid phase (Rρ < 1). The L2 error for a quantity
ψ is defined to be the root mean squared error (RMSE) of the vector ||Eψ||RMSE = ||ψreference −
ψnumerical||2/

√
N , in which N denotes the size of the vector Eψ. Here, Ψ represents the interface

position x∗ = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the
analytical and (B) the finest grid (Nx × Ny = 2560 × 128) numerical solutions. Errors are
presented as a function of mesh resolution for the interface position x∗ = s(t) for the entire
simulation period (0 ≤ t ≤ 10 s) and for temperature T (x, t) in the entire domain (0 ≤ x ≤ l) at
t = 5 s. The temperature interval between liquidus and solidus is ∆T = 10 K.
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Figure 4.9. Convergence rates of the low Mach enthalpy method considering the Stefan problem
with the solid phase density higher than the liquid phase (Rρ > 1). The L2 error for a quantity
ψ is defined to be the root mean squared error (RMSE) of the vector ||Eψ||RMSE = ||ψreference −
ψnumerical||2/

√
N , in which N denotes the size of the vector Eψ. Here, Ψ represents the interface

position x∗ = s(t) and temperature T (x, t) in the domain. The reference solutions are (A) the
analytical and (B) the finest grid (Nx × Ny = 2560 × 128) numerical solutions. Errors are
presented as a function of mesh resolution for the interface position x∗ = s(t) for the entire
simulation period (0 ≤ t ≤ 10 s) and for temperature T (x, t) in the entire domain (0 ≤ x ≤ l) at
t = 5 s. The temperature interval between liquidus and solidus is ∆T = 10 K.
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Figure 4.10. Variation of λ and interface speed’s two components λ
√

αL

t
and 2

√
αLt dλ

dt (see
Eq. (4.24)) as a function of time for the Stefan problem with (A) volume expansion and (B)
volume shrinkage. λ(t) is obtained by solving the transcendental equation (Eq. (4.25)) using
MATLAB’s fzero function. The transcendental equation is solved at t = ∆t and onwards. dλ

dt
is computed from λ in a post-processing step.
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formulation of the EM. Specifically, a Carman-Kozeny drag model is used in the EM to enforce

no flow in the solid phase. In a diffuse formulation, velocity changes continuously from zero to

a finite value within the mushy region. The pressure jump across the mushy region helps the

fluid to “squeeze” through. This is similar to the Darcy-Brinkman model of flow through porous

regions

u ∝ −∇p.

The numerical pressure jump JpK = pL − pS (∼ ∇p) across the mushy region is plotted as a

function of liquid velocity uL. When the flow has subsided and the Darcy-Brinkman model

becomes applicable, the curve is shown for t > 2 s. There is a linear relationship between JpK

and uL, confirming our hypothesis that the numerical pressure jump occurs to push fluid through

the mushy region. Additionally, the diffuse-domain momentum equation provides a magnitude

scale of JpK

−∂p
∂x
∼ Ad u

L

↪→ pS − pL = J−pK ∼ Ad ∆uL, (4.80)

in which ∆ is the cell size and Ad(ϕS) is the drag coefficient. Here, we have ignored the

convective scale (ρ∂u
L

∂t
) in the mushy zone as it is several orders lower than the pressure gradient

and drag force terms (data not shown). Eq. (4.80) suggests that the slope of J−pK versus uL

curve is Ad∆. This is confirmed from Fig. 4.11 where a line of slope Ad∆ evaluated at a solid

fraction ϕS = 0.833 (this value of ϕS is obtained by equating the slope of the best-fit linear curve

to Ad∆, and then solving for ϕS) captures the J−pK versus uL trend reasonably well.

Capturing the mushy region with AMR

Prior works [113, 159, 160] have confirmed our AMR framework’s ability to adaptively

refine/coarsen the grid near gas-liquid/gas-solid interfaces in isothermal flows without any phase

change. Here we test its capability for the more complex scenario: capturing the evolving mushy
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Figure 4.11. Stefan problem with volume expansion (Rρ = 0.185): Pressure distribution along
the length of the channel and zoomed-in views for the liquid and solid domains at (A) t = 5 s
and (B) t = 10 s. (C) Plot of the numerical pressure jump (J−pK = pS − pL) across the interface
as a function of liquid velocity uL. The dashed line has a slope of value Ad∆, in which the
Carman-Kozeny drag coefficient Ad is computed using a solid fraction value of ϕS = 0.833. We
remark that for the purposes of this plot only the temperature interval is taken to be ∆T = 60 K.
This is done to obtain a relatively smoother J−pK versus uL curve. Using ∆T = 10 K, pressure
jump across the mushy region exhibited larger oscillations as a function of fluid velocity. The
grid size and time step size used for this case are Nx × Ny = 1280 × 64 and ∆t = 10−4 s,
respectively.
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region during phase change. We use the Stefan problem with expansion from above section using

adaptively refined AMR grids to check the robustness of capturing the mushy region with AMR.

The Stefan problem is simulated by considering a quasi one-dimensional computational

domain Ω ∈ [0, 1] × [0, 0.05] with l = 2 mesh levels and a refinement ratio of nref = 2. The

coarsest level (l = 1) is covered by Nx0 × Ny0 = 640 × 32 number of cells. The simulation

runs until t = 10 s with a constant time step size of ∆t = 10−4 s. The other problem statement

and the thermo-physical properties are same as Sec. 4.6.1. We use this problem to analyze the

performance of both tagging methods (ϕ-based vs. ∇ϕ-based) to identify the mushy region

effectively within the AMR framework.

The position of the moving (from left to right) solidification front is denoted x∗ = s(t).

The numerical solid–liquid interface fraction is defined by the iso-contour value 0.5 of the liquid

fraction ϕ. Fig. 4.12 shows the evolution of ϕ over time t using two different tagging methods:

ϕ-based (left) and ∇ϕ-based (right). It can be seen that the former tagging method produces

intermittent fine mesh patterns. This can be explained as follows. There are instances during

the simulation in which the mushy region narrows and falls into the subgrid level. As a result,

no cells are tagged using the ϕ-based tagging method. This results in the simulation removing

the entire fine grid level l = 2. Fig. 4.12 (E) illustrates this effect, with ϕ either 0 or 1 and not

meeting the value-based refinement criteria. Gradient-based tagging, on the other hand, produces

finer meshes near the liquid-solid interface. Despite the narrowness of the mushy region, the

gradient of liquid fraction always exists.

Fig. 4.13 shows a comparison between the time evolution of the solidification front and

the analytical solution. As a result of uneven appearance and disappearance of the fine mesh

level, ϕ-based tagging overpredicts the front position. Alternatively,∇ϕ-based tagging produces

more accurate results since the solidifying front is always resolved by finer meshes. Accordingly,

we select the gradient-based tagging criteria to capture the moving phase change front in our

simulations.
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Figure 4.12. Stefan problem with solidification: The evolution of the liquid fraction ϕ over a
time t. The solidification happens due to the imposed Dirichlet boundary condition on the left.
The evolution of grids is shown for ϕ based AMR (left) and∇ϕ based AMR (right). The solid
and liquid regions are depicted by yellow and blue colors, respectively. The region between the
solid and liquid regions is the mushy region.
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Figure 4.13. Comparison of numerical interface position obtained using ”ϕ based AMR” and
”∇ϕ based AMR” with analytical solution for density ratio Rρ = 0.185.

4.6.2 Stefan problem with melting

Previous studies have primarily relied on experimental results to validate the effects of

laser beams. However, numerical results were in good agreement with experimental data after

enhancing thermophysical properties using an enhancement factor. In this section, we utilize the

analytical solution of the two-phase Stefan melting problem to validate the influence of the laser

force. In Sec. 4.3, we provided the analytical solutions of two-phase Stefan solidification problem

with volume change. Building upon that, we derive analytical solutions for the two-phase Stefan

melting problem with volume change, presented in Appendix 6.8.

We explore two cases in this section:

• Two-phase Stefan melting problem with a flux boundary condition.

• Three-phase Stefan melting problem with flux boundary condition is supplied to Eq. (4.44)

as heat flux.

The thermophysical properties of the iron-based PCM are given in Table 4.2, with the

density of the liquid phase being 8100 kg/m3 and the solid phase being 7165.384 kg/m3.
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Two-phase Stefan melting problem

Consider a quasi one-dimensional computational domain Ω ∈ [0, 0.1] × [0, 0.005], as

shown in Fig. 4.14(A). The simulation employs a two-level mesh with a coarsest grid size of

∆x = ∆y = 0.005/32. The simulation runs untill t = 10s with a constant time step size

of ∆t = 10−4. Initially, the domain comprises only the solid phase. On the right boundary

(x = 0.1), a zero pressure/outflow condition for the velocity u and an adiabatic (homogeneous

Neumann) condition for the temperature T are applied, while on the left wall (x = 0.1), a no-slip

condition and inhomogeneous Neumann boundary condition −k dTL
exact

dx

∣∣∣x = 0 are utilized, where

T Lexact represents the analytical temperature distribution derived in Appendix 6.8. The top and

bottom boundaries are periodic.

The schematic of this problem is depicted in Fig. 4.14(A). Since Rρ = ρL/ρS < 1,

there is a volume expansion, inducing additional flow. As shown in Appendix 6.8, the solid

moves with the rigid body velocity uS(t), while the liquid velocity uS is zero. To simulate this

behavior, the solid fraction ϕrmS in the Carman-Kozeny force is replaced with the liquid fraction

ϕ. Consequently, the Carman-Kozeny force retards any flow in the liquid region. The ”∇ϕ based

tagging” is used for the grid refinement. Melting initiates due to the flux boundary condition and

progresses towards the right over time until the solid completely liquefies. The evolution of the

liquid fraction and the adaptive mesh refinement (AMR) mesh is shown in the first column of

Fig.4.14. It is observable that the interface (defined as the 0.5 contour of ϕ) moves towards the

right as the solid phase converts into the liquid phase.

The simulation is performed on 2 levels mesh with coarsest grid size of ∆x = ∆y =

0.005/32. The simulation is performed till t = 10s with constant time step size ∆t = 10−4.

Initially, the domain consists of only solid phase. On the right boundary is (x = 0.1), we use

zero pressure/outflow and adiabatic (homogeneous Neumann) boundary condition while on the

left wall (x = 0.1), no-slip and inhomogeneous Neumann −κL dTL
exact

dx

∣∣∣
x=0

is used where T L
exact

is the analytical temperature distribution. The analytical solution for this problem is derived
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in Appendix A. The top and bottom boundaries are periodic. The schematic of this problem

is shown in Fig. 4.14(A). Since Rρ = ρS/ρL > 1, there is a volume expansion and this will

induce additional flow. As shown in Appendix A, the solid moves with the rigid body velocity

uS(t) and the liquid velocity uS is zero. To simulate this behavior, the solid fraction ϕrmS in

the Carman-Kozeny force is replaced with the liquid fraction ϕ. Now, the Carman-Kozeny will

retard any flow in the liquid region. The ∇ϕ based tagging is used for the grid refinement. The

melting starts due to the flux boundary condition and it progresses towards the right over time.

This will continue till the solid completely liquidifies. We have shown the the evolution of the

liquid fraction and the AMR mesh in the first column of the Fig. 4.14. We can see that the

interface (defined as 0.5 contour of ϕ) moves towards right while the solid phase converts into

the liquid phase.

We also compare the numerical solutions with the analytical solutions provided in

Appendix 6.8. Comparisons for the interface position, solid velocity, and temperature distribution

are shown in Fig. 4.15. A very good match is observed between the numerical and the analytical

results.

Table 4.2. Thermophysical properties used to simulate the Stefan melting problem

Property Value

Thermal conductivity of solid κS 22.9 W/m.K
Thermal conductivity of liquid κL 22.9 W/m.K
Specific heat of solid CS 627 J/kg.K
Specific heat of liquid CL 723.14 J/kg.K
Solidification temperature Tm 1620 K
Bulk phase change temperature Tr 1620 K
Liquidus temperature T liq 1622.5 K
Solidus temperature T sol 1617.5 K
Latent heat L 250800 J/kg

Three-phase Stefan melting problem

We now consider a three-phase melting problem with flux boundary conditions supplied

to the energy equation as heat flux. This problem is employed to validate the implementation
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Figure 4.14. Stefan problem with melting: The evolution of the liquid fraction ϕ over a time t.
The melting happens due to the imposed flux boundary condition on the left boundary for the
first column plots. On the right plot, the flux boundary condition is imposed through the source
term in the energy equation. The evolution of grids is also shown for using∇ϕ based AMR. The
solid, liquid and gas regions are depicted by yellow, blue and white colors, respectively. The
region between the solid and liquid regions is the mushy region.
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Figure 4.15. Comparison of CFD and anlalytical solutions for Two phase Stefan melting problem
with flux boundary conditions: (A) Interface position (B) Solid velocity and (C) Temperature.
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of the heat source (Eq. (4.44)). While many studies have validated the laser beam flux using

experimental results with an enhancement factor, it’s important to note that the heat source that

melts the material acts as a surface force, typically included in the energy equation using the

CSF method. This force is often represented as a surface heat flux, commonly modeled with

a Gaussian profile. Thus, we solve the three-phase Stefan problem with a heat flux boundary

condition.

The thermophysical properties remain the same as in the previous case. The problem

setup involves the gas and solid phases initially, as illustrated in Fig. 4.14(B). The PCM region

is identical to the two-phase problem: ΩPCM ∈ [0, 0.1] × [0, 0.005]. The gas region Ωg ∈

[−0.02, 0]× [0, 0.005] is attached to the left side of the PCM computational domain.

Boundary conditions are set as follows: periodic at the top and bottom, zero pres-

sure/outflow for velocity, and adiabatic (homogeneous Neumann) for temperature on the left

and right boundaries. The flux boundary condition q′′ = −k dTL
exact

dx

∣∣∣
x=0

is applied to the energy

equation forcing term (Eq. (4.44)).

Gas properties are specified as ρg = 0.4 kg/m3, kg = 6.1× 10−2 W/m·K, and cpg = 1100

J/kg·K. Viscosity is assumed to be zero in all three phases. A two-level AMR mesh with a coarse

grid size of 0.005/32 cells is utilized for simulation. Tagging is based on φ for the PCM-gas

interface (x = 0) and on∇ϕ for refining the liquid-solid interface. A smooth Heaviside function

H with nsmear = 2 is employed.

Due to the flux boundary condition, melting initiates and progresses toward the right, as

illustrated in the right plots of Fig.4.14. Comparison between numerical and analytical solutions

is presented in Fig.4.16. It is evident that the numerical and analytical solutions exhibit excellent

agreement.

4.6.3 Isothermal advection of a dense bubble

To demonstrate the combined consistency of mass, momentum, and enthalpy integrators,

we modify the dense bubble advection problem discussed in Sec. 4.4.3: in addition to mass and
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Figure 4.16. Comparison of CFD and anlalytical solutions for Three phase Stefan melting
problem with heat source to the energy equation: (A) Interface position (B) Solid velocity and
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momentum transport, we also consider enthalpy transported by the bubble. Thermal conductivity

κ and Qsrc are set to zero. All other problem parameters (e.g., bubble size, boundary conditions,

etc.) remain the same as in Sec. 4.4.3. In the absence of thermal diffusion and body forces, the

system of equations reduces to

∂φ

∂t
+ u · ∇φ = 0, (4.81a)

∂ρ

∂t
+∇ · (ρu) = 0, (4.81b)

∂ρh

∂t
+∇ · (ρuh) = 0, (4.81c)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = 0. (4.81d)

The initial temperature of the liquid bubble and the surrounding gas is set to Ti = 3 K 11

and the fusion/phase change temperature of the liquid bubble is set to Tm = 2 K. The liquidus

and solidus temperatures are T liq = 2.1 K and T sol = 1.9 K, and a latent heat value of L = 100

J/kg is used. For this problem we expect that:

• In the absence of body forces (pressure and viscous) the velocity should remain constant

throughout the simulation.

• The bubble gets advected with constant velocity, retains its shape, and returns to its original

position after each time period.

• With no energy sources and non-conducting fluids, the enthalpy and temperature should

remain constant.

• There should be no phase change or spurious phase generation. This also means that

specifying latent heat value is arbitrary for this problem.

• The total mass, momentum, and enthalpy in the domain should remain constant.

11For this test problem, units of physical quantities are not relevant, but are included to maintain consistency.
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Fig. 4.17 illustrates the advection of the dense bubble at various time instances. The

simulation employs l = 2 levels of mesh with the coarse grid size set to Nx ×Ny = 1282, and

a refinement ratio is nref = 2. The simulation runs until t = 10 s. As shown in Fig. 4.17, the

bubble moves with a constant velocity and returns to its original position after one time period

τ = d
|u| = 1 s, in which d =

√
2 and |u| =

√
2. Additionally, the bubble undergoes minimal

distortion while returning to its original position. Throughout the simulation (data not shown

here for brevity), velocity remains constant at its initial value u = (u, v) = (1, 1). In addition,

the enthalpy equation solution does not result in spurious phases (for example, liquid becoming

solid).

To quantify the accuracy of consistent mass-momentum-enthalpy integrators, a grid

convergence study is conducted. We consider uniform grids of size Nx ×Ny = 642, 1282, 2562

for the convergence study. This is to avoid discretization errors near the coarse-fine boundary of

adaptively refined grids. Errors in total massM =
∫

Ω
ρ dV, x-momentum Lx =

∫
Ω
ρu dV, y-

momentum Ly =
∫

Ω
ρv dV and enthalpyH =

∫
Ω
ρh dV are computed using Eq. (4.64), and the

results are shown in Fig. 4.18. The system’s mass, momentum, and enthalpy remain constant over

time, with the exception of the initial transient phase where the initially sharp interface diffuses.

Additionally, the temperature remains mostly constant throughout the simulation (T ≈ 2 K)

except near the interface (data not shown for brevity). This is because the primary variable

h diffuses over time and T is reconstructed based on T -h relations in our solution algorithm.

The temperature change near the interface does not induce phase change, however. Mass and

momentum are at least third-order accurate (O(∆x3)) using this method. As velocity remains

constant (numerically), mass and momentum errors are the same. However, enthalpy solution is

only first-order (O(∆x)) accurate. The behavior of error as a function of grid resolution can be

explained as follows. At the end of each time step, the density field is synchronized with the

level set function. This limits density (and momentum, in this case) diffusion due to advection.

The level set function is reinitialized to a signed distance function using a third-order accurate

ENO scheme; see our prior works on level set reinitialization [113]. Enthalpy transport, however,
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Figure 4.17. Advection of a dense liquid bubble with density ratio ρi/ρo = 10, 000 in an initially
uniform velocity field u = (u, v) = (1, 1). The simulation is performed with two levels of mesh
refinement. The coarse grid size is Nx ×Ny = 1282. A unit periodic domain is considered. κ, µ
and Qsrc are set to zero.

is subject to the upwinding errors of the CUI limiter, which displays first-order accuracy near

non-monotone regions. These are regions close to the liquid-gas interface. The CUI scheme’s

first-order accuracy corresponds to Gudonov’s order barrier theorem.

These results indicate that our mass, momentum, and enthalpy integrators are capable of

stably simulating high density ratio flows without generating spurious momentum or phases.

4.6.4 Thermocapillary flows

Here we solve enthapy Eq. (4.34) in conjunction with surface tension Eq. (4.47b) to

simulate surface tension-driven flows. Specifically, the thermocapillary migration of gas bubbles

is considered. In most thermocapillary flow models in the literature, the temperature equation

is used instead of the enthalpy equation [120, 117, 121, 122, 123]. Using an enthalpy equation

instead of temperature does not matter on a continuous level, but discretely, it may. The

purpose of this test is to test whether the low Mach enthalpy integrator can accurately simulate

thermocapillary flows.

Consider a computational domain Ω ∈ [0, L]d, d = 2 and 3, within which a bubble of

radius R is immersed in the ambient fluid, as illustrated in Fig. 4.19. The bubble’s initial centroid

is in the middle of the domain. The ratio of gas bubble thermophysical properties (µ, ρ, C,

κ) to the surrounding fluid is denoted γ. The top and bottom boundaries are considered walls
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Figure 4.18. Grid convergence study of massM =
∫

Ω
ρ dV, x-momentum Lx =

∫
Ω
ρu dV,

y-momentum Lx =
∫

Ω
ρv dV and enthalpy H =

∫
Ω
ρh dV for the isothermal advection of a

bubble.
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with no-slip (zero-velocity) boundary conditions. Temperature varies linearly in the domain

Tlow ≤ T ≤ Thigh. Here, Tlow and Thigh represent temperatures at the bottom and top walls,

respectively. All other boundaries are periodic.

The surface tension coefficient varies with temperature as

σ = σ0 +
dσ

dT

∣∣∣∣
T0

(T − T0), (4.82)

in which σ0 and dσ
dT

∣∣
T0

are the surface tension and Marangoni coefficients (respectively) computed

at the reference temperature T0. The gas bubble moves upward due to the variation in surface

tension caused by the imposed temperature gradient. Key non-dimensional parameters of the

problem are the Reynolds number Re =
ρLV R

µL , Marangoni number Ma =
V R

αL , Capillary

number Ca =
V µL

σ0

, and Prandtl number Pr =
µLCL

κL
. Here, V is the velocity scale defined as

V =

∣∣∣∣ dσ
dT

∣∣
T0
∇TR
µL

∣∣∣∣. Two different cases are considered: zero Marangoni and finite Marangoni.

The zero Marangoni case checks the accuracy of the surface tension force model. The finite

Marangoni case examines the low Mach enthalpy integrator’s ability to simulate thermocapillary

flows.

Zero Marangoni number

A time-invariant linear temperature field (κ→∞) is considered, which is referred to as

the “zero Marangoni number” problem in the literature. Young et al. [161] investigated the zero

Marangoni number thermocapillary migration of a bubble in ambient fluid. The authors provide

an analytical expression for the terminal velocity of the bubble which reads as

Vt = −
2 dσ

dT

∣∣
T0
∇TR

6µL + 9µG (4.83)

We compare the numerically computed bubble rise velocity with the analytical solution to assess

the surface tension force model accuracy. The normalized bubble rise velocity is numerically
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Figure 4.19. Schematic of the thermocapillary migration of a gas bubble in 2D. A gas bubble
of radius R rises in an ambient fluid due to gradient in the surface tension coefficient. The
temperature varies linearly Tlow ≤ T ≤ Thigh with bottom and top wall temperatures of Tlow and
Thigh, respectively. No-slip boundary conditions are used for velocity at the top and bottom walls.
Periodic boundary conditions are considered for the vertical walls.

calculated as

Vrise =

∫
Ω
v(1−H)dV

Vt
∫

Ω
(1−H)dV

. (4.84)

Due to the time-invariant nature of the linear temperature field, we do not solve the

enthalpy equation, since it would change the temperature field numerically, even slightly. The

radius of the bubble is taken to be R = 0.5 m. The ratio of thermophysical properties of the

gas and ambient fluid is set to γ = 1. In this case, the density and viscosity of the bubble (and

also the liquid) are 0.2 kg/m3 and 0.1 kg/m·s. The square and cubic computational domains are

of length L = 15R in 2D and 3D, respectively. The surface tension parameters are σ0 = 0.1

N/m and dσ
dT

∣∣
T0

= −0.1 N/m·K. Temperatures at the bottom and top walls are Tlow = 0 K and

Thigh = 1 K. This corresponds to a temperature gradient of
∂T

∂y
= 0.133 K/m. These dimensional

values give us V = Re = Ca = 6.67 × 10−2 and Ma = Pr = 0. Grid convergence studies

are performed using three grid resolutions: coarse, medium and fine. These grids have a coarse

level (l = 1) resolution of N0 = 64, 128 and 256, respectively. Two levels of grid refinement
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Figure 4.20. Normalized rise velocity of a drop for Ma = 0 case: Grid independence study for
(A) 2D and (B) 3D. Comparison of present numerical result with other numerical and theoretical
results for (C) 2D and (D) 3D.

with a refinement ratio of nref = 2 are employed for all three grids. A uniform time step size

of ∆t = 0.1 s is used for the coarse grid. ∆t is halved for each successively refined mesh. The

top row of Fig. 4.20 shows the time evolution of normalized rise velocity for the three grids in

both two and three spatial dimensions. Convergent behavior for rise velocity can be observed

in both 2D and 3D simulations. Consequently, we choose the medium grid (with N0 = 128)

for comparing our results with prior studies [117, 161, 123]. From Figs. 4.20 (C) and (D) it can

be observed that our results for the zero Marangoni case are in reasonable agreement with the

literature.

Results from the zero Marangoni case validate the accuracy of the surface tension force

model as presented in Eq. (4.47b). However, it does not confirm the accuracy of the low Mach

enthalpy integrator for simulating thermocapillary flows. Next, a finite Marangoni case is

considered to verify this.
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Finite Marangoni number

We investigate the thermocapillary migration of the gas bubble at a finite Marangoni

number of Ma = 0.72. Here, the temperature varies with time, and the Navier-Stokes and

enthalpy equations are coupled to each other through the advection term in the enthalpy equation

and the surface tension force in the momentum equation. This finite Marangoni case (Ma = 0.72)

has been considered in several prior works as well [120, 121, 122, 123] for validation purposes.

The drop in our simulations has a radius of R = 1.44× 10−3 m and is initially positioned

at the center of the computational domain. Square and cubic computational domains with length

L = 4R are used for 2D and 3D simulations, respectively. The thermophysical properties of

the ambient liquid are ρL = 500 kg/m3, µL = 0.024 kg/m·s, κL = 2.4 × 10−6 W/m·K, and

CL = 10−4 J/kg·K. The ratio of gas bubble thermophysical properties to the surrounding fluid is

set to γ = 0.5. The surface tension parameters are σ0 = 10−2 N/m, dσ
dT

∣∣
T0

= −2× 10−3 N/m·K.

Temperatures at the bottom and top walls are Tlow = 289.424 K and Thigh = 290.576 K. This

corresponds to a temperature gradient of
∂T

∂y
= 200 K/m. The phase change/fusion temperature

of the ambient liquid is set to Tm = 265 K, with T liq = 270 K, T sol = 260 K, Tref = 290 K. For a

consistent enthalpy solver, these temperature values should not induce solidification of the liquid

as the imposed temperature values are higher than the fusion temperature. The dimensional

values of the problem parameters yield Re = Ma = 0.72, Ca = 0.0576, V = 0.024 and

Pr = 1.

We solve the coupled Navier-Stokes and enthalpy equations to find the approximations

for velocity (u) and specific enthalpy (h) until t = 0.12 s. First, we perform grid convergence

studies for both 2D and 3D simulations. The grids considered are N0 = 64, 128, and 256 with

two levels of mesh refinement and nref = 2. A uniform time step size of ∆t = 2.5 × 10−5 is

employed for the coarsest grid (N0 = 64), with the time step size quadrupled for successive

grids. For 3D simulations, grids of N0 = 32, 64, and 128 are considered, with the coarsest grid

time step size set to ∆t = 2× 10−5. The time step size is halved for each finer grid.
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Figure 4.21. Normalized rise velocity of a bubble for Re = Ma = 0.72 case: Grid independence
study for (A) 2D simulation and (B) 3D simulation. (C) Comparison of present 2D and 3D
numerical result with other numerical results.

The results are presented in Fig. 4.21 (A) for the 2D simulation and Fig. 4.21 (B) for

the 3D simulation. It is evident that the numerical rise velocity is consistent across all grid

resolutions for both 2D and 3D simulations. For the sake of comparison with existing literature,

we select the results obtained from medium grids.

Fig. 4.21 (C) illustrates the comparison of the numerical rise velocity with other studies

for both 2D and 3D simulations. Remarkably, our results closely align with those of Tripathi and

Sahu [123]. It is worth noting that the choice of time step size in this case is determined by the

capillary time constraint, given by ∆tσ =
√

ρL+ρG

4πσ
∆x3 [119, 162].

4.6.5 Metal melting

As our next example12, we simulate melting of aluminum metal with a free surface

to highlight two salient features of the new low Mach enthalpy method: (1) the ability to

12This benchmark test is provided in IBAMR GitHub within the directory examples/phase change/ex3.
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Figure 4.22. Time evolution of the solid, liquid, and gas domains during metal melting.

capture volume change effects of the PCM in the presence of gas phase; and (2) the ability

to handle phase appearance or disappearance from the domain. This problem is inspired by

Huang et al. [135] who solved a similar problem using a phase-field method (PFM), but using

hypothetical13 thermophysical properties of the PCM. The computational domain is considered

to be a unit square Ω ∈ [0, 1]2 that is discretized by N × N = 256 × 256 grid cells. At

t = 0 the heavier liquid phase of density ρL = 2700 kg/m3 occupies the region below y = 0.3

m, and the lighter solid phase of density ρS = 2475 kg/m3 rests above the liquid phase and

fills the domain until y = 0.45 m; see Fig. 4.22 (A). The gas occupies the remaining domain

(0.45 < y <= 1). Both liquid and solid phases are assumed to have the same viscosity

µL = µS = 1.4 × 10−3 kg/m·s. Viscosity in the solid phase is fictitious and does not affect

numerical results. The rest of the thermophysical properties for the liquid and solid phases are

taken from Table 4.1. The thermophysical properties of the gas are based on air and are taken to

be ρG = 0.4 kg/m3, κG = 6.1× 10−2 W/m·K, CG = 1100 J/kg·K and µG = 4× 10−5 kg/m·s. In

the x-direction, periodic boundary conditions are applied. On the top boundary (y = 0), we use

zero-pressure/outflow and no heat flux boundary conditions, while on the bottom wall (y = 0),

we use zero-velocity and fixed temperature boundary conditions (T = 6Tm). Tm = 933.6 K

is the melting temperature of aluminum. For the liquid region, the initial temperature is 5Tm,

whereas for the solid and gas regions, it is 0.9Tm. The simulation is performed till t = 250 s

with a uniform time step size of ∆t = 10−3 s.

13As mentioned earlier it is difficult to estimate/measure various material properties that is required in a PFM.
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The solid melts when heat is transferred from the bottom wall to the liquid. As the

melting process continues, the solid phase disappears after t = 150 s. To ensure that no spurious

phase changes or interfacial dynamics exist, the simulation is continued until t = 250 s. As

shown in panels (C) and (D) of Fig. 4.22, this is indeed the case. Since liquid density is larger

than solid density, the gas-liquid interface position (y = 0.4375 m) at t = 150 s is lower than

the initial gas-solid interface position (y = 0.45 m). It provides a simple “sanity check” for a

CFD method that seeks to capture the volume change effect of the PCM; the final position of

the gas-liquid interface indicates the success of the method. Additionally, the initial and final

gas-metal interface locations can be used to quantify the percentage change in metal mass. It

should ideally be zero. For the present simulation (using 256× 256 grid), it is approximately

E ≈ 0.027%. Even though the percentage mass change is quite small, it is not near machine

precision. This is attributed to two factors: (1) the non-conservative nature of the level set

method, which is used to track the gas-PCM interface in our formulation; and (2) the errors

incurred in computing the right-hand side of the low Mach Eq. (4.33) numerically. We show

in Appendix Sec. 6.7 that E decreases with increasing grid resolution. It also decreases with

decreasing time step size ∆t (data not presented). We expect mass change errors would be lower

if the level set method were replaced by a more conservative interface capturing technique like

the volume of fluid technique. However, this needs to be verified.

4.6.6 Metal solidification

We consider the opposite scenario of the previous section in our final example: molten

aluminum solidifying in a cast14. A common casting defect is solidification shrinkage. Metals

that are denser in their solid form than in their liquid form (which is almost always the case)

suffer from this defect. As liquid metal solidifies, its volume contracts due to the density

contrast between phases. Macroscopically, the free surface of the metal is recessed down into the

solidified metal, giving it the appearance of a pipe. The goal of this example is to demonstrate

14This benchmark test is provided in IBAMR GitHub within the directory examples/phase change/ex4.
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that pipe defects are captured only when velocity is taken to be non-div-free, and the prior

inconsistent enthalpy methods [130, 131, 31] would not be able to capture this feature of phase

change process. In those works, a divergence-free (div-free) velocity condition is used, which

means that no additional flow is generated when the solid phase changes to liquid or vice versa.

In the momentum and energy equations, the two phases (liquid and solid) are allowed to have

different densities, which is at odds with the div-free velocity assumption.

Solidification of aluminum occurs within a square computational domain of extents

Ω ∈ [0, 8× 10−3]2, which is discretized into 256× 256 uniform cells. Initially, liquid metal is

filled below the region y = 5× 10−3 m, and the rest of the domain is occupied by gas (air); see

Fig. 4.23(A). In contrast to the previous example, there is no solid phase at the beginning of the

simulation. The densities of liquid and solid are assumed to be ρL = 2475 kg/m3 and ρS = 2700

kg/m3, respectively. The other thermophysical properties for liquid, solid, and gas are taken

from the previous section. The surface tension coefficient between liquid aluminum and gas is

taken to be σ = 0.87 N/m. On the top surface, zero-pressure/outflow boundary conditions are

applied, while zero-velocity boundary conditions are applied elsewhere. On all boundaries, the

temperature is fixed at T = 0.5Tm (Tm = 933.6 K is the solidification temperature of aluminum),

except at the bottom wall, where a zero-flux (homogenous Neumann) condition is imposed. The

initial temperature in the liquid domain is set to 2Tm, whereas in the gas domain it is 0.5Tm.

As a result of the imposed boundary conditions, solidification begins on the right and left sides

of the domain. Solidification is not affected by the top boundary since air has a low thermal

conductivity. The simulation runs until t = 1 s with a uniform time step size of ∆t = 10−5 s.

First, we present the simulation results assuming that velocity in the domain is div-free.

Results are shown in Fig. 4.23. In this case, the liquid metal solidifies completely without

deforming the free surface or changing its volume. This solution is unphysical because PCM

volume must change to accommodate a change in density during phase change. It is important to

note that variable density and gravitational body forces are taken into account in the momentum

equation (4.45). However, this is not enough to cause caving of the free surface (gas-liquid).
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Figure 4.23. Time evolution of the solid, liquid, and gas domains during metal solidification
considering∇ · u = 0.

Figure 4.24. Time evolution of the solid, liquid, and gas domains during metal solidification
(shrinkage) considering∇ · u 6= 0.
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Figure 4.25. Time evolution of the solid, liquid, and gas domains during metal solidification
(expansion) considering∇ · u 6= 0.

The results differ significantly when velocity is not treated as div-free. Fig. 4.24 shows

the dynamics of solidification. Around t = 0.25 s, the liquid metal solidifies completely, and no

further phase changes occur. Supplementary video S1 shows the solidification dynamics. There

are no spurious flows or interfacial motions at the gas-solid interface beyond t = 0.25 s. It is

clear that the gas-liquid surface has caved and a pipe defect has formed. Material volume shrinks

as density increases, so this is a physically correct result. In addition, we quantify the simulation

results by computing the percentage mass change of the metal as a function of grid resolution.

This is presented in the Appendix Sec. 6.7.

Next, consider a hypothetical case where aluminum liquid and solid phase densities are

reversed to ρL = 2700 and ρS = 2475 kg/m3, respectively. As a result, metal expands during

solidification. Fig. 4.25 shows the dynamics of metal expansion during solidification. It takes

t = 0.25 s for solidification to complete in this case as well, but we observe a protrusion defect

instead of a pipe defect. Supplementary video S2 shows the solidification dynamics for this case.

4.7 Discussion

In this study we presented analytical and numerical methodologies to model phase change

phenomena exhibiting density/volume changes. All materials of practical interest change density,

and consequently, material volume to conserve mass when they melt, solidify, evaporate, or

condense. Different phases of the same material also exhibit differences in other thermophysical
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properties, such as specific heat and conductivity. By retaining all jump terms arising from the

energy equation in the Stefan condition, we derived an analytical solution to the two-phase Stefan

problem with variable thermophysical properties. For validation purposes, CFD algorithms

that aim to model the phase change of materials can benefit greatly from the two-phase Stefan

problem solutions, but these have gone largely unnoticed in the literature. We also presented a

novel low Mach version of the enthalpy method that takes into account the density change of

PCMs during melting and solidification. Furthermore, the solid-liquid PCM was coupled to a

gas phase within the low Mach framework. Evaporation and condensation may also be modeled

with the proposed low Mach enthalpy method, but further studies are needed to evaluate its

accuracy. Another possibility is to model evaporation and condensation through the level-set or

volume of fluid machinery and melting and solidification via the proposed low Mach enthalpy

method. In this scenario DH
Dt

and Dφ
Dt

are not equal to zero in the low Mach Eq. (4.33). By

using such a framework, all four modes of phase change can be handled in a single simulation,

which will enhance the existing modeling fidelity of engineering applications like metal additive

manufacturing. Besides presenting novel techniques for modeling phase change processes, this

work opens up several new directions for future research.
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Chapter 5

Ongoing work and future scope

5.1 Allen-Cahn model for phase change

As discussed earlier, one popular method for simulating solidification and melting

processes is the enthalpy method. Expanding upon the enthalpy method, we have developed a

low Mach enthalpy method to account for volume change during melting and solidification, as

described in Chapter 4. Our low Mach enthalpy method has been applied to simulate various

two-phase and three-phase flows involving phase change.

Another widely used approach is the Phase-Field method, where the liquid-solid interface

has a small but finite thickness [135]. Unlike the enthalpy method, the Phase-Field method

solves an additional equation to govern the evolution of the liquid fraction of the phase change

material, rather than relying on algebraic relations. This feature enables the Phase-Field method

to incorporate more complex physics, such as anisotropy and solute transport in alloys [135].

Ziyang et al., [135] developed consistent and conservative Phase-Field model for thermo-

gas-liquid-solid flows with liquid-solid phase change. The interface between the PCM and the

gas region is tracked using the Cahn-Hilliard equation, while the liquid-solid interface is tracked

using the Allen-Cahn equation. We have developed a model based on level set and Allen-Cahn

equations for modeling non-isothermal phase change flows. Below is a brief overview of the

governing equations used in our model.:
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5.1.1 Governing equations

As discussed in previous chapters, the zero contour of level set function is used to track

the gas-PCM interface. The level set is advected with non-divergence velocity as

∂φ

∂t
+∇ · φu = 0. (5.1)

Next, Heaviside function H is defined based on φ as

H(x) =


0, φ(x) < −nsmear h,

1
2

(
1 + 1

nsmearh
φ(x) + 1

π
sin
(

π
nsmearh

φ(x)
))

, |φ(x)| ≤ nsmear h,

1, otherwise.

(5.2)

Allen-Cahn equation, governing the evolution of liquid fraction ϕ, is expressed as

∂ (Hϕ)

∂t
+∇ · uHϕ = −Mϕζϕ + ϕH∇ · uinΩ, (5.3)

where

ζϕ =
λϕ
η2
ϕ

Hg′(ϕ)− λϕ∇ ·H∇ϕ+
ρLML

TM
Hp̃′(ϕ)(TM − T ). (5.4)

Here, Mϕ is the mobility of ϕ. The parameters γϕ and µϕ are the Gibbs-Thomson and linear

kinetic coefficients, respectively, in the Gibbs-Thomson equation of the liquid-solid interface. λϕ

is the mixing energy density of ϕ, which is related to the thickness of the liquid-solid interface

ηϕ. Temperature equation with phase change

∂(ρCp)T

∂t
+∇ · u(ρCp)T + ρLML

[
∂ (Hϕ)

∂t
+∇ · uHϕ

]
= ∇ · κ∇T +QT (5.5)

187



Figure 5.1. Schematic used for the Stefan problem which is solved using LS-AC model.

Finally, the Navier-Stokes equation are solved as follows

∂ρu

∂t
+∇ · ρuu = −∇p+∇ ·

[
µ
(
∇u +∇uT

)]
+ ρg + f s + fd, (5.6)

∇ · u =
Mϕ(ρLM − ρSM)

ρ
ζϕ. (5.7)

Note that the ∇ · u 6= 0 in the mushy region. The mixture model is used to derive the kinematic

contraint on the velocity. The present model is referred as the level set - Allen Cahn (LS-AC)

model in this thesis. The time stepping algorithm is not detained here, as it closely follows the

approach described in Sec. 4.4.4. Let’s validate the model that described here using the Stefan

problem.

5.1.2 Stefan problem

Consider a square domain with periodic boundary conditions on the x-faces, as shown in

Fig. 5.2. The top and bottom boundaries are assumed to be no-slip and adiabatic. The material

properties used in this setup are as follows: ρ = 1, µ = 1, C = 1, κL = 0.05, κS = 1, Tm = 1,

L = 0.53. This problem is adapted from Javierre et al. [136]. The Allen-Cahn model parameters
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Figure 5.2. Stefan problem: (A) Evolution of interface y∗ and (B) Temperature distribution
along y axis for different times.

are Mϕ = 1/(νϕζ
2
ϕL), λϕ = 1/(νϕMϕ), ηϕ =

√
2aϕζϕ where aϕ = 0.0625, νϕ = 1 and, ζϕ=

0.002. Initially, the liquid-solid interface is located at y = 0.2, with the solid phase occupying

the domain above the interface with initial temperature of T S = 1.1. Below the interface, the

liquid phase is present with an initial temperature of T L = 1.53.The domain is discrtized using

5× 2000 cells with constant time step size of 10−7.

Figure 5.2 presents the interface position and temperature distribution comparison with

the analytical solution provided in [136, 135]. The numerical results from the present model

matches well with the analytical solution.

Despite the promise of the phase field model, a major drawback is the requirement to

specify the Allen-Cahn equation parameters. These parameters are not known a priori and

necessitate a convergence study for the simulations. Therefore, there is a need for a robust

approach to determine these parameters to effectively apply this model to non-isothermal phase

change flows.
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5.2 Future directions

In the present chapter, we presented a preliminary and ongoing investigations into the

LS-AC model for modeling solidification/melting problems. In the future, we plan to validate this

model for various phase change applications and simulate complicated multiphysics problems.

Additionally, we aim to develop a strategy for determining the Allen-Cahn model parameters

for phase change applications. Ultimately, we will compare the performance of the low Mach

enthalpy method and the LS-AC method in different applications.

The low Mach enthalpy method introduced in Chapter 4 can be further extended to

account for condensation and evaporation as well. Our future objective is to develop a robust

and consistent low Mach model capable of handling all modes of phase change: melting,

solidification, condensation, and evaporation. Furthermore, we plan to derive an analytical

solution similar to the one presented in Section 4.3 for the two-phase Stefan problem with

condensation/evaporation. This analytical solution will serve to validate our numerical CFD

models.

The ultimate goal of this project is to develop a computational tool capable of simulating

additive manufacturing processes such as selective laser melting and laser welding. A compre-

hensive simulation of an AM process involves several sub-models addressing various aspects,

including residual stress, microstructure development, powder-bed raking (for powder-bed AM),

or powder trajectories (in blown-powder AM), and the detailed behavior within and around the

melt pool [5]. Our current model encompasses multiphase flows with variable surface tension,

fluid-structure interaction, and phase change. We plan to enhance this model by incorporating

new features such as a laser source, recoil pressure, and radiation models in a consistent manner

(in discrete sense) to simulate full-scale AM processes. These models will undergo thorough

validation to improve the robustness and accuracy of the solver.
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Chapter 6

Appendix

6.1 Comparison of different approaches used for construct-
ing flux-forcing functions

Here, we demonstrate the efficacy of Approach C described in Chapter 2 in comparison

to Approach D described in Chapter 2 for numerically constructing the flux-forcing functions.

To implement Approach D, we discretize the interface into a set of discrete Lagrangian/marker

points with position X ≡ (X, Y ) and spread the two components (in 2D) of β(X) ≡ (βX , βY )

to the nearby x- and y-faces of the Cartesian grid cells, respectively. We consider two kernel

functions for the spreading operator: a one-point top hat function and a six-point Gaussian

bell-like spline function. The one-dimensional (in the x-direction) form of the top hat function

can be defined in terms of r = (x−X)/h and it reads as

ftop hat =


1, |r| ≤ 0.5,

0, otherwise.
(6.1)
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(A) One-point top hat function (B) Six-point spline function

Figure 6.1. One-dimensional representation of the (A) one-point top hat function; and (B)
six-point spline function.

Here, x is the face-center location of the x-face and h is the grid cell size. Similarly, the

one-dimensional form of the six-point spline function reads as

fspline =



1
60

(−5σ5 + 90σ4 − 630σ3 + 2130σ2 − 3465σ + 2193) , 0 ≤ |r| < 1,

1
120

(5σ5 − 120σ4 + 1140σ3 − 5340σ2 + 12270σ − 10974) , 1 ≤ |r| < 2,

1
120

(−σ5 + 30σ4 − 360σ3 + 2160σ2 − 6480σ + 7776) , 2 ≤ |r| < 3,

0, 3 ≤ |r|.

(6.2)

in which σ = |r|+ 3. The graphical representation of these functions is shown in Fig. 6.1. In

dimensions higher than one, a tensor-product form of the one-dimensional functions is used. We

refer the readers to Peskin [38] for more details on the spreading operator. The distance between

the maker points is kept approximately equal to h, although increasing or decreasing the distance

up to a factor of two did not affect the overall accuracy of the scheme (data not shown).

We consider a test problem similar to the one defined in Sec. 2.7.4, in which a circle of

radius 3/2 is embedded into a larger computational domain of extents Ω ∈ [0, 2π]2. Inhomoge-

neous Neumann boundary conditions with g(x) = −κ n · ∇qexact are imposed on the fluid-solid

192



interface ∂ΩS, whereas Dirichlet boundary conditions are imposed on the external boundaries of

the computational domain, i.e., q|∂Ω(x) = qexact(x). We present the contours of the numerical

(red) and exact (blue) solutions and the convergence rate of the numerical schemes based on

Approach C and D in Fig. 6.2. As observed in the figure, excellent agreement is obtained between

the numerical and exact solutions in the fluid domain (considered to be outside the cylinder) with

Approach C. However, when Approach D is used considering either the top hat or the spline

function, there is a large disagreement between the numerical and exact solutions. Furthermore,

Approach C exhibits approximately first-order accuracy using the continuous indicator function,

whereas Approach D exhibits zeroth-order accuracy. A similar discrepancy is observed using

the discontinuous indicator function with Approach D, although it is slightly less severe than

the continuous case. In contrast, the order of accuracy of Approach C improves further when

the discontinuous χ is used. Data for the discontinuous function is not shown in the interest of

brevity. Based on the results of this section we do not recommend Approach D to impose the

spatially varying Neumann/Robin boundary conditions.

6.2 Effect of the penalization parameter

In this section, we study the effect of the penalization parameter η on the order of

accuracy of the flux-based VP method. The test problem described in Sec. 2.7.4 for the

hexagram interface is considered here. We solve this problem using four different η values:

η = {10−2, 10−4, 10−8, 10−12}. As noted in Fig. 6.3, except for the largest value of η = 10−2,

the convergence rate remains the same for the rest of the η values. Based on the results of this

section we chose η = 10−8 for all our test cases.
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(A) Numerical (red) vs. analytical (blue)
solution using Approach C

(B) Numerical (red) vs. analytical (blue)
solution using Approach D (top hat)

(C) Numerical (red) vs. analytical (blue)
solution using Approach D (spline)

(D) Order of convergence using the continu-
ous indicator function

Figure 6.2. Circular domain with spatially varying Neumann boundary conditions. Contours
of the numerical (red) and analytical (blue) solutions at N = 256 grid using (A) Approach C
and using Approach D with (B) one-point top hat function and (C) six-point spline function. (D)
Error norms E1 and E∞ as a function of grid size N using the continuous indicator function with
Approach C (solid line with symbols), and with Approach D using the top hat (dashed line with
symbols) and spline (dotted line with symbols) kernel functions. The penalization parameter η is
taken as 10−8. The values of κ is taken to be 1.
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(A) Order of convergence using the continu-
ous indicator function

(B) Order of convergence using the discontin-
uous indicator function

Figure 6.3. Effect of the penalization parameter η on the order of accuracy of the flux-based VP
mehod. Spatially varying Neumann boundary conditions are imposed on the hexagram interface
using Approach C. (A) Error norms E1 as a function of grid size N using the continuous indicator
function (B) Error norms E1 as a function of grid size N using the discontinuous indicator
function.

6.3 Formal derivation of the projection method

The saddle-point problem

 A G

−D· 0


 xu

xp

 =

 bu

bp

 (6.3)

can formally be solved using the inverse of the Schur-complement

S−1 =
(
−D ·A−1G

)−1

to obtain the exact pressure and velocity solutions

xp = −S−1(D ·A−1bu + bp), (6.4a)
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xu = A−1(bu −Gxp) = A−1bu + A−1GS−1(D ·A−1bu + bp). (6.4b)

The projection method approximation to the velocity solution is obtained by approximating

A−1GS−1 = A−1G
(
−D ·A−1G

)−1

= A−1G
(
−ρχρ

−1
χ D ·A−1G

)−1

≈ A−1G
(
−(D · ρ−1

χ G)ρχA
−1
)−1

= A−1G
(
−LρχρχA

−1
)−1

= −A−1GAρ−1
χ Lρχ

−1

≈ −GA−1Aρ−1
χ Lρχ

−1

= −ρ−1
χ GLρχ

−1.

Here, we have commuted a few operators (which is valid only for constant-coefficient operators

defined on periodic domains) to simplify A−1GS−1. This simplification allows to approximate

the exact velocity solution xu in Eq. (6.4b) as

xu = A−1bu + A−1GS−1(D ·A−1bu + bp)

≈ A−1bu − ρ−1
χ GLρχ

−1(D ·A−1bu + bp)

= A−1bu −∆t ρ−1
χ G

(
Lρχ

−1 1

∆t
(D ·A−1bu + bp)

)
= x̂u −∆t ρ−1

χ Gφ.

Here, φ is an auxiliary pressure-like scalar field that satisfies the Poisson Eq. (3.41). Approxi-

mating the inverse of the Schur complement as (see Cai et al. [78])

S−1 =
(
−D ·A−1G

)−1 ≈ − 1

∆t
Lρχ

−1 + µ (6.5)
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Figure 6.4. Evolution of the spreading water column in two dimensions considering a density
ratio of ρL/ρG = 815.66 and a viscosity ratio of µL/µG = 63.88 between dense water and light
air fluids.

provides an approximate pressure solution xp

xp = −S−1(D ·A−1bu + bp)

≈
(

1

∆t
Lρχ

−1 − µ

)
(D ·A−1bu + bp)

= Lρχ

−1

(
D · x̂u + bp

∆t

)
− µ(D · x̂u + bp)

= φ−∆tµLρχφ.

Note that in this work we use the trapezoidal rule for time integrating the viscous Laplacian term.

If instead backward Euler scheme is employed then

S−1 ≈ − 1

∆t
Lρχ

−1 + 2µ (6.6)

is suggested based on the spectral analysis of the viscous operator (see Cai et al. [78]).

6.4 Two-dimensional dam break problem

Using the two-dimensional dam break test case, we demonstrate two aspects of our

multiphase solver: (1) consistent mass and momentum transport scheme that ensures numerical
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(A) (B)

Figure 6.5. Comparison of the temporal evolution of dimensionless front position with prior
studies: present work (black), experiments of Martin and Moyce (red); and numerical studies of
Nangia et al. (green), Zeng et al. (magenta), and Patel and Natarajan (blue).
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(B) Percentage change in gas volume

Figure 6.6. Percentage volume change Ev of liquid and gas over time for the two-dimensional
dam break problem at different grid sizes. A uniform time step size of ∆t = 5× 10−5 s is used
for coarser grid (N = 70) and it is halved for the finer grid (N = 140).
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stability of high density ratio flows; and (2) the percentage change in the volume of conserved

phases (liquid and gas) in the absence of rigid bodies. Initially, the water column occupies a

square block of size a = 0.057 m within a computational domain Ω ∈ [0, 7a]× [0, 1.75a]. The

lower left corner of the water column aligns with the lower left corner of the computational

domain; the remaining domain is occupied by air. A uniform grid of size 4N ×N is used for

discretizing the computational domain. Two grid resolutions are considered N = {70, 140}. The

domain has a no-slip velocity boundary condition on all sides. Water and air have densities of

ρL = 1000 kg/m3 and ρG = 1.226 kg/m3, respectively, and viscosities of µL = 1.137× 10−3 Pa

· s and µG = 1.78× 10−5 Pa · s, respectively. The surface tension coefficient between the air and

water phases is taken to be γ = 0.0728 N/m. The fluids are initially at rest. This problem has

been studied numerically by Nangia et al. [59], Patel and Natarajan [163] and Zeng et al. [164],

and experimentally by Martin and Moyce [165].

Fig. 6.4 shows the evolution of the air-water interface using a N = 140 grid at different

time instants. Based on the results, we can conclude that our multiphase formulation provides a

physical solution that remains stable over time. Using prior experiments and numerical solutions,

we compare the temporal evolution of the dimensionless front position (non-dimensionalized by

a) with the numerical solution. The results of our study are in excellent agreement with those of

previous studies. Also presented is the percentage volume change of liquid and gas as a function

of non-dimensional time T = t
√

g
a

in Fig. 6.6. As can be observed, the percentage volume

change is less than 1.5% for the finer grid. This also agrees well with the previous level set-based

simulations of Zeng et al. [164], who report a percentage volume change around Ev ≈ 2% for

this problem.

6.5 Rayleigh-Taylor instability problem

For the level set method, different discretization, advection, and time-stepping schemes

could result in different mass/volume changes of the conserved phases. Several combinations
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(A) Interfacial dynamics

(B) Volume change of the top heavy fluid

Figure 6.7. Two phase Rayleigh-Taylor instability problem at Atwood number A = 0.5 and
Reynolds number Re = 3000. (A) Temporal evolution of the top heavy (red color) and bottom
light (blue color) fluids in the domain. (B) Volume change of the heavy fluid over time. Here,
time t is non-dimensionalized by d/

√
gd.
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(A) Interfacial dynamics

(B) Zoomed-in view near the obstacles
at t = 3.5

(C) Volume change of the top heavy fluid

Figure 6.8. Three phase Rayleigh-Taylor instability problem at Atwood number A = 0.5 and
Reynolds number Re = 3000. Two rigid cylinders (shown as black disks) are placed in the path
of the falling heavy fluid. (B) Zoomed-in view of the fluid-fluid interface (red color) and the
outer surface of the cylinders (black color). (A) Temporal evolution of the top heavy (red color)
and bottom light (blue color) fluids in the domain. (C) Volume change of the heavy fluid over
time. Here, time t is non-dimensionalized by d/

√
gd.
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of these schemes have been extensively tested by Solomenko et al. [166] on a number of

benchmarking two-phase problems, including the Rayleigh-Taylor instability (RTI) flow. It

is important to note, however, that the authors did not include the subcell-fix method in their

study as they mention that “These methods were not tested here because we have found [their]

implementation comparatively complex.” To complement the prior study, as well as to compare

the performance of the subcell-fix method with the best performing method(s) reported in [166],

we simulate the RTI case using the same grid resolution (∆x = ∆y = h = 1/192) and problem

parameters as in Sec. 7 of Solomenko et al. Specifically, we consider the Atwood number to

be A = (ρh − ρl)/(ρh + ρl) = 0.5, and the Reynolds number to be Re = ρhd
√
gd/µ = 3000.

Here, ρh and ρl, denote density of heavier and lighter phase, respectively, g is the acceleration to

gravity (acting in the negative y direction), and µ is the fluid viscosity, which is the same in both

fluid phases. The initial interface between the top heavy and bottom light fluid is considered

to be a cosine function with a small amplitude. The initial signed distance is then expressed

as σ(x, y, t = 0) = d(2 + 0.1 cos(2πx/d)) − y, in which d is the domain width and 4d is the

domain height. Fig. 6.7(A) shows the two phase interface evolution at various non-dimensional

time instants t (normalized by time scale d/
√
gd), whereas Fig. 6.7(B) reports the change in

the volume of the heavier fluid as a function of non-dimensional time. Solomenko et al. report

volume changes till t = 3.5, and their best performing method (in terms of least amount of

volume changes and parasitic oscillations at the interface) leads to a percentage volume change

of 0.3% (reported in Table 10 of [166]). As can be seen in Fig. 6.7, the subcell-fix method of Min

also leads to similar volume change around t = 3.5, and does not cause parasitic oscillations at

the evolving interface.

As a variation of the two phase RTI problem, and to examine the effect of the Brinkman

penalty term on volume change of the phases, we introduce two cylinders of radius R = 0.125d

in the path of the falling heavy fluid. Left and right cylinder centers are located at (0.3125d, 1.5d)

and (0.6875d, 1.5d), respectively. These objects are held stationary throughout the simulation.

Fig. 6.8(A) shows the perturbed dynamics of the fluid-fluid interface in the presence of rigid
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obstacles, which results in a more chaotic dynamics than the two phase RTI problem. A

zoomed-in view of the fluid-fluid interface at t = 3.5 near the stationary cylinders is provided in

Fig. 6.8(B). The no-slip condition imposed by the Brinkman penalty term prevents the fluid-fluid

interface from penetrating the rigid surfaces. Fig. 6.8(C) shows the volume change of the heavier

fluid as a function of time. The percentage volume change for the heavier fluid at t = 4 is

approximately 0.8%, which is similar to the two-phase RTI problem; see Fig. 6.7(B). We can

conclude from this example that the Brinkman penalization term does not result in additional

mass/volume changes (in the conserved phases) beyond what is expected from the standard level

set method.

6.6 Similarity solution

Here, we derive a similarity solution of the heat equations governing temperature in the

solid ΩS and liquid ΩL domains

∂T S

∂t
= αS∂

2T S

∂x2
∈ ΩS(t), (6.7)

∂T L

∂t
+ (1−Rρ)

ds

dt

∂T L

∂x
= αL∂

2T L

∂x2
∈ ΩL(t). (6.8)

Interface position s(t) can be expressed as s(t) = λ(t)2
√
αLt, where λ(t) is an unknown

function of time. Eqs. (6.20) and (6.21) can be written in terms of similarity variables ηS and ηL,

respectively:

T S(x, t) = T S(ηS) with ηS =
x

2
√
αSt

, (6.9)

T L(x, t) = T L(ηL) with ηL =
x

2
√
αLt

+ b(t). (6.10)
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b(t) in ηL is yet to be determined. The similarity transformation reduces partial differential

equations (6.20) and (6.21) in x and t to ordinary differential equations in ηS and ηL, respectively.

The steps involved in the similarity transformation of (6.21) are detailed in the remainder of

this section as this equation is different from the standard heat (6.20), which has been treated in

several textbooks. The main steps involve rewriting the derivatives of T L and s(t)

∂T L

∂x
=

dT L

dηL

∂ηL

∂x
=

dT L

dηL

1

2
√
αLt

(6.11)

∂2T L

∂x2
=

d2TL

dηL2

∂ηL

∂x

1

2
√
αLt

=
dTL

d2ηL2

1

4αLt
(6.12)

∂T L

∂t
=

dT L

dηL

∂ηL

∂t
=

dT L

dηL

( −x
4t
√
αLt

+
db

dt

)
(6.13)

ds

dt
= λ

√
αL

t
+ 2
√
αLt

dλ

dt
(6.14)

and substituting them in (6.21). This yields

d2TL

dηL2 + 2

(
ηL − b− λ(1−Rρ)− 2t

db

dt
− 2t(1−Rρ)

dλ

dt

)
dT L

dηL = 0. (6.15)

Here, d2TL

dηL2 = d
dηL

(
dTL

dηL

)
. Choosing b(t) = −λ(t)(1 − Rρ) in (6.15) simplifies the similarity

transformation of (6.21) to

d2TL

dηL2 + 2ηL dT L

dηL = 0. (6.16)

Following similar (but less involved) steps, the similarity transformation of (6.20) reads as

d2TS

dηS2 + 2ηS dT S

dηS = 0. (6.17)
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Eqs. (6.16) and (6.17) can be integrated analytically and the closed-form expressions of

T S(x, t) = T S(ηS) and T L(x, t) = T L(ηL) (satisfying boundary and interface conditions) are

provided in the main text.

6.7 Grid convergence study for mass conservation

For the metal melting and solidification cases discussed in the main text, we present the

percentage change in the PCM mass. The mass of PCM (solid+liquid) in the domain at time t

can be computed using

m(t) =

∫
Ω

[
ρL(Hϕ) + ρS(H −Hϕ)

]
dΩ. (6.18)

The relative percentage error in PCM mass is defined as

E(t) =
|m−m0|

m0

× 100, (6.19)

in which m0 is the initial (at time t = 0) mass of the PCM. Fig. 6.9 plots E versus t for various

grids of size Nx×Ny = N2. With increasing grid refinement, E decreases and at finer grids there

is about 0.007% change in the PCM mass. Fig. 6.10 plots E versus t for the metal solidification

case that exhibits pipe shrinkage. A similar conclusion can be drawn for this case as well: E

decreases with grid refinement and at finer grids PCM mass changes by approximately 0.39%. E

also decreases with decreasing ∆t (data not shown).

6.8 Analytical solution of a Two phase Stefan problem

In this Appendix, we provide the analytical solutions of a two-phase Stefan problem as

considered in Sec. 5.3. Let’s consider a slab Ω := 0 ≤ x ≤ l with the solid occupies the entire

domain at t = 0. Initially, the temperature is uniform throughout the domain and is lower than

the melting temperature (Ti < Tm). The boundary is open on the right and closed on the left. The
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Figure 6.9. Percentage change in PCM mass E as a function of time for the metal melting case
at different grids. Each grid uses a uniform time step size of ∆t = 10−3 s and a temperature
interval of ∆T = 10 K.

Figure 6.10. Percentage change in PCM mass E as a function of time for the metal solidification
case that exhibits pipe shrinkage defect at different grids. The temperature interval is taken
to be ∆T = 10 K for all grids. A uniform time step size is used for all the grids: for coarse
grids N = 32 and N = 64, ∆t = 10−4 s is used; for medium grids N = 128 and N = 256,
∆t = 10−5 s is used; and for the fine grid N = 512, ∆t = 10−6 s is used.
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solid is melted by imposing a temperature To > Tm on the left boundary. The thermophysical

properties of solid phase are ρS, CS, and κS, and for the liquid phase are: ρL, CL, and κL. We

assume these properties are constant within each phase. When the solid melts, the melt front

x∗ = s(t) starts to move to the right. The melting continues until all the solid liquefies. The

solid-to-liquid density ratio is denoted as Rρ = ρL/ρS. When Rρ < 1, the solid expands as it

melts; if Rρ > 1, the solid shrinks as it melts. We have derived an analytical solution for the

two-phase Stefan solidification problem in [167]. We follow a very similar approach here. For

more details about the detailed derivation and jump conditions, please refer to our previous work

[167]. The governing equations in the solid and liquid phases are

ρSCS

(
∂T S

∂t
+ uS∂T

S

∂x

)
= κS∂

2T S

∂x2
∈ ΩS(t), (6.20)

ρLCL

(
∂T L

∂t
+ uL∂T

L

∂x

)
= κL∂

2T L

∂x2
∈ ΩL(t), (6.21)

where uS and uL are the velocities of the solid and liquid phases, respectively. When melting

occurs, the melt front moves with velocity u∗ = ds/dt. The velocity in the liquid domain

ΩL(t) := 0 ≤ x < s(t) is taken to be zero. The velocity jump across the interface is given by

([167])

JuK = uS(s+, t)− uL(s−, t) = uS(s+, t) = (1−Rρ)
ds

dt
, (6.22)

where s+ and s− represent spatial locations just ahead and behind the interface. From the

continuity equation ∂uS/∂x = 0, the solid velocity uS is constant in the solid phase, allowing us

to obtain uS(ΩS, t) ≡ uS(s+, t) = (1−Rρ)
ds
dt

.

We need to find the solution of Eqs. 6.20 and 6.21 with the boundary conditions
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T L(0, t) = To and T S(l, t) = Ti and the interfacial conditions

T S(x∗, t) = T L(x∗, t) = Tm, (6.23)

ρL

[
(CL − CS)(Tm − Tr) + L+

1

2
(1−R2

ρ)

(
ds

dt

)2
]

ds

dt

=

(
κS∂T

S

∂x
− κL∂T

L

∂x

)
x∗
. (6.24)

The last equation Eq. 6.24 is known as the Stefan condition, stating that the rate of change

in latent heat is equal to the heat flux jumps across the interface.

As shown in [167], Eqs. 6.20 and 6.21 admit a similarity solution of the form

T S(x, t) = Ti + A(λ(t)) erfc
(

x

2
√
αSt
− s(t)

2
√
αSt

(1−Rρ)

)
, (6.25)

T L(x, t) = To +B(λ(t)) erf
(

x

2
√
αLt

)
. (6.26)

Here, αS = κS/(ρSCS), αL = κL/(ρLCL) are the solid and liquid thermal diffusivities, respec-

tively, and λ(t) = s(t)

2
√
αSt

is a yet to be determined function of time. The coefficients A(λ(t)) and

B(λ(t)) are found using the interface temperature condition as

Ti + A(λ(t)) erfc (λ(t)Rρ) = To +B(λ(t)) erf
(

s(t)

2
√
αLt

)
= Tm.

This yields

A(λ(t)) =
Tm − Ti

erfc (λ(t)Rρ)
and B(λ(t)) =

Tm − To
erf
(
λ(t)

√
αS

αL

) . (6.27)

Therefore, the temperature distribution in the solid phase is given by

T S = Ti + (Tm − Ti)
erfc

(
x

2
√
αSt
− λ(t)(1−Rρ)

)
erfc (λ(t)Rρ)

(6.28)
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and in the liquid phase

T L = To + (Tm − To)
erf
(

x

2
√
αLt

)
erf
(
λ(t)

√
αS

αL

) . (6.29)

By using the temperature distributions in the liquid (Eq. 6.29) and solid phases (Eqs. 6.28),

along with the interface position s(t) = 2λ(t)
√
αSt, we obtain the equation for λ(t) from the

Stefan condition (Eq. 6.24)

ρL

[
Leff − (1−R2

ρ)

2

(
λ2αS

t

)]
λ
√
αS =

− κS Tm − Ti
erfc (λRρ)

e−λ
2R2

ρ

√
παS

− κL Tm − To
erf
(
λ
√

αS

αL

) e−λ2αS/αL

√
παL

, (6.30)

where Leff = L + (CL − CS)(Tm − Tr) represents the effective latent heat. In this equation,

only the leading-order 1/
√
t term is retained, while other terms related to the derivative of λ(t)

are dropped. Through numerical experiments, we observed that terms involving dλ/dt can be

omitted [167].

It is also possible to find the pressure inside the fluid and solid phases as demonstrated in

[167]. However, for brevity, we do not provide the derivation here. Additionally, note that we

assume Leff = L in our Stefan problem simulations.

6.9 Error norm and curve-fitting of the data
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Table 6.1. Error norm data for the concentric circular annulus case using Approach A considered
in Sec. 2.7.3

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 4.6978×10−1 –

1.94,0.96

1.1552 –

1.78, 0.99

64 9.82×10−2 1.9149×10−1 1.29 7.3710×10−1 0.65
128 4.91×10−2 5.3379×10−2 1.84 1.9393×10−1 1.93
256 2.45×10−2 1.6787×10−2 1.67 4.8113×10−2 2.01
512 1.22×10−2 9.8071×10−3 0.78 2.0514×10−2 1.23
1024 6.13×10−3 7.8649×10−4 3.64 3.4221×10−3 2.58
2048 3.06×10−3 1.1559×10−4 2.77 8.6893×10−4 1.98

E∞

32 1.96×10−1 1.0015×10−2 –

1.98, 0.99

2.7865×10−1 –

1.50, 0.98

64 9.82×10−2 3.7365×10−2 1.42 2.3764×10−2 0.23
128 4.91×10−2 9.7656×10−3 1.94 8.0442×10−2 1.56
256 2.45×10−2 2.7216×10−3 1.84 2.1673×10−2 1.89
512 1.22×10−2 1.0573×10−3 1.36 9.4256×10−3 1.20
1024 6.13×10−3 9.2188×10−5 3.52 2.1399×10−3 2.14
2048 3.06×10−3 3.0885×10−5 1.58 7.9984×10−4 1.42

Table 6.2. Error norm data for the concentric circular annulus case using Approach B considered
in Sec. 2.7.3

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 4.8654×10−1 –

1.93, 0.97

1.1256 –

1.78, 0.97

64 9.82×10−2 1.9149×10−1 1.35 7.4819×10−1 0.59
128 4.91×10−2 5.3379×10−2 1.84 1.9643×10−1 1.93
256 2.45×10−2 1.6787×10−2 1.67 5.6235×10−2 1.80
512 1.22×10−2 9.8071×10−3 0.78 2.8225×10−2 0.99
1024 6.13×10−3 8.0832×10−4 3.60 3.0398×10−3 3.21
2048 3.06×10−3 1.2137×10−4 2.74 8.2524×10−4 1.88

E∞

32 1.96×10−1 1.0388×10−1 –

1.99, 0.99

2.6491×10−1 –

1.52, 0.98

64 9.82×10−2 3.7747×10−2 1.46 2.2513×10−1 0.23
128 4.91×10−2 9.8976×10−3 1.93 7.4914×10−2 1.59
256 2.45×10−2 2.7456×10−3 1.85 2.0745×10−2 1.85
512 1.22×10−2 1.0606×10−3 1.37 9.2775×10−3 1.16
1024 6.13×10−3 9.2313×10−5 3.52 1.8323×10−3 2.34
2048 3.06×10−3 3.1502×10−5 1.55 6.8778×10−4 1.41
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Table 6.3. Error norm data for the concentric circular annulus case using Approach C considered
in Sec. 2.7.3

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 7.5945×10−1 –

1.22, 0.82

1.1582 –

1.79, 0.97

64 9.82×10−2 1.9216×10−1 1.98 7.5692×10−1 0.61
128 4.91×10−2 5.3385×10−2 1.85 1.9907×10−1 1.93
256 2.45×10−2 8.3493×10−2 -0.64 5.7075×10−2 1.80
512 1.22×10−2 2.0512×10−2 2.03 2.8476×10−2 1.00
1024 6.13×10−3 1.7283×10−3 3.57 3.0329×10−3 3.23
2048 3.06×10−3 9.3256×10−3 -2.43 8.2703×10−4 1.87

E∞

32 1.96×10−1 1.3074×10−1 –

0.91, 0.79

2.6907×10−1 –

1.53, 0.98

64 9.82×10−2 4.1687×10−2 1.65 2.2643×10−1 0.25
128 4.91×10−2 1.3548×10−2 1.62 7.5307×10−2 1.59
256 2.45×10−2 2.7071×10−2 -1.00 2.0848×10−2 1.85
512 1.22×10−2 6.3965×10−3 2.08 9.3043×10−3 1.16
1024 6.13×10−3 1.2647×10−3 2.34 1.8262×10−3 2.35
2048 3.06×10−3 4.7482×10−3 -1.91 6.8950×10−4 1.41

Table 6.4. Error norm data for the hexagram case considered in Sec. 2.7.4

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 6.7780×10−1 –

0.58, 0.87

5.3142×10−1 –

0.84, 0.97

64 9.82×10−2 3.4265×10−1 0.98 3.6469×10−1 0.54
128 4.91×10−2 2.4912×10−1 0.46 3.0923×10−1 0.24
256 2.45×10−2 9.4835×10−2 1.39 1.3984×10−1 1.14
512 1.22×10−2 7.0835×10−2 0.42 5.9982×10−2 1.22
1024 6.13×10−3 7.6675×10−2 -0.11 3.5921×10−2 0.74
2048 3.06×10−3 7.3231×10−2 0.07 1.8182×10−2 0.98

E∞

32 1.96×10−1 2.3021×10−1 –

0.56, 0.89

2.6085×10−1 –

0.78, 1.00

64 9.82×10−2 9.2871×10−2 1.31 1.4826×10−1 0.82
128 4.91×10−2 8.3922×10−2 0.15 8.4091×10−2 0.82
256 2.45×10−2 4.5081×10−2 0.90 5.7254×10−2 0.55
512 1.22×10−2 2.3251×10−2 0.96 2.8368×10−2 1.01
1024 6.13×10−3 2.7484×10−2 -0.24 1.9064×10−2 0.57
2048 3.06×10−3 2.3980×10−2 0.20 9.4295×10−3 1.02
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Table 6.5. Error norm data for the egg case considered in Sec. 2.7.4

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 4.9929×10−2 –

1.00, 0.95

8.6565×10−1 –

1.37, 0.96

64 9.82×10−2 3.1338×10−2 0.67 5.6384×10−1 0.62
128 4.91×10−2 1.0582×10−2 1.57 5.3923×10−1 0.06
256 2.45×10−2 1.2636×10−2 -0.26 1.0306×10−2 2.39
512 1.22×10−2 5.0855×10−3 1.31 3.2609×10−3 1.66
1024 6.13×10−3 1.8937×10−3 1.43 1.0862×10−3 1.59
2048 3.06×10−3 6.3391×10−4 1.58 4.4750×10−4 1.28

E∞

32 1.96×10−1 7.2046×10−3 –

0.67, 0.83

3.0454×10−2 –

0.54, 0.91

64 9.82×10−2 1.1199×10−2 -0.64 2.5406×10−2 0.26
128 4.91×10−2 7.7484×10−3 0.53 1.9357×10−2 0.39
256 2.45×10−2 6.2520×10−3 0.31 1.7718×10−2 0.13
512 1.22×10−2 2.2338×10−3 1.48 1.0803×10−2 0.71
1024 6.13×10−3 1.6059×10−3 0.48 6.7722×10−3 0.67
2048 3.06×10−3 5.3624×10−4 1.58 2.7800×10−3 1.28

Table 6.6. Error norm data for the x-cross case considered in Sec. 2.7.4

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 1.9617×10−1 –

0.94, 1.00

7.9954×10−1 –

1.08, 0.98

64 9.82×10−2 1.0360×10−1 0.92 2.9599×10−1 1.43
128 4.91×10−2 6.3540×10−2 0.71 1.0168×10−1 1.54
256 2.45×10−2 3.3087×10−2 0.94 8.4574×10−2 0.27
512 1.22×10−2 1.6187×10−2 1.03 4.1020×10−2 1.04
1024 6.13×10−3 8.0014×10−3 1.01 1.7976×10−2 1.19
2048 3.06×10−3 3.8168×10−3 1.07 6.5705×10−3 1.45

E∞

32 1.96×10−1 9.7360×10−2 –

0.67, 0.98

1.5537×10−1 –

0.85, 1.00

64 9.82×10−2 7.0146×10−2 0.42 9.9996×10−2 0.64
128 4.91×10−2 4.9175×10−3 0.51 6.0211×10−2 0.73
256 2.45×10−2 3.5404×10−3 0.47 2.6342×10−2 1.19
512 1.22×10−2 2.0327×10−2 0.80 1.5461×10−2 0.77
1024 6.13×10−3 1.1164×10−2 0.86 8.8542×10−3 0.80
2048 3.06×10−3 5.7269×10−3 0.96 4.9815×10−3 0.83
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Table 6.7. Error norm data for fluid inside the sphere case using Approach B considered in
Sec. 2.7.5

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

16 3.92×10−1 1.2034 –

1.96, 0.91

1.2034 –

1.97, 0.93

32 1.96×10−1 8.3704×10−1 3.85 9.8016×10−2 3.62
64 9.82×10−2 4.8865×10−1 0.78 4.9230×10−2 0.99
128 4.91×10−2 1.0000×10−2 2.29 1.0273×10−2 2.26
256 2.45×10−2 8.7930×10−3 0.19 8.7922×10−3 0.22
320 1.96×10−2 9.7462×10−4 9.86 1.0631×10−3 9.47

E∞

16 3.92×10−1 9.7340×10−2 –

1.83, 0.93

1.0115×10−1 –

1.51, 0.98

32 1.96×10−1 7.2565×10−3 3.75 2.1147×10−2 2.26
64 9.82×10−2 4.9534×10−3 0.55 1.0438×10−2 1.02
128 4.91×10−2 1.1726×10−3 2.08 2.5863×10−3 2.01
256 2.45×10−2 7.4807×10−4 0.65 1.5037×10−3 0.78
320 1.96×10−2 1.4668×10−4 7.30 8.9006×10−4 2.35

Table 6.8. Error norm data for fluid inside the sphere case using Approach C considered in
Sec. 2.7.5

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

16 3.92×10−1 1.2034 –

0.94, 0.74

1.2034 –

1.97, 0.93

32 1.96×10−1 1.4493×10−1 3.05 1.0073×10−1 3.58
64 9.82×10−2 1.2962×10−1 0.16 4.9176×10−2 1.03
128 4.91×10−2 3.4356×10−2 1.92 1.0362×10−2 2.25
256 2.45×10−2 4.9902×10−2 -0.54 8.7919×10−3 0.24
320 1.96×10−2 5.6696×10−2 -0.57 1.0625×10−3 9.47

E∞

16 3.92×10−1 1.5668×10−1 –

0.07, 0.05

1.0083×10−1 –

1.52, 0.99

32 1.96×10−1 4.9131×10−2 1.67 2.3972×10−2 2.07
64 9.82×10−2 1.0494×10−1 -1.09 9.9420×10−3 1.27
128 4.91×10−2 6.0320×10−2 0.80 2.7054×10−3 1.88
256 2.45×10−2 8.8743×10−2 -0.56 1.4489×10−3 0.90
320 1.96×10−2 9.3188×10−2 -0.22 9.2746×10−4 2.00
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Table 6.9. Error norm data for fluid outside the sphere case using Approach B considered in
Sec. 2.7.5

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

16 3.92×10−1 6.3869 –

2.00, 1.00

12.6388 –

2.17, 1.00

32 1.96×10−1 1.6017 2.00 2.3072 2.45
64 9.82×10−2 4.0250×10−1 1.99 3.9686×10−1 2.54
128 4.91×10−2 1.0047×10−1 2.00 1.0267×10−1 1.95
256 2.45×10−2 2.5157×10−2 2.00 2.8038×10−2 1.87
320 1.96×10−2 1.6090×10−2 2.00 1.7741×10−2 2.05

E∞

16 3.92×10−1 3.8521×10−2 –

2.00, 1.00

1.3960×10−1 –

1.66, 0.97

32 1.96×10−1 9.6372×10−3 2.00 3.6464×10−2 1.94
64 9.82×10−2 2.4095×10−3 2.00 5.3588×10−3 2.77
128 4.91×10−2 6.0239×10−4 2.00 3.1807×10−3 0.75
256 2.45×10−2 1.5059×10−4 2.00 1.0506×10−3 1.60
320 1.96×10−2 9.6382×10−5 2.00 9.9368×10−4 0.25

Table 6.10. Error norm data for fluid outside the sphere case using Approach C considered in
Sec. 2.7.5

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

16 3.92×10−1 11.4085 –

0.87, 0.90

11.3418 –

2.13, 1.00

32 1.96×10−1 3.3852 1.75 1.9539 2.54
64 9.82×10−2 1.9619 0.79 3.8731×10−1 2.33
128 4.91×10−2 8.3413×10−1 1.23 9.6877×10−2 2.00
256 2.45×10−2 6.6588×10−1 0.33 3.1445×10−2 1.62
320 1.96×10−2 8.8538×10−1 -1.28 1.5689×10−2 3.12

E∞

16 3.92×10−1 3.7012×10−1 –

0.41, 0.67

1.1447×10−1 –

1.60, 0.98

32 1.96×10−1 1.4986×10−1 1.30 3.0673×10−2 1.90
64 9.82×10−2 1.4881×10−1 0.01 5.9817×10−3 2.36
128 4.91×10−2 6.7817×10−2 1.13 2.8228×10−3 1.08
256 2.45×10−2 9.2122×10−2 -0.44 1.1423×10−3 1.31
320 1.96×10−2 1.0649×10−1 -0.65 9.3613×10−4 0.89
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Table 6.11. Error norm data for the torus case using Approach C considered in Sec. 2.7.5

‘
N h

Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

16 3.92×10−1 2.0494 –

1.25, 0.93

2.7261 –

1.45, 0.97

32 1.96×10−1 5.1628×10−1 1.99 1.2559 1.12
64 9.82×10−2 1.1226×10−1 2.20 2.1936×10−1 2.52
128 4.91×10−2 8.5599×10−2 0.39 8.7687×10−2 1.32
256 2.45×10−2 4.7889×10−2 0.84 5.2780×10−2 0.73
320 1.96×10−2 4.0430×10−2 0.76 3.9756×10−2 1.27

E∞

16 3.92×10−1 7.1337×10−2 –

0.63, 0.59

1.8828×10−1 –

0.95, 0.90

32 1.96×10−1 1.6299×10−2 2.13 9.5677×10−2 0.98
64 9.82×10−2 4.7456×10−2 1.78 2.5818×10−2 1.89
128 4.91×10−2 8.9841×10−3 -0.92 1.2753×10−2 1.01
256 2.45×10−2 7.6094×10−3 0.24 1.4638×10−2 -0.20
320 1.96×10−2 6.7303×10−3 0.55 1.1201×10−2 1.20

Table 6.12. Error norm data for the concentric annulus case with spatially constant Robin
boundary conditions using Approach B considered in Sec. 2.7.6

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 5.9218×10−1 –

1.97, 1.00

3.1462 –

1.67, 0.95

64 9.82×10−2 1.5389×10−1 1.94 1.5899 0.98
128 4.91×10−2 3.9792×10−2 1.95 4.3190×10−1 1.88
256 2.45×10−2 1.0035×10−2 1.99 4.4843×10−2 3.27
512 1.22×10−2 2.5860×10−3 1.96 4.9145×10−2 -0.13
1024 6.13×10−3 6.7235×10−4 1.94 2.4537×10−2 1.00
2048 3.06×10−3 1.6595×10−4 2.02 2.0854×10−3 3.56

E∞

32 1.96×10−1 7.3004×10−2 –

1.97, 1.00

3.3663×10−1 –

1.45, 0.99

64 9.82×10−2 1.9263×10−2 1.92 1.7209×10−2 0.97
128 4.91×10−2 4.9511×10−3 1.96 5.1747×10−2 1.73
256 2.45×10−2 1.2529×10−3 1.98 1.4644×10−2 1.82
512 1.22×10−2 3.1817×10−4 1.98 7.3577×10−3 0.99
1024 6.13×10−3 8.2175×10−5 1.95 3.2291×10−3 1.19
2048 3.06×10−3 2.0329×10−5 2.02 7.7661×10−4 2.06
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Table 6.13. Error norm data for the concentric annulus case with spatially constant Robin
boundary condition using Approach C considered in Sec. 2.7.6

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 1.2927 –

0.92, 0.56

3.2195 –

1.68, 0.95

64 9.82×10−2 1.1437×10−1 3.50 1.6086 1.00
128 4.91×10−2 2.8402×10−2 2.01 4.3717×10−1 1.88
256 2.45×10−2 2.2619×10−1 -2.99 4.5382×10−2 3.27
512 1.22×10−2 4.7478×10−2 2.25 4.9493×10−2 -0.13
1024 6.13×10−3 3.8797×10−3 3.61 2.4447×10−2 1.02
2048 3.06×10−3 2.6897×10−2 -2.79 2.0692×10−3 3.56

E∞

32 1.96×10−1 1.5846×10−1 –

0.71, 0.48

3.3871×10−1 –

1.45, 0.99

64 9.82×10−2 2.1296×10−2 2.88 1.7262×10−2 0.97
128 4.91×10−2 7.1544×10−3 1.57 5.1901×10−2 1.73
256 2.45×10−2 5.0560×10−2 -2.82 1.4598×10−2 1.83
512 1.22×10−2 1.2498×10−2 2.02 7.3909×10−3 0.98
1024 6.13×10−3 1.2720×10−3 3.30 3.2262×10−3 1.20
2048 3.06×10−3 8.6497×10−3 -2.77 7.7599×10−4 2.06

Table 6.14. Error norm data for the hexagram case with spatially varying Robin boundary
conditions using Approach C considered in Sec. 2.7.7

N h
Continuous indicator function Discontinuous indicator function
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 6.4450e-1 –

0.75, 0.96

8.4947e-1 –

1.00, 0.96

64 9.82×10−2 3.8669×10−1 0.74 5.5409e-1 0.62
128 4.91×10−2 2.1738×10−1 0.83 3.7542×10−1 0.56
256 2.45×10−2 8.3523×10−2 1.38 8.0590×10−2 2.21
512 1.22×10−2 6.1208×10−2 0.45 9.1875×10−2 -0.19
1024 6.13×10−3 4.2044×10−2 0.54 3.0769×10−2 1.58
2048 3.06×10−3 3.4124×10−2 0.30 1.3971×10−3 1.14

E∞

32 1.96×10−1 1.6739×10−1 –

0.71, 0.95

1.8868×10−1 –

0.72, 0.95

64 9.82×10−2 1.2126×10−1 0.47 1.4155×10−1 0.41
128 4.91×10−2 1.0764×10−1 0.17 1.2363×10−1 0.20
256 2.45×10−2 3.4357×10−2 1.65 4.2007×10−2 1.56
512 1.22×10−2 3.7526×10−2 -0.13 4.2895×10−2 -0.03
1024 6.13×10−3 1.5288×10−2 1.30 1.8924×10−2 1.18
2048 3.06×10−3 9.5637×10−3 0.68 9.5005×10−3 0.99
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Table 6.15. Error norm data for the hexagram with smooth exterior corners case using Approach
C with the discontinuous indicator function considered in Sec. 2.7.8

N h
Neumann problem Robin problem
Error Order Fit (m,R2) Error Order Fit (m,R2)

E1

32 1.96×10−1 7.6209×10−1 –

1.08, 0.91

3.9049e-1 –

1.26, 0.89

64 9.82×10−2 1.4221×10−1 2.42 1.0627e-1 1.88
128 4.91×10−2 1.4759×10−1 -0.05 1.0857×10−1 -0.03
256 2.45×10−2 2.2453×10−2 2.72 1.4303×10−2 2.92
512 1.22×10−2 1.4344×10−2 0.65 2.9291×10−3 2.29
1024 6.13×10−3 1.5886×10−2 -0.15 4.7328×10−3 -0.69
2048 3.06×10−3 6.7013×10−3 1.25 2.9825×10−3 0.67

E∞

32 1.96×10−1 2.3668×10−1 –

0.95, 0.95

1.2099×10−1 –

1.00, 0.88

64 9.82×10−2 4.8712×10−2 2.28 4.0233×10−2 1.59
128 4.91×10−2 4.3138×10−2 0.18 4.9885×10−2 -0.31
256 2.45×10−2 2.5443×10−2 0.76 1.0488×10−2 2.25
512 1.22×10−2 7.8196×10−3 1.70 3.4723×10−3 1.59
1024 6.13×10−3 6.8699×10−3 0.19 1.9522×10−3 0.83
2048 3.06×10−3 3.3329×10−3 1.04 3.4365×10−3 -0.82

Table 6.16. Error norm data for the circle case with spatially varying Neumann boundary
conditions using Approach C and D considered in Appendix 6.1. The continuous indicator
function is used here. A convergence rate of O(h0.98) (respectively, O(h0.95)) with an R2 value
of 0.95 (respectively, 0.98) in the L∞ (respectively, L1) norm is obtained using Approach C.
In the case of Approach D with the top hat kernel function, a convergence rate of O(h−0.02)
(respectively, O(h−0.01)) with an R2 value of 0.19 (respectively, 0.03) in the L∞ (respectively,
L1) norm is obtained. With the spline kernel function, Approach D achieves a convergence rate
of O(h−0.01) (respectively, O(h0.02)) with an R2 value of 0.69 (respectively, 0.55) in the L∞

(respectively, L1) norm.

N
Approach C Approach D (top hat function) Approach D (spline function)
Error Order Error Order Error Order

E1

32 5.0137×10−2 – 5.9980×10−1 – 1.3436 –
64 1.6119×10−2 1.64 5.6372×10−1 0.9 1.2869 0.06
128 1.3963×10−2 0.21 6.4900×10−1 -0.20 1.2772 0.01
256 4.6304×10−3 1.59 6.1927×10−1 0.07 1.2737 4.0×10−3

512 3.4634×10−3 0.42 6.0978×10−1 0.02 1.2729 9.1×10−4

1024 1.5665×10−3 1.14 6.0404×10−1 0.01 1.2720 1.1×10−3

2048 8.1497×10−4 0.94 6.0404×10−1 0.00 1.2714 6.5×10−4

E∞

32 8.4450×10−3 – 9.0222×10−2 – 2.1357×10−1 –
64 3.7481×10−3 1.17 1.0070×10−1 -0.16 2.1124×10−1 0.02
128 5.0424×10−3 -0.43 1.1195×10−1 -0.15 2.1110×10−1 0.01
256 1.0171×10−3 2.31 1.0500×10−1 0.09 2.1627×10−1 9.6×10−4

512 6.5633×10−4 0.63 1.0480×10−1 2.7×10−3 2.1855×10−1 -0.03
1024 3.1095×10−4 1.08 1.0284×10−1 0.03 2.1849×10−1 -0.02
2048 1.5776×10−4 0.98 1.0284×10−1 0.00 2.1842×10−1 4.6×10−4
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[34] F.-J. Gürtler, M. Karg, K.-H. Leitz, M. Schmidt, Simulation of laser beam melting of steel
powders using the three-dimensional volume of fluid method, Physics Procedia 41 (2013)
881–886.

[35] E. Attar, C. Körner, Lattice Boltzmann model for thermal free surface flows with liquid–
solid phase transition, International Journal of Heat and Fluid Flow 32 (1) (2011) 156–163.

220



[36] C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, H. C.
Basoalto, Keyhole formation and thermal fluid flow-induced porosity during laser fusion
welding in titanium alloys: Experimental and modelling, Acta Materialia 126 (2017)
251–263.

[37] A. Aggarwal, A. Kumar, Particle scale modelling of selective laser melting-based additive
manufacturing process using open-source CFD code OpenFOAM, Transactions of the
Indian Institute of Metals 71 (11) (2018) 2813–2817.

[38] C. S. Peskin, The immersed boundary method, Acta Numer 11 (2002) 479–517.

[39] M. Bergmann, G. Bracco, F. Gallizio, A. Giorcelli, E. Iollo, G. Mattiazzo, M. Ponzetta, A
two-way coupling CFD method to simulate the dynamics of a wave energy converter., in:
OCEANS 2015 - Genova, Italy, IEEE, pp. 1–6.

[40] P. Dafnakis, A. P. S. Bhalla, S. A. Sirigu, M. Bonfanti, G. Bracco, G. Mattiazzo, Compar-
ison of wave–structure interaction dynamics of a submerged cylindrical point absorber
with three degrees of freedom using potential flow and computational fluid dynamics
models, Physics of Fluids 32 (9) (2020) 093307.

[41] A. P. S. Bhalla, N. Nangia, P. Dafnakis, G. Bracco, G. Mattiazzo, Simulating water-
entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain meth-
ods within the open-source IBAMR library, Applied Ocean Research 94 (2020) 101932.

[42] A. P. S. Bhalla, R. Bale, B. E. Griffith, N. A. Patankar, A unified mathematical framework
and an adaptive numerical method for fluid–structure interaction with rigid, deforming,
and elastic bodies, Journal of Computational Physics 250 (2013) 446–476.

[43] W. Kou, A. P. S. Bhalla, B. E. Griffith, J. E. Pandolfino, P. J. Kahrilas, N. A. Patankar,
A fully resolved active musculo-mechanical model for esophageal transport, Journal of
computational physics 298 (2015) 446–465.

[44] B. E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological
driving and loading conditions, International Journal for Numerical Methods in Biomedical
Engineering 28 (3) (2012) 317–345.

[45] C. S. Peskin, Flow patterns around heart valves: a numerical method, Journal of Computa-
tional Physics 10 (2) (1972) 252–271.

[46] R. Thirumalaisamy, N. Nangia, A. P. S. Bhalla, Critique on “Volume penalization for
inhomogeneous Neumann boundary conditions modeling scalar flux in complicated
geometry”, Journal of Computational Physics 433 (2021) 110163.

[47] T. Sakurai, K. Yoshimatsu, N. Okamoto, K. Schneider, Corrigendum to “Volume pe-
nalization for inhomogeneous Neumann boundary conditions modeling scalar flux in
complicated geometry” [J. Comput. Phys. 390 (2019) 452–469], Journal of Computa-
tional Physics (2021) 110497doi:https://doi.org/10.1016/j.jcp.2021.

221

https://www.sciencedirect.com/science/article/pii/S0021999121003922
https://www.sciencedirect.com/science/article/pii/S0021999121003922
https://www.sciencedirect.com/science/article/pii/S0021999121003922
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110497
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110497


110497.
URL https://www.sciencedirect.com/science/article/pii/S0021999121003922

[48] J. A. Bærentzen, H. Aanaes, Signed distance computation using the angle weighted
pseudonormal, IEEE Transactions on Visualization and Computer Graphics 11 (3) (2005)
243–253.

[49] X. Li, J. Lowengrub, A. Rätz, A. Voigt, Solving PDEs in complex geometries: a diffuse
domain approach, Communications in mathematical sciences 7 (1) (2009) 81.

[50] E. Brown-Dymkoski, N. Kasimov, O. V. Vasilyev, A characteristic based volume penaliza-
tion method for general evolution problems applied to compressible viscous flows, Journal
of Computational Physics 262 (2014) 344–357.

[51] B. Hardy, J. De Wilde, G. Winckelmans, A penalization method for the simulation
of weakly compressible reacting gas-particle flows with general boundary conditions,
Computers & Fluids 190 (2019) 294–307.

[52] B. Bensiali, G. Chiavassa, J. Liandrat, Penalization of Robin boundary conditions, Applied
Numerical Mathematics 96 (2015) 134–152.

[53] D. Kolomenskiy, R. Nguyen van yen, K. Schneider, Analysis and discretization of the vol-
ume penalized Laplace operator with Neumann boundary conditions, Applied Numerical
Mathematics 95 (2015) 238–249.

[54] K. Schneider, Immersed boundary methods for numerical simulation of confined fluid
and plasma turbulence in complex geometries: a review, Journal of Plasma Physics 81 (6)
(2015).

[55] W. Ren, C. Shu, W. Yang, An efficient immersed boundary method for thermal flow
problems with heat flux boundary conditions, International Journal of Heat and Mass
Transfer 64 (2013) 694–705.

[56] Y. Wang, C. Shu, L. M. Yang, Boundary condition-enforced immersed boundary-lattice
Boltzmann flux solver for thermal flows with Neumann boundary conditions, Journal of
Computational Physics 306 (2016) 237–252.

[57] T. Guo, E. Shen, Z. Lu, Y. Wang, L. Dong, Implicit heat flux correction-based immersed
boundary-finite volume method for thermal flows with Neumann boundary conditions,
Journal of Computational Physics 386 (2019) 64–83.

[58] J. Lou, J. Johnston, N. Tilton, Application of projection and immersed boundary methods
to simulating heat and mass transport in membrane distillation, Computers & Fluids 212
(2020) 104711.

[59] N. Nangia, B. E. Griffith, N. A. Patankar, A. P. S. Bhalla, A robust incompressible Navier-
Stokes solver for high density ratio multiphase flows, Journal of Computational Physics
390 (2019) 548–594.

222

https://doi.org/https://doi.org/10.1016/j.jcp.2021.110497
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110497
https://www.sciencedirect.com/science/article/pii/S0021999121003922


[60] IBAMR: An adaptive and distributed-memory parallel implementation of the immersed
boundary method, https://github.com/IBAMR/IBAMR.

[61] R. D. Hornung, S. R. Kohn, Managing application complexity in the SAMRAI object-
oriented framework, Concurrency Comput Pract Ex 14 (5) (2002) 347–368.

[62] SAMRAI: Structured Adaptive Mesh Refinement Application Infrastructure, http://www.
llnl.gov/CASC/SAMRAI.

[63] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient management of parallelism in
object oriented numerical software libraries, in: E. Arge, A. M. Bruaset, H. P. Langtangen
(Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp.
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